
NST 4.0 User Manual

June 1, 2011

This document is the manual and users’ guide to the 4.0.x series of the NST
test framework, last updated for 4.0.0. NST is a unit test system for Common
Lisp which provides support for test fixture data, stateful setup and cleanup of
tests, grouping of tests, and (we think!) a useful runtime interface. Suggestions
and comments are welcome. The files in the NST distribution’s self-test

directory, especially self-test/core/builtin-checks.lisp, holds the NST
tests for NST and contain many examples (some of which we have adapted
for this manual). Known bugs and infelicities, platform-specific release notes,
and other technical materials are available via the link on NST’s CLiki page,
cliki.net/NST .

Contents
1 Fixtures 2

2 Test groups 4

3 Testing values 5

4 Testing processes 13

5 Testing invariants against sampled data 18

6 Defining test criteria 23

7 The runtime system 27

8 Integration with ASDF 32

A Output to JUnit 35

B Inheritance-based test methods 36

C Deprecated forms 39

Contributors. The primary author of both NST and this manual is John
Maraist1. Robert P. Goldman provided guidance, comments and suggestions
through the development. Other contributors include Michael J. S. Pelican,
Steven A. Harp, Michael Atighetchi and Patrick Stein.

1Smart Information Flow Technologies, 211 North First Street, Suite 300, Minneapolis,
MN 55401; jmaraist at sift.info.

1

1 Fixtures

Fixtures are data structures and values which may be referred to by name during
testing. NST provides the ability to use fixtures across multiple tests and test
groups, and to inject fixtures into the runtime namespace for debugging. A set
of fixtures is defined using the def-fixtures macro:

(def-fixtures fixture-name

([:special (NAME ... NAME

(:fixture NAME ... NAME))]

[:outer FORM] [:inner FORM]

[:setup FORM] [:cleanup FORM]

[:startup FORM] [:finish FORM]

[:documentation STRING]

[:cache FLAG] [:export-names FLAG]

[:export-fixture-name FLAG]

[:export-bound-names FLAG])

([([:cache FLAG])] NAME FORM)

...

([([:cache FLAG])] NAME FORM))

fixture-name The name to be associated with this set of fixtures.

inner List of declarations to be made inside the let-binding of names of any
use of this fixture. Do not include the “declare” keyword here; NST adds
these declarations to others, including a special declaration of all bound
names.

outer List of declarations to be made outside the let-binding of names of any
use of this fixture.

documentation A documentation string for the fixture set.

special Specifies a list of names which should be declared special in the scope
within which this set’s fixtures are evaluated. The individual names are
taken to be single variable names. Each (:fixture NAME) specifies all of
the names of the given fixture set. This declaration is generally optional
under most platforms, but can help supress spurious warnings. Note that
multiple (:fixture NAME)s may be listed, and these lists and the bare
names may be intermixed. If only one name or fixture is specified, it need
not be placed in a list

export-fixture-name When non-nil, the fixture name will be added to the
list of symbols exported by the current package.

export-bound-names When non-nil, the names bound by this fixture will be
added to the list of symbols exported by the current package.

2

export-names When non-nil, sets the default value to t for the two options
above.

cache If specified with the group options, when non-nil, the fixture values are
cached at their first use, and re-applied at subsequent fixture application
rather than being recalculated.

When a fixture is attached to a test or test group, each NAME defined in that fix-
ture becomes available in the body of that test or group as if let*-bound to the
corresponding FORM. A fixture in one set may refer back to other fixtures in the
same set (again à la let*) but forward references are not allowed.The four ar-
guments :startup, :finish, :setup and :cleanup specify forms which are run
everytime the fixture is applied to a group or test. The :startup (respectively
:finish) form is run before fixtures are bound (after their bindings are re-
leased). These forms are useful, for example, to initialize a database connection
from which the fixture values are drawn. The :setup form is run after inclusion
of names from fixture sets, but before any tests from the group. The :cleanup

form is normally run after the test completes, but while the fixtures are still in
scope. Normally, the :cleanup form will not be run if the :setup form raises
an error, and the :finish form will not be run if the :startup form raises an
error; although the user is able to select (perhaps unwisely) a restart which dis-
regards the error.The names of a fixture and the names it binds can be exported
from the package where the fixture is defined using the export-bound-names

and export-fixture-name arguments. The default value of both is the value of
export-names, whose default value is nil.The cache option, if non-nil, directs
NST to evaluate a fixture’s form one single time, and re-use the resulting value
on subsequent applications of the fixture. Note that if this value is mutated
by the test cases, test behavior may become unpredictable! However this op-
tion can considerably improve performance when constant-valued fixtures are
applied repeatedly. Caching may be set on or off (the default is off) for the
entire fixture set, and the setting may vary for individual fixtures.Examples of
fixture definitions:

(def-fixtures f1 ()

(c 3)

(d ’asdfg))

(def-fixtures f2 (:special ((:fixture f1)))

(d 4)

(e ’asdfg)

(f c))

(def-fixtures f3 ()

((:cache t) g (ackermann 1 2))

((:cache nil) h (factorial 5)))

To cause a side-effect among the evaluation of a fixture’s name definitions, nil
can be provided as a fixture name. In uses of the fixture, NST will replace nil

3

with a non-interned symbol; in documentation such as form :whatis, any nils
are omitted.

The with-fixtures macro faciliates debugging and other non-NST uses of fix-
tures sets:

(with-fixtures (FIXTURE ... FIXTURE)

FORM

...

FORM)

This macro evaluates the forms in a namespace expanded with the bindings
provided by the fixtures.

2 Test groups

The def-test-group form defines a group of the given name, providing one
instantiation of the bindings of the given fixtures to each test. Groups can be
associated with fixture sets, stateful initiatization, and stateful cleanup.

(def-test-group NAME (FIXTURE ... FIXTURE)

(:setup FORM ... FORM)

(:cleanup FORM ... FORM)

(:startup FORM ... FORM)

(:finish FORM ... FORM)

(:each-setup FORM ... FORM)

(:each-cleanup FORM ... FORM)

(:include-groups GROUP ... GROUP)

(:documentation STRING)

TEST

...

TEST)

group-name Name of the test group being defined

given-fixtures List of the names of fixtures and anonymous fixtures to be used
with the tests in this group.

forms Zero or more test forms, given by def-check.

setup These forms are run once, before any of the individual tests, but after
the fixture names are bound.

cleanup These forms are run once, after all of the individual tests, but while
the fixture names are still bound.

4

startup These forms are run once, before any of the individual tests and before
the fixture names are bound.

finish These forms are run once, after all of the individual tests, and after the
scope of the bindings to fixture names.

each-setup These forms are run before each individual test.

each-cleanup These forms are run after each individual test.

include-group The test groups named in this form will be run (respectively
reported) anytime this group is run (reported).

documentation Docstring for the class.

3 Testing values

Individual unit tests are encoded with the def-test form:

(def-test (NAME

[:group GROUP-NAME] [:setup FORM]

[:cleanup FORM] [:startup FORM]

[:finish FORM]

[:fixtures (FIXTURE ... FIXTURE)]

[:documentation STRING]) criterion

FORM

...

FORM)

(def-test NAME criterion

FORM

...

FORM)

The SETUP, CLEANUP, STARTUP, FINISH and FIXTURES are just as for fixtures
and test groups, but apply only to the one test. The CRITERION is a list or
symbol specifying the properties which should hold for the FORMs.When a test
is not enclosed within a group body, a group name must be provided by the
GROUP option. When a test is enclosed within a group body, the GROUP option is
not required, but if provided it must agree with the group name.When there are
no SETUP, CLEANUP, STARTUP, FINISH or FIXTURES arguments, the NAME may be
given without parentheses. Likewise, any criterion consisting of a single symbol,
e.g. (:pass), may be abbreviated as just the symbol without the parentheses,
e.g. :pass.The :documentation form provides a documentation string in the
standard Lisp sense. Since documentation strings are stored against names,

5

and since the same name can be used for several tests (so long as they are all
in different packages), documentation strings on tests may not be particularly
useful.The def-check form is a deprecated synonym for def-test.

3.1 Basic criteria

The true criterion expects one form, which is evaluated at testing time; the
criterion requires the result to be non-nil.

(:true)

The eq criterion checks a form using eq. The criterion argument and the form
under test are both evaluated at testing time.

(:eq target)

Example:

(def-test eq1 (:eq ’b) (cadr ’(a b c)))

The symbol criterion checks that its form under test evaluates to a symbol which
is eq to the symbol name given as the criterion argument.

(:symbol name)

Example:

(def-test sym1 (:symbol a) (car ’(a b c)))

A example of a test which fails:

(def-test sym1x (:symbol a) (cadr ’(a b c)))

The eql criterion checks a form using eql. The criterion argument and the
form under test are both evaluated at testing time.

(:eql target)

Example:

(def-test eql1 (:eql 2) (cadr ’(1 2 3)))

The equal criterion checks a form using eql. The criterion argument and the
form under test are both evaluated at testing time.

6

(:equal target)

The equalp criterion checks a form using equalp. The criterion argument and
the form under test are both evaluated at testing time.

(:equalp target)

The forms-eq criterion compares its two forms under test using eq. The forms
are both evaluated at testing time.

(:forms-eq)

Example:

(def-test eqforms1 :forms-eq (cadr ’(a b c)) (caddr ’(a c b)))

The forms-eql criterion compares its two forms under test using eql. The two
forms under test are both evaluated at testing time.

(:forms-eql)

Example:

(def-test eqlforms1 :forms-eql (cadr ’(a 3 c)) (caddr ’(a c 3)))

The forms-equal criterion compares its two forms under test using equal. The
forms are both evaluated at testing time.

(:forms-equal)

The predicate criterion applies a predicate to the result of evaluating its form
under test. The criterion argument is a symbol (unquoted) or a lambda ex-
pression; at testing time, the forms under test are evaluated and passed to the
denoted function. The criterion expects that the result of the function is non-nil.

(:predicate pred)

Example:

(def-test pred1 (:predicate numberp) 3)

A example of a test which fails:

(def-test pred2 (:predicate eql) (+ 1 2) 3)

7

The err criterion evaluates the form under test, expecting the evaluation to
raise some condition. If the CLASS argument is supplied, the criterion expects
the raised condition to be a subclass. Note that the name of the type should
not be quoted; it is not evaluated.

(:err [:type CLASS])

Examples:

(def-test err1 (:err :type error) (error "this should be caught"))

(def-test err2 (:err) (error "this should be caught"))

The perf criterion evaluates the forms under test at testing time, checking that
the evaluation completes within the given time limit.

(:perf [:ms MILLISECS] [:sec SECONDS]

[:min MINUTES])

Example:

(def-test perf1 (:perf :min 2) (ack 3 5))

3.2 Compound criteria

The not criterion passes when testing according to subcriterion fails (but
does not throw an error).

(:not subcriterion)

Example:

(def-test not1 (:not (:symbol b)) ’a)

The all criterion brings several other criteria under one check, and verifies that
they all pass.

(:all subcriterion ... subcriterion)

Example:

8

(def-check not1 ()

(:all (:predicate even-p)

(:predicate prime-p))

2)

The any criterion passes when any of the subordinate criteria pass.

(:any subcriterion ... subcriterion)

Example:

(def-check not1 ()

(:any (:predicate even-p)

(:predicate prime-p))

5)

The apply criterion first evaluates the forms under test, applying FUNCTION

to them. The overall criterion passes or fails exactly when the subordinate
CRITERION with the application’s multiple result values.

(:apply FUNCTION CRITERION)

Example:

(def-test applycheck (:apply cadr (:eql 10)) ’(0 10 20))

The check-err criterion is like :err, but proceeds according to the subordinate
criterion rather than simply evaluating the input forms.

(:check-err criterion)

Example:

(def-test check-err1

(:check-err :forms-eq)

’asdfgh (error "this should be caught"))

The progn criterion first evaluates the FORMs in order, and then proceeds with
evaluation of the forms under test according to the subordinate criterion.

(:progn form ... form subcriterion)

Example:

9

(def-test form1 (:progn (setf zz 3) (:eql 3)) zz)

The proj criterion rearranges the forms under test by selecting a new list ac-
cording to the index numbers into the old list. Checking of the reorganized
forms continues according to the subordinate criterion.

(:proj indices criterion)

Example:

(def-test proj-1

(:proj (0 2) :forms-eq)

’a 3 (car ’(a b)))

The applying-common-criterion criterion applies one criterion to several pairs
of criterion arguments and data forms.

(:applying-common-criterion [criterion |

(criterion arg ... arg)]

(((arg ... arg)

(form ... form)) ...

((arg ... arg)

(form ... form)))

...

(((arg ... arg)

(form ... form)) ...

((arg ... arg)

(form ... form))))

The with-common-criterion criterion applies one criterion to several data
forms.

(:with-common-criterion [criterion |

(criterion arg ... arg)]

(form ... form) ...

(form ... form))

3.3 Criteria for multiple values

:seq values criterion (The is) checks each of the forms under test according to
the respective subordinate criterion.

(:values subcriterion ... subcriterion)

10

The drop-values criterion checks the primary value according to the subordi-
nate criterion, ignoring any additional returned values from the evaluation of
the form under test.

(:drop-values criterion)

Thevalue-list criterion converts multiple values into a single list value.

(:value-list further)

3.4 Criteria for lists

The permute criterion evaluates the form under test, expecting to find a list as
a result. The criterion expects to find that some permutation of this list will
satisfy the subordinate criterion.

(:permute criterion)

Examples:

(def-test permute1 (:permute (:each (:eq ’a))) ’(a a))

(def-check permute2

(:permute (:seq (:symbol b)

(:predicate symbolp)

(:predicate numberp)))

’(1 a b))

The each criterion evaluates the form under test, expecting to find a list as
a result. Expects that each argument of the list according to the subordinate
criterion, and passes when all of these checks pass.

(:each criterion)

Example:

(def-test each1 (:each (:symbol a)) ’(a a a a a))

The seq criterion evaluates its input form, checks each of its elements according
to the respective subordinate criterion, and passes when all of them pass.

(:seq subcriterion ... subcriterion)

11

Example:

(def-check seqcheck

(:seq (:predicate symbolp) (:eql 1) (:symbol d))

’(a 1 d))

3.5 Criteria for vectors

The across criterion is like :seq, but for a vector instead of a list.

(:across subcriterion ... subcriterion)

Example:

(def-check across1

(:across (:predicate symbolp) (:eql 1))

(vector ’a 1))

3.6 Criteria for classes

The slots criterion evaluates its input form, and passes when the value at each
given slot satisfies the corresponding subordinate constraint.

(:slots (slot-name subcriterion) ...

(slot-name subcriterion))

Example:

(defclass classcheck ()

((s1 :initarg :s1 :reader get-s1)

(s2 :initarg :s2)

(s3 :initarg :s3)))

(def-test slot1

(:slots (s1 (:eql 10))

(s2 (:symbol zz))

(s3 (:seq (:symbol q) (:symbol w)

(:symbol e) (:symbol r))))

(make-instance ’classcheck

:s1 10 :s2 ’zz :s3 ’(q w e r)))

12

3.7 Programmatic and debugging criteria

The pass is a trivial test, which always passes.

Example:

(def-test passing-test :pass 3 4 "sd")

The info criterion adds an informational note to the check result.

(:info string subcriterion)

Example:

(def-test known-bug (:info "Known bug" (:eql 3)) 4)

The dump-forms criterion is for debugging NST criteria. It fails after writing
the current forms to standard output.

(:dump-forms blurb)

The warn criterion issues a warning. The format string and arguments should
be suitable for the Lisp format function.

(:warn format-string form ... form)

Example:

(:warn "~{}d is not a perfect square" 5)

4 Testing processes

The test criteria of the previous section all examined the result of evaluating
the forms under test. This section presents NST’s criteria for validating the
process of a computation, specifying assertions which should hold at the initial,
intermediate and final points of the process.

The eval criterion executes its forms, expecting calls to various assertion func-
tions to check intermediate states of an arbitrarily-long process.

(:eval [:check-warnings FLAG]

[:muffle-warnings FLAG]

[:attempt-continue FLAG]

[:force-continue FLAG])

13

check-warnings If non-nil, will add warnings thrown when evaluating the
forms under test as NST warnings. The default is t.

muffle-warnings If non-nil, will muffle warnings thrown when evaluating the
forms under test, so that they are reported only as NST result warnings
and if the :check-warnings flag is set. The default is t.

attempt-continue If non-nil, will continue evaluation after failed assertions,
so long as the failure is not deemed fatal. The default is t.

force-continue If non-nil, will continue evaluation after failed assertions even
if the failure is not deemed fatal. The default is nil.

The def-eval-test macro abbreviates a call to def-test with a single eval

criterion. Its arguments are just as for def-test and eval.

(def-eval-test (NAME

[:group GROUP-NAME] [:setup FORM]

[:cleanup FORM] [:startup FORM]

[:finish FORM]

[:fixtures (FIXTURE ... FIXTURE)]

[:documentation STRING]

[:check-warnings FLAG]

[:muffle-warnings FLAG]

[:attempt-continue FLAG]

[:force-continue FLAG])

FORM

...

FORM)

(def-eval-test NAME

FORM

...

FORM)

4.1 Asserting properties

The assert-null function is a unary predicate for use within the forms eval-
uated for an eval criterion. It succeeds whenever the null function returns
non-nil.

(assert-null TESTED-VALUE)

The assert-eql function is a binary predicate for use within the forms eval-
uated for an eval criterion. It compares the expected and tested values using
eql, and succeeds whenever that call returns non-nil.

14

(assert-eql EXPECTED-VALUE TESTED-VALUE)

The assert-not-eql function is a binary predicate for use within the forms
evaluated for an eval criterion. It compares the expected and tested values
using eql, and succeeds whenever that call returns nil.

(assert-not-eql EXPECTED-VALUE TESTED-VALUE)

The assert-equalp function is a binary predicate for use within the forms
evaluated for an eval criterion. It compares the expected and tested values
using equalp, and succeeds whenever that call returns non-nil.

(assert-equalp EXPECTED-VALUE TESTED-VALUE)

The assert-criterion macro asserts that an NST criterion should pass.

(assert-criterion ([:msg-format format-string]

[:msg-args format-arguments]

[:fatal flag]

[:fail-on-warning flag])

criterion form ... form)

msg-format Format string used to build the label of the restart point.

msg-args Format arguments used to build the label of the restart point.

fatal If non-nil, a failure of this assertion indicates that execution of the test
forms should be aborted.

fail-on-warning If non-nil, then an NST result which includes a warning in-
dicates failure of this assertion.

The assert-zero function is a unary predicate for use within the forms eval-
uated for an eval criterion. It succeeds whenever the zerop function returns
non-nil.

(assert-zero TESTED-VALUE)

The assert-eq function is a binary predicate for use within the forms evaluated
for an eval criterion. It compares the expected and tested values using eq, and
succeeds whenever that call returns non-nil.

(assert-eq EXPECTED-VALUE TESTED-VALUE)

The assert-not-eq function is a binary predicate for use within the forms
evaluated for an eval criterion. It compares the expected and tested values
using eq, and succeeds whenever that call returns nil.

15

(assert-not-eq EXPECTED-VALUE TESTED-VALUE)

The assert-not-equalp function is a binary predicate for use within the forms
evaluated for an eval criterion. It compares the expected and tested values
using equalp, and succeeds whenever that call returns nil.

(assert-not-equalp EXPECTED-VALUE TESTED-VALUE)

The assert-not-equal function is a binary predicate for use within the forms
evaluated for an eval criterion. It compares the expected and tested values
using equal, and succeeds whenever that call returns nil.

(assert-not-equal EXPECTED-VALUE TESTED-VALUE)

The assert-non-nil function is a unary predicate for use within the forms
evaluated for an eval criterion. It succeeds whenever the null function returns
nil.

(assert-non-nil TESTED-VALUE)

The assert-equal function is a binary predicate for use within the forms eval-
uated for an eval criterion. It compares the expected and tested values using
equal, and succeeds whenever that call returns non-nil.

(assert-equal EXPECTED-VALUE TESTED-VALUE)

4.2 Defining new assertion functions

Macro def-binary-predicate-assert uses a binary predicate as the basis for
an assertion function just as def-unary-predicate-assert uses a unary pred-
icate. This macro’s arguments are just as for def-unary-predicate-assert.

Macro def-unary-negated-predicate-assert uses the negated result of a
unary predicate as the basis of an assertion function. This macro’s arguments
are just as for def-unary-predicate-assert.

Macro def-binary-negated-predicate-assert uses the negated result of a bi-
nary predicate as the basis for an assertion function just as def-unary-negated-predicate-assert
uses the negated result of a unary predicate. This macro’s arguments are just
as for def-unary-predicate-assert.

Macro def-unary-predicate-assert creates an assertion function using the
result of a call to a unary predicate. A non-nil result from the predicate corre-
sponds to a successful assertion.

16

(def-unary-predicate-assert assert-fn predicate

default-message

[:message-defvar name]

[:pred-name name]

[:doc-state-flag bool])

assert-fn The name of the assertion function being defined.

predicate The predicate used to define the assertion function. It should take
a single argument.

default-message Format string used by default for reporting failures of this
assertion. It should expect to be used in a call to format with one addi-
tional argument, the value being tested.

message-defvar The name of a global variable into which the default message
will be stored. If this argument is omitted, the result of a call to gensym

is used.

pred-name This argument is used only for documenting the underlying pred-
icate in the assertion function’s docstring. By default, it is the same as
the predicate.

4.3 A simpler process checker

The process criterion allows simple interleaving of Lisp function calls and NST
checks, to allow checking of intermediate states of an arbitrarily-long process.

(:process form ... form)

This criterion takes as its body a list of forms. The first element of each form
should be a symbol:

• :eval — Heads a list of forms which should be evaluated.

• :check — Heads a list of criteria which should be checked.

• :failcheck — If checks to this point have generated any errors or failures,
then the process criterion is aborted.

• :errcheck — If checks to this point have generated any errors (but not
failures), then the process criterion is aborted.

The :process criterion takes no value arguments in a def-test.Example:

17

(def-test process-1

(:process (:eval (setf zzz 0))

(:check (:true-form (eql zzz 0)))

(:eval (incf zzz))

(:check (:true-form (eql zzz 1)))

(:eval (incf zzz))

(:check (:true-form (eql zzz 2)))))

5 Testing invariants against sampled data

The sample criterion provides random generation of data for validating program
properties. Our approach is based on Claessen and Hughes’s Quickcheck2.

This style of testing is somewhat more complicated than specific tests on single,
bespoke forms. There are two distinct efforts, which we address in the next two
sections: describing how the sample data is to be generated, and specifying the
test itself.

5.1 Generating sample data

Data generation is centered around the generic function arbitrary.

This function takes a single argument, which determines the type of the value
to be generated. For simple types, the name of the type (or the class object,
such as returned by find-class) by itself is a complete specification. For
more complicated types, arbitrary can also take a list argument, where the
first element gives the type and the remaining elements are keyword argument
providing additional requirements for the generated value.

NST provides method of arbitrary for many standard Lisp types, listed in Ta-
ble 1. Types in the first column — the standard numeric types plus the common
supertype t are not associated with additional keyword arguments.

(nst:arbitrary t)

(nst:arbitrary ’complex)

(nst:arbitrary ’integer)

(nst:arbitrary ’ratio)

(nst:arbitrary ’single-float)

Keyword arguments for other NST-provided type specifiers are as follows:

2Koen Claessen and John Hughes, “QuickCheck: a lightweight tool for random test-
ing of Haskell programs,” from Proceedings of the International Conference on Func-
tional Programming, 2000. QuickCheck papers, code and other resources are available at
www.cs.chalmers.se/ rjmh/QuickCheck .

3Not available on Allegro Lisp.

18

Standard Lisp types Other types
number character symbol cons hash-table scalar

real string list

rational vector

integer array

float t

fixnum

bignum

ratio

short-float3

single-float

double-float3

long-float

complex

Considered scalar

Table 1: NST provides methods of generic function arbitrary generating values
of the types in this table.

• Types character and string:

– Argument noncontrol. Excludes the control characters associated
with ASCII code 0 through 31.

– Argument range. Allows the range of characters to be restricted to
a particular subset:

Value Meaning
:standard Codes up to 96
:ascii Codes through 127

:ascii-ext Codes through 255

Omitted or with any other value, characters with any code up to
char-code-limit can result. Examples:

(nst:arbitrary ’character)

(nst:arbitrary ’(character :noncontrol t

:range :standard))

• Type symbol.

– Argument existing. If non-nil, requires that the result be a previously-
interned symbol.

– Argument exported. Requires that the result be not only a previously-
interned symbol, but also one exported by its package. Ignored if
existing is explicitly set to nil.

19

– Argument package. Specifies the package from which the symbol
will be generated. If omitted, a package is selected at random from
the existing ones.

– Argument nonnull. If non-nil, allows arbitrary to ignore other
restriction to guarantee returning a non-nil symbol. When null,
arbitrary may return nil.

– Argument gensym. If non-nil, and if arbitrary is explicitly set to
nil, returns a new uninterned symbol.

• Type cons.

– Arguments car and cdr should be additional type specifications, used
direct the generation of respectively the left and right elements of the
result. Each defaults to t.

• Type list and vector.

– Argument length specifies the length of the structure. If omitted,
will be randomly generated.

– Argument elem directs the generation of the container’s elements.
For both, the default element type is t.

• Type array.

– Argument elem. As for list and vector.

– Argument dimens. Should be a list of nonnegative integers speci-
fying the length of each dimension of the array. If omitted, will be
randomly generated.

– Argument rank. Specifies the number of dimensions. If omitted but
dimens is given, will be set to the length of dimens. If both rank

and dimens are omitted, then both are randomly generated.

• Type hash-table.

– Argument size. Specifies the number of entries in the table. If
omitted, will be randomly generated.

– Argument test. Specifies the hash table’s test function. If omitted,
will be randomly selected from eq, eql, equal and equalp.

– Arguments key and val direct the generation of the table’s keys
and values, respectively. For the keys, the default element type is
textttt when the test function is texttteq or texttteql, and textttscalar
otherwise. For the values, the default element type is textttt.

Beyond those standard Lisp types, NST provides the type scalar as a super-
type of the numeric types plus character, string and symbol. Users may
extend this definition to include additional type specifications, as we discuss

20

below. Types are not associated with scalar are referred to as compound

(although there is no corresponding type specification). To avoid generat-
ing structures too large to hold in memory, NST provides the global variable
max-compound-structure-depth and the macro compund-structure.

The *max-compound-structure-depth* variable sets the maximum nesting
depth of compound data structures: beyond that depth, scalar rather than
t is the default element generator. This restriction does not apply to explicitly
specified element types, only to the use of defaults.

The compound-structure macro wraps substructure which should be consid-
ered compound for the limits set by *max-compound-structure-depth*.

New type specifications for invariant-testing. are defined with the def-arbitrary-instance-type
macro.

(def-arbitrary-instance-type (spec-name

[:params formals]

[:scalar bool]

[:key key])

form

...

form)

formals Formal parameter definition used to pass subcomponent types.

scalar When a non-null value is provided for the scalar argument, the new
specifier is taken to be generable by the scalar specification.

(def-arbitrary-instance-type (ratio :scalar t)

(/ (arbitrary ’integer)

(let ((raw (arbitrary (find-class ’integer))))

(cond

((< raw 0) raw)

(t (+ 1 raw))))))

key The key argument gives a list of keyword arguments which may accom-
pany the new specification. For the cons type, keyword arguments allow
specifications for the left and right components:

(def-arbitrary-instance-type (cons :key ((car t car-supp-p)

(cdr t cdr-supp-p)))

(compound-structure

(when (and (not car-supp-p)

(>= *current-compound-structure-depth*

max-compound-structure-depth))

(setf car ’scalar))

21

(when (and (not cdr-supp-p)

(>= *current-compound-structure-depth*

max-compound-structure-depth))

(setf cdr ’scalar))

(cons (arbitrary car) (arbitrary cdr))))

form Construct and return (as if through progn) the arbtrary instance.

5.2 Invariants as tests

Invariants to be tested, and the domains over which they range, are specified
with the sample criterion:

(:sample [:verify FORM] [:value LAMBDA-LIST]

[:domains (NAME SPEC) ... (NAME SPEC)]

[:where FORM]

[:where-ignore (NAME ... NAME)]

[:where-declare (DECLARATION ...

DECLARATION)]

[:sample-size NUMBER]

[:qualifying-sample NUMBER]

[:max-tries NUMBER])

verify The the expression to be (repeatedly) evaluated, which is expected al-
ways to return a non-null value. This is the sole required argument, al-
though in any particular use it is unlikely to be the only argument given.

domains Declares the variables in the verify expression which are to be given
multiple randomized values. The default value is nil, denoting an empty
list.

value A lambda list to which the values given by the argument form should be
applied. The default value is nil, denoting no such arguments.

where A condition which determines the validity of the input argument. For
example, the condition would assert that a number is positive in an ap-
plication where a negative value would be known to cause a failure. The
default value is t, allowing any values.

where-ignore List of domain variables which are not mentioned in the where

clause. These names will be declared as ignored in appropriate bindings,
suppressing warnings under Lisps which check for such things in inter-
preted expressions. This list need not be given explicitly when no where

argument is given. Similarly, the where-declare argument accepts a list
of declarations to be associated with the where form.

22

sample-size Gives the base specification of the number of value sets which
will be generated. Two further arguments have some bearing on the
number of generation attempts when the where argument is non-t. The
qualifying-sample argument gives the minimum acceptable size of ac-
tual tested values, not counting sets rejected via the where expression.
The max-tries argument gives the maximum number of value sets to be
generated.

Examples:

(:sample :sample-size 10

:domains ((x (list :elem symbol)))

:verify (equal x (reverse (reverse x))))

(:sample :domains ((x real))

:where (> x 1)

:verify (< (sqrt x) x)

:sample-size 10

:max-tries 12)

6 Defining test criteria

The criteria used in test forms decide whether, when and how to use the forms
under test and the forms and subcriteria provided to each test criterion. Cri-
teria receive their arguments as forms, and may examine them with or without
evaluation, as the particular criterion requires. NST provides two mechanisms
for defining new criteria, and a number of support functions for use within
these definitions. The simpler, but more limited, way to define a new cri-
terion is by specifying how it should be rewritten to another criterion. The
def-criterion-alias macro provides this mechanism, which we discuss in
Section 6.1. The def-criterion macro provides the more general mechanism
for criteria definition, where Lisp code produces a result report from the forms
under test and criterion’s forms and subcriteria. We discuss def-criterion in
Section 6.2. We discuss the NST API for creating these result reports in Section
6.3, and for recursive processing of subcriteria in Section 6.4.

6.1 Aliases over criteria

The simplest mechanism for defining a new criterion involves simply defining
one criterion to rewrite as another using def-criterion-alias:

(def-criterion-alias (name arg ... arg)

23

[documentation]

expansion)

The body of the expansion should be a Lisp form which, when evaluated, returns
an S-expression quoting the new criterion which the rewrite should produce.
The args are passed as for Lisp macros: they are not evaluated and are most
typically comma-inserted into a backquoted result. For example:

(def-criterion-alias (:forms-eq) ‘(:predicate eq))

(def-criterion-alias (:symbol name) ‘(:eq ’,name))

6.2 Reporting forms

NST provides functions both for building test reports, and for adding informa-
tion to a report.

• The make-success-report function indicates a successful test result.

(make-success-report)

Note that some older examples show (make-check-result), (emit-success)
or (check-result). The former is an internal function and should not be
used from outside the core NST files. The latter two are deprecated.

• The make-failure-report function returns a report of test failure.

(make-failure-report [:format format-string]

[:args arg-form-list])

The format-string and args are as to the Common Lisp function format.
The emit-failure function is an older, deprecated version of this func-
tion.

• Function make-warning-report is like make-failure-report, but pro-
vides supplimentary information as a warning.

(make-warning-report [:format format-string]

[:args arg-form-list])

The emit-warning function is an older, deprecated version of this func-
tion.

• Function make-error-report produces a report of an error during test
execution.

24

(make-error-report [:format format-string]

[:args arg-form-list])

• The add-error function adds an error note to a result record.

(add-error result-report

[:format format-string]

[:args argument-list])

• The add-failure function adds a failure note to a result record.

(add-failure result-report

[:format format-string]

[:args argument-list])

• The add-info function adds auxiliary information to a result record.

(add-info result-report info-item)

• The add-warning function adds an warning to a result record. The item
can be any of a Lisp warning, an NST check-note or a format string; in
the first two cases, no additional arguments should be provided.

(add-warning result-report

[:format item] [:args argument-list])

• The helper function wrap-thrown-lisp-warning creates an NST check-note

object from a standard Lisp warning.

6.3 Processing subcriteria

The criterion itself can contain subcriteria which can be incorporated into the
main criterion’s assessment. NST provides two functions which trigger testing
by a subcriterion, each returning the check’s result report.

The check-criterion-on-value function can be called from within a criterion
body to verify that a value adheres to a criterion.

(check-criterion-on-value criterion value)

The check-criterion-on-form function verifies that an unevaluated form ad-
heres to a criterion.

(check-criterion-on-form criterion form)

25

6.4 General criteria definitions

The def-criterion macro defines a new criterion for use in NST tests. These
criteria definitions are like generic function method definitions with two sets of
formal parameters: the forms provided as the actual parameters of the criterion
itself, and the values arising from the evaluation of the forms under test.

(def-criterion (name criterion-lambda-list

values-lambda-list)

[documentation]

form

...

form)

name Name of the criterion.

criterion-lambda-list Lambda list for the arguments to the criterion. Op-
tionally, the first element of the list is a symbol specifying the parameter-
passing semantics for the criterion arguments: :values for call-by-value,
or :forms for call-by-name (the default). The list may include the key-
words &key, &optional, &body and &rest but may not use &whole or
&environment. Apart from this restriction, in the former case the list
may be any ordinary lambda list as for defun, and in the latter case the
list may be any macro lambda list as for defmacro.

values-lambda-list Lambda list for the forms under test. Optionally, the
first element of the list is a symbol specifying the parameter-passing se-
mantics for the criterion arguments: :values for call-by-value (the de-
fault), or :form for call-by-name. In the former case, the list may in-
clude the keywords &key, &optional, &body and &rest, but not &whole

or &environment; apart from that restriction, list may be any ordinary
lambda list as for defun. In the latter case, the remainder of the list must
contain exactly one symbol, to which a form which would evaluate to the
values under test will be bound.

If the criterion ignores the values, then instead of a lambda list, this argu-
ment may be the symbol :ignore. On many platforms, listing a dummy
parameter which is then declared ignore or ignorable will produce a
style warning: the body of a def-criterion should not be assumed to
correspond directly to the body of a defmethod; in general there will be
surrounding destructuring-binds.

documentation An optional documentation string for the criterion.

form The body of the criterion definition should return a test result report
contructed with the make-success-report, etc. functions.

Examples:

26

(def-criterion (:true () (bool))

(if bool

(make-success-report)

(make-failure-report :format "Expected non-null, got: ~s"

:args (list bool))))

(def-criterion (:eql (target) (actual))

(if (eql (eval target) actual)

(make-success-report)

(make-failure-report :format "Not eql to value of ~s"

:args (list target))))

7 The runtime system

The runtime system provides several operations for scheduling and running tests,
and debugging failing and erring tests.

User-level NST operations are accessible from the REPL via the nst-cmd macro.

(nst-cmd nst-command arg ... arg)

Where a particular system supports the facility,4 the top-level alias :nst pro-
vides a shorthand to this function.

For the sake of brevity we use the nst shorthand below.

The :help command gives a complete inventory of runtime system commands.

:nst :help

There are a number of commands for running tests, but most of the time only
one will be needed:

• The :run command executes all tests in the named package, or in the
named group, or runs the named test. It is not necessary to prefix the
name with a package prefix. The name does not need to be prefix-qualified,
but if the name is ambiguous then :run will simply report the possible
interpretations.

:nst :run name

• The :run-package command executes all tests associated with groups in
the named packages, and reports the test results afterwards.

4Currently Allegro, and SBCL under ACL-REPL.

27

:nst :run-package package ... package

• The :run-group command executes all tests associated with the name
groups, and reports the test results afterwards. The group name should
be package-qualified.

:nst :run-group group ... group

• The :run-test command executes the given test. Both the group and
test name should be package-qualified.

:nst :run-test group test

One further command for running a test is useful when writing and debugging
the tests themselves:

• The apply criterion first evaluates the forms under test, applying FUNCTION

to them. The overall criterion passes or fails exactly when the subordinate
CRITERION with the application’s multiple result values.

(:apply FUNCTION CRITERION)

Example:

(def-test applycheck (:apply cadr (:eql 10)) ’(0 10 20))

• The :apply command assesses whether a test criterion prints the uses to
which a particular name has been applied in an NST session.

:nst :apply name

There are two commands for (re)printing the results of tests:

• The :report command summarizes successes, failures and errors in tests.
It reports either for the named artifact, or for all recently-run tests.

:nst :report

:nst :report package

:nst :report group

:nst :report group test

28

• The :report command gives detailed information about individual test
results.

:nst :detail

:nst :detail package

:nst :detail group

:nst :detail group test

The undef and clear commands allow removal of groups, tests and results.

• The :undef command retracts the definition of an NST group or test.

:nst :undef group-name

:nst :undef group-name test-name

Currently, NST does require that the symbols passed to undef be correctly
package-qualified.

• The :clear command empties NST’s internal record of test results.

:nst :clear

The set and unset display and adjust NST’s configuration.

• The :set command assigns or displays the values of NST runtime switches.

:nst :set property

:nst :set property value

• The :unset command clears the values of NST runtime switches.

:nst :unset property

There are currently three properties which can be manipulated by set and
unset:

• The :verbosity switch controls the level of NST’s output.

29

:nst :set :verbose setting

Valid settings are:

– :silent (aka nil)

– :quiet (aka :default)

– :verbose (aka t)

– :vverbose

– :trace

The :report and :detail commands operate by setting minimum levels
of verbosity.

• The :debug-on-error switch controls NST’s behavior on errors. When
non-nil, NST will break into the debugger when it encounters an error.

:nst :set :debug-on-error flag

The :debug command is a short-cut for setting this property.

• The :debug-on-fail switch controls NST’s behavior when a test fails
When non-nil, NST will break into the debugger when it encounters a
failing test.

:nst :set :debug-on-fail flag

This behavior is less useful than it may seem; by the time the results of
the test are examined for failure, the stack from the actual form evalu-
ation will usually have been released. Still, this switch is useful for in-
specting the environment in which a failing test was run.Note that both
:debug-on-error and :debug-on-fail apply in the case of an error; if
the latter is set but the former is not, then the debugger will be entered
after an erring test completes.The :debug command is a short-cut for
setting this property.

• The :backtraces switch, when non-nil, directs NST to attempt to cap-
ture the Lisp backtrace of errors in tests.

:nst :set :backtraces flag

This property is only available on platform which allow programmatic ex-
amination of backtraces, which is not standardized in Common Lisp; cur-
rently we have implemented this feature on Allegro only.This property has
a complicated default setting. Firstly, if the symbol ’common-lisp-user::*nst-generate-backtraces*
is bound when NST loads, NST will use its value as the initial value for this
property. Otherwise by default, on MacOS systems the property initializes
to nil because of a known error on that system, but this setting can be
overriden by the property :nst-unsafe-allegro-backtraces. Finally, if
none of these issues apply, the initial value is t.

30

The above NST commands are governed by a number of global variables. In
general, interactive use of NST should not require direct access to these vari-
ables, but when automating NST operations may require changing, or creating
a new dynamic scope for, their settings.

• User variable *debug-on-error*: if non-nil, will break into the Lisp
REPL debugger upon encountering an unexpected error. If nil, will record
the error and continue with other tests.

• User variable *debug-on-fail*: if non-nil, will break into the Lisp REPL
debugger upon encountering a test which fails. If nil, will record the
failure and continue with other tests. This variable is useful inspecting
the dynamic environment under which a test was evaluated.

• User variable *default-report-verbosity* determines the default value
for *nst-verbosity* when printing reports (2 by default).

• User variable *nst-output-stream* determines the output stream to
which NST should print its output (*standard-output* by default).

Fixtures can be opened into the interactive namespace for debugging with the
:nst :open

Syntax: :nst :open FIXTURE-NAME FIXTURE-NAME ... FIXTURE-NAME

Example:

CL-USER(75): (nst:def-fixtures small-fixture ()

(fix-var1 3)

(fix-var2 ’asdfg))

NIL

CL-USER(76): (boundp ’fix-var1)

NIL

CL-USER(77): :nst :open small-fixture

Opened fixture SMALL-FIXTURE.

CL-USER(78): fix-var1

3

CL-USER(79):

Fixtures can be opened into a different package than where they were first de-
fined, but these bindings are in addition to the bindings in the original package,
and are made by a symbol import to the additional package.

Calling nst or nst-cmd without a command argument repeats the last test-
executing command.

31

8 Integration with ASDF

NST’s integration with ASDF is a work in progress. This section described the
current integration, the ways we expect it to change, and a less-flexible and
lower-level, but likely more stable, alternative integration technique.

8.1 NST’s ASDF systems

From version 1.2.2, the system :asdf-nst provides two classes for ASDF system
definitions, asdf:nst-test-runner and asdf:nst-test-holder.

Up to NST 1.2.1 :asdf-nst provided a single class asdf:nst-testable, and
in the future we plan to reunify the current two classes into a single class again.
However our first implementation required NST to be loaded even when a system
was not being tested, because we had no way to distinguish the source code
associated with testing from production code. We plan to solve this problem
with a new file type nst-file in a future version of NST. This file type would
not be compiled or loaded for the compile-op or load-op of the system, only
for its test-op .

8.1.1 Test-running systems

ASDF systems of the asdf:nst-test-runner class do not themselves contain
NST declarations in their source code, but may identify other systems which
do, and which should be tested as a part of testing the given system. These
systems also allow local definitions of NST’s configuration for the execution of
their tests.

Specify that a system runs NST tests by providing :class asdf:nst-test-runner

argument to asdf:defsystem. Use the :nst-systems argument to name the
systems which house the actual unit tests:

• :nst-systems (system system · · · system)

Specifies a list of other systems which should be tested when testing this
system. These other systems do not otherwise need to be identified as a
dependency of this system (nor, for that matter, does :nst itself); they
will be loaded upon test-op if they are not yet present.

Another optional argument to an nst-test-runner system definition is:

• :nst-init (arg-list ... arg-list)

Initializing arguments to NST, to be executed after this system is loaded.
Each arg-list is passed as the arguments as if to a call to the nst-cmd

macro.

32

• :nst-debug-config form

NST debugging customization for this system. The FORM Should be an
expression which, when evaluated, returns a list of keyword arguments;
note that to give the list itself, it must be explicitly quoted, which is a
change of behavior from pre-1.2.2 versions.

• :nst-debug-protect (symbol ... symbol)

Gives a list of variables whose values should be saved before applying
any configuration changes from :nst-debug-config, and restored after
testing.

• :nst-push-debug-config t-or-nil

If non-nil, then when this system is loaded its :nst-debug and :nst-debug-protect

settings will be used as NST’s defaults.

8.1.2 Test-containing systems

The asdf:nst-test-holder class is a subclass of nst-test-runner for systems
which are not only tested via NST, but also contains NST tests in their source
code.

Specify that a system defines NST tests by providing :class asdf:nst-test-holder

to asdf:defsystem. The arguments for asdf:nst-test-runner may be used
for asdf:nst-test-holder, as well as the following:

• :nst-packages (package package · · · package)

When the system is tested, all groups and tests in the named packages
should be run.

• :nst-groups ((package group) · · · (package group))

When the system is tested, tests in the named groups should be run.
Naming the package separately from the group and test in this argument
(and in the similar arguments below) allows the group to be named before
its package is necessarily defined.

• :nst-tests ((package group test) · · · (package group test))

When the system is tested, all the named tests should be run.

The next three arguments to an nst-testable system are mutually exclusive,
and moreover exclude any of the above group or :nst-systems :

• :nst-package package

When the system is tested, all groups and tests in the named package
should be run.

33

;; NST and its ASDF interface must be loaded

;; before we can process the defsystem form.

(asdf:oos ’asdf:load-op :asdf-nst)

(defsystem :mnst

:class nst-test-holder

:description "The NST test suite’s self-test."

:serial t

:nst-systems (:masdfnst)

:nst-groups ((:mnst-simple . g1)

(:mnst-simple . g1a)

(:mnst-simple . g1a1)

(:mnst-simple . core-checks))

:depends-on (:nst)

:in-order-to ((test-op (load-op :mnst)))

:components ((:module "core"

:components ((:file "byhand")

(:file "builtin-checks")))))

Figure 1: Definitions of nst-testable ASDF systems.

• :nst-group (package group)

When the system is tested, all tests in the named group should be run.

• :nst-test (package group test)

When the system is tested, the given test should be run.

Figure 1 gives examples of nst-testable ASDF system definitions.

8.2 An alternate ASDF integration technique

We plan to deprecate and then remove asdf:nst-test-holder and nst-test-runner

once we have implemented a unified replacement for them. To avoid the possi-
bility of a bit-rotted test scheme, the link between a system and its unit tests
can be made explicit by providing methods for ASDF generic functions which
make calls to the NST API. Specifically:

• A method of the ASDF asdf:perform generic function specialized to the
asdf:test-op operation and the system in question will be executed to
test a system. So an appropriate method definition would begin:

(defmethod asdf:perform ((op asdf:test-op)

(sys (eql (asdf:find-system

:SYSTEM-NAME))))

34

• NST API functions for running tests are:

• nst:run-package

• nst:run-group

• nst:run-test

• The main NST API function for printing the results of testing is asdf:report-multiple .
In situations where only a single package, group or test is associated with
a system, one of the following function may be more convenient:

• nst:report-package

• nst:report-group

• nst:report-test

When providing an explicit asdf:perform method, it is also necessary to ex-
plicitly list system dependencies to NST and to the other systems which contain
the tested system’s unit test definitions.

¡Printer Error, obj=x20000685: The slot defdoc-core::tags is unbound in the
object [standard-doc-spec - properties: sift.nst::nst-manual sift.nst::process-
predicate - no tags - target-type function - self sift.nst:assert-equal - no de-
scriptive - intro [standard-sequence - elements ([standard-sequence - elements
([standard-plain-text - text ”The ”] function sift.nst:assert-equal [standard-
plain-text - text ” function is a binary predicate for use within the forms evalu-
ated for an ”] criterion :eval [standard-plain-text - text ” criterion. It compares
the expected and tested values using ”] function equal [standard-plain-text -
text ”, and succeeds whenever that call returns ”] [standard-plain-text - text
”non-nil.”])])] - no blurb - no details - no params - callspecs (¡defdoc-standard-
model:standard-callspec @ x2169e182¿) - no deprecated] of class ¡standard-class
defdoc-standard-model:standard-doc-spec¿.¿

A Output to JUnit

NST reports can be formatted as XML for use with JUnit, although the API
for this feature is underdeveloped.

The junit-results-by-group function writes the NST test results in JUnit
XML format, organized by group, aligning test groups with Java classes, and
individual tests with @Test methods.

(junit-results-by-group [:verbose flag]

[:dir directory]

[:file filespec]

35

[:stream stream]

[:if-dir-does-not-exist bool]

[:if-file-exists bool])

Either :dir and :file options, or the :stream option, but not both, should
be used to specify the target for XML output; if none of the three options are
given, the function will write to *standard-output*.

Function nst-junit-dump pushes the entire NST state to a JUnit XML file
whose stream is specified by its argument.

B Inheritance-based test methods

This feature is in-progress. It currently does not work under Lispworks or Clisp,
and details of the API may change in subsequent versions.

For testing objects in a class hierarchy NST offers xUnit-style test methods dis-
patching on different classes. The idea is that an object should have all relevant
tests applied to it without requiring that the tests be explicitly enumerated
in the test definition: all tests applicable to an object’s class, or to any of its
superclasses, should be discovered and run.

Our running examples of this section are tests on objects of these four classes:

(defclass top-cls ()

((tc1 :initarg :tc1 :reader tc1)

(tc2 :initarg :tc2 :reader tc2)))

(defclass mid-cls (top-cls)

((mc1 :initarg :mc1 :reader mc1)

(mc2 :initarg :mc2 :reader mc2)))

(defclass side-cls ()

((sc1 :initarg :sc1 :reader sc1)

(sc2 :initarg :sc2 :reader sc2)))

(defclass bot-cls (mid-cls side-cls)

((bc1 :initarg :bc1 :reader bc1)

(bc2 :initarg :bc2 :reader bc2)))

B.1 Declaring methods

There are two macros which define a particular method of a generic test function.

36

The def-test-method-criterion macro provides a simple facility for defining
a generic test function method in terms of an NST criterion.

(def-test-method-criterion function-name class-name

criterion)

function-name The name of the test function for which we are defining a
method.

class-name The class for which we are defining a method.

criterion The criterion to be applied to members of the class.

For example:

(nst:def-test-method-criterion for-clses top-cls

(:predicate (lambda (tc) (< (tc1 tc) (tc2 tc)))))

The def-test-generic declares a generic test function.

(def-test-generic function-name)

For example,

(nst:def-test-generic for-clses)

The def-test-method defines a general method for a generic test function.

(def-test-method function-name

(test-value class-name)

form

...

form)

function-name The name of the test function for which we are defining a
method.

test-value Formal parameter to which the value under test will be bound.

class-name The class for which we are defining a method.

The method body should return a test result report, constructed with make-success-result,
etc.For example:

37

(nst:def-test-method for-clses (o mid-cls)

(with-slots (mc1 mc2) o

(cond

((< mc1 mc2) (make-success-report))

(t (make-failure-report :format "~d not < ~d" :args (list mc1 mc2))))))

(nst:def-test-method for-clses (o side-cls)

(with-slots (sc1 sc2) o

(cond

((eql sc1 sc2) (make-success-report))

(t (make-failure-report :format "~d not eql ~d" :args (list sc1 sc2))))))

B.2 Invokng methods

The :methods criterion runs the test functions applicable to the value under
test.

For example:

(def-test-group method-tests ()

(def-test t-p :methods (make-instance ’top-cls :tc1 0 :tc2 2))

(def-test m-p :methods (make-instance ’mid-cls :tc1 0 :tc2 2 :mc1 0 :mc2 2))

(def-test s-p :methods (make-instance ’side-cls :sc1 1 :sc2 1))

(def-test b-p :methods (make-instance ’bot-cls

:tc1 0 :tc2 2 :mc1 0 :mc2 2 :sc1 1 :sc2 1))

(def-test t-f :methods (make-instance ’top-cls :tc1 4 :tc2 2))

(def-test m-f-t :methods (make-instance ’mid-cls

:tc1 4 :tc2 2 :mc1 0 :mc2 2))

(def-test m-f-m :methods (make-instance ’mid-cls

:tc1 0 :tc2 2 :mc1 4 :mc2 2))

(def-test m-f-mt :methods (make-instance ’mid-cls

:tc1 4 :tc2 2 :mc1 4 :mc2 2))

(def-test s-f :methods (make-instance ’side-cls :sc1 1 :sc2 3))

(def-test b-f-t :methods (make-instance ’bot-cls

:tc1 4 :tc2 2 :mc1 0 :mc2 2 :sc1 1 :sc2 1))

(def-test b-f-m :methods (make-instance ’bot-cls

:tc1 0 :tc2 2 :mc1 4 :mc2 2 :sc1 1 :sc2 1))

(def-test b-f-s :methods (make-instance ’bot-cls

:tc1 0 :tc2 2 :mc1 0 :mc2 2 :sc1 1 :sc2 3))

(def-test b-f-mt :methods (make-instance ’bot-cls

:tc1 4 :tc2 2 :mc1 4 :mc2 2 :sc1 1 :sc2 1))

(def-test b-f-ms :methods (make-instance ’bot-cls

:tc1 0 :tc2 2 :mc1 4 :mc2 2 :sc1 1 :sc2 3))

(def-test b-f-ts :methods (make-instance ’bot-cls

:tc1 4 :tc2 2 :mc1 0 :mc2 2 :sc1 1 :sc2 3))

(def-test b-f-mts :methods (make-instance ’bot-cls

38

:tc1 4 :tc2 2 :mc1 4 :mc2 2 :sc1 1 :sc2 3)))

B.3 Method combinations

NST defines a method combination nst-results as the default method combi-
nation for functions defined by def-test-generic. This combination runs all
applicable methods, and combines all of their results into a single NST result
record.

This default can be overridden by specifying t as the method combination in
the intial declaration.

(nst:def-test-generic overridden

(:method-combination t))

(nst:def-test-method-criterion overridden mid-cls

(:slots (mc1 (:eql 0))

(mc2 (:eql 2))))

(nst:def-test-method-criterion overridden bot-cls

(:slots (sc1 (:eql 1))

(sc2 (:eql 1))))

C Deprecated forms

The macros, functions and variables documented in this section are all depre-
cated. Some continue to be exported from the NST API; others have already
been removed. This section describes how code using these forms should be
ported to the active NST API.

C.1 Older criteria-defining macros

The def-criterion-unevaluated macro is deprecated as of NST 2.1.2. It was
consolidated into the def-criterion macro.

Replace:

(def-criterion-unevaluated name (pattern ... pattern) name

BODY)

with:

(def-criterion name (:forms pattern ... pattern)

(:form name)

BODY)

39

The def-values-criterion macro was deprecated as of NST 1.3.0. For new
criteria, use def-criterion instead. In the short term, code using def-values-criterion

should continue to work as before.

The def-form-criterion macro was deprecated as of NST 1.3.0. Code using
def-form-criterion in any but the simplest ways is very likely to fail. Use
def-criterion instead.

C.2 Old test result generators

The emit-failure function is deprecated; use make-failure-report instead.

The emit-success function is deprecated; use make-success-report instead.

The emit-warning function is deprecated; use make-warning-report instead.

40

Index

debug-on-error, 30
debug-on-fail, 30
default-report-verbosity, 30
max-compound-structure-depth, 20
nst-output-stream, 31

across, 11
add-error, 24
add-failure, 24
add-info, 24
add-warning, 24–25
all, 8
any, 8
apply, 8–9, 27–28
applying-common-criterion, 9–10
arbitrary, 18–19
array, 19
assert-criterion, 14–15
assert-eq, 15
assert-eql, 14
assert-equal, 16
assert-equalp, 14
assert-non-nil, 15–16
assert-not-eq, 15
assert-not-eql, 14
assert-not-equal, 15
assert-not-equalp, 15
assert-null, 14
assert-zero, 15

backtraces, 30

car, 19
cdr, 19
char-code-limit, 19
character, 18, 20
check-criterion-on-form, 25
check-criterion-on-value, 25
check-err, 9
check-note, 25
:cleanup, 2, 4
clear, 28–29
compound-structure, 20

compund-structure, 20
cons, 19, 21

:debug, 29, 30
debug-on-error, 29
debug-on-fail, 30
def-arbitrary-instance-type, 20–21
def-binary-negated-predicate-assert,

16
def-binary-predicate-assert, 16
def-criterion, 23, 25–26
textttdef-criterion, 25
def-criterion-alias, 23
def-criterion-unevaluated, 39
def-eval-test, 13–14
def-fixtures, 1–3
def-form-criterion, 39
def-test, 5, 13
def-test-generic, 37
def-test-group, 4
def-test-method, 37
def-test-method-criterion, 36–37
def-unary-negated-predicate-assert,

16
def-unary-predicate-assert, 16
def-values-criterion, 39
detail, 28
dimens, 20
drop-values, 10
dump-forms, 12

each, 11
elem, 19, 20
emit-failure, 39
emit-success, 39
emit-warning, 39
eq, 5–6, 15, 20
eql, 6–7, 14, 20
equal, 6–7, 15, 16, 20
equalp, 6, 14, 15, 20
err, 7
eval, 13–16
existing, 19

41

exported, 19

find-class, 18
:finish, 2
fixtures, 1

debugging, 31
format, 16
forms-eq, 6–7
forms-eql, 7
forms-equal, 7

gensym, 16, 19
group, 4

hash-table, 20
help, 27

info, 12

junit-results-by-group, 35

key, 20, 21

length, 19
list, 19, 20

make-error-report, 24
make-failure-report, 24
make-success-report, 23–24
make-warning-report, 24
max-tries, 22
methods, 37–38

noncontrol, 19
nonnull, 19
not, 8
nst, 27, 31
texttt:nst, 27
nst-cmd, 26–27, 31
nst-junit-dump, 35
nst-results, 38–39
null, 14, 15

package, 19
pass, 12
perf, 7–8
permute, 10–11
predicate, 7

process, 17
progn, 9, 21
proj, 9

qualifying-sample, 22

range, 19
rank, 20
report, 28
run, 27
run-group, 27
run-package, 27
run-test, 27

sample, 17, 21–22
scalar, 20, 21
seq, 11
set, 29
:setup, 2, 4
sift.nst, 35
size, 20
slots, 12
:startup, 2
string, 18, 20
symbol, 6

t, 18–20, 22
test, 20
test group, see group
true, 5

undef, 28–29
unset, 29

val, 20
value-list, 10
values, 10
vector, 19, 20
verbose, 29
verify, 22

warn, 12–13
warning, 25
where, 22
where-declare, 22
with-common-criterion, 10
with-fixtures, 3

42

wrap-thrown-lisp-warning, 25

zerop, 15

43

	Fixtures
	Test groups
	Testing values
	Testing processes
	Testing invariants against sampled data
	Defining test criteria
	The runtime system
	Integration with ASDF
	Output to JUnit
	Inheritance-based test methods
	Deprecated forms

