
WP108

RabbitSys
Conquering Remote Reliability Problems

As an embedded systems engineer, you can use all the help you can get to create a reliable system.
Unfortunately, interrupts are missed, the stack overflows, interrupts fire in unanticipated order, and the
uncontrolled world external to your microcontroller will do its best to crash your system. System reliability
overshadows the goals of any embedded project. RabbitSys increases the reliability of your embedded
system. How RabbitSys achieves this reliability will be explained throughout this paper as we introduce
and describe each component of this revolutionary 8-bit system. RabbitSys’ rich featureset includes:

• Remote application update

• Remote configuration

• Remote application monitoring

• Remote problem detection and diagnosis

• Hardware supported application protection

RabbitSys does more than just increase system reliability; RabbitSys increases your productivity during
the development and debug cycle. RabbitSys saves you time during development by providing more
information during debugging and greatly decreasing program download time. When development is done,
RabbitSys assures the integrity of your deployed product by safeguarding access to all embedded system
resources, such as memory and I/O ports.

In addition to saving time during development, RabbitSys saves you time and money after you deploy
your product. Without RabbitSys, the fix to a software problem in the field could require you to book a
flight, send an engineer off-site, lose valuable time from today's project and, most importantly, make your
customer wait. Instead, by using RabbitSys' reliable remote update feature, you will remove the need to
"roll a truck" to fix a software problem.

Most new software packages require a learning curve to achieve proficiency, with the steepness of the
learning curve dependent on various factors. RabbitSys was designed to be easy to use. Existing Dynamic
C applications can be compiled under RabbitSys with little or no code changes to benefit in full from the
increased protection, reliability, and convenience that RabbitSys offers. New features, such as the program
monitor or the event handler, enhance your application’s capabilities in the field, making it more resistent
to external transient errors. As you will see, these features create a solid foundation for your application,
and we’ll show you how to take advantage of them. The RabbitSys application programming interface
(API) is simple and straight forward. It does not matter whether you are migrating your existing program
or creating a RabbitSys application from scratch. In other words, Dynamic C users will have no trouble
making the switch to RabbitSys. Those new to Dynamic C will find that using the power of RabbitSys
requires little effort from the programmer.
Confidential--Z-World Trade Secret 022-0097 Rev. A 1

Fixing Reliability Problems
Reliability problems in an embedded system often follow with customer descriptions like “It hangs up
once in a while and I have to reset it.” or “It goes crazy a couple times a month for no apparent reason.”
Invariably, these sporadic problems too often result from subtle bugs in software that do not show up
during quality assurance testing. Software reliability problems stem from two basic issues: data corruption
and flow control bugs. The effects of these two troublemakers propagate and compound the original
problem resulting in a completely unstable system. A problem with data corruptions soon leads to bad
logic, and faulty logic soon leads to non-sensical data. Although no system can fix the logic or data of an
errant program, RabbitSys allows you to hone in on problems that commonly plague deployed systems,
such as:

• Stack or static data corruption from errant pointers or buffer overrun.

• Stack overflow caused by cascading interrupts or unforeseen events.

• Buffer overrun from boundary assumptions.

• Bad logic that causes control flow to go astray.

Let us take for example a typical embedded program that calls a memory copy routine to retrieve serial
data from a buffer. As is often the case, the programmer mistakenly assumes that the data will never
exceed some threshold value, say 128 bytes. Let’s say the serial data overflows the buffer, changing the
variable that drives a motor control state machine. The state machine then either goes into the wrong or
invalid state and eventually results in a crash of the program and leaves the motor running out of control.

For the scenario above, RabbitSys makes it possible for you to take control and bring the system back into
a safe state, restarting or halting the program at your discretion. Upon detecting the errant program,
RabbitSys logs what went wrong and calls routines to put the controller (and the motor) back into a safe
state. RabbitSys also sends alerts to you via e-mail or pager, to notify you that something has gone terribly
wrong and gives you to power to correct it. In the next few sections, we’ll look at the various components
that make this recovery possible.

The RabbitSys Attack Plan
At the core of RabbitSys lies its event-driven kernel that drives various system components including a
Monitor, Console, TCP/IP Stack, and Remote Upload Utility. As the figure below illustrates, the design of
RabbitSys is simple without sacrificing function. The RabbitSys kernel takes control when the system
starts up. The kernel then verifies and starts your application. Note that each of the components shown
plays a critical role in the battle against reliability problems. The RabbitSys attack plan consists of three
phases:

Detect the problem on the target. When an unexpected event or error occurs like a system violation, the
RabbitSys Monitor logs it and the kernel takes action. This action includes sending e-mail for notification
and resetting or stopping the application depending on configuration and the severity of the error.

Diagnose the problems using the RabbitSys Console to create watches on application data and configure
the monitor to log additional events, and even trace program execution remotely. The console has an easy
to use interface that can be accessed via HTTP or telnet.

Deliver new application code to the target that fixes the issue through Remote Program Update.
Confidential--Z-World Trade Secret 022-0097 Rev. A 2

The RabbitSys Framework
This section describes the interaction of your application and RabbitSys.

Your Application
Your program has direct access to the rest of the system via the system call interface. This design gives the
maximum control and power to the user application without undermining system protection. The protected
execution environment created by the RabbitSys kernel monitors the behavior of your program when out
in the field. Even if your program fails, whether quietly or in some very destructive manner, RabbitSys
protects the core system to ensure remote accessibility so you can correct the problem.

RabbitSys allows your application to make use of Dynamic C’s full-featured debug kernel. During
development, the debug kernel is compiled into your program. When your program is ready for
deployment, the debug kernel can be completely removed from your final product if desired. For more
information about our debug kernel, please see the Dynamic C User’s Manual.

System Call Interface - SysCall
Your program accesses RabbitSys through the system call interface. When a system call request occurs,
RabbitSys verifies the type of the system call, associated parameters, and device handles before servicing
the call. Pointers passed across the system call interface are checked to ensure protection against accidental
corruption of system resources. This pointer checking is just one example of the kind of cross checking
that RabbitSys performs on your application’s operation. The cross checking of software is one of the
primary methods of achieving system reliability.
Confidential--Z-World Trade Secret 022-0097 Rev. A 3

The Event-Driven Kernel
A powerful event handler drives the RabbitSys kernel. Since system events require decisive action, it is
easy to see how useful this RabbitSys feature can be in an embedded system. RabbitSys predefines system
events and gives you the ability to add your own user-defined events. For user-defined events, you can
customize your program’s behavior by registering a call-back function for that event. API functions allow
events to be scheduled, removed, and queried. Some examples of events that drive the system are:

Timer events are used by the kernel for driving virtual watchdogs. User timer events can be added for
custom functionality.

Shutdown events are triggered when a fatal error has occurred in your program. By hooking in a shut-
down callback routine you can ensure well-defined system behavior when the unexpected occurs.

Alert events are triggered when a program error occurs. When an alert event occurs, the kernel can take
corrective action by sending e-mail, resetting your application, or even stopping it depending on the
severity of the error.

Remote Program Update
Whether your RabbitSys-enabled target is located across the room, across the country, or across the world,
uploading an updated program from your office is a quick, simple matter. Whether you are adding features
or maybe fixing a bug in critical code, RabbitSys saves you considerable time and resources. As
previously mentioned, the remote update removes the need to “roll a truck” to fix your software problems.

RabbitSys natively supports application update through TCP/IP, serial, and the RabbitSys API. For the
sake of flexibility, there are several different methods for remote update of user program code:

• Update via system mode HTTP server.

• Update via system mode FTP server.

• Update via the remote upload API. This API allows you to utilize a different network protocol for your
own custom update solution. For instance, you might want to enhance RabbitSys’ remote update with
HTTPS and the Secure Socket Layer (SSL) for added security.

The RabbitSys network servers run at high port addresses to avoid interfering with your application’s
HTTP and FTP servers. The system servers are periodically checked while your program is running to see
if an update has been requested. The screen shot below shows the web interface for remote update.
Confidential--Z-World Trade Secret 022-0097 Rev. A 4

Monitor
RabbitSys maintains an audit trail to support detection and diagnosis of system reliability problems. The
RabbitSys API for the monitor provides the ability to query program status, log and handle run-time errors,
and respond to critical system errors. The monitor tracks hardware and software resets, runtime errors, and
system access violations. The monitor can also be configured to log or watch the contents of memory
locations for diagnostic debugging. Your program can also register callback functions to shut down
properly, to handle errors, or to send custom alerts. The screen shot below shows the web interface for
accessing this system information from the monitor:
Confidential--Z-World Trade Secret 022-0097 Rev. A 5

The monitor is accessible via both the console and HTTP. There are five types of monitor logs: watch,
reset, run time, system and fatal (not shown). Monitor logs provides information on the state of a running
or crashed program such as time, address, data, and cause.

Watch logs trace sections of memory, allowing you to monitor specific values in a running application. In
the image above, the watch log is displaying the Ethernet MAC address of the board (retrieved from your
program’s map file).

The reset log records all software and hardware resets, which assists in crash recovery. These entries are
time and date stamped and may provide useful information if a program develops a hard to track bug. Rab-
bitSys inspects the GCSR register on restart and records its value to determine the cause of reset including
power failure and watchdog timeouts. User mode run-time errors behave similar to a watchdog timeout
and can either reset the board or take other corrective action based on user configuration. Customizable
recovery allows the system to take other corrective action like sending e-mails alerts or putting attached
devices into a safe state.

The last three monitor logs, run-time, system, and fatal, provide different levels of error reporting. The
default behavior for all of these errors is to send alert notification via e-mail and shut down your
application. However, custom behavior can be defined. Errors that are detected within your program such
as divide-by-zero or your own custom-defined error cause run-time errors. With run-time errors, your
program can register a recovery call-back that allows you to take corrective action, shutting down the
program at your discretion. System and fatal errors such as attempts to corrupt system data, corrupt the
system stack, or execute system code are detected by RabbitSys. Since system space cannot be corrupted
by an application program, RabbitSys continues to function even after a fatal program error. It assumes
control and the monitor will respond to requests for information through either the console or the
RabbitSys HTTP server. When an error causes your program to shut down, you can use the console to
restart it by clearing the associated log.

Console
The console provides a machine-friendly, yet human-readable, command-line interface enabled during
system bootup that is active in RabbitSys at all times. You can communicate with the console directly over
serial or through TCP/IP using Telnet, HTTP, or FTP. The console provides the interface through which
you can configure and view network settings, configure login, access the monitor, update your program,
check version, add watches, reset the program and even reset RabbitSys itself. As if that wasn’t enough,
when you remotely compile and download a new binary with debugging enabled, RabbitSys will allow
you to debug the program directly through Dynamic C. Since the console is accessible via common
networking tools like FTP and telnet, your RabbitSys-enabled board can be accessed without having to
install yet another proprietary software tool. Since remote update works through FTP, you can use the
native client in your PC’s operating system to upload new firmware. The screen shot pictured below shows
the commands available from the console.
Confidential--Z-World Trade Secret 022-0097 Rev. A 6

HTTP Server
As you have already seen, RabbitSys comes with an HTTP server that provides complete access to remote
upload, the console and the monitor. The ability to use a standard browser to interface with the target board
offers you a quick, convenient communications channel from anywhere on the Internet. RabbitSys allows
your application to register HTTP pages and callback functions. This feature allows you to control your
application remotely.

Tasking Support
RabbitSys supports both preemptive and cooperative multitasking. It supports real-time environments such
as µC/OS-II, as well as Dynamic C slice statements and costate constructs. RabbitSys also provides stack
switching services to give your program flexible task management.

To support user-level tasking, e.g., µC/OS-II or slice statements, RabbitSys provides a means by which
your program can safely hook into the periodic interrupt. RabbitSys monitors the amount of time that your
program code runs and will prevent your code from violating system time constraints.
Confidential--Z-World Trade Secret 022-0097 Rev. A 7

Alternatively, for applications that require finer grain control over system running times, RabbitSys
provides a system tick function that must be called manually. Instead of hooking to the periodic interrupt,
RabbitSys works cooperatively with your program. By calling the system tick, the system runs during the
normal course of user program execution. RabbitSys expects to be called periodically and may halt the
user program if not allowed to run. The tick function executes rapidly in order to incur as little time
penalty as possible.

The System Tick

The system tick drives RabbitSys. On each invocation, the system tick hits both the primary and secondary
watchdog timers. The tick function then runs the various subcomponents of RabbitSys as needed. The
ability to associate user-defined code with timer events, run-time errors, and system shutdown increases
system reliability by allowing you to respond appropriately to problems like a random jump into system
code or a stack imbalance. If the tick is not called frequently enough, either the primary or secondary
watchdog will fire, and the system will take corrective action by shutting down and restarting your
program. As mentioned previously, this behavior is configurable.

Network Configuration and UDP Network Discovery
By default, RabbitSys enabled boards are configured with DHCP for automatic network configuration. As
long as your local area network provides a DHCP server, this feature works seamlessly.

RabbitSys also allows you to detect RabbitSys enabled devices on a local area network via UDP. This
UDP discovery allows you to query your network for all of the RabbitSys enabled devices present. The
interface is accessible via Dynamic C. Through the discovery mechanism, you can retrieve the board’s
network address and immediately start communicating with it.

The combination of DHCP and UDP Discovery give you immediate access to the board as soon as you
attach it to your network.

Dynamic DNS
Dynamic DNS allows the IP address of the RabbitSys-enabled target to change and still be accessible
using a static domain name. If your target board is acting as a web server, outside users do not have to
know the changed IP address in order to contact the server.

Remote Network Configuration
Remote network configuration gives you the ability to change the board’s setting in a reliable way. Using
the remote console, you configure your network settings. You then tell the board to test the new settings.
The board then waits for a remote connection to be made to the console and sends out an e-mail. If neither
of these verifying events occurs within 5 minutes, then the controller falls back to the previous network
settings.

Hardware Independent Drivers
RabbitSys enabled boards preload the drivers for core components such as Ethernet and parallel flash. This
feature protects you from the volatile component markets that manufacture such devices. Each driver
provides a clear, device independent interface for configuration and use. This interface allows the
underlying parts to be changed without having to redesign, much less recompile your program.

Interrupt Protection
By default, the system handles interrupts. However, your program can register an interrupt service routine
(ISR). The Rabbit microprocessor supports 4 interrupts levels. In user mode, your program can operate at
Confidential--Z-World Trade Secret 022-0097 Rev. A 8

priority 0, 1 or 2; only the system operates at priority 3. The hardware downgrades priority 3 in user mode
to priority 2 to ensure the system can gain control if needed.

When running in user mode, the Rabbit microprocessor will generate non-maskable interrupts for memory
access violations, stack violations, or when executing an intrusion detection instruction (IDET). These
interrupts help to ensure reliable operation of the system as a whole and are indications that the user
program is behaving poorly.

For interrupts that need rapid response, your program may request direct access by registering your own
interrupt service routine. RabbitSys only revokes direct access to the interrupt in the event that your
program fails. By registering a shutdown callback function, you ensure that the shutdown behavior leaves
the system in a stable state.

Hardware-Enabled Protection
Starting with the Rabbit 3000A, the Rabbit family of microprocessors share many advanced hardware
features, several of which provide the foundation for RabbitSys.

System/User Mode
RabbitSys makes full use of the the Rabbit microprocessor’s system/user mode of operation. Using this
two-tiered mode, RabbitSys provides data memory protection for both global and local data as well as
prevents accidental execution of system code. These features are provided by system memory block
protection (in blocks of 64K and 4K), system stack protection, and a system intrusion detection instruction
(IDET). Using these features, RabbitSys protects your program from critical errors that may occur in your
code by firing a system-level interrupt when such a violation occurs.

Memory Protection
The Rabbit microprocessor can inhibit writes to physical memory. Each 64K memory blocks can be
individually protected; two of these blocks can be subdivided and protected with a granularity of 4 KB.
When a write attempts to access protected memory, a write protection interrupt occurs.

Stack overflow and underflow are also detected by the Rabbit microprocessor. Low and high stack limits
can be set on 256-byte boundaries, which if crossed, could trigger a stack violation interrupt.

Secondary Watchdog
RabbitSys also uses the secondary watchdog interrupt for finer control of the program’s execution. As
opposed to forcing a hard reset of the system, the secondary watchdog gives RabbitSys the ability to
gracefully shutdown and restart your program, ensuring that the program is not left in a bad state due to a
primary watchdog timeout. When the secondary watchdog is fired, the event manager takes over and calls
shutdown code you associated with the shutdown event and then performs a software reset. If your
program is so severely corrupted that even its shutdown routines do not respond, the primary watchdog
forces a hard reset of your program.

Flexible I/O Protection
RabbitSys also protects the I/O devices needed to ensure connectivity without sacrificing execution speed.
RabbitSys achieves this by transferring control of all non-critical devices over to your program. This
feature maximizes that amount of on-board I/O that your program can access directly. The I/O API
provides simple, uniform system calls to access attached devices and peripherals that your program
controls.
Confidential--Z-World Trade Secret 022-0097 Rev. A 9

Processor resources are allocated in many different configurations, depending on the board type. Port
enable registers protect access to all parallel and serial ports. I/O register permissions are set by RabbitSys
to ensure availability to resources like Ethernet, DMA, and other high priority I/O. Your program can
request direct access to these protected resources.

RabbitSys provides three levels of protection for I/O registers and these permissions are configured when
the system ID block is programmed. The first level of protection allows your program to access a set of I/O
registers (e.g., serial port A registers) directly in code. This level is the most permissive and is the default
for devices not critical to RabbitSys operation. The second level of permission requires that access to the
device go through system calls, but direct access is forbidden. The second level allows RabbitSys to
protect I/O pins that are shared with system critical ones like Ethernet. The third level of permission does
not allow any access to the device and is necessary to protect system only registers for hardware like the
memory management unit.

For devices with level 1 or level 2 permission that generate interrupts, RabbitSys also allows your program
to register its own interrupt service routines. This feature gives you the ability to write time critical
handling code for real-time applications.

The following table summarizes these permission levels:

Table 1. RabbitSys Permission Levels

Device
Protection

System
Owned

User access
via syscall

User
Owned

Example

Level 1 Yes Yes Yes Serial Port B

Level 2 Yes Yes No Parallel Port E with Ethernet

Level 3 Yes No No MMU registers, Write protect registers
Confidential--Z-World Trade Secret 022-0097 Rev. A 10

Integration with Dynamic C
Dynamic C integrates seamlessly with RabbitSys, and includes a new mode of compilation that targets
user programs for RabbitSys. The Dynamic C IDE will provide functionality that will download a
RabbitSys binary to a target board. Once a target has RabbitSys installed, whether from the factory or
custom loaded by a user, Dynamic C will communicate directly with RabbitSys and use RabbitSys
functionality to download, execute, and debug user-level programs.

Summary
As the world becomes more connected, the market for Internet-enabled devices grows and creates new
opportunities and challenges. You can gain a competitive edge by using RabbitSys in your application. Not
only will productivity increase during development, which will decrease time to market, the assurance that
your system works reliably will let you rest at ease.
Confidential--Z-World Trade Secret 022-0097 Rev. A 11

Z-World, Inc.

2900 Spafford Street
Davis, California 95616-6800

USA

Telephone: (530) 757-3737
Fax: (530) 757-3792

www.zworld.com

Rabbit Semiconductor

2932 Spafford Street
Davis, California 95616-6800

USA

Telephone: (530) 757-8400
Fax: (530) 757-8402

www.rabbitsemiconductor.com

http://www.zworld.com
http://www.rabbitsemiconductor.com

	RabbitSys
	Fixing Reliability Problems
	The RabbitSys Attack Plan
	The RabbitSys Framework
	Your Application
	System Call Interface - SysCall
	The Event-Driven Kernel
	Remote Program Update
	Monitor
	Console
	HTTP Server
	Tasking Support
	The System Tick

	Network Configuration and UDP Network Discovery
	Dynamic DNS
	Remote Network Configuration
	Hardware Independent Drivers
	Interrupt Protection

	Hardware-Enabled Protection
	System/User Mode
	Memory Protection
	Secondary Watchdog
	Flexible I/O Protection

	Integration with Dynamic C
	Summary

