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Abstract— We present a compiler from a simple shared
variable language into CSP. This allows the application of
CSP-based tools such as FDR when analysing programs
written in the other language. The translation into CSP
makes it easy to be flexible about the semantics of exe-
cution, most particularly the amount of atomicity that is
enforced. We examine ways available to translate specifi-
cations we may wish to prove into the refinement checks
supported by FDR, in particular looking at ways of proving
liveness specifications under fairness assumptions. Various
examples are given, including mutual exclusion algorithms.
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I. Introduction

The world of concurrency now has some powerful
tools for the automated checking and verification of
programs. Naturally, each tool has its own input lan-
guage and tends to be optimised for the way that lan-
guage expresses problems. Obviously this tendency
towards narrowness makes the tools hard to compare
and restricts their application. FDR [2], [10], the tool
the author is most associated with, could be said to
illustrate this problem particularly clearly. Its input

language is Hoare’s CSP [4] (extended by many of
the capabilities of functional programming: the ma-
chine readable language is termed CSPM [2], [11], [14])
and its primary mode of operation is to check CSP
refinement. FDR has proved very successful in the
hands of people with a mastery of CSP, since that
notation often has the ability to express problems
remarkably succinctly and elegantly. Unfortunately,
however, that is still not a widely-possessed skill. In
order to make its power available to a wider audience,
there have been a number of efforts in which input in
other notations, for example UML-RT protocol and
capsule state diagrams [17], StateMate StateCharts
[3] and security protocols [7], has been processed for
input into CSP.

By and large these alternative inputs have been
from worlds where, as in CSP, processes largely com-
municate by passing messages along channels or at
least it is natural to model and judge programs in
ways that match the idea of CSP events. On the other
hand, some of the best-known work on model check-
ing (for example much of that in SPIN [5]) is done in
the world in which programs communicate via shared
variables instead.

The purpose of this paper is to report on a compiler
which automatically translates programs in a simple
shared variable language into CSP and allows them to
be checked on FDR. It should not be surprising that
this is possible in principle, since it has long been
known (see [4], for example) that one can model a
variable as a process parallel to the one that uses it.
The user process then reads from, or writes to, the
variable by CSP communication. There is no reason
why there cannot be several processes interacting in
this way with the same variable, thereby sharing it.
It might be thought (and this was certainly in the
author’s mind on first contemplating the idea) that
generating lots of extra parallel processes in this way
would be enormously inefficient. Doubtless that is
true in most practical models of parallel implementa-
tion, but it turns out to be far from true in the world
of FDR, at least provided that the number of vari-
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ables is not huge. An interesting comparison is pro-
vided by the “lazy spy” processes used in modelling
cryptographic protocols [12], [13], [11], where it turns
out to be far more efficient to use networks of many
(typically hundreds) of simple parallel processes than
a very complex sequential one.

The reason for this is that FDR is optimised to han-
dle networks built out of component processes with a
moderate number of states that can be pre-computed
before beginning to enumerate the state-space of the
complete system. In the case of imperative programs,
it is therefore actually helpful to separate the state
needed to model the variables into separate processes
from that required to model the control flow of the
overall program. This means that we have a fortu-
nate coincidence between the long-known method of
modelling imperative programs, and the pragmatics
of modelling things efficiently for FDR.

The compiler itself is written in CSPM , and de-
fines functions which, given a shared-variable pro-
gram, produce a parallel CSP program that imple-
ments it. The text of the expanded CSP program
is not produced explicitly: rather it exists in a vir-
tual way within the CSP compiler resident in FDR.
The compiler is called share2.csp and to use it you
include it in highly stylised .csp files which are
loaded into FDR but themselves contain little or noth-
ing that looks like CSP, only a representation of the
shared variable program and (usually) specification
information.

At present share2.csp is just a proof of concept,
with a very simple structure of data types. There
is certainly no attempt at present to rival either the
breadth or efficiency of the established model checkers
for this type of system such as SPIN. The work in
this paper should be viewed either as an interesting
exercise paving the way for a further developments, or
perhaps as a case study in coding using CSPM .

This paper is organised as follows: the next sec-
tion defines the input language and describes how pro-
grams in it are translated into CSP; we then address
the issue of specification and how the output from the
compiler can be customised to help in this process;
finally we discuss a few simple case studies that illus-
trate how the compiler has been used.

The compiler and a range of case studies are
available via http://web.comlab.ox.ac.uk/oucl/
research/areas/concurrency/tools.html. Quite
a lot of what follows explains the basics – and more
interesting details – of what the compiler does. A

reader interested in other details should look through
the text of the compiler.

Acknowledgements

I am grateful to Michael Goldsmith, David Walker
Ranko Lazić and Steve Brookes for discussions on this
work, and to Formal Systems for implementing the
special check discussed at the end of this paper.

This work was funded by grants from EPSRC and
US ONR.

II. The language and compiler

A program comprises a list of parallel processes and
an initialisation of variables. Each sequential compo-
nent is taken from the following syntax:

Cmd ::=
Skip | Cmd;Cmd | Iter(Cmd) |
While(BExpr,Cmd) |
if BExpr then Cmd else Cmd |
iv := IExpr | bv:= BExpr|
Sig(Signals) | ISig(ISignals,IExpr) |
Atomic(Cmd)

The constructs here that are not immediately obvi-
ous are Iter, which runs a piece of code over and
over for ever, Sig and ISig, which have the effect of
outputting signals to the outside world, and Atomic,
which ensures that whatever command is inside it is
executed atomically. All of these will be discussed
further later. BExpr and IExpr respectively represent
boolean and integer expressions, and bv/iv boolean
and integer variables. Integer expressions are formed
from constants, variables and the obvious operations
of addition, subtraction, multiplication, division and
remainder (mod). Boolean expressions are built from
constants, variables, Not, And and Or, and compar-
isons between integer expressions.

Separate initialisation of variables is needed because
of the way in which processes share variables: we want
to ensure that the initialisation takes effect before any
process reads a given variable. Two of the parame-
ters given to the compiler are default initial values for
boolean and integer variables respectively; a variable
therefore has to be explicitly initialised if we want to
give it a different value. The initialisation component
of a program therefore provides lists of the boolean
and integer variables that are non-standard, together
with their values.

PROGRESS
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Since CSPM has no string-handling capability, it
cannot be given long pieces of text representing a pro-
gram and be expected to parse them. Therefore the
CSPM compiler only gets going at the point where the
program has been converted into a member of a data
type whose construction reflects the structure of our
language. Therefore we will assume that our starting
point is a CSPM script in which the program is defined
as a member of such a type. It should be straightfor-
ward to create a parser which inputs programs in a
more conventional format and outputs scripts of this
form.

The following are the data types of commands (i.e.,
sequential program threads), and integer and boolean
expressions on which the compiler operates. Obvi-
ously, Cmd is just a slight adaptation of the syntax at
the start of this section, except that both binary and
list-based sequencing commands are present to give
the user some flexibility.

datatype Cmd =
Skip | Sq.(Cmd,Cmd) | SQ.Seq(Cmd) |
Iter.Cmd | While.(BExpr,Cmd) |
Cond.(BExpr,Cmd,Cmd) |
Iassign.(ivnames,IExpr) |
Bassign.(bvnames,BExpr)|
Sig.Signals | ISig.(ISignals,IExpr) |
Atomic.Cmd

datatype IExpr =
IVar.ivnames | Const.{MinI..MaxI} |
Plus.IExpr.IExpr |
Minus.IExpr.IExpr | Times.IExpr.IExpr |
Div.IExpr.IExpr | Mod.IExpr.IExpr

datatype BExpr =
BVar.bvnames | True | False |
Not.BExpr | And.BExpr.BExpr |
Or.BExpr.BExpr | Eq.IExpr.IExpr |
Gt.IExpr.IExpr | Ge.IExpr.IExpr

The values of the integer type are limited to being
between two user-defined limits. In practice one usu-
ally cannot make these limits very far apart – the de-
fault is {0..20} – because of the state explosion prob-
lem. These same limits are applied by the compiler
(both at compile and run-time) to all integer values
that arise during computations. This is an issue we
will return to later.

The types of boolean and integer variables, namely
bvnames and ivnames contain two sorts of object: ba-
sic variables BV.i and IV.i, and components of the

arrays BA.i and IA.i. These components BA.i.j and
IA.i.j are members of the sets bvnames and ivnames.
At present, the main purpose of arrays is to provide
variables for each of a list of processes indexed by some
parameter. The value of each array index used is de-
terminable at compile-time when the system is laid
out. It would not be a difficult step to extend this to
arrays where the indices were computed at run-time.

The first stage the compiler goes through is
analysing all the thread processes to see what vari-
ables they use, so that a separate process can be cre-
ated to hold the value of each. Here, each accessed
component of an array is treated as a separate vari-
able and gets a separate process. Note that if arrays
were to be extended to allow indices to be calculated
at run-time, then a value-holding process would have
to be created for each array component independently
of whether it was actually going to be used.

Variables can be used by programs in one of three
ways: they can be written to, they can be read from as
part of the calculation of an expression that is more
complex than just the variable, or they can form a
value-expression in their own right. We distinguish
the second and third of these because of the way we
handle expression evaluation: instead of this being
done by the thread process itself, any expression that
is more complex than either a constant expression or
an unaltered variable is delegated to a special par-
allel process to evaluate. This has the advantage of
separation of concerns, greatly simplifying the CSP
code (and hence, quite probably, the compile time)
of the thread processes. Therefore the analysis phase
identifies all the non-trivial expressions in the thread
programs so that a calculator process can be created
for each. No attempt is made at present to identify re-
used expressions. While this would certainly be harm-
less in the case of expressions within a single thread
process, there would be the potential for subtle se-
mantic effects if a calculator process for an expression
shared by two threads were shared.

A calculator process simply collects all the variable
values it requires after being prompted by a thread
process to perform its task, and then returns the ap-
propriate computed value.

Having performed this analysis, the compiler then
sets up a network of CSP processes to run the pro-
gram: one for each thread process, one for each
variable (naturally, potentially shared between the
threads) and one for each of the expressions it has
identified. There are two main options on how the
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network is structured: for simplicity here we describe
the original version, and will later discuss the amend-
ment (which provides for a different model of expres-
sion evaluation). Except for the mechanisms that may
be needed to implement atomicity, which we will dis-
cuss later, the thread processes do not communicate
directly with each other, but rather with the calcula-
tor and variable processes. The CSP structure of the
resulting process in the absence of any Atomic con-
structs is:

((Threads [|{|ieval,beval,ireq,breq|}|] Exprs)
[|{|iveval,ivwrite,bveval,bvwrite |}|] Vars)

where each of Threads, Exprs and Vars is the inter-
leaving (|||) of all the processes of the given type
identified during the analysis phase. The channels
synchronised on above are
• ireq and breq are used to trigger expression calcu-
lators (respectively integer and boolean) to do their
tasks. These channels are parameterised by indices
automatically generated at the analysis phase.
• ieval and beval respectively return the values cal-
culated by the expression calculations: they are pa-
rameterised by the same index and the value.
• iveval, ivwrite, bveval, bvwrite allow reads and
writes from variables. Note that both thread and
expression processes are allowed (by the above con-
struct) to communicate with the variables using these,
though the expression calculations only actually re-
quire reads, of course.

With the exception of the mechanisms to support
atomicity, the coding of the various constituent pro-
cesses is not very complex. For example, an integer
variable process (name x and value v) is just

IVAR(x,v) = iveval.x!v -> IVAR(x,v)
[] ivwrite.x?w -> IVAR(x,w)

An expression calculator works by first inputting the
variable values it requires (noting that a boolean ex-
pression – the sort shown – can contain both integer
and boolean variables), substituting the values for the
variable names, outputting the evaluated expression
when all this is done, and then beginning again. In
the following definition the parameter n is the auto-
matically assigned index for the expression; e is the
expression itself.

BExprProc(n,e) =
(breq.n -> instantiateb(e,n,varsb(e)));

BExprProc(n,e)

instantiateb(e,n,(<>,<>)) =
let v=evaluateb(e) within
if bok(v) then beval.n.bval(v) -> SKIP

else outofrange -> STOP

instantiateb(e,n,(<x>^xs,ys)) =
bveval.x?v ->
instantiateb(subsb(x,v,e),n,(xs,ys))

instantiateb(e,n,(<>,<y>^ys)) =
iveval.y?v ->
instantiateb(subsbi(y,v,e),n,(<>,ys))

Any expression that generates an out-of-range inte-
ger value halts its evaluation with the error event
outofrange.

The analysis phase also identifies whether we need
to compile our processes with support for atomic ex-
ecution, and produces a slightly modified syntax for
the thread processes. The main modifications are to
analyse each value that is required by the program to
see if it is a constant, an unaltered variable, or needs
to be calculated, and produce syntactic variants ac-
cordingly (in the case of a calculation, the expression
itself is replaced by the name of the process to which
evaluation is delegated). So, for example, we get two
clauses of the function MainProc which maps struc-
tures in the modified syntax to their CSP implemen-
tations. One is for for while loops in which the guard
is a variable:

MainProc(WhileV_.(b,p)) =
(bveval.b?x ->
if x then
(MainProc(p);MainProc(WhileV_.(b,p)))

else SKIP)

and in which it is an expression index b that has to
be calculated:

MainProc(WhileE_.(b,p)) =
(breq.b -> beval.b?x ->
if x then

(MainProc(p);
MainProc(WhileE_.(b,p)))

else SKIP)

The infinite iteration construct Iter.P is simpler
because no evaluation of the boolean is required:

MainProc(Iter_.p) = MainProc(p);
MainProc(Iter_.p)

PROGRESS
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and any while loop that happens to have a constant
boolean guard can be compiled to either this or to
SKIP!

We have included signal events in our syntax to
aid in the specification and understanding of the pro-
grams we write. They are intended purely as com-
munications from the thread processes to the external
observers of the system: no mechanism is provided for
one thread to listen to another one’s signals.

Two sorts of signals are provided in the syntax: one
for the execution of an unparameterised action, which
is trivially implemented in CSP:

MainProc(Sig_.x) = x -> SKIP

The other does the same, but allows for the output
of an integer variable (which has the same options for
how to work it out: constant, variable or calculated
expression). Since a signal naturally parameterised by
a boolean can be replaced by a pair of signals, in this
prototype these were not supported explicitly.

With the exception of Atomic.P, a reader familiar
with CSP should now find it easy to follow the rest
of the clauses of the function MainProc, which imple-
ments the thread processes recursively over syntax.

Example II.1 Mutual exclusion The initial
examples experimented with on the compiler were mu-
tual exclusion algorithms: ones designed to ensure
that, of several processes that might potentially want
to execute some critical section, no more than one
does at a time. A collection of these, all presented in
an input language similar to ours and hand-translated
into CCS, can be found in a paper by Walker [16].

One of these, Hyman’s algorithm [6], does not pre-
serve mutual exclusion. It involves two processes in-
dexed 1 and 2 which use boolean variables b[1] and
b[2] and an integer variable t ranging over {1, 2}. If
we add the CSP signals css.i and cse.i respectively
to denote the beginning and end of process i’s critical
section, then it can be written (i being “this” process
and j=3-i being the other one):

while true do
{b[i] := true;
while t!=i do
{while b[j] do skip;
t := i};
css.i; cse.i;
b[i] := false}

In the language of the compiler this is

b = BVar.BA.1
t = IVar.I.1

P(i) = let
j = 3-i

within
Iter.(
SQ.<bassign(b.i,True),

While.(Not.(Eq.t.Const.i),
Sq.(While.(b.j,Skip),

iassign(t,Const.i))),
Sig.(css.i),
Sig.(cse.i),
bassign(b.i,False)>)

Note that the declarative nature of the underlying
CSPM language (of which this last excerpt is an ex-
ample) allows us to give one of the boolean arrays and
one of the integer variables the names from the ear-
lier program fragment. The functions bassign and
iassign are shorthand for operations that perform
boolean and integer assignment on objects like b.1
and t. It may look strange to see Const.i, but of
course by the time i is instantiated when the network
is constructed it really is a constant (1 or 2).

If the compiler is run on the processes <P(1),P(2)>
with the b.i initialised to false and t to 1, we get
a network of seven processes: two threads, three vari-
ables and two expression calculators (for the guards
Not.(Eq.t.Const.i), i ∈ {1, 2}). We can specify
that the mutual exclusion property is achieved by per-
forming a trace check against the CSP specification

SPEC = css?i -> cse!i -> SPEC

after hiding all of the non-signal events the processes
perform. This check fails and generates the following
trace (after the hidden events are restored)

<bvwrite.BA.1.2.true,
breq.BE.1, iveval.I.1.1, beval.BE.1.true,
bveval.BA.1.1.false,
bvwrite.BA.1.1.true,
breq.BE.2, iveval.I.1.1, beval.BE.2.false,
ivwrite.I.1.2,
breq.BE.1, iveval.I.1.2, beval.BE.1.false,
css.1, css.2>

This shows that if P(2) starts off, setting b[2] to true
and finding that its boolean guard t!=2 (confusingly
numbered boolean expression 1 by the compiler) is
true, it enters its inner loop whose guard (b[1]) is
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false, so the loop terminates. Before P(2) does any-
thing else, P(1) sets b[1] to true and is allowed to
terminate its outer while loop immediately because t
is 1 initially. P(1) is already in the position to begin
its critical section, as is P(2) after it has set t to 2 and
discovered that its outer while loop now terminates.
Both processes can now enter their critical sections,
which violates the specification.

There is, of course, nothing original in this flaw in
the algorithm: it is presented simply as an illustration
of how the debugging output from FDR allows us to
understand what has happened in the original code.

In future developments, it ought to be possible (as
has now been done with Casper [7]) not only to input
programs into the compiler in a more natural syntax,
but also to have a post-processor for debugger out-
put that translates traces like the above into things
that more obviously relate to actions of the original
programs.

A. Atomicity

Where several programs are operating on the same
set of variables, there is obviously a considerable po-
tential for them to interfere with each others’ actions.
This is often desirable, since it provides the mecha-
nism by which processes can talk to each other. On
the other hand, it is easy to be surprised by the sort
of consequences this interference can have. Consider,
for example the consequences of running the following
parallel programs:
• x := y in parallel with y := x,
• z := x+y in parallel with x := x+1;y:=y-1.
Depending on how the operations of evaluating the
expressions on the right and the writing-back of the
results take place, the first can have three results: x
and y both taking the initial value of x; both taking
the initial value of y, or having them interchanged.
Executing the second pair can have the paradoxical
result that z ends up with a value less than the sum of
the initial values of x and y, even though 1 certainly
gets added to x before it gets taken from y. This
happens when the first program reads the value of x
before the second has done anything, and the value of
y after it has finished.

In order to avoid such surprises, it is sometimes nec-
essary to specify that certain parts of a thread pro-
cess’s behaviour are atomic, namely that they take
place as though they were single actions. Any atomic
part of a program will never have effects from other

threads appearing part way through, and neither will
any other thread see any of the intermediate states it
might create. Thus if we declare the program frag-
ment

x := x+1; x := x+1

to be atomic, then it is equivalent in its behaviour to
x := x+2, whereas, run in parallel with

y := x; x := 3

a non-atomic version could behave very differently.
In practical terms, atomicity comes at a cost, since

it requires interlocks between the thread executions,
which might well slow a program down, and may well
lead to more complex implementation strategies.

The compiler has two different strategies for sup-
porting atomic execution: there is a boolean param-
eter which will cause all expression evaluations to be
atomic (i.e., no write to a variable that is read by an
expression calculator happens during the evaluation),
and there is the Atomic.P construct in the command
syntax. The first of these is easy to implement as part
of the CSP constructed by the compiler: the network
of threads, expressions and variables is augmented by
a new process

AtomicExps = ivwrite?_ -> AtomicExps
[] bvwrite?_ -> AtomicExps
[] breq?x -> beval.x?_ -> AtomicExps
[] ireq?x -> ieval.x?_ -> AtomicExps
[] start_atom?_ -> AtomicExps
[] end_atom?_ -> AtomicExps

which synchronises with the network on the events it
uses, thereby preventing writes to variables between
an expression evaluation starting and finishing. The
last two lines will be explained shortly.

Whenever there is an Atomic.P construct anywhere
in the program, each thread process has a regulator
process added to it (running in parallel). This enables
us to prevent any more than one thread being in an
Atomic at once1, and prevents the thread process it
governs doing anything of significance while another
process is in an atomic phase. Note that this is a
rather stronger statement than that atomic phases are
critical sections in the language of mutual exclusion.
In the following definition of the regulator process,
rest is an action that is subsequently renamed to all

1Allowing this would not only be somewhat counter-intuitive,
but it can also introduce deadlock.
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reads and writes that this thread might do, plus all
the ireq and breq commands to start expression cal-
culations. The parameter d is the maximum depth
of nested Atomic constructs that appear in the pro-
gram2.

The following definition is of the regulator for
thread 0. The rest are generated by renaming in the
compiler.

AtReg(0,np,d) =
rest -> AtReg(0,np,d)

[] start_atom?i:{1..np-1} -> AtReg’(i,np,d,1)
[] start_atom.0 -> AtReg(0,np,d)
[] end_atom.0 -> AtReg(0,np,d)

AtReg’(i,np,d,j) =
j < d & start_atom.i -> AtReg’(i,np,d,j+1)

[] j > 1 & end_atom.i -> AtReg’(i,np,d,j-1)
[] j == 1 & end_atom.i -> AtReg(0,np,d)

To mesh with this, the corresponding clause in the
definition of the thread process is as follows:

MainProc(Atomic_.p) =
start_at -> MainProc(p);end_at -> SKIP

In thread i, these two actions are respectively renamed
to start_atom.i and end_atom.i.

When these processes are present, the network is
re-structured so that each thread is combined with all
the expression calculators it uses before the above reg-
ulator process is added. That is because the regulator
process needs to prevent these reading variables when
another process is in an atomic phase.

It will always be true that making sections of a pro-
gram atomic will create a refinement, in the sense that
(aside, obviously, from the special actions which im-
plement atomicity), there is no sequence of actions
possible after making a section atomic that is impos-
sible without.

Care has been needed to prevent the two different
forms of atomicity interfering with each other to cause
deadlock. That is why the process AtomicExps stops
processes entering an Atomic section while an expres-
sion calculation is under way, and why it is important
that while one process is in an atomic section, no other

2There is no point in nesting them from a programming point
of view, since the outer one will completely subsume all those
inside it. Since, however, there is no obvious reason why nesting
should be forbidden, we have to count how many atomic sections
are entered and left.

must be allowed to request an expression calculation.
Without these things, deadlock can easily occur.

From a practical point of view, one would hope to
keep the use of Atomic limited, and have it used on
only small sections of programs (assignments or small
groups of assignments, for example).

B. Alternative model of expression evaluation

The model of evaluation above is necessary when
we do not want expression evaluation to be atomic,
since we then have to see in feedback how the multi-
ple reads3 of a particular one interleave with writes.
However, in the case where it is atomic, the sequence
of request, multiple reads and a reporting-back of the
result is arguably at too low a level. Certainly the
traces reported by FDR are substantially increased in
length, and the number of states found in the main
check increased, by this detail.

To allow the user to avoid these problems, an alter-
native compiler is provided in which each expression
calculator holds the value of each relevant variable so
that it is constantly in a position to report the value
of the expression. A calculator process thus listens to
all writes to these variables. On the other hand it no
longer has to instigate reads of the variables, and since
it is always up-to-date the initial request messages are
no longer needed. The act of a thread process evaluat-
ing an expression thus becomes a single action rather
than two plus the number of variables.

Obviously this means the plumbing of the overall
network is now different, since the calculator processes
now have to synchronise on appropriate write actions
and other connections are no longer needed:

Exprs =
(|| (n,e):IEs @ [IEAlpha(n,e)]

IExprProc(n,e,vs(e)))
[AllIEAlphas||AllBEAlphas]
(|| (n,e):BEs @ [BEAlpha(n,e)]

BExprProc(n,e,bvs(e)))

The new structure of how the expression calculators
are set up is above: each has its own alphabet and

3In fact, the definition given in the compiler is arguably not
elaborate enough to deal with this problem in full generality,
since the compiler chooses a specific order in which the vari-
ous reads happen, and will therefore only detect problems that
appear when this order is followed. If an implementation were
to perform the reads in some other order, then it might well
uncover a problem that checking the output of the compiler did
not. The solution to this, namely exploring all possible orders of
reading the variables for each expression, has not been followed
because it is very dangerous in terms of state explosion.
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the final parameters are mappings from the relevant
variables to their initial values.

The advantages of the new model are as anticipated:
namely fewer states and shorter traces. Aside from
losing the flexibility over atomic expressions, the main
disadvantage is a usually more complex compilation
phase to the FDR checks.

The current intention is to retain both the original
process model and this new one as alternatives.

III. Specification

The conventional way of specifying a system in the
context of FDR is to design a specification process
which it must refine, in the sense of traces, stable
failures, or failures-divergences.

The fact that our language allows for the commu-
nication of signal events means that we can use the
same general model. This was done successfully in
the case of the mutual exclusion example given above,
but there are factors which mean that we need to be
careful before thinking of it as the solution.
• While for simple specifications such as mutual ex-
clusion or the avoidance of some error event, the
construction of a simple trace specification to check
should present no problem to most users, it goes
against the spirit of what we are doing to expect
users to construct anything more than extremely sim-
ple CSP specifications.
• Given the nature of the language we are presenting
systems in, it is quite likely that users will wish to
formulate specifications in terms of the variables of
the programs.
• The different model of computation means that
ideas such as refusals and divergences need to be re-
thought, rather than have the user simply apply the
CSP understanding of these things.
• It is much more likely that we will want to make
fairness assumptions about process execution in this
new language than in CSP.

Let us consider the statement made above about
failures and divergences. The roles of failures in CSP
is to detect points in a process’s history where, possi-
bly because of internal synchronisation needs within
the process, it is unable to accept some set of events
that is offered to it. Now processes in our new lan-
guage do not really interact with their environment:
all they do is go through the steps of a computation
and perhaps emit signal events that we would expect
the environment to observe rather than influence. Nor
is there any way in which a process can get stalled (in

the sense that it simply sits and does nothing) wait-
ing for another one. Each thread process, unless it is
held up by another one doing something atomic, can
always perform its next action until is has terminated.
All of that means that the concept of a refusal set is
of very questionable use in specifying processes in our
language.

In usual CSP analyses, divergence is considered
deadly. In contemplating parallel systems built in our
new language, with all the “internal” (i.e., non-signal)
events hidden, one could almost say that it would be
unusual to find one that could not diverge! So why
this contrast? It is actually the flip side of the discus-
sion in the preceding paragraph: because our language
provides no synchronisation mechanism between par-
allel threads, it is common for processes to enter a
waiting loop rather like the one we see in the mutual
exclusion program above:

while b[j] do skip

simply marks time until the boolean b[j] is unset by
another thread. Obviously, if the process with this
loop got eternally scheduled and the other one never
was, this would certainly lead to divergence. At least,
FDR would certainly find a divergence, though we
might well want to assume that in reality our system
is implemented fairly, meaning that every thread pro-
cess that will always eventually get to perform an ac-
tion, and in many cases that sort of assumption would
eliminate this sort of divergence. (To a large extent
it could be said that a divergence caused by waiting
loops in a fair implementation is the way that systems
behave that would deadlock if written in CSP: imag-
ine the five dining philosophers, each in a loop waiting
for a fork to be put down.)

Thus divergence checking can, in appropriate cir-
cumstances, tell us useful things about processes writ-
ten in our language, but we have to be careful to un-
derstand just what a given check is telling us. We will
return to this subject later when we come to discuss
fairness.

A. Safety checks

In many formalisms supporting specification, it is
natural to discriminate between safety and liveness
conditions. The former say (in some sense appropri-
ate to the model) that the target program never takes
an action which is either wrong in itself (in models
where we judge processes by their actions) or which
leads to a state that is demonstrably incorrect (where
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they are judged by state). Thus a program that never
does anything at all will satisfy every safety condition
in most formalisms. Liveness conditions are ones that
specify that progress is made. For example, in the
world of mutual exclusion, the statement that there
are never two processes simultaneously in a critical
section is a safety condition. On the other hand, say-
ing that whenever a process wants to enter a critical
section then it eventually does so is a liveness condi-
tion.

If using FDR, the only way to judge a safety condi-
tion is via a trace check, but this might be as simple
as the claim that the event error never occurs. If
there is any claim you wish to make about the values
of the variables of a program which can be translated
into a boolean expression b in the language syntax,
then adding

Atomic.Cond(b,Skip,Sig.error)

as an extra parallel thread will throw up the error
event just if the values of the variables of the program
can ever reach a state in which b is false. (Since FDR
checks all execution paths, the fact that in any single
one b is checked only once does not invalidate this:
if b ever were false then there is an execution of the
augmented program in which it is evaluated at pre-
cisely that moment.) We might term this a monitor
process since it does not change the state, but merely
watches.

For example, we could replace the current signals
in the mutual exclusion example by each process hav-
ing a boolean variable, which it sets when it enters a
critical section and unsets when it leaves. We would
the simply perform the above check with the assertion
that there is never more than one such boolean true.

If the condition is one which is only supposed to be
true in certain control states of the thread processes,
then something has to be done so that the assertion
knows when it is meant to hold. If it only depends on
the state of a single process, then the simplest thing
to do may well just be to insert an assertion into that
point of the relevant thread. Otherwise it may be nec-
essary to add variables to the thread processes simply
for the purpose of determining when an assertion is
supposed to hold. Actually, the new variables intro-
duced for mutual exclusion above can be regarded as
falling into this category: obviously they both signal
particular control states of the programs they belong
to, and we could say that the assertion False has
to be true whenever both programs are in a relevant

state. This may seem a little contorted, but there are
more natural applications of this idea. For example, if
the processes represent bank accounts and the overall
program contains a mechanism for transferring money
between these, then we may want to specify that the
total amount of money in the accounts always equals
the initial quantity, provided that no transaction is
currently active. Thus we might have, for each ac-
count, a quiescent variable, and ensure that they
sum up correctly when these are all true.

A thread process that is monitoring the state of a
system and implementing a safety check can evolve,
meaning that the condition it demands of the system
changes with time. Two possibilities here are:
• The monitor might read one or more variables at one
point in the program and use these values in making
a claim at a later time. For example, we could specify
that the variable x is non-decreasing with the monitor

x1 := x;
Atomic.(if x1 > x then Sig.error else Skip)

where x1 is a variable used only for the monitor.
• We could say that condition b1 must be true for all
times up to a time when b2 becomes forever true as
follows:

Atomic.(if b1 then Abort else Skip);
Atomic.(if b2 then Skip else Sig.error)

where Abort is a command like while true do Skip
which never terminates or does anything interesting.
The point here is that if b1 were at one moment false
and at that same moment or a later one b2 failed,
then the above would signal error. The check suc-
ceeding therefore means that b2 must be true at the
first moment (if any) when b1 fails, and for ever after.

If one wanted to make an assertion about the fi-
nal state of a program (that terminates, which not all
sensible programs do in this world), you need a mon-
itor process that knows when all the other threads
have finished. There are two real options here: in-
stead of running the monitor in parallel with the
rest of the the threads it could be run in sequence
(though still in parallel with the variable processes).
That causes the immediate problem that the com-
piler does not presently support such structures, so
it would have to be modified. Also, it would then
be problematic linking the final assertion to things
that may have been observed earlier about the sys-
tem. The other option, and the one we recommend
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for now at least, is to use a new variable to determine
when all the ordinary threads are finished: if running
is a new variable initialised to the number of ordinary
threads, and each thread P is replaced by the process
P;Atomic.(running := running - 1) then the par-
allel monitor

Atomic.(if (not b) and (running = 0)
then Sig.error else Skip)

will discover if the system can ever terminate without
satisfying b.

In conclusion, to specify a safety condition there are
two basic approaches available: the first is to insert
signal events and use a traditional CSP trace speci-
fication process with a trace refinement check. The
other is to insert a monitor process which keeps an
eye on the developments (specifically, the values of
the shared variables) within the program, bearing in
mind that we may have to add special variables into
the threads to help it. All one then does is to get the
monitor process to raise a flag via an error event if the
specification is violated, and test for this via a simple
traces check (along with other errors like integer over-
flow that may be possible).

B. Counting computation steps

In specification languages like Linear Temporal
Logic (LTL) used as a vehicle for defining properties
of this general category of program, there is often a
concept of computation steps. In other words, a spec-
ification will often define relationships between one
state, and what becomes of it after the next action.
In the same sense that proponents of true concurrency
worry about whether linearised transition system se-
mantics for process algebras are realistic, the author
does not find the concept of “next state” an especially
attractive one in a context where there are a number
of unsynchronised parallel processes all running to-
gether. Nevertheless it can be useful to get a handle
on the number of computation steps that individual
thread processes and the entire system have made,
and this handle or a variation upon it ought to be
able to be used for the type of specification referred
to above. It is certainly vital for getting anywhere
with the idea of liveness specification, as we shall find
below.

In most presentations of LTL, the judgement of
what a computation step is is made via some oper-
ational semantics. While our mapping into CSP cer-
tainly does provide an operational semantics for pro-

grams in our language, it could reasonably be argued
that the steps this implies (particularly in the ver-
sion in which expression evaluation gets divided into
several actions) are often too fine-grained. If we are
dividing a behaviour up into steps, it seems logical to
adopt the following pair of principles:
• Every distinct state (i.e., mapping of variables to
values), should appear: no step must not be so large
that such a state should be missed.
• If the program goes on running for ever, even with-
out changing the state, this should show up as in-
finitely many steps.
The first of these two principles is safeguarded if we
associate a computation step with the completion of
each assignment, for it is only assignments that change
the state. To achieve the second we need to associate
a step with enough other sorts of commands that no
program can go on for ever without executing an in-
finity of them. To do this it is sufficient to associate
a step with each signal and each execution of Skip.

In order to be able to make use of these execution
steps in specifications, we need to ensure they are visi-
ble, and in addition (especially when considering fair-
ness) to know which thread process has performed a
given action. There is therefore a modified version of
the compiler which inserts the extra action step.n on
each Skip performed by thread process n, and adds a
tag to the write and signal actions so we can see from
the outside who has performed each action.

This allows a number of interesting types of specifi-
cations to be checked which relate to what must – or
what must not – have occurred within the program af-
ter a given pattern of computation steps. One of these
is a quantitative approach to fairness that is discussed
in the next section.

C. Liveness

We might divide liveness specifications up into two
sorts: ones where, if satisfied, we know this at some
finite point in the process’s execution, and ones which
can seemingly only be judged in terms of infinite be-
haviours. An example of the first sort would be “if
process A wishes to enter a critical section, then even-
tually it does so”. An example of the second would
be “if process A sends infinitely many messages to B,
then infinitely many get through”. Sometimes ones
of the second sort are equivalent to ones of the first:
if you think about it, the second statement above
is equivalent to the statement “if, starting from any
state, A sends an unending sequence of messages to
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B, then eventually at least one of them will be deliv-
ered”. For if A puts infinitely many in, then by some
finite point one will have been delivered, and starting
from that point A will still put an infinite number in;
so a second one will emerge, and so on.

It only really makes sense to consider ones that
are of the first sort, since otherwise there is not re-
ally much hope that we will be able to resolve them
finitely. Indeed, this is a very common assumption to
make: many researchers take as their basic hypothe-
sis that a safety property is one that is a closed set
in a topological sense, and that a liveness one is an
open set. In common parlance this really means that
if some behaviour of a process fails a safety property
then this will show up in an arbitrary finite time, and
that if a given behaviour of it satisfies a liveness prop-
erty then that too will show up in a finite time. Un-
fortunately there is an asymmetry here that makes
liveness conditions harder. The problem is that for
a whole process to fail a safety condition it is suffi-
cient that a single behaviour does, so the failure of the
whole process shows up finitely. On the other hand,
for it to succeed in a liveness condition, the lengths
that we have to look at its probably infinite range of
behaviours to judge this may well not be bounded.

In a CSP context, the idea of liveness really breaks
up into two parts: the finitary concept of a failure –
if the current trace is s and the failure (s,X) does
not belong to the process, then we can guarantee that
something will be accepted if the process is offered
X – and the infinitary possibilities of divergences and
infinite traces. Failures are not that relevant to the
models our compiler builds, so we we concentrate on
the latter. By and large we can expect to have to
show either that there are no infinite traces for a given
program (i.e., it is guaranteed to terminate), or that
all infinite traces show some measure of progress which
must appear finitely.

In either case this can usually be reduced conve-
niently to the absence of divergence: if hiding either
all events, or all events other than some which (ei-
ther naturally, or because they have been inserted for
this purpose) represent progress creates no divergence,
then the respective properties above are satisfied.

These ideas apply to the world of the compiler,
though it is worth noting that in order to prove that
some condition b on the state is eventually satisfied in
any infinite behaviour it is not sensible – without ex-
tra machinery that we will shortly introduce – to try
to prove that the original program with the addition

of the extra thread

While.(Not.b,Skip);Sig.Success

creates a system which, hiding everything prior to
Success, is divergence-free. There are two related
reasons for this:

• This monitor process might effectively exclude the
rest of the program, preventing it making the progress
we are analysing for, or
• the monitor might never get to perform the vital
test once b is established by the rest of the program.

In both these cases, the strategy became the victim
of unfair executions: one or more of a set of parallel
threads not getting infinitely many turns to do some-
thing in an infinite time.

Very often, however, we have to rely on fairness not
so much for detecting progress as for achieving it in the
first place. This might be because of the phenomenon
of processes obviously stuck in a waiting loop as dis-
cussed earlier, or for more subtle reasons. The point
perhaps is, that if someone writes a program in a par-
allel language in which no non-terminated process (at
least superficially) is ever unable to proceed, then it
is not unreasonable for him or her to assume that no
process is ever going to be delayed indefinitely by the
implementation. Put another way, it seems reasonable
to discard all infinite behaviours in which one of the
thread processes only has a finite number of actions
even though it never terminates.

In the context of the style of liveness specification
discussed above, it means we should only consider a
given divergence to be an error if it is fair. There
are two approaches we can take to this, one of which
involves adapting FDR itself.

Within the standard capabilities of FDR it is possi-
ble to attack this sort of fairness in a way which con-
veys extra quantitative information but which adds
significantly to the computational complexity of a
check. For simplicity assume that we are trying
to prove that, from some defined point in a pro-
gram’s execution, an event signalling progress (e.g.,
the Success event in the ‘eventually b monitor) al-
ways occurs in a finite time on the assumption of fair-
ness. If you believe that some finitary pattern of turns
which is implied by fairness guarantees this event,
then the check of your belief is both finite and proves
what is required. The best way to express these pat-
terns is probably in terms of the step events discussed
in the last section.
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In the case of two thread processes, we only need
consider a single sort of pattern, namely that the se-
quence of step.i actions has an alternating subse-
quence of a given length. (This means that even
though the individual processes may get many consec-
utive turns, they alternate at least the stated number
of times.)

Testing if a given number of alternations in this
manner imply the progress event is straightforward to
carry out on FDR: all one has to do is put a process
in parallel that detects when the alternations have oc-
curred and says so by means of an event. If it is impos-
sible for this event to occur without the progress event
first, then fairness implies our liveness specification. If
it fails this is for one of two reasons, either there is a
fair execution that never exhibits the progress event,
or we simply have not tried enough alternations.

With more processes executing fairly the analogous
test is to insist on a subsequence of steps that occur in
some fixed rotating order. With more than two there
is a choice of rotating order. While any order will, for
a sufficiently large number of turns, prove any progress
result of the form outlined above, the choice of order
can have a large influence on the number of turns
required to force progress and hence the complexity
of the check.

It is similarly possible to do finitary checks for fair
divergences: for example, is there a fair divergence in
which there are never more than N actions of other
processes between consecutive actions of any individ-
ual one? For a finite-state process either one of these
checks will fail for sufficiently large N or one of the
earlier sort will succeed. The problem is that as we
progress through either of these families of checks the
state space will get larger and it may well not be possi-
ble to resolve the issue for a system whose stand-alone
state space is comparatively moderate.

In reality it may well be useful to quantify the way
in which fairness implies progress (as set out in the
preceding paragraphs) if this is tractable, but we re-
ally need a more efficient way of resolving whether or
not fairness does imply progress.

D. Adapting FDR

Any liveness check of the sort discussed in the previ-
ous section can be reduced – by appropriate manipu-
lations of the CSP – into a check for a fair divergence:
an infinite sequence of computation steps which in-
clude an infinite number from each thread process. All
that is required is to hide those actions which follow

the point from which the progress event must even-
tually occur, but not that event itself. The liveness
check then succeeds if there can be no fair divergence
preceding the progress event.

There is no way of formulating this as a single check
within the standard functions of FDR. One can test
for unfair divergences, because all one has to do is look
for divergence when the actions of a proper subset of
the threads is hidden, but that tells one little of value.

The solution is to tell FDR the events corresponding
to the different threads, and then only report diver-
gences which include at least one from each of these
sets in the cycle. To perform this check, FDR has been
adapted so that it calculates the strongly connected
components (SCCs) of the graphs of process states un-
der ordinary τ actions alone and these together with
the actions of the various thread processes that would
comprise a fair divergence. (An SCC is a maximal set
of nodes that are mutually reachable in the directed
graph: these can be computed by a variety of efficient
algorithms related to depth-first search.)

A fair divergence is possible if and only if either
there is any non-trivial SCC in the first graph (one in
which either there there are at least two nodes or a
single node with a τ to itself) or an SCC F in the sec-
ond graph in which, for each of the sets A of actions,
there is an edge labelled by a member of A between
nodes of F .

Obviously the first of of these can be decided by
the standard divergence check. The second can be
checked using the new form of FDR assertion (spe-
cially implemented for this purpose: I am grateful
to Formal Systems for implementing this and the US
ONR for funding it):

assert P :[fair divergence free]: S

where S is a set of actions such that a fair divergence
must have one of each. The S actions are not hidden
within the definition of P, so what this really deter-
mines is whether there is a fair divergence if S were
to be hidden. (All the actions of a given thread are
renamed to a single member of S before this check is
performed.)

The flavour of model-checking in the presence of
fairness that this new function performs is closely re-
lated to the problem of checking specifications over
Büchi automata described in [15].

Example III.1 Mutual exclusion revisited
Dekker’s algorithm (taken here from [16]) (like Hy-
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man’s, designed to be executed in two threads labelled
1 and 2) does pass the mutual exclusion safety check
that the earlier one failed.

Following the convention once again that i is this
process and j = 3-i is the other one, it can be writ-
ten:

While true do
{csi.i -> Skip;
b[i] := true;
While b[j] do
{if t==j then

{b[i] := false;
While t==j do Skip;
b[i] := true}

}
css.i -> cse.i -> Skip;
t := j;
b[i] := false}

The additional signal event csi.i denotes the in-
tention of thread i to perform a critical section. An
obvious liveness requirement is that when either pro-
cess wishes to perform a critical section it is allowed
to. This can be tested by “hiding” all actions that
follow csi.i except for the event css.i (this can be
accomplished by one-to-many renaming and using a
regulator process in a manner similar to that used on
page 401 of [11], a process that can be automated by
the compiler). By “hiding” here we mean mapping
the actions of the two threads following a csi.i to
separate visible actions that can be supplied as the fi-
nal argument to the fair divergence check. When this
check is performed the process passes, meaning that
the liveness specification is satisfied.

If, on the other hand, we make the algorithm more
“deferential” by adding an initial wait for the other
process’s boolean to become false.

While true do
{csi.i -> Skip;
While b[j] do Skip;
b[i] := true;
While b[j] do
{if t==j then

{b[i] := false;
While t==j do Skip;
b[i] := true}

}
css.i -> cse.i -> Skip;
t := j;
b[i] := false}

While this does not destroy the safety property it does
invalidate liveness: a fair divergence is found in which
corresponds to one process doing an infinite number
of critical sections while the other performs the new
“after you” loop.

It should be noted that the concept of fairness de-
scribed here is different from that in Walker’s paper
[16], since it is based on computation steps rather than
being specific to the world of mutual exclusion algo-
rithms.

Again, no real originality is claimed for the results
on mutual exclusion here: the purpose of the example
is just to illustrate the operation of the compiler and
the new FDR check.

Most of the other examples from [16], together with
various examples not about mutual exclusion, can be
found on state2.csp’s web site referred to in the in-
troduction.

Note that it would be almost ludicrous to assume
any sort of atomicity in analysing a mutual exclusion
algorithm. Naturally, none of the author’s analyses of
these algorithms do impose any atomicity.

IV. Conclusions and further work

The work in this paper has demonstrated that it is a
practical proposition to use CSPM and FDR to model
check programs written for shared variable languages.
All the checks referred to in this paper execute prac-
tically instantaneously on the current implementation
of FDR, so in no sense should they be regarded as the
limit to what can be handled.

The flexibility of modelling and the links with the
well understood semantics of CSP mean that this form
of modelling provides, potentially, a useful tool for
examining details of the execution of shared variable
programs.

The ability of the work we describe to examine the
consequences of atomicity in detail mean that this or
a similar tool might well prove useful in work studying
this and related ideas in the world of shared variable
languages, for example [1].

There is a need for input in a form other than as a
.csp file, but it should not be hard to create an input
format containing the program in a natural form and
enough other information to create the checks (as was
done for security protocols in Casper [7], for example).
There are no obvious limitations on the language used
to specify the sequential threads other than the need
(exemplified by the very finite type of integers we have
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used) to keep state spaces manageable.

There is no reason in principle why we could not
allow “mixed-mode” programs, in which conventional
CSP (or some other form of message passing) and the
use of shared variables are combined together.

Giving an operational semantics for one language
in terms of another (as we have done here) provides
a natural bridge by which results of proved for the
second language can be applied to the first. One pos-
sibility here is the application of results about data
independence in CSP [8] to shared variable programs
without the assumptions about atomic assignments
that are usually made (see [9], for example).

Related to this last point, treating chosen vari-
able processes as holding symbols for values rather
than values themselves might well allow us, in suit-
able (largely data independent) cases, to prove results
about systems with larger or general types rather than
a specific small example.
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