

RVR MEANDER – TUTORIALS

ArcGIS VERSION

Roberto Fernández^{1,} Davide Motta², Jorge D. Abad³, Eddy J. Langendoen⁴, Nils Oberg⁵, Marcelo H. Garcia⁶

August 29, 2011

ABSTRACT

This document includes tutorials describing the possibilities of the RVR Meander Graphical User Interface (GUI) developed for ArcMap. Each tutorial shows specific capabilities of the GUI while guiding the user on a step-by-step fashion from input to output. A tutorial by itself doesn't describe all the components of the GUI. Detailed description of each one is provided on the User's Manual.

RVR Meander ßeta is in the public domain and is freely distributable. The authors and above organizations assume no responsibility or liability for the use or applicability of this program, nor are they obligated to provide technical support.

Author Affiliations:

1 Graduate Research Assistant, Dept. of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801. E-mail: fernan25@illinois.edu

2 Graduate Research Assistant, Dept. of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801. E-mail: dmotta2@illinois.edu

3 Assistant Professor, Dept. of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, PA, 15260. E-mail: jabad@pitt.edu

4 Research Hydraulic Engineer, US Department of Agriculture, Agricultural Research Service, National Sedimentation Laboratory, Oxford, MS, 38655. E-mail:eddy.langendoen@ars.usda.gov

5 Resident Programmer, Dept. of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801. E-mail: noberg@illinois.edu

6 Chester and Helen Siess Professor, Dept. of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign. 205 N. Mathews Av., Urbana, IL, 61801.E-mail: mhgarcia@illinois.edu

TABLE OF CONTENTS

1		Intro	duction1	L
2		Insta	lling the RVR Meander Graphical User Interface1	_
3		Addi	ng the RVR Meander Toolbar Into ArcMap2)
4		Tuto	rial 1: Mackinaw River, IL USA; Using The Migration Coefficient Empirical Approach	;
	4.	1.	Introduction	;
	4.	2.	Creating the Shapefiles (.shp) From Text Files (.txt)	;
	4.	3.	Open The RVR Meander Graphical User Interface (RVR-GUI)4	ŀ
	4.	4.	Importing The Configuration File5	;
	4.	5.	Selecting The Shapefiles For The Run And The Output Folder)
	4.	6.	Run Simulation	7
	4.	7.	Creating And Visualizing 1D Output In ArcMap	}
		4.7.1	Creating The 1D Output Shapefile	}
		4.7.2	Customizing The Visualization Of The 1D Output Shapefile)
	4.	8.	Creating And Visualizing 2D Output In ArcMap11	_
		4.8.1	Creating The 2D Output Shapefiles11	L
		4.8.2	Creating A TIN To Visualize Specific 2D Output Parameters15	;
		4.8.3. "TAU	 Customizong The Visualization Of The TIN Created For The 5 Years Iteration And The Parameter 17 	r
5.		Tuto	rial 2: Mackinaw River, IL USA; Using The Physically-Based Approach	}
	5.	1.	Introduction	}
	5.	2.	Setting Up And Running A Simulation With The Physically-Based Approach)
6		Tuto 19	rial 3: Mackinaw River, IL USA; Using The Physically-Based Approach And Floodplain Heterogeneity	1
	6.	1.	Introduction)
	6. He	2. eteroį	Setting Up and Running A Simulation With The Physically-Based Approach And Floodplair geneity	1)
	6.	3.	Visualizing Floodplain Properties In ArcMap21	L

7.	Example Of Post-Processed Output Using ArcMap's Capabilities	.22
A1.	Appendix 1: Description Of The Parameters In The Output Files	.24

TABLE OF FIGURES

Figure 1. RVR-GUI setup icon	1
Figure 2. RVR-GUI Installation Wizard: Welcome Screen	1
Figure 3. RVR-GUI Installation Wizard: Installation Folder	1
Figure 4. RVR-GUI Installation Wizard: Confirm Installation	1
Figure 5. RVR-GUI Installation Wizard: Setup Progress.	1
Figure 6 RVR-GUI Installation Wizard: Installation Complete	1
Figure 7. Loading the RVR Meander toolbar into ArcMap using the Customize window	2
Figure 8. Browse to installation folder and select the file with the ".tlb" extension (left). Added Objects dia will be shown on screen(center) and the RVR Meander Toolbar will be visible on the Customize wind (right)	alog 10w 2
Figure 9. RVR Meander Toolbar with "Image and Text" (top) and with "Image Only" (bottom)	2
Figure 10. Create shapefile from a text file	3
Figure 11. Select either the river or the valley centerline to input. Currently only one file at a time supported	e is 3
Figure 12. Browse to the folder where the shapefile will be created, give it a name and select Save	4
Figure 13. River and valley centerlines displayed in ArcMap	4
Figure 14. Open RVR-GUI by clicking on the RVR Meander command button	4
Figure 15.RVR-GUI	5
Figure 16. RVR-GUI File Menu; Import Configuration	5
Figure 17. Import the Configuration File for the run.	5
Figure 18. RVR-GUI; Layer Definition tab with selected layers	6
Figure 19. Folder Browser Dialog to select where to save the Output files for the current run	6
Figure 20. RVR-GUI; Output tab with al the information required in place	6
Figure 21. RVR-GUI Run Menu	7
Figure 22. Log File Watcher before the run (left) during a run (center) and after the run finishes (right)	7
Figure 23. Log File in .txt. format	7
Figure 24. Output Files created during the run.	8

Figure 25. Import a 1D Output file of Migrated Centerlines.	8
Figure 26. 1D Outut user form	8
Figure 27. 1D Output expanded user form.	9
Figure 28. 1D Output – Status bar messages while processing	9
Figure 29. 1D output - Migrated Centerlines shapefile added into ArcMap.	9
Figure 30. Select Properties on the Migrated Centerline's context menu	10
Figure 31. Layer Properties Window	10
Figure 32. Add Values window. Select the ones you want while holding the Ctrl key down	11
Figure 33. 1D Output customized visualization.	11
Figure 34. Opens user form to import 2D Output parameters.	11
Figure 35. 2D Output user form	12
Figure 36. 2D Output user form – expanded	12
Figure 37. 2D Output user form – expanded	12
Figure 38. 2D Output Window completed and ready to create shapefiles	13
Figure 39. 2D Output – Status bar messages while processing	13
Figure 40. 2D Output shapefile added into ArcMap	14
Figure 41. Attribute Table for the 2D Output including all selected parameters	14
Figure 42. 2D Output Boundary Polygon added into ArcMap	14
Figure 43. 2D Output – Close up to see the detail of the created shapefiles	15
Figure 44. Enabling the 3D Analyst extension for ArcMap	15
Figure 45. Accessing the "Create Tin from Features" window with the 3D Analyst toolbar	16
Figure 46. Required parameters to Create a TIN from features using the 2D Output produced wi GUI.	th the RVR- 16
Figure 47. Select folder to Save the TIN	16
Figure 48. TIN created and added into ArcMap	17
Figure 49. TIN Layer Properties Window – Customizing Symbology.	18
Figure 50. Visualization of the TIN while changing its properties	18
Figure 51. Choose file with cross section properties for the simulation	19

Figure 52.Choose file with floodplain description for the simulation	20
Figure 53. Floodplain Heterogeneity and 2D output shapefiles added into ArcMap	21
Figure 54. Create a Raster using the IDW method from the 3D Analyst toolbar	21
Figure 55. IDW parameter definition window for the Floodplain raster	21
Figure 56. Floodplain Heterogeneity Raster using the Critical Shear Stress TauC	22
Figure 57. Example of post-processed output using RVR-GUI and ArcMap	23

1. INTRODUCTION

RVR Meander for ArcGIS is basically a toolbar that lets the user access forms to input parameters, run the software and visualize output inside ArcMap. It has been developed for ArcGIS 9.3.1 and is currently being tested on ArcGIS 10.0 in order to support the newest version of ESRI's software. The RVR Meander Graphical User Interface (RVR-GUI) provides different functionalities that facilitate the use of the RVR capabilities available for the standalone version inside ArcMap.

This manual contains different sections that will guide the user on a step-by-step basis. It first describes how to install the RVR-GUI and then shows the steps required to load its capabilities into ArcMap. Additional sections are tutorials designed to guide the user through some test cases that describe the use of the RVR-GUI's components. Tutorials by themselves do not cover all the capabilities. Detailed description of all components is provided in the User's Manual.

2. INSTALLING THE RVR MEANDER GRAPHICAL USER INTERFACE

Browse to the folder where the "RVR Meander 9.3.msi" file is saved. Double click on the icon (see Figure 1). An installation wizard will appear on screen (see Figure 2). Click Next and specify the folder where RVR Meander will be installed (see Figure 3). Click Next again and on the confirmation screen click Next again (see Figure 4). Installation will begin and the progress will be shown by the wizard (see Figure 5). Finally the wizard will display a message letting the user know that the installation is complete (see Figure 6).

🔂 RVR Meander 9.3.msi

Select Installation Fold	er		\geq
The installer will install RVR Meander 9	3 to the following folder.		
To install in this folder, click "Next". To	install to a different folde	r, enter it below	or click "Browse".
Folder			
Parates			
C:\Program Files\UIUC\RVR Mean	der 9.3\		Browse
C:\Ptogram Files\UIUC\RVR Mean	der 9.3\		Browse Disk Cost
C:VProgram Files/UIUC/RVR Mean	der 9.3\		Browse Disk Cost
C-Program Files/UJUC/PIVR Mean	der 9.3%		Browse Disk Cost
C: Phogram Files/UIUC/RVR Mean	der 9.31		Browse Disk Cost

Figure 1. RVR-GUI setup icon.

Figure 2. RVR-GUI Installation Wizard: Welcome Screen.

Figure 4. RVR-GUI Installation Wizard: Confirm Installation.

Figure 5. RVR-GUI Installation Wizard: Setup Progress.

Figure 3. RVR-GUI Installation Wizard: Installation Folder.

Installation Complete			2
RVR Meander 9.3 has been successfu	ily installed.		
Click "Close" to exit.			
Please use Windows Update to check	for any critical updates	to the .NET Frame	work.

Figure 6. . RVR-GUI Installation Wizard: Installation Complete.

3. ADDING THE RVR MEANDER TOOLBAR INTO ARCMAP

Inside ArcMap open the Customize window located in the Tools menu and in the Toolbars tab browse for the RVR Meander toolbar (see Figure 7). If the toolbar is not displayed click on the "Add from file" button and browse for the installation folder. Select the file with the ".tlb" extension and click "Open". A new dialog indicating the "Added Objects" will appear on screen. Click "OK" and in the Customize window check the box to include the toolbar (see Figure 8). After clicking the "Close" button the toolbar will be displayed on the ArcMap interface (see Figure 9).

Eile Edit View Bookmarks Insert Selection	Tools Window Help		
	🖉 Editor Toolbar		a
	Grapts ► Reports ► Geocoging ► ★ Add Route Eyents ♠ ArcCatalog ★ My Blaces	Customize Toobar: Commands: Dptons Toobar: Vision Menu Visio Analysis Codebatis Edvar	Reset
	Macros	Computing Composition Curve Number	Add from Ne Close

Open 🛛 🖓 🔀		
Look jn: 🔁 RVR_Meander 💌 🗢 🖻 💣 📰 -		Customize 🛛 🛛 🔀
MANS.Profile dl Ny Record B RVR_Henner_Seta.dl B RVR_Henner_Seta.db	Added Objects	Toolbars Commands Options Toolbars:
UCCENTRY Dealtop My Doctments T	cmd_2D_Output_Beta cmd_Import_From_txt_to_shp tbar_RVR_Meander_Beta cmd_1D_Output_Beta	Georeteric Network Editing Network Editing Georeteric Network Editing Contact and the Network Analyst Contact and the Network Contact
My Carrisolar My Network Places File of type: Type Libraries (* db, * db) Cancel	ОК	Periol Contruction Publisher RVR Meander Beta Keyboard Add from file Close

Figure 8. Browse to installation folder and select the file with the ".tlb" extension (left). Added Objects dialog will be shown on screen(center) and the RVR Meander Toolbar will be visible on the Customize window (right).

RVR Meander Beta						
tt Text to Shapefile	💤 RVR Meander Beta	1D 1D Output	2D 2D Output	Åγ., Curvature Mapper		
BVD Meander Beta						
tt Product Deca						

Figure 9. RVR Meander Toolbar with "Image and Text" (top) and with "Image Only" (bottom).

4. TUTORIAL 1: MACKINAW RIVER, IL USA; USING THE MIGRATION COEFFICIENT EMPIRICAL APPROACH

4.1. INTRODUCTION

This tutorial for the Mackinaw River in Illinois, USA presents a step by step description regarding the use of some of the capabilities of the RVR Meander GUI. It uses the Migration Coefficient empirical approach which is the simplest available to get the user started.

In order to run this tutorial you will need the files that came with the installation. If the RVR Meander toolbar is not visible in ArcMap please add it. If you're not sure on how to do it please refer to Section 3 of this manual.

4.2. CREATING THE SHAPEFILES (.SHP) FROM TEXT FILES (.TXT)

Click on the "Text to Shapefile" command button in the toolbar (see Figure 10). An "Open File Dialog" will be displayed that lets you browse for the required text file (see Figure 11). The current version supports only one file at a time and therefore you need to do the process twice. First select the "Mackinaw_River.txt" file and click Open. A "Save File Dialog" will appear prompting you to provide a name and to specify the folder where you wish to save the shapefile (see Figure 12). Click Save and it will be created and added into ArcMap. Repeat the process for the "Mackinaw_Valley.txt" file. The result should look like the one presented in Figure 13 except for the colors that might look different on your computer.

	RVR Meander ßeta 🛛 🔀							
👯 Text to Shapefile 🛛 🖓 RVR I	Meander Beta 1D Output	2D 2D Output	Åγ., Curvature Mapper					

Create a shapefile from a .txt file

Figure 10. Create shapefile from a text file.

Select valley or river centerline file (only one)	? 🛛	Select valley or river centerline file (only one)	? 🛛
Look in: 🜔 Mackinaw 💽 🗢 🖆 🖽 -		Look jn: 🔁 Mackinaw 🔽 🗢 🛍 📸	
My Recent Documents Desktop		Wy Recent Documents Desktop	
My Documents		My Documents	
My Computer		Si My Computer	
My Network File name: Mackinaw_River.txt Places Files of type: Text files (".txt) C	Dpen Cancel	My Network File name: Mackinaw_Valley.txt Files of type: Text files (".txt)	lpen ancel

Figure 11. Select either the river or the valley centerline to input. Currently only one file at a time is supported.

Select a folder to save the export file	Select a folder to save the export file ?	\mathbf{X}
Save in: 🗁 Shapefiles 💽 🗢 🖻 📸 📰 -	Save in: 🗁 Shapefiles 💽 🔶 🖆 🖽 -	
My Recent Documents Desktop My Documents Wy Documents	My Recent Documents Desktop My Documents Wy Documents	
My Network File name: Mackinew River Places Save as type: Shape files (".shp)	Save My Network File name: Mackinawy Valley Save Cancel Save Save Shape files (* shp) Cancel	

Figure 13. River and valley centerlines displayed in ArcMap.

4.3. OPEN THE RVR MEANDER GRAPHICAL USER INTERFACE (RVR-GUI)

Click on the "RVR Meander ßeta" command button (see Figure 14) to access the user interface. A new window will appear (see Figure 15). The RVR GUI contains eight different tabs provided to enter the input parameters for the run. Some parameters are set to default or typical values. Explore the contents of the different tabs and get familiar with them before continuing with this tutorial.

RVR Meander B	eta		80
File Run Help			
i. Bank Erosion I. Layer Definition	6. Migration 2. Channel Properties	7. Smoothing 3. Preprocessing	8. Output 4. Hydrodynamio
	ayer conceptioning to th	•	
Select the map I	ayer correspoding to the	valley centerline	
Use valley ce	nterline		
Select the units	of the current map		
SI Units	English Units		

Figure 15.RVR-GUI.

4.4. IMPORTING THE CONFIGURATION FILE

Click on the File menu and select "Import Configuration" (see Figure 16). An "Open File Dialog" will appear on screen prompting you to browse for the configuration file. Find "Tutorial_1_Data.txt" file on the installation folder and click Open (see Figure 17). After doing so, all the tabs should be automatically populated according to the parameters contained in the file just loaded. If you are curious about the format of the configuration file imported you can find it and open it using the Notepad.

File		
	Export	•
	Import Configuration	
	Close	

Choose Import	File				2 🛛
Choose Import Look in: My Recent Documents Desktop My Documents My Computer	File Tutorial_1_ Shapefiles Mackinaw_R Mackinaw_V Tutorial_1_	Data Iver.tst alley.tst osta.tst	•	+ C ở I.	
My Network Places	File name: Files of type:	Tutorial_1_Data.txt Text files (".txt)		<u> </u>	Open Cancel

Figure 17. Import the Configuration File for the run.

4.5. SELECTING THE SHAPEFILES FOR THE RUN AND THE OUTPUT FOLDER

Before running the simulation two more things are required. Go to the "Layer Definition" tab and in the corresponding dropdown boxes select the files for the river and the valley centerlines. After selecting them your RVR Meander interface should look like the one shown in Figure 18. Go to the "Output" tab and click on the browse button ______ to select the folder where you wish to save the output files. A "Browse Folder Dialog" will appear on screen (see Figure 19). Select the folder and click OK. In this case, a new folder named "Output_Run_1" was created. Now the "Output" tab should look like the one shown in Figure 20. You will probably have differences in the path of the output folder but that is not a problem. You are now ready to run the simulation.

ning 8. Output cessing 4. Hydrodynamics arline v
ning 8. Output essing 4. Hydrodynamics arline srline
erline
erline
_

Figure 18. RVR-GUI; Layer Definition tab with selected layers.

	-
B Desktop	^
🗄 🦲 My Documents	
😑 🧝 My Computer	
H J 312 Floppy (A:)	
H Set Local Disk (C:)	
H S DVD-RW Drive (D:)	
E GERS (E:)	
USERS	
🗄 🛄 Roberto	
E RVR_Meander_Tutorial_1	
🗄 🦲 Tutorial_1_Data	
Cutput_Run_1	
Shapefiles	
Control Panel	
In My Network Places	
B Recycle Bin	
 Desktop_Dec_28_2010 	
 RVR 	Y

File Run Help			
I. Layer Definition 2. Channel 5. Bank Erosion 6. Migration	Properties	3. Preprocessing 7. Smoothing	4. Hydrodynamic: 8. Output
Mesh Generation Method	Non-bis	ecting Method	•
Number of Transverse Nodes for 2D and 3D Plots	51	-	
Plot Iteration Frequency	5		
Iteration Interval	1	years	
Browse to folder to be used fo	routput utorial_1\Tu	utorial_1_Data\Outp	put_Run_1
Browse to folder to be used fo	r output utorial_1\Tr	utorial_1_Data\Outp	put_Run_1
Browse to folder to be used fo E:USERSIRVR_Meander_To Centerline Migration Velocity Velocity Velocity Perturbations	r output utorial_1\Tu	utorial_1_Data\Outş	put_Run_1
Browse to folder to be used to E-UUSERSIFAVR_Meander_Tri Centerline Migration Velocity Velocity Perturbations Velocity Magnitude and Vec Velocity Magnitude and Vec	r output utorial_1\Tr tors and S	utorial_1_Data\Outg hear Stress	out_Run_1
Browse to folder to be used to EUUSERSIFIVE_Meander_Tri Centerline Migration Velocity Velocity Perturbations Velocity Magnitude and Vec Velocity Perturbations Velocity Perturbations	r output utorial_1\Tr tors and S turbations d Elevation	utorial_1_Data\Outp hear Stress and Dimensionless	out_Run_1
Browse to folder to be used to EUUSERSIFIVE_Meander_Tri Centerline Migration Velocity Velocity Perturbations Velocity Magnitude and Vec Velocity Magnitude and Vec Velocity Perturbations Velocity Perturbations Velocity Depth and Be Velocity Water Stage, Depth and Be	r output utorial_1\Tr tors and S turbations d Elevatior d Elevatior	utorial_1_Data\Outs hear Stress and Dimensionless h Perturbations	put_Run_1
Browse to folder to be used fo EUDSERSIFIVE_Meander_Tr Image: Centerline Migration Image: Velocity Image: Velocity Perturbations Image: Velocity Magnitude and Vec Image: Optimisation States Image: Velocity Perturbation Perturbation States Image: Velocity Perturbation Pert	r output utorial_11Tu ctors and S turbations d Elevation d Elevation e, Depth ar	utorial_1_Data\Outy hear Stress and Dimensionless h Perturbations to Bed Elevation Pe	put_Run_1
Browse to folder to be used to E:USERSRVR_Meander_Tri Centerline Migration Velocity Velocity Perturbations Velocity Magnitude and Vec Volder Velocity Perturbations Velocity Perturbations Vel	r output utorial_1\Tu ctors and S turbations d Elevation d Elevation e, Depth an	utorial_1_Data\Outp hear Stress and Dimensionless > Perturbations d Bed Elevation Pe	out_Run_1

Figure 19. Folder Browser Dialog to select where to save the Output files for the current run.

Figure 20. RVR-GUI; Output tab with al the information required in place.

4.6. RUN SIMULATION

Open the Run Menu and click "Run Simulation" (see Figure 21). If everything is correct a new window called Log File Watcher will appear that will show the progress of the computations as well as some parameters. Once the run is completed, the Log File Watcher will display a message that says Exiting and the Save and Close buttons will be enabled. Figure 22 shows the Log File Watcher before, during and after the run.

The results displayed on the Log File Watcher are not saved unless you decide to do so. If you click Save you'll need to browse to the folder where you wish to save the Log File information. An example of this file opened with the Notepad is shown in Figure 23. If you are curious to see how the output files look like browse to the folder where you saved them and take a look. Their names will start with "TecPlot" (see Figure 24) because the output format was originally created to be opened using that software package. The meaning of the variables is explained in the header lines of the file and is also presented in the table located in Appendix 1.

If you haven't done so yet close the Log File Watcher to begin creating the output shapefiles to visualize the run's results in ArcMap.

Figure 21. RVR-GUI Run Menu.

Figure 22. Log File Watcher before the run (left) during a run (center) and after the run finishes (right).

🗈 Log/ Helkock/now/Run 1. txt - Hotepad	
File Edit Format View Help	
KvR Meander 2011	1
Conversit. PARAMETERS Flow refs (0),5) = 40,00000 Selement Tisk (0), 0,000000 Weight density (0,5x) = 40,00000 Weight density (0,5x) = 40,00000 Weight density (0,5x) = 40,00000 Weight density (0,5x) = 40,00000 Wandler of nodes (1traswrid) = 10	
neseconstand method for computing = 1 method for computing curvature at gatream end = 2 method for computing curvature at gatream end = 1	
wesconserved method for computing hydrodynamics at downtream and = 1 westing for computing hydrodynamics = 0.0000000000000000000000000000000000	
Aux Enclose Method for computing bank evolution - mfgration coefficient Mgration coefficient, paymaters Bank ers fon coefficient = 00000000000000000000000000000000000	
NEDATION Coration (years) - 17.00000 (Hest teg (day) - 7.00000 (Hest teg (day) - 7.00000 (Hest teg (day) - 7.00000 (Hest to the signation at upersement of a point for the signation at upersement of a point for the signation at upersement of a point of the signation at upersement of the signature of the signation at upersement of the signatio	
people pe	

Figure 23. Log File in .txt. format.

File Edit View Favorites To	als Help	
ddress 🛅 E:\USERS\RVR_Meande	/ Search Polders IIII * _Tutorial_1\Tutorial_1_Data\Output_Run_1	✓ 🛃 GC
File and Folder Tasks	Log_Fle_Bun_1.txt TereRetID.0AT 129 KB TereRetIDE120.DAT TereRetIDE120.DAT TereRetIDE20.DAT 04 Fle TereRetIDE120.DAT 04 Fle TereRetIDE120.DAT 04 Fle TereRetIDE120.DAT	
Other Places a Tutorial_1_Data My Documents My Computer My Network Places	Technichtecezo.DAT Technichtecezo.DAT DAT Frie DAT Frie 20,993.82 DAT Frie DAT Frie DAT Frie 20,993.82 DAT Frie 20,979.83 DAT Frie 20,379.83 DAT Frie 20,379.83 DAT Frie 20,379.83 DAT Frie TechnicklandTAUZD.DAT DAT Frie TechnicklandTAUZD.DAT DAT Frie TechnicklandTAUZD.DAT DAT Frie	
Details (8	57,702 X8	

Figure 24. Output Files created during the run.

4.7. CREATING AND VISUALIZING 1D OUTPUT IN ARCMAP

4.7.1. CREATING THE 1D OUTPUT SHAPEFILE

Click the "1D Output" command on the RVR Meander toolbar (see Figure 24). This command displays a window that will let you specify in what folder is the file with the output information saved (see Figure 25).

RVR Meander Beta				
tat Text to Shapefile	💤 RVR Meander Beta	1D 1D Output	2D 2D Output	∜∿, Curvature Mapper
		Impo	rt a 1D output file	with migrated river centerlines
	Figure 25. Import a 11	D Output file of Mig	grated Centerlines.	
Ξ	RVR Meander Beta: 10) Output		
	Pick the folder where the 1D	Output files are save	ed	

Click on the browse button ... to select the folder where the output files from the current run were saved. Once you do so the window will expand allowing you to Finish or Cancel the operation (see Figure 27). Make sure you browse to the correct folder. If you don't a warning message will let you know that no output files are saved on the specified location. Click Finish to start processing the 1D Output. While the process is taking place messages will be displayed on ArcMap's status bar (bottom of the screen) asking the user to wait for a few seconds (see Figure 28). ArcMap's screen will freeze for an instant while the process takes place but will refresh as soon as it is finished. A new shapefile will be added into your map called "Migrated Centerlines" and it might have a different color on your machine but it should look similar to the one shown in Figure 29 (other layers were turned off to show only the Migrated Centerlines layer).

10 RVR Meander Beta: 1D Output	
Pick the folder where the 1D Output files a	re saved
E:\USERS\RVR_Meander_Tutorial_1\Tuto	orial_1_Data\Output_Run
1	
Finish	Cancel

Figure 27. 1D Output expanded user form.

RVR Meander 1D Output being processed... 🥹 Please wait a few seconds...

Figure 28. 1D Output – Status bar messages while processing.

**********	<u>, 1889, 1988, 1988, 1988, 1988, 1988</u> , 19888, 1988, 1988, 1988, 1988, 1988, 1988, 1988, 1988, 1988, 1988,	
		Contraction of the second seco
88(2*s] ag \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	- ⊃ = ≠ ≠ ± + ↓ + ↓ + ↓ + ↓ + ↓ + ↓ + ↓ + ↓ + ↓ +	1 Super Status

Figure 29. 1D output - Migrated Centerlines shapefile added into ArcMap.

Before going on to the 2D Output it's important to modify the properties of the Migrated Centerlines layer to make it easier to visualize. If you already know enough of ArcMap to do this without any guidance or are not interested at the time proceed to section 4.8. In case you wish to learn how to modify a layer's properties for better and customized visualization read thoroughly the next section.

4.7.2. CUSTOMIZING THE VISUALIZATION OF THE 1D OUTPUT SHAPEFILE

Right click on the Migrated Centerlines layer and on its context menu select Properties (see Figure 30). Go to the Symbology tab and on the left pane called Show select Categories – Unique Values (see Figure 31). Make sure that in the "Value Field" the option YEARS is selected and that you uncheck the box corresponding to all other values. Before going on make sure that everything looks like Figure 31.

If you want to display all values (all iterations) click on the Add All Values button but if you only want to visualize every 5 iterations click on the Add Values button. A new window will be displayed in which you can select the iterations (years) you want to visualize (see Figure 32). Hold the Ctrl key down on your keyboard and select the following iterations: 5, 10, 15, 20, 25, 30 and 35. Click OK and the Layer Properties Window will include these values. If you want a different Color Ramp use the dropdown menu and select the one you like. Click Apply and see how the Output will look like (see Figure 33). If you want, explore other options inside the Layer Properties Window and when you feel satisfied with the customized visualization of the 1D Output proceed to the next section.

Figure 30. Select Properties on the Migrated Centerline's context menu.

how:	Draw categories	using unique	values of one	field.	Im	port
Categories	Value Field		Color	Ramp		
 Unique values, mar Match to sumbols in 	ly I					-
Juantities	Symbol Value		Label	1	Count	
Charts	All other	values>	<all other="" td="" val<=""><td>les></td><td></td><td></td></all>	les>		
ultiple Attributes						
						141
						1
						1 1
j <u> </u>	<u>></u>					1
	≥ 7					1
	Add All Values	Add Values	Remove	Remove All	Advan	t t
	Add All Values	Add Values	Remove	Remove All	Advag	ted •

Figure 31. Layer Properties Window.

0 1 2	Cancel
3	
5 6 7	~
Complete List	
New Value	he list shove

Figure 32. Add Values window. Select the ones you want while holding the Ctrl key down.

VVR_bloander_Tutoriel_1.mmd - Archiep - Archite		
Ein Eift timm Bosimatia Josef Selector Tools Window timb	Layer Properties	
0	General Source Selecton Display Symbolicge Feible Defention Query Labels Joins & Relates HTML Popup	
20 Andre 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
		100 000 1000 0000000000000000000000000

Figure 33. 1D Output customized visualization.

4.8. CREATING AND VISUALIZING 2D OUTPUT IN ARCMAP

4.8.1. CREATING THE 2D OUTPUT SHAPEFILES

Click the "2D Output" command on the RVR Meander toolbar (see Figure 34). This command displays a window (see Figure 35) that will let the user specify in which folder are the 2D output files saved.


```
Figure 34. Opens user form to import 2D Output parameters.
```


Figure 35. 2D Output user form.

Click on the browse button ... to select the folder where the output files from the current run were saved. Once you do so the window will expand (see Figure 36) allowing you to select which parameters and for which iteration (see Figure 37) you wish to output. Make sure you browse to the correct folder. If you don't a warning message will let you know that no output files are saved on the specified location.

Select the T=5.000000 years iteration (see Figure 37) and also check the box that says Select All. This will automatically select all the parameters that are available for output. The window should now look like the one shown in Figure 38. Click Finish to start processing the 2D Output. While the process is taking place messages will be displayed on ArcMap's status bar (bottom of the screen) asking the user to wait for a few seconds (see Figure 39). ArcMap's screen will freeze for an instant while the process takes place but will refresh as soon as it is finished.

20 RVR Meander Beta: 2D Output								
Pick the folder where the 2D	Output files are saved							
E:\USERS\RVR_Meander_T	utorial_1\Tutorial_1_Data\Output_Run							
Select year to outp	ut Show Floodplain							
Select parameters to output: Check to include Check to include Dimensionless Values Perturbation Values								
Water Surface Elevation	п п							
🗌 Water Depth								
Bed Elevation	Г Г							
Streamwise Velocity	Г Г							
Transversal Velocity								
Additional parameters to output	ut:							
Curvature	Streamwise Shear Stress							
Theta	Transversal Shear Stress							
Velocity in 'X''	Shear Stress Magnitude							
Velocity in "Y"	Friction Coefficient							
Velocity Magnitude	SelectAll							
Finish	Cancel							

Figure 36. 2D Output user form - expanded.

Select year to output				
l	•			
T=1.000000	^			
T=2.000000				
T=3.000000	_			
T=4.000000				
T=5.000000				
T=6.000000				
T=7.000000				
T=8.000000	~			

Figure 37. 2D Output user form - expanded.

2D RVR Meander Beta: 20) Output							
Pick the folder where the 2D	Dutput files are saved							
E:\USERS\RVR_Meander_T	utorial_1\Tutorial_1_Data\Output_Run							
Select year to outp	ut Show Floodplain							
T=5.000000								
Select parameters to output: Check to include Check to include Dimensionless Values Perturbation Values								
🔽 Water Surface Elevation	V V							
🔽 Water Depth	▼							
Bed Elevation	V V							
🔽 Streamwise Velocity	V V							
Transversal Velocity	V V							
Additional parameters to output	ıt.							
Curvature	Streamwise Shear Stress							
🔽 Theta	✓ Transversal Shear Stress							
Velocity in "X"	🔽 Shear Stress Magnitude							
Velocity in "Y"	Friction Coefficient							
Velocity Magnitude	SelectAll							
Finish	Cancel							

Figure 38. 2D Output Window completed and ready to create shapefiles.

RVR Meander 2D Output being processed... 🥹 Please wait a few seconds...

Two shapefiles will be added into your map called "2Dafter_T=5.000000_yrs.shp" and "Boundary_After_T=5.000000_yrs". The first one contains the 2D Output values and is made up of points (see Figure 40). Each point is located on a given cross section and contains the value for the different computed parameters at that specific location in space. The values can be seen in the Attribute Table of the layer. If you want to visualize it right click on the layer to display its context menu and select Attribute Table. A new window will be displayed (see Figure 41) with all the values for the parameters that were checked in the 2D Output Window. The meaning of the variables can be found in Appendix 1.

The second layer is a boundary polygon for the corresponding iteration (see Figure 42). This boundary polygon is necessary to create a TIN or Raster to visualize different parameters in ArcMap. Figure 43 shows a close up view of the 2D output shapefiles. Display properties were changed for both layers (inside the Symbology tab of the Layer Properties window).

Figure 40. 2D Output shapefile added into ArcMap.

FID Shape*	x	100.00	-	81	- B-	80	81	4		- 13		888			11 1	1 4	c	Theta	84	Vy	Vel	Test Te	a Tau	a
113 Fore	-829.944.95	847 102404	0.344322	-0.014103	-0140090	0.952450	42,87116	-0.711954	-0.001125	0.857057	0.700429	1.14218	0.140557	0.149514	0		-014008	128 543413	-0 6000.18	0.917518	134218	10.312282	0 10.312080	0.00790
114 Port	-835.742011	455.006835	0.334574	-0.0161195	-0.160009	0.223212	-1.000406	-0.81758	0.111362	8.964211	0.004345	1.056067	0 100205	0.103929	0	0 0	-0.160868	132.2909H2	-0.73819	0.011291	1.096067	9.510626	0 9510626	0.000%
115 Fokt	-542 162090	482 316413	6.325211	-0.017901	-0.177015	0.117628	-1.105705	-0.903705	0.207363	1.06/009	0.869075	1.04807	0.055468	0.155925	0	0 0	-0.177215	138.658582	47/17/12/18	0.892958	1.04907	8.593017	0 0.099917	0.00PW
116 Port	-849.21674	465.701001	0.318227	-0.049026	-0.191	0.035832	-1.587700	-0.970716	0.290396	1.160058	0.960002	1 000382	0.000679	0.006722	0	0 0	-0.194	145-400262	-0.804222	0.066783	1.000382	7:003441	0 7309441	0.00796
117 Pult	-856.079437	474.150736	0.30759	-0.000009	-0.200746	/0.004/12	-1.248309	-1.020245	0.332361	1,22818	1.003729	0.961906	-0.041636	-0.541304	0	0 0	-0.3007#8	152.058211	-0.849918	0.437226	0.951966	7.163011	0 7.183811	0.00796
118 Port	-065.000430	478:573418	0.299252	-0.02084	-0.201507	-0-06682	1,290439	-1.054608	0.366072	1.202540	1.037536	0.306383	-0.08821	-0.008778	0	0 0	-0.307507	162-067937	-0.851158	0.300658	0.905292	8.479996	0 6.479996	0.000%
110 Purt	-873.748207	401.890045	0.251186	-8.624.92	-0.211777	42 0993373	-4.316004	-1.07E309	0.354539	1.296871	1.058885	0.961547	-0132058	-0.132906	0	0 0	-0.211777	167.825695	-0.841532	0.104027	0.061547	5.867577	0 6.867577	6.00796
120 Port	-882.745592	414.03(455	0.203294	-0.0215#6	-0.214013	-0.907279	-1.330696	1.087973	0.390682	1.309301	1.070065	0.821109	-0.172480	-0.177604	0	0 0	-0.214213	175.260391	-0.816301	0.067946	0.821109	6.329702	0 5.309/02	0.00048
121 Pure	-894 942295	454 955794	0.275568	40.021604	-0.214904	-0.11095	-1.334568	1.090874	0.306518	1.312963	1.073018	0.756479	41 2091 23	10.21047	0	9.9	.0.214004	102 913474	4753465	-0-039673	0.784479	4.064797	0 4.864767	0.00796
122 POPE	-301 130024	404.000204	0.287902	-0.02153	-0.213061	-0.10633	71.323947	-1.006498	0.374315	1.300418	1.009303	0.75183	40.241773	-0.243329		0 0	-0.213061	100.537791	-073915	41127490	075163	4.402275	0 4.458275	D DOI-W
122 PGP	-010 33826	483.132496	0.200514	40.021345	-0.212039	4004952	18.20857	10776	0.355467	1 297 225	1.060155	0723974	-0.270432	-0.372479	0	0 0	40.21.2028	100.004025	-0.007408	40.20461		4.1.34119	0 413411	0.001%
124 2021	-449.234.27	400.394932	0.2507.34	10 (0140%)	-0.204253	49-0009053	-1.301964	-1.06-3/98	0.331103	1.200584	1.040007	0.000402	41.2052	-0.26/101	1.1	0.0	-0.206013	206 553006	-0 630009	49.307.224	0.000403	2.000/94	0 3855-04	0.000.00
1/0 /141	1427 2 34,005	1/6 503147	0.245021	40 1000-25		10.000040	-1 200205	1 040295	0.002400	1,25954	1.029767	0.6777996	10.010,000	10.348280	1.1		4.209821	212.000905	4 90000	4.00710	0.677296	3.8,96957	0 38,800	10000
126 Post	443-0264795	4/1.52/225	0.236571	0.000014	42.21108	0.001475	1 200100	1.025807	0.270740	1.2340/6	1.000001	D.KOWENT	40.3335/08	-0.275835		0 0	0.20104	220.075679	43 504005	0.424738	0.000817	3.441502	0 3.84150	0.000%
127 9181	-943 0.009502	405.5575.00	0.000.000	0.0100004	a contract	0.000490	1 44707	1 000000	0.224025	1.007.008	0.0004.000	0.000000	0.000000				0.000 700	227 727929	A DESCRIPTION	10.00.000	0.0499.00	0.000120	0 3.2947.24	
120 POR	-949 296 132	450 001440	0.224252	-0.0190304	-0.59(2)(1	0.001434	-1.196103	40.9/15/9	0.196-28	1379019	0.961794	0.504.025	-0.29980/7	-0.365999	4	0 0	-0.5 N 251	200 990 950	40.317.0424	4/31/2/0	0.004225	2579425	0 3379625	0.0019
120 0000	-975.352706	441.47775	0.000001	0.0100000		0.001/00	4 1 1 1 1 1 1 1		0.199818		0.004536		10.0000000	4 336773		2.2	0.140407	242.00000	10.007920			2.007082	0 0.000 000	
100 Post	ACC 0033377	433 303334	A 100007	0.14704	6.473000	0.044567	A DEPART	1.403034	m.Merril	1.00404	0.00042	0.82.4010	0.374737	C TANLES	1		0.073400	No Sector	0.47774	A CONTRACTOR	0.64 1000	T-BRANCE	0 2000000	0.0000
100 000	tere constant	414 100000				0.041967	1000000	A Asheria	0.000000	1.00418	0.000007	0.001000		0.000000		1.0		100.14504				2.000033		1.000
120 596	-999.000717	414 001000	0.100203		-0.1464333	0.7545775	-1 000042	-c m+2455	0.004978	1014155	0.00017	0.612150	-0.701445	4.36367	1	y 9	-0.15753	258 1 (6294	41111108	-e-mer/227	0.4409034	1.041000	0 254229	0.0079
A MA DOWN	1000 Dektors	414 002100	0.10000.00		-0.1100620	0.254527	1.00000	-A TIMATA	1111004	0.00000	0.779047	C. ALLERS		A 100.000			0.14 10.00	Jun Letter	0.000424	1.640724	0.440711	1.040700	0 2000000	A 10000
126 Port	222.024.000	104.807963	0.102100	0.0104445	0.126177	0.321528	A 7071403	-0.729468	0.14704	O DIVERSION	0.717058		0.302505	0.305257			0.143530	200.04702	0.001824	4.4000044		2.940,905	0 294000	
120 9088	444 133400	hel anthese	in a dramatic	0.00000	0.000000	0.000115	0.000143	0.664.000	0.244000	A section.	d fieldsh	Advanta	of hits land	do bella blog	- 2-		0.000004	100 billions	0.0007226	0.0000000	D. Stanley	2.00314/2	0 2.0004.01	0.000
170 2021	-968 210002	PER SUPPORT	0.1000000	1.00000	-0.00000	0.949.576	0.0000042	-0.554243	10.010000	0.007/02	0.945318	0.01401	10.07 8494	-0.0017.04			0.000000	278.300846	0.0000/18	-0.0001787		2303162	0 200700	
100 0001	and added	10.000000	0.1000.000	0.000000	0.049304	0.001778			444444	0.144.00	0.000		0.00000	10.000		21-24	10000000	200 800200	0.12012			200000	0 00000	
100 2021	-965.55656	362.6267.25	0.101212	10.0007.04	40.05704	0.000000	10.254529	-0.2090.34	40.702918	0.945/9	0.299048	0.02010	10.000453	40.310025		0 0		203 505104	0.140940	10007063	0.00000	2.001063	0 200000	
COV PORT	-0022070094	391.252152	010204	-000234	0.0222248	1.0196229	0.0000341	4.039057	-0.922525	0.142220	0.0112344	0.534893	-0.3500039	0.300918		0 0	42223348	254 30 7022	0.000070	-0.515127	0.634083	3.55742	0 333000	0.00019
140 7 071	1000 0001102	200 002214	010000	0.001986	0.044444	1 3003958	0.000741	0.00 9002	4.452.463	0.0001175	10001100	0.0000000	10.00000	0.000000		2-24	0.019996	200.003304	0 - 9 9 9 9 9	A STREET	0.0000	2.200908	0 0.00000	
the part	And a publication	201 000000	0.1800,75	0.000000	C. C	1.007004	0.000000	0.000000	A Distant		4.000000	0.0000-0	0.00000	0.000000			C D D D D D D D D D D D D D D D D D D D	201 000000	0.0000000		0.00000-0	2.244,452	0 000000	
112 7981		214 87 327	0.1000	0.010415	0.103404	1.000011	0.0003057	0.525793	1111111	0.00/94/	49 20 1 21 4	0.5000007	0.78088	10.24-911			0.123404	210121040	0.00042		0.007007	2.047946	C Stokryce	
242 5.45	data techania	Dell' abablia	A.470004	0.0140047	0.04714H	2 347647	a nemitte	10.0407734	12 Tel 1997	1 145000	0.000000	o barband	0.000017	0.740047		0 0	0.167166	200.00200	0.000440	ADDIT	or Parsons	4.00000	0 4.000000	
100 0000		AND ADDRESS	A LOUGH	0.000000		2.001910			of the local division in the local divisione		1 (0) 5 (0)	0.00000	distant.	Contration .		2 2	0.14.00173	See Second	0.000000	0.000			0 000000	1.000
100.000	Add Distant	No makes		0.000000	0.219001	A Destroyed	1 1001000	1.11.200	The second	1.1100	4 20200	10000		A COMPANY		2.0	0.210007	And distant	A	1.000433				
100 7071	100.000.00	210.000000		0.004023	0.26,000		1.000074	1 222000			11 2000000			10.000 MPT7		2	0.76,808	244 244 244	10 press (40		o grong	0.00.000	0 0.000	
147 Port	-901 85672	245.112748	0.1204/2	0.025371	0.253015	2,790000	1.507213	1 200807	-2 667 363	-1.541040	1 2200073	0.962562	-0.011102	-0.017281	0	0 0	0.25,015	240 40,000	0.404114	-0.0000045	0.902502	7 832308	0 / 833000	0.0079
100 000	als collers	Dist management	-	0.000000	in Labora	1 Kitters h	A DELADA	A Department	D for kines	1.5.6.1.0.	A Delable	A R DOMAGN	of a lower of the	0.001000		1	d labele	222 4442	0.000000	A DEPART	A 4 100004	D Marine	0 0.0000	- 1000 V
100 0000	1000 000 000	les birren	1. Mar 10.	0.000000	0.00000	A Transfer	1 1000	1.0000000	244.400		1 201410	1.100000	0.1100mm	0.000000		1.2	C James A	And Arrist		0.0000		*******		
Ma Post	2002 054576	1012 4114 10	0.000000	0.003064.8	0.13600	1.033345	1 400000	A LOC TTO	3 64 MILE	4 1004113	1 1 2 2 2 4 2 5	1 120504	In Takings	0.141614			0.120426	NOT TRALLS	1 11 1704	0.000040	1 134000	12 DETERMINE	0 11007007	6.5078
MT First	2214 474167	117 171414	0.06221	1.510.70	10 10 1 40	1.01074.0	1 10.01.40	1.014803	1.44700A	1 101000	1.057400	1 120004	0.064430	0.700767		0 0	10.701.400	100 704600	0.74 104	A 1000717	a training	12.041768	0 12 MIL NO	0.0000
100 0000	able model	100 100 10	1.000.000	0.041403	0.004000	1 allotter	A TRADED	of Addition Pub.	0.000000		0.004440	a heating	() for hearth	0.344000		1	d phaben	ton Thisse	A Destart	A Maritin	a has been	13.000.003	0 12 00100	1.160
alla bort	and a short of	100.0110.00	4.041000	o de Terler	1.413334	3.01×304	1 1000 1 10	1 10000	1.00000	1.1433473	1.000	1 31-201	of the local division in			21-24	0.07307.0	And Designed	A Distant	A LODGE T	1.011200	44 504 500		1.000
105 Post	1000 000011	100.475565	0.062754	0.015004	0.147949	1 100025	A BUTWAR	0.00000.0	-3 14330hr	-0.000403	-0 700014	1.56567	il Milat?	0.344003	-	0 0	0147983	170 10000	4 1011677	A.048876	4 140307	14 471410	0 14 471410	0.0079
110 Dest	0.000 BUTTTT	122 041440	1.141010	0.04.5878	0.033475	2.000314.7	0.0044	O COMMENT.	2.63543	1.041100	0.687214	1.50000	0.560750	0.171400			0.531470	114 430047	1 10000	A & 277377	4 30 5 30	14 Shahrin	0 14 004000	0.0000
ALC PORT	olds Director	100.07100	0.0000000	O COLUMN	0.015400	A DOMESTIC	0.000000	0.68632	a produced	d Mater	-A STREET	a febbal	il bladet	O TRACE	- 2-	2 - 21	0.116140	1 200 2014 (1990)	a being	A 110414	1 Millert	La Dadalla	O De Desale	i north
150.0148	104 74907	+23.10.1400	4.479647	0.000442	0.000000	1 700003	0.5662256	0.461756	-1 Middael		O and the	1.5601146	0.472793	0.374+33		0.0	0.001063	147-04041-5	1 221648	A 100741	1 1007100	14 242606	0 14757604	0.000
Mill Bran	1105 439312	144.004203	4.043775	0.006553	0.065076	1.020311	0.454553	0.110226	1.0100.00	3.30147	410636	1.56873	0.366117	0.16475	1	0 0	0.060078	164 74 3000	-1 301252	A 162017	4.36872	14.010036	0 1481510	6.0079
AND DOWN	1110 754140	130 305100	0.0000034	0.000000	0.001410	1 456 372	6	010000	1 41 1007		0181108	a Samer	0.544765	0.1000.00		0 0	0.007478	1412 400 2017	4 1009 500	0.104804	1 147007	14 1011111	O 14 10111	0.0000
101 Part	1121-004012	202 587761	1.008205	0.000004	0.000525	1.277004	0.053396	0.06363	1.205229	4043432	4.042923	1.330634	0.337004	0.339202		0 0	0.000505	163.054500	A 2728.5e	0.300.84	1.000004	13396463	0 1100401	0.007
100 0144		306.001447	() (m.647)	0.000004	2-030920	1.0064	A+30+++	-0104704		0.136044	0 +03000	1 307813	01423	0.3142913	1	6.6	0.000000	103.032003		d-Marine.	4 1078133	13.53989	0 13.5300	0.0075
MD fires	OLES TIMES T	208.075548	4.029334	-0.004878	1.142010	0.018175	-0.304443	-0 140004	-0 MANUE	0.200414	0.764778	4 379736	0.3658333	0.367472		0 0	in henne	105 53090	4 1700000	4 114114	1 229234	12 836066	0 12 200000	0.0074
164 Purt	1181 (000206)	211.0031.09	0.03961	-0.007965	-0.079007	0.757167	.0.406A11	4 317 226	0.796778	0.450009	0.376036	1 284778	0.251176	0.252790	0	0 0	-0.579007	168 209600	.1.21887	0.252645	1.244779	12240564	0 12 24/04	0.007
105 Part	1172 20007	213 801 09	-0.049494	-0.009/782	.0.007163	0.618363	0.604235	.0 493991	-0.66005	0.094452	0.405816	1.004731	0.2111.29	0.212408	6	0 0	0.087163	171 708701	1.182304	0172042	1,204731	11.472123	0 11423121	0.0074
146 2197	1181 534 907	215.52704	3.069644	0.01472	.0.111001	0.014402	0.700616	-0.45mm YI	0.671016	0.007165	0.566557	1100077	0.100374	0.567345		61-61	40.000 5000	171.047347	4 156005	6.000001	1 153677	10.034600	O PORTAGE	Anthe
147 Page	1107 849005	216.325581	-0.05754	-0.052611	-0.174278	0.450775	0.772643	4476606	.0.444,014	0.200302	0.625 38	1 111127	0117304	0110754		0 0	0114178	100.377445	.1 11+127	A-007333	1 1111027	8.767772	0 9.757777	0.0072
160 Page 1	1 103 00000	144 144417	4.5798.34	A /* 10.44	6.11000	0.430000	A Panies	1.6495511	-0.50563	0.200623	0.630004	a densera	0.0647117	0.000008		0.0	0.111000	104 075070	1.007910	1.000001	1.061010	a av Man	() a be lease	6.50/1
100 0047	a ha h he had	144.476511	1.10101	10.000 (40.00)	A-17988	0.00000	A Private	144004	A 6 10 10 1		0.610000	1.010 1000 1	di feralita a	0.744776		1.1	Artheory	TAX A MONTY	A 19974-06	-0.1000007	1 00 100 1	8 1000 T	G # 110011	6.100
A DO. House		to b malent	1.000475		0.014007	0.014440	-0.2004.7	-1.635664	0.603017	0.00700	0.000446	C. Manhold	0.00000	0.004468	10	1 1	0.114017	101.030004	0.040047	4 100.00	0.044000	a harden	O Y NOVE	0.0000
171 Duan	1222 063241	211 17367	.0.09559	-0.000876	A-090487	0.609007	-D 89 3711	10.000.004	JD 205402	0.603776	O ASTAN	0.826229	-2.067173	0.002807	0	0 0	0.000007	107.003179	0.895342	A 1220M	0.036226	6.791480	0 6.791600	0.0079
172 Page	17244 314782	206 21 3872	J0.101276	-0.007364	0.0794111	0.731643	-0 empla	-0.400065	.0.632902	0.45401	0 394447	O ROTHER	-0.101101	-0.534790		0 0	0.070111	100.018330	0.030073	-0 Ministra	0 MOMEN	6.26622	(0) (6 (March))	0.0079

Figure 41. Attribute Table for the 2D Output including all selected parameters.

Figure 42. 2D Output Boundary Polygon added into ArcMap.

Figure 43. 2D Output - Close up to see the detail of the created shapefiles.

4.8.2. CREATING A TIN TO VISUALIZE SPECIFIC 2D OUTPUT PARAMETERS

In order to create a TIN for any given parameter the user must use the "3D Analyst" extension of ArcMap. If not yet activated, the user must do so by going to the Tools Menu and then Extensions (see Figure 44). Once it's activated the user can add the toolbar in the same way that the RVR Meander Toolbar was added (refer to Section 2).

Figure 44. Enabling the 3D Analyst extension for ArcMap.

Click on the "3D Analyst" command and select "Create/Modify TIN" and then "Create TIN From Features" (see Figure 45). A new window appears in which you should select both the 2D Output shapefile and the boundary polygon.

Create/ <u>M</u> odify TIN		Create TIN From Features
Interpolate to Raster Surface Analysis	+	Add Features to TIN
Reclassify		
Convert	•	
Options		
3D Analyst 🔻		

Figure 45. Accessing the "Create Tin from Features" window with the 3D Analyst toolbar.

You will create a TIN for the parameter "TAU" using the "5 years" iteration and the corresponding boundary polygon (see Figure 46). Note that for the 2D Output file the "Height source" for the TIN is the desired parameter ("TAU" - shear stress magnitude in this case) and in the case of the boundary polygon the option "None" should be selected as well as the "Soft Clip" option. User should also specify the name and folder to save the TIN (see Figure 47). You can name it "Shear_stress_magnitude_5yrs" or simply "TAU_5yrs". Do not forget to use the boundary polygon in the creation of TINs. Not using it will not avoid creating the TIN but it will not follow the river's migrated centerline. Once the user click's "OK" the TIN will be created and displayed in ArcMap (see Figure 48).

Create TIN From Features	Create TIN From Features
Tag value field: <hone> Output TIN: _Run_1\Processed_2D_Output\Shear_stress_magnitude_5yrs OK Cancel</hone>	Tag value field: <a>dNone> Output TIN: <a>Run_1\Processed_2D_Output\Shear_stress_magnitude_Syrs <a>OK Cancel

Figure 46. Required parameters to Create a TIN from features using the 2D Output produced with the RVR-GUI.

,				1.1
Vame:	Shear stress m	agnitude Syrs		Save

Figure 47. Select folder to Save the TIN.

Figure 48. TIN created and added into ArcMap.

For visualization purposes it might be necessary to modify the properties of the new TIN. If you already know enough of ArcMap to do this without any guidance or are not interested at the time you are done with this tutorial. You can save the map and close ArcMap. In case you wish to learn how to modify the TINs properties for better and customized visualization read thoroughly the next section.

4.8.3. CUSTOMIZONG THE VISUALIZATION OF THE TIN CREATED FOR THE 5 YEARS ITERATION AND THE PARAMETER "TAU"

Right click on the TIN ("Shear_stress_magnitude_5yrs") to open its context menu. Select the Properties option and go to the Symbology tab. You might want to uncheck the Edge Types box (left pane) and go to Elevation. TINs are generally created with 9 classes but less might make it easier to visualize. Therefore on the dropdown menu for classes select 5. If you want you can uncheck the box to Show hillshade illumination effect in 2D display (bottom left). Make sure to click the Apply button to see what each change does to your display. You may need to drag the Layer Properties Window to a place where it lets you see the TIN (see Figure 50). Explore the possibilities (different color ramps, class numbers, effects, etc.) and when you feel satisfied with the customized visualization of the TIN click OK.

ow:	Face ele	vation with graduated color r	amp
Edge types Elevation	Value Fie	eld ation	Classification Equal Interval
	Color Ran	np:	▼ Classes: 5 ▼ Classify
	Symbol	Range	Label
		13.7652468 - 16.637867	13.765 - 16.638
		10.8926266 - 13.7652468	10.893 - 13.765
		8.02000637 - 10.8926266	8.02 - 10.893
		5.14738617 - 8.02000637	5.147 - 8.02
Add 1		2.27476597 - 5.14738617	2.275 - 5.147
Remove	Ĩ		
Show hillshade illumination effect in			
2D display	Show .	class breaks using feature values	

Figure 49. TIN Layer Properties Window - Customizing Symbology.

Figure 50. Visualization of the TIN while changing its properties.

You can repeat the process for different parameters or different iterations. Section 5 shows customized visualization made with two different iterations and 3 different parameters. It also includes Floodplain Heterogeneity visualization which wasn't explored in this tutorial. If you want to explore that option refer to Tutorial 3.

5. TUTORIAL 2: MACKINAW RIVER, IL USA; USING THE PHYSICALLY-BASED APPROACH

5.1. INTRODUCTION

This tutorial assumes that you already did the first one (Section 4). Several details are omitted since they were provided in Tutorial 1. The main difference between this tutorial and the previous one is the bank erosion approach used for the computations.

5.2. SETTING UP AND RUNNING A SIMULATION WITH THE PHYSICALLY-BASED APPROACH

Please follow these steps. In case you need more detail on any of them refer to Tutorial 1.

- 1. Open ArcMap and create a new map. Save it.
- 2. Create the river centerline and valley shapefiles from the text files provided in the Tutorial 2 folder. If you already did Tutorial 1 you can just add those shapefiles into your map.
- 3. Open the RVR-GUI and in the Layer Definition tab select the shapefiles for the run.
- 4. Import Configuration for the current run by browsing to the Tutorial 2 folder and selecting "Mackinaw-PB.txt".
- 5. Make sure you indicate the output folder for the run in the Output tab.
- 6. Go to the Run menu and click on Run Simulation.
- 7. An "Open File Dialog" will show up prompting the user to choose the Cross Section Properties file for the run (see Figure 51). Browse to the Tutorial 2 folder and select "InitialSectionProperties.dat". Currently, details on the format of this file are only given in the manual for the standalone version of RVR Meander. The simulation will start after clicking Open and the Log Watcher will appear on screen.

Figure 51. Choose file with cross section properties for the simulation.

8. Create, edit and visualize 1D and 2D output for the run.

6. TUTORIAL 3: MACKINAW RIVER, IL USA; USING THE PHYSICALLY-BASED APPROACH AND FLOODPLAIN HETEROGENEITY

6.1. INTRODUCTION

This tutorial assumes that you already did the first one (Section 4). Several details are omitted since they were provided in Tutorial 1. The main difference between this tutorial and the previous ones is the use of floodplain heterogeneity which assumes that soil properties are not constant and vary across the valley in which the river flows.

6.2. SETTING UP AND RUNNING A SIMULATION WITH THE PHYSICALLY-BASED APPROACH AND FLOODPLAIN HETEROGENEITY

Please follow these steps. In case you need more detail on any of them refer to Tutorial 1.

- 1. Open ArcMap and create a new map. Save it.
- Create the river centerline and valley shapefiles from the text files provided in the Tutorial 3 folder. If you already did previous tutorials and have the shapefiles at hand you can just add them into your map.
- 3. Open the RVR-GUI and in the Layer Definition tab select the shapefiles for the run.
- 4. Import Configuration for the current run by browsing to the Tutorial 3 folder and selecting "Mackinaw-PB-HeterogeneousFloodplain.txt".
- 5. Make sure you indicate the output folder for the run in the Output tab.
- 6. Go to the Run menu and click on Run Simulation.
- 7. Two "Open File Dialogs" will show up prompting the user to choose the Cross Section Properties file for the run (see Figure 51) and the floodplain properties file (see Figure 52). First browse to the Tutorial 3 folder and select "InitialSectionProperties.dat" and second go to the Heterogeneous Floodplain folder and select any of the available "Grid.txt" files. Different grid sizes are provided in case you want to explore the effect of having more or less data describing the floodplain. Details on these two types of input files are currently only provided in the manual for the standalone version of RVR Meander.

Choose file wit	th floodplain o	lescription			? 🛛
Look in	Grid size =	38 m	•	🗢 🗈 💣 📰 •	
My Recent Documents Desktop My Documents	ani 1.bt				
My Computer					
My Network Places	File name: Files of type:	Grid_1.txt		L	Open Cancel

Figure 52. Choose file with floodplain description for the simulation.

8. Create, edit and visualize 1D and 2D output for the run. Make sure to select the checkbox to Show Floodplain in the 2D Output window. If you do so, after the 2D Output processing finishes you should have something similar to Figure 53 on your screen.

Figure 53. Floodplain Heterogeneity and 2D output shapefiles added into ArcMap.

6.3. VISUALIZING FLOODPLAIN PROPERTIES IN ARCMAP

The floodplain shapefile is also made up of points (as the 2D Output shapefile). Each point contains the floodplain properties at that location. In order to visualize the floodplain properties you can use the Spatial Analyst, the 3D analyst or even the Geostatistical Analyst to create a raster to show the properties. An example will be shown here using the 3D Analyst toolbar (see Figure 54) to create a floodplain Raster using the "Inverse Distance Weighted – IDW" algorithm (see Figure 55). The parameter used is the critical shear stress (TauC). The resulting raster with some modifications for better visualization is shown in Figure 56.

2-2	- S	r	The second secon
		1.1	ten (ten) tent ten (en)

and a local state of the local state of the						
a Da line fragment lives (berta lings a Rays a	A Rest Report					
1420 B	14	8.0D2-W				
AUTO	±/.0					
4. 1 / •	3 [- 1	123			
a task log		ar - 1		314 33	0.0100033	and keight
Theshale / senate 2000	ALC: NOTE: NO				4	
L	leer Close Livy Jacom Jacom Jacom Sectorize Jacom		18			 ■ 10,2,50 ■ 10,2,50 ■ 10,50 ■ 10,50 ■ 10,50 ■ 2,50 ■ 10,50 ■ 10,50
	tana kara Tana kara	June 100	33	P		2 -1 -1 -1 -1
	Sacres Oprime	4 Central		Y	Ą	10
			38		3	

Figure 54. Create a Raster using the IDW method from the 3D Analyst toolbar.

Figure 55. IDW parameter definition window for the Floodplain raster.

Figure 56. Floodplain Heterogeneity Raster using the Critical Shear Stress TauC.

7. EXAMPLE OF POST-PROCESSED OUTPUT USING ARCMAP'S CAPABILITIES

The RVR-GUI in ArcMap allows using all the built in functionalities which is an added future for the interface. Quality output can be made with some post processing effort with ArcMap's tools. An example is shown below (see Figure 57).

Figure 57. Example of post-processed output using RVR-GUI and ArcMap.

A1. APPENDIX 1: DESCRIPTION OF THE PARAMETERS IN THE OUTPUT FILES

Table A1 presents a simple description of the different variables produced as Output in RVR Meander.

	Parameter	Meaning
1	HH	Water surface elevation
2	DD	Water depth
3	EE	Bed elevation
4	H1	Water surface elevation perturbations
5	D1	Water depth perturbations
6	E1	Bed elevation perturbations
7	h	Dimensionless water surface elevation
8	d	Dimensionless water depth
9	е	Dimensionless bed elevation
10	UU	Streamwise velocity
11	VV	Transverse velocity
12	U1	Streamwise velocity perturbations
13	V1	Transverse velocity perturbations
14	u	Dimensionless streamwise velocity
15	V	Dimensionless transverse velocity
16	С	Curvature
17	Theta	Angle of curvature
18	Ux	Velocity in the "x" component
19	Vy	Velocity in the "y" component
20	Vel	Velocity magnitude
21	TauS	Streamwise shear stress
22	TauN	Transverse shear stress
23	Tau	Shear stress magnitude
24	CF	Friction coefficient

Table A 1. Description of RVR Meander output parameters.