LiU-ITN-TEK-A--12/001--SE

Artist Friendly Fracture
Modelling

Erik Johansson Evegard

2012-01-13

Linkoplngs unlversitet

TEKNISKA HOGSKOLAN

Department of Science and Technology Institutionen for teknik och naturvetenskap
Linkdping University Linkdpings universitet
SE-601 74 Norrkoping, Sweden 601 74 Norrkoping

LiU-ITN-TEK-A--12/001--SE

Artist Friendly Fracture
Modelling

Examensarbete utfort | medieteknik
vid Tekniska hogskolan vid
LinkOpings universitet

Erik Johansson Evegard

Examinator Jonas Unger

Norrkoping 2012-01-13

LINKOPING UNIVERSITY . é& :
ELECTRONIC PRESS

Upphovsritt

Detta dokument hélls tillgingligt pd Internet — eller dess framtida erséttare —
under en langre tid frdn publiceringsdatum under forutsittning att inga extra-
ordindra omstandigheter uppstar.

Tillgang till dokumentet innebdr tillstdnd for var och en att ldsa, ladda ner,
skriva ut enstaka kopior for enskilt bruk och att anvdnda det oférdndrat for
ickekommersiell forskning och fér undervisning. Overforing av upphovsritten
vid en senare tidpunkt kan inte upphiva detta tillstind. All annan anvdndning av
dokumentet kraver upphovsmannens medgivande. For att garantera dktheten,
sdkerheten och tillgangligheten finns det 16sningar av teknisk och administrativ
art.

Upphovsmannens ideella ritt innefattar ratt att bli nimnd som upphovsman 1
den omfattning som god sed kridver vid anvindning av dokumentet pd ovan
beskrivna sitt samt skydd mot att dokumentet dndras eller presenteras 1 sddan
form eller 1 sddant sammanhang som &r kriankande for upphovsmannens litterdra
eller konstnérliga anseende eller egenart.

For ytterligare information om Linkdping University Electronic Press se
forlagets hemsida http://www.ep.liu.se/

Copyright

The publishers will keep this document online on the Internet - or its possible
replacement - for a considerable time from the date of publication barring
exceptional circumstances.

The online availability of the document implies a permanent permission for
anyone to read, to download, to print out single copies for your own use and to
use it unchanged for any non-commercial research and educational purpose.
Subsequent transfers of copyright cannot revoke this permission. All other uses
of the document are conditional on the consent of the copyright owner. The
publisher has taken technical and administrative measures to assure authenticity,
security and accessibility.

According to intellectual property law the author has the right to be
mentioned when his/her work is accessed as described above and to be protected
against infringement.

For additional information about the Linkdping University Electronic Press
and its procedures for publication and for assurance of document integrity,
please refer to its WWW home page: http://www.ep.liu.se/

© Erik Johansson Evegard

Abstract

Destruction is one of the key aspects of visual effects. This report describes the work
that was done to create a production ready pre-fracture modelling plug-in for Maya. It
provides information on what methods that can be used to create a robust plug-in and
various techniques for sampling points to create interesting fracture patterns using the
Voronoi diagram. It also discusses how this work can be further built on to create an

even better plug-in.

Contents

1. Introduction
1.1. Visual Effects
1.2, Fracturing
1.3. Motivation
1.4, Aim L
1.5. Outline Of Report

2. Background
2.1. Pre-Simulation Fracturing L.
2.2. Simulation Based Fracturing
2.3. Polygon Clipping e
2.4. Closing A Clipped Mesh

3. Theoretical Prerequisites
3.1. Voronoi Diagram
3.2. Polygonal Mesh
3.3. Mesh Clipping« e
3.4. Mesh Capping 0
3.5. Object properties L

4. Implementation

4.1. Algorithm Implementation
4.2. Data Structures
4.3. Autodesk Maya Implementation
4.3.1. Interface and Usage
4.3.2. Fracture Points Sampling Techniques
4.3.21. Random

4.3.2.2. NURBS Sphere.,

4.3.23. Particleso

4.3.24. NURBSCurve

4.3.2.5. Radial Sampling

4.3.3. Clustering

5. Results
5.1. Random

13
13
13
14
14
15
16
16
16
16
17
17

18

5.2.
5.3.
5.4.
5.0.
5.6.
5.7.
5.8.
5.9.

7.1.

NURBS Sphere o
Particles and Crack-Maps
NURBS Curve e
Radial Shatter
Clustering and Visualization
Performance

Simulation Fracturing Comparison
InUse e

. Discussion

. Conclusion

Further Worko
7.1.1. Threading e
7.1.2. Procedural fractureo
7.1.3. Arbitrary Cut Planes
7.1.4. Command Implementation

. User Manual

Al
A2
A3.
A4

Parameters
Usage e e
Random and Radial Mode
NURBS Sphere, NURBS Curve and Particle Mode.

25

26
26
26
26
27
27

1. Introduction

This report presents the Master Thesis work performed at Important Looking Pirates
VFX in Stockholm between April and November in 2010. The thesis is needed to fulfil
a degree in Master of Science in Media Technology and Engineering from Linkoping
University, Sweden. The introduction chapter will present the motivation, aim for the
thesis and outline the report and give a brief introduction to visual effects and fracturing.

1.1. Visual Effects

Visual Effects (VFX) is the process of adding content to or modifying existing film footage
to create visuals that would have been costly or impossible to capture with a regular
camera. This often involves the destruction of buildings and fracture of smaller objects.

1.2. Fracturing

Fracture and destruction is a key part of today’s VFX productions. There are currently
two branches of work-flow commonly used; pre-fracturing and simulation based fracturing.
Simulation based fracturing have previously foremost been used in building construction
to calculate tension in buildings but have as computers becomes faster started to become
a viable solution for visual effects. It does still however have several drawbacks where
speed and lack of artist influence are most noticeable. In simulation based fracturing the
fracturing is performed as the simulation progresses. When pre-fracturing the individual
pieces of the object are created before simulating the actual destruction which gives artists
possibilities to create specific looks and enables the use of fast methods for performing
rigid body simulations.

The work-flow of creating a destruction effect using pre-fracturing methods can be
described as a set of steps:

e Step 1. Create the original object using normal modelling and shading techniques.

e Step 2. Fracture the object into a set of small objects using a chosen method as
manually cutting it up, Voronoi fracturing or other technique.

e Step 3. Rig the effect by setting up rules for activation of pieces and constraints.

e Step 4. Simulate the destruction using a rigid body simulator.

1.3. MOTIVATION CHAPTER 1. INTRODUCTION

e Step 5. Optionally add additional dust and debris using information gathered
during simulation.

1.3. Motivation

Autodesk Maya the currently leading product for visual effects and the main product in
the ILP pipeline lacks good features that enables artists to quickly get the desired look
and result when fracturing models. Therefore it is of need to develop a faster work-flow
that focuses on speed and ease of use and can be used in production where results are
expected to be delivered quickly.

1.4. Aim

This thesis will aim at developing a method for pre-fracturing a object and implementing
it as a production ready plug-in for Autodesk Maya using C++. It needs to be capable of
handling the different polygonal models that are provided to the artist. The models might
contain polygons that are both convex, concave and contain holes. Surface information
as shaders, normals and UV-coordinates also need to be handled and transferred to the
fractured object. Turnovers between iterations should be quick so that the desired result
can quickly be achieved.

1.5. Outline Of Report

In Chapter 2 currently used production techniques are explained, their pros and cons are
discussed and from this a choice of technique have been made. Chapter 3 will describe
the method and theories used in the implementation. Implementation details will be
given in 4 and results presented in Chapter 5. The report ends with a discussion of the
results in Chapter 6. Chapter 7 concludes the report by presenting further work.

2. Background

This thesis is focused on pre-simulation fracture modelling 2.1 but there is also simulation
based fracturing 2.2 where real life material properties are taken into consideration. In
the background chapter information on two important parts of pre-fracturing that can
raise problems will also be discussed. These problems are polygon clipping 2.3 when
clipping the mesh and closing a clipped mesh 2.4.

2.1. Pre-Simulation Fracturing

The most used and established technique for creating destruction effects in today’s visual
effects is for artists to model the individual pieces before simulating them as individual
rigid body objects or using constrains to tie the pieces together until a strong enough
force breaks them apart [9], [19]. The modelling of the pieces can be done manually or
using mathematical methods. Among the mathematical methods the Voronoi diagram
is the most widely used because of it’s capabilities of mimicking the look of a fractured
brittle object as stone, glass or concrete.

2.2. Simulation Based Fracturing

Simulation Based Fracturing using FEA (Finite Element Analysis) method of calculating
stress in materials using tetrahedrons is starting to become an alternative for previously
used methods in VFX. Been previously only used in construction it becomes a viable
alternative as the computers are becoming faster. Currently the only commercial solution
is DMM (Digital Molecular Matter) developed by Pixelux [1]. DMM implements their
own optimized version of J.F. O’Briens research on graphical modelling of ductile and
brittle materials [20], [21]. While a realistic fracturing through simulation can yield very
realistic results of breaking complex materials it is very hard to direct and control if a
specific result is sought after as look and movement of hero pieces.

2.3. Polygon Clipping

Upon clipping of a polygon most algorithms first consider what vertices are in the
correct half-space and from this information clip edges if they are intersecting the clip-
line or clip-plane. Where the algorithms differentiate is how they handle closing the
polygons where they have been clipped. One common and easy to grasp algorithm is

2.4. CLOSING A CLIPPED MESH CHAPTER 2. BACKGROUND

Sutherland-Hodgman clipping algorithm [23]. They close polygons by keeping a CW
(Clock Wise) or CCW (Counter Clock Wise) ordered polygon. If the order contains two
intersection-points following each other an edge is inserted between them. This works
well for convex polygons but can create overlapping edges and zero area parts if the
polygon is concave. It also have no way of dealing with polygons that contains holes. This
makes it not usable as it will create render artefacts and might generate problems during
simulations. Weiler-Arthon clipping algorithm [10] can handle any shape of polygons
by keeping information about if the intersections are leaving or entering the polygon
in a list and also storing the same information for the polygon used for clipping in a
separate list. It then creates the resulting polygons by traversing the polygon and if
an intersection point is found it switches to the other lists corresponding intersection
point and continues the traversal. In Graphic Gems V [13] a simplified version of the
Weiler-Arthon algorithm is presented where a separate list for the clipping polygon is not
necessary but instead misses the functionality of clipping polygons with holes. Extending
the algorithm from Graphic Gems V with theory from Weiler-Arthon a algorithm that
can handle both concave and polygons with holes can be constructed.

2.4. Closing A Clipped Mesh

The closing of a clipped mesh is no common problem compared to the actual clipping of
the mesh which have received much research in the purpose of removing parts that are
not relevant when rendering. David Eberly Clipping a Mesh Against a Plane[8] suggests
a trivial approach of using the information gathered while clipping the mesh which stores
each edge that have been used to close a clipped polygon. It holds that these should
be the edges constructing the resulting polygon need to cap the mesh. The information
about how they connect is however missing. Eberly’s approach is to simply sort the
edges so that a starting- and end-point are put together. This works for meshes that are
convex but breaks if the mesh is concave and that more than one polygon is necessary to
successfully close the mesh. For solving this theory have been borrowed from the graph
field. If considering all edges to be parts of a directed graph where the connectivity
information is missing Donald B. Johnson’s paper on finding elementary circuits can
be applied. The output of elementary circuits are the polygons and holes needed to
successfully close a mesh being both concave and with holes. It is of importance to have
an algorithm that can handle all cases as a concave mesh can be clipped to create a mesh
containing a hole.

3. Theoretical Prerequisites

This chapter will describe algorithms and techniques used in the implementation. A brief
overview of used surface representation and technique for fracturing a model into small
pieces is presented. It also describes how different research have been combined to handle
problems with concave polygons and holes in polygons when clipping or capping. Clipping
a mesh is a key part of the thesis as each piece of the fractured object is generated by
clipping parts of the model with clip planes positioned between site points until only the
area belonging to the currently generated pieces site point is left. The capping of the
mesh is done after each time the mesh is clipped to create a new surface where there is
none. This is because of the explicit representation of the model having no information
about the inner workings of the model and only carries information about the outer
visible surface.

3.1. Voronoi Diagram

For modelling the new pieces from the original object the Voronoi diagram is used. The
definition is taken from [15] and was introduced in 1908 by Georgy Voronoi [16]. A set of
points P = p1,pa, ..., pn in E?-space are called sites and can be used to partition a 2D
plane where each region in the plane is assigned to their nearest site point according to:

Vipi) = {z : d(pi,x) < d(pj, x),Vj # i)} (3.1)

d(z,y) is the distance between point x and point y. This definition also holds for
E3-space.

Figure 3.1.: 2D Voronoi Diagram

3.2. POLYGONAL MESH CHAPTER 3. THEORETICAL PREREQUISITES

For computing the Voronoi diagram an algorithm calculating intersections with half-
spaces is used. In E? an half-space is a half-plane defined as all points on one side of
an infinite straight line. In E3 the line becomes instead an infinite plane but the same
theory can be applied.

By repetitive intersection calculations against n — 1, where n is the amount of site
points, clipping planes each region is calculated separately. This is further explained in
section 5.2.1 and 5.4.1 of [15].

Using the Voronoi diagram for fracture modelling is a proven and widespread technique
[12].

3.2. Polygonal Mesh

3D models in VFX are in most cases explicit surfaces consisting of polygons. Explicit
surfaces can also be represented using parametric functions as NURBS (Non-Uniform
Rational B-Spline), bump maps or displacement maps. A collection of polygons is
called a mesh and can be represented in multiple ways. One of the most common
and also used in Autodesk Maya API (Application Programming Interface) [3] is the
Face-Vertex representation. In a Face-Vertex representation all vertices are stored in a
list as V' = {w,, v1,v9,...,v,} and each face stores the indices it’s vertices.

2

(a) Triangle (b) Quad (c) Convex (d) Concave (e) Polygon with a
hole

Figure 3.2.: Polygon types

Ideally when performing clipping on a polygon mesh it only consists of convex polygons
as in figure 3.2(c) for which there are trivial and easy to implement algorithms available.
However even if an initial step of pre-processing the mesh to only consist of convex
polygon both concave 3.2(d) and polygons with holes 3.2(e) can be introduced during
the mesh clipping. Therefore methods considered for clipping the mesh needs to able to
handle both concave polygons as well as holes. How the holes are handled together with
the Face-Vertex mesh representation is further explained in section 4.2.

3.3. Mesh Clipping

Using the algorithm for clipping concave polygons from [13] and extending it to handle
polygons with holes using [10] gives an algorithm that is able to handle most models that

3.3. MESH CLIPPING CHAPTER 3. THEORETICAL PREREQUISITES

are provided by artists. A limitation is that the model is required to be manifold for the
capping algorithm described in section 3.4 to work properly.

The algorithm from [13] takes advantage off that in practical use when clipping a
polygon it is observed that only one of the resulting polygons is of interest and the other
can be disregarded. Requirements for the algorithm is that the vertices of the polygon is
represented in either CW or CCW order. Holes in polygons are represented by using a
reverse order of the vertices as in [10].

First all edges of the polygon are checked for intersections against the plane by
calculating the distances for the edges vertices to the clip-plane. Edges having both
vertices in the outside half-space are disregarded and edges with both vertices inside are
kept. For edges intersecting the plane the intersection point between the edge and plane
is calculated and inserted into a list. A polygon can contain multiple holes. For the
holes if none of the edges of the hole is intersected by the clip-plane and are in the inside
half-space the hole is considered being part of the new polygon and if all the edges are
in the outside half-space the hole is disregarded. If the edges of hole intersect with the
clip-plane the edges will be part of the new polygon and intersection points are added to

the same list of intersection points.

Figure 3.3.: Reentrant clipping of a concave polygon. Figure from [13]

Through the Jordan Curve theorem it can be derived that all intersection points of a
polygon come in pairs. From figure 3.3 it can be observed that intersection points C and
F form a pair/edge but from the list of intersection points this is not interpretable in it’s
current state but it is known that the list holds both C and F.

To retrieve the pairs/edges that will be needed to close the polygon(s) after it has been
clipped choose two random points, X and Y, from the list containing the intersection
points. Using X and Y we create a straight line on which all intersection points are
positioned. Choosing X as the origin of the line the signed distance to X for all intersection
points is calculated and the list is sorted using the distance. After the intersection points
have been sorted it will contain the pairs/edges necessary to close the clipped polygon.
For the polygon in figure 3.3 this is (A, H), (E, D), (C, F), (G, B) and we call them links.

For avoiding confusion on how to treat vertices residing exactly in the plane the
algorithm borrows theory from [17] which treats vertices in the plane as being inside.

3.3. MESH CLIPPING CHAPTER 3. THEORETICAL PREREQUISITES

The final step is to close the gaps in the clipped polygon using the links. Each vertex
points to the next. By starting at some vertex and stepping around the polygon until
returning to the start vertex the new polygon is created. When stepping on an intersection
point a lookup is made to find the matching link and the stepping continues from there.
As holes were initially reversely ordered compared to regular polygons their order becomes
correct for the purpose after being clipped.

The full method used is outlined as pseudo code in algorithm 3.3.1.

3.3. MESH CLIPPING

Algorithm 3.3.1 Clipping a Polygon Mesh against a Plane

V:Array of vertices v

E:Array of edges e consisting of vy and vy
F:Array of polygons f

P:Implicit representation of plane

for all vertices v in V do
Compute signed distance d between v and P.
end for

for all edges e in F do
if d(vg) <0 and d(v1) <0 then
Remove e from the polygon it belongs to.
Mark polygon f containing e clipped.
If no edges left in f remove it.
Edge is completely in the plane or the incorrect half-space.
continue:
else if d(vp) > 0 and d(v1) > 0 then
Do nothing.
Edge is in the correct half-space.
continue:
else
e intersects the plane.
Calculate intersection point i.
if d(vp) < 0 then
vy = 1
else
v = /)
end if
Mark polygon containing e clipped.
end if
end for

for all polygons f in F' do
if f have been clipped then
Perform algorithm 3.3.2
end if

end for

CHAPTER 3. THEORETICAL PREREQUISITES

3.4. MESH CAPPING CHAPTER 3. THEORETICAL PREREQUISITES

Algorithm 3.3.2 Close polygon that might be concave and contain holes.
V1: Array of vertices v for current polygon and vertices from holes in the polygon that
have been clipped. Each v got a v->next pointing to following vertex in the original
ordered structure.
V2: Array of vertices v creating the closed polygon.
F: Array of V2.
L: Map of links [that will be used.

while V1 not empty do
Choose some vertex in V1 to be starting vertex v->start.
v = v->start
while v->start != v->next do
Add v to V2 and remove from V1.
if v->next in L then
Add v->next to V2 and remove from V1.
Set v to corresponding link vertex.
else
v = v->next
end if
end while
Add V2 to F and empty V2.
end while

3.4. Mesh Capping

Using the links for each polygon from section 3.3 and treating them as a directed graph
as in figure 3.4 the algorithm presented by Donald B. Johnsson [11] can be used to create
the polygons necessary to cap the mesh where the clip-plane has cut it. One drawback
is that the resulting polygons can be both actual polygons and also holes inside of an
polygon. To detect if a polygon is a hole it’s normal is compared to the cut-planes. If it
points in the opposite direction it is considered a hole. The surface normal is calculated
using Newell’s method [14]. Then the winding number [7] is used to determine which
polygon that contains the hole by choosing any of the holes vertices and testing if it is
inside an polygon.

An efficient search algorithm to find the elementary circuits of a graph [11] is an
algorithm for finding elementary circuits in a directed graph. The definition for elementary
paths and elementary circuits taken from [18] is as follows:

An elementary path contains each vertex at most once in its specification.
An elementary circuit is an elementary path with the exception that the first
and last vertices of the path are the same.

10

3.5. OBJECT PROPERTIES CHAPTER 3. THEORETICAL PREREQUISITES

By finding the elementary circuits of the directed graph we also find the elementary
paths which contain the vertices that will become the new polygons. In figure 3.4 an
elementary circuit is outlined in red. By using this algorithm it is guaranteed that no
self intersecting polygons are created and it is possible to find multiple polygons which
shares vertices.

Figure 3.4.: Directed Graph

A stack of vertices built from a root vertex s is used to find the elementary circuits.
When a vertex is added to the stack it is considered blocked. If the algorithm returns to
a blocked vertex v before returning back to s the vertices that have been added on top
of the stack after v are removed and the algorithm continues down another path. In [11]
pseudo-code for the algorithm can be found.

Calculating the winding number is a 2D operation therefore the polygon to be tested is
projected onto a plane positioned either on the X,Y or Z axis that yields the largest area
possible for the polygon. This is determined by examining the normal of the polygon and
then ignoring the axis with the highest absolute value. It is simple, fast and works for
this type of application. After the polygon has been projected a ray is sent horizontally
from the point that is going to be tested. What axis to be considered horizontally can
differ depending on the projection but for the general case of looking at the x and y
components on the point x is considered horizontal. If the ray intersects an edge where
the endpoint is above the ray 1 is added to the winding number and if the endpoint is
below 1 is subtracted. For all cases where the winding number is different from zero the
point is inside of the polygon.

3.5. Object properties

The original object contains a set of surface properties as normals, UVs and shaders.
Clipped polygons keep their shader information and new polygons introduced during the
mesh capping are assigned a new shader.

11

3.5. OBJECT PROPERTIES CHAPTER 3. THEORETICAL PREREQUISITES

Normals and UVs for intersection points are calculated by linear interpolation along
the edge where the point have been introduced.

(a) Original UV coordinates (b) New UV coordinates

Figure 3.5.: UV coordinate interpolation

12

4. Implementation

4.1. Algorithm Implementation

Generate _ Sonsuct
Read Voronoi Ch°95tef site from chosen Clip Cap
Mesh site S site and Mesh Mesh
ints e another site
Bo point

Figure 4.1.: Flow chart for fracture algorithm.

Figure 4.1 outlines the basic algorithm for the fracture generation. In the first step the
mesh is fed into the local data structure. From information about the mesh, settings
and objects selected in the scene Voronoi site points are generated. For each site point
the same operations are repeated until a fractured piece have been generated. Using
the chosen site point a clip-plane is constructed half-way between the current site and
another site point. With this clip-plane the mesh is clipped using the theory from section
3.3 and then capped to fill the created hole using theory from section 3.4. The clip-plane
generation, mesh clipping and capping is repeated for all site points with exception of
the site which is currently being generated.

4.2. Data Structures

Data structures in the implementation takes heavy use of the C+4 STL and OpenGL
Mathematics (glm) [4] for efficient storage and high performance. Vertices, edges and
polygons are stored using std::vector.

The basic mesh data structure is as: A vertex is represented by a glm::vec3 for position.
Edges stores the indices for it’s vertices as length two integer array. Polygons keep a
integer std::list of it’s edges indices and an integer std::vector of the indices of the holes
it contains.

For both vertices, edges and polygons the data structures holds a boolean representing
whether or not they are part of the current piece being generated.

13

4.3. AUTODESK MAYA IMPLEMENTATION CHAPTER 4. IMPLEMENTATION

As normals and and UV coordinates can be edge specific, meaning a vertex can have
different UV coordinates for different edges, they are stored for each edge.

Further the data structure holds various integers representing indices used for closing
polygons when traversing the polygon and as well for the elementary circuit algorithm
used during the mesh capping part of the implementation.

4.3. Autodesk Maya Implementation

The thesis have been implemented using C++ for mesh operations and MEL for the user
interface. Within the Maya API there is also the possibility of using python but the
performance is noticeably lower.

Included in the plug-in is two Maya commands (voro, voroDone) and one Maya node
(voroNode). voro creates the voroNode and performs the necessary connections in the
DG-Graph, voroNode performs the fracturing of the object and voroDone is used to bake
the final pieces and delete unnecessary nodes from the DG-Graph.

For interface generation a MEL node template script is used to generate sliders, buttons
and dividers to create figure 4.2. Inside of Maya the attribute spreadsheet can also be
used as a secondary interface for the nodes allowing batch updating and changes of
settings for multiple objects simultaneously.

4.3.1. Interface and Usage

The interface has been implemented to be as clutter free as possible and activating
various features is done by purely selecting them in the view-port. To avoid automatic
updates when a setting is changed special rules has been set-up for the node to make it
possible for manual update. All settings are also possible to modify through the variable
spreadsheet in Maya and update of all nodes at once without pressing update button on
each individual is possible. More information on usage is available in appendix A.

14

4.3. AUTODESK MAYA IMPLEMENTATION CHAPTER 4. IMPLEMENTATION

* Shatter attributes

Clustering

Cluster Points 0

Radial Axis & X
Radial lter & 0

vadial lter B 0

Figure 4.2.: Node interface

Seeding for random generation for different sampling techniques 4.3.2 can be done in
two different ways. Either by using an integer as seed to be able to recreate a specific
result or by using current time to always get new random values.

For easy distinguishing one piece from another if enabling polygon colouring each piece
is visualized using a random colour as in figure 5.6.

4.3.2. Fracture Points Sampling Techniques

To achieve various looks for the fractured pieces the Voronoi site points have been
implemented to be sampled from the scene in different ways.

15

4.3. AUTODESK MAYA IMPLEMENTATION CHAPTER 4. IMPLEMENTATION

4.3.2.1. Random

The default way of sampling site points is random sampling within the bounding box
of the object to be fractured. When using the bounding box no consideration needs to
be taken to that the site points are in object space of the soon to be fractured object.
Random sampling creates the classic almost uniform Voronoi look. Figure 5.1 shows the
result.

4.3.2.2. NURBS Sphere

By positioning of NURBS spheres the distribution of site points in specific regions can
be controlled. Using the NURBS spheres implicit definition points are randomly sampled
within it’s volume as in figure 4.3(a). The points are transformed to the objects local
space using transformation information from the NURBS sphere and the object. Points
can also be sampled exponentially as in figure 4.3(b). This creates a higher density
of points towards the centre of the sphere. A comparison of pieces generated with
exponential versus default is shown in figure 5.2.

(a) Default NURBS sphere sampling (b) Exponential NURBS sphere sampling

Figure 4.3.: NURBS sphere sampling of points

4.3.2.3. Particles

A common work-flow in other applications is using a particle emitter and then the
particles as site points. This is also supported and is activated by simply selecting
particles and the voroNode simultaneously. From this it is easy to use crack-maps on an
object by using a texture to specify where to emit particles as in figure 5.3.

4.3.2.4. NURBS Curve

In a similar fashion as section 4.3.2.2 NURBS curves can be used. Points are sampled in
steps a long the curve as in figure 4.4. The distance away from a the curve a point can be
sampled is dependent on the step size. The step size can be considered the radius from
the step point of which random points are generated. By drawing and aligning a curve

16

4.3. AUTODESK MAYA IMPLEMENTATION CHAPTER 4. IMPLEMENTATION

in the object paths of fracture can be created as in figure 5.4. By varying the length of
the steps along the curve the width of the fractured path can be controlled.

Figure 4.4.: NURBS Curve sampling

4.3.2.5. Radial Sampling

Figure 4.5.: Radial sampling

For radial sampling polar coordinates are used to sample points in steps, shown as green,
around a set of circles, shown as red in the figure 4.5, with various radius. By adding
random noise of a chosen amplitude the pattering in figure 5.5 can be created.

4.3.3. Clustering

Pieces can also be clustered together to form more irregularly shaped pieces. This is
done by sampling a second set of points and assigning each piece that have been created
to the closest point. The effect of clustering is seen in figure 5.6 where also the coloured
visualization of pieces is enabled. Clustering as an idea have been influenced by Houdini
[6] which supports a similar feature.

17

5. Results

The results presented in this chapter was gathered on a test system running Maya 2011
in a Linux environment. The test system was a laptop with an Intel i5-520M 2.4GHz
CPU with 4 available threads and 4GB of 1333MHz DDR3 memory.

By using pre-fracturing a multitude of results can be achieved to mimic physical
properties. The need for physically correct results is less important than the freedom to
model and animate specific pieces in non-correct ways to create the sought for artistic
result. When viewing the results it needs to be considered that these are only the initial
geometries and further detail is added with textures and shaders upon rendering of the
results.

5.1. Random

Figure 5.1.: Random sampling. 1000 site points.

Standard random sampling as in figure 5.1 of site points creates an almost uniform look
that can be seen as repetitive. All pieces get a very similar look and size. It is however a
very quick way to quickly shatter an object into an desired amount of pieces without
manually specify areas that should have a low or high density of site points.

18

5.2. NURBS SPHERE CHAPTER 5. RESULTS

5.2. NURBS Sphere

(a) Default NURBS sphere sampling (b) Exponential NURBS sphere sampling

Figure 5.2.: NURBS sphere sampling of points

The possibility of directing the positioning of the site points make it possible to in a
simple and fast way making for example the middle of a pillar break into an high amount
of small pieces while creating bigger pieces for the rest of the pillar. This can also be
achieved by first separating the middle of the pillar but if there are multiple regions of
the pillar where this needs to be done the work can become tedious. A NURBS sphere
set-up is shown in figure 5.2.

5.3. Particles and Crack-Maps

(a) Texture Crack-Map (b) Textured Object (c) Particles

(d) Fractured using particles (e) Resulting pieces with colour
visualization

Figure 5.3.: Particles as site points

19

5.4. NURBS CURVE CHAPTER 5. RESULTS

Through utilizing Maya particles and emission based on a texture crack patterns can
be painted on existing UVs where additional info about the object that is not visible in
the mesh is stored. Particles can also be emitted from collision points to create impact
fracture around a certain area. Figure 5.3(a) of figure 5.3 shows the texture in UV space
that is applied to the object. The crack-map in this case only contains information for the
top of the object and when applied produces figure 5.3(b). The particles are emitted in
negative direction of the surface normal into the object and produces the result in figure
5.3(c). After fracturing the wire-frame 5.3(d) and colour visualized 5.3(e) is achieved
containing smaller pieces in the areas of where the original texture specified.

5.4. NURBS Curve

(a) Short step size (b) Long step size
Figure 5.4.: Nurb curve sampling of points

If an effect simulating a ground breaking up it can be created by drawing out some curves
on the object where the ground should tear up. When simulating a static object is used
to either push the pieces upwards or rules can be set-up to gradually drop the pieces
along an axis as time progresses. By modifying the step size to be larger along the curve
the width of the crack can be controlled to create wider destruction as in figure 5.4(b)
and by setting a smaller step size it can be narrowed to produce figure 5.4(a).

5.5. Radial Shatter

(a) Viewport (b) Photo reference

Figure 5.5.: Radial shatter sampling.

20

5.6. CLUSTERING AND VISUALIZATION CHAPTER 5. RESULTS

Radial sampling mimics the pattern which is creating when a glass window is fractured. It
can also be used for crater like patterns upon impact with a ground object. A comparison
between an actual broken window in figure 5.5(b) and radial sampling of Voronoi site
points in figure 5.5(a) shows the similarities.

5.6. Clustering and Visualization

(a) With wireframe (b) Without wireframe

Figure 5.6.: Clustering pieces

Clustering of pieces is a good way of suppressing the classical Voronoi look that can be
seen in many cases. It is an extra tool that can be used together with regular displacement
shaders to create realistic looking results.

The visualization of pieces in random colour makes them easy to distinguish between
each other both in the case of regular fracturing but especially when clustering is used as
cuts for the pieces that make up the bigger pieces are also visible on the wire-frame.

21

5.7. PERFORMANCE CHAPTER 5. RESULTS

5.7. Performance

(a) 10 site points (b) 100 site points (c) 1000 site points (d) 5000 site points

(e) 10000 site points

Figure 5.7.: Random sampling of site points

| site points | voro (sec) | dg-voro [5] (sec) | Houdini 11.1[6] (sec) |

10 0.03 1.18 0.05
100 0.07 61.00 0.10
1000 2.34 3897.73 1.96
5000 55.04 X 13.52
10000 153.82 X 41.03

Table 5.1.: Speed result comparison. Random sampling.

The performance towards freely available solutions such as [5] is great. If comparing
against a commercial solution as Houdini the implementation falls behind, mostly because
of the Voronoi implementation of Houdini being threaded and able to utilize all threads
of the test-system. Further discussion about threading the implementation is found in
section 7.1. Comparing towards commercial solutions for Maya have not been possible
because of the prices of these products or that they are not available except for invited
clients.

22

5.8. SIMULATION FRACTURING COMPARISON CHAPTER 5. RESULTS

site points ‘ voro (sec) ‘

10 3.38
100 31.97
500 298.94

1000 936.37

(b) Speed result high polygon ob-
ject. Stanford bunny.obj 73173
(a) Stanford bunny.obj with 1000 polygons.

site points.

Figure 5.8.: Fracturing comparison

Because of the speed increase compared to other available solutions fairly high polygon
objects can be fractured in a reasonable time. Table 5.8(b) contains running times for
fracturing the Stanford bunny in figure 5.8(a) into various amounts of pieces.

5.8. Simulation Fracturing Comparison

(a) Simulation based fracturing using DMM [22]. (b) Pre-fracturing using voro
Figure 5.9.: Fracturing comparison

To provide a comparison between the thesis implementation and the techniques discussed
in section 2.2 a figure 5.9(a) is taken from an Autodesk Tutorial on Breaking Pillars
using DMM [22] that was introduced in Maya 2012. A simple pillar was modelled in

Maya and a quick set-up using pre-fracturing technique was set-up to mimic the result.
The result can be seen in Figure 5.9(b).

23

5.9. IN USE CHAPTER 5. RESULTS

5.9. In Use

¥ |

(a) Original Scene (b) Fractured Geometry (¢) RBD Simulation using Dy-
namica [2] and Maya Fields

Figure 5.10.: In use example

Figure 5.9 showcases how the processes of loading an initial scene, fracturing it and
simulating it can look in the view-port of Maya. These in use examples were created for
demonstration purpose and to produce a realistic result more time needs to be put into
both fracture modelling and setting up the simulation.

24

6. Discussion

A drawback of the methods chosen for implementation 3.3 in the thesis is foremost it’s
problem with handling non-manifold surfaces. This could be solved by implementing a
pre-step that makes sure that the object is manifold but most objects to be fractured
are usually of simpler and cleaner shapes not only to make the fracturing process easier
but to make the Rigid Body Simulations faster. Both if using volume based collisions or
polygonal collision the calculation speed is greatly increased the lower polygon count and
simpler shape an object consists of.

In the speed comparison to commercial plug-ins and programs in table 5.1 section 5.7 it
can be noted that the commercial product Houdini have roughly a 4x speed improvement
compared to the implementation of the thesis. By monitoring system usage it can be
easily observed that Houdini uses all 4 available threads of the test system while the
thesis implementation is limited to one. More on this is found in section 7.1.1. Especially
the fracturing of the high polygon objects would greatly benefit from threading of the
plug-in.

It can be further discussed how long it will be before speed of simulated fracturing is
good enough to be used in large scale destructions and what influence it will have on the
currently most common work-flows. Pixelux [1] have interesting technology but there are
still no results where the potential have been fully shown and it suffers from a similar
pattern as pre-fracturing with Voronoi where the pattern can be distinguished for the
trained eye. With technology based on FEA (Finite Element Analysis) the tetrahedrons
instead become the pattern to be distinguished if the resolution is not high enough. The
comparison in 5.8 also shows that the results of using a simulation based method are very
similar to a directed pre-fractured approach and upon addition of dust, debris, motion
blur fine details that matters won’t be distinguishable.

An important but not easy to measure in results part of the thesis was the work-flow
and use of the plug-in. Fracturing multiple objects simultaneously, keeping original
surface properties, not cluttering the interface and most importantly not crashing the
system even if used on a bad geometry. Worst case scenario the implementation fails to
cap the geometry in certain areas but great detail have been put into avoiding numerical
errors and endless loops to ensure that it is possible to keep working without losing
important content.

25

7. Conclusion

The plug-in implemented for this thesis is production ready and is a great improvement
to currently used and available techniques but can be improved in several ways to make
the work-flow simpler and the performance higher.

Because of all important code implemented being separate and not dependent on Maya
classes except for reading and creating the meshes and certain information for sampling
points the plug-in could be easily updated to support newer versions of the Maya API if
the syntax, where to change, and it could also be implemented into other software’s.

7.1. Further Work

To further increase speed and usability of the plug-in there are several steps and actions
that can be taken as threading, more procedural-ism, more options for cut planes and a
Maya command implementation to simplify including the plug-in in scripts.

7.1.1. Threading

Because Maya still being compiled for Linux using a fairly old version of gcc (4.1.2)
the number of available solutions for threading is limited to pthread (POSIX Threads).
pthread is not as straight forward to implement as newer solutions as OpenMP.

The method used for the fracturing is easy to compute threaded as each piece of the
fractured object is generated from the same initial data. If done this would increase
speed greatly when generating high amount of pieces.

7.1.2. Procedural fracture

For making the set up process of large scenes of destruction it would be ideal to be
able to set objects as breakable in a similar way that is implemented in Houdini [6]. By
considering the strength and position of the impulse force upon collision site points are
scattered in the object and used to generate new pieces that can further break upon
another collision. This procedural way of fracturing limits the possibility to direct the
fracturing but is very usable when a lot of objects need to break.

The biggest problem for implementing this is the current implementation of Bullet for
Maya (Dynamica [2]) and would need customization to support this. Another approach
is to integrate the Bullet solved into the actual plug-in but it would require a bigger
amount of work.

26

7.1. FURTHER WORK CHAPTER 7. CONCLUSION

7.1.3. Arbitrary Cut Planes

Further detail of modelling could be achieved by supporting arbitrary planes to be used
as cut objects instead of only supporting flat planes. Being able to use a plane with
noise displacement would help to hide the Voronoi pattern in the pieces but also greatly
increase computation time.

7.1.4. Command Implementation

To further extend usability implementing a complementary command instead of node
version for Maya would be a useful extension. This would enable artists to execute the
algorithm in scripts and other ways that are currently not possible. For example objects
could be selected and a script could be ran that fractured each object into random amount
of objects within a specified range and producing ready to simulate pieces without any
additional set-up.

27

Acknowledgements

I would like to thank Everyone at ILP for letting me do the thesis with them. Especially
Eric Hermelin for helping with wrapping my head around the Maya API and Yafei Wu
for important work-flow suggestions and improvements.

28

Bibliography

DMM by Pixelux. http://www.pixelux.com/
Dynamica. http://code.google.com/p/dynamica/

Autodesk Maya API. http://usa.autodesk.com/adsk/servlet/index?sitelID=
123112&1d=9469002

OpenGL Mathematics http://glm.g-truc.net

dg_Voro_Py 1.0.0 mayascript. http://www.creativecrash.com/maya/downloads/
scripts-plugins/dynamics/c/dg_voro_py--2

Side Effect Software Inc. Houdini 11.1 http://www.sidefx.com/.

Eric Haines. Point in Polygon Strategies. Graphics Gems IV, ed. Paul Heckbert,
Academic Press, p. 24-46. 1994. http://erich.realtimerendering.com/ptinpoly/

David Eberly. Clipping a Mesh Against a Plane. Geometric Tools, LLC, http://wuw.
geometrictools.com/. 2002,2008.

Rachel Weinstein, Frank Petterson, Brice Criswell. Destruction System. ACM SIG-
GRAPH 2008 Sketch. 2008.

[10] Kevin Weiler, Peter Atherton. Hidden Surface Removal Using Polygon Area Sorting.

Program of Computer Graphics, Cornell University, Ithaca, New York 14853. 1977.

[11] Donald B. Johnson Finding All The Elementary Circuits Of A Directed Graph. STAM

J. COMPUT. Vol. 4, No. 1, March 1975.

[12] Saty Raghavachary Fracture generation on polygonal meshes using Voronoi polygons

ACM SIGGRAPH 2002 Sketch. 2002.

[13] Paeth, A.W. Graphics gems V 9780125434553, The graphics gems series, AP

Professional. 1995.

[14] David Kirk. Graphics gems 111 978-0124096738, Morgan Kaufmann. 1994.

[15] Joseph O’Rourke. Computational Geometry in C. Cambridge University Press,

Cambridge, 1990.

29

Bibliography Bibliography

[16] Georgy Voronoi. Nouwvelles applications des parametres continus a la théorie des
formes quadratiques. Journal fiir die Reine und Angewandte Mathematik, 133:97-178,
1908.

[17] Eric Haines. Essential ray tracing algorithms from An Introduction to Ray Tracing.
Academic Press, New York. 1989.

[18] J. C. TIERNAN. An efficient search algorithm to find the elementary circuits of a
graph. Comm. ACM, 13 (1970), pp. 722-726.

[19] Nafees Bin Zafar, Marten Larsson, Ryo Sakaguchi, Brian Gazdik Procedural Methods
For Large Scale Destruction ACM SIGGRAPH 2011 Talk. 2011.

[20] JF O’Brien, J.K. Hodgins. Graphical Modeling and Animation of Brittle Fracture.
SIGGRAPH 99 Conference Proceedings. 1999.

[21] JF O’Brien, J.K. Hodgins. W.A. Bargteil. Graphical Modeling and Animation of
Ductile Fracture. ACM Trans. Graph. 2002.

[22] Breaking Pillars with DMM in Maya 2012. http://area.autodesk.com/
tutorials/breaking_pillars

[23] Ivan Sutherland, Gary W. Hodgman. Reentrant Polygon Clipping. Communications
of the ACM, vol. 17, pp. 32-42, 1974

30

A. User Manual

A.1. Parameters

’ Parameter ‘ Ezxplanation ‘
Seed Value Seed value for random number generation
Random Points Amount of random site points
Curve Steps Amount of steps to take along the NURBS-curve
Curve Points Amount of random points at each step
Sphere Points Amount of points to generate inside NURBS-
spheres

Use exponential sphere points | Enable or disable exponential sampling

Increment seed value Increment seed value for each time Update is
pressed

Use time as seed Use current time as seed to always produce
unique result

Use original normals Transfer the normals from the original object to
the generated pieces

Shell only Do not create inner surfaces using capping

Clustering Enable or disable clustering

Cluster Points Amount of clusters to be generated

Radial Axis Axis along which the radial points will be sam-
pled

Radial Iter A Amount of rings for the pattern

Radial Iter B Amount of cuts in the rings for the pattern

Radial Exp Exponentially grow step size between rings

Radial Random Amount of random jitter to add to points

Radial Step Size Step size between each ring

Radial Start Step Size Step size from centre point to first ring

Offset Offset the enter point by these coordinates

Table A.1.: User interface parameters explained
A.2. Usage

For all use cases the initial step is to run the voro command on selected objects. If the
object is in Maya considered mesh object it will create the voroNode and set-up necessary

31

A.3. RANDOM AND RADIAL MODE APPENDIX A. USER MANUAL

connections. When the desired look have been achieved pieces are baked to separate
geometry using the voroDone command or by using Maya internal Mesh Separate option.
voroDone is faster and needs to be used on objects containing a high amount of pieces.

A.3. Random and Radial Mode

For the usage of Random sampling and Radial sampling it is merely to configure the
settings of the voroNode and updating until satisfied.

A.4. NURBS Sphere, NURBS Curve and Particle Mode.

NURBS sphere, NURBS curve and Particle mode are activated by view-port selection.
By selecting either a sphere, curve or particle emitter together with the objects currently
being fractured the voroNode reads the information from the objects and calculates the
site points.

32

