

US008424040B2

(12) United States Patent

Klosterman

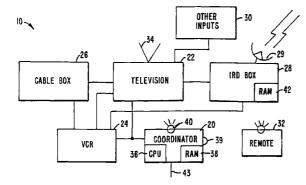
(54) MULTI-SOURCE SWITCHING IN A TELEVISION SYSTEM

- (75) Inventor: Brian Lee Klosterman, San Ramon, CA (US)
- (73) Assignee: Starsight Telecast, Incorporated, Fremont, CA (US)
- (*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 961 days.
- (21) Appl. No.: 11/841,521
- (22) Filed: Aug. 20, 2007

(65) **Prior Publication Data**

US 2008/0134243 A1 Jun. 5, 2008

Related U.S. Application Data


- (63) Continuation of application No. 10/441,475, filed on May 19, 2003, which is a continuation of application No. 09/612,352, filed on Jul. 6, 2000, now abandoned, which is a continuation of application No. 08/810,199, filed on Mar. 3, 1997, now abandoned, which is a continuation of application No. 08/423,410, filed on Apr. 17, 1995, now abandoned.
- (51) Int. Cl. *H04N 5/445* (2011.01)
- (52) U.S. Cl. USPC 725/48; 725/39; 725/51
- (58) Field of Classification Search 725/39, 725/48, 51

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

3,730,986 A	5/1973	Morchand
3,745,240 A	7/1973	Morchand et al.
4,488,179 A		Kruger et al.
4,598,423 A	7/1986	Hettiger

(10) Patent No.: US 8,424,040 B2

(45) **Date of Patent:** Apr. 16, 2013

4,706,121 A	11/1987	Young
4,751,578 A	6/1988	Reiter et al.
4,776,038 A	10/1988	Testin et al.
4,908,713 A	3/1990	Levine
4,914,517 A	4/1990	Duffield
	(Continued)	

FOREIGN PATENT DOCUMENTS

39 21	847	А	1/1991
41 17 :	239	C2	12/1992
	(Contii	nued)

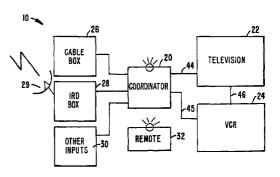
DE

DE

OTHER PUBLICATIONS

Hofmann, J., "The Consumer Electronic Bus: An Integrated Multi-Media LAN for the Home," International Journal of Digital and Analog Communication Systems, vol. 4, No. 2, 1991, pp. 77-86.

(Continued)


Primary Examiner — Pankaj Kumar Assistant Examiner — Sahar Baig

(74) Attorney, Agent, or Firm - Ropes & Gray LLP

(57) ABSTRACT

The present invention provides a tuning scheme for coordinating schedule information and programs received from multiple sources (26, 28, 30 and 34). In the preferred embodiment, an identifier associated with the program's channel (52) is used to identify a source device (26, 28, 30 or 34). When a user selects a program (60 or 62) listed in displayed schedule information (50), the system (10) reads the source identifier attached to the program's channel (52). The system (10) then carries out an automatic switching/tuning such that the required source device (26, 28, 30 or 34) is input to the destination device (22), and a tuner is then tuned to the selected program's channel (52).

26 Claims, 4 Drawing Sheets

U.S. PATENT DOCUMENTS

4,977,455	А	12/1990	Young
4,996,597	Ā	2/1991	Duffield
5,123,046	Ā	6/1992	Levine
5,151,789		9/1992	Young
5,161,019	Ā	11/1992	Emanuel
5,179,439	Ā	1/1993	Hashimoto
5,231,494	A	7/1993	Wachob
5,307,173	A *		Yuen et al
5,353,121	A *	* 10/1994	Young et al 725/52
5,410,344	Α	4/1995	Graves et al.
5,436,676		7/1995	Pint et al.
5,485,630	Α	1/1996	Lee et al.
5,550,576	Α	8/1996	Klosterman
5,576,755	А	11/1996	Davis et al.
5,589,892	A *	* 12/1996	Knee et al 725/43
5,619,274	Α	4/1997	Roop et al.
5,625,406	Α	4/1997	Newberry et al.
5,635,978	Α	6/1997	Alten et al.
5,635,989	Α	6/1997	Rothmuller
5,640,484	A *	¢ 6/1997	Mankovitz 386/245
5,642,153	Α	6/1997	Chaney et al.
5,666,645	Α	9/1997	Thomas et al.
5,684,525	Α	11/1997	Klosterman
5,729,687	A *	* 3/1998	Rothrock et al 709/204
5,808,694	Α	9/1998	Usui et al.
5,808,702	A *	* 9/1998	Yoshinobu et al 348/731
5,828,945	Α	10/1998	Klosterman
5,883,677	A *	* 3/1999	Hofmann 348/584
5,923,362	Α	7/1999	Klosterman
6,072,983	Α	6/2000	Klosterman
6,177,931	B1	1/2001	Alexander et al.
6,449,767	B1	9/2002	Krapf et al.
6,591,292	B1	7/2003	Morrison et al.
7,444,661	B1	10/2008	Wugofski
2007/0107019	A1	5/2007	Romano et al.
2007/0157240	A1	7/2007	Walker
2008/0229364	Al	9/2008	Ryu et al.

FOREIGN PATENT DOCUMENTS

DE	42 01 031 AI	7/1993
DE	42 17 246 A1	12/1993
DE	42 40 187	6/1994
EP	0337336 A2	10/1989
EP	0 444 496 AI	9/1991
EP	0 477 756 A2	4/1992
EP	0 560 593	9/1993
EP	0 566 454 A1	10/1993
EP	0701367	3/1996
JP	61264430	11/1986
JP	62-60377 A	3/1987
JP	64-041590 U	2/1989
JP	1-160188 A	6/1989
JP	3-6130 A	1/1991
JP	3-22770 A	1/1991
JP	4-185088	7/1992
JP	5-83688	4/1993
JP	2005/204962	8/2005
WO	WO-90/07844 A1	7/1990

WO	WO 92/03018	2/1992
WO	WO-9204801 A1	3/1992
WO	WO 94/14280	6/1994
WO	WO 94/14281	6/1994
WO	WO 94/14284	6/1994
WO	WO-94/21081	9/1994
WO	WO 95/02945	1/1995
WO	WO-95/07003 A1	3/1995
WO	WO 95/24098	9/1995
WO	WO 96/33572	10/1996
WO	WO-9633572 A1	10/1996
WO	WO 99/035849	7/1999

OTHER PUBLICATIONS

"IS-60.3 Physical Layer and Medium Specifications. Part 3-CX Physical Layer & Medium Specification," CX Specification, Revised Mar. 19, 1992, Table of Contents (2 pp.) and pp. 1-41.

O'Brien, Jr., T. E., "Physical and Media Specifications of the CXBus," IEEE Transactions on Consumer Electronics, vol. 37, No. 3, Aug. 1991, pp. 357-366.

Davidson, Ken, "CEBus: A New Standard in Home Automation," Circuit Cellar Ink, Aug./Sep. 1989; pp. 40-52.

Cable Television Technology Book Description (no tranlasation available).

Cable Television Technology Book Description (no tranlasation available), Dated 1994.

Non-Final Office Action dated Jan. 19, 2012 in U.S. Appl. No. 11/841,520.

Information Disclosure Statement submitted to the United States Patent and Trademark Office on Oct. 14, 1997 in U.S. Appl. No. 08/728,614.

"RCA Satellite Receiver User's Manual," Thomson Multimedia Inc. (2001).

Schaas, G. "Ein Gerat Fur Vielle Standards," Funkschau, WEKA Fachzeitschriften Verlag, Poing, DE; No. 18, Aug. 25, 1989:pp. 124-128.

"Starsight Operating System and quick reference," Copyright 1994. U.S. Appl. No. 08/402,943, filed Mar. 13, 1995 titled "Method and Apparatus for Managing Multiple Outside Video Service Providers". "VideoGuide User's Manual," Copyright 1995.

Office Actions and Replies in U.S. Appl. No. 10/441,475, filed May 19, 2003.

Office Actions and Replies in U.S. Appl. No. 11/841,520, filed Aug. 20, 2007.

Operating Guide for the Uniden UST-4800 Integrated Receiver/ Descrambler.

RCA Satellite Receiver User's Manual, Thomson Multimedia Inc. (2001).

Schaas, "Ein Gerat Fur Vielle Standards," Funkschau, WEKA Fachzeitschriften Verlag, Poing, DE; No. 18, Aug. 25, 1989, pp. 124-128.

Starsight Operating System and quick reference, Copyright 1994. VideoGuide User's Manual, Copyright 1995.

* cited by examiner

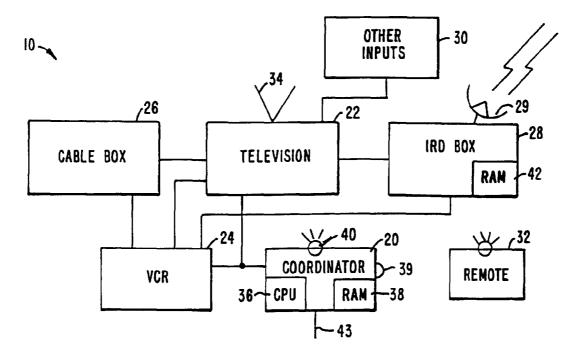


FIG. IA.

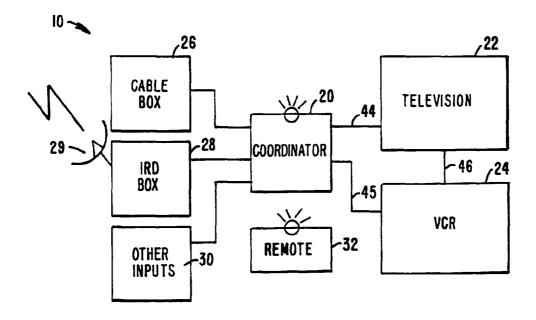
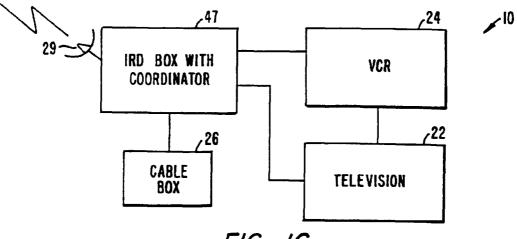



FIG. 18.

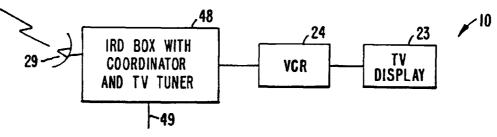


FIG. ID.

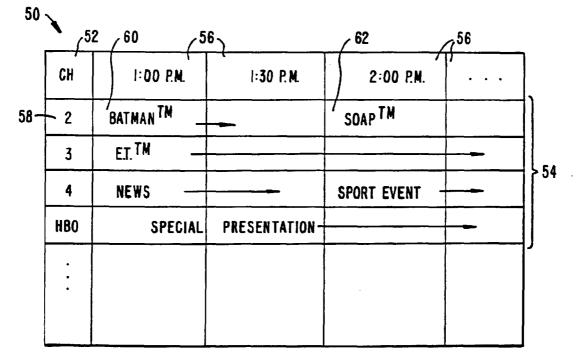


FIG. 2.

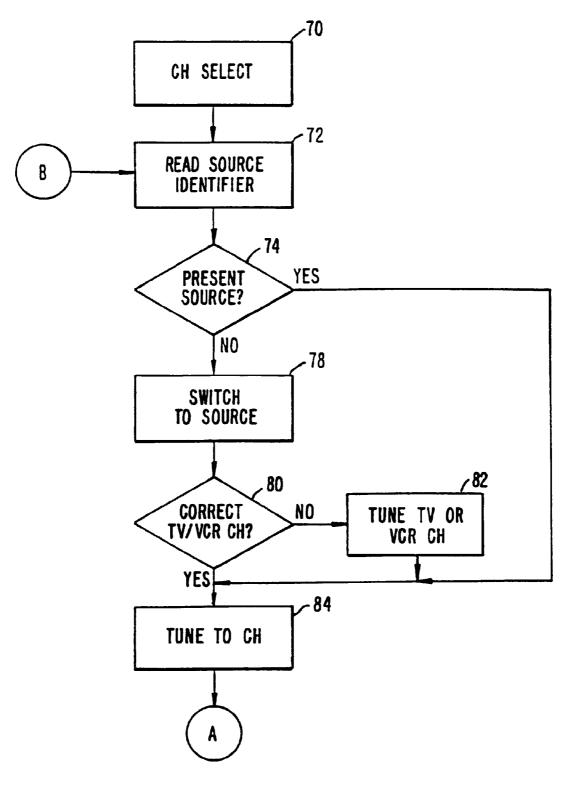


FIG. 3.

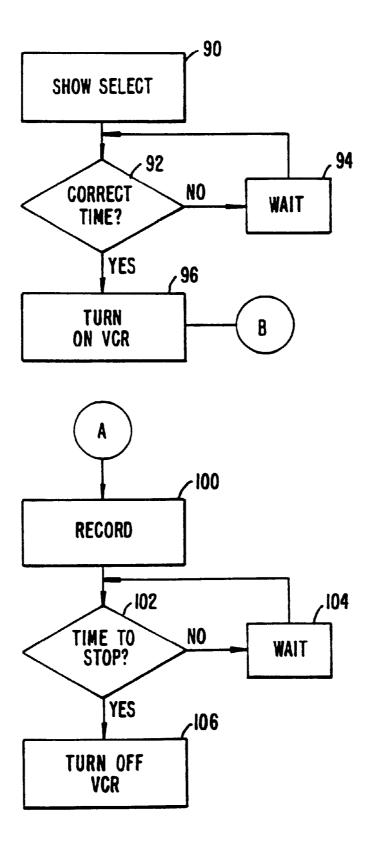


FIG. 4.

25

35

MULTI-SOURCE SWITCHING IN A **TELEVISION SYSTEM**

This is a continuation application of U.S. patent application Ser. No. 10/441,475, filed on May 19, 2003, which is a 5 continuation of U.S. patent application Ser. No. 09/612,352, now abandoned, filed on Jul. 6, 2000, now abandoned, which is a continuation application of U.S. patent application Ser. No. 08/810,199, filed on Mar. 3, 1997, now abandoned, which is a continuation application of U.S. patent application Ser. 10 No. 08/423,410, filed on Apr. 17, 1995, now abandoned.

BACKGROUND OF THE INVENTION

The prior art includes several arrangements for presenting 15 information associated with a television schedule guide. This information is often used to provide an on-screen grid-like display of the available channels along with their related television shows. Usually, a list of available channels are displayed on the y-axis and time slots occupy the x-axis. 20 These listed channels can appear sequentially or in any preferred, predetermined order within the display on the television. U.S. Pat. No. 5,353,121 is representative of such systems, and has found wide success in the industry. U.S. Pat. No. 5,353,121 is hereby incorporated by reference.

Many different transmission schemes are available for providing the information required for a television schedule guide. For example, a Direct Broadcast Satellite System (DBS) can provide television programs and television program schedule information via a satellite dish in conjunction 30 with a set-top receiver. DBS systems are commercially available from, for example, Hughes and Primestar. In addition, conventional satellite dishes, coax cable, telephone lines, fibre optic cable, antennae, etc. are used to distribute television program and/or program schedule information.

If DBS is subscribed to by a user, then a separate IRD (integrated receiving decoder) box with an on-screen display generator is usually provided. An IRD box usually includes a receiver and a tuner at the most basic level. A DBS subscriber receives access to potentially hundreds of television channels 40 along with a program guide provided/controlled by the DBS service provider. Unfortunately, a DBS system normally does not receive local network or local independent channels. In order to provide these missing local channels, some DBS receivers are capable of automatically switching between the 45 DBS satellite input and a local input. This is accomplished by placing the IRD box between the television (or a VCR connected to the television) and the local line (local cable or local antennae). When a local channel is selected by the user, the IRD box automatically removes DBS from service and 50 becomes a bypass for the local input. A user can select a local channel either manually or with a remote control. Access to locally available channels is crucial because the majority of prime time viewing is on those local networks.

In contrast, if a user is receiving television channels from 55 both cable and a local antenna sources, then the scenario is different. If the user's television has multiple television input ports, then these two sources can easily be attached to the two input ports. This solution works well as long as the number of sources does not become greater than the number of televi- 60 unattended recording. sion input ports.

If the user's television does not have multiple inputs, then a manual switch box attached to the multiple sources and to the television input can be utilized. This solution forces the user to manually switch between one source and another 65 coordinates television programs and television schedule depending on which channel is desired. For example, if the user wants the local news, which is available from the local

antennae, and the switch is set to cable, then the user must manually switch from cable to the local antenna. In a society filled with remote controls and automation, this solution is unacceptable to many consumers. Moreover, manually switching between channels becomes more complicated as the number of channel sources is increased.

While the IRD box, multiple television input ports, manual switching unit, etc. provide non-automated and sometimes partial solutions to the above-described problems, a more versatile technique is needed.

SUMMARY OF THE INVENTION

In the preferred embodiment, the present invention is directed to coordinating input signals and program information, and more particularly to (1) coordinating television schedule guide information received from multiple sources, (2) automatically switching to a desired signal source, and (3) tuning to a desired television program. Thus, the present invention provides a tuning scheme which coordinates television schedule guide information. This information can be received from numerous sources. These sources include an incoming cable line (e.g., on a coax cable), satellite broadcasts, a dedicated telephone line (e.g., twisted pair), and any other medium capable of transmitting a signal.

The present invention provides a method of operating a television system. This method of operation includes the inputting and storing of system channel guide information. The system channel guide information is received from multiple television sources and includes a source identifier. When the user inputs a desired program, the source identifier is used to select the source associated with that desired program from the available television signal sources. The selected source is then tuned to the desired program.

These and other advantages will become apparent to those skilled in this art upon a reading of the following detailed description of the invention, which should be taken in conjunction with the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1a is a block diagram of a multi-source television program and television schedule guide system with multiple sources connected directly to the television;

FIG. 1b is a block diagram of a multi-source television program and television schedule guide system with the multiple sources connected directly to the coordinator;

FIG. 1c is a block diagram of a television program and television schedule guide system with DBS and cable as source devices;

FIG. 1d is a block diagram of a television program and television guide system which has DBS, the coordinator, and the television tuner all within the same IRD box;

FIG. 2 is an example of an on-screen display of a schedule grid guide that has been assembled from the television guide information;

FIG. 3 is an exemplary process flow chart for automatic tuning; and

FIG. 4 is an exemplary process flow chart for automatic,

DESCRIPTION OF SPECIFIC EMBODIMENTS

The present invention provides a tuning scheme which guide information. This television schedule guide information can be received from numerous sources. As stated above, these sources include an incoming cable line (e.g., on a coax cable), satellite broadcasts, a dedicated telephone line (e.g., twisted pair), and any other medium capable of transmitting a signal. In the preferred embodiment, television channel broadcasts are received from at least two separate sources 5 such as (1) cable and a satellite dish, or (2) two different satellites, or (3) local cable and DBS sources. The schedule information is provided with a source identifier which identifies that schedule information as being from a particular source. The schedule information is sorted and displayed in 10 an organized fashion to the user.

When a user selects a show or channel located on one of the displayed channels within a displayed guide, the system reads the source identifier associated with that show or channel. In the preferred embodiment, the system then carries out an 15 automatic switching/tuning process that switches the input to the television (either RF or video) to a source device. Source devices include DBS, cable box, television tuner, etc. The system then tunes to the required channel for the desired show. Additionally, the source identifier can be utilized to 20 switch between various devices automatically when unattended VCR programming is desired. Furthermore, when program information is received from multiple satellite sources and a desired channel is selected, the present invention can, in one embodiment, automatically move the custom- 25 er's satellite dish such that the customer receives the desired program from the associated source. The present invention then tunes to the correct channel.

In creating a merged television guide, a channel map is created which identifies the channels available on the mul- 30 tiple sources, and identifies their source. For example, in the case of DBS/local channel implementations, a channel map is created with both local cable and DBS channels merged. The local channels and the DBS channels are tagged with a source identifier. When the user/consumer selects a non-DBS chan- 35 nel from the guide, the integrated receiver decoder unit (IRD box) for the satellite switches the IRD to couple the local cable to the receiver. The system then tunes the television tuner or other tuning device to the required channel. If a DBS channel is later selected, the system switches the IRD to 40 couple the satellite receiver/decoder to the receiver. The system then tunes the DBS tuner to the selected DBS channel. In the case of, for example, cable and antenna inputs, the system switches to the correct video input and then tunes the television tuner to the required channel for receiving the selected 45 information via, in one embodiment, satellite dish 29. IRD source. Thus, automatic access to multi-source television schedule guide information is provided.

In another embodiment of the present invention, the user can utilize the system to switch between destination devices. For example, information/programs received from one of the 50 multiple sources could be displayed on a computer screen or played on a stereo. Additionally, several destination devices can be used in conjunction with each other. For example, an FM radio station playlist could be shown on a computer monitor or television display, and the songs selected from that 55 playlist could be later recorded on an audio recorder. Still further, the system could be used to couple audio TV outputs to a stereo system. Thus, the present invention is not limited to television systems.

FIG. 1a illustrates in simplified form an example of a 60 multi-source television schedule guide system 10 with multiple sources connected directly to a television 22. As shown, multi-source television program and television schedule guide system 10 operates under the control of coordinator 20. Television 22 and VCR 24 are provided with input from cable 65 box 26 and IRD box 28. Other inputs 30 may also be supplied to the television 22 and/or VCR 24. A remote control 32 is

4

used by a viewer to tune the television and conduct other operations. In this embodiment, cable is provided via cable box 26, and DBS is provided via IRD box 28. Antennae 34 on television 22 may be used as an additional source of television broadcasts along with cable box 26, IRD box 28, and other inputs 30. In one typical embodiment, antenna 34 and cable box 26 are "local" sources. Other inputs 30 can include multiple satellite sources. When multiple satellite sources are present, coordinator 20 switches between the available satellite sources by automatically moving the user's satellite dish or switching between satellite dishes. In order to automatically move the satellite dish, a memory within IRD box 28 tracks the position of the DBS satellite dish in relation to satellite sources which are available via the DBS satellite dish. The IRD box 28 then automatically positions the DBS satellite dish such that the desired satellite source is received by the IRD box 28.

Coordinator 20 includes processor (CPU) 36 and memory (RAM) 38. The coordinator is connected to and controls infrared (IR) emitter(s) 40. IR receiver 39 is connected to coordinator 20 and receives input from the remote. IR emitter(s) 40 can be replaced by, for example, a bus interface or an RF transmitter. The IR emitter(s) 40 controls one or more of IRD box 28, television 22, VCR 24, cable box 26, and other inputs 30. Thus, IR emitter 40 acts as a remote control device by emulating remote control signals of television 22, VCR 24, cable box 26, and/or other devices. Because coordinator 20 has the ability to simulate a remote controller, coordinator 20 can be placed in the cable box 26, VCR 24, television 22, stand alone unit 20, or a satellite receiver.

Remote control 32 is a hand-held remote controller for controlling coordinator 20. In the preferred embodiment, remote control 32 is provided with an IR transmitter which controls the coordinator via IR receiver 39. Other remote controls, not shown in FIG. 1a, can be used for manually controlling television 22, VCR 24, cable box 26, IRD box 28, and other inputs 30. Although, in a preferred embodiment, coordinator 20 performs all the necessary control functions of the system. In a preferred embodiment, remote 32 works with coordinator 20 and emitter 40 to control the various devices in FIG. 1a. For example, as the user adjusts the volume control on remote 32, coordinator 20 emits signals through IR emitter 40 to adjust the volume in television 22.

IRD box 28 receives television programs along with other box 28 then provides program schedule information to the system. The schedule information is added to the transmitted signal by the DBS service provider or a company under contract. Examples of DBS service providers include Direct TV and USSB. This program schedule information (or guide) may also include a channel map that contains the channel information which is available on a particular source. Information associated with the DBS guide is saved in the IRD box receiver's RAM 42 or downloaded. Similarly, program guide information can be received through cable box 26, other inputs 30, antennae 34, and/or through any other transmission medium (e.g., dedicated twisted pair telephone line). Each of these sources may also be provided with television schedule data within the signal transmitted by the service provider.

Coordinator 20 finds and sorts the program guide information available in system 10. In order to receive the required television guide information, coordinator 20 is connected to the source(s) of this information. For example, if the channel map information is provided by a dedicated twisted pair telephone line, then that telephone line is input 43 to coordinator 20. Guide information can be provided from any commercially available medium and can apply to all or several of the

available sources. In the preferred embodiment, television guide information is provided via the vertical blanking interval on an available television channel. In FIG. 1*a*, the source devices along with coordinator 20 are coupled to television 22. Thus, coordinator 20 receives the program guide information via telephone line 43, and television 22 receives the television programs from the multiple sources. In addition, television 22 receives the program guide information from coordinator 20.

In another embodiment of the present invention, coordinator **20** receives all the source device inputs directly. FIG. **1***b* is a block diagram of a multi-source television program and television schedule guide system with the multiple sources connected directly to the coordinator. In this embodiment, coordinator **20** switches between the multiple sources **26**, **28** 15 and **30** and then outputs the information from the desired source to television **22** or to another destination device. This arrangement allows for a single input to television **22**. Coordinator **20** inputs program guide information along with television programs to television **22** via line **44** or through VCR 20 **24** via lines **45** and **46**. Other possible destination devices for the present invention are computer monitors, audio recorders, facsimile machines, printers, memory, etc.

In yet another embodiment of the present invention, DBS (via IRD box 28) and cable (via cable box 26) are source 25 devices which are connected in series to television 22. FIG. 1*c* is a block diagram of a television program and television schedule guide system with DBS and cable as source devices. In this arrangement, the coordinator is located within IRD box 47, and no IR emitter is needed. IRD box 47 inputs to 30 television 22 directly or through VCR 24. When DBS is removed from service by the coordinator within IRD box 47, cable box 26 inputs to television 22.

FIG. 1*d* is a block diagram of a television program and television guide system which has DBS, the coordinator, and 35 the television tuner all within the same IRD box. In this additional embodiment, no cable source is present, and DBS, the coordinator and the television tuner are all located within IRD box **48**. Thus, no emitter is needed. The coordinator switches between DBS and other available source(s) received 40 on line **49**. After the coordinator has switched and tuned to the desired channel, (as described below) that channel is displayed on television display **23** or recorded by VCR **24**. The VCR set forth in FIGS. **1***a***-1***d* is optional. Additionally, the DBS receiver and tuner could be located within the television 45 or the VCR.

Various formats can be used for the television schedule information. For example, data packets comprising a header section and information section can be received and sorted with other, more complex data packet formats. In the preferred embodiment, coordinator **20** takes the television schedule information from the available source(s) or a data input line and sorts/mixes it. For example, coordinator **20** may receive program schedule information via the vertical blanking interval in a television channel or via a transponder 55 of DBS.

In order to sort/mix the available schedule information, coordinator **20** first creates a structured framework and then saves the received data in that structured framework. This structure framework includes several levels for organized 60 data storage. After the levels of the framework are prepared by coordinator **20**, pointers are utilized to save data within appropriate levels of the structure.

In an alternative arrangement, the sorting/mixing of program schedule information is done in a separate location and 65 then provided to system **10**, for example, on a satellite channel. Thus, program schedule information, which has already 6

been mixed, sorted, organized, etc., is received in a format which is ready for immediate display. Less memory is required within the coordinator in this latter situation because only the screen/grid being viewed needs to be saved. For example, in this latter situation, if a user wishes to view a grid guide which is four hours long, only four hours worth of information needs to be saved within RAM **38**. This readyfor-immediate-display format can also be provided in a separate data stream via a different medium or on a television channel.

FIG. 2 is an example of an on-screen display of a schedule grid guide that has been assembled from the television guide information. The grid guide of the present invention also refers to and includes theme guides, channel guides, and other guides which display program information. In the preferred embodiment, after coordinator 20 has collected and sorted all the available program guide information, coordinator 20 generates the grid guide set forth in FIG. 2 for display on television 22. This grid guide can also be generated within the IRD box, a satellite receiver, the television, the VCR, a central office location, etc. The grid guide, designated generally with the reference numeral 50, provides a line up of all channels or a selection of channels 52 along with a description of the shows 54 available on those channels at certain times 56. For example, channel 2 58 has BATMAN 60 as a show from 1:00 p.m. to 2:00 p.m. and SOAP 62 as a show from 2:00 p.m. to 2:30 p.m. A theme, or channel, or random, etc. listing can be used instead of the grid guide shown in FIG. 2.

If a grid guide is used, the lineup of channels 52 can be arranged such that (1) channels are in numerical and/or alphabetical order, or (2) channels are in an order associated with their particular source, or (3) channels are in a mixed order programmed by a user, or (4) channels are in any other arrangement. When multiple sources are used for receiving television channels, an overlap of channels sometimes occurs. For example, both cable and DBS may carry the network ABC, but cable may have ABC on channel 6 and DBS may have ABC on channel 7. By having the ability to delete and activate the channels displayed in grid guide 50, the user can determine whether to have one of the ABC channels, both of the ABC channels, or neither of the ABC channels. The user's choice is entered into coordinator 20 via remote control 32. In an alternative embodiment, coordinator 20 may automatically note duplicate network names and delete one of the duplicates. In addition, coordinator 20 is capable of automatically lining up channels based on user's habits. If this mode for the automatic arrangement of channels is selected by the user, an algorithm based on user habits is used to determine the channel order 52. Therefore, any desired arrangement for the lineup of channels 52 is available.

In the preferred embodiment, the user displays grid guide **50** by pressing a guide button on remote control **32**. Coordinator **20** responds to the initial pressing of the guide button by automatically tuning to the channel or device which carries grid guide **50**, or overlaying a grid guide in a current broadcast. When the user is done with grid guide **50**, the user presses the guide button again (or an exit button) and coordinator **20** (1) automatically returns to the channel or source last viewed by the user or (2) removes the overlay. The technique utilized by coordinator **20** for automatic tuning is described further below.

In order to track which channels are available from which sources, a source identifier is located on each channel. Each of the source identifiers may be included in the channel guide information, or the source identifiers may be added by the system based on the origin of the channel guide information. Therefore, if these data are not already provided, coordinator **20** attaches the appropriate identifiers to the received channel guide information. For example, if BATMAN **60** is received through IRD box **28**, than BATMAN **60** will have a source identifier for identifying the IRD box **28** located on its channel **58**. In the preferred embodiment, the source identifier is 5 not displayed to the user. If desired, the user can program coordinator **20** to display which source the channel is associated with. For example, channels which come from cable box **26** can be colored red in grid guide **50** and channels available from IRD box **28** can be the color green; thus, if desired, the 10 user can easily identify which source is associated with each channel.

Remote 32 can be utilized by the user to program coordinator 20 or to move between different channels, times and shows in grid guide 50. Moreover, remote control 32 can be 15 used to select a certain channel or show (1) for displaying additional information associated with a particular show, (2) for tuning to a particular channel or show, or (3) for automatically recording a particular show. Remote control 32 can also be used for adjusting the volume or other features of televi- 20 sion 22 or other devices. The additional information associated with a particular show may include a short description of that show. For example, a short description of the story included in a sitcom may be provided. To display this additional information, coordinator 20 accesses the desired infor- 25 mation in RAM 38 or switches to a different input of data, and displays the additional information in an appropriate place within grid guide 50. In the preferred embodiment, this additional information is displayed (1) in an overlay, or (2) as a pull down window under the selected show, or (3) as a defined 30 information window at the top or the bottom of the screen.

FIG. 3 is an exemplary process flow chart for automatic tuning. To begin automatic tuning, the user selects a certain channel or show at step 70. The selection may be made by, for example, scrolling a cursor to a desired show and striking the 35 "enter" key, or entering a channel number using remote 32. Coordinator 20 then reads the source identifier at step 72 and determines if the present input to television 22 is the source associated with the source identifier (see step 74). If the present input source to television 22 is the same as the source 40 associated with the source identifier, then coordinator 20 tunes that particular source to the desired channel at step 84. If the present source is not the source associated with the source identifier, then the system switches sources to the proper source. For example, processor 36 may cause IR emit- 45 ter 40 to send out a signal which switches from the present source, and which activates or switches to the source associated with the source identifier. The desired channel or show then serves as the source inputting information to television 22. Coordinator 20 then determines if the correct television 50 channel or input for that particular source (the source associated with the source identifier) is activated at step 80. If the correct television channel or input is not activated, then the appropriate tuner in the system is tuned to the proper channel. For example, IR emitter 40 may be used to tune the television 55 to the desired television channel at step 82. Alternatively, step 80 could be removed, and coordinator 20 would then always tune or re-tune to the required channel, thereby confirming that television 22 is on the correct channel. After (or simultaneous with) the activation of the correct television channel 60 or input associated with the desired source, IR emitter 40 tunes the receiver in that source to the desired channel at step 84. The desired broadcast is then displayed on television 22. If a program is input to television 22 and/or VCR 24 via coordinator 20 (see FIG. 1b), then no tuning is needed for the 65 television and/or VCR. Therefore, in this latter arrangement, steps 80 and 82 are not present.

8

To further illustrate the process set forth in FIG. 3, the following example is provided. In this example, IRD box 28 has channels 100-200 available and is presently the input source to television 22 (see FIG. 1c). Additionally, cable box 26 is an input to IRD box 28 (see FIG. 1c). A user selects BATMAN 60 on channel 2 58 at step 70. The selected show is available on a channel from cable box 26. Coordinator 20 reads the source identifier associated with the selected show and determines that channel 2 is from cable box 26 at step 72. Coordinator 20 then determines that the present source is IRD box 28 at step 74. Therefore, a switching of sources must occur. As set forth above, when DBS is no longer the selected source, IRD box 28 allows cable box 26 to send signals through an internal relay (electronic or mechanical) within IRD box 28 to television 22. Therefore, coordinator 20 utilizes IR emitter 40 to deactivate or decouple DBS at step 78. IRD box 28 is inputted to television 22 through channel 3 of television 22. In the present arrangement, cable box 26 is also connected through channel 3 of television 22. Coordinator 20 may then check television 22 to ensure that it is on channel 3, as required for input from cable box 26 (see step 80). Since television 22 is already on channel 3, no change is made to the television channel (see step 84). Coordinator 20 then utilizes IR emitter 40 to tune cable box 26 to the desired channel 2 at step 84. As stated above, step 82 and step 84 can occur simultaneously. The program on is then displayed on television 22, and the process set forth in FIG. 3 is complete. In other embodiments, the television tuner will be used to select from numerous inputs from the sources, or a mixed system may provide that the television tuner is used for some sources, and the source tuner is used for other sources.

FIG. **4** is an exemplary process flow chart for automatic, unattended recording. To begin automatic, unattended recording, the user selects a television show for recording with remote **32**. In order to provide the automatic recording of the selected program, VCR **24** is automatically turned "on" (along with the activation of the VCR's record feature) at the appropriate time and then turned "off" when the show is complete. The tuning process used for automatic recording is the same as the process set forth for automatic tuning (see FIG. **3**), but the VCR is tuned to the correct channel rather than the television.

As set forth in FIG. 4, after the user selects a show at step 90, the coordinator checks to see if the beginning time for that show has passed (see step 92). If the beginning time has not passed, coordinator 20 waits at step 94. When the correct time (the program's starting time) does occur, VCR 24 is turned "on" (see step 96) and coordinator 20 acts as though automatic tuning has occurred. Therefore coordinator 20 reads the source identifier associated with the channel providing the selected show at step 72 (see FIG. 3). This transition between the process flow for automatic recording and the process flow for automatic tuning is indicated by B. During the tuning sequence for automatic recording, the VCR, rather than the television, is tuned to the correct channel (see steps 80 and 82). When the process flow set forth in FIG. 3 is complete, as indicated by A, coordinator 20 utilizes IR emitter 40 to activate the recording feature of the VCR at step 100 in FIG. 4. This causes VCR 24 to record the selected program. Coordinator 20 then checks to see if the end time of the show matches the present time at step 102. If the show is not over, coordinator 20 waits at step 104. When the end time for the show matches the present time, IR emitter 40 stops recording the show and then turns "off" the VCR at step 106. This scheme allows for the unattended, automatic recording of any show available from any source coupled to VCR 24.

In another embodiment of the present invention, coordinator 20 is located within IRD box 28, and coordinator 20 handles the switching and tuning required for DBS and cable sources without utilizing an IR emitter. When the user/consumer selects a non-DBS channel from the guide, the coordinator switches from the integrated receiver decoder unit for the satellite to the cable (if the source is originally DBS), and proceeds to tune the television tuner, or television tuner and cable box to the required channel. If a DBS channel is later 10selected, the system switches back to the integrated receiver decoder unit and tunes to the required DBS channel. This arrangement allows for the coordinating of multi-sources without the need for an IR emitter.

With the assistance of coordinator 20, a user does not have 15to manually select a television program source or manually tune to a desired channel or program. Moreover, with the automatic receiving, grid guide generating, switching, and tuning available in system 10, there is little if any manual interaction from the end user or customer.

While a full and complete disclosure of the invention has been provided herein above, it will be obvious to those skilled in the art that various modifications and changes may be made.

What is claimed is:

1. A method used in a user equipment device having a first tuner for receiving a first plurality of television programs transmitted from a first source device using a first transmission scheme and a second tuner for receiving a second plu- 30 rality of television programs transmitted from a second source device using a second transmission scheme which is different from the first transmission scheme, the method comprising:

receiving a plurality of program listings including a first 35 program listing corresponding to one of the first plurality of television programs and a second program listing corresponding to one of the second plurality of television programs;

in response to receiving a user selection selecting one of the

- plurality of program listings, selecting one of the first tuner and the second tuner, wherein
- the first tuner is selected when the selected program listing is the first program listing, and
- the second tuner is selected when the selected program listing is the second program listing; and
- tuning the selected tuner to the television program received by the selected tuner.

2. The method of claim 1 wherein the plurality of program 50 listings are received from a single data source.

- 3. The method of claim 1 wherein:
- the first program listing is received from the first source device: and
- the second program listing is received from the second 55 source device.

4. The method of claim 1 further comprising merging the first program listing and the second program listing to form the channel guide.

- 5. The method of claim 1 further comprising: 60 mixing and sorting the plurality of program listings in a desired order; and
- displaying the plurality of program listings in a desired order.
- 6. The method of claim 1 further comprising:
- automatically deleting duplicate program listings from the plurality of program listings.

7. The method of claim 1 further comprising:

storing a signal source identifier for each of the plurality of program listings, each signal source identifier identifying one of the first transmission scheme and the second transmission scheme.

8. The method of claim 1 further comprising:

- receiving a user selection selecting one of the plurality of program listings;
- retrieving a signal source identifier that identifies one of the first transmission scheme and the second transmission scheme that corresponds to the selected program listing; and
- receiving a television signal from one of the first tuner and the second tuner which uses the identified transmission scheme.

9. The method of claim 1 wherein the first source device and the second source device are selected from the group consisting of a cable, a broadcast source, an antenna source, a terrestrial source, a satellite source, and a direct broadcast 20 satellite source.

10. The method of claim **1** further comprising:

identifying the transmission scheme used to transmit a television program corresponding to one of the plurality of program listings.

11. The method of claim 10 wherein identifying the transmission scheme used to transmit a television program corresponding to one of the plurality of program listings includes displaying a transmission scheme identifier in a first color that corresponds to the first program listing, and displaying a transmission scheme identifier in a second color that corresponds to the second program listing.

12. The method of claim 1 further comprising:

displaying the first program listing; and

displaying, in response to a user selection, the second program listing.

13. The method of claim 1, wherein one of the first transmission scheme and the second transmission scheme is terrestrial or satellite.

14. The system for use in a user equipment device having a displaying a guide having the plurality of program listings; 40 first tuner for receiving a first plurality of television programs transmitted from a first source device using a first transmission scheme and a second tuner for receiving a second plurality of television programs transmitted from a second source device using a second transmission scheme which is 45 different from the first transmission scheme, the system comprising:

- means for receiving a plurality of program listings including a first program listing corresponding to one of the first plurality of television programs and a second program listing corresponding to one of the second plurality of television programs;
- means for displaying a guide having the plurality of program listings;
- in response to receiving a user selection selecting one of the plurality of program listings, means for selecting one of the first tuner and the second tuner, wherein
 - the first tuner is selected when the selected program listing is the first program listing, and
 - the second tuner is selected when the selected program listing is the second program listing; and
- means for tuning the selected tuner to the television program received by the selected tuner.

15. The system of claim 14, wherein the plurality of program listings are received from a single data source.

16. The system of claim 14 wherein:

65

the first program listing is received from the first source device; and

25

5

15

the second program listing is received from the second source device.

17. The system of claim 14 further comprising:

- means for merging the first program listing and the second program listing to form the channel guide.
- 18. The system of claim 14 further comprising:
- means for mixing and sorting the plurality of program listings in a desired order; and
- means for displaying the plurality of program listings in a desired order.

19. The system of claim 14, wherein said means for displaying a program guide further comprises:

- means for automatically deleting duplicate program listings from the plurality of program listings.
- 20. The system of claim 14 further comprising:
- means for storing a signal source identifier for each of the plurality of program listings, each signal source identifier identifying one of the first transmission scheme and the second transmission scheme.

21. The system of claim 14 further comprising:

- means for receiving a user selection selecting one of the plurality of program listings;
- means for retrieving a signal source identifier that identifies one of the first transmission scheme and the second 25 transmission scheme that corresponds to the selected program listing; and

means for receiving a television signal from one of the first tuner and the second tuner which uses the identified transmission scheme.

22. The system of claim 14, wherein the first source device and the second source device are selected from the group consisting of a cable, a broadcast source, an antenna source, a terrestrial source, a satellite source, and a direct broadcast satellite source.

23. The system of claim 14, further comprising:

means for identifying the transmission scheme used to transmit a television program corresponding to one of the plurality of program listings.

24. The system of claim 23 wherein the means for identifying the transmission scheme used to transmit a television program corresponding to one of the plurality of program listings includes means for displaying a transmission scheme identifier in a first color that corresponds to the first program listing, and means for displaying a transmission scheme identifier in a second color that corresponds to the second program 20 listing.

25. The system of claim 14 further comprising:

means for displaying the first program listing; and means for displaying, in response to a user selection, the second program listing.

26. The system of claim 14, wherein one of the transmission schemes is terrestrial or satellite.

> * ×

UNITED STATES PATENT AND TRADEMARK OFFICE CERTIFICATE OF CORRECTION

 PATENT NO.
 : 8,424,040 B2

 APPLICATION NO.
 : 11/841521

 DATED
 : April 16, 2013

 INVENTOR(S)
 : Klosterman

Page 1 of 1

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

On the Title Page:

The first or sole Notice should read --

Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 1096 days.

Signed and Sealed this Twenty-seventh Day of August, 2013

Staret tes la

Teresa Stanek Rea Acting Director of the United States Patent and Trademark Office

UNITED STATES PATENT AND TRADEMARK OFFICE CERTIFICATE OF CORRECTION

PATENT NO.: 8,424,040 B2APPLICATION NO.: 11/841521DATED: April 16, 2013INVENTOR(S): Brian Lee Klosterman

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

In the Claims:

Column 9, claim 4, line 59, delete "channel".

Column 10, claim 14, line 39, change "The" to -- A --.

Column 11, claim 19, line 12, delete "program".

Signed and Sealed this Ninth Day of September, 2014

Michelle K. Lee

Michelle K. Lee Deputy Director of the United States Patent and Trademark Office

Page 1 of 1