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Object Oriented Programming: Simple Idea 

Object oriented programming (OOP) is based on a few simple ideas, all of which make good 
common-sense. From this point of view, OOP is nothing more than a straightforward concept 
(which is 100% true). However, two factors (one of which is artificial) contrive to make OOP 
more difficult to understand. They are: 

• ‘Surfeit of Zen’ problem. In order to fully appreciate any one part, you need to understand 
most of the other parts. 

• Use of complex, technical-sounding terminology (which does not really encapsulate the 
simplicity of the principles behind OO programming). See example below. 

 

 
Note, that the example shown above (drawn from an actual textbook) is technically accurate, 
however, it is also utterly useless for teaching the fundamentals of OOP. Hopefully, the coverage 
of OOP, and Java, within this course will try to avoid unnecessary technical baggage. 

 

 

 

1. Principles of Object Oriented Programming 
• Object Oriented (OO) principles 
• Basics of OOP using Java 
 

2. OOP Java Style 
• Classes and methods 
• Static and Final keywords 
• Objects and References within Java 

Example: ‘Object-Oriented Programming is 
characterised by inheritance and dynamic binding. 
C++ supports inheritance through class derivation. 
Dynamic binding is provided by virtual class 
functions. Virtual functions provide a method of 
encapsulating the implementation details of an 
inheritance hierarchy.’ 

Principles of Object Oriented Programming: 
Part 1: Abstraction and Encapsulation 
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The Development of Object Oriented Languages 

A fundamental and necessary part of programming is abstraction, i.e. taking an idea, concept or 
object and expressing it in terms of the constructs provided by the programming language (using 
abstraction, a person might be represented as a bundle of variables and methods, 
e.g. fHeight, fWeight, HairColour, eat( Food item ), sleep(), run() etc.). 

As programming languages have evolved they have offered 
more powerful and sophisticated forms of abstraction. In 
this section we will briefly explore how the forms of 
abstraction have evolved, leading to the introduction of 
object-oriented approaches. 

Machine Language and Assembly Language 
We start our brief coverage with machine language, which can be viewed as 
directly ‘talking’ to the processor in the ‘language’ it understands, i.e. in binary 
opcodes (instructions). 

Understandably, programmers found machine language incredibly cumbersome 
to use: the strings of 1’s and 0’s that go together to form the op-codes of machine language are not 
particularly easy to remember or understand, e.g. the sequences 10111010 and 10101011 look 
somewhat similar to one another and their action when processed by the CPU is not readily 
apparent.  

Assembly language was in part introduced to overcome the difficulties associated with using 
machine code. It was formed on the idea of assigning more meaningful labels to each machine 
language instruction; hence, the sequences 10111010 and 10101011 might be labeled as ADD and 
SUB. Assembly language can be viewed as an abstracted form of machine language as it adds an 
extra layer of meaning by assigning textual labels to each op-code. However, it is important to 
recognise that assembly language did not introduce any new functionality; it was solely designed 
to make the task of programming more straightforward for the programmer. 

Later Imperative Languages 
Languages which can be considered as superceding assembly language, i.e. imperative languages 
such as Fortran, BASIC, C, etc. all extend assembly language, not by offering any significantly 
new functionality, but by introducing higher level concepts (i.e. abstractions) that significantly 
improved the ability of the programmer to express his or her ideas in code. Some examples follow: 

Data-types in assembly vs. Data-types in C 

In assembly language no distinction is made between program code and data, it’s all just bytes in 
memory. Hence, if we wish to write an assembly language program that can store several names 
(e.g. “Bob”, “Bill” and “Sue”), it will be necessary to set aside a block of memory space in which 
to store the ASCII representation of each name, taking due care that the names are always 
correctly accessed. 

Later imperative languages, such as C, enabled the programmer to declare variables, with the 
compiler dealing with how the data is allocated and represented in memory, and further ensuring 
that the data item is correctly accessed. 

 

 

10101111 
01010011 
11011001 
11110110 
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Adding in assembly / Adding in C 

In assembly we have: 
 

mov( loc1, al )  
 // Move specified memory address contents into CPU register. 
add( loc2, al )  
 // Add specified memory address contents to CPU register. 
mov( al, res )  
 // Move CPU register contents into the specified memory address. 

 
In C we have: 
 

result = val1 + val2;  
 // Add value of variable val1 to value of variable val2, storing result in specified variable. 

 
Notice that the C code is considerably more compact and readily comprehended. This is in part 
due to it syntactical similarity to normal mathematical notation and the use of objects instead of 
memory offsets. 
In the above examples we are not really adding anything new in terms of programming 
functionality, instead we are simply providing higher-level abstractions that mean the programmer 
can think about the problem at a higher level, without worrying about how objects, loops, etc., will 
be expressed in terms of machine code (i.e. the compiler does some of the work for the 
programmer). Apart from quickening development times and reducing the number of program 
bugs, such languages free up the programmer’s cognitive resources to tackle larger and more 
difficult problems which would have been prohibitively complex to write using only assembly 
language. 

Solving different types of problem:  
   Non-imperative languages 
Imperative languages such as assembly or C require the programmer to think about how to solve 
the problem in terms of the structure and capabilities of the computer. Hence, it is not sufficient for 
the programmer to know how to solve the problem, they must also be capable of expressing a 
solution in terms of basic actions that a computer can perform (e.g. adding, looping, manipulating 
data, etc.). Obviously for certain problems this may not always be an easy translation. 

As a solution to this difficulty, a number of languages were developed that permit the programmer 
to more directly model the problem (i.e. at a conceptually higher level), with the compiler 
performing the translation into code that can be run on a CPU. Examples of such languages 
include LISP, APL and PROLOG, which each present different views of the world (i.e. particular 
approaches as to how problem solutions should be expressed). For example, LISP assumes all 
problems ultimately boil down to lists and list manipulation; APL assumes all problems are 
mathematically algorithmic in nature; and PROLOG assumes all problems can be expressed in 
terms of rules and decisions chains.  

Each of the above non-imperative languages enables the programmer to elegantly express 
solutions when tackling the particular class of problem that they aim to model (the programmer 
does not need to worry about how the underlying implementation will be expressed in machine 
language). Whilst these languages often provide higher-level abstractions beyond standard 
imperative languages, they are limited in that design becomes cumbersome and awkward when 
tackling problems that fall outside of the modelled domain.  

 

 



LECTURE  2 

PAGE  19 

Having the entire pie, and eating it. 
So far we have seen that assembly language provides a simple direct 
abstraction of machine code, designed to be more readily usable by the 
programmer. Later imperative languages, such as C, introduced 
higher-level notions, such as user-defined variables, various forms of 
looping, etc. Languages such as PROLOG deviated from standard 
imperative languages by offering an abstraction particularly suited to a 
certain class of problem. Object-oriented languages extend this idea one step further by providing 
higher-level abstractions, without being restricted to a certain class of problem. 

This is accomplished by providing capabilities within the language (e.g. classes, etc.) whereby the 
programmer can define a higher-level abstraction tailored to the problem at hand. The basic idea is 
that the program can be adapted to the problem by defining new types of object and relationship 
specific to that problem (rather then being forced to use an existing, language-provided, data-type 
which might not be appropriate).  

Obviously, the expense of this additional flexibility and modeling power is the need for the 
programmer to accurately model the problem within the language - a process that can be time 
consuming. Indeed, one of the key challenges of object-oriented programming is the creation of a 
one-to-one mapping between the objects and types found within the problem and those created by 
the programmer within the developed software. 

The process of object-oriented software development can be considered as initially modeling the 
problem, and then finally solving the problem (both this lecture and the next lecture aim to show 
you how you can model problems using Java’s object-oriented capabilities). 

Object-oriented languages can be summarised by the following five key points: 

1. Everything is an object – an object being an entity that can store data and can perform 
certain types of operation (i.e. object = black box that can store stuff and do stuff). 

2. An object-oriented program involves a bunch of objects telling each other what to do by 
sending messages to one another (i.e. the program consists of objects working in harmony 
to accomplish some task). Each object can be formed as an agglomeration of other objects, 
whilst still being regarded as a single entity from the outside, e.g. complexity can be built 
up in a program while hiding it behind the simplicity of objects. 

3. Every object has a type (i.e. belongs to a particular class). 

4. All objects of a particular type can receive the same messages and operate in a similar 
manner. 

 

 

 

 

 

 

 

 

Aside: Aristotle was probably the first person to carefully study the concept of type; he 
spoke of the ‘class of fishes and the class of birds’. The idea that all objects, whilst being 
unique are also part of a class of objects that have characteristics and behaviors in common 
was used directly in the first object oriented language Simula-67, which introduced the 
keyword ‘class’. 

Aside: Simula, as the name suggests, was created for developing simulations such as the 
classic ‘bank teller program’ where you have a bunch of tellers, customers, accounts, 
transactions, units of money, etc. However, whilst Simula was the first object-oriented 
language, it is Smalltalk that holds the honor of being the first successful and widely known 
OO language (in part, Java is based on Smalltalk). 
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Differences between classes and objects 
Objects and classes can be defined, and differentiated, as follows: 
 
 
 

 

Diagrammatically the relationship between objects and classes can be viewed as follows: 

 
 
 
 
In order to use an object, all that is needed is knowledge of its interface which provides details of 
methods and data available to the programmer (i.e. those declared as public, etc.). 

Java is a hybrid language.  

Languages such as Java and C++ are considered as hybrid languages in that they permit 
(it would be more accurate to say ‘require’) multiple programming styles. For example, 
C++ extended C, an imperative language, by introducing object-oriented ideas. Hence, 
when writing a C++ program the programmer must think in terms of the classes and 
objects needed to solve the problem, but ultimately the classes must be expressed 
(written) in terms of basic CPU operations (i.e. in terms of loops, data manipulation, etc.). 
The same is true of Java, which drew it inspiration from a number of languages (including 
C++ and Smalltalk) 

 

 

 

 

 

 

 

 

4 Objects: 
CD Players 

Class: 
CD Player 
blueprints 

Interface: 
User- manual 

Class: A template or type, describing the fields (data) and methods that are 
grouped together to represent something. A class is also known as a non-
primitive type (more on this later). 

Object: A variable constructed according to a class template, able to hold 
values in its datafields, and able to have its methods called. There are typically 
many objects for any given class. We say an object is an instance of a class, or 
belongs to a class 
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Principle ingredients of OOP 

There are four principle concepts upon which object oriented design and 
programming rest. They are: Abstraction, Polymorphism, Inheritance and 
Encapsulation (i.e. easily remembered as A-PIE). In what follows, each of 
these four concepts will be introduced and further explored.  

 
 

 
OOP Principle 1: Abstraction 

Data Abstraction 
In order to process something from the real world we have to extract the essential characteristics of 
that object. Consider the following example: 

 
 
 
 
 
 
Data abstraction can be viewed as the process of refining away the unimportant details of an 
object, so that only the useful characteristics that define it remain. Evidently, this is task specific. 
For example, depending on how a car is viewed (e.g. in terms of something to be registered, or 
alternatively something to be repaired, etc.) different sets of characteristics will emerge as being 
important. 

Formulated as such, abstraction is a very simple concept and one which is integral to all types of 
computer programming, object-oriented or not. 

Aside: Whilst A-PIE may be easy to remember, the principles build 
upon one another in the following order: Abstraction, Encapsulation, 
Inheritance and Polymorphism. 

Aside: As mentioned OOP is not a new idea; in fact it’s very old (by computing standards). 
The first object-oriented programming language was Simula-67, produced over 30 years ago. 

Registration 

• Vehicle 
Identification 
Number 

• License plate 
• Current Owner 
• Tax due, date 

Garage 

• License plate 
• Work description 
• Billing info 
• Owner 

Owner 

• Car description 
• Service history 
• Petrol mileage 

history 

The first half of the pie: 
Abstraction and Encapsulation 
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Abstraction and the programmer 
The task of the programmer, given a problem, is to determine what data needs to be extracted (i.e. 
abstracted) in order to adequately design and ultimately code a solution. Normally, with a good 
problem description and/or good customer communication this process is relatively painless. 

It is difficult to precisely describe how a programmer can determine which data items are 
important. In part it involves having a clear understanding of the problem. Equally, it involves 
being able to see ahead to how the problem might be modeled/solved. Given such understandings, 
it is normally possible to determine which data items will be needed to model the problem. 
However, please note, the ability to abstract relevant data is a skill that is largely not taught, but 
rather one that is refined through experience. 

Failure at this stage can have two possible forms: 
• Something unnecessary was abstracted, i.e. some data is redundant. This may or may not be a 

problem, but it is bad design. 
• Something needed was not abstracted. This is a more serious problem, usually discovered 

later in the design or coding stages, and entails that the design needs to be changed to 
incorporate the missing data item, code changed, etc. 

Functional Abstraction 
The process of modeling functionality suffers from the same pitfalls and dangers as found when 
abstracting the defining characteristics, i.e. unnecessary functionality may be extracted, or 
alternatively, an important piece of functionality may be omitted. The programmer goes about 
determining which functionality is important in much the same way as they determine which data 
items are important.  

OOP Principle 2: Encapsulation 

Encapsulation is one step beyond abstraction. Whilst abstraction involves reducing a real world 
entity to its essential defining characteristics, encapsulation extends this idea by also modeling and 
linking the functionality of that entity. 

Consider the following data items and operations: 

 
  
 
Encapsulation links the data to the operations that can be 
performed upon the data. For example, it makes sense to 
determine the truth hood of a Boolean variable; however, it 
does not make sense to multiply two Boolean variables 
together, hence, encapsulation ensures data is only used in 
an appropriate manner. 

Data items Operations 

Truthhood

Boolean 

Integer Float 

AdditionShifting

Multiplication

Truthhood Boolean 

Integer 

Float 

Addition 

Shifting 

Multiplication 

Multiplication 

Addition 
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Encapsulation gives classes 
OOP makes use of encapsulation to enforce the integrity of a type (i.e. to make sure data is used in 
an appropriate manner) by preventing programmers from accessing data in a non-intended 
manner (e.g. asking if an Integer is true or false, etc.). 

Through encapsulation, only a predetermined group of functions can access the data. The 
collective term for datatypes and operations (methods) bundled together with access restrictions 
(public/private, etc.) is a class.  
 
Classes are useful for the following reasons: 

• Classes can be used to model many real world entities, thereby permitting object-oriented 
languages to model a wide range of problems. 

• Bundling data and functionality together produces self contained units which are more 
maintainable, reusable and deployable.  

• By enforcing the idea of encapsulation upon the programmer, object oriented languages make 
it more difficult for the programmer to produce ‘bad’ code. 

 

Object Oriented Design: An Overview 

Broadly speaking, OOD (Object Oriented Design) can be broken down into the following 
processes: 
 
 
 
 
 
 
 

The above process is somewhat abstract, however, it simply amounts to working out what classes 
are needed to model the problem, what data and methods these classes should contain, how the 
classes should relate to one another, and finally, how instances of the classes should interact to 
solve the problem (i.e. you firstly model the problem, and then secondly solve the problem). 

You may have noticed that there has been no coverage on how to identify which objects need to 
be modeled given a problem description. Unfortunately, as with determining relevant data and 
functionality, the ability to select appropriate objects is something that improves through the 
accumulation of experience (and not something that can be profitably taught). 

Step 3 will be explored within the next lecture. Step 4 can only really be built up from 
accumulated practical experience, i.e. by actively solving problems. 

 

Step 3: Further model the problem by defining relationships between classes 
(inheritance and polymorphism). 

Step 2: Initially model the problem by defining classes for each object, in 
terms of the data needed to represent the object and the operations that can be 
performed on the object (abstraction and encapsulation)

Step 1: Identify all objects arising from the problem description. 

Step 4: Devise an algorithm that instantiates a number of objects from the 
defined classes, and shows how these objects can interact with one another to 
solve the problem. 
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Class declarations within Java 

Within the Java programming language, the class syntax definition is as follows: 

 
 
 
where <classname> is the name given to the class. Java requires that each class be stored in the 
corresponding Java file: <classname>.java 

Constructors 
Each class has a constructor that is called whenever an instance of that class is 
created. If the class does not explicitly define a constructor then default methods 
are invoked (which might range from doing nothing, to calling the relevant 
constructor of a superclass). 

Several constructors can be defined for a class, 
differing in terms of the parameters they accept. 
Constructors never return any values. 

 
 

An example showing two constructors 
(one the default no argument 
constructor, and the other accepting two 
integers) follows: 

 

 

 

 

Class syntax 
 
public class <classname>
{ 
 
} 

public class <classname> 
{ 

// Constructor 
 public <classname>()   
 { … } 
  

// Constructor 
 public <classname>( <arglist> )  
 { … } 
} 

public class Counter 
{ 
 private int iCounter, iMaximum; 
 
 public Counter()   
 { iCounter = 0; iMaximum = 100; } 
 
 public Counter( int initCount, int initMax ) 
 { 
  iCounter = initCount; 
  setMaximum( initMax ); 
 } 
   
 public void setMaximum( int iMax ) 
 { iMaximum = iMax; } 
}

Object-oriented Programming:  
Java Style 
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The finalize method 
 
public class <classname> 
{ 
 // Destructor 
 public void finalize() 
 { … } 
} 

 

The procedure when an object is created follows (e.g. SomeClass myObj = new SomeClass() ): 

1. Sufficient memory to store the class data is allocated. This memory is then cleared, i.e. all 
values set to null, 0, etc. (this guarantees starting values for class data). 

2. The class constructor is called. Note, the constructors of parent classes are always called 
first (either explicitly with super(…) or implicitly). The rest of the constructor’s code is 
then called.  

Destructors (the finalize method) 
The finalize method, should one exist, is guaranteed to 
be called before the object is deleted. 

The finalize method accepts no parameters, nor does it 
return any value. There can be only one finalize method 
for a class. 

The finalize method should be used to free up any 
special resources which have been allocated (i.e. file 
handles, db locks, etc.). Thankfully, Java’s built-in 
garage collection is very good, and the finalize method 
is rarely needed. 

Methods and Overloading 

Apart from the constructor and finalize methods, a class consists of methods that operate upon 
class data. Methods can be overloaded, which is to say several different methods can have the 
same name, provided they differ in terms of the parameters that they accept, e.g.: 

 
 
 
 

Note that an overloaded method cannot have several methods that share the same argument list 
but differ only in their return value, as there is no means of determining which method should be 
called, e.g.: 

 

 

 

 

 

float getProduct( float a, float b ) 
{ … } 
 
float getProduct( float a, int b ) 
{ … } 
 
int getProduct( int a, int b ) 
{ … } 

int CalculateWage( String name ) 
float CalculateWage( String name )
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public class Employee 
{ 
 private static int iNumEmployees; 

 
public Person() 
{ iNumEmployees++; } 
 
public static int numPeople() 
{ return iNumEmployees; } 
 
// The following is a bit dangerous 
public finalize() 
{ iNumEmployees--; } 

}  

Data modifiers 

Below, two useful data modifiers are briefly explored (data modifiers alter how items are 
accessed and used). 

Static data, methods and classes 

By declaring a class data item to be static it signifies 
that all instances of that class share the static data item 
in common. This is useful in a number of situations. 
For example, consider an Employee class, where it is 
important to know how many employees there are, 
e.g. as shown opposite: 

Based on the code, every time a new instance of the 
Employee class is instantiated the constructor 
increments iNumEmpolyees (a static dataitem 
shared across all instances of Employee). 

Anytime an Employee object is deleted (by Java’s 
garbage collection, the finalize method ensures the 
iNumEmployees variable is decremented). However, 
depending upon the CPU load, it may take a long time 
before the Java VM gets around to deleting the object 
and hence invoking the destructor. 

Static data items can be visualized as follows: 

 

 

 

 

 

 
 
 
 
 

 

public class  Employee 
{ 

public static int iNumEmployees; 
private String name; 
private String dept; 
private int iPay; 
 

 <Methods…> 
} 

name = “Dave” 
dept  = “Support” 
iPay = 14500 

name = “Sam” 
dept  = “Design” 
iPay = 21400 

name = “Mary” 
dept  = “Boss” 
iPay = 32500 

iNumEmployees = 3 
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Each instance of Employee holds a certain amount of information, in particular each Employee 
object contains a unique name, dept and iPay variable. However, notice that the static 
iNumEmployees is not stored by any one Employee object, rather it is global across all 
instances of that class. 

Note that variables declared to be static exist even if no objects of that class exist. 
Hence, if no Employee objects exist, then iNumEmployees = 0. Because of this a 
means of accessing static data when there are no instances of the class is provided. 
This is done by prefixing the static data item by the class name, e.g. 
Employee.iNumEmployees (assuming the static data has been declared to be public 
and hence accessible outside of the class). 

A method can also be declared as static. Primarily this is of use to provide a means of accessing 
static data that has been declared private (class data should rarely be declared public). 

 

 
 

Blocks of data and classes may also be declared to be static, however, this is of limited use. 

 

Final data, methods and classes 
The final keyword when applied to data makes it read-only, i.e. it cannot be changed. Java 1.1 
introduced the notion of a blank final variable, i.e. a variable which is blank (undefined) at 
initialisation, and can be assigned a value once, before then becoming read-only. 

 
 

Blank final variables are useful when the data value cannot be obtained before run-time, or is too 
complex to pre-calculate. A method or class that is defined to be final cannot be extended or 
modified by any sub-classes that inherit from the method or class. This is useful to ensure that the 
functionality of a method cannot be modified, or to ensure that a class cannot be extended via 
inheritance. 
 
 
 
 

Aside: ‘static’ is not a very good name. It originated from C and referred to data that was 
allocated statically at compile time. Whenever you see the keyword ‘static’ in Java it is best 
to think ‘once-only-per-class’  

private final iUserInputValue; 
 
iUserInputValue = getUserInput(); // Valid 
iUserInputValue++; // Invalid now 

Aside: final also has a number of more subtle uses. If a method or class is defined 
to be final then the Java Virtual Machine can execute method calls faster (this has 
to do with polymorphism, where Java has to check the type of each object. If 
declared final, Java does not need to perform the check). 
 
For example, the Java Math class is primarily declared to be final for this reason 
(methods within the Math class are also static, hence no instances of the class 
need to exist to call the method, e.g. Math.pow(), etc.). 

public class Employee 
{ 
 private static int iNumEmployees 

 
public static int numPeople() 
{ return iNumEmployees; } 

… 
} 

System.out.println( “Num Employees =  
Employee.numPeople()” ); 
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Directory: C:/SamsProject 
[3 files] 
Control.java 
Process.java 
Printout.java 
 
Directory: C:/JillsProject 
[1 file] 
Project.java 

Access Modifiers 

A summary of the different access modifiers follows: 

Keyword Effect 
private Members are not accessible outside the class. Making a constructor private 

prevents the class from being instantiated. Making a method private means 
that it can only be called from within the class. 

private int iSum; 
private compute() {…} 

(none) often 
called package 
access 

Members are accessible from classes in the same package (i.e. directory) 
only. A class can be given either package access or public access 

int iSum 
compute() 

protected Members are accessible in the package and in subclasses of this class. Note 
that protected is less protected that the default package access 

protected int iSum; 
protected compute() {…} 

public Members are accessible anywhere the class is accessible. A class can be 
given either package or public access. 
 
public int iSum; 
public compute() 
{…} 
 

 
In Java, package access broadly equates to public access between all Java files in the same 
directory, e.g. 

Assume Printout.java contains a method PrintResults() 
which has package access. If so, PrintResults can freely 
be called from within either the Process or Control 
classes. However, it cannot be called from Project as 
Project.java is found within a different directory. 
Note, in general data should not be declared as public, 
instead helper read/write methods should be provided. 
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Objects within Java 

Java uses indirect addressing when creating or manipulating objects (instantiations of a class). 
Otherwise stated, you can only manipulate an object through a reference variable. 

What does this mean? Basically, that you never deal directly with an object, instead you always 
deal with an intermediary to the object. Consider the following Java statements (assuming we have 
a ‘Car’ class already defined): 
 
  
The code fragment represents a fictional case where Tom originally has a Ford car, which he then 
shares with Paul. Finally, Tom gets a new car, a Mazda. When executed the above code will result 
in the following data items being created: 
 
 
 
 
 
 
 
 
 
 
 
 
 

[1] Car tomCar; 
[2] tomCar = new Car( “Ford” ); 
[3] Car paulCar; 
[4] paulCar = tomCar; 
[5] tomChar = new Car( “Mazda” ); 

Line 5 

Line 4 

Line 3 

Line 2 

Line 1 
tomCar 

null 

paulCar 
null 

Car1 object 
Name:ford Model: Milage: 

tomCar 
Car1 

Car1 object 
Name:Ford Model: Milage: 

tomCar 
Car1 

paulCar 
Car1 

paulCar 
Car1 

Car1 object  
Name:Ford Model: Milage: 

tomCar 
Car1 

Car1 object 
Name:Ford Model: Milage: 

tomCar 
Car2 

Car2 object 
Name:Mazda Model: Milage: 

Create a new reference, tomCar (initially it refers to no 
object) 

tomCar is assigned to a new Car object: tomCar = new Car( 
“Ford”) 

Create a new reference, paulCar 

Assign paulCar to tomCar 
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When a variable of any class type is declared it is simply a reference variable that can hold a 
pointer to an instance of the relevant class. This is a process known as indirect addressing (i.e. 
tomCar is an intermediary that holds a pointer to a Car object). 

As such, this has important consequences when it comes to comparing objects, or passing objects 
into methods, as will be shown. 
 
 
 
 
 
 

Comparing objects 
Consider the following code fragment: 

 
Which is realised as follows: 

 

 

 

 

Consider the statement ‘if( first == second )’, will this be evaluated as true or false? In this case 
it will be evaluated as false, the reason being that the statement is interpreted as meaning: Does 
the ‘first’ reference refer to the same object as the ‘second’ reference. Evidently, they do not 
refer to the same object, hence the statement evaluates as false. 

This is a common source of program errors. It is important to be aware if a comparison is to be 
made between references (i.e. pointers to objects) or between objects (i.e. the data internal to an 
object). For this example, in order to compare the object’s contents we should use the String 
method equals, e.g. if( first.equals(second) ), which compares the String’s contents. 

The above principle also impinges upon multiple references to the same object, e.g.: 

 

 

String first = new String( “Hello” ); 
String second = new String( “Hello” 

first
Str1

second
Str2

Str1 object  
“Hello” 

Str2 object  
“Hello” 

Aside: Classes are an example of non-primitive data. Java also contains primitive data types: 
such as int, float, boolean, char, etc. (there are a total of 8 primitive types). A primitive type 
is defined as not being composed of any other types (whereas non-primitive classes contain 
other data items and methods, etc.). As primitive types are not objects, they do not use 
indirect addressing, instead they use direct addressing. Compare and contrast: 
 
 
 

Non-primitive data 
 
Integer iValue; 
iValue = new Integer(2); 

Primitive data 
 
int iValue = 2; 

Integer1 object  
Value = 2 

iValue  
Integer1 

iValue
2
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Evidently, changing an object’s data through one particular reference will affect the data that is 
retrieved by another reference that points to the same object. 

Passing references into methods 
Consider the following code fragment: 

 
Whenever Java calls the processEmployee method it passes a copy of the reference to the 
object, i.e.: 

 
 
 
 
Hence, any changes made to the Employee object’s data inside the processEmployee 
method remain after the method has returned. As such, this provides an elegant means of 
changing an object’s data within a method. However, the programmer must be mindful not to 
inadvertently change an object’s data from within the method. 
There is one cravat to the above outlined procedure: it only applies to non-primitive data (i.e. 
that which is accessed through a reference). When primitive data (e.g. int, float, etc.) is passed 
into a method, a copy of the actual data is made, and any changes within the method are not 
reflected when the method returns, e.g. 

 

 

 

The above code will return a value of 4. 

 
 

 

Obj A = new Obj(); 
Obj A.setTitle( “A” ); 
Obj B = A; 
B.setTitle( “B” ); 
A.getTitle() This returns ‘B’ 

A
Obj1

B
Obj1

Obj1 object  
Title: 

Emplyee tom = new Employee( “Tom” ); 
processEmployee( tom );

int iTest = 4; 
addOne( iTest ); 
System.out.println( iTest );

public addOne( int iValue ) 
{ iValue++ } 

tom
Emp1

copyTom
Emp1

Emp1 object  
Name: Tom 

Method 
processEmployee 

Copy 

iTest
4

copyiTest
4

Method 
addOne 

Copy This value is changed 
to 5 by the method. 
However, once the 
method finishes, the 
value is discarded. 
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Practical 2 

After this lecture you should explore the second practical pack which should enable you to 
investigate the material in this lecture. 

Learning Outcomes 

Once you have explored and reflected upon the material presented within this lecture and the 
practical pack, you should: 

• Understanding the general methodology encapsulated by object-oriented 
programming. 

• Understand the principles behind both Data Abstraction and 
Encapsulation and be able to apply these principles to extract relevant object data 
and object functionality given a straightforward problem description. 

• Have knowledge of the syntax and functionality on offer within Java when 
constructing classes and be able to successfully employ Java to create appropriate classes 
given a straightforward class design. 

• Understand the differences between classes, objects and references within Java (including 
primitive and non-primitive data items) and the consequences thereof when comparing or 
passing objects/references. 

More comprehensive details can be found in the CSC735 Learning Outcomes document. 
 

 
 


