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ABBREVIATIONS AND ACRONYMS

CeCILL Ce[a] C[nrs] I[nria] L[ogiciel] L[ibre] free software license agreement
EII European Interferometry Initiative
FITS Flexible Image Transport System
FP 6 Sixth Framework Programme of the European Union
GPL GNU General Public License
IAU International Astronomical Union
JRA 4 Join Research Activity 4
NA Not Applicable
OI FITS Optical Interferometry FITS
VLTI Very Large Telescope Interferometer
WP Work Package
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1. INTRODUCTION

This report documents the image reconstruction software, called WISARD, developed by ONERA in
WP 2.5 of the JRA 4, within the framework of the FP 6. Together with the software archive, it constitutes
ONERA’s contribution to the outputs of WP 2.5 (Image Reconstruction Tools).

WISARD stands for “Weak-phase Interferometric Sample Alternating Reconstruction Device”. It is a
software for the reconstruction of images from interferometric data such as the ones that can be recorded by,
e.g., the European VLTI.

It is based on (and quite thoroughly described in) the PhD thesis work of S. Meimon [1] and in refer-
ences [2, 3].

The WISARD software described here is a complete rewrite (from scratch) by S. Meimon and L. Mug-
nier of earlier programs of the aforementioned thesis. Thisrewrite has bought us a dramatic gain in speed and
in code maintainability as well as the elimination of quite afew bugs. Yet, there may of course remain some.
This code and its documentation are distributed in the hope that it will be useful, but on anas isbasis, without
any warranty of any kind. More precisely, WISARD is a free software, licensed under the CeCILL-B license
version 1, which can be found at http://www.cecill.info.

WISARD is written in the commercial language IDL of ITT Visual Information Solutions:
http://www.ittvis.com/idl/. It should thus also run with GDL, the GNU Data Language, available at
http://gnudatalanguage.sourceforge.net/.

Chapter 2 contains the instruction for installing WISARD on your computer.
Chapter 3 documents the use of WISARD and contains an example of reconstruction from interferomet-

ric data. The data comes from the Imaging Beauty Contest 2004 organized by Peter Lawson for the IAU [4].
The example batch file is part of the distribution and can be used and modified for self-study.

Chapter 4 contains an in-depth description of the method implemented by the WISARD

code. For more details on the method, the interested reader should consult [1, 2, 3].
Ref. [1] is available on the French national multidisciplinary thesis server TEL at the follow-
ing address: http://tel.archives-ouvertes.fr/docs/00/05/44/98/PDF/these_finale.pdf. The two other ref-
erences are also available on-line, at http://laurent.mugnier.free.fr/publis/Meimon-JOSAA-05.pdf and
http://laurent.mugnier.free.fr/publis/Meimon-OL-05.pdf respectively.
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2. INSTALLATION OF THE WISARD SOFTWARE

2.1. Requirements

The WISARD software should run on all platforms such that (a) IDL or GDL is installed, and (b) the
OptimPack optimization package of Éric Thiébaut (see Section 2.3) is installed. This means that WISARD can
be installed and run on at least all Unix-like platforms.

2.2. Unpacking

WISARD is distributed in a compressed archive calledWisard-<date>.tar.gz. Unpacking it is
straightforward and will create aWISARD/ directory under which is the distribution. From the shell prompt,
type:
tar xvfz Wisard-<date>.tar.gz

The directories created underWISARD/ and the nature of their contents are the following:
./doc/ This documentation of WISARD

./lib/ WISARD, its sub-routines, and routines used by them:

./lib/wisardlib/ the WISARD main routine and its sub-routines. These routines are underthe
CeCILL-B license.

./lib/extralib/ Several extra routines:
– quick-and-dirty code to input (some) OIFITS data

(wisard_oifits2data.pro, which needs some work – anyone
interested?), plus

– routines used by the former code to read the OIFITS format, by J. D. Mon-
nier (see http://www.astro.lsa.umich.edu/˜monnier/), plus

– some routines from NASA’s astro library, used in turn by theformer rou-
tines, available from http://idlastro.gsfc.nasa.gov/.

./lib/oneralib/ ONERA routines necessary to WISARD. These routines arenot part of
WISARD but used and distributed by permission of their respective authors.
These routines are under the CeCILL-C license.

./lib/optimpacklib/ OptimPack library for IDL (OptimPack_IDL*.so) and its IDL frontend
routines (op_*.pro), by É. Thiébaut. This library isnot part of WISARD

but is used by WISARD and distributed here by special permission of the
author.

./optimpack/ OptimPack sources (*.c *.h) andMakefile (see Section 2.3), plus a
copy of the IDL frontend routines (op_*.pro). Once again, this library is
not part of WISARD but is used by WISARD and distributed here by special
permission of the author. These routines are under the GPL.

./pro/ example batch file for WISARD. A good starting point for self-study, cf Sec-
tion 3.3.

./inputdata/ input data for the example batch file.
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2.3. Dependencies

WISARD heavily uses Éric Thiébaut’s neat OptimPack software as itsminimization engine. So WISARD

needs the OptimPack library for IDL (OptimPack_IDL*.so) and its IDL frontend (op_*.pro files) to
be installed. Although OptimPack isnot part of WISARD, we have included the OptimPack IDL frontend
and the pre-compiled OptimPack library for IDL (for Linux and Solaris, both 32 and 64-bit architectures) in
thelib/optimpacklib/ directory of the WISARD distribution, with their author’s permission. So if your
computer is a Sun running Solaris or a PC running Linux you should have nothing to do.

Should these pre-compiled librairies not work for you, we have also included all the necessary sources
(*.c *.h andMakefile) under theoptimpack/ directory. Amake command from theoptimpack/idl
directory should build the library for your architecture. Then simply copy the resultingOptimPack_IDL*.so
files in thelib/optimpacklib/ directory.

2.4. Installing WISARD

Once you have unpacked the archive (Sect. 2.2), and once you have compiled the OptimPack library for
IDL if necessary (Sect. 2.3) the only installation to be doneis to make all routines under thelib/ directory
known to IDL. Assuming that you unpacked the archive in your home directory, this is achieved by typing the
following at theIDL prompt:
!PATH = expand_path(’+~/WISARD/lib’) + ’:’ + !PATH

If you have unpacked the archive elsewhere, simply replace~ with the appropriate directory in the command
above. See the example of Section 3.3 for using a relative path instead of an absolute one.

2.5. Acknowledgements

The authors of WISARD hereby express their gratitude to the following people, as WISARD uses some
routines of theirs:

– Éric Thiébaut (from CRAL): WISARD heavily uses his (neat) OptimPack software as its minimization
engine.

– Frédéric Cassaing and Jean-Marc Conan: WISARD uses a few routines by these ONERA scientists. These
routines (and some others by Laurent Mugnier) are distributed along with WISARD, with these authors’
permissions, in thelib/oneralib/ directory.

– John D. Monnier for hisOIFITS reading routines, as well as the authors and maintainers of the NASA
astronomical library, for their routines used by John’s ones. TheOIFITS reading routines are avail-
able at http://www.astro.lsa.umich.edu/˜monnier/, while NASA’s astronomical library can be found at
http://idlastro.gsfc.nasa.gov/. For convenience their routines are included in thelib/extralib/ di-
rectory of the WISARD distribution.
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3. WISARD’S USER MANUAL

3.1. General presentation

The WISARD reconstruction method is a regularized reconstruction [5,6], where the solution (recon-
structed object) is defined as the one that minimizes a compound criterion (or “metric”) with two terms. One
term, called the likelihood term, measures the fit of the reconstruction to the data and the other term (regu-
larization or penalty term) measures the compatibility of the reconstruction with our prior knowledge on the
true object. The main routine of WISARD is wisard.pro. The input data forwisard.pro is typically
recorded by an optical interferometer measuring, in time, the simultaneous interferences of at least three tele-
scopes. It consists in squared visibilities and closure phases, the error bars on these quantities, and the spatial
frequencies corresponding to each datum. The structure of the data is given in Section 3.2 and more precisions
are available in chapter 4.

The prior knowledge is, on the one hand, the hard constraint of positivity of the reconstruction, and, on
the other hand, a somewhat fuzzy knowledge that the object tobe reconstructed has some kind of smoothness
(or piece-wise smoothness, or global smoothness apart fromsome spikes, etc). In WISARD, several regular-
ization terms are available to embody this prior knowledge on the solution. A smooth solution is obtained by
a quadratic regularization, which uses the object’s PSD (Power Spectral Density) as input. This regularization
is described in[7] and implemented inj_prior_gauss.pro.

A piecewise smooth prior is obtained by a linear-quadratic (also calledL1−L2) regularization introduced
in[8, 9]. This prior is callededge-preservingas it allows sharp edges in the object if the data is compatible
with them, contrarily to a quadratic regularization.

A variant of this regularization has been designed to grant the solution with some smoothness while
allowing spikes; it is a pixel-independent (or white) linear-quadratic regularization calledspike-preservingin
short. Both the edge-preserving and the spike-preserving priors are implemented inj_prior_l1l2.pro.

The main parameters for WISARD are the data of course, the Field-Of-ViewFOV for the reconstruction,
the minimum number of pixelNP_MIN the user wants in this FOV, and keywords specific to the desired
regularization. For a quadratic regularization, use keyword PSD, and possibly keywordMEAN_O. For an
edge-preserving regularization, use keywordsDELTA andSCALE. For a spike-preserving regularization, use
keywordsDELTA, SCALE, andWHITE=1. See 3.2 for the full list of keywords and details on how to setthem.

Additionally, some information is displayed while the iterative minimization is in progress, under the
following form: ITER/NBITER; Convergence=x. Criterion=jtotal = jdata + jpriorwhere
ITER is the number of iterations performed so far,NBITER is the maximum allowed number of iterations,x
is the value of the convergence test,jtotal is the current value of the criterion being minimized,jdata is
the current value of the likelihood term andjprior is the current value of the likelihood term.

Lastly, we recall that, as for any properly-written IDL program, the on-line documentation on WISARD

or any of its sub-routines can be obtained by typingdoc_library, ’<routine_name>’ at the IDL
prompt (where<routine_name> is, for instance,wisard).

3.2. List of parameters and accepted keywords

The only positional parameter isdata. All the other parameters are passed as keywords. The notation
/KEYWORD in the following table meansKEYWORD=1, as is customary with IDL.
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data (input) interferometric input data for the reconstruction. data is a vector
of structures, one structure per time of measurement, each containing
the following fields:
– VIS2 : the squared visibilities for each baseline;
– VIS2ERR : the standard deviation on the squared visibilities;
– CLOT : the closure phases for each triplet of telescopes involving

telescope 1;
– CLOTERR : the standard deviation on the closure phases;
– FREQS_U : first coordinate of the spatial frequencies involving

telescope 1;
– FREQS_V : second coordinate of the spatial frequencies involving

telescope 1.
The zero frequency must not be present in the data: the data must be
normalized, as are OIFITS files, so that the value of the data at this
frequency would be 1. In other words, the reconstructed object has a
unit sum.

FOV (input) Field-Of-View of the reconstructed image, in unitsconsistent with the
data. More precisely the unit for FOV must be the inverse of the unit
of the arrays of frequencies (FREQS_U andFREQS_V) of the data.
UsuallyFREQS_U andFREQS_V are inrd( − 1) soFOV should be
in rd (radians).

NP_MIN (input) MINimum width (Number of Points) of the reconstructed image. The
Number of Points of the reconstructed object may be greater,depend-
ing onFOV, OVERSAMPLING factor, and frequencies present in the
data. See routineWISARD_MAKE_H for details.

OVERSAMPLING (optional input) oversampling factor for the reconstructed image. By default,
OVERSAMPLING=1 and the maximum spatial frequency of the re-
constructed object is the maximum frequency of the data. Seeroutine
WISARD_MAKE_H for details.

GUESS (optional input) initial guess for the reconstructed image(or dirty map if not present).
This guess is massaged in the following way: resampled if necessary
to the correct size, thresholded to positive values and normalized to
a unit sum. This massaged guess is available on exit as a field of
AUX_OUTPUT.

NBITER (optional input) maximum NumBer of ITERations for the reconstruction, 500 by de-
fault. For a better control of the reconstruction, one should rather use
THRESHOLD below and not lower this value.

THRESHOLD (optional input) convergence THRESHOLD to be used as a stopping criterion for the
iterations. By default set to the machine precision in simpleprecision
(approximately 1.19e-07), although computations are donein double
precision. For a (rather) quick-look result, set to a smaller value, e.g.,
10−6.

POSITIVITY (optional input) POSITIVITY constraint for the reconstruction. It is set to true (1) by
default. Set it explicitly to 0 if by misplaced curiosity youdo not want
to use the positivity constraint in the reconstruction.

THE FRENCH AEROSPACE LAB
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PSD (optional input) 2-D map of sizeNP_MIN×NP_MIN containing the PSD for
the (quadratic) regularization of the reconstruction. Seeroutine
J_PRIOR_GAUSS and the example file for details.

MEAN_O (optional input) 2-D map of sizeNP_MIN×NP_MIN containing the MEAN Object to
be used for regularization of the reconstruction.MEAN_O is used both
for PSD regularization and for white L1-L2 regularization (i.e., when
DELTA, SCALE andWHITE are set).

DELTA (optional input) scalar factor for L1-L2 regularization, used to set the thresh-
old between quadratic (L2) and linear (L1) regularization.See
routine J_PRIOR_L1L2 and the example file for some more
details. See [9] for a complete description of the L1-
L2 regularization. The PDF of this paper is on-line at:
http://laurent.mugnier.free.fr/publis/Mugnier-JOSAA-04.pdf.

SCALE (optional input) scalar SCALE factor for L1-L2 regularization. should be of the
order of the average object value ifWHITE is set, and of the or-
der of the RMS object’s gradient value ifWHITE is not set. See
J_PRIOR_L1L2 and example file for some more details. See the
paper cited above for the whole story.

WHITE (optional input) flag to switch between edge-preserving regularization (WHITE=0, de-
fault) and spike-preserving regularization (WHITE=1). In the lat-
ter case the regularization is performed independently on each pixel
value, hence the flag name.

LIBRARY (optional input) full path of the OptimPack library (seeFMIN_OP for details), if nec-
essary. Under Unix systems the OptimPack library should be found
automatically.

AUX_OUTPUT (optional output) structure containing various optional AUXiliary outputs, for diagnos-
tic purposes. The details of this structure is given in the on-line docu-
mentation for thewisard routine.

/DISPLAY (optional input) display the reconstructed object and the fit to the visibilities along the
way.

/VERSION (optional input) prints version number before execution.
/HELP (optional input) prints the on-line documentation and exits.
/COPYRIGHT (optional input) prints information about copyright and exits

3.3. Example of use of WISARD

An example of use of WISARD for several regularizations types and levels is thewisard_batch.pro
file, located in thepro/ directory of the distribution. Studying this example, running it and modifying its pa-
rameters should be a good starting point for building your own reconstruction know-how.

The data used here from the Imaging Beauty Contest 2004 organized by Peter Lawson for the IAU [4].
With the software distributed here, you will obtain reconstructions notably better than the ones we obtained
with WISARD at the time [10], and at least as good as the best one of [4].

Below are described the essential portions of this file:
First, change directory to thepro/ directory of the WISARD distribution and run the IDL interpreter.
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If for instance WISARD has been unpacked in your home directory, it is under the~/WISARD directory, the
commands to be issued at the shell prompt are:
cd ~/WISARD/pro
idl

Then, at the IDL prompt, add the libraries needed by WISARD to IDL’s search PATH:
!PATH = expand_path(’+../lib’) + ’:’ + !PATH

Read the license:
dummy = wisard(/copyright)

If you accept it, you can go on and pre-process the data file, which is in OIFITS format, into a structure
suitable for input into WISARD:
datafilename = ’../inputdata/dataImagingBeautyContest2004.oifits’
data = wisard_oifits2data(datafilename)

Choose the reconstructed Field-Of-View (FOV) and grid size.The default FOV is the inverse of the
minimum spatial frequency present in the data, which is often too small (if the data lacks low frequencies).
For a32 × 32 reconstructed object and a FOV of18 milli-arcseconds (for instance), type:
NP_min = 32L
onemas = 1d-3*(!DPi/180D)/3600D ; one mas in radian
fov = 18.0*onemas

Choose the convergence threshold used to stop the iterations. By default one waits until the criterion
no longer evolves (the default threshold being given by machine precision and of the order of10−7). For
experimenting with the code, you may choose a larger value, such as10−6 :
threshold = 1d-6

You may also give an initial guess (if you have performed other reconstructions, or if you want to see
how stable the reconstruction is with respect to the initialguess). By default (if the guess is 0 or absent, the
so-calleddirty mapis computed by WISARD on the appropriate grid, thresholded to positive values, and used
as an initial guess:
guess = 0

For a first reconstruction, you can use a Gaussian or PSD-based regularization. The PSD must be a
2-D map in Fourier space containing the assumed PSD of the object to be reconstructed. For a disk-like object
you should take a PSD with a1/f3 dependence on the spatial frequency (as the square of the FT of a disk has
an envelope that goes to zero with this dependence). You should threshold this PSD so that it remains finite
at 0 and so that its dynamic range remains reasonable (as a large dynamic range for the PSD may hinder the
minimization):
distance = double(shift(dist(NP_min), NP_min/2, NP_min/2))
PSD = 1D/((distance^3 > 1D) < 1d6)

Run WISARD, displaying both the object being reconstructed (in window0) and the fit of the recon-
structed visibilities to the data (in window 1):
x_psd = WISARD(data, $

FOV = fov, NP_MIN = np_min, $
GUESS = guess, THRESHOLD = threshold, $
PSD = psd, $
AUX_OUTPUT = aux_output_psd, /DISPLAY )
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The obtained reconstruction shows the correct overall shape of the reconstructed object, on a dark and quite
noiseless background, but without the central peak of the original object (see[4]).

A global factor multiplying the PSD acts as the inverse of a regularization parameter. In other words,
for more regularization (to get a smoother object), you should divide the PSD by,e.g., a factor10 (or more)i.e.,
assume a weaker object; and for less regularization (to get an object with more details), you should multiply the
PSD by,e.g., a factor10 (or more)i.e., assume a stronger object. If you setPSD = 100D*psd for instance,
you will get an under-regularized solution very similar to that obtained without a regularization: quite noisy,
but with the emergence of the central peak present in the original object.

Let’s now try the white L1-L2 (spike-preserving) regularization. SetWHITE=1 and chooseSCALE
of the order of the object’s mean value (this is easy because the reconstructed object is of unit sum). For
DELTAÀ 1, one obtains a quadratic (L2) regularization and a reconstruction similar to a PSD-based one. For
the desired spike-preserving regularization you can set:
white = 1B;
scale = 1D/(NP_min)^2; for white L1-L2, scale ~ avg_object_level = 1/NP^2
delta = 1D;
Run it:
x_l1l2white = WISARD(data, $

FOV = fov, NP_MIN = np_min, $
GUESS = 0, THRESHOLD = threshold, $
SCALE = scale, DELTA = delta, WHITE = white, $
AUX_OUTPUT = aux_output_l1l2white, /DISPLAY)

The result is much smoother than an under-regularized solution andhas the central peak of the object as visible
as the nose in the middle of one’s face (French expression)!

Figure 3.1 shows three reconstructions: an under-regularized PSD-based reconstruction (with the above
PSD multipied by 100), the PSD-based reconstruction run above, and the white L1-L2 reconstruction just
obtained.

Figure 3.1 – Three reconstructions obtained withWISARD: under-regularized PSD-based (left), correctly regularized PSD-based
(center), and white L1-L2 (right). The false-color table isgiven on the left side.

Figure 3.2 shows the plots of WISARD displayed during the white L1-L2 reconstruction. These plots
aim at showing the quality of the fit of the reconstruction to the data: the red crosses show the modulus of
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the reconstructed visibilities (FT of the object at the measured frequencies), while the green squares show the
measured visibilities (i.e., the data). The blue line shows the difference of the two, normalized by 10 times
the standard deviation of the visibilities. In other words,when the blue line is at a level of0.1 it means that
the fit between the reconstructed and the measured visibilities is at one standard deviation (which means the
reconstruction fits the data well!).

0 2.0•107 4.0•107 6.0•107 8.0•107 1.0•108 1.2•108

frequency

0.0

0.2

0.4

0.6

0.8

1.0
Abs(Reconstructed Vis.)

Abs(Measured Vis.)
Abs(Difference)/(10 x stddev)

Figure 3.2 – Typical plot displayed byWISARD at convergence (see text).
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4. WISARD DESIGN REPORT

4.1. Introduction

Optical interferometry allows one to reach the angular resolution that a hundred meter telescope would
provide, using several ten meter telescopes.

The interferograms of current instruments are affected by turbulence, which corrupts the recorded
object phases, so one is led to form quantities that are turbulence-independent such as squared visibilities and
phase closures.

In order to cope with the missing phase information, we introduce phase calibration parameters to be
estimated jointly with the observed object and we propose WISARD (for Weak-phase Interferometric Sample
Alternating Reconstruction Device) to perform this estimation. This algorithm combines, within a Bayesian
framework, an alternating estimation of the object and phase parameters (in the spirit of self-calibration algo-
rithms proposed by radio-astronomers [11]), a recently developped noise model suited to optical interferometry
data [2], and an edge-preserving regularization [9] to dealwith the sparsity of the data typical of optical inter-
ferometry.

4.2. Structure of WISARD

WISARD is made of the following major blocks:
– a first blockwisard_data2mdata.pro computes (so-called “myopic”) complex pseudo-data from the

input data, and error bars on these pseudo-data. These complex data have the following properties:
– the phases measurements and error bars are computed from and compatible with the measured phase

closures and their error bars;
– the amplitudes measurements and error bars are computed from and compatible with the measured

squared visibilities and their error bars.
– a convexification blockwisard_mdata2cmdata.pro computes a gaussian approximation of the pseudo

visibility data model. This approximation is optimal in thesense of a Kullback Leibler distance (see III);
– a third blockwisard_set_regul.pro proposes an adapted prior term, to be chosen among a list of

regularizations, such as positivity, Power Spectral Density quadratic regularization, linear-quadratic (also
calledL1−L2) regularization, etc... The algorithmic structure of WISARD make it easy to add other kinds of
prior terms to the code;

– a self-calibration block performs the minimization. It alternates
– a minimization of the criterion w. r. t. the object for givenaberrations, which consists essentially in a

minimization of a convex criterion under positivity constraint;
– an optimization of the aberrations for the current object.It is accelerated by performing in parallel several

optimizations of a subset of the aberrations, instead of oneglobal optimization.
The pattern of WISARD is described in Fig. 4.1.
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Aberration step

prior, object guess, α = 0
Initialization :

Myopic pseudo−data

Myopic approx. data

Recasting

Convexification 

Object step

Self−calibration

Reconstruction

Raw data

Figure 4.1 –WISARD algorithm loop

4.3. Interferometric observables

Consider a model 2-telescope interferometer, which two identical apertures(T1, T2) are located at three-
space positions

−→
OT 1 and

−→
OT 2. We denoteP the plane normal to the pointing direction, andr1 andr2 the

projection of
−→
OT 1 and

−→
OT 2 ontoP.

Thebaselineu12 is defined by the projection of the displacement
−−→
T1T2 ontoP:

u12
∆
= r2 − r1

Because of the Earth rotation, the pointing direction changes during an observing night, so the baseline is time
dependant too:

u12(t)
∆
= r2(t) − r1(t) (4.1)

Let us consider now aNt-telescope interferometer. There are as many baselines as ways to choose 2 telescopes
amongNt:

Nb =

(
Nt

2

)

=
Nt(Nt − 1)

2
(4.2)
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ForNt = 4, theNb = 6 baselines are:






u12(t) = r2(t) − r1(t)

u13(t) = r3(t) − r1(t)

u14(t) = r4(t) − r1(t)

u23(t) = r3(t) − r2(t)

u24(t) = r4(t) − r2(t)

u34(t) = r4(t) − r3(t)

or in a matrix formulation:
u(t) = B · r(t), (4.3)

where theNb × Nt operatorB is thebaseline operator(see appendix I page 22).

4.3.1. Ideal interferometric data

We consider a monochromatic source with a wavelengthλ, and denotex(ξ) the brightness distribution,
ξ being angular coordinates. For each baseline, it is possible to access to the following short exposure data:
– a phaseφdata(t)
– a modulusadata(t)

The complex vectorydata(t) = adata(t)eiφdata(t) is called thecomplex visibility vector. According to the Van
Cittert-Zernike theorem [12], complex visibilities areideally linked to the Fourier Transform (FT) ofx(ξ) at
the 2D spatial frequency

ν(t)
∆
=

u(t)

λ
, (4.4)

throughyij
data(t) = FT [x(ξ)] (νij(t)), i.e.,:

{

φij
data(t) = φij(x, t)

∆
= arg FT [x(ξ)] (νij(t))

aij
data(t) = sij(x, t)

∆
= |FT [x(ξ)] (νij(t))|

(4.5)

or in a matrix formulation:
{

φdata(t) = φ(x, t)

adata(t) = a(x, t)
(4.6)

In what follows, we will only consider a discretized versionx of x(ξ). The Fourier Transform then corresponds
to a matrix product by a Fourier operatorH:

y(x, t) = H(t)x (4.7)

For convenience, we also define:






φ(x, t)
∆
= arg (H(t)x)

a(x, t)
∆
= |H(t)x|

s(x, t)
∆
= |H(t)x|2

(4.8)

The operators|.| andarg are point-to-point operators.
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4.3.2. Data model

The long exposure observables considered in this report aresquared modulisdata(t) and closure phases
βdata(t). These observable are affected by a noise, and we suppose in this report that only second degree
statistics are provided, and that the closure phase measurement set and the squared modulus measurement set
are two uncorrelated sets of variables.
The noise distribution we can make out of these statistics isthen gaussian:

{

sdata(t) = a2(x, t) + snoise(t), snoise(t) ∼ N
(
0,Rs(t)

)

βdata(t) = Cφ(x, t) + βnoise(t), βnoise(t) ∼ N
(
0,Rβ(t)

) (4.9)

The algebraic structure of theclosureoperatorC is described in appendix I page 22.

4.3.3. Input Data format in W ISARD

The data format is a vector of structures, one structure for each time of measurement, with the following
fields:
– VIS2 : the squared visibilities for each baseline
– VIS2ERR : the standard deviation on the squared visibilities
– CLOT : the closure phases for each triplet of telescopes involving telescope 1
– CLOTERR : the standard deviation on the closure phases
– FREQS_U : first coordinate of the spatial frequencies involving telescope 1
– FREQS_V : second coordinate of the spatial frequencies involving telescope 1

For example, at each momentt, for a 4-telescope array, the fields contain:

field # notation

VIS2 : 6 sdata
12 (t), sdata

13 (t), sdata
14 (t), sdata

23 (t), sdata
24 (t), sdata

34 (t)

VIS2ERR : 6 σs12(t), σs13(t), σs14(t), σs23(t), σs24(t), σs34(t)

CLOT : 3 βdata
123 (t), βdata

124 (t), βdata
134 (t)

CLOTERR : 3 σβ123(t), σβ124(t), σβ134(t)

FREQS_U : 3 u12(t), u13(t), u14(t)

FREQS_V : 3 v12(t), v13(t), v14(t)
The covariance matricesRs(t) andRβ(t) are implicitely supposed diagonal.

4.4. From input data to a myopic model

This section describes the codewisard_data2mdata.pro.
We want to recast the data model in a myopic one, with visibility phase and modulus pseudo-data. The

corresponding format is described below. The myopic data format is a vector of structures, one structure for
each time of measurement, with the following fields:
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– VISAMP : the visibility moduli for each baseline
– VISAMPERR : the standard deviation on the visibility moduli
– VISPHI : the visibility phases for each baseline
– VISPHIERR : the standard deviation on the visibility phases
– FREQS_U : first coordinate of every spatial frequency
– FREQS_V : second coordinate of every spatial frequency

For example, at each momentt, for a 4-telescope array, the fields contain:

field # notation

VISAMP : 6 a12(t)
data, a13(t)

data, a14(t)
data, a23(t)

data, a24(t)
data, a34(t)

data

VISAMPERR : 6 σa12(t), σa13(t), σa14(t), σa23(t), σa24(t), σa34(t)

VISPHI : 6 φ12(t)
data, φ13(t)

data, φ14(t)
data, φ23(t)

data, φ24(t)
data, φ34(t)

data

VISPHIERR : 6 σφ12(t), σφ13(t), σφ14(t), σφ23(t), σφ24(t), σφ34(t)

FREQS_U : 6 u12(t), u13(t), u14(t), u23(t), u24(t), u34(t)

FREQS_V : 6 v12(t), v13(t), v14(t), v23(t), v24(t), v34(t)

4.4.1. Visibility modulus pseudo data

Each
{
adata

ij (t), σaij(t)

}
is computed from input data

{
sdata

ij (t), σsij(t)

}
acording to:

– in every case,adata
ij (t) =

√

|sdata
ij (t)|;

– if sdata
ij (t) > σsij(t) thenσaij(t) =

σsij(t)

2
√

|sdata
ij (t)|

;

– elseσaij(t) =

√
σsij(t)

2
.

See appendix II for justification of these formulae.

4.4.2. Visibility phase pseudo data

For each instantt, the vectorφdata(t) - containing theφdata
ij (t) - and the vectorσφ(t) - containing

theσφij(t) - is computed from the vectorβdata(t) - containing the input dataβdata
1ij (t) - and the vectorσβ(t)

-containing the input dataσβ1ij(t) - acording to:

– φdata(t) = C†βdata(t);
– σφ(t) = 3 · C†Diag{σβ(t)}C†,T ⊗ Id.
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where⊗ denotes a term-to-term product, andC† is defined in appendix I. LetR be a diagonal matrix, the
vector of the diagonal components beingr. For any matrixM with compatible dimensions, we have:

{
MRMT ⊗ Id

}

ij
= δij

∑

k

∑

l

Rik∆klMjl

= δij

∑

k

∑

l

Rik∆klMil

= δij

∑

k

M2
ikrk

So we can write:
σφ(t) = 3

(
C† ⊗ C†) σβ(t)

This is how the computation ofσφ(t) is coded inwisard_data2mdata.pro.

4.5. From a myopic model to a myopic convexified model

This section describes the codewisard_mdata2cmdata.pro.
The convexified myopic data format is a vector of structures,one structure for each time of measure-

ment, with the following fields:
– VIS : the complex visibilities for each baseline
– W_RAD : radial weight on the visibility moduli, to be used in criterion(see sect. 4.6.
– W_TAN : tangential weight on the visibility moduli, to be used in criterion(see sect. 4.6.
– FREQS_U : first coordinate of every spatial frequency
– FREQS_V : second coordinate of every spatial frequency

For example, at each momentt, for a 4-telescope array, the fields contain:

field # notation

VIS : 6 ydata
12 (t), ydata

13 (t), ydata
14 (t), ydata

23 (t), ydata
24 (t), ydata

34 (t)

W_RAD : 6 wrad,12(t), wrad,13(t), wrad,14(t), wrad,23(t), wrad,24(t), wrad,34(t)

W_TAN : 6 wtan,12(t), wtan,13(t), wtan,14(t), wtan,23(t), wtan,24(t), wtan,34(t)

FREQS_U : 6 u12(t), u13(t), u14(t), u23(t), u24(t), u34(t)

FREQS_V : 6 v12(t), v13(t), v14(t), v23(t), v24(t), v34(t)

Each
{
ydata

ij (t), wrad,ij(t), wtan,ij(t)

}
is computed from myopic data

{
φdata

ij (t), σφij(t), a
data
ij (t), σaij(t)

}
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acording to:

ydata
ij (t)

∆
=

[
adata

ij (t) − ȳdata
ij (t)

]
exp iφdata

ij (t) (4.10)

ȳdata
ij (t) = adata

ij (t)

[

e−
σ2

φij(t)

2 − 1

]

⇒ ydata
ij (t) = adata

ij (t) exp φdata
ij (t)

[

2 − e−
σ2

φij(t)

2

]

wrad,ij(t) =
[
σ2

rad,ij(t)

]−1

=






1 + e
−2σ2

φij(t)

2
· σ2

aij(t)
+

(

1 − e
−σ2

φij(t)

)2

2
· adata

ij

2
(t)






−1

wtan,ij(t) =
[
σ2

tan,ij(t)

]−1

=

[

1 − e
−2σ2

φij(t)

2
· σ2

aij(t)
+

1 − e
−2σ2

φij(t)

2
· adata

ij (t)
2

]−1

These equations are explained in appendix III.

4.6. The criterion minimized

We define:

zrad,ij(t)
∆
= < e

{

ze−iφdata
ij (t)

}

, ∀z ∈ C (Cf. eq. 4.10)

ztan,ij(t)
∆
= =m

{

ze−iφdata
ij (t)

}

, ∀z ∈ C (Cf. eq. 4.10)

yres(x,α(t), t)
∆
= y(t)data − y(x, t)eiB̄α(t)

(4.11)

and propose to use the following data-likelihood criterion:

J data(x,α)
∆
=

∑

t

J data(x,α(t), t)
∆
=

∑

t

∑

ij

J data
ij (x,α(t), t)

J data
ij (x,α(t), t)

∆
=

1

2
wrad,ij(t)

[
yres

rad,ij(x,α(t), t)
]2

+
1

2
wtan,ij(t)

[
yres

tan,ij(x,α(t), t)
]2

(4.12)

4.6.1. Expression for the aberration step

With Eqs. 4.11 , we have:

yres(x,α(t), t) = y(t)data − y(x, t)eiB̄α(t)

Before starting the aberration step, we compute all the elements useful for the minimzation independant ofα,
i.e. y(x, t), a(x, t) andφ(x, t). To compute the gradient inα we also compute two other quantities, called
wx1 and wx2 in the codes. All these quantities are arranged inthe structureweights_x, which does not
depend on theα.
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4.6.2. Expression for the object step

With Eqs. 4.11 and 4.8, we gather:

yres(x,α(t), t) = y(t)data − H(t)xDiag
{

eiB̄α(t)
}

= y(t)data − Diag
{

eiB̄α(t)
}

H(t)
︸ ︷︷ ︸

PH(t)

x

Moreover, with Eqs. 4.12 and 4.11, we have:

J data
ij (x,α(t), t)

∆
=

1

2
wrad,ij(t)

[
yres

rad,ij(x,α(t), t)
]2

+
1

2
wtan,ij(t)

[
yres

tan,ij(x,α(t), t)
]2

=
1

2
wrad,ij(t)< e2

{

yres
ij (x,α(t), t)e−iφdata

ij (t)
}

+
1

2
wtan,ij(t)=m2

{

yres
ij (x,α(t), t)e−iφdata

ij (t)
}

We gather :

J data
ij (x,α(t), t) =

w11,ij(t)

2
· < e2

{
yres

ij (x,α(t), t)
}

+ w12,ij(t)=m
{
yres

ij (x,α(t), t)
}
< e

{
yres

ij (x,α(t), t)
}

+
w22,ij(t)

2
· =m2

{
yres

ij (x,α(t), t)
}

(4.13)

with (for clarity, we omit here theij andt indexes)

w11 = wrad cos2 φdata + wtan sin2 φdata

w12 = (wrad − wtan) sin φdata
ij (t) cos φdata

w22 = wrad sin2 φdata + wtan cos2 φdata

(4.14)

It is from this expression that the criterion and its gradient w. r. t. the object are computed in WISARD.
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APPENDIX I
THE CLOSURE AND BASELINE OPERATORS C AND B

Let Nt be the number of telescopes of the interferometric array. Wehave the following definitions:

B2
∆
=

[
−1 1

]
(I.1)

BNt

∆
=

[
−1n−1 Id

O Bn−1

]

(I.2)

B̄Nt

∆
=

[
Id

Bn−1

]

(I.3)

CNt

∆
=

[
−Bn−1 Id

]
(I.4)

C† ∆
= CT

[
CCT

]−1
(I.5)

for Nt ≥ 3.
It is easy to see thatCB = 0.
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APPENDIX II
SQUARE-ROOT OF A GAUSSIAN DISTRIBUTION

Let us suppose we measure the squared values of a positive valuea, with an additive noise system:

sdata = a2 + snoise,

snoise being 0 mean gaussian with the varianceσ2
s . Let â be the estimator ofa from sdata defined byâ =

{ √
sdata, if sdata > 0

0 else
.

Although â is not gaussian vector, we will approximate its distribution by a gaussian one. In many
cases, this approximation is valid, as shown in fig. II.1.

Figure II.1 – Comparison between a gaussian distribution ofx and a gaussian distribution ofx2

However, ifσs is greater than a fiewa2, this estimator is biased. We have studied the behavior of the
mean< â > and standard deviationσâ of this estimator in function ofσs/a

2 (see figs. II.2 and II.3).

Figure II.2 – Mean of the estimator̂a in function ofσs/a2

We then propose the data model fora

adata = a + anoise
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Figure II.3 – Standard deviation of the estimatorâ in function ofσs/a2

with :

adata =







0 if sdata ≤ 0
√

σs/6, if 0 ≤ sdata ≤ σs/6√
sdata, if sdata ≥ σs/6

σa =

{ √
σs/2 if sdata ≤ σs
σs

2
√

sdata
, if sdata ≥ σs

We also decide to discard the data such thatsdata + σs ≤ 0.
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APPENDIX III
CARTESIAN GAUSSIAN APPROXIMATION TO A POLAR GAUSSIAN DISTRIBUTION

III.1. General expression

With consider a polar distribution of a gaussian vectory of modulusa and phaseφ:

φdata = φ̄ + φnoise (III.1)

adata = ā + anoise (III.2)

whereφnoise andanoise are 0 mean real gaussian vectors, of covariance matricesRa andRφ (the vectorsφnoise

andanoise are supposed uncorrelated).
With the definitions







ȳ
∆
= ā exp iφ̄

ynoise ∆
= ydata − ȳ

yn
rad

∆
= < e

{

ynoisee−iφ̄
}

yn
tan

∆
= =m

{

ynoisee−iφ̄
}

¯̄ynoise ∆
=

[
yn

rad

yn
tan

]

(III.3)

we gather:
{

yn
rad =

[
ā + anoise

]
cos φnoise − ā

yn
tan =

[
ā + anoise

]
sin φnoise

(III.4)

A complex vector is gaussian if and only if each of its components is gaussian. A complex is gaussian if
and only if, in any cartesian basis, its two components are gaussian. Soy is gaussian if and only if̄̄ynoise is
gaussian, which is not the case [2]. In what follows, we show how to optimally approximate the distribution
of ¯̄ynoise by a gaussian distribution.

III.2. Gaussian Approximation

We caracterize our Cartesian additive gaussian approximation, i.e., its mean
〈
¯̄ynoise

〉
and covariance

R¯̄ynoise , by minimizing the Kullback-Leibler distance between the two noise distributions, which gives [2]:







〈
¯̄ynoise

〉
= E

{[
yn

rad

yn
tan

]}

=

[
ȳn

rad

ȳn
tan

]

R¯̄ynoise = E

{[
ȳn

rad − yn
rad

ȳn
tan − yn

tan

] [
ȳn

rad − yn
rad

ȳn
tan − yn

tan

]T
} (III.5)
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and we define

R¯̄ynoise
∆
=

[
Rrad,rad Rrad,tan

RT
rad,tan Rtan,tan

]

For a 0 mean gaussian vectorφnoise of covariance matrixRφ,

E
{
sin φnoise

i

}
= 0

E
{
cos φnoise

i

}
= exp−Rφii

2

E
{
sin φnoise

i sin φnoise
j

}
= sinh Rφij

· exp−
Rφii

+ Rφjj

2

E
{
cos φnoise

i cos φnoise
j

}
= cosh Rφij

· exp−
Rφii

+ Rφjj

2
E

{
cos φnoise

i sin φnoise
j

}
= 0

(III.6)

By combining Eqs. III.5, III.3, III.4 and III.6, we obtain:

E {yn
radi} = āi

[

e−
Rφ ii

2 − 1

]

E {yn
tani} = 0

[Rrad,rad]ij =
[

āiāj

(

cosh Rφij
− 1

)

+ Raij
cosh Rφij

]

· e−
Rφ ii

+Rφjj

2

[Rrad,tan]ij = 0

[Rtan,tan]ij =
(
āiāj + Raij

)
sinh Rφij

· e−
Rφ ii

+Rφjj

2

(III.7)

III.3. The scalar case

Now, we make the additionnal asumption that bothφnoise andanoise are decorrelated, i.e.
{

Ra = Diag
{
σ2

a,i

}

Rφ = Diag
{
σ2

φ,i

}

We obtain:






Rrad,rad = Diag
{
σ2

rad,i

}

Rtan,tan = Diag
{
σ2

tan,i

}

Rrad,tan = 0

with

σ2
rad,i =

ā2
i

2

(

1 − e−σ2
φ,i

)2

+
σ2

a,i

2

(

1 + e−2σ2
φ,i

)

σ2
tan,i =

ā2
i

2

(

1 − e−2σ2
φ,i

)

+
σ2

a,i

2

(

1 − e−2σ2
φ,i

)
(III.8)

In this case, we can plot for one complex visibility the true noise distribution - i.e. a gaussian noise in
phase and modulus - and our gaussian approximation (see fig. III.1)
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Figure III.1 – Polar gaussian distribution contour plot andits cartesian gaussian approximation
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