

Voice-Over-IP Final Report

April 25, 2000

Project Members:

Todd Stokes
David Jeffery
Quiana Smith

David Ferguson

Georgia Institute of Technology

ECE4005

Professor: Dr. Henry Owen

Table of Contents

1. ABSTRACT... 4

2. OBJECTIVES ... 4

2.1 MATERIALS NEEDED .. 4
2.2 CHALLENGES AND ANTICIPATED PROBLEMS .. 4
2.3 EXAMPLE COMMERCIAL OR OPEN-SOURCE IMPLEMENTATIONS............................. 6

2.3.1 Speak Freely Release 7.1 .. 6
2.4 FREELY AVAILABLE TOOLS AND APIS ... 6

2.4.1 ALSA ... 6
2.4.2 KDOC ... 7

1.1 CHOOSING THE ... 7
2.5 GUI TOOLKIT ... 7

2.5.1 GUI Toolkit Tradeoffs... 7
2.5.2 KDevelop Installation Summary... 8

2.6 PROJECT PLANNING AND LOGISTICS... 9
2.6.1 Tasks and Division of Labor... 9
2.6.2 CVS ... 9
2.6.3 Project Timeline Comparison... 11

3. KVOIP TECHNICAL EXPLANATION.. 12

3.1 SOUND BACKEND ... 12
3.2 NETWORK SOCKETS BACKEND... 12

3.2.1 The KVOIP Network Protocol .. 13
3.3 CONNECTION STATE MACHINE... 13

3.3.1 The “No Connection” State.. 14
3.3.2 The “Send Request” State... 15
3.3.3 The “Request Received” State.. 17
3.3.4 The “Connection Established” State.. 17

3.4 GUI CONTROL INTERFACE ERROR! BOOKMARK NOT DEFINED.
3.5 DESIGN OF THE GUI ... 18

4. TESTING ... 20

4.1 TESTING THE SOUND AND NETWORK CODE ... 20
4.2 TESTING THE FULL BACKEND.. 20
4.3 TESTING THE CONNECTION STATE MACHINE (CSM) ... 21
4.4 TESTING THE FULL KVOIP ... 21

5. MARKETING ... 21

5.1.1 Economic Feasibility... 21
5.1.2 Commercial Products ... 22
5.1.3 A Niche for KVoIP.. 22

6. CONCLUSIONS ... 23

7. DOCUMENTATION AND SOURCES .. 23

7.1 INTERNET SOURCES .. 23
7.2 BOOK REFERENCES .. 23

8. APPENDICES ... 24

8.1 SOURCE CODE .. 24
8.2 USER’S MANUAL .. 25
8.3 PRESENTATION SLIDES ... 26

1. Abstract

With the rising power of the Internet, the concept of moving voice over data packet
networks has emerged as a viable technology for the future. The basics of a voice-over-
IP, or VoIP, system require programs running on the two endpoint computers that
translate voice into packetized data and vice-versa. The data is shipped across a data link
fast enough for real-time communication. This basic VoIP system is implemented in our
project.

2. Objectives

We intend to build a VoIP system between two computers linked by a 10-megabit
network. When finished, we will demonstrate full-duplex communication between the
two computers. Our program, which will run on both computers, will establish a socket
data link with the other side. The program will simultaneously write and read data to and
from the sound card, while handling the packetizing and transmission of data across the
socket layer. A simple GUI will be included to make the application more user-friendly.
If time permits, audio processing may be added to compress the transmitted data and to
better handle lost or corrupted data.

2.1 Materials Needed

For implementation, the VoIP project required the following hardware and software
components:

• Two computers with two hard drives
• Two sound cards that support full-duplex operation
• Working network (with Internet access if possible)
• RedHat Linux 6.1 CD
• Two sets of speakers and microphones

Note that since we used Linux as our chosen platform, the sound cards must be supported
by the Advanced Linux Sound Architecture (ALSA) project.

2.2 Challenges and Anticipated Problems

The first challenge our group had was getting our less Linux-knowledgeable members up
to speed on the platform being used. A good base knowledge of the applications available
for Linux and within different distributions of Linux can be hard to come by. After
installing Linux on the computers in the lab and some of our machines at home, the lack
of familiarity with Linux programming was less of a problem than anticipated.

The first problem run into in the lab was the inability of the Vibra soundcards to do
duplex sound. While the cards are capable of full duplex, the specifications have never

been released by Creative Labs so the ALSA project has no way of implementing a driver
that can use full duplex. Other than this problem with the Vibra cards, installation and
use of ALSA has gone smoothly. With the new PCI Soundblasters installed to replace
the Vibras, full duplex sound has worked smoothly. Linux sound support is not an issue
with the newer cards.

There is a problem with the original sound code that generates a very noticeable delay
between recording and playback. It was caused by a problem with the way ALSA
handles date exchange when using file IO. ALSA would not start playing sound until the
entire buffer was filled. Since it would take approximately two seconds to fill the entire
buffer, it resulted a very obvious and annoying delay. The first attempted solution was to
alter the program to use memory mapped IO instead. This by itself did not fix the
problem. ALSA has a bug in it that prevents it from continuously playing when the
buffer is not completely full. The solution was to force ALSA in to a continuous loop
mode. When using this mode, ALSA continuously loops through its sound buffer and
plays the data held there regardless of whether or not the data is new or old. Using this
trick to play sound forces the VoIP program to make sure it is always inserting sound
before the part of the buffer ALSA is playing. If the program doesn’t, ALSA starts
playing old data and in effect start playing garbage.

The use of memory mapped IO made managing the sound buffer easier. However, using
memory mapped IO is more complicated and requires more interaction and intervention
than the simple and direct file reads and writes. The added complexity of mmap IO is a
price that must be paid to insure minimal sound delay. Example code for using mmap
with ALSA has been found from two sources: aplay and quakeforge. Aplay, from the
alsa-utils package at www.alsa-project.org, is ALSA’s example program for both playing
and recording. Quakeforge is an open source computer game, found at
quake.sourceforge.net, that uses mmap IO with ALSA sound to play sound effects with
no perceivable delay.

The basic network sockets code was completed without any major problems. The
problems didn’t begin until an actual protocol was implemented. Since the VoIP
program uses UDP, the program had to be capable of dealing with lost packets. The
unreliability of UDP created problems with ensuring that clients would receive the
connection requests and confirmation packets. The solution to getting the initial request
was for the connecting client to repeatedly send its request until it gets an answer or the
request is canceled. The nastier problem was insuring the connecting client would get the
confirmation information that contained the format and rate the data would be transmitted
in. Instead of having a special packet to return this information, the format and rate are
“piggybacked” in the header of the data packet. This way, once the client gets a data
packet it has an easy way of finding out the format and rate to use.

2.3 Example Commercial or Open-Source Implementations

2.3.1 Speak Freely Release 7.1

Speak Freely is an application used on a variety of Unix workstations that allows for
talking (a sent voice, not typed characters) over a network. If your network connection is
too slow to support real-time voice data, several forms of compression may allow you,
assuming your computer is fast enough, to converse nonetheless. Encryption with DES,
Blowfish, IDEA, and/or a key file is available to enable secure communications. If PGP
is installed on the user's machine, it can be called upon automatically to exchange IDEA
session keys for a given conversation. Speak Freely for Unix is compatible with Speak
Freely for Windows, and users of the two programs can intercommunicate.

Release 7.1 focuses on specific problems with audio drivers on several platforms, in
particular Linux. A number of additional configuration parameters, documented in the
makefile, allow for the configuration of Speak Freely for the wide variety of audio
drivers one encounters in Linux systems. A new sflaunch program permits running
Speak Freely on systems that do not allow two independent programs to open the audio
device, even if one does so read-only and the other write-only. Speak Freely for Unix is
documented in the following manual pages describing the individual programs.

 sfmike Send sound to remote hosts(s).
 sfspeaker Receive sound.
 sflaunch Launch sfmike and sfspeaker.
 sflwl Find active users on the network.
 sflwld Operate a find-users server.
 sfecho Operate a remote echo server.
 sfreflect Operate conference reflector.
 sfvod Operate a voice-on-demand server.

2.4 Freely Available Tools and APIs

2.4.1 ALSA

A helpful website for design of the sound code of the project was found at www.alsa-
project.org. This is an organization of Linux developers called ALSA who make sound
drivers, a sound card API, and a set of sound utilities available, all open-source, for other
Linux developers. Unfortunately, the documentation for the ALSA API was very poor at
the start of the VoIP project.

While the ALSA project writes quality code, the ALSA documentation at the time the
VoIP project started was worthless. In addition to being old, it was horribly wrong after
they have made several interface changes. The only redemption of the old documentation
is that it gave enough of a general idea of how ALSA works, that one could read the

source code for the sample player and recorder that comes with the alsa-utils package to
understand how to program to ALSA’s interfaces.

Recently, ALSA finally posted updated documentation to the ALSA API. The new
documentation, available at www.alsa-project.org/documentation.php3 , corrects the
inaccuracies found in the old documentation and would have made programming the
sound code much easier. However, the new documentation was not in time to be useful
in the programming of the VoIP program.

While ALSA’s library documentation was lacking, ALSA does have a very complete
installation and setup HOWTO available on their web site. The ALSA HOWTO is
located on the same page as the new ALSA API documentation.

2.4.2 KDOC

KDOC is a C++ and IDL (interface definition language) interface documentation tool,
initially written in order to generate documentation for the KDE libraries. KDOC
removes specially formatted documentation and information about your classes from the
class' header or IDL files, and creates cross-referenced HTML, LaTeX or Man pages
from it. KDOC permits groups of classes to be formed into "libraries" and
documentation from separate libraries can be cross-referenced very easily. This
documentation tool supports Qt signals and slots. KDOC is written in PERL and is easily
extensible.

2.5 Choosing the GUI Toolkit

2.5.1 GUI Toolkit Tradeoffs

Since the group has no experience with programming GUI’s in Linux, we looked at
various GUI toolkits that were available. A GUI toolkit simply wraps the low-level X-
Windows drawing calls and presents a nice Application Programming Interface (API) to
the applications programmer. A GUI toolkit also offers “widgets.” Widgets encapsulate
a given GUI functionality and may be placed in a larger framework to create a complete
GUI. For instance, a button or a listview is a widget. Different GUI toolkits offer
varying degrees of encapsulation and reuse. Most GUI toolkits also have development
tools that allow for “drag-and-drop” creation of widgets and dialog boxes.

We looked at three toolkits, GTK+, Qt, and Tcl/Tk. Tcl/Tk is based on the scripting
language, Tcl. Rather than learn a new language, we focused mainly on the C/C++ based
solutions, GTK+ and Qt.

GTK+ has wide acceptance and support in the Linux community. It also has an excellent
development tool called Glade. Glade seems very stable and feature rich. However,
since GTK+ is based on standard C, callbacks and other tricks must be used to implement
object-oriented widgets. Callbacks, being weakly typed, are notorious for causing

segmentation faults. In the end, GTK+ seemed too cumbersome to implement clean GUI
code.

Qt also has a large support base, as it is the GUI toolkit of choice for the KDE desktop
environment. Qt is based on C++, allowing for much more object-oriented code. Qt
follows a hierarchical, inheritance-based model for GUI implementation. For instance,
the programmer may create a widget that contains many other widgets. He or she may
implement a complete functionality in this larger widget and then may place it in a super
widget along with other widgets to combine more and more encapsulated functionalities
into an application. Because it is written in C++, Qt does not have a reliance on callbacks
and is, therefore, a much more strongly typed implementation.

Unfortunately, the development tool for Qt, called KDevelop, is currently in beta testing.
As a result, not all widgets are available in the “drag-and-drop” dialog creator. In
addition, the program, as a whole, has some bugs that will cause crashes or unexpected
behavior. On the other hand, KDevelop does have many good features that make using it
worthwhile. CVS version control software is built into the development environment.
CVS is especially good at managing projects where developers are working from remote
locations, as we are. This CVS integration is very important to easing the task of project
management. Furthermore, KDevelop handles all the make scripts, including making of
the documentation and distribution. Little to no interaction is necessary to create and
maintain project building.

After weighing the costs and benefits of the three GUI toolkits, we chose Qt for its
object-oriented implementation, its highly integrated development tool, and its ease of
use. Qt may be found at http://www.troll.no/qt, and the homepage for KDevelop is
http://www.kdevelop.org. Since Qt 1.44 comes standard on RedHat 6.0 and 6.1, the Qt
installation was already complete. Installation of KDevelop was also relatively easy,
even though the KDevelop application must be compiled on the local machine. The
difficult part was the KDevelop setup, since KDevelop requires around 10 external
applications, such as cvs, glimpse, and kdoc, for full operation. RedHat does install some
of these by default, but the user must track down and successfully install a few. The
KDevelop user’s manual, found on the KDevelop home page, describes where to find
these required external applications.

2.5.2 KDevelop Installation Summary

Kdevelop is available from the KDE Developer’s Kit, or KDK. To obtain the KDK
source package, open http://www.kdevelop.org and click on “Download.” This will
bring up a list of the FTP sites where the KDK is available. Assuming that KDK 1.1 is
the newest release, download the file, “kdk-1.1.tar.gz.” From a root shell, enter the
following commands:

% tar xzvf kdk-1.1.tar.gz
% cd kdk-1.1
% ./configure

% make
% make install

If configure complains about a wrong version of Qt, check to make sure that you have the
environmental variable QTDIR pointing to a 1.4x version. On RedHat 6.1, QTDIR
should be /usr/lib/qt-1.44.

Once installed, Kdevelop may be launched by typing, “kdevelop,” at a shell prompt.

2.6 Project Planning and Logistics

The VoIP program code consists of four basic building blocks: the sound backend, the
network sockets backend, the GUI control interface, and the system control routines. The
sound backend will be responsible for handling communication with the soundcard. The
network sockets backend will be responsible for sending and receiving the data as it is
sent across the network. The GUI control interface is responsible for allowing the user to
control and initiate communication. The system control routines are responsible for tying
the GUI and backends together into one cohesive whole.

2.6.1 Tasks and Division of Labor

Task Group Members
Sound Backend David Jeffery

Todd Stokes
Network Sockets Backend Todd Stokes

Quiana Smith
David Jeffery

GUI Control Interface David Ferguson
Quiana Smith

Connection State Machine David Ferguson
David Jeffery

2.6.2 CVS

To address the source integrity challenges posed by four project members working on the
same code, a simple CVS server was set up on one of our Linux boxes at home. Getting
CVS usable by everyone was a challenge as the CVS program can be a hassle to use
correctly and efficiently. Another key strategy for source integrity was in the division of
object code. Dividing the code into proper sections minimizes the likelihood of new code
interfering with the work of someone else’s code.

CVS should come with every RedHat 6.0/6.1+ installation. Make sure you have the CVS
rpm installed by executing "rpm -q -a |grep cvs" If nothing comes up, you'll have to

download the CVS rpm from a RedHat mirror, like
ftp.cc.gatech.edu/linux/distributions/redhat.

Comprehensive documentation for installation and use of CVS for Linux can be found at
http://www.gnu.org/manual/cvs/index.html. There is also a lot of information about
general source integrity issues and a lot of helpful development tips. What follows is a
brief summary of the server setup process, login, and the most commonly used
commands.

2.6.2.1 Setting up a CVS Server

To set up a CVS repository, choose a directory with ample disk space available for the
revision history of the source files. It should be accessible (directly or via a networked
file system) from all machines that want to use CVS. It is not possible to use CVS to read
from a repository which one only has read access to; CVS needs to be able to create lock
files.

To create a repository:

1. Run the cvs –d repository_pathname init command. It will set up an empty
repository in the CVS root specified in the usual way. cvs init is careful to
never overwrite any existing files in the repository, so no harm is done if you run
cvs init on an already set-up repository.

2. cvs init will enable history logging; if you don't want that, remove the history
file after running cvs init.

2.6.2.2 Logging In to a CVS Server

To use CVS (once it has been successfully installed):

1. Set the environmental variable CVSROOT to ":pserver:
username@host.org:/repository_pathname". In bash, type
export CVSROOT=:pserver:username@host.org:/repository_pathname

2. Make sure that you have CVSROOT set correctly and execute "cvs login"
3. Enter your password
4. If all goes correctly, it should say nothing.

2.6.2.3 Some Basic CVS commands

• cvs commit - incorporates changes from your working source files into the
source repository (user is prompted to type a log message)

• cvs update - reconciles your work with any revisions applied to the source
repository since your last checkout or update (CVS will alert you if anything you
have edited may be lost in the update)

• cvs checkout - recursively creates directories and populate them with the
appropriate source files

• cvs diff - allows you to see the differences between two revisions of a file
• cvs log - shows you all of the commit log entries that are associated with a file

2.6.3 Project Timeline Comparison

Date Intended Schedule Difficulty Actual Schedule
Week 4 Read from Microphone Medium Read from Microphone
 Output sound to speakers Medium Output sound to speakers
 Examine/study GUI tools Easy Examine/study GUI tools
 Start socket code Easy Start socket code
Week 5 Read from microphone

and play back through
speakers

Medium/
Hard

Read from microphone and play
back through speakers

 Send random data over
sockets between machines

Easy Send random data over sockets
between machines

 Design basic GUI controls Medium Design basic GUI controls
Week 6 Design or reuse a protocol Easy
 Start abstraction layer

between GUI and backend
Medium Start abstraction layer between

GUI and backend
 (Milestone 1) Send and

play sound data over
sockets

Hard (Milestone 1)

Week 7 Integrate protocol into
sockets code

Hard Design a protocol

 Merge all code into one
code base

Very Hard Merge all code into one code base

Week 8 Integrate GUI and
backend into one
complete program

Very Hard Solved Sound Delay Problem

 (Milestone 2) Send sound
at different rates

Medium Integrate protocol into sockets
code

Week 9 (Milestone 3) Use GUI to
control backend

Hard (Milestone 2)

Week 10 (Milestone 4) Carry
conversation between two
people

Medium Integrate GUI and backend into
one complete program
(Milestone 3)

Week 11 Feasibility of additional
options:

N/A
(Milestone 4)

• IPv6
• Compression
• Additional

backends
• Encryption
• Teleconference

Week 12 Begin integrating any new
additions

Medium Coordinated GUI with the
backend.
Solved Sound Card Release
Problem.

Week 13 Test new additions Medium Added ability to Force Sampling
Rate for better Sound Quality.
Solved some crashes on
Disconnect/Reconnect

Week 14 (Milestone 5) Carry
conversations with all
allowed combinations of
options

Medium Finished Testing and Debugging
Final Product. Paper and
Presentation. (Milestone 5)

3. KVOIP Technical Explanation

3.1 Sound Backend

The KVoIP sound code is responsible for playing sound, recording sound, and checking
for valid formats and rates during sound format negotiation. The sound code uses the
ALSA sound library to interface with the sound card. At the start of KVoIP, the allowed
formats and rates are retrieved from ALSA and saved. Data is copied to and from the
sound buffers using memory mapped devices. To allow communication between more
types of hardware, software sound conversions are also handled seamlessly without the
rest of KVoIP being aware of conversions being used.

3.2 Network Sockets Backend

The KVoIP networking supplies the basic building blocks needed to run the KVoIP VoIP
protocol. It handles the sending and receiving of packets. It provides methods for
binding a port and establishing a connection to another host. The basic tools needed to
construct the protocol headers are supplied. The networking code also provides a simple,
complete method for tearing down an established connection.

3.2.1 The KVOIP Network Protocol

Control Request Pad Pad
Sound Rates
Sound Formats

KVoIP’s first header format is used for communicating requests between clients. Open
and close requests use this header. The sound rates and formats are supplied on open
requests. These two header fields are ignored on close requests.

Data Rate # Format # Pad
Identity Counter
Sound Data

KVoIP’s second header format is used for carrying the sound data. It also supplies the
rate and format the sound is transmitted in and a counter to insure the sound data is
played in the correct order.

3.3 Connection State Machine

The Connection State Machine, or CSM, creates the link between the GUI and the low-
level backend. The CSM handles incoming calls and negotiating outgoing calls. Within
KvoIP, no routine is allowed to block, waiting for user input or some I/O device to
become available. Otherwise, the GUI would lock up or become generally unresponsive.
Through Qt’s signal and slot architecture, the CSM is able to monitor the GUI and the
socket file descriptor in a notification based manner. This allows the GUI to continue
servicing user interaction while the CSM responds to network activity.

Once the CSM has successfully connected to another KVoIP, control is handed over to
the backend. The CSM ceases listening on the socket and waits for the backend to finish
(for whatever reason).

See the figure below for the state diagram.

Figure 3.1 State diagram for the Connection State Machine (CSM)

Within each state, the CSM makes decisions that affect the backend and the GUI.

3.3.1 The “No Connection” State

In the “No Connection” state, KVoIP is not connected to another computer and the CSM
is listening for GUI commands and for incoming network packets.

See the figure below for the “No Connection” flow chart.

Figure 3.2 Flow chart for the “No Connection” state

3.3.2 The “Send Request” State

In the “Send Request” state, the GUI has already told the CSM to contact another host for
a call. Once every second, the CSM sends out a request packet to the remote computer.
The GUI can either cancel the call or the remote computer can reject or accept the
request.

Figure 3.3 Flow chart for the “Send Request” state

3.3.3 The “Request Received” State

In the “Request Received” state, the CSM has already received a request packet from a
remote computer. The CSM has placed a dialog box on the GUI, asking the user if he or
she wishes to accept or reject the incoming call. In this state, the CSM will ignore
incoming packets and will only advance once the user has made his decision.

Figure 3.4 Flow chart for the “Request Received” state

3.3.4 The “Connection Established” State

The “Connection Established” state is a special state where the CSM has already started
and given control over to the backend. The CSM simply waits for the backend to die.
The backend can die for a variety of reasons, such as a network error or the other end

hung up. In this state, a timer alerts the CSM to check the state of the backend and go
back to sleep if it is still running. During this check, the CSM also notifies the GUI to
update its network statistics and audio properties.

3.4 Design of the GUI

The design of the KVoIP GUI is very simple. Its job is to provide an easy way for
connections to be established and to display some feedback about the network quality and
the audio stream properties.

KVoIP GUI features:

• Quick entry connection/disconnection buttons
• Mute control for muting the microphone or speaker or both
• Status bar with the current status of the connection
• Dynamically updated network statistics and audio properties are shown on the

right.
• Full featured address book for connections to hard to remember addresses
• Recently connected addresses appear in the File menu for quick connects
• Full on-line HTML help accessible from the Help menu
• Draggable toolbar and menubar
• Fully resizable main window
• All settings are saved, including window size, recent hosts, address book data,

maximum sample rate, and mute configuration.

Network statistics are displayed on the right. The user can use these to see if packets are
being sent or if lost packets are causing sound quality problems.

See the figure below for a screenshot of the main window

Figure 3.5 GUI Main Window Screenshot

The connection procedure is very basic. The user types in a computer DNS address or IP
address into the connection box and presses connect. The user may also bring up the
address book window and select an address to connect. The status bar gives the user
information about what step the software is in during connection.

See the figure below for a screenshot of the address book window.

Figure 3.6 GUI Address Book Screenshot

Please see the KVoIP users manual (in an attached appendix) for more information.

4. Testing

4.1 Testing the sound and network code
Before the protocol was implemented, the basic sound and network code were first tested
using a simple test program named testprog. This simple program connects to itself over
the network loopback device to simulate a connection. It would copy data from the
microphone, send it over then network, then receive it and play the sound through the
speakers. It still functions as a basic sound tester as it plays sound but doesn’t do
protocol negotiation.

4.2 Testing the full backend
After protocol support was implemented, testprog was copied and extended into another
program named clvoip. This simple command line driven program implements the
protocol negotiation and could be set to either attempt to start a connection or wait for a
connection. It was first used to shake out the bugs in the protocol while the GUI was

being integrated. It has since been used as a functional client to test KVoIP against to
insure the GUI version would properly handle the protocol and connection creation.

4.3 Testing the Connection State Machine (CSM)
Before the GUI and the CSM were integrated with the backend, kvoip_stimulus was used
to force the CSM through its different paths. Once the backend integration was
completed, two copies of KVoIP on different machines were used to fully test the CSM.
Hence, kvoip_stimulus was only implementing paths #1, #2, #3, and #4. Please see the
flow chart for the “No Connection” state for a graphical representation of these paths.

4.4 Testing the full KVoIP
As mentioned before, two copies of KVoIP on different machines have been used to
check the full functionality of the program. Any other bugs were found by methodically
forcing KVoIP to pass through all its states in all of the allowed orders. Options were
repeatedly checked to function correctly both across reconnections and upon closing and
reopening KVoIP.

5. Marketing

5.1.1 Economic Feasibility

The following table displays the economic breakdown of the development of this project.
Assuming that a software company undertaking a project like this one already has all the
necessary hardware and software required for development. This is not an unusual
assumption since the only hardware required for development is two standard networked
computers. All developmental software is free and open-source.

Task Man-hours Cost
Backend Development 30 $900
Networking 20 $600
GUI Development 20 $600
Integration and Testing 30 $900
Maintenance and Support 120+ $3600+
 $9600+

A strenuous testing phase with various hardware/software configurations and version
compatibility could be very expensive. The man-hours required setting up computers in
various configurations and keeping up with installed versions and test cases would be
excessive, not mention the time it would take to solve whatever problems were found.

This testing phase may be forfeited and replaced with a much longer and more frustrating
maintenance and support phase. In this case, your users are much less satisfied, but they

will also do a lot of work for you. Linux users like to fix bad software that they got for
free, and they often like it so much, they’ll just send their fixes right back to the people
who gave them the software in the first place. If user complaints and software updates
can be handled appropriately, the cost of this phase may be cheaper on the whole.

5.1.2 Commercial Products

Internet telephony, the basic idea of our project, is hitting the market in a big way right
now. Two popular chat programs, AOL Instant Messenger and ICQ, now include full
duplex voice interaction with their latest releases. Very large, competitive companies
who no doubt put a lot of research and strategic planning into their products developed
these latest additions.

However, there are still some problems with these programs. Internet traffic even
between two universities can sometimes be so much as to render full duplex
conversations impossible. In this case, the program will default to half duplex mode. A
decision is made on this issue when the conversation is initiated. Sometimes, the user will
find this style of conversation so frustrating he will opt to close the voice chat and just
use the text chat.

Another popular new release is Dialpad.com, which actually uses the phone system to
allow an Internet user viewing their website to call someone’s home phone. The real
attraction for this site is in the fact that long distance calls can be made over their system
for free. The site is so popular that a busy signal is expected the first four or five times
you try to place a call. Unfortunately, long distance rates are getting so low that the lack
of privacy and lower sound quality over this system makes it less desirable for the
average user.

These products verify the economic feasibility of Internet telephony. Although the
software for these products is distributed widely and freely, AOL and ICQ (now owned
by AOL) intend to make money for these services through advertising. Therefore, the
source code for these isproducts is protected and unavailable.

5.1.3 A Niche for KVoIP

We believe that our product could be marketable as a chat solution for Linux. While
Dialpad.com is platform-independent, the most popular voice chat programs today are all
developed for the Windows platform. However, a rise in interest in the Linux OS is
causing many companies to consider releasing Linux versions of their software. The
problem with Linux in this area is that Linux users expect your software to be open-
source. The problem with releasing open-source software is that you cannot guarantee
advertisers that people are seeing their ads. Easy-to-use patches would spring up quickly
for removing the bothersome advertisements.

This problem aside, a company with a Windows-based chat and messaging system may
be interested in buying code that implements something similar for Linux. Another case
may be a company that is interested in competing with these other Internet software
companies and decide that Linux is the best playing field for taking an advantage. This
may very well be true. Many Linux users believe that if Linux distributors could solve
their current version incompatibilities and sparse documentation problems, Linux could
be a much faster Operating System than Windows for networking. If this proves true,
Linux may support higher-quality and more reliable Voice-Over-IP software.

6. Conclusions

In order for KVoIP to be a commercially viable product, a few more features must be
added:

• Audio compression. It cannot be assumed that the average consumer interested in
a product like this will have a fast enough network connection all the way to his
long-distance friends to support uncompressed audio.

• Higher quality audio. KVoIP supports up to 8-bit, 22 kHz audio data. With
continued development, 16-bit, 44 kHz should be possible.

• Dynamic rate changing. A commercial KVoIP should be able to detect when the
network congestion increases or decreases and adjust its audio properties
accordingly.

However, in light of these short comings, KVoIP fulfills its purpose as a fully functional,
voice-over-IP communicator. In addition, KVoIP implements some advanced GUI
features through the magic of Qt and KDE that increase its commercial appeal
considerably.

7. Documentation and Sources

7.1 Internet Sources

http://www.alsa-project.org
http://quake.sourceforge.net
http://www.kdevelop.org
http://www.troll.no/
http://developer.kde.org
http://www.gnu.org/manual/cvs/index.html
http://www.fourmilab.ch/speakfree/unix/

7.2 Book References

Stevens, W., “Unix Network Programming Vol. 1”

8. Appendices

8.1 Source Code

APPENDIX A.

KVOIP SOURCE CODE

8.2 User’s Manual

APPENDIX B.

KVOIP USER’S MANUAL

8.3 Presentation Slides

APPENDIX C.

KVOIP PRESENTATION SLIDES

