ry 4

CAPS

HMPP
Directive Programming




ry 4

Compilation Workflow CAPS

HMPP Compiler
HMPP Preprocessor Back-end Generators

Application source code Target source code NVIDIA CUDA
OpenCL

Standard Compiler Target compiler

Host application Accelerated codelet library

HMPP Runtime Target driver

www.caps-entreprise.com 2



ry 4

Methodology for Porting Code With HMPP CAPS

1. Profiling to identify hotspot(s).

2. Basic offloading with codelet/callsite directives.

3. Avoid transfers by specifying function argument intents.

4. Avoid needless (de)allocations of the HWA with allocate/
release directives.

5. Let HMPP automatically optimize the data transfer

6. Preload data and let them stay on the HWA if possible to avoid

needless transfers.

/. Launch the codelet asynchronously (allow the host to execute
other tasks while the HWA executes the codelet).

8. Gather several hotspots by creating codelet groups.

9. Share data between codelets with data mirroring, mapping and
resident data.

10. Transfer only the useful partof your data/result
11. Compute automatically-ormrmultiple devices

www.caps-entreprise.com 3



ry 4

Test Platform CAPS

» All performance measures presented in this training are
made on a machine with the following characteristics:

o HWA:
* 1 x nVidia Tesla C2050
3 Gb RAM
* 14 multiprocessors
» 448 cores
 1.15 GHz
- CUDA4 1
o Host:
 Intel(R) Core i7 @ 2.67GHz
« 6 GB DDRIII
« HMPP 3.0.5
« Geec4.4.5

www.caps-entreprise.com 4



ry 4

Lab 0 - Profiling to Identify Hotspots(s) CAPS

« To have a worthwhile acceleration by offloading
computations on a HWA, you need to move the most
expensive computations (aka hotspots) on it (Amdahl's law)

* You can identify hotspots with profilers such as Gprof or
Oprofile

* You may have to create codelet functions or to use HMPP

regions to explicitly create the part of code which will be
offloaded

« C=aAB +[3C
* Profiling output of lab0 gives:

% cumulative self self total
time seconds seconds calls s/call s/call name
100.29 41 .46 41 .46 5 8.29 8.29 mySgemm
0.05 41.46 0.02 3145729 0.00 0.00 randFloat

 It's clear that this application’s,hotspotis”"mySgemm”

www.caps-entreprise.com 5



ry

Define a Codelet Function CAPS

 Declare a hardware-accelerated version of a function:
o Use the codelet/callsite pair of directives

Declare codelet
with CUDA target

Synchronous codelet call

o The HWA will be automatically allocated

o Data transfers between the host and the HWA will be handled

transparently prior to the codelet’s execution due to the transfer policy
ATCALL

www.caps-entreprise.com 6



ry 4

Hands-on Lab 1 CAPS

« See HMPP User Manual
o Section 3.1 — The HMPP Codelet Concept for a more complete definition of what
a codelet is

o Section 4.3 — Syntax of the HMPP directives for more information on how to read
and write HMPP directives

o Section 4.5.3 — callsite directive for the callsite definition
o Section 4.5.1 — codelet directive for the codelet definition
o Section 4.7.1 — ATCALL transfer policy
 Compile and run example lab1
 What to look for
o Note the command line used for the generation of the application,

o Note the generation of the codelet
o Note the speed-up between the code that runs on the CPU and on the HWA

« Add runtime information by exporting environment variable HMPPRT_LOG_LEVEL=INFO,

and note the HMPP runtime mechanisms
. Allocation of the HWA Speed-up HMPP/
. Data transfer write CUDA VS CPU
Execution of the codelet

Data transfer read 215x
Release of the HWA

b=

www.caps-entreprise.com 7



Avoid Some Needless Transfers By
Specifying Intents

« Scalar variables are all IN by default

* Arrays are all INOUT by default

o Arrays as INOUT wastes transfer bandwidth
o But “const” arrays automatically have an IN intent

Only “c” is INOUT

ry

CAPS

www.caps-entreprise.com



ry 4

Hands-on Lab 2 CAPS

e See HMPP User Manual

o Section 4.5.1 — codelet directive
 Compile and run example lab2
* What to look for
o Note that the speed-up between
the code that runs on the CPU CUDA VS CPU previous version

and on the HWA has improved 248x 1.15x

* Increase the HMPP log level by exporting environment
variable HMPPRT_LOG_ LEVEL=INFO, and note that less
“upload” transfers are generated

www.caps-entreprise.com 9



ry 4

Allocate and Release CAPS

» Explicitly acquire the device and allocate the data on the
device before the callsite

o Use the acquire/allocate
o Explicit sizes of pointers arguments
o Device release done implicitly at the program ending

Acquire explicitly a
device

Pre-Allocate data on the
device

www.caps-entreprise.com



ry 4

Hands-on Lab 3 CAPS

See HMPP User Manual
o Section 4.5.5 — acquire Directive
o Section 4.5.7 — allocate Directive

Compile and run example lab3

o Note that the speed-up between CUDA VS CPU previous version

the code that runs on the CPU 248x 1,00x
and on the HWA is the same

Increase the HMPP log level by exporting environment
variable HMPPRT_LOG LEVEL=INFO, and note
o The allocation of the HWA is only done once
o Data transfers write/read, codelet execution remain unchanged
o The HWA is released automatically at the end of the application

www.caps-entreprise.com 11



HMPP Automatically Optimize and Factorize _ , ==
Data Transfers (Experimental)

« Data preloading is done on first callsite

o Synchronization between host and GPU is then done only when
HMPP detects a modification of data (hostread/hostwrite in log)

o Avoid useless transfers with pragma disregard

Let HMPP determine when
to transfer data

Let HMPP determine when
to transfer data

www.caps-entreprise.com



ry 4

Hands-on Lab 4 CAPS

e See HMPP User Manual
o Section 4.7.4 - Automatic data transfer in HMPP — .transfer=auto

« Compile and run example lab4
CUDA VS CPU previous version
o Note that the speed-up between the

code that runs on the CPU and 366X 1.48x
on the HWA has improved

* Increase the HMPP log level by exporting environment variable

HMPPRT _LOG_LEVEL=INFO, and note that the number of transfers is
reduced.

 Remove the disregard args[*] clause and note that the number of
transfers has increased

o That clause instructs HMPP that calls to intrinsics won't have side-effects on
variables used into the codelet. Without this, HMPP suppose they may be
and then transfer data onto the HWA at each iteration.

o This increase the CPU time execution due to the host variable access
analysis

www.caps-entreprise.com 13



Manually Optimize and Factorize Data
Transfers

* Preload data before codelet call
o Load data as soon as possible Avoid reloading data

Manage Manually ¢

Preload data

Download result

www.caps-entreprise.com



ry 4

Hands-on Lab 5 CAPS

See HMPP User Manual

o Section 4.6.1 — advancedload Directive
o Section 4.6.2 — delegatedstore Directive
o Section 4.7.3 — MANUAL transfer policy

 Compile and run example lab5

o Note that the speed-up between CUDA VS CPU previous version

the code that runs on the CPU 366x 1,00x
and on the HWA is the same

* Increase the HMPP log level by exporting environment
variable HMPPRT_LOG LEVEL=INFO, and notethat-the
number of transfers is reduced

o See the directive Advanceload and in the first callsite in the log. Some
arguments are only transferred at the first callsite.

www.caps-entreprise.com 15



Compute Asynchronously

« Perform CPU/GPU computations asynchronously

o Asynchronous execution allows to perform other computations on the
host while the codelet is executed on the HWA, or to avoid needless
synchronizations between the HWA and the host

Execute
asynchronously

Wait for codelet
completion

Download result
when needed

www.caps-entreprise.com



ry 4

Hands-on Lab 6 CAPS

See HMPP User Manual
o Section 4.5.3 — asynchronous callsite Directive
o Section 4.5.4 — synchronize Directive

 Compile and run example lab6
* What to look for

o Note that the speed-up between Speed-up HMPP/ | Speed-up VS
the code that runs on the CPU CUDA VS CPU previous version

and on the HWA is the same 3725 1.00x

* Increase the HMPP log level by exporting environment
variable HMPPRT _LOG LEVEL=INFO, and note that the
codelet is run asynchronously.

www.caps-entreprise.com 17



ry 4

CAPS

What Can CAPS entreprise

Do with You?




CAPS Compute Lab -

CAPS

Evaluate the performance of your application

on a ready-to-use hybrid cluster

« System key features
o 42 TFLOPS Tesla accelerated Nehalem cluster
o 10 NVIDIA Tesla S1070 -
o 20 Intel Nehalem nodes |

« Complete software environment
o HMPP, CUDA, Intel compilers

>

 CAPS expertise and consultancy .BU& NVIDIA.

www.caps-entreprise.com



ry 4

CAPS Expertise CAPS

CAPS provides consulting to

« Develop, port and deploy applications onto hybrid systems

« Optimize GPU-accelerated applications

* Bring our expertise to your team

www.caps-entreprise.com 20



CAPS Training

ORS

PROC

 See CAPS web site for full program

ry 4

CAPS

« or SGI partner web site {(www.hpetraining.com)

www.caps-entreprise.com

21



Accelerator Programming Model CAps"

Directive-based programming GPGPU Manycore programming

Hybrid Manycore Programming

Parallel computing HPC open standard
Multicore programming

Hardware accelerators programming
High Perfformance Computing

Parallel programming interface
Massively parallel

http://www.caps-entreprise.com
http://twitter.com/CAPSentreprise

http://www.openhmpp.or



