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Abstract

The R5RS specification of numerical operations leads to unportable
and intransparent behavior of programs. Specifically, the notion
of “exact/inexact numbers” and the misleading distinction between
“real” and “rational” numbers are two primary sources of confu-
sion. Consequently, the way R5RS organizes numbers is signifi-
cantly less useful than it could be. Based on this diagnosis, we pro-
pose to abandon the concept of exact/inexact numbers from Scheme
altogether. In this paper, we examine designs in which exact and in-
exact roundingoperationsare explicitly separated, while there is no
distinction between exact and inexact numbers. Through examining
alternatives and practical ramifications, we arrive at an alternative
proposal for the design of the numerical operations in Scheme.

1 Introduction

The set of numerical operations of a wide-spectrum programming
language ideally satisfies the following requirements:

efficiency The programming language’s operations are reasonably
efficient relative to the capabilities of the underlying machine.
In practice, this means that a program can employ fixnum and
floating-point arithmetic where reduced precision is accept-
able.

accuracy A program computes with numbers without introducing
error.

reproducibility The same program, run on different language im-
plementations, will produce the same result.

transparency The programmer can tell when a result is the out-
come of inexact operations and thus contains error, or when a
computation is reproducible exactly.

In practice, efficiency and accuracy are often in conflict: Accu-
rate computations on non-integral numbers are often (but not al-
ways) prohibitively expensive. Fast floating-point arithmetic intro-
duces error. Thus, a realistic programming language must choose a
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compromise between the two—which introduces the need for trans-
parency. Reproducibility is clearly desirable, but also often in con-
flict with efficiency—the most efficient method for performing a
computation on one machine may be inefficient on another. At
least, a programmer should be able to predict whether a program
computes a reproducible result. Moreover, as many practical pro-
grams as possible should in fact run reproducibly.

R5RS [13] provides forexactand inexactnumbers, with the idea
that operations on exact numbers are accurate but potentially ineffi-
cient and operations on inexact numbers are efficient but introduce
error. The intention behind R5RS is to hide the actual machine rep-
resentation of numbers, and to allow the program (or the program-
mer) to look at a number object and determine whether it contains
error. In theory, this would fulfill a reasonable transparency require-
ment. In practice, however, the numerical operations in Scheme are
anything but transparent.

For a trivial example exhibiting the poor reproducibility of R5RS
programs, consider the value of the expression(inexact->exact
0.7) in various Scheme systems, all of which are completely
R5RS-compliant. Table 1 shows that the results vary wildly—
Scheme 48 can even change its behavior at run time. This is only
one of a wide variety of problems a programmer faces who tries
to predict the outcome of a computation on numbers in a Scheme
program. Clearly, R5RS provides for little reproducibility.

What is the cause of these problems? R5RS takes the stance that
programs using exact arithmetic are essentially the same as pro-
grams using inexact arithmetic. The procedures they use are the
same, after all—only the numbers are different. In reality, pro-
grams using inexact arithmetic operations are inherently different
from programs using only exact operations. By blurring the dis-
tinction, R5RS complicates writing many programs dealing with
numbers. We know of no design approach which does successfully
unite exact and inexact arithmetic into a common set of operations
without sacrificing transparency and reproducibility.



In this paper, we examine the specific problems with the numeri-
cal operations specified in R5RS, and consider alternative designs.
Specifically, our contributions are the following:

• We identify the design fallacies concerning the numerical op-
erations specified in R5RS, and their practical consequences.

• We show how to design numerical operations around the idea
thatoperationsrather thannumbersare exact or inexact. The
design has the following properties:

– It uses a different numerical tower that is a more appro-
priate model for realistic program, and which a Scheme
system can realistically represent accurately.

– All standard numerical operations operate exactly on ra-
tional numbers of infinite precision.

– The floating-point operations are separate procedures.

• We examine the choices available in such a design, and dis-
cuss their consequences and relative merits. The choices
concern the relationship between the rational numbers and
the floating-point numbers—whether floating-point numbers
count as rationals and vice versa. We also discuss the nature
of ±∞ and “not-a-number,” and where they fit in our frame-
work.

All of the design alternatives we examine allow compromises
between efficiency and accuracy similar to what R5RS cur-
rently provides, as well as improved transparency and re-
producibility: Any program that does not contain calls to
floating-point operations always computes exactly and repro-
ducibly, independent of the Scheme implementation it runs
on. Rounding conversions from rational to floating-point
numbers only occur at clearly identifiable places in a program.

• We identify some weaknesses in the R5RS set of numerical
operations as they pertain to the new design, and describe pos-
sible approaches to addressing them. This includes the defi-
nitions ofquotient, remainder, andmodulo, the definitions
of the rounding operations, and dealing with external repre-
sentations.

We do not address all the issues concerning numbers that a future
revision of the Scheme standard should address. Specifically, we
do not discuss the relative merits of tying the Scheme standard to
a specific floating-point representation. We do not touch the issue
of offering abstractions for explicitly controlling their propagation,
as well as the rounding mode of floating-point operations: This is
addressed in detail elsewhere, for example in the recent work on
floating-point arithmetic in Java [4]. Also, we omit complex num-
bers and other advanced number representations (such as algebraic
numbers, interval arithmetic, cyclotomic fields etc.) from the dis-
cussion; they are largely orthogonal to the subject of this paper.

Overview We identify the main problems with the R5RS ap-
proach in Section 2. In Section 3, we present a new model for exact
rational arithmetic and a set of typical machine representations for
it. Section 4 describes how to add inexact arithmetic to the model,
along with the design issues arising from this. Section 5 explores
design alternatives within our model. In Section 6, details a possible
set of exact numerical operations. Some implementation issues are
discussed in Section 7. Finally, Section 8 lists some related work,
and Section 9 concludes.

2 Problems with the R5RS approach

R5RS specifies that the objects representing numbers in a Scheme
system must be organized according to a subtype hierarchy called
thenumerical tower:

number⊇ complex⊇ real⊇ rational⊇ integer

Section 6.2.3 of R5RS requires implementations to provide “a co-
herent subset consistent with both the purposes of the implementa-
tion and the spirit of the Scheme language.” Moreover, implemen-
tations may provide “only a limited range of numbers of any type,
[. . . ]”. As a minimal requirement, exact integers must be present
“throughout the range of numbers that may be used for indexes of
lists, vectors, and strings [. . . ]”.

In addition, Section 6.2.2 specifies that the representation of a num-
ber is flagged either exact or inexact and that operations should
propagate inexactness as a contagious property. Hence, numbers
in R5RS are not just organized according to the numerical tower,
but also according to exactness. The exact/inexact distinction is
claimed to be “orthogonal to the dimension of type.”

The rest of this section enumerates some of the most significant
problems with the R5RS specification.

2.1 Not enough numbers

Numbers are in short supply in R5RS. As quoted above, the only
numbers a Scheme system must support are indices for arrays,
lists and strings. A Scheme system that supports only integers
{0, . . . ,255} can be perfectly conformant.

Of course, the use of limited-precision fixnum arithmetic can
improve performance. However, we conjecture that the cost
of allowing the standard arithmetic operations to only support
limited precision—the loss of algebraic laws, transparency and
reproducibility—is greater than the benefit.

2.2 Unspecified precision of inexact numbers

R5RS puts no constraints on the range or precision of inexact
numbers. In particular, the description ofexact->inexact and
inexact->exact says

These procedures implement the natural one-to-one
correspondence between exact and inexact integers
throughout an implementation-dependent range.

More tellingly, it also says

If an exact[inexact] argument has no reasonably close
inexact[exact] equivalent, then a violation of an imple-
mentation restriction may be reported.

The “may” implies that implementations are free to use an arbi-
trarily inaccurate equivalent. Moreover, the meaning of “reason-
ably close” is similarly underspecified: Table 1 shows that a call to
inexact->exact that works fine on one implementation may ac-
tually signal an error on another, even if the argument is the same.

2.3 No exact fixnum-only arithmetic

R5RS specifies in Section 6.2.2:



If two implementations produce exact results for a com-
putation that did not involve inexact intermediate results,
the two ultimate results will be mathematically equiva-
lent.

This makes it hard for a Scheme system to support only limited-
precision integers, as it requires the system to mark results of over-
flows as inexact—which in turn usually means some loss of effi-
ciency (if boxing is involved in the construction of inexact numbers
or a conversion to a different representation) or additional loss of
precision (if an additional bit in the fixed-size representation de-
notes inexactness).1

2.4 Numerical promotion loses information

The idea of a “numerical tower” suggests that the more general
number types contain the more specific ones. In particular, there
is usually a mechanism converting number types automatically
when required for an operation, a process often called “numeri-
cal promotion”, [15, Section 6.5.2.2, §§6, 7], [9, Section 5.6]. In
Scheme, automatic conversion can occur both along the integer–
number axis and along the exact–inexact axis. Also, information
may get lost during any conversion of numbers, evenup the tower.
In MzScheme, for example, the following occurs:

(+ (expt 10 309) 0.0) =⇒ +inf.0

even though(expt 10 309) has an exact representation as an in-
teger.

There are several reasons for loss of information. Bignums can
be arbitrarily large, whereas fixed-precision floating-point formats
are limited in range. Exact rationals can have arbitrary precision,
whereas binary floating-point formats, even if they have arbitrary
precision, can only represent binary fractions where the denomina-
tor is a power of two.

In effect, the intuition of the numerical tower as a chain of sub-
sets is invalid for all actual Scheme systems having a floating-point
representation or imposing limits on the number types.

2.5 Lack of “inexact control-flow”

R5RS defines in Section 6.2.2 which numbers are exact:

A number is exact if it was written as an exact constant
or was derived from exact numbers using only exact op-
erations.

Unfortunately, the following function is perfectly capable of return-
ing an exact result given inexact input:

(lambda (x y) (if (< x y) -1 1))

Clearly, the reason is that the comparison< returns an exact result,
either#t or#f. This is especially pernicious given that comparisons
are one place where the inaccuracies of floating-point numbers may
really hurt. In effect, the accuracy of the function’s value is no
greater than the accuracy of the input—but in Scheme’s type system
the result is treated as entirely exact.

1This seems to be why Bigloo 2.5c, for instance, has(expt
2 50) ⇒ 0 but (exact? (expt 2 50)) ⇒ #t (in violation
of the standard). Chicken 0/1082, which also does not sup-
port bignums, has(expt 2 50) ⇒ 1125899906842624. and
(exact? (expt 2 50)) ⇒ #f.

To ensure that an exact result is not dependent on inexact operations
the programmer either has to do a careful analysis of the program
(in which case any run-time checking is irrelevant) or use exact
comparison operations like the following:

(define (exact< x y)
(if (and (exact? x) (exact? y))

(< x y)
(error ...)))

2.6 Exactness of numerical literals

Section 6.2.4 of R5RS states: “If the written representation of a
number has no exactness prefix, the constant may be either inexact
or exact. It is inexact if it contains a decimal point, an exponent, or
a “#” character in the place of a digit, otherwise it is exact.”

The consequence is often that the global behavior of a program is
governed by the presence or absence of a single decimal point: A
program can become intolerably inaccurate through the presence of
a decimal point, or intolerably slow through the omission of one.
The example described in Figure 1 illustrates why this may be un-
fortunate.

2.7 Meaning of standard procedures

Some of the standard procedures defined in R5RS only make sense
for certain types of numbers, e.g.,gcd for exact integers orlog for
inexact real or complex numbers.

This is a temptation for implementations to fill in the gap and define
things like(gcd 2.0 6.0) in the “obvious” way, violating the in-
tended meaning of standard procedures. In the following example
(again run under MzScheme), the “greatest common divisor” might
be greater than expected:

(gcd (expt 2 40) (expt 3 40)) =⇒ 1
(gcd (expt 2 40) (expt 3 40.)) =⇒ 2048.0

2.8 Exchanging numbers between Scheme sys-
tems

There is no guarantee that two R5RS-compliant Scheme systems
can successfully exchange numerical data via the written represen-
tations provided by the standard procedures. For exact integers,
there seems to be no problem—provided the receiving system cov-
ers the range required by the sender. The notation1/2 already
poses a problem because rationals are not mandatory. The speci-
fication ofnumber->string andstring->number laudably caters
to read/write invariance, but does so only for numbers written and
read by the same Scheme system.

3 Exact arithmetic

The analysis in the previous section suggests that the numerical
tower of R5RS is not a good model for numerical computations in a
computer program—at least not for all of them. Moreover, attribut-
ing exactness to numbers in the way R5RS leads to inconsistencies.

In this section and the following two, we examine the consequences
of splitting operationsalong the exact/inexact axis instead of the
numbers. The exact arithmetic operations satisfy strong algebraic
properties such as associativity, commutativity, distributivity, total



A typical example of surprises with mixed exact/inexact computation appeared in Sperber’s Introductory Computing class. Students had to write a procedure
for visualizing the Mandelbrot set. The task boils down to iterating the functionz 7→ z2−c for different complex parametersc. For visualization, the procedure
draw-mandelbrot enumerates points in a rectangle defined by upper left corner, width and height.

Many students observed that their program seemed to “hang” for some inputs, but not for others. This occurred when only literals without decimal point
were used as operands fordraw-mandelbrot—in which case the program computes the iteration using exact fractions. As the iteration progresses, the internal
representation of the fraction gets very large very quickly.
Putting a decimal point into one of the numerical literals or placing anexact->inexact at almost any point in the program would fix things; there is no
recognizably “right” place for it. Students find especially confusing that the seemingly “simpler”—integral—numblers cause problems, while the “more
complicated” floating-point numbers do not.

The example illustrates the limited predictability of Scheme programs mixing exact and inexact numbers.

Figure 1. A real-world example

ordering etc. Initially, we consider the exact world only. We show
how to add inexact operations later.

We take the following abstract numerical tower as the basis for our
numerical operations:

Q⊇Q10⊇Q2 ⊇ Z⊇ Z≥0 ⊇ Z>0.

In this chainQ denotes the rational numbers,Qb denotes theb-ary
fractions, i.e. the set of rational numbers with denominator a power
of b (binary fractions forb = 2 and decimal fractions forb = 10.)2

Z denotes the integers,Z≥0 denotes the non-negative integers, and
Z>0 denotes the positive integers.

While this view of the rational numbers may appear arbitrary or the-
oretical at first glance, it identifies and names the kinds of numbers
that computer programs typically distinguish. In particular, positive
and non-negative integers are so frequent in any sort of program that
we propose to name them in the core language itself.

To relate the tower elements to machine representations, we use
the following terminology, borrowed from R5RS: Fixnums are
the fixed-width machine representation for integers—denoted by
fixnum. Bignumsare the arbitrary-width exact representations for
arbitrary integers, namedbignum. Flonumsare the fixed-precision
floating-point machine representation for rational numbers, named
flonum. Finally, fractions are the tuple representations for ra-
tional numbers, using bignum numerator and denominator, called
fraction.

The relationships between the tower elements and the machine rep-
resentations are as follows:

1. Thefixnum representation implements a subset ofZ.

2. The bignum representation implementsZ, only limited by
available memory.

3. Theflonum representation implements a subset ofQ2, pos-
sibly augmented by special objects like−0, ±∞ and NaN,
which are not elements ofQ.

4. Human-readable representations are typically decimal
fractions—elements ofQ10—at least conceptually.

5. The fraction representation implementsQ, only limited by
available memory.

We propose that the default operations on rational numbers, that
means the standard procedures+, -, *, /, <=, etc., are all exact: Con-
ceptually, they accept rational arguments and return rational results.
Of course, implementations may take advantage of more efficient
machine representations (employing fixnums and flonums) if pos-

2What we denote asQb is not identical to the algebraic concept
of “field of p-adic numbers.”

sible, but conversion may only take place if no loss of information
occurs in the process. Thus, the particular machine representation
of a number is purely an efficiency issue.

In practice, this means the following:

• Each number object represents a unique, precisely defined ra-
tional number. Rational numbers have conceptually infinite
precision.

• Different machine representations of the same rational num-
ber may coexist, but they are all equivalent. (Processing time
may differ, of course.)

• Rational numbers are treated exactly the same way as R5RS
currently treats exact integers and rationals.

• The exact operations satisfyall algebraic properties (associa-
tivity, commutativity, distributivity, total ordering, etc.) of
their mathematical counterparts.

4 Adding inexact arithmetic

Exact operations alone, even combined with explicit rounding, are
not sufficiently efficient for many numerical computations. There-
fore, the language should provide access to the underlying floating-
point hardware, if available, through a default set of inexact opera-
tions. For example,float+ would accept two flonums and return
a flonum. By nature,float+ sacrifices algebraic properties to gain
efficient execution. However, by distinguishing exact and inexact
operations explicitly, the actual arithmetic used becomes a property
of the program, rather than a property of the numbers it processes.
(Note that the arithmetic model remains a dynamic property in any
language with exact and inexact numbers, even if operations are
required to accept only all exact or all inexact argument values.)

By distinguishing exact and inexact operations explictly, we give
up a potential source of code reuse: Even if an algorithm works for
both exact and inexact operations alike, our proposal requires two
different programs—one calling the exact operations, one calling
the rounding operations. We are proposing to pay this price be-
cause sensible algebraic and numerical algorithms seem to be dis-
tinct most of the time.

Of course, practical implementations of the inexact operations will
use a limited-precision floating-point representation for numbers.
This raises the question of how these representations relate to the
other representations for rational numbers. Do the floating-point
representations form a subset of the rational representations? What
about±∞, NaN, and distinct−0? The issue of the special floating-
point objects is central to this issue. We discuss±∞ and NaN sep-
arately from distinct−0:



4.1 The case against rational ±∞ and NaN

The special objects+∞ and−∞ are used in the floating-point world
as a mechanism to carry on with a computation in the presence of
overflow. They are usually the results ofpositive/tiny = +∞ and
positive/(−tiny) =−∞, which can happen without the programmer
being aware of it.

In the exact world, however, the only way of obtaining infinity is a
division by zero. The question is whether the system should then
signal an error, or return a special object representing infinity. An
argument in favor of±∞ is that they provide neutral elements for
the minimum and maximum, i.e.,(min)⇒+∞, (max)⇒−∞.

Nevertheless, an exact division by zero is virtually always a symp-
tom of a genuine programming error or of illegal input data, and the
introduction of infinity will only mask this error.

NaN (“not a number”) is the strongest form of delaying an er-
ror message. NaN is a special object indicating that the result of
an arithmetic operation is undefined; one way it could emerge is
(+∞)+ (−∞) = NaN. The advantage of returning NaN instead of
raising an error is that the computation still continues, postponing
the interpretation of the results to a more convenient point in the
program. In this way, NaN is quite useful in numerical computa-
tions.

The problem with NaN is that the program control structure will
mostly not recognize the NaN case explicitly. Assume we define
comparisons with NaN always to result in#f, as IEEE 754 does,
then

(do ((x NaN (+ x 1))) ((> x 10)))

will hang but

(do ((x NaN (+ x 1))) ((not (<= x 10))))

will stop, which is counter-intuitive and may be surprising.

While±∞ and NaN are quite useful for inexact computations, there
is a high price to pay when they are carried over into the exact
world: The rational numbers must be extended by the special ob-
jects, and the usual algebraic laws will not hold for the extension
anymore. Moreover, the special objects obscure exact programs by
masking mistakes.

4.2 The case against rational −0

The purpose of distinguishing a “positive zero” (+0) and a “neg-
ative zero” (−0) in a floating-point format is to retain the sign of
numbers in the presence of underflow, e.g.,−0= positive/(−huge).
Since comparisons must allow for tolerances, there is no real harm
done identifying+0 (positive) withthezero, which is neither pos-
itive nor negative. The use of signed zeros simplifies dealing with
branch cuts [11] and generally helps obtaining meaningful numeri-
cal output.

In the exact world, on the other hand, there is no underflow—
only memory overflow. Even worse, adding one (or even two)
signed “zeros” to the rational numbers completely destroys the rich,
clean and simple algebraic structure which the rational numbers do
posses. We briefly detail this mathematical fact.

The setQ of rational numbers equipped with the addition operation

+ form an abelian group. This means the following:

(C) For allx,y∈Q : x+y = y+x.

(A) For all x,y,z∈Q : (x+y)+z= x+(y+z).

(Z) There isZ ∈Q such that for allx∈Q : Z+x = x.

(I) For all x∈Q there is ay∈Q : x+y = Z.

Now take elementsZ,Z′ ∈Q such thatZ′+x = x for all x∈Q and
alsoZ+x = x for all x∈Q. ThenZ = Z′+Z = Z+Z′ = Z′, where
the second equation holds by (C). Consequently, there isonly one
elementZ∈Q having property (Z). Therefore, this element receives
the special name 0 (read “zero”). Now if we augment the setQ into
Q′ by forcibly adding another algebraic zero as inQ′ = Q∪ {?}
where ?+x= x for all x∈Q′ and ?6∈Q, then either property (C), or
property (Z), or both get lost. This implies that property (I) at least
suffers, because the uniqueness ofy (which is in fact−x) gets lost.
This carries on like wildfire, usually destroying nearlyall algebraic
properties at the same time; associativity may survive.

More generally, four different alternatives for dealing with ‘−0’ in
the exact world can be identified:

(a) Augment the rational numbers by one (or two) objects behav-
ing like “a zero.” Algorithmically, this means that all exact
operations must dispatch on these special objects and define
some action.

(b) Identify both floating-point values+0 and−0 with the ratio-
nal number 0. In other words, exact operations treat±0 and 0
identically.

(c) Represent the floating-point value−0 by some negative ra-
tional number, say−Z. Conceptually, exact operations first
replace−0 by the rational number−Z and then do their work.

(d) It is an error to apply an exact operation to−0.

As explained above, the semantic cost of adding one or more “ze-
ros” is quite high. This is a strong argument against alternative
(a). In the other extreme, alternative (d) breaks the symmetry be-
tween positive and negative numbers. The problem with alterna-
tive (c) is to find a sensible definition of the rational equivalent of
−0 (read “negative underflow.”) A first approach might be: “−0
behaves like the smallest negative rational larger than any repre-
sentable float.” Unfortunately, there is no such rational number: Let
− f denote the largest representable negative float. Then− f +1/n,
n∈ {1,2,3, . . .}, are not representable and increasingly close to− f .
So there must be a gap between− f and whichever rational num-
ber−Z is choosen as the rational interpretation of ‘−0’—unlessthe
definition reads: “Any−Z for − f <−Z < 0 may be chosen as the
rational interpretation of ‘−0’;” an approach we do not pursue.

Whatever the choice, a negative number equivalent−Z of −0 will
behave surprisingly different from the float−0. For example, re-
peatedly squaring−Z will soon exhaust memory and printing the
square of−Z will print unrecognizably, unless one is willing to
sacrifice Scheme’s facility to print rationals without loss of infor-
mation.

Since alternatives (a), (c) and (d) are unattractive, alternative (b)
appears to us as the least disadvantagous; there simply seems to be
no place for−0 6= 0 in the exact world of rational numbers.



5 Relating exact and inexact arithmetic

As the previous discussion has shown, the special floating-point
values−0, ±∞, and NaN have no place in the exact world—they
are not rational numbers. Hence, in the following, we assume that
it is an error to apply an exact operation such as+ to ±∞ or NaN,
whereas±0 are both treated as 0 by the exact operations.

At this point, it is natural to ask whether the inexact numerical oper-
ations such asfloat+, float- etc. should accept all rational num-
bers, or only those represented asflonum. If the inexact operations
only acceptflonum arguments, a Scheme system must provide at
least a conversion operationrational->float. Similarly, should
the exact operations accept flonums (unless they are special val-
ues)? In other words, should the domains for exact and inexact
operations be completely disjoint, with explicit conversion at all
times? Three basic alternative kinds of “type permeability” seem to
exist in this spectrum:

#1 Theflonum representation is just another partial machine rep-
resentation for rational numbers (plus special values), and
all numerical operations, exact or inexact, accept all rational
numbers as arguments. It is, however, an error to apply exact
operations to±∞ and NaN.

#2 As in #1,flonum is just another partial representation of ratio-
nal numbers (plus special values), but inexact operations are
onlydefined onflonum. Programs make use of the (rounding)
operationrational->float to convert explicitly.

#3 Theflonum representation is completely distinct from imple-
mentation of rationals. In other words, the exact operations
are not defined onflonum and the inexact operations are un-
defined for the non-flonum rational numbers. Programs use
of float->rational andrational->float to convert ex-
plicitly.

All three alternatives could support afloat? predicate that an-
swers#t for all flonum arguments—including±∞ and NaN. A
rational? predicate would probably behave differently in the dif-
ferent alternatives: Whereas it would answer#t to all numbers ex-
cept for±∞ and NaN in #1 and #2, it would naturally be a converse
of float? in #3. Probably, afloat-not-rational? predicate
that identifies±∞ and NaN would also be useful.

Alternatives #2 and #3 both also require distinctexternalrepresen-
tations forflonum and non-flonum rationals. If an external repre-
sentation denotes a flonum, it may also be desirable to require rep-
resentation information to accurately determine the meaning of the
literal. (More on the issue of external representation in Section 6.6.)
Alternatively, all numerical literals denote rational numbers, and the
program must convert them toflonum representation explicitly via
rational->float.

Alternatives #1 and #2 can both be implemented as conservative
extensions of R5RS by the following measures:

• Support integers and rationals of arbitrary precision.

• Have all R5RS numerical operations convertflonum argu-
ments tofraction before proceeding. (Or assert correctness
by other means.)

• Interpret “inexact” as “float.” Specifically, takeinexact?
to meanfloat? and exact? as ¬inexact?. Define
exact->inexact andinexact->exact as follows:
(define (exact->inexact n)

(if (float? n)
n
(rational->float n)))

(define (inexact->exact n)
(cond
((float? n) (float->rational n))
((number? n) n)
(else

(error ...))))

Note that (number? NaN) ⇒ #f and (number? ±∞)
⇒ #f, while (float? NaN) ⇒ #t and(float? ±∞)
⇒ #t.

• Finally, add operations onflonum with afloat prefix.

(Of course, inexact?, exact?, exact->inexact, and
inexact->exact serve no purpose in this new organization
of numbers and should disappear eventually.)

The only problem is that of literals: Alternative #1 would work
most intuitively if unannotated numerical literals would always rep-
resent their rational counterparts exactly. Unfortunately, R5RS re-
quires that the presence of a decimal point or an exponent forces
a literal to denote an inexact, and, thus, a floating-point number.
Therefore, a true conservative extension still requires that “exact”
numerical literals carry a#e prefix.

In any case, all alternatives feature full reproducibility for exact
computations, and much-improved transparency because the pro-
gram source code clearly shows when floating-point arithmetic hap-
pens. (As for the example in Figure 1: In our design, the program
wouldalwayscompute slowly. However, the program now behaves
in a much more consistent and less confusing manner, and the cause
for the problems is much easier to explain than with R5RS, as is the
remedy.)

6 Useful numerical operations

In this section, we disucss alternatives to R5RS’s default set of nu-
merical representations. Any such design necessarily represents a
subjective choice, however. It should be rich enough to be con-
venient (e.g. having both< and>) but leave less frequently used
operations (likegcd andlcm) to specialized libraries.3 Here is pos-
sible list of exact operations to be present in the core language of a
Scheme system:

rational? decimal-fraction? binary-fraction?
integer? non-negative-integer? positive-integer?

(Section 6.1)
negative? zero? non-negative? positive?
compare [= sign(x−y)] (Section 6.2)
< <= = >= > min max sign abs
(if-sign x negative zero positive) (Section 6.2)
+ - * / ˆ [aliasexpt]
floor ceiling truncate extend round (Section 6.3)
round-fraction floor-log-abs (Section 6.4)
div mod (Section 6.5)
numerator denominator
string->rational rational->string (Section 6.6)

3Of course, fractional arithmetics requires a gcd operation
internally—but including rarely used operations in the default set
carries a conceptual cost.



We discuss the major deviations from R5RS.

6.1 Numbers

The type predicates rational? decimal-fraction?
binary-fraction? integer? non-negative-integer?
positive-integer? reflect the abstract chain of numbers as
introduced in Section 3.

As mentioned already in Section 3, non-negative and positive in-
tegers are exposed because of their ubiquitous nature. Concerning
decimal and binary fractions, refer to Section 6.4.

6.2 Comparisons

The additional comparison operations increase programming con-
venience. With respect to R5RS, there are two major additions:
Thecompare procedure and theif-sign special form dispatching
on the sign of a rational number.

Compare has been included for efficiency. All other comparisons
can be expressed in terms of a single call tocompare, which can be
implemented without allocating any intermediate objects at all.

If-sign has been included because a frequent task in programming
is distinguishing between the three possible results of a comparison.

6.3 Rounding rationals to integers

For rounding rationals into integers, the proceduresfloor,
ceiling, truncate, extend and round provide the rounding
modes towards−∞, +∞, 0, ±∞ and towards the nearest integer.
The precise mathematical definitions of these functions are the ob-
vious ones, with the exception of breaking ties inround, which
breaks ties towards even, just like R5RS and IEEE 754.

All of these operations are useful and common in numerical pro-
grams: Breaking ties towards even and towards zero is symmet-
ric in the sense thatρ(−x) = −ρ(x) for all x, whereρ denotes the
rounding function. Breaking ties towards−∞ appears naturally in
div andmod as defined in Section 6.5. Finally observe that round-
ing with breaking ties towards±∞ is naturally related to floor and
ceiling bydx−1/2e andbx+1/2c.

6.4 Binary and decimal fractions

By providing a convenient function for rounding rationals into
binary and decimal fractions, programs can easily implement
floating-point operations of arbitrary precision in the absence of,
or in addition to, proper floats. Among others, this provides a natu-
ral way of defining external representations for binary and decimal
fractions accurately and portably. (A proposal is in Section 6.6.)
We propose that

(round-fraction base mantissa round x)

maps the rationalx into a number that hasmantissasignificant digits
in its base-ary expansion and where rounding has been performed
by applying the procedureround mapping rationals into integers.
Figure 4 shows a possible implementation in R5RS, assuming the
presence of (bignum) rational arithmetics.

More explicitly,(round-fraction b mρ x) should result either in
0, or in a number of the form

x̂ = sign(x) · (x̂0.x̂1 · · · x̂m−1)b ·bê, (1)

for b-ary digitsx̂0, . . . , x̂m−1 ∈ {0, . . . ,b−1}, x̂0 6= 0, and integer ˆe.
Clearly, this only makes sense for integerb andm whereb≥ 2 and
m≥ 1.

Now consider the case ˆx 6= 0. Then

1 = (1.0· · ·)b ≤ (x̂0.x̂1 · · · x̂m−1)b < b = (10.0· · ·)b.

This implies 0≤ logb(x̂0.x̂1 · · · x̂m−1)b < 1, from which follows

blogb |x̂|c= ê.

This is the primary reason for proposing that

(floor-log-abs b x)

computes the largest integeresuch thatbe≤ |x| for integerb, b≥ 2,
and non-zero rationalx. Note thate is negative if and only if|x|< 1.

Coming back toround-fraction, define forx 6= 0

x̂ = ρ
(

xbm−e−1
)
·b−(m−e−1), e= blogb |x|c. (2)

Clearly, this definition can only result in the form (1) if the rounding
functionρ(−) is well-behaved. For this reason, we require thatρ(u)
is integer and|ρ(u)−u| < 1 for all rationalu. This is the case for
round, floor, ceiling, truncate, andextend. (In the case of
round, even the tighter bound|ρ(u)−u| ≤ 1/2 holds.) Forx = 0
definex̂ = 0.

Under these conditions, the following error bound holds:

|x̂−x|< b−m+1|x|.

Proof:

|x̂−x| = |ρ
(

xbm−e−1
)

b−(m−e−1)−x|

= b−(m−e−1)|ρ
(

xbm−e−1
)
−xbm−e−1|

< b−(m−e−1)

≤ b−m+1|x|.

It remains to be shown that the conditions onρ(−) imply the form
(1). Observe that a positiveu is never rounded into a negativeρ(u),
and vice versa. This means that we only need to considerx > 0. In
this case,be ≤ x < be+1 by definition ofe, which impliesbm−1 ≤
xbm−e−1 < bm. Applying ρ, we obtain

bm−1 ≤ ρ(xbm−e−1)≤ bm,

becausebuc ≤ ρ(u)≤due. Hence, we have shown that ˆx has at most
m non-zero digits in itsb-ary expansion.

Note that round-fraction ignores several details of actual
floating-point formats: The exponent ofround-fraction is un-
limited in magnitude, which means overflow and mantissa denor-
malization (x̂0 = 0) do not occur. Also underflow, the production of
a number of magnitude too small to be represented, is not detected;
it is simply rounded to zero.



6.5 Div and mod

Given an unlimited integer type, it is a trivial matter to derive
signed and unsigned integer types of finite range from it by mod-
ular reduction. For example, arithmetic using 32-bit signed two’s-
complement behaves like computing with the residue classes “mod
232,” where the set{−231, . . . ,231 − 1} represents the residue
classes. Likewise, unsigned 32-bit arithmetic also behaves like
computing “mod 232,” but using a different set of representatives:
{0, . . . ,232−1}.

Unfortunately, the R5RS-operationsquotient, remainder, and
modulo are not ideal for this purpose. In the following example,
remainder fails to transport the additive group structure of the in-
tegers over to the residues modulo 3.

(define (r x) (remainder x 3))
(r (+ -2 3 )) =⇒ 1
(r (+ (r -2) (r 3))) =⇒ -2

In fact, modulo should have been used, producing residues in
{0,1,2}. For modular reduction with symmetric residues, i.e. in
{−1,0,1} in the example, it is necessary to define a more compli-
cated reduction altogether.

Therefore we propose operations div and mod (with Scheme coun-
terpartsdiv andmod), defined on all integersx,y, by the following
properties

x = (xdivy) ·y+(xmody), (3)

0 ≤ (xmody) < y if y > 0,
y/2 ≤ (xmody) < −y/2 if y < 0,

(4)

xdivy is integer, andxdiv0 = 0. (5)

In other words, the sign of the modulusy determines which system
of representatives of the residue class ringZ/yZ is being chosen,
either non-negative (y > 0), symmetric around zero (y < 0), or the
integers (y = 0).

The definition above implies

xdivy =


b x

yc if y > 0,

0 if y = 0,

d x
y −

1
2e if y < 0.

This simplicity is the reason why the definition can be extended
literally to define div and mod for all rationalx,y. Mathematically,
it even makes sense for all realx,y. For example,(xmod2π) and
(xmod−2π) both reducesx modulo 2π, and

0≤ (xmod2π) < 2π and−π ≤ (xmod−2π) < π.

Since div and mod offer both conventions which make sense, the
R5RS proceduresmodulo, remainder, andquotient can easily
be defined in terms ofdiv andmod. Of course it is also possible the
other way around, albeit with more effort. Figures 2 and 3 show the
definitions, respectively.

6.6 External Representations

We discuss some of the issues regarding external representatives
arising from our design proposal in this section.

External representations occur in several contexts:

• literals in program source code,

(define (quotient n1 n2)
(* (sign n1) (sign n2) (div (abs n1) (abs n2))))

(define (remainder n1 n2)
(* (sign n1) (mod (abs n1) (abs n2))))

(define (modulo n1 n2)
(* (sign n2) (mod (* (sign n2) n1) (abs n2))))

Figure 2. Definingquotient , remainder , modulo in terms
of div , mod, sign , and abs .

(define (div x y)
(cond
((positive? y)
(let ((n (* (numerator x)

(denominator y)))
(d (* (denominator x)

(numerator y))))
(if (negative? n)

(- (quotient (- d n 1) d))
(quotient n d))))

((zero? y)
0)

((negative? y)
(let ((n (* -2

(numerator x)
(denominator y)))

(d (* (denominator x)
(- (numerator y)))))

(if (< n d)
(- (quotient (- d n) (* 2 d)))
(quotient (+ n d -1) (* 2 d)))))))

(define (mod x y)
(- x (* (div x y) y)))

Figure 3. Defining mod and div using R5RS, assuming exact
rational arithmetics.

• the output ofwrite and the input ofread,

• numbers printed out for human readers,

• numbers printed for consumption by other (non-Scheme) pro-
grams and read from other programs.

Since the number formats used for consumption by humans and
non-Scheme programs vary wildly and uncontrollably, they are
properly the subject of one or probably several libraries and be-
yond the scope of this paper. We focus on literal syntax and on the
syntax used byread andwrite.

In Scheme, to preserve some of the desirable properties of the lan-
guage, the literal syntax must be compatible with the format used
by read andwrite.

The simple-minded approach to the external-representation issue
is to just have one uniform external representation for all machine
number formats—each representation stands for a unique rational
number, and converting a number to its representation is an exact
operation. However, many floating-point numbers have quite long
representations as fractions, making this choice prohibitive in terms
of both space (for storage of the representation) and time (for con-
verting back and forth between the numbers and their representa-
tion).



(define (floor-log-abs base x)
(define (log b x e bˆe offset)
(let ((bˆe+1 (* bˆe b)))

(if (> bˆe+1 x)
(if (= bˆe x) e (+ e offset))
(log b x (+ e 1) bˆe+1 offset))))

(let ((abs-x (abs x)))
(if (>= abs-x 1)

(log base abs-x 0 1 0)
(- (log base (/ 1 abs-x) 0 1 1)))))

(define (round-fraction base mantissa round x)
(if (zero? x)

0
(let ((k (- mantissa

(floor-log-abs base x)
1)))

(* (round (* x (expt base k)))
(expt base (- k))))))

Figure 4. Floor-log-abs and round-fraction as defined
in Sections 6.3 and 6.4, implemented in R5RS, assuming ratio-
nal arithmetics.

Hence, it is desirable to be able to use a shorter, floating-point (in
the true sense of “using a point”) external representation for num-
bers, preferably using the familiar decimal-point format. In that
case, read/write invariance requires tagging the result explicitly as
a floating-point number. Moreover, to better support the exchange
of external representations between different Scheme systems, or
to support distinguishing between several machine floating-point
formats used by a single Scheme system, it is desirable to provide
information about the nature of the floating-point format used.

We suggest using a suffix indicating the length of the bi-
nary mantissa of the floating-point format. Thus, In our pro-
posal, 0.7 would always denote 7/10 (unless R5RS compatibil-
ity is important, see Section 5), whereas the IEEE 754 64-bit
float closest to 0.7 would print as0.7|52, which is equal to
3152519739159347/4503599627370496. We call this format the
mantissa-width tagged format.

From the point of view of communication, the mantissa-width
tagged format is not so much an indicator for “floating point” but
rather a source coding (compression) method for a frequently used
subset of the rational numbers—binary fractions. The mantissa-
width tagged format for binary fractions achieves accuracy without
loss of performance.

The mantissa-width tagged format can be specified accurately
in terms of the proceduresround-fraction and round of Sec-
tions 6.4 and 6.3. To be specific, we propose procedures
string->rational andrational->string (serving the function
of R5RS’s string->number and number->string) that convert
between internal and external representations of rational numbers.
Apart from the usual formats (base 2/8/10/16, fractions via/, and
decimal scientific “e”-notation),string->rational understands
the number syntax

scientific|mantissa

and interprets it as

(round-fraction 2 mantissaround scientific)

Rational->string and string->rational satisfy the

“read/write-invariance” property of R5RS: For each rational
numberx (in the sense ofrational?), the following holds:

(= (string->rational (rational->string x)) x)

(Note that our= is an exact comparison, unlike the= of R5RS,
which is the reason R5RS formulates this property in terms of
eqv?.)

To summarize, we suggest the following (partly departing from
R5RS):

• Each external number representation without annotation de-
notes exactly the rational number the “learned in high school
interpretation” would assign it. That is,0.7 = 7/10 and
1.3e-2 = 13/1000.

• The mantissa-width tagged format specifies abinary fraction
(like a floating point number) bydecimaldigits: 0.7|5 =
11/16 and0.7|52 = 3152519739159347·2−52.

• The#e and#i prefixes go away.

Note that we expect the mantissa-width tagged format to occur only
rarely in numerical literals—the programmer can simply specify a
rational number and rely on the automatic conversion forfloat
operations.

The R5RS requirement thatnumber->string must use the mini-
mum number of digits for decimal-point external representations
must be adjusted forrational->string, as there might be several
different representations for the same number. For example,11/32
= 0.34|4 = 0.34375: Although the mantissa-width tagged format
is shorter, the purely decimal format is arguably clearer.

Consequently, we propose to require the minimum number of digits
only within one particular number format, but give the implemen-
tations the freedom to choose the format. Nevertheless, printing
with the absolute minimum of characters is also possible and even
computationally inexpensive.

7 Implementation Issues

In this section, we address the most important implementation is-
sues that arise with our proposal:

7.1 Exact operations on flonums

In design alternatives #1 and #2, numbers represented as flonums
will be converted into fractions when an exact operation requires
it. This might lead to surprises in terms of time and memory con-
sumed, because exact representations can and generally do grow
quickly with arithmetic depth. This is the price of exactness.

However, if problems arise from exact operations on flonums, they
are easy to detect (slow execution) and have a specific remedy: Re-
place exact operations by inexact operations and investigate numer-
ical stability. R5RS, on the other hand, makes it much harder to
identify and systematically fix this kind of problems because ex-
actness is not a static property of the program. In other words, the
programmer must investigate the run-time propagation of inexact-
ness in order to understand the algorithm actually being executed.



7.2 Generic arithmetic

The exact arithmetic operations need to dispatch on the represen-
tations of their arguments—a typical implementation will at least
use separate representations for fixnums, bignums, and true frac-
tions. This is no different from the situation in R5RS, and a Scheme
system can employ the same technique as before to perform the
dispatch—for example, via exhaustive case analysis or a suitable
exception system.

7.3 Coercion of constants

If number literals containing a decimal point (and without a
mantissa-width specification) are interpreted as rationals, and
floating-point operations accept rational arguments (as in design al-
ternative #1), the implementation will typically need to convert the
rational number to a floating-point representation. This may be a
relatively expensive operation, and a straightforward program may
perform it often. To reduce the cost, an implementation could mem-
oize the floating-point approximation of a rational number, or per-
form a static analysis to determine what literals are used exclusively
as arguments to floating-point operations. We conjecture that a sim-
ple analysis would be quite effective for most realistic programs.

7.4 Fixnum arithmetic

Many Scheme implementations already use fixnum arithmetic to
optimize common-case numerical operations. However, implemen-
tations might want to offer exclusively fixnum arithmetic to opti-
mize away the generic-arithmetic dispatch and the overflow detec-
tion. Doing this in the default set of numerical operations on exact
numbers is already in violation of R5RS. (See Section 2.)

Thus, the best way of offering fixnum-only operations would be
through a set of separate procedures, analogous to the floating-
point operations, with their algebraic meaning defined as calculat-
ing “mod±2w”, w∈ {8,16,32,64}, as proposed in Section 6.5.

7.5 Floating-point representation

We have said nothing about the particular machine floating-point
representation a Scheme system may use or should be required to
use by a standard. This is a touchy issue—requiring, say, a par-
ticular IEEE 754 representation would lead to completely repro-
ducible computations, but, depending on the hardware a program
runs on, results in an unacceptable loss in either accuracy or ef-
ficiency [4, 12] and might pose a considerable obstacle for imple-
mentations on platforms not supporting this representation natively.

For this reason, we would expect a standard to specify that the
floating-point operations use the widest floating-point format the
underlying hardware supports efficiently. In practice, this would
probably mean IEEE 754 double extended on the Intel x87 or the
68xxx architecture, and IEEE 754 double on, say, the PowerPC, or
the Alpha.

Of course, implementations could also offer sets of floating-point
operations specific to a specific machine representation or with pa-
rameters (e.g. multiprecision.) However, as few programs seem to
require this degree of control, it should probably not be included
into the core language by default.

7.6 Floating-point storage

The choice of the storage format for large quantities of floating-
point numbers is independent of the choice of the format used for
computations. Uniform vectors that explicitly specify the floating-
point format used, such as those proposed in SRFI 4 [8] are an
appropriate mechanism for this.

7.7 Mantissa-width tagged format

Reading the mantissa-width tagged format proposed in Section 6.6
can be done efficiently using Clinger’s method [3, 2].

Similarly, printing the mantissa-width tagged format using the min-
imum number of total digits can be reduced to Burger and Dybvig’s
efficient method for printing a binary fraction as an approximate
decimal fraction [19, 1]. The most important difference is that the
mantissa width may vary with the number being printed. In effect,
the mantissa-width tagged format can often be shorter, as for ex-
ample in1e9|1 = 230. Whether the system should really use the
mantissa-width tagged format in this case is a different matter.

8 Related Work

Some Scheme implementations targeted at high performance
programs—such as Chez Scheme [6], and Bigloo [17]—offer spe-
cialized numerical operations for floating-point numbers. This un-
derlines the need for separating floating-point arithmetic from the
usual generic arithmetic for performance reason, but does not really
address the concerns raised in this paper: The remaining numerical
operations are unaffected in these systems. Gambit-C [7] offers a
declaration which locally declares all R5RS numerical operations to
perform floating-point arithmetic—again, for performance reasons.

The teaching languages of DrScheme [5] use exact arithmetic by
default, to spare beginning students the confusion of programming
with mixed exact and inexact floating-point arithmetic.

Objective Caml [14] keeps the domains and types for floating-point
numbers completely separate from that of integers: A program can-
not use them interchangeably, it must explicit convert. The floating-
point operations have names different from the integer operations.
(+. for floating point addition, etc.) Keeping the floating-point
numbers separate from the rest is easier in Objective Caml than it is
in Scheme because Caml does not have built-in rational numbers.
Hence, there is no choice but the read0.7 as a float.

Haskell 98 [10] also has a sophisticated type hierarchy for its nu-
merical types, including rational numbers and single- and double-
precision floating-point numbers. It keeps the various numerical
types separate, but uses its type class mechanism to use a single
set of operators for all numerical types and make parts of the nu-
merical domains look like subtype hierarchies. Just like our pro-
posal, Haskell mandates that a literal containing a decimal dots rep-
resents its corresponding rational number accurately. Two methods
fromInteger andfromRational, overloaded over their respective
result types, negotiate between literals and the contexts that receive
them. Ambiguities concerning the numerical types are frequent,
which is why thedefault declaration can specify a strategy for
resolving them.

Common Lisp [18] does not have inexactness as a property of num-
bers orthogonal to the representation type. However, numerical op-
erations will always convert rational arguments to float arguments



if any other arguments are floats. Comparisons between floats and
rationals always convert the floats to rationals. Unlike Scheme,
Common Lisp does at least give a recommendation for the min-
imum precision offered by the various floating-point operations,
which, we conjecture, reduces the variance between different Com-
mon Lisp systems considerably. However, the basic arithmetic op-
erations are still overloaded and do not always respect the various
algebraic laws.

Mathematica [20] provides an arbitrary-precision floating-point
representation and applies a mechanism of decreasing precision
during inexact computation. In practice, however, this approach
suffers from the same weaknesses as R5RS: When inexact numbers
enter the computation, it is usually time to design a new program.
Moreover, the automatic decreasing of precision makes it difficult
to run entire computations at a higher precision; a stray1.0 (de-
fault precision) instead of aN[1, 50] (high precision) propagates
its low precision uncontrollably, usually ruining the calculation.

An alternative approach to preserve read/write invariance (and a
number of the other issues raised in this paper) would be tofix the
floating-point representation in the language specification once and
for all, as for example has been done in Java [9]. In that case, no tag-
ging is necessary. The controversy around this approach suggests
against it [12].

Scheme has long been one of the few languages to specify that a
round-trip of conversion of a number to an external representation
and back should preserve that number. Hence, it comes as little
surprise that the most important publications about efficient and ac-
curate algorithms to achieve this purpose come from the Scheme
community [3, 2, 19, 1].

9 Conclusion

In Section 1.1, R5RS says:

Scheme’s model of arithmetic is designed to remain as
independent as possible of the particular ways in which
numbers are represented within a computer. [...] Thus
the distinction between integer and real arithmetic, so
important to many programming languages, does not ap-
pear in Scheme.

We have shown that the behavior of realistic programs is in fact
very much dependent on the particular number representations cho-
sen by an implementation. The distinction between integer and real
arithmetic is important to many other languages because it is im-
portant to programs. Following this design guideline, R5RS makes
is very difficult to write portable programs employing inexact arith-
metic: Inexact arithmetic is too underspecified to allow a program-
mer to predict what a particular program will do running in different
Scheme implementations. At the heart of the problem is the notion
of inexact numbers itself—a more useful basis for the design of a
set of numerical operations is attributing inexactness to the opera-
tions rather than the numbers.

We have designed the basis for such a set of numerical operations,
and identified design alternatives within its framework. The most
important property of our design is that the default numerical oper-
ations are always exact. Floating-point arithmetic is relegated to a
separate set of operations. Most of the choices available within the
design concern the degree of separation between the inexact and ex-
act worlds. However, all of the alternatives we propose have more
pleasant properties than what R5RS currently requires—in particu-

lar, greater transparency and full reproducibility for exact compu-
tations. They also require similar, if not less implementation effort.
We have also identified some weaknesses in the set of numerical
operations offered by R5RS, and proposed alternatives.

Arguably, the result is still “strange” in that it is unlike basically
every other programming language. We conjecture that this dif-
ference is good and necessary: In particular, most programming
languages do not offer infinite-precision integers and rational num-
bers at all, which reduces the design space, but comes with its
own problems: Limited precision of the various numerical types
along with implicit coercion rules often cause programming errors
and non-reproducible behavior. Of the languages that do support
infinite-precision integers and rationals, only Common Lisp stands
out, which takes a less principled but otherwise similar approach to
Scheme. We conjecture that programmers experience similar sur-
prises in Common Lisp as in Scheme. However, given Common
Lisp’s much tighter specification and as much fewer Common Lisp
systems exist than Scheme systems, these surprises may not matter
as much in practice. All in all, we believe that Scheme is special
enough to warrant a special design for its numerical operations.
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A Mantissa-Width Tagged Format

In this appendix we show how to print the mantissa-width tagged
format efficiently. Given a binary fractionx (i.e. x = a2b, integer
a,b), we are to construct a decimal fractiony (i.e.,y= c10d, integer
c,d) and a positive integerw such that “y|w” reads asx according
to the definition of the format given in Section 6.6.

Obviously, it is always possible to findsome“y|w” for x because bi-
nary fractions are also decimal fractions. (Notea/2b = (a5b)/10b.)
This appendix shows how to obtain theshortestsuch notation for a
givenx.

Let us begin by giving a concise formal definition of the mantissa-
width tagged notation. For non-zero rationaly and positive integer
w, define “y|w” to represent the rational number

σw(y) = ρ
(

y2−blog2 |y|c+w−1
)
·2blog2 |y|c−w+1,

whereρ(−) denotes rounding to the nearest integer, with ties bro-
ken towards even. In other words,ρ(z) is eitherbzc or dze, depend-
ing on which one is closer, andρ(n+1/2) = n for integern, if and
only if n is even. Fory = 0 we defineσw(y) = 0.

Sinceρ(−) is symmetric, i.e.,ρ(−z) = −ρ(z), so isσw(−). For
this reason we only consider positivex,y for the remainder of this
section.

The following lemma characterizesσw(−).

Lemma 1 The functionσw(−) is non-decreasing and piecewise
constant, with a fixed point in every piece.

More explicitly, for integerk andw≥ 1 define

yw,k =
(

1+
kmod2w−1

2w−1

)
2kdiv2w−1

,

and

uw,k =
(

1+
(kmod2w−1)+1/2

2w−1

)
2kdiv2w−1

.

These values are ordered linearly as

· · ·< yw,k−1 < uw,k−1 < yw,k < uw,k < · · · .

Thenσw(y) = yw,k for all y∈ (uw,k−1,uw,k) and

σw(uw,k) =

{
yw,k if k is even andw≥ 2,
yw,k+1 otherwise.

A.0.0.1 Proof. The function σw(−) is piecewise constant by
construction. Moreover, jumps inσw(y) can only occur at places
wherey2w−blog2 yc−1 is of the formn+ 1/2 for some integern, or
if y is a power of two. (The first condition comes fromρ(−), the
second fromblog2−c.) This is where we need to check that the
function is non-decreasing.

Let us inspect the behavior ofσw(y) at these potential transition
points. First considery= 2e for integereand a positive real param-
eterε, chosen so small that no other potential transition point lies
in the open interval(y−ε,y+ε). Such anε exists because the only
accumulation point of the potential transitions is zero, which is ex-
cluded. Then,blog2(y−ε)c= e−1 andblog2yc= blog2(y+ε)c=
e. This implies

σw(y− ε) = ρ
(
2w− ε2w−e)2−(w−e) = y,

σw(y) = ρ
(

2w−1
)

2−(w−e−1) = y,

σw(y+ ε) = ρ
(

2w−1 + ε2w−e−1
)

2−(w−e−1) = y.

Hence,σw(−) is in fact constant across the transitions at powers
of two. Moreover,σw(2e) = 2e for all integere. Note thatyw,k =
2k/2w−1

if k is divisible by 2w−1.

Now consider the other type of potential transition point, i.e.,
y2w−blog2 yc−1 = n+1/2 for some integern. Again, letε > 0 such
that there is no other potential transition point in(y−ε,y+ε). Then
blog2(y+sε)c= blog2yc= e for all s∈ {−1,0,1} and

σw(y+sε) = ρ
(

n+
1
2

+sε2w−e−1
)

2−w+e+1.

The termr = ρ
(
n+ 1

2 +sε2w−e−1
)

is eithern or n+ 1 depending
ons. If s=−1 thenr = n, if s= 1 thenr = n+1, and ifs= 0 then
it depends on the tie-breaking rule ofρ. The “round to even” results
in r = n if and only if n is even. Whatever the tie-breaking rule,

σw(y− ε)≤ σw(y)≤ σw(y+ ε).

Hence,σw(−) is non-decreasing at each transition point, which
means that the entire function is non-decreasing.

Finally we show how to obtain the expressions foryw,k anduw,k.
Since every positivey can uniquely be decomposed intoy= ŷ2e for
integereand 1≤ ŷ < 2, the transitions are characterized by

blog2yc= e, ŷ = y2−blog2 yc =
(

n+
1
2

)
2−w+1.

for integern. The condition 1≤ ŷ < 2 restricts the range ofn
to {2w−1, . . . ,2w − 1}. Therefore, we define the parameterk =
e2w−1 + (n− 2w−1) indexing the transition pointsuw,k as defined



in the lemma. It is easy to show thatuw,k < uw,k+1 for all k. In a
similar fashion, it can be shown thatyw,k is a fixed point ofσw(−)
and thatuw,k−1 < yw,k < uw,k for all k. Finally, a careful analysis
of the effect of tie-breaking yields the valueσw(−) at the transition
points, which concludes the proof.2

Let x = a2b be a positive binary fraction with integera,b and odd
a. Thena andb are uniquely defined byx.

According to Lemma 1, there is(y,w) such thatσw(y) = x if and
only if x = yw,k for some integerk. Moreover, thisk relates tox and
w by

kdiv2w−1 = blog2xc= b+ blog2ac,

kmod2w−1 =
(

x2−blog2 xc−1
)

2w−1

=
(

a2−blog2 ac−1
)

2w−1

= a2−blog2 ac+w−1−2w−1.

Sincea is odd, the last right-hand side is an integer if and only if
−blog2ac+ w−1≥ 0. Hence, there is ay such thatσw(y) = x if
and only if

w≥ wmin(x) = blog2ac+1.

The following theorem refines this result by characterizingall y for
which σw(y) = x.

Lemma 2 Let x = a2b > 0 for integera,b anda odd, and letw be
positive integer. Then the set of ally such thatσw(y) = x is given
as

σ−1
w (x) =


/0 if w < wmin(x),
[uw,k−1,uw,k) if w = wmin(x) = 1,

[uw,k−1,uw,k] if w≥ wmin(x)≥ 2, k even,
(uw,k−1,uw,k) if w≥ wmin(x)≥ 2, k odd,

wherek is defined as

k =
(

b+ blog2ac+a2−blog2 ac−1
)

2w−1.

Moreover,

σ−1
wmin

(x)⊇ σ−1
wmin+1(x)⊇ σ−1

wmin+2(x)⊇ ·· · .

A.0.0.2 Proof. The stated form ofσ−1
w (x) is a consequence of

Lemma 1, with careful analysis of the boundaries.

It remains to be shown that theσ−1
w (x) form a tightening chain. By

induction overk, it is sufficient to show

uw,k−1 < uw+1,2k−1 < yw,k = yw+1,2k < uw+1,2k < uw,k.

Note that 2k corresponds tow+1. By Lemma 1,

uw,k−1 < yw,k < uw,k,

uw+1,2k−1 < yw+1,2k < uw+1,2k,

x = yw,k = yw+1,2k.

Decomposek = k12w−1+k0 for 0≤ k0 < 2w−1. Then 2k = k12w+
2k0, where 0≤ 2k0 < 2w. Hence,

(uw,k−uw+1,2k) ·2−k1 =
k0 +1/2

2w−1 − 2k0 +1/2
2w

= 2−w−1 > 0.

The calculation has shownuw+1,2k < uw,k. For the remaining in-
equality decomposek−1 = k32w−1 +k2 for 0≤ k2 < 2w−1. Then
2k−1 = k32w +2k2 +1, where 0< 2k2 +1 < 2w. A similar calcu-
lation as before showsuw,k−1 < uw+1,2k−1, and this concludes the
proof. 2

For reference, we also investigate the specialization of the previous
lemma in whichw = wmin(x).

Lemma 3 For x = a2b > 0, integera,b, anda odd,

σ−1
wmin(x)

(x) =

{
[x−2b−2,x+2b−1) if a = 1,

(x−2b−1,x+2b−1) otherwise.

A.0.0.3 Proof. Consider the casea = 1. Thenw = 1, k = b,
uw,k = a2b +2b−1, anduw,k−1 = a2b−2b−2 (sic!).

Now consider the casea > 1. By definition ofw = wmin(x) it is
2w−1 ≤ a < 2w. Sincea is odd andw ≥ 2 it is alsoa 6= 2w−1.
Hence, 1≤ a−2w−1 < 2w. This implies thatk andk−1 decompose
modulo 2w−1 into

kmod2w−1 = a−2w−1,

(k−1)mod2w−1 = a−2w−1−1,

kdiv2w−1 = (k−1)div2w−1 = b+w−1.

Using these equations inuw,k−1 anduw,k (Lemma 1) andσ−1
w (x)

(Lemma 2), and observing thatk is odd, shows the stated forms of
the bounds.2

Finally, we will apply the results to printingx as “y|w”.

As Lemma 2 states,σ−1
w (x) = /0 if w < wmin(x). This means, the

smallestw for which we can hope to find a suitabley at all is
wmin(x). But Lemma 2 also states an inclusion chain, showing that
choosingw larger thanwmin(x) can only decrease our choice for
y. Moreover, choosingw larger will eventually increase the length
of the printed representation ofw. Hence, the optimal choice is
w = wmin(x), as defined before Lemma 2.

Once we have choosenw = wmin(x), Lemma 3 shows the interval
in which we need to look for a suitabley. And this is exactly what
we need to apply the Burger/Dybvig algorithm [1, Section 2.2] to
the printing problem: Their algorithm computes increasingly close
decimal approximations ofx until one of them is contained in a
given interval.

To be concrete, the notation used in the formulation of the
Burger/Dybvig algorithm translates to our notation as follows:v= x
(normalized),f = a, b = 2, e= b, p = w, B = 10,V = y = c10d,
(d1d2 · · ·dn)10 = c, k−n= d. Applied to the mantissa-width tagged
format, we need to replace the bounds for termination as follows:
low = x−2b−1−[w=1], high= x+2b−1, where[w = 1] = 1 if w = 1
and 0 otherwise. Finally, we need to modify the termination cri-
terium (1):> low must be replaced by≥ low in casew = 1. These
modifications also apply to Burger and Dybvig’s improved algo-
rithms (without rational arithmetics and with efficient scaling).


