
Compiere Source 101 Compilo-red1 Project

Copyright © 2004 Redhuan D Oon, All Rights Reserved page 1 of 22

This is a living document that I am doing for Marco
LOMBARDO's Compilo project at
https://sourceforge.net/projects/compilo/ :D so it is a
toddler now, and will continue to grow there and t he usual
under http://compiere.red1.org/

The content has assumptions from the author and thu s cannot
represent Compiere Inc, other associates in the Com pilo
project or other parties. Bias is my own.

RED1 COMPIERE WORKSHOP

MAKING IT HAPPEN!!!

011 Compiere Source 101

012 Migration Process

version 0.3

(By red1 d. oon poh shin)

email: red1@red1.org

to feedback sign: www.red1.org/guestbook/

to receive updates join: www.red1.org/forum/

Compiere Source 101 Compilo-red1 Project

Copyright © 2004 Redhuan D Oon, All Rights Reserved page 2 of 22

011) COMPIERE SOURCE 101 ... 3
011.1) Overview of Topics...3
011.2) Open Questions...3

011.2.1) Where did it come from? ..3
011.2.2) Is it truly Open? ..3
011.2.3) What about been Open Knowledge?...3
011.2.4) What about Market Forces?..4

011.3) The Source ..4
011.3.1) The Source Layout ...5
011.3.2) Cracking the source ..5
011.3.3) Business Functionality..6
011.3.4) Development Work Cycle...7

011.4) Compiling from Source..8
011.4.1) Build Process ..8
011.4.2) SQL Debugging ..8

011.5) Researching from the Web ..9
011.5.1) Using the Forums..9

011.6) How to Setup Eclipse for Compiere..10
011.6.1) Downloading Eclipse..10
011.6.2) Setting up perspectives and views ..10
011.6.3) Importing Compiere Source into Eclipse..10
011.6.4) Setting up Debug and RUN modes...11

011.7) How to Modify a Callout..11
011.7.1) Searching for the Callout ..11
011.7.2) Defining the Callout..11
011.7.3) Opening the Callout in Eclipse ...11
011.7.4) Callout Design ..12
011.7.5) Getting and setting values...13
011.7.6) Accessing other tables' values...13

011.8) How to Debug Compiere..14
011.8.1) Identifying the problem ..14
011.8.2) Setting the debug level..14
011.8.3) Reading the debug logs...14
011.8.4) Understanding the problem...14
011.8.5) Handling SQL codes...15
011.8.6) Handling Java codes ...16
011.8.7) Finding out the root cause...16
011.8.8) Amending Codes ..17

011.9) Recompiling Compiere...18
011.9.1) Avoiding change impact ...18
011.9.2) Backing up and risks scenarios ...18
011.9.3) Documenting your work ...18
011.9.4) Deploying the CClient.jar ...19
011.9.5) Deploying the CServer.jar ..19

011.10) Common pitfalls ...20
011.10.1) Wrong understanding of business scenario...20
011.10.2) Attempting risky changes ...20
011.10.3) Poor Planning..20
011.10.4) Poor documentation ..20
011.10.5) Checking out unstable version ..20

012.0) MIGRATION PROCESS.. 21
012.1) Backup your present instance ...21
012.2) Post migration tests ..21

Compiere Source 101 Compilo-red1 Project

Copyright © 2004 Redhuan D Oon, All Rights Reserved page 3 of 22

011) Compiere Source 101
(by Redhuan D. Oon. http://red1.org/)

011.1) Overview of Topics
Topic 011 treats the subject of handling codes in C ompiere into various
chapters. We touch first on the background of Compi ere and the forces that leads
to this document, for a reconnaissance plane's view . The level of modifications
referred to here ranged from trivial but survival, to minor surgery to tweak and
optimise fully of what Compiere can be without incr easing the burden of
maintaining it. We are covering mostly simple funct ional issues and business
needs and not cosmetic or computing issues. We pick up some idea on what kind of
codes we are facing. We will also learn to setup Ec lipse IDE sufficiently to
debug Compiere. Then we see how to debug the codes, and how best to approach it.
The dangers and best practice are explored. Final w ork is then compiled and
deployed.

011.2) Open Questions

011.2.1) Where did it come from?
Compiere Source looks very huge and very well desig ned. It must have a history
before the OSS way. It was complete even before it got ported to SourceForge.
Compiere provided this link for us to know more of its yesteryears:
http://www.accorto.com . Having said that, it is so timely and groundbreak ing to
have such a powerful business application put in th e open. It is unprecedented.

011.2.2) Is it truly Open?
There are still classes within its source (maintain .jar), that do not have java
source attached. The classes there for Migration an d Replication worked via a
paid service provided by Compiere Inc. It also has to debunk itself from Oracle
as the database. Jorg Janke, the creator of Compier e has put this on the agenda.
It is also debunking itself from JBoss, to achieve Application Server
independence.

011.2.3) What about been Open Knowledge?
To learn Compiere can be a mixed experience. The fo undation User Manual, gives
terse albeit biblical description to all its featur es. That cost USD40, sold on
the Web Store of www.compiere.org . The on-site literature provided is however
sufficient and well given to get Compiere up and go ing, especially so on Windows
platform. If you investigate further from their web site you can also get some
reference as to Compiere’s architecture and develop ment pointers. But now there
is a growing need for more context information to t he source codes, and for a
more wider audience, accelerated by the Open Source market. SourceForge forums
has become very cluttered and the search engine is archaic. The Development Sub-

Compiere Source 101 Compilo-red1 Project

Copyright © 2004 Redhuan D Oon, All Rights Reserved page 4 of 22

Forum may be overwhelmed in demystifying this expen sive architecture. COMPILO
and RED1.ORG attempts to give it sanity as they are controlled by individuals.

011.2.4) What about Market Forces?
Since Compiere is a business application suite, it therefore draws business
concerns and commercialisation forces more than any thing else. Business can be
selfish and territorial, oxymoronic to open borderl ess sharing. It is debatable
which is more better for business – closed and gove rned and sanitised, or open
and anarchic and impassioned. There are fears that others will devise means to
ride on the Open Source wave while evolving closed commercial spin-offs from it
and erode the base application’s growth. Again deba table as laissez faire. For
now, its long journey can be complete if it becomes number one and stays there –
the final importance. That means strong leadership. To prepare for chaos.

 011.3) The Source
Compiere is written mostly in Java and are located in sub folders under a main
folder called Compiere-all. It also has embedded an d independent SQL queries.
Its architecture follows closely J2EE's N-tier mode l. There are java client,
generated jsps in the front; Java beans, servlets, XMLs and java factory
components in the middle; JBoss Tomcat application server and Oracle Database in
the back. The apps server service the accounting en gine and Web interface.

The source is considered well-annotated and well wr itten. It is fully integrated
in its design from the ground up and thus poses a h uge challenge to even
thinking of changing it. The source is also getting heavier with each version
release, unzipped at around 200 Mbytes for version 251e. When compiled, the
zipped binaries finished at 27 Mbytes.

The errors or bugs that may be are usually typo and omission mistakes that are
easily corrected. The source codes controls most of Compiere's core application
processes. After this source, there is also another tool for changing
application functionality using metadata, called th e Application Dictionary
(AD). This subject is dealt elsewhere as we are onl y mostly concerned about the
raw source here. But suffice to say the AD is the m ost important developer tool
given by Compiere.

Compiere source versions changes steadily and is ex pected each month to come up
with new features and capabilities. If you do not b other with the new releases
and carry on with your present version, there is no issue. But whenever you wish
to upgrade your codes to the latest release, you ha ve to do your changes all
over again.

Thus documentation is important to remember what co de changes you have made.
Study the future release information before decidin g on the freeze version.
Weigh between waiting for the version to arrive or make your changes now, and
repeat later when taking on the new version. Upgra ding codes also go hand in
hand with migrating your database to be in sync. Mi gration is a paid service
provided by www.compiere.org .

Compiere Source 101 Compilo-red1 Project

Copyright © 2004 Redhuan D Oon, All Rights Reserved page 5 of 22

011.3.1) The Source Layout

The image on the right is taken from the Eclipse ID E,
to show the packaged folders. The BASE folder is
expanded to show its various packages.
Often debugging is in org.compiere.model and
org.compiere.process of this folder.

The Model package also contains the Callout source
codes, which should be the focus of any field level
business logic.

The Process package houses most of the push-button
process logic.

This folder is compiled into the CClient.jar with
other folders and any changes to them should only
affect that jar.

The accounts process and posting actions are handle d
by the org.compiere.acct package of the Server
folder. Any changes there are compiled into the
CServer.jar. This folder cannot be debugged in
Eclipse as its execution is passed into JBoss that
runs outside Eclipse during debugging.

Some insight into other code folders are touched on
by Marco in earlier chapters such as the one on
Jasper Integration. Marco also touched on Ant Build .

You shouldn’t change any logic of other codes that are highly integrated and
abstract. Most functional changes are capable via t he Application Dictionary
(AD) and Callouts or Procedures. Compiere’s claim o f 98% programming not-needed
rule is believable, as we are not concerned about i ntegration work here but
normal debugging and business rules changes.

011.3.2) Cracking the source
Understanding Compiere's architecture, processes an d activity flow from scratch
is tricky and offers a steep learning curve. Learni ng and practicing in
modifying the codes can give the academic experienc e but the most effective way
to do it is on the job, with real clients - hands-o n, building your ‘flying
hours’.

Its best and safest to start with an off-the-shelf Client that requires no
modifications and minimal demand on performance. Ta ke the Boat-Plane. Forget
about the Jumbo Jet for the moment. Work for free. Be paid in experience.

Compiere Source 101 Compilo-red1 Project

Copyright © 2004 Redhuan D Oon, All Rights Reserved page 6 of 22

011.3.3) Business Functionality
It can take a long while to understand how Business Functionality is weaved
inside Compiere. Usually after some practice all th is becomes clearer. Try from
this angle. Any business module is first defined by its table-column structure
in the AD. There, you also define certain validatio n rules. Then you develop
detailed business logic in the Callouts and push-bu tton Processes. SQL
Procedures may be created if the logic is strictly document based.

You may look at a Callout as an extension at the field level. SQL Procedure is
then an extension at the process level.

By push-button, we mean the process buttons that ap pear in many windows that is
pressed to begin a process on the record. These pro cesses plays around with
Doc_Action and Doc_Status values in the record.

Much of the document handling logic is controlled b y values in the Document Type
such as GL Type and Base Type.

Much of the User Access and personalised behaviour is controlled by Roles and
Preferences. The later can also be done on the fly by the user in any screen.

Recently with the advent of WFMC (Work-Flow Managem ent Coalition), Compiere has
incorporated a workflow engine to handle much of th e push-button processing. It
is still too new and abstract and shall be treated in another article.

The processed document’s accounting consequence is handled by the Doc_*.java
classes to effect the General Ledger and the accoun ting books.

Let’s try to see this in a simple model:

RED1 Compiere Process Model v0.1

Thus a typical new module may go through the follow ing development tasks.

Component Factory:
• Report & Process
• DocAction
• Schemas
• Accounts Posting
• Financial Reporting
• Workflow

Document Factory

• The Books
• Doc_*.java
• Doc_Type

Persistence Events – Instances, Actions,
Status, Docs, Facts…

Rules Engine
- Table/Column
- Validation
- Reference
- Document Type
- Role/Preference

Development
- Callout
- Processes
- Procedures

Books and
Accounts Facts

Source records,
flag status, IDs,

Integrative Flow

Compiere Source 101 Compilo-red1 Project

Copyright © 2004 Redhuan D Oon, All Rights Reserved page 7 of 22

011.3.4) Development Work Cycle

The RED1 Compiere Development Model v0.1

• RULES ENGINE Setup in the Application Dictionary (A D)

o Table-Column structure

o Input handling and validation rules

o Document Type & Print Format

o Define Default Accounts

o Workflow process

o Callout definition and process-button definition co nsolidated via
Report & Process

o Final Consolidation in Windows under the Menu tree

• DEVELOPMENT Work

o Place the codes in respective containers

� Callouts in org.compiere.model package of BASE

� Process Actions in org.compiere.process of BASE

� SQLs in db/database/procedures of folder tree

o Tied to definition in AD

o Reuse the FACTORY aspects of Compiere to minimise i mpact.

• Review integrative logic between RULES ENGINE and F ACTORIES

The ending point on reuse may have minimal design i mpact if we correctly
weave our module into the present integrative adapt ors. For example, if we
want to explore with a Payroll module, the final fi gures accounts posting can
be done via the default accounts-id schema in the B usiness Partner Category
and inducted into the present Accounts Payable mode l (Invoice of expenses, in
this case - wages). Other regulatory figures or boo ks has to be reviewed
during accounts posting, whether coding flows are c orrect.

All said, that reuse point may be the 90% headache! If you do not integrate
and link your own suite then your codes is out of t he architecture and much
features of the architecture such as security, acce ss control, user
preferences, window design and report generation ma y be lost from your
separated codes.

For experts, you can follow the pattern of Compiere codes to create different
functional modules.

Compiere Source 101 Compilo-red1 Project

Copyright © 2004 Redhuan D Oon, All Rights Reserved page 8 of 22

011.4) Compiling from Source
When we modify the Java codes or SQL queries, we mu st also compile and rebuild
the code packages before such changes can take effe ct. Such a process is carried
out by RUN_build.bat in the Compiere-all\utils-dev\ folder, which refers to the
parameters in build.xml. These routines require Apa che Ant and Java SDK to work.

011.4.1) Build Process
You can check some settings in myDevEnv.bat of Comp iere-all\Utils-dev\ and
proceed to build your source codes for redeployment . If that batch file does not
exist it has to be copied from myDevEnvTemplate.bat .

The settings concern the paths of your Compiere-all source directory, target
directory of your binary where Compiere2 will or is residing. Then there is the
install repository that you want the zip binaries t o be stored in. This
repository is like a backup where you can let other users access it to pick up
the changed binaries. It is not important to put it in the same place as
Compiere2.

Next file that must be there is your Build.xml file that specifies all the work
that is going to happen in the build process. Usual ly there is nothing to touch
in there so you can leave it alone.

After doing your backups, you can execute RUN_Build .bat from the utils-dev
directory. Note the log messages from the the dos p rompt. If the build failed,
you have to check what is the cause or causes. Init ially when you just started,
it is always the path problems.

Even if the build process does not complete and exi t on error, you can check
Compiere-all\install\build\ to see if your binaries are there and date-stamped
correctly (the time you run the build). If so, then you can use that and copy to
Compiere2. Otherwise it’s a java source error that needs code correction.

011.4.2) SQL Debugging
There are also significant source in the form of in dependent SQL procedures,
views, triggers and functions that exist at the dat abase level. With the effort
to debunk from Oracle, the triggers have been remov ed from the database domain
into the source code domain, as of version 251d. Wh ere are the triggers now?
Fortunately ELDIR of The Netherlands answered it in RED1/forum:

"The trigger code is now part of the model classes. The base class
for all of them PO, provides a method called before Save(). This
method is called when save() is called on any deriv ate of PO. Final
model classes can implement this method to perform any "trigger"
operations. As a consequence, all updates should be done by means of
the Compiere persistence engine, as there are no "r eal" database
triggers."

SQL routines that still exist, such as procedures a re generated by source i.e.
D:\Compiere251\compiere-all\db\database\Procedures which create themselves as
stored procedures in the database. You can use any SQL editor to debug them.
Oracle's EMC has one such tool. A popular third par ty tool is TOAD. For some
review of using Toad see http://compiere.red1.org/Toad.zip . Such SQLs are saved
and carried in the ExpDat.dmp during DB_Export as a n Oracle DB backup.

Compiere Source 101 Compilo-red1 Project

Copyright © 2004 Redhuan D Oon, All Rights Reserved page 9 of 22

 011.5) Researching from the Web
As there is much of java-J2EE and Oracle, and other common technologies that
goes with it, the Web is the richest source of back ground development and
technical information in demystifying Compiere. Mos t developers agree that the
best style to learn is looking at similar samples, comparing them. Compiere
seems the biggest single coherent and integrated ma ss of source examples!

To look in the web for Compiere's equivalent is alm ost non-existent. Thus to
compare enterprise codes and concepts to shorten th e learning curve has to be
done en-bloc taking Compiere as a whole, or looking at parts from scratch. For
example if one tries to learn via the J2EE blueprin t or Open For Business
(OFBiz) samples will find them to be quite apart in design and direction. Its
best to go through www.compiere.org once over, go through some exercises here,
pick a good book on J2EE and look for patterns to f ollow, and return again to
step one - iterating and evolving your comprehensio n. For oracle troubleshooting
try www.searchoracle.com as it is most authoritative and well organised.

011.5.1) Using the Forums
The SourceForge forums which houses Compiere is mos t important in the pursuit of
Open Source know-how. Software presented in such fa shion is without warranty and
may lack a principal vendor's support. However Comp iere Inc, USA, the founder
has created a support basis which gives priority to paying customers. Still most
of the forum community aren’t paying customers so t here exist a critical mass of
users to rely upon.

Be patient and observe the usual netiquette in purs uing your interests. Before
even asking a question in there, you should use the search engine in
www.sourceforge.net to look for clues first. Half of your problems are probably
answered by someone before. Its just buried somewhe re. Digging through the
forums has a side-benefit of giving ground to you. The knowledge base that you
pick up is important to build your confidence, and always wanting spoon-feeds
may hurt you in the long run.

Also try to contribute back, once you reach any lev el of competency. Another
good tip is that when others see more of your nick in there, especially
contributing ideas and answers and pleasant, then s omeone will feel motivated to
give you attention. Remember that all of the others were once upon a time like
you - dummies. You can be more open and provide som e background info in your
user profile or upkeep the diary provided. Honesty is the best policy.

Bugs are for bugs and follow the instructions on wh at to do. Do not plaster
yourself everywhere. Even in forums, there are prop er sub-forum channels for you
to participate. The Open Discussion sub-forum, like its message says, is not
meant for support or bug reports, and yet many tram ple that short note.

The Developer channel is more suitable for us, from novice to wizards - sharing
development and source code findings and issues. Th e Database Independence
channel is for those who wants to discuss on how to tackle its namesake. The ERP
channels separates out the topics based on function alities. If you have a
specific problem and you know its category, its bes t to ask it in the right
channel, or else you may get lost and the place loo k messy. If unsure, look for
someone busy, then ask directly. If your English is bad, you are certainly not
alone. If in doubt, just use some smilies :) ;) :o) . The web community is self-
governing and so there need not be much written rul es.

Compiere Source 101 Compilo-red1 Project

Copyright © 2004 Redhuan D Oon, All Rights Reserved page 10 of 22

011.6) How to Setup Eclipse for Compiere
Compiere was previously developed using JBuilder as the Integrated Development
Environment (IDE). Now its developer team is using Eclipse, also an Open Source
project. We know its Eclipse from the tell-tale fil es in Compiere Source - the
presence of .classpath and .project files. Having an IDE greatly helps in
tracking code execution and code modifications.

011.6.1) Downloading Eclipse
You can download the latest version or just version 3.1M from www.eclipse.org.
From the tar or zip file, extract them into a root directly i.e. C: or D:. The
sub-folders will extract itself, i.e. C:\eclipse\pl ugins\.. . For more visual
screenshots guidance, please refer to http://compiere.red1.org/Callout.zip .

011.6.2) Setting up perspectives and views
The perspectives we often use are Java and Debug. S elect those from the top menu
bar. Also select various views if they do not autom atically appear later.
Initial important view is 'Problems' as when we imp ort Compiere afterwards,
problems are bound to happen and we need this view to show us what they are.

011.6.3) Importing Compiere Source into Eclipse
First you download Compiere source from SourceForge . Choose version such as
CompiereSource251d or via CVS. The CVS version may have to be older for
stability from bugs.

Right-click on the left - the large empty panel to pop up for the import task.
Once selected you specify your Compiere Source loca tion. Then go one more level
down to the Compiere-all folder. Before that, copy the .classpath and .project
files into the Compiere-all directory. For samples of those two files use from
http://compiere.red1.org/eclipsefiles.zip. You have to change some path settings
in there to reflect your Compiere Source location a nd other utilities such as
Java SDK. The project name is also set in .project. You can also change it from
the Eclipse properties menu.

When the import is complete, stay in Java Perspecti ve mode to see if there are
errors, which usually will be for a fresh import. E rrors showed up as red X
icons. Bring up or look at the Problems View to see what it is. You may double
click on the problem line to be directed to the pro blem area. If there is a
message about duplicate CompiereCtrlMBean just dele te that file from the source
tree. Then right click the root folder to select 'r efresh'. Wait while the
progress bar finishes (will prompt on right side at the bottom). If errors still
persist, see what they are in the problems view. Yo u may even need to close,
exit and reopen the project. When deleting the proj ect, you need not select the
option to delete source unless you know what you ar e doing.

Compiere Source 101 Compilo-red1 Project

Copyright © 2004 Redhuan D Oon, All Rights Reserved page 11 of 22

011.6.4) Setting up Debug and RUN modes
When source is error-free then you may proceed to t est it out. Define your DEBUG
and RUN settings from the top menu bar. Select your main class to be Compiere
and click on Debug. But before this you should take a breather and spend more
time browsing through the source tree and familiari ze yourself with the codes
structure and arrangement. Notice that the codes ar e bundled in packages. Take
note also that somehow certain codes for Web Store and CServer.jar cannot be
debug in Eclipse. They are executed as proxy throug h the JBoss Application
Service. JBoss is integrated into Compiere to giv e it the enterprise heavy
duty servicing of web clients and multiple client a ccess to the Compiere server.
CServer codes are also inclusive of the accounts po sting and commitment, thus is
critical to be resolved by JBoss for more transacti onal and secured performance.
You can still amend Web and accounts code, just tha t you can't test them in
Eclipse and have to compile them and run as binary to do that.

011.7) How to Modify a Callout
Compiere tries to absorb user changes by its model of Application Dictionary.
However whenever the AD is insufficient to do that, the next promising option is
modifying or creating new callouts.

011.7.1) Searching for the Callout
Callouts are attached in context to fields of any t able defined in Compiere's AD
Table & Column. Under the Column Tab you will find the Callout field which will
call the Callout class whenever the field undergoe s input activity. Callout can
change the values of other fields in the same Windo w in scope or in use at that
time. Callout can also be used to do data processin g but may be clumsy if that
overlaps with the proper Java components. Then the App design is looked at again
for more elegant planning of changes. You can view examples of Callouts via
Eclipse by going to the Base resource and expanding to org.compiere.model tree.

011.7.2) Defining the Callout
The callout implements the CalloutEngine interface and uses the Window context.
As its in Java, you can call any imported method to be reused for your purpose.
But the main methods inherent in a Callout is the g etValue and setValue methods
which correspond to the field in context. You can t hink of the Callout as trying
to give you something of an excel spreadsheet.

011.7.3) Opening the Callout in Eclipse
When you open the right Callout java class, usuall y its CalloutSystem.java for
creating new small snippets. Bigger snippets may ha ve to be in its own class for
tidiness.

Compiere Source 101 Compilo-red1 Project

Copyright © 2004 Redhuan D Oon, All Rights Reserved page 12 of 22

011.7.4) Callout Design
The Callout allow us to take the values of fields o f any window in context to be
manipulated before putting them back to the fields.

1 public String Assignment_Product (Properties ctx, int WindowNo, MTab mTab, MField mField, Object value)
2 {
3 if (isCalloutActive() || value == null)
4 return "";
5 // get value
6 int S_ResourceAssignment_ID = ((Integer)value).intValue();
7 if (S_ResourceAssignment_ID == 0)
8 return "";
9 setCalloutActive(true);
10
11 int M_Product_ID = 0;
12 String Name = null;
13 String Description = null;
14 BigDecimal Qty = null;
15 String sql = "SELECT p.M_Product_ID, ra.Name, ra.Description, ra.Qty "
16 + "FROM S_ResourceAssignment ra"
17 + " INNER JOIN M_Product p ON (p.S_Resource_ID=ra.S_Resource_ID) "
18 + "WHERE ra.S_ResourceAssignment_ID=?";
19 try
20 {
21 PreparedStatement pstmt = DB.prepareStatement(sql);
22 pstmt.setInt(1, S_ResourceAssignment_ID);
23 ResultSet rs = pstmt.executeQuery();
24 if (rs.next())
25 {
26 M_Product_ID = rs.getInt (1);
27 Name = rs.getString(2);
28 Description = rs.getString(3);
29 Qty = rs.getBigDecimal(4);
30 }
31 rs.close();
32 pstmt.close();
33 }
34 catch (SQLException e)
35 {
36 log.error("Assignment_Product", e);
37 }
38
39 log.debug("S_ResourceAssignment_ID=" + S_ResourceAssignment_ID + " - M_Product_ID=" +
M_Product_ID);
40 if (M_Product_ID != 0)
41 {
42 mTab.setValue ("M_Product_ID", new Integer (M_Product_ID));
43 if (Description != null)
44 Name += " (" + Description + ")";
45 if (!".".equals(Name))
46 mTab.setValue("Description", Name);
47 //
48 String variable = "Qty";
49 if (mTab.getTableName().startsWith("C_Order"))
50 variable = "QtyOrdered";
51 else if (mTab.getTableName().startsWith("C_Invoice"))
52 variable = "QtyInvoiced";
53 if (Qty != null)
54 mTab.setValue(variable, Qty);
55 }
56 setCalloutActive(false);
57 return "";
58 } // Assignment_Product

Compiere Source 101 Compilo-red1 Project

Copyright © 2004 Redhuan D Oon, All Rights Reserved page 13 of 22

Above is part of a Callout class. It has a Callout method that is linked to the
Resource Assignment field of the OrderLine Table. I t begins with certain
arguments:
 (Properties ctx, int WindowNo, MTab mTab, MField m Field, Object value)
the WindowNo will inform the system which window is referred to. This we can
understand as when the callout happens, we were in a window screen. So when the
callout finishes its job, the result update will ap pear in the same window.
MTab concerns the Tab (that is linked to a table & field context) that is in
focus. You can hover your mouse pointer over any wo rd and see the highlights. If
you press the Ctrl key while you hover over them, a nd click, you may really dial
in – to the class that handles the objects. You can explore further by opening
the Parent class that it extends from such as the C alloutEngine.java, MTab.java
among others.
Look at SQL statement on line 15 onwards. Its pulli ng out from the Resource
Assignment table (line 16). So here it is retrievi ng from what a pop-up (line
26 to 29) and populate the OrderLine Description wi th it (line 42 to 54). It
will also wrap the Resource Assignment Description with brackets before
presenting (line 44).
Notice also the pattern format – mTab.getTableName().startsWith("C_Order") to
check the table name in context.

011.7.5) Getting and setting values
This is easily achieved as shown in the example:

Qty = (BigDecimal)mTab.getValue("Qty");

Price = ((BigDecimal)mTab.getValue("Price"));

BigDecimal Total = Qty.multiply(Price);
mTab.setValue("Total", Total);

The getValue pattern basically obtain the value fro m the Window field in scope.
The setValue will then place a new value into the W indow Field. The Total field
changes as you put in a new value into either Qty o r Price.

011.7.6) Accessing other tables' values
Let’s say you want the Price to come from the Product table which is not refere d
to by the window. Here’s is an idea of what you mus t do prior to the above, in
the form:

String sql = "SELECT p.M_Price "

 + "FROM M_Product p "

 + "WHERE p.M_Product_ID=?";

 try {

 PreparedStatement pstmt = DB.prepareStatement(sq l);

 pstmt.setInt(1, M_Product_ID);

 ResultSet rs = pstmt.executeQuery();

 if (rs.next())

 { M_Price = rs.getInt (1); }

 mTab.setValue ("Price", M_Price));

Compiere Source 101 Compilo-red1 Project

Copyright © 2004 Redhuan D Oon, All Rights Reserved page 14 of 22

011.8) How to Debug Compiere

011.8.1) Identifying the problem
It is said that the harder thing than getting answe rs is asking the right
questions. To identify the real bug is often the is sue. Often than not, you may
think its a bug when its actually your own setup da ta. The rule of Garbage In
Garbage Out applies. To understand if its a busines s rule or logic that you have
mishandled is not easy as you'll need Compiere subj ect matter knowledge. You
should have undergone Compiere training or gone thr ough the User Manual on sale
at USD40 in Compiere's Webstore. Even upon having s uch training and User Manual
doesn't guarantee you an easy passage to all proble ms.

011.8.2) Setting the debug level
Probably the first ever step in knowing a bug is fr om the debug prompt window
which pops up when you run 'RUN_Compiere2.bat -debu g'. In the Compiere window,
you can set the debug level to 10 so that you can d isplay as much feedback from
the code execution. When debugging in Eclipse we al so have the console view
which shows similar debug logs. The advantage of us ing Eclipse to view the debug
messages is that you can click on the java exceptio n in the console view to jump
straight to the java code in question!

Please refer to http://compiere.red1.org/ZeroPrice.zip for an illustrated
sample.

011.8.3) Reading the debug logs
The debug logs are earnest messages trying to conve y to you the most important
clues of what’s happening during execution. Of cour se it cannot guess everything
but at least it include the time of execution in hu ndredths of a second! It also
indicates which java class is executing. You can co rrelate this with the upper
left panel which shows the java thread in session. The debug prompts are the
result of Compiere incorporating log4j technology i nto the source codes. Without
it, we probably will have abandoned Compiere! As mu ch as 90% time savings is
possible using the debug logs.

011.8.4) Understanding the problem
There shouldn't be any errors in Compiere Java code s, otherwise they wouldn't
have made their binary compiled form in the first p lace.

Try to check the bug section in the SourceForge for um. And more often than not,
you find that bug been reported by someone else. Ot herwise you should define the
bug there, giving good info on how it happen so tha t others and Compiere's team
can zoom in. Don't expect bugs stated there to be s olved lightning fast as it is
a huge base. But they do get resolved one way or an other perhaps by the next
quarter.

Surprisingly, bugs are often in the form of very mi nute business logic. This the
greatest stumbling block in Compiere. Not been a co re developer of Compiere
myself, my guess is as good as yours. Why and what the codes are trying to do
can be the bigger preoccupation then trying to chan ge them. My advice is keep

Compiere Source 101 Compilo-red1 Project

Copyright © 2004 Redhuan D Oon, All Rights Reserved page 15 of 22

tracing the logic and flow that concerns you, writi ng down the activity
faithfully, then ask some simple questions to a sub ject matter colleague or even
the client who may have better clues to its busines s logic. Or even post it in
my forum under ASK RED1. Do contribute back what yo u find out. In due time we
will get a complete picture.

You may be strong in Java but that only gives you a slight advantage. If you
are, then you may be most helpful in cases where ja va bugs that isn't due to
Compiere coding but Java's APIs themselves! Speakin g of which - any Java, JBoss
or even Database - references, deprecates, or versi ons changes; will certainly
be a mine of future bugs. So far I have only encoun ter this in the Swing or GUI
interface.

All in all, from my one year experience in Compiere , most bugs are cases of
typos and omissions, or due to unexpected business logic. Its the later case
that concerns you the most as you try to take advan tage of available Open Source
- customising to any peculiar unique need of a clie nt user.

011.8.5) Handling SQL codes
Embedded SQLs take the form of this sample:

 String sql = "SELECT * FROM AD_Role WHERE AD_Clien t_ID=?";

 ArrayList list = new ArrayList ();

 PreparedStatement pstmt = null;

 try

 {

 pstmt = DB.prepareStatement (sql);

 pstmt.setInt (1, Env.getAD_Client_ID(ctx));

 ResultSet rs = pstmt.executeQuery ();

 while (rs.next ())

 list.add (new MRole(ctx, rs));

 rs.close ();

You only debug this when it returns an error during execution or testing in
Eclipse. You may copy and paste the part between qu otes into an editor to test
its functions. Usually SQL queries are pure SELECT or VIEW statements. Then they
are safe to test as they won't disrupt your data in the Oracle Database. If its
UPDATE, CREATE or DELETE then its very dangerous as executed statements may
affect the database. You may still play with UPDATE SET statements but take note
what they SET and revert them in the database table when you need to. Ensure the
WHERE clause is used to limit the execution. In the example above, the "WHERE
AD_Client_ID=?" is solved by putting "Env.getAD_Cli ent_ID(ctx)" into Eclipse
watch function for the "?" value. Then paste that v alue over ? in the SQL.

011.8.5.2) Testing SQL statements

The independent SQL codes as found in the procedure s section of the database or
in source i.e. D:\Compiere251\compiere-all\db\datab ase\Procedures are easily
debugged in Toad's Procedure Editor. However you ha ve to sandbox such procedures
as they often fetch parameters from AD_PInstance. Y ou merely remove the passing

Compiere Source 101 Compilo-red1 Project

Copyright © 2004 Redhuan D Oon, All Rights Reserved page 16 of 22

syntax and replace with a declaration or initialisi ng of it so that the
procedure thinks it got the parameter already and p roceed to execute. Toad in
this fashion acts just like Eclipse in its IDE func tions - giving you the step
in and step over capabilities to examine each step the code takes. You have to
click on the left horizontal bar in Toad's editor t o make a break appear where
you want it. You can peep into the variable's memor y by hovering the mouse over
it when the execution is suspended.

011.8.5.3) Tracing SQL Procedures

To know what SQL independent codes to debug, you fi rst trace from the AD (App.
Dictionary). Login in as System, look for them with in the Table & Column, to
first trace which AD Report & Process it is referin g to. Then go to that AD
Report & Process to find it. SQL are easily identif ied as ending in *.sql. Now
you know which business application process is tied to which SQL. Make sure you
get the right one before debugging. You do not need to compile source yet, to
test the codes on your database. You confirm the pe rfection of your codes in
Toad itself. When you are ready to compile, save th e procedure or replace the
ones in ..compiere-all\db\database\Procedures\.

011.8.5.4) Integrating into Compiere

Likewise to integrate new procedures into Compiere will involve creating the
necessary Report & Process in the AD, and calling t hat from the Table & Column
part. You can refer to Compiere's own present examp les to see how its done.

011.8.6) Handling Java codes
 The Source Layout discussed earlier explains how t he source is organised. Read
the comments in the java codes you open. Usually th ey are well documented.
Debugging may run into other folders and packages m entioned. GUI or interface
issues happens in the org.compiere.grid packages. D atabase handling happens in
the org.compiere.db areas.

011.8.6.2) GenerateModel.java

Generating new table-field interface of setter and getters are done through
GenerateModel.java. This is done after any new chan ges table & column in the AD.
The rules that you define in the AD will be incorpo rated during running of
GenerateModel, which has a main method to run on it s own. After that you can
examine the generated codes which are X_*.java. The y are located in
org.compiere.model of the dbPort base in Eclipse. Y ou cannot amend the codes
directly as they will be overwritten whenever you r egenerate. Try to change your
business rules in the AD instead.

011.8.7) Finding out the root cause
When you identified what java classes are handling the routine from the debug
window, you may look them up in Eclipse. You use th e search function on the menu
bar and key in the whatever.java and make your sear ch faster by using the *.java
wildcard. Upon locating the file, you can open it a nd place breaks in it, to get
it to stop when that part is executed. It will take you a while to nest into the
right spot. At every step you have to constantly gu ess what the code is trying
to do. Its best to consider the following:

a) If the issue is a simple basic business or accou nting
matter, Compiere most likely has already such a cap ability.

Compiere Source 101 Compilo-red1 Project

Copyright © 2004 Redhuan D Oon, All Rights Reserved page 17 of 22

For example at one time, a user couldn't do a Bal b /f on the
Financial Reporting Engine, and asked me to modify the
codes. In the end I found out that it was due to no t
understanding how to use the engine. I found the so lution
because I looked in the right direction, which is b ased on
the believe that surely Compiere must be able to ha ndle such
a basic function.

b) Look again at Compiere's overall solution. Can y ou reuse
some of them without touching the codes? For exampl e at one
time I wanted to refactor the Aging classes to make it
report on sales performance. After a while someone else told
me that you can achieve that by using the Financial Report
Engine!

c) Know where the logic is really set. Definitely n ot in
X_*.java. Usually not in M_*.java unless its a logi c bug.
Specific business logic is mostly done in
org.compiere.process classes. And you can guess the m easily
from their namesakes i.e. InvoiceGenerate.java.

For a live case please refer to the case in http://compiere.red1.org/ZeroPrice .

011.8.8) Amending Codes
To correct bugs, there are some examples you can re fer to the Bugs Galore!
section of http://red1.org/forum/ .

Most code changes are assisted by Eclipse auto-code -assist. You cannot change X_
type of codes as explained before. Keep your new sn ippets either in Callouts or
Process and make them consistent in location and st yle. Use easily understood
names in new variables.

Compiere Source 101 Compilo-red1 Project

Copyright © 2004 Redhuan D Oon, All Rights Reserved page 18 of 22

011.9) Recompiling Compiere
Here is the last leg of the affair. Code changes ar e already made and you are
ready to compile, build and deploy them to the targ et environment. Its best to
have two target environments - one been the develop ment before trying out on the
live production environment. Any mistakes detected in development environment
would not affect the live one, giving you a chance to review the impacts and
make more plans.

011.9.1) Avoiding change impact
Important rule is to realise that any change you do will create and impact and
thus becomes a risk. You have to stop and think and better write them down
prominently what you think are the impact and risks . But the philosophy here is
to always avoid changes unnecessarily. Many occasio ns I have experienced
solutions that were solved with almost no coding! I ts either solved by the
Application Dictionary, or just understanding Compi ere's functionalities and
features.

011.9.2) Backing up and risks scenarios
Its also important to state whether there can be re versals of the impacts.
Usually it is just making backups of your CClient.j ar and ExpDat.dmp before
replacing them. When an error is detected you have the option of using back the
backup set.

Before you intend to touch a java class safe the co ntents in another place.
Leave a read-me text note stating why its is there.

011.9.3) Documenting your work
Documenting is a must. There were times when I myse lf forgot what I did an hour
ago. You cannot play the fool when it comes to soft ware. One mistake can just
blow up your system, so to speak. Consider it a dis cipline, and build it into a
habit. If you are the manager and the developer is working under you, insist on
a documenting standard and sign-off the developer's work or else its not
considered work!

Documentation must happen in two or three places. F irst, prepare and plan your
changes in a Change Request Form which will state t he issue or problem,
detailing the user scenario or business rule affect ed. It also states the
suggested remedy and technical options if possible. It is a living document in
the sense that it will act as a continuous lab repo rt on further observations
and actions as a result of ensuing investigation in to the problem.

The second documenting is in the codes itself. At t he beginning of the code
snippet that you introduce should have comments suc h as at least the following:

// red1 - start snippet to handle new factor.

Then at the end of the snippet can be:

//red1 - end of snippet - 3.14pm, 19/1/04.

You can also indent the remarks differently so as t o make it stand out. With
your initials stated there, we can search for the c ode changes easily with Ctrl-
F in the Eclipse panel.

Compiere Source 101 Compilo-red1 Project

Copyright © 2004 Redhuan D Oon, All Rights Reserved page 19 of 22

If you are not making new codes but just amending t he present one, then you can
comment after the change like this:

 callmethod(m_action.Prepare) //red1 - old -m_actio n.Complete.

The old portion that you deleted is commented so th at you are aware what you
changed from.

Even if your change is only a single character, you must still say so! These
will be time savers, believe me and also give your other team members and the
users more sleep-easy nights. Finally you can write a solution paper like I did
in my website. It helps to explain the case to the client and in training the
handover team.

011.9.4) Deploying the CClient.jar
After the changes you build your codes again. In yo ur own test or development
environment, you already specify your target binary folder, where the new jars
will be deployed. Usually changes to the non web-st ore and accounts posting
codes will result in the CClient.jar. Thus you only copy over that to the
Compiere2\lib\ directory of your target live produc tion environment. The LAN
clients using webstart will also automatically refr esh itself when they log in
as a check will be done to compare with their cache s, and will reload again the
jars.

011.9.5) Deploying the CServer.jar
Changes to the accounts posting will impact the CSe rver. Deploying this is more
hassle than CClient.jar. Basically is like redoing it as a full setup. You thus
have to delete the old Compiere2 directory and its sub-folders! Then you compile
and build to produce Compiere2. Then RUN_Setup and proceed as normal.

Compiere Source 101 Compilo-red1 Project

Copyright © 2004 Redhuan D Oon, All Rights Reserved page 20 of 22

011.10) Common pitfalls
Programming is fun but can be a nightmare for the n ewbie. The golden rule is do
not panic and always take things easy. Slow is fast er. Do work in pairs. Help
each other. Go to the forums. Spend more time resea rching. Respect each other's
different style and mood. Inspiration happens at od d hours, then be flexible in
your plans. If the going gets tough, take a break! Then return to the problem
refreshed.

011.10.1) Wrong understanding of business scenario
Much common and popular business logic that exist i n enterprise business
software is present in Compiere. If it is not, it i s in the works. Thus when
trying to incorporate your own extension or busines s logic, its best to reuse
what Compiere has. You may refer to the numerous ca ses in my website, which
proves that minimal coding if any is needed. Most o ften, extra work is wasted
due to a misunderstanding of how Compiere is design ed with metadata and
generators.

011.10.2) Attempting risky changes
Risky changes are those that involve too much chang es. Good safe ones are those
that are very short and involves usually one or two lines. Suspecting wrong
codes can lead to more risks. Study more, work less .

011.10.3) Poor Planning
Do not forget to plan first if the risk is there. W rite your plan and review it.
If it involves the client, inform them of the risks so that you pass the
decision to them. If so, let them sign your plan, w ith the words that they are
aware and taking the risks themselves. Reduce the r isks by making proper and the
right backups. Before you replace the CClient.jar, you must keep a copy of it
first. If things go wrong, do not panic or try anyt hing hastily. Stay calm and
return to the planning room.

011.10.4) Poor documentation
Document your codes and keep a logbook of whatever changes you do to the
particular client instance. Create checklists whene ver you can so that you can
repeat your work whenever you need to in a fallback situation. If you are a weak
documenter, start practising, or you stay cheap.

011.10.5) Checking out unstable version
Check with the forums for the right time to checkou t your codes. Sign up as a
Compiere Partner if you want more inside knowledge of what is planned into the
next release. Otherwise check with the bug and supp ort section of
sourceforge.org to find out when certain things are fixed. Then you checkout the
codes. Immediately do a RUN_Build to confirm that t he codes are clean from
mistakes. If there are, then you have to abandon th em and wait for the next
right time to checkout from CVS.

Compiere Source 101 Compilo-red1 Project

Copyright © 2004 Redhuan D Oon, All Rights Reserved page 21 of 22

012.0) Migration Process
Migration though is handled by Compiere directly an d among Compiere's Partners,
still persist with certain issues, which will be co vered here as a checklist.

012.1) Backup your present instance
• Bring down your system. Chase all the users out.

• Uninstall your Compiere JavaService!

• DBExport

• Rename your Compiere2

• Place the new binary Compiere2

• Copy over the latest nightly build of Compiere.dmp from the Partners'
Forum

• RUN_Setup!

• ImportReference

• Migration

Ensure that the target indicates your present versi on, and the source shows the
new version. The source must be newer than the targ et.

Run the three steps with the test mode off. As you have the backups done you
shouldn't waste time! Do not need to run the tests again if hit errors. As it is
already set to run twice to iron out missing calls. Errors are logged int the
log file stated. Keep that info for reference. Chec k what kind errors happened.
If they are non-critical ones, and their figures ar e a few i.e. 3 errors, you
can proceed to use it.

012.2) Post migration tests
• Check cache reset

• Login as a recently created user, check role and org and locator is ok

• Login as GardenAdmin, create and complete a sales o rder cycle thru invoice
(Customer). Have 2 order lines in the Order.

• Print some reports.

• Take note of bugs or 'ding' sound when debug hits e rror.

• When no error do DBExport

• Release to users

If fail with errors, you have to trace from the deb ug mode and using Eclipse –
to give insight as to what can be the cause. Usuall y it’s due to the new
version’s introduction of new fields or settings. S o checking the new release
information is useful. Once it was a new language r ule, which we solved by
looking into the AD and finding it, we set to anoth er option, and it becomes ok.

Compiere Source 101 Compilo-red1 Project

Copyright © 2004 Redhuan D Oon, All Rights Reserved page 22 of 22

~ end ~

“Working on the ferry along the Mississippi River i s not
work. It is PLAY”

- Mark Twain

“Do you notice that RICH people are DIFFERENT from us?”

“Yeah, They have MORE money.”

- Young Ernest Hemingway with a friend

“IF I Ever Lose My Hands, I DON’T Have To Work No M ore”

- MoonShadow sang by Cat Stevens

“GOD has No Sense of Humour. HE Knows The Punch Lin es”

- Edward de Bono

