
HMPP
Directive Programming

1 www.caps-entreprise.com

www.caps-entreprise.com 2

Compilation Workflow

HMPP	 annoted	 source	 code	

HMPP	 Compiler	

Applica5on	 source	 code	

Standard	 Compiler	

Host	 applica5on	

Target	 source	 code	

Target	 compiler	

Accelerated	 codelet	 library	

HMPP	 Run5me	

HMPP	 Preprocessor	

Target	 driver	

Back-‐end	 Generators	

GPU CPU

NVIDIA	 CUDA	 	
OpenCL	

1.  Profiling to identify hotspot(s).
2.  Basic offloading with codelet/callsite directives.
3.  Avoid transfers by specifying function argument intents.
4.  Avoid needless (de)allocations of the HWA with allocate/

release directives.
5.  Let HMPP automatically optimize the data transfer
6.  Preload data and let them stay on the HWA if possible to avoid

needless transfers.
7.  Launch the codelet asynchronously (allow the host to execute

other tasks while the HWA executes the codelet).
8.  Gather several hotspots by creating codelet groups.
9.  Share data between codelets with data mirroring, mapping and

resident data.
10. Transfer only the useful part of your data/result
11. Compute automatically on multiple devices

www.caps-entreprise.com 3

Methodology for Porting Code With HMPP

•  All performance measures presented in this training are
made on a machine with the following characteristics:
o  HWA:

•  1 x nVidia Tesla C2050
•  3 Gb RAM
•  14 multiprocessors
•  448 cores
•  1.15 GHz
•  CUDA 4.1

o  Host:
•  Intel(R) Core i7 @ 2.67GHz
•  6 GB DDRIII
•  HMPP 3.0.5
•  Gcc 4.4.5

www.caps-entreprise.com 4

Test Platform

•  To have a worthwhile acceleration by offloading
computations on a HWA, you need to move the most
expensive computations (aka hotspots) on it (Amdahl's law)

•  You can identify hotspots with profilers such as Gprof or
Oprofile

•  You may have to create codelet functions or to use HMPP
regions to explicitly create the part of code which will be
offloaded

•  C = αAB + βC
•  Profiling output of lab0 gives:
 % cumulative self self total

 time seconds seconds calls s/call s/call name
100.29 41.46 41.46 5 8.29 8.29 mySgemm
 0.05 41.46 0.02 3145729 0.00 0.00 randFloat

•  It’s clear that this application’s hotspot is “mySgemm”

www.caps-entreprise.com 5

Lab 0 - Profiling to Identify Hotspots(s)

•  Declare a hardware-accelerated version of a function:
o  Use the codelet/callsite pair of directives

o  The HWA will be automatically allocated
o  Data transfers between the host and the HWA will be handled

transparently prior to the codelet’s execution due to the transfer policy
ATCALL

www.caps-entreprise.com 6

Define a Codelet Function

#pragma hmpp mySgemm codelet, target=CUDA, args[*].transfer=atcall
void mySgemm(int m, int n, int k, float alpha, float beta,
 float a[m][n], float b[n][k], float c[m][k])
{ /* . . . */ }

int main(int argc, char **argv) {

 /* . . . */

 for(j = 0 ; j < NB_RUNS ; j++) {
 /* . . . */
 #pragma hmpp mySgemm callsite
 mySgemm(m, n, k, alpha, beta, a, b, c_hwa);
 /* . . . */
 }
}

Synchronous codelet call

Declare codelet
with CUDA target

•  See HMPP User Manual
o  Section 3.1 – The HMPP Codelet Concept for a more complete definition of what

a codelet is
o  Section 4.3 – Syntax of the HMPP directives for more information on how to read

and write HMPP directives
o  Section 4.5.3 – callsite directive for the callsite definition
o  Section 4.5.1 – codelet directive for the codelet definition
o  Section 4.7.1 – ATCALL transfer policy

•  Compile and run example lab1
•  What to look for

o  Note the command line used for the generation of the application,
o  Note the generation of the codelet
o  Note the speed-up between the code that runs on the CPU and on the HWA

•  Add runtime information by exporting environment variable HMPPRT_LOG_LEVEL=INFO,
and note the HMPP runtime mechanisms
1.  Allocation of the HWA
2.  Data transfer write
3.  Execution of the codelet
4.  Data transfer read
5.  Release of the HWA

www.caps-entreprise.com 7

Hands-on Lab 1

Speed-‐up	 HMPP/
CUDA	 VS	 CPU	

	 215x	

•  Scalar variables are all IN by default
•  Arrays are all INOUT by default

o  Arrays as INOUT wastes transfer bandwidth
o  But “const” arrays automatically have an IN intent

www.caps-entreprise.com 8

Avoid Some Needless Transfers By
Specifying Intents

#pragma hmpp mySgemm codelet, target=CUDA, args[*].transfer=atcall
void mySgemm(int m, int n, int k, float alpha, float beta,
 const float a[m][n], const float b[n][k], float c[m][k])
{ /* . . . */ }

int main(int argc, char **argv) {
 /* . . . */

 for(j = 0 ; j < NB_RUNS ; j++) {
#pragma hmpp mySgemm callsite
 mySgemm(m, n, k, alpha, beta, a, b, c_hwa);
 }
 /* . . . */
 }

Only “c” is INOUT

•  See HMPP User Manual
o  Section 4.5.1 – codelet directive

•  Compile and run example lab2
•  What to look for

o  Note that the speed-up between
the code that runs on the CPU
and on the HWA has improved

•  Increase the HMPP log level by exporting environment
variable HMPPRT_LOG_LEVEL=INFO, and note that less
“upload” transfers are generated

www.caps-entreprise.com 9

Hands-on Lab 2

Speed-‐up	 HMPP/
CUDA	 VS	 CPU	

Speed-‐up	 VS	
previous	 version	

248x	 1.15x	

•  Explicitly acquire the device and allocate the data on the
device before the callsite
o  Use the acquire/allocate
o  Explicit sizes of pointers arguments
o  Device release done implicitly at the program ending

www.caps-entreprise.com 10

Allocate and Release

int main(int argc, char **argv) {
 /* . . . */
 #pragma hmpp mySgemm acquire

 #pragma hmpp mySgemm allocate, args[a].size={m,n}, args[b].size={n,k},
args[c].size={m,k}

 /* . . . */

 for(j = 0 ; j < 2 ; j++) {
 /* . . . */
 #pragma hmpp mySgemm callsite
 mySgemm(m, n, k, alpha, beta, a, b, c_hwa);
 /* . . . */
 }
 /* . . . */
}

Pre-Allocate data on the
device

Acquire explicitly a
device

•  See HMPP User Manual
o  Section 4.5.5 – acquire Directive
o  Section 4.5.7 – allocate Directive

•  Compile and run example lab3
•  What to look for

o  Note that the speed-up between
the code that runs on the CPU
and on the HWA is the same

•  Increase the HMPP log level by exporting environment
variable HMPPRT_LOG_LEVEL=INFO, and note
o  The allocation of the HWA is only done once
o  Data transfers write/read, codelet execution remain unchanged
o  The HWA is released automatically at the end of the application

www.caps-entreprise.com 11

Hands-on Lab 3

Speed-‐up	 HMPP/
CUDA	 VS	 CPU	

Speed-‐up	 VS	
previous	 version	

248x	 1,00x	

•  Data preloading is done on first callsite
o  Synchronization between host and GPU is then done only when

HMPP detects a modification of data (hostread/hostwrite in log)
o  Avoid useless transfers with pragma disregard

www.caps-entreprise.com 12

HMPP Automatically Optimize and Factorize
Data Transfers (Experimental)

#pragma hmpp mySgemm codelet, target=CUDA, args[*].transfer=auto
void mySgemm(int m, int n, int k, float alpha, float beta,
 const float a[m][n], const float b[n][k], float c[m][k])
{ /* . . . */
}

int main(int argc, char **argv) {
 /* . . . */

 #pragma hmpp mySgemm disregard args[*]
 for(j = 0 ; j < NB_RUNS ; j++) {
 /* . . . */
 #pragma hmpp mySgemm callsite
 mySgemm(m, n, k, alpha, beta, a, b, c_hwa);
 }
 /* . . . */
}

Let HMPP determine when
to transfer data

Let HMPP determine when
to transfer data

•  See HMPP User Manual
o  Section 4.7.4 - Automatic data transfer in HMPP – .transfer=auto

•  Compile and run example lab4
•  What to look for

o  Note that the speed-up between the
code that runs on the CPU and
on the HWA has improved

•  Increase the HMPP log level by exporting environment variable
HMPPRT_LOG_LEVEL=INFO, and note that the number of transfers is
reduced.

•  Remove the disregard args[*] clause and note that the number of
transfers has increased
o  That clause instructs HMPP that calls to intrinsics won't have side-effects on

variables used into the codelet. Without this, HMPP suppose they may be
and then transfer data onto the HWA at each iteration.

o  This increase the CPU time execution due to the host variable access
analysis

www.caps-entreprise.com 13

Hands-on Lab 4

Speed-‐up	 HMPP/
CUDA	 VS	 CPU	

Speed-‐up	 VS	
previous	 version	

366x	 1.48x	

•  Preload data before codelet call
o  Load data as soon as possible

www.caps-entreprise.com 14

Manually Optimize and Factorize Data
Transfers

#pragma hmpp mySgemm codelet, args[m;n;k;alpha;beta;a;b].transfer=atfirstcall, &
#pragma hmpp & args[c].transfer=manual, args[c].mirror, target=CUDA
void mySgemm(int m, int n, int k, float alpha, float beta,
 const float a[m][n], const float b[n][k], float c[m][k]){}

int main(int argc, char **argv) {
 /* . . . */
 #pragma hmpp sgemm allocate, args[a].size={m,n}, args[b].size={n,k}, args[c].size={m,k}
 /* . . . */
 #pragma hmpp mySgemm advancedload, args[c], hostdata="c_hwa"
 /* . . . */

 for(j = 0 ; j < NB_RUN ; j++) {
 #pragma hmpp mySgemm callsite
 mySgemm(m, n, k, alpha, beta, a, b, c_hwa);
 /* . . . */
 }
 #pragma hmpp mySgemm delegatedstore, args[c]
 /* . . . */

Avoid reloading data

Preload data

Manage Manually c

Download result

•  See HMPP User Manual
o  Section 4.6.1 – advancedload Directive
o  Section 4.6.2 – delegatedstore Directive
o  Section 4.7.3 – MANUAL transfer policy

•  Compile and run example lab5

•  What to look for
o  Note that the speed-up between

the code that runs on the CPU
and on the HWA is the same

•  Increase the HMPP log level by exporting environment
variable HMPPRT_LOG_LEVEL=INFO, and note that the
number of transfers is reduced
o  See the directive Advanceload and in the first callsite in the log. Some

arguments are only transferred at the first callsite.

www.caps-entreprise.com 15

Hands-on Lab 5

Speed-‐up	 HMPP/
CUDA	 VS	 CPU	

Speed-‐up	 VS	
previous	 version	

366x	 1,00x	

•  Perform CPU/GPU computations asynchronously
o  Asynchronous execution allows to perform other computations on the

host while the codelet is executed on the HWA, or to avoid needless
synchronizations between the HWA and the host

www.caps-entreprise.com 16

Compute Asynchronously

#pragma hmpp mySgemm codelet, target=CUDA, args[m;n;k;alpha;beta].transfer=atfirstcall, args
[a,b,c].transfer=manual, args[a,b,c].mirror
void mySgemm(int m, int n, int k, float alpha, float beta,
 const float a[m][n], const float b[n][k], float c[m][k]){}

int main(int argc, char **argv) {
 /* . . . */
#pragma hmpp mySgemm allocate, args[a].size={m,n}, args[b].size={n,k}, args[c].size={m,k}
#pragma hmpp mySgemm advancedload, args[c], hostdata="c_hwa"
 /* . . . */
 for(j = 0 ; j < 2 ; j++) {
#pragma hmpp mySgemm callsite asynchronous
 mySgemm(m, n, k, alpha, beta, a, b, c_hwa);
 /* . . . */
 }
 /* . . . */

#pragma hmpp mySgemm synchronize
#pragma hmpp mySgemm delegatedstore, args[c]
}

Execute
asynchronously

Download result
when needed

Wait for codelet
completion

•  See HMPP User Manual
o  Section 4.5.3 – asynchronous callsite Directive
o  Section 4.5.4 – synchronize Directive

•  Compile and run example lab6
•  What to look for

o  Note that the speed-up between
the code that runs on the CPU
and on the HWA is the same

•  Increase the HMPP log level by exporting environment
variable HMPPRT_LOG_LEVEL=INFO, and note that the
codelet is run asynchronously.

www.caps-entreprise.com 17

Hands-on Lab 6

Speed-‐up	 HMPP/
CUDA	 VS	 CPU	

Speed-‐up	 VS	
previous	 version	

325x	 1.00x	

What Can CAPS entreprise
Do with You?

18 www.caps-entreprise.com

www.caps-entreprise.com

CAPS Compute Lab

Evaluate the performance of your application
on a ready-to-use hybrid cluster

•  System key features
o  42 TFLOPS Tesla accelerated Nehalem cluster
o  10 NVIDIA Tesla S1070
o  20 Intel Nehalem nodes

•  Complete software environment
o  HMPP, CUDA, Intel compilers

•  CAPS expertise and consultancy

CAPS Expertise

www.caps-entreprise.com 20

CAPS provides consulting to

•  Develop, port and deploy applications onto hybrid systems

•  Optimize GPU-accelerated applications

•  Bring our expertise to your team

CAPS Training

www.caps-entreprise.com 21

Programma3on	
parallèle	

Intro	

OpenMP	

MPI	

PARALLELISM
Programma3on	
processeurs	

SSE	 /	 MMX	

Nehalem	

PROCESSORS
Programma3on	

parallèle	

CUDA	

OpenCL	

GPUs

•  See CAPS web site for full program
•  or SGI partner web site (www.hpctraining.com)

Accelerator Programming Model Parallelization

Directive-based programming GPGPU Manycore programming

Hybrid Manycore Programming HPC community

 Petaflops Parallel computing HPC open standard

Multicore programming Exaflops NVIDIA Cuda

Code speedup Hardware accelerators programming

 High Performance Computing

Parallel programming interface
 Massively parallel

 Open CL

h=p://www.caps-‐entreprise.com	
h=p://twi=er.com/CAPSentreprise	

	
h=p://www.openhmpp.org	

	

