
LECTURE 2

PAGE 16

Contents of lecture 2:

Object Oriented Programming: Simple Idea

Object oriented programming (OOP) is based on a few simple ideas, all of which make good
common-sense. From this point of view, OOP is nothing more than a straightforward concept
(which is 100% true). However, two factors (one of which is artificial) contrive to make OOP
more difficult to understand. They are:

• ‘Surfeit of Zen’ problem. In order to fully appreciate any one part, you need to understand
most of the other parts.

• Use of complex, technical-sounding terminology (which does not really encapsulate the
simplicity of the principles behind OO programming). See example below.

Note, that the example shown above (drawn from an actual textbook) is technically accurate,
however, it is also utterly useless for teaching the fundamentals of OOP. Hopefully, the coverage
of OOP, and Java, within this course will try to avoid unnecessary technical baggage.

1. Principles of Object Oriented Programming
• Object Oriented (OO) principles
• Basics of OOP using Java

2. OOP Java Style
• Classes and methods
• Static and Final keywords
• Objects and References within Java

Example: ‘Object-Oriented Programming is
characterised by inheritance and dynamic binding.
C++ supports inheritance through class derivation.
Dynamic binding is provided by virtual class
functions. Virtual functions provide a method of
encapsulating the implementation details of an
inheritance hierarchy.’

Principles of Object Oriented Programming:
Part 1: Abstraction and Encapsulation

LECTURE 2

PAGE 17

The Development of Object Oriented Languages

A fundamental and necessary part of programming is abstraction, i.e. taking an idea, concept or
object and expressing it in terms of the constructs provided by the programming language (using
abstraction, a person might be represented as a bundle of variables and methods,
e.g. fHeight, fWeight, HairColour, eat(Food item), sleep(), run() etc.).

As programming languages have evolved they have offered
more powerful and sophisticated forms of abstraction. In
this section we will briefly explore how the forms of
abstraction have evolved, leading to the introduction of
object-oriented approaches.

Machine Language and Assembly Language
We start our brief coverage with machine language, which can be viewed as
directly ‘talking’ to the processor in the ‘language’ it understands, i.e. in binary
opcodes (instructions).

Understandably, programmers found machine language incredibly cumbersome
to use: the strings of 1’s and 0’s that go together to form the op-codes of machine language are not
particularly easy to remember or understand, e.g. the sequences 10111010 and 10101011 look
somewhat similar to one another and their action when processed by the CPU is not readily
apparent.

Assembly language was in part introduced to overcome the difficulties associated with using
machine code. It was formed on the idea of assigning more meaningful labels to each machine
language instruction; hence, the sequences 10111010 and 10101011 might be labeled as ADD and
SUB. Assembly language can be viewed as an abstracted form of machine language as it adds an
extra layer of meaning by assigning textual labels to each op-code. However, it is important to
recognise that assembly language did not introduce any new functionality; it was solely designed
to make the task of programming more straightforward for the programmer.

Later Imperative Languages
Languages which can be considered as superceding assembly language, i.e. imperative languages
such as Fortran, BASIC, C, etc. all extend assembly language, not by offering any significantly
new functionality, but by introducing higher level concepts (i.e. abstractions) that significantly
improved the ability of the programmer to express his or her ideas in code. Some examples follow:

Data-types in assembly vs. Data-types in C

In assembly language no distinction is made between program code and data, it’s all just bytes in
memory. Hence, if we wish to write an assembly language program that can store several names
(e.g. “Bob”, “Bill” and “Sue”), it will be necessary to set aside a block of memory space in which
to store the ASCII representation of each name, taking due care that the names are always
correctly accessed.

Later imperative languages, such as C, enabled the programmer to declare variables, with the
compiler dealing with how the data is allocated and represented in memory, and further ensuring
that the data item is correctly accessed.

10101111
01010011
11011001
11110110

LECTURE 2

PAGE 18

Adding in assembly / Adding in C

In assembly we have:

mov(loc1, al)
 // Move specified memory address contents into CPU register.
add(loc2, al)
 // Add specified memory address contents to CPU register.
mov(al, res)
 // Move CPU register contents into the specified memory address.

In C we have:

result = val1 + val2;
 // Add value of variable val1 to value of variable val2, storing result in specified variable.

Notice that the C code is considerably more compact and readily comprehended. This is in part
due to it syntactical similarity to normal mathematical notation and the use of objects instead of
memory offsets.
In the above examples we are not really adding anything new in terms of programming
functionality, instead we are simply providing higher-level abstractions that mean the programmer
can think about the problem at a higher level, without worrying about how objects, loops, etc., will
be expressed in terms of machine code (i.e. the compiler does some of the work for the
programmer). Apart from quickening development times and reducing the number of program
bugs, such languages free up the programmer’s cognitive resources to tackle larger and more
difficult problems which would have been prohibitively complex to write using only assembly
language.

Solving different types of problem:
 Non-imperative languages
Imperative languages such as assembly or C require the programmer to think about how to solve
the problem in terms of the structure and capabilities of the computer. Hence, it is not sufficient for
the programmer to know how to solve the problem, they must also be capable of expressing a
solution in terms of basic actions that a computer can perform (e.g. adding, looping, manipulating
data, etc.). Obviously for certain problems this may not always be an easy translation.

As a solution to this difficulty, a number of languages were developed that permit the programmer
to more directly model the problem (i.e. at a conceptually higher level), with the compiler
performing the translation into code that can be run on a CPU. Examples of such languages
include LISP, APL and PROLOG, which each present different views of the world (i.e. particular
approaches as to how problem solutions should be expressed). For example, LISP assumes all
problems ultimately boil down to lists and list manipulation; APL assumes all problems are
mathematically algorithmic in nature; and PROLOG assumes all problems can be expressed in
terms of rules and decisions chains.

Each of the above non-imperative languages enables the programmer to elegantly express
solutions when tackling the particular class of problem that they aim to model (the programmer
does not need to worry about how the underlying implementation will be expressed in machine
language). Whilst these languages often provide higher-level abstractions beyond standard
imperative languages, they are limited in that design becomes cumbersome and awkward when
tackling problems that fall outside of the modelled domain.

LECTURE 2

PAGE 19

Having the entire pie, and eating it.
So far we have seen that assembly language provides a simple direct
abstraction of machine code, designed to be more readily usable by the
programmer. Later imperative languages, such as C, introduced
higher-level notions, such as user-defined variables, various forms of
looping, etc. Languages such as PROLOG deviated from standard
imperative languages by offering an abstraction particularly suited to a
certain class of problem. Object-oriented languages extend this idea one step further by providing
higher-level abstractions, without being restricted to a certain class of problem.

This is accomplished by providing capabilities within the language (e.g. classes, etc.) whereby the
programmer can define a higher-level abstraction tailored to the problem at hand. The basic idea is
that the program can be adapted to the problem by defining new types of object and relationship
specific to that problem (rather then being forced to use an existing, language-provided, data-type
which might not be appropriate).

Obviously, the expense of this additional flexibility and modeling power is the need for the
programmer to accurately model the problem within the language - a process that can be time
consuming. Indeed, one of the key challenges of object-oriented programming is the creation of a
one-to-one mapping between the objects and types found within the problem and those created by
the programmer within the developed software.

The process of object-oriented software development can be considered as initially modeling the
problem, and then finally solving the problem (both this lecture and the next lecture aim to show
you how you can model problems using Java’s object-oriented capabilities).

Object-oriented languages can be summarised by the following five key points:

1. Everything is an object – an object being an entity that can store data and can perform
certain types of operation (i.e. object = black box that can store stuff and do stuff).

2. An object-oriented program involves a bunch of objects telling each other what to do by
sending messages to one another (i.e. the program consists of objects working in harmony
to accomplish some task). Each object can be formed as an agglomeration of other objects,
whilst still being regarded as a single entity from the outside, e.g. complexity can be built
up in a program while hiding it behind the simplicity of objects.

3. Every object has a type (i.e. belongs to a particular class).

4. All objects of a particular type can receive the same messages and operate in a similar
manner.

Aside: Aristotle was probably the first person to carefully study the concept of type; he
spoke of the ‘class of fishes and the class of birds’. The idea that all objects, whilst being
unique are also part of a class of objects that have characteristics and behaviors in common
was used directly in the first object oriented language Simula-67, which introduced the
keyword ‘class’.

Aside: Simula, as the name suggests, was created for developing simulations such as the
classic ‘bank teller program’ where you have a bunch of tellers, customers, accounts,
transactions, units of money, etc. However, whilst Simula was the first object-oriented
language, it is Smalltalk that holds the honor of being the first successful and widely known
OO language (in part, Java is based on Smalltalk).

LECTURE 2

PAGE 20

Differences between classes and objects
Objects and classes can be defined, and differentiated, as follows:

Diagrammatically the relationship between objects and classes can be viewed as follows:

In order to use an object, all that is needed is knowledge of its interface which provides details of
methods and data available to the programmer (i.e. those declared as public, etc.).

Java is a hybrid language.

Languages such as Java and C++ are considered as hybrid languages in that they permit
(it would be more accurate to say ‘require’) multiple programming styles. For example,
C++ extended C, an imperative language, by introducing object-oriented ideas. Hence,
when writing a C++ program the programmer must think in terms of the classes and
objects needed to solve the problem, but ultimately the classes must be expressed
(written) in terms of basic CPU operations (i.e. in terms of loops, data manipulation, etc.).
The same is true of Java, which drew it inspiration from a number of languages (including
C++ and Smalltalk)

4 Objects:
CD Players

Class:
CD Player
blueprints

Interface:
User- manual

Class: A template or type, describing the fields (data) and methods that are
grouped together to represent something. A class is also known as a non-
primitive type (more on this later).

Object: A variable constructed according to a class template, able to hold
values in its datafields, and able to have its methods called. There are typically
many objects for any given class. We say an object is an instance of a class, or
belongs to a class

LECTURE 2

PAGE 21

Principle ingredients of OOP

There are four principle concepts upon which object oriented design and
programming rest. They are: Abstraction, Polymorphism, Inheritance and
Encapsulation (i.e. easily remembered as A-PIE). In what follows, each of
these four concepts will be introduced and further explored.

OOP Principle 1: Abstraction

Data Abstraction
In order to process something from the real world we have to extract the essential characteristics of
that object. Consider the following example:

Data abstraction can be viewed as the process of refining away the unimportant details of an
object, so that only the useful characteristics that define it remain. Evidently, this is task specific.
For example, depending on how a car is viewed (e.g. in terms of something to be registered, or
alternatively something to be repaired, etc.) different sets of characteristics will emerge as being
important.

Formulated as such, abstraction is a very simple concept and one which is integral to all types of
computer programming, object-oriented or not.

Aside: Whilst A-PIE may be easy to remember, the principles build
upon one another in the following order: Abstraction, Encapsulation,
Inheritance and Polymorphism.

Aside: As mentioned OOP is not a new idea; in fact it’s very old (by computing standards).
The first object-oriented programming language was Simula-67, produced over 30 years ago.

Registration

• Vehicle
Identification
Number

• License plate
• Current Owner
• Tax due, date

Garage

• License plate
• Work description
• Billing info
• Owner

Owner

• Car description
• Service history
• Petrol mileage

history

The first half of the pie:
Abstraction and Encapsulation

LECTURE 2

PAGE 22

Abstraction and the programmer
The task of the programmer, given a problem, is to determine what data needs to be extracted (i.e.
abstracted) in order to adequately design and ultimately code a solution. Normally, with a good
problem description and/or good customer communication this process is relatively painless.

It is difficult to precisely describe how a programmer can determine which data items are
important. In part it involves having a clear understanding of the problem. Equally, it involves
being able to see ahead to how the problem might be modeled/solved. Given such understandings,
it is normally possible to determine which data items will be needed to model the problem.
However, please note, the ability to abstract relevant data is a skill that is largely not taught, but
rather one that is refined through experience.

Failure at this stage can have two possible forms:
• Something unnecessary was abstracted, i.e. some data is redundant. This may or may not be a

problem, but it is bad design.
• Something needed was not abstracted. This is a more serious problem, usually discovered

later in the design or coding stages, and entails that the design needs to be changed to
incorporate the missing data item, code changed, etc.

Functional Abstraction
The process of modeling functionality suffers from the same pitfalls and dangers as found when
abstracting the defining characteristics, i.e. unnecessary functionality may be extracted, or
alternatively, an important piece of functionality may be omitted. The programmer goes about
determining which functionality is important in much the same way as they determine which data
items are important.

OOP Principle 2: Encapsulation

Encapsulation is one step beyond abstraction. Whilst abstraction involves reducing a real world
entity to its essential defining characteristics, encapsulation extends this idea by also modeling and
linking the functionality of that entity.

Consider the following data items and operations:

Encapsulation links the data to the operations that can be
performed upon the data. For example, it makes sense to
determine the truth hood of a Boolean variable; however, it
does not make sense to multiply two Boolean variables
together, hence, encapsulation ensures data is only used in
an appropriate manner.

Data items Operations

Truthhood

Boolean

Integer Float

AdditionShifting

Multiplication

Truthhood Boolean

Integer

Float

Addition

Shifting

Multiplication

Multiplication

Addition

LECTURE 2

PAGE 23

Encapsulation gives classes
OOP makes use of encapsulation to enforce the integrity of a type (i.e. to make sure data is used in
an appropriate manner) by preventing programmers from accessing data in a non-intended
manner (e.g. asking if an Integer is true or false, etc.).

Through encapsulation, only a predetermined group of functions can access the data. The
collective term for datatypes and operations (methods) bundled together with access restrictions
(public/private, etc.) is a class.

Classes are useful for the following reasons:

• Classes can be used to model many real world entities, thereby permitting object-oriented
languages to model a wide range of problems.

• Bundling data and functionality together produces self contained units which are more
maintainable, reusable and deployable.

• By enforcing the idea of encapsulation upon the programmer, object oriented languages make
it more difficult for the programmer to produce ‘bad’ code.

Object Oriented Design: An Overview

Broadly speaking, OOD (Object Oriented Design) can be broken down into the following
processes:

The above process is somewhat abstract, however, it simply amounts to working out what classes
are needed to model the problem, what data and methods these classes should contain, how the
classes should relate to one another, and finally, how instances of the classes should interact to
solve the problem (i.e. you firstly model the problem, and then secondly solve the problem).

You may have noticed that there has been no coverage on how to identify which objects need to
be modeled given a problem description. Unfortunately, as with determining relevant data and
functionality, the ability to select appropriate objects is something that improves through the
accumulation of experience (and not something that can be profitably taught).

Step 3 will be explored within the next lecture. Step 4 can only really be built up from
accumulated practical experience, i.e. by actively solving problems.

Step 3: Further model the problem by defining relationships between classes
(inheritance and polymorphism).

Step 2: Initially model the problem by defining classes for each object, in
terms of the data needed to represent the object and the operations that can be
performed on the object (abstraction and encapsulation)

Step 1: Identify all objects arising from the problem description.

Step 4: Devise an algorithm that instantiates a number of objects from the
defined classes, and shows how these objects can interact with one another to
solve the problem.

LECTURE 2

PAGE 24

Class declarations within Java

Within the Java programming language, the class syntax definition is as follows:

where <classname> is the name given to the class. Java requires that each class be stored in the
corresponding Java file: <classname>.java

Constructors
Each class has a constructor that is called whenever an instance of that class is
created. If the class does not explicitly define a constructor then default methods
are invoked (which might range from doing nothing, to calling the relevant
constructor of a superclass).

Several constructors can be defined for a class,
differing in terms of the parameters they accept.
Constructors never return any values.

An example showing two constructors
(one the default no argument
constructor, and the other accepting two
integers) follows:

Class syntax

public class <classname>
{

}

public class <classname>
{

// Constructor
 public <classname>()
 { … }

// Constructor
 public <classname>(<arglist>)
 { … }
}

public class Counter
{
 private int iCounter, iMaximum;

 public Counter()
 { iCounter = 0; iMaximum = 100; }

 public Counter(int initCount, int initMax)
 {
 iCounter = initCount;
 setMaximum(initMax);
 }

 public void setMaximum(int iMax)
 { iMaximum = iMax; }
}

Object-oriented Programming:
Java Style

LECTURE 2

PAGE 25

The finalize method

public class <classname>
{
 // Destructor
 public void finalize()
 { … }
}

The procedure when an object is created follows (e.g. SomeClass myObj = new SomeClass()):

1. Sufficient memory to store the class data is allocated. This memory is then cleared, i.e. all
values set to null, 0, etc. (this guarantees starting values for class data).

2. The class constructor is called. Note, the constructors of parent classes are always called
first (either explicitly with super(…) or implicitly). The rest of the constructor’s code is
then called.

Destructors (the finalize method)
The finalize method, should one exist, is guaranteed to
be called before the object is deleted.

The finalize method accepts no parameters, nor does it
return any value. There can be only one finalize method
for a class.

The finalize method should be used to free up any
special resources which have been allocated (i.e. file
handles, db locks, etc.). Thankfully, Java’s built-in
garage collection is very good, and the finalize method
is rarely needed.

Methods and Overloading

Apart from the constructor and finalize methods, a class consists of methods that operate upon
class data. Methods can be overloaded, which is to say several different methods can have the
same name, provided they differ in terms of the parameters that they accept, e.g.:

Note that an overloaded method cannot have several methods that share the same argument list
but differ only in their return value, as there is no means of determining which method should be
called, e.g.:

float getProduct(float a, float b)
{ … }

float getProduct(float a, int b)
{ … }

int getProduct(int a, int b)
{ … }

int CalculateWage(String name)
float CalculateWage(String name)

LECTURE 2

PAGE 26

public class Employee
{
 private static int iNumEmployees;

public Person()
{ iNumEmployees++; }

public static int numPeople()
{ return iNumEmployees; }

// The following is a bit dangerous
public finalize()
{ iNumEmployees--; }

}

Data modifiers

Below, two useful data modifiers are briefly explored (data modifiers alter how items are
accessed and used).

Static data, methods and classes

By declaring a class data item to be static it signifies
that all instances of that class share the static data item
in common. This is useful in a number of situations.
For example, consider an Employee class, where it is
important to know how many employees there are,
e.g. as shown opposite:

Based on the code, every time a new instance of the
Employee class is instantiated the constructor
increments iNumEmpolyees (a static dataitem
shared across all instances of Employee).

Anytime an Employee object is deleted (by Java’s
garbage collection, the finalize method ensures the
iNumEmployees variable is decremented). However,
depending upon the CPU load, it may take a long time
before the Java VM gets around to deleting the object
and hence invoking the destructor.

Static data items can be visualized as follows:

public class Employee
{

public static int iNumEmployees;
private String name;
private String dept;
private int iPay;

 <Methods…>
}

name = “Dave”
dept = “Support”
iPay = 14500

name = “Sam”
dept = “Design”
iPay = 21400

name = “Mary”
dept = “Boss”
iPay = 32500

iNumEmployees = 3

LECTURE 2

PAGE 27

Each instance of Employee holds a certain amount of information, in particular each Employee
object contains a unique name, dept and iPay variable. However, notice that the static
iNumEmployees is not stored by any one Employee object, rather it is global across all
instances of that class.

Note that variables declared to be static exist even if no objects of that class exist.
Hence, if no Employee objects exist, then iNumEmployees = 0. Because of this a
means of accessing static data when there are no instances of the class is provided.
This is done by prefixing the static data item by the class name, e.g.
Employee.iNumEmployees (assuming the static data has been declared to be public
and hence accessible outside of the class).

A method can also be declared as static. Primarily this is of use to provide a means of accessing
static data that has been declared private (class data should rarely be declared public).

Blocks of data and classes may also be declared to be static, however, this is of limited use.

Final data, methods and classes
The final keyword when applied to data makes it read-only, i.e. it cannot be changed. Java 1.1
introduced the notion of a blank final variable, i.e. a variable which is blank (undefined) at
initialisation, and can be assigned a value once, before then becoming read-only.

Blank final variables are useful when the data value cannot be obtained before run-time, or is too
complex to pre-calculate. A method or class that is defined to be final cannot be extended or
modified by any sub-classes that inherit from the method or class. This is useful to ensure that the
functionality of a method cannot be modified, or to ensure that a class cannot be extended via
inheritance.

Aside: ‘static’ is not a very good name. It originated from C and referred to data that was
allocated statically at compile time. Whenever you see the keyword ‘static’ in Java it is best
to think ‘once-only-per-class’

private final iUserInputValue;

iUserInputValue = getUserInput(); // Valid
iUserInputValue++; // Invalid now

Aside: final also has a number of more subtle uses. If a method or class is defined
to be final then the Java Virtual Machine can execute method calls faster (this has
to do with polymorphism, where Java has to check the type of each object. If
declared final, Java does not need to perform the check).

For example, the Java Math class is primarily declared to be final for this reason
(methods within the Math class are also static, hence no instances of the class
need to exist to call the method, e.g. Math.pow(), etc.).

public class Employee
{
 private static int iNumEmployees

public static int numPeople()
{ return iNumEmployees; }

…
}

System.out.println(“Num Employees =
Employee.numPeople()”);

LECTURE 2

PAGE 28

Directory: C:/SamsProject
[3 files]
Control.java
Process.java
Printout.java

Directory: C:/JillsProject
[1 file]
Project.java

Access Modifiers

A summary of the different access modifiers follows:

Keyword Effect
private Members are not accessible outside the class. Making a constructor private

prevents the class from being instantiated. Making a method private means
that it can only be called from within the class.

private int iSum;
private compute() {…}

(none) often
called package
access

Members are accessible from classes in the same package (i.e. directory)
only. A class can be given either package access or public access

int iSum
compute()

protected Members are accessible in the package and in subclasses of this class. Note
that protected is less protected that the default package access

protected int iSum;
protected compute() {…}

public Members are accessible anywhere the class is accessible. A class can be
given either package or public access.

public int iSum;
public compute()
{…}

In Java, package access broadly equates to public access between all Java files in the same
directory, e.g.

Assume Printout.java contains a method PrintResults()
which has package access. If so, PrintResults can freely
be called from within either the Process or Control
classes. However, it cannot be called from Project as
Project.java is found within a different directory.
Note, in general data should not be declared as public,
instead helper read/write methods should be provided.

LECTURE 2

PAGE 29

Objects within Java

Java uses indirect addressing when creating or manipulating objects (instantiations of a class).
Otherwise stated, you can only manipulate an object through a reference variable.

What does this mean? Basically, that you never deal directly with an object, instead you always
deal with an intermediary to the object. Consider the following Java statements (assuming we have
a ‘Car’ class already defined):

The code fragment represents a fictional case where Tom originally has a Ford car, which he then
shares with Paul. Finally, Tom gets a new car, a Mazda. When executed the above code will result
in the following data items being created:

[1] Car tomCar;
[2] tomCar = new Car(“Ford”);
[3] Car paulCar;
[4] paulCar = tomCar;
[5] tomChar = new Car(“Mazda”);

Line 5

Line 4

Line 3

Line 2

Line 1
tomCar

null

paulCar
null

Car1 object
Name:ford Model: Milage:

tomCar
Car1

Car1 object
Name:Ford Model: Milage:

tomCar
Car1

paulCar
Car1

paulCar
Car1

Car1 object
Name:Ford Model: Milage:

tomCar
Car1

Car1 object
Name:Ford Model: Milage:

tomCar
Car2

Car2 object
Name:Mazda Model: Milage:

Create a new reference, tomCar (initially it refers to no
object)

tomCar is assigned to a new Car object: tomCar = new Car(
“Ford”)

Create a new reference, paulCar

Assign paulCar to tomCar

LECTURE 2

PAGE 30

When a variable of any class type is declared it is simply a reference variable that can hold a
pointer to an instance of the relevant class. This is a process known as indirect addressing (i.e.
tomCar is an intermediary that holds a pointer to a Car object).

As such, this has important consequences when it comes to comparing objects, or passing objects
into methods, as will be shown.

Comparing objects
Consider the following code fragment:

Which is realised as follows:

Consider the statement ‘if(first == second)’, will this be evaluated as true or false? In this case
it will be evaluated as false, the reason being that the statement is interpreted as meaning: Does
the ‘first’ reference refer to the same object as the ‘second’ reference. Evidently, they do not
refer to the same object, hence the statement evaluates as false.

This is a common source of program errors. It is important to be aware if a comparison is to be
made between references (i.e. pointers to objects) or between objects (i.e. the data internal to an
object). For this example, in order to compare the object’s contents we should use the String
method equals, e.g. if(first.equals(second)), which compares the String’s contents.

The above principle also impinges upon multiple references to the same object, e.g.:

String first = new String(“Hello”);
String second = new String(“Hello”

first
Str1

second
Str2

Str1 object
“Hello”

Str2 object
“Hello”

Aside: Classes are an example of non-primitive data. Java also contains primitive data types:
such as int, float, boolean, char, etc. (there are a total of 8 primitive types). A primitive type
is defined as not being composed of any other types (whereas non-primitive classes contain
other data items and methods, etc.). As primitive types are not objects, they do not use
indirect addressing, instead they use direct addressing. Compare and contrast:

Non-primitive data

Integer iValue;
iValue = new Integer(2);

Primitive data

int iValue = 2;

Integer1 object
Value = 2

iValue
Integer1

iValue
2

LECTURE 2

PAGE 31

Evidently, changing an object’s data through one particular reference will affect the data that is
retrieved by another reference that points to the same object.

Passing references into methods
Consider the following code fragment:

Whenever Java calls the processEmployee method it passes a copy of the reference to the
object, i.e.:

Hence, any changes made to the Employee object’s data inside the processEmployee
method remain after the method has returned. As such, this provides an elegant means of
changing an object’s data within a method. However, the programmer must be mindful not to
inadvertently change an object’s data from within the method.
There is one cravat to the above outlined procedure: it only applies to non-primitive data (i.e.
that which is accessed through a reference). When primitive data (e.g. int, float, etc.) is passed
into a method, a copy of the actual data is made, and any changes within the method are not
reflected when the method returns, e.g.

The above code will return a value of 4.

Obj A = new Obj();
Obj A.setTitle(“A”);
Obj B = A;
B.setTitle(“B”);
A.getTitle() This returns ‘B’

A
Obj1

B
Obj1

Obj1 object
Title:

Emplyee tom = new Employee(“Tom”);
processEmployee(tom);

int iTest = 4;
addOne(iTest);
System.out.println(iTest);

public addOne(int iValue)
{ iValue++ }

tom
Emp1

copyTom
Emp1

Emp1 object
Name: Tom

Method
processEmployee

Copy

iTest
4

copyiTest
4

Method
addOne

Copy This value is changed
to 5 by the method.
However, once the
method finishes, the
value is discarded.

LECTURE 2

PAGE 32

Practical 2

After this lecture you should explore the second practical pack which should enable you to
investigate the material in this lecture.

Learning Outcomes

Once you have explored and reflected upon the material presented within this lecture and the
practical pack, you should:

• Understanding the general methodology encapsulated by object-oriented
programming.

• Understand the principles behind both Data Abstraction and
Encapsulation and be able to apply these principles to extract relevant object data
and object functionality given a straightforward problem description.

• Have knowledge of the syntax and functionality on offer within Java when
constructing classes and be able to successfully employ Java to create appropriate classes
given a straightforward class design.

• Understand the differences between classes, objects and references within Java (including
primitive and non-primitive data items) and the consequences thereof when comparing or
passing objects/references.

More comprehensive details can be found in the CSC735 Learning Outcomes document.

