

Audio Fingerprinting
Review of audio fingerprinting algorithms
and looking into a multi-faceted approach

to fingerprint generation

Nick Palmer A763896

Supervisor: Professor James L Alty

May 11

This Project involves researching, developing and implementing an algorithm to generate,
store and search for audio fingerprints. After initial research into audio fingerprinting
showed that almost all current audio fingerprinting methods base the fingerprint purely on
frequency/time data I decided to develop a method taking other musical features, such as
the key, tempo and time signature, into account with a view to increase search speed and
decrease the number of false positive matches. Testing how this compared to a standard
fingerprint revealed only minor improvement in search times and while results contained
less false positives with the augmented fingerprint, they also returned no matches more
frequently. Reasons for which are explained however and future improvement should be
possible.

Nick Palmer A763896

1

Contents

1 Introduction ... 3

1.1 What I’m trying to do ... 3

1.2 Needs & Uses of Audio Fingerprinting ... 3

1.3 Current Methods .. 4

1.4 How I plan to improve .. 4

2 Literature Review ... 5

3 Design ... 10

3.1 What I’m trying to do ... 10

3.2 Criteria for success ... 11

3.3 Environment ... 11

4 Experimentation... 12

4.1 Reading Audio .. 12

4.2 Spectrograms ... 13

4.3 Reading in wave files .. 16

4.4 Graphical User Interface .. 17

4.5 Databases ... 17

4.6 Fingerprinting ... 17

4.7 Other Factors ... 18

5 Detailed Design .. 20

5.1 Development Choices .. 20

5.2 UML .. 21

5.3 HCI Considerations ... 25

5.4 Database Design ... 27

5.5 Third Party Libraries ... 28

5.6 Development Process .. 29

6 Implementation ... 30

6.1 Audio Readers .. 30

Nick Palmer A763896

2

6.2 Waveform Window .. 30

6.3 Spectrogram Window .. 31

6.4 Main window ... 33

6.5 Basic Fingerprinting .. 34

6.6 Basic Fingerprint Storing & Searching .. 34

6.7 Augmented Fingerprint Storing & Searching ... 35

6.8 Database Handling ... 36

7 Testing .. 37

7.1 Results .. 37

8 Conclusions .. 39

8.1 Looking to the future ... 40

Bibliography ... 41

Appendices ... 43

Appendix A - Database SQL .. 43

Appendix B – User Manual ... 44

Appendix C – Gantt Chart .. 46

Appendix D – Source Code Listing ... 47

Nick Palmer A763896

3

1 Introduction

Audio fingerprinting is the term used to describe methodologies used to process audio data

to generate a representational hash, known as the audio fingerprint, based on the perceived

sound rather than the data the audio is stored as. Doing so requires reading of audio files,

taking them from their often compressed formats, transforming them back into a stream of

time-based waveform amplitude data, transforming that into a series of chunks containing

frequency data, finding defining features and generating the fingerprint based on their

values in frequency, time and relation to each other.

There are currently a handful of well-known and robust audio fingerprinting algorithms

developed by companies for a variety of uses. Most current algorithms are built for speed

and only tend to use features found through spectral analysis of the audio to generate their

fingerprints.

1.1 What I’m trying to do

For this project I aim to implement an audio fingerprinting algorithm in the style of many

currently designed methods and then develop an alternative version that takes into other

aspects of the music which I could add to, or “augment”, the fingerprint that might aide

recognition accuracy and speed.

The resulting software I produce should be able to process an audio file and, using either a

basic or augmented method, generate a fingerprint that can either be stored in a database

for later retrieval or searched for in a database attempting to find matched values.

1.2 Needs & Uses of Audio Fingerprinting

Audio fingerprinting has many applications in both the private business and public domains.

The most popular use is through software developed by companies like Shazam,

http://www.shazam.com/, and SoundHound, http://www.soundhound.com/, who both

offer mobile solutions for audio fingerprinting which can be used through a mobile phone

for identifying music overhead in a public place such as a car or a café.

Gracenote, http://www.gracenote.com/, is another company who also offer mobile

software for audio identification but also has software available for digital media players,

like iTunes and Winamp so that music can be properly named, searched, grouped and

identified. Gracenote can also be used for voice recognition and is currently in use with

Ford’s SYNC in-car communications system (GRACENOTE, 2011).

http://www.shazam.com/
http://www.soundhound.com/
http://www.gracenote.com/

Nick Palmer A763896

4

Last.fm, http://www.last.fm/, uses audio fingerprinting to try and correct inappropriate

music metadata when it “scrobbles” (the term last.fm has for when it makes a record of a

user listening to a track) (LAST.FM, 2007).

Uses for audio fingerprinting extend beyond the general public managing music libraries and

wanting to identify songs however. Audio fingerprinting can be used by composers and

artists to try and identify parts of songs and riffs that an artist or composer wishes to check

isn’t already copyrighted. Police and forensic investigators can, and do, use audio

fingerprinting to identify stolen music on the computers of those suspected of copyright

infringement. If a track of unreleased music is leaked to the public, music producers can use

audio fingerprinting to identify the exact revision of the track to help identify when and who

leaked the track. Similar to the police identifying files on a suspect’s computer, YouTube,

http://www.youtube.com/, operate a system called Content ID (YOUTUBE, 2008) which in

turn implements an audio fingerprinting system developed by Audible Magic,

http://www.audiblemagic.com/. Content ID helps copyright owners identify videos on

YouTube that might use either video or audio which they own. Content owners can then

either monetise the uses through advertising, track the viewing metrics or remove offending

videos.

You can also fingerprint various phonetic sounds, then by fingerprinting a stream of voice

audio, do rudimentary voice recognition. The same can be done for individual voice samples

to identify the speaker.

1.3 Current Methods

Most current methods tend to be patented with few technical details, if developed in a

country that allows software patents, or company specific trade secrets. However, many

academic papers exist on the topic of identifying audio through audio fingerprinting and

some companies, like Shazam, have also produced white papers giving an overview of the

algorithms they have created.

1.4 How I plan to improve

I plan to implement a fairly rudimentary fingerprinting algorithm. Once this algorithm is

working I intend to experiment by adding in other music feature analysis, such as tempo or

musical key, which I hope will narrow down the search field and reduce false positive

matches.

http://www.last.fm/
http://www.youtube.com/
http://www.audiblemagic.com/

Nick Palmer A763896

5

2 Literature Review

In the past few years there has been a significant interest taken in generating new ways to

index and search the new forms of media that many people now have on their personal

computers. As people now often have hundreds to thousands of individual multimedia files.

Indexing and searching through them to be able to identify all these files is a challenge which

is why multimedia fingerprinting was created, to give users more humanistic search controls

and to improve indexing.

Common software based methods to identify files focus on the raw data of the file, often

hashing the bytes with an algorithm such as MD5. While this created a mostly unique hash

for each individual file, it doesn’t take into account the human perception of multimedia.

Two photos might be visually almost indistinguishable, but if they have any slight difference

in hue of any pixel, or are stored in different formats, then the MD5 hashes generated will

not identify the visual similarity, only the data. Which in that case would be different in part

or wholly, which would make for two non-comparable MD5 hashes.

Instead, using multimedia fingerprinting, the algorithm is based upon the perception of the

data by the user. In the case of audio fingerprinting it is often accomplished by analysing the

frequencies present in the audio and what time they appear in the file or in relation to each

other. This is similar to a hashing function, but allows means that though the physical data

for two files might be wholly different, the fingerprint should be identical, or at least

comparable by some method, if both files are perceived by the user as being the same or

similar.

In a paper by Jaap Haitsma and Ton Keller entitled “A Highly Robust Audio Fingerprinting

System” (HAITSMA, Jaap and Kalker, Ton, 2002) they list the main parameters for an audio

fingerprinting system as robustness, how well the algorithm can identify audio with severe

degradation and distortion; Reliability, how often is the correct song incorrectly identified,

known as a false positive; Fingerprint size, how much storage is required for the fingerprint?

Fast searching and storage relies on small fingerprint size; Granularity, how long must a

piece of audio be before it can be correctly identified and finally Search speed and

scalability, how long does it take to find matches and how would this be affected by the

addition of more fingerprints into the database.

Nick Palmer A763896

6

To come up with a good audio fingerprint the algorithm strives to be robust, reliable, have

small output, require only a small sample of the audio and be, and keep being, fast to

search.

There are challenges to generating a fingerprint however. In the lecture slides from

Columbia Universities Electrical Engineering course written by Dan Ellis (ELLIS, Dan, 2011) he

identifies that channel noise, noise added from the speakers/microphones; Recognising

short fragments being the goal; Having a large, data wise, reference item to search for and

false positives are all problems to overcome when designing an audio fingerprinting solution.

The most common and evidently the most robust current algorithms to generate a

fingerprint based on audio rely on the idea of landmarks in the audio. The algorithm Shazam,

http://www.shazam.com/, a widely used audio fingerprinting solution for mobile devices,

uses is described in a paper by Avery Li-Chun Wang who works for Shazam. The paper,

entitled “An Industrial Strength Audio Search Algorithm” (WANG, Avery Li-Chun, 2003)

details how they transform the audio data from time domain, where the stream of bytes is

storing the amplitude of the audio wave, to the frequency domain, where the stream is

compartmentalised into chunks of data and then converted so that the individual

frequencies present in the chunk are identified, and use the frequency magnitudes and time

data to compute the hash as seen in Figure 1 overleaf.

http://www.shazam.com/

Nick Palmer A763896

7

Figure 1 - Image taken from (WANG, Avery Li-Chun, 2003)

In Fig. 1A they have converted the data into frequency domain where you can see high

magnitudes of certain frequencies standing out as darker areas on the graph. In Fig. 1B the

algorithm has chosen the most important features from the graph where importance is

defined as a time-frequency point which has a higher magnitude than all points around it in

a given area. Whereas you could store the data from Fig. 1B in a database and search based

on that searching for matches would not be as efficient as it could be. Instead Shazam take

points, shown as an anchor point in Fig. 1C, and then generates the hash based on the

relation of the anchor point to other points in the “Constellation Map” as shown in Fig. 1D.

Once Shazam has their database of hashes a search can be conducted by finding correlations

between a sample and database series of hash values.

By doing this Shazam have created an algorithm that is fast enough to be processed on a

mobile phone, only sending the hash data to Shazams servers to identification. Their method

of finding important time/frequency features also takes into account the distortion and low

quality recording that mobile devices will add to the sample.

Nick Palmer A763896

8

Shazam is not the only documented audio fingerprinting algorithm. Music Brainz,

http://musicbrainz.org/, is a community service that has publicly available data on music

files and services to manage and update metadata for music based on fingerprinting. By

fingerprinting unknown music files on your computer with the software Music Brainz

supplies a user can find out the details of that piece of music.

The algorithm Music Brainz currently uses is called PUID which is unfortunately closed

source and not well documented. However, their previous fingerprinting solution is open

source and well documented.

The Future Proof Fingerprint, as it was called (evidently not all that future proof as it’s since

been succeeded by the PUID technology), is proposed as a solution on a page available on

the Music Brainz website (MUSIC BRAINZ, 2006) and a function description giving details on

a proposed solution for the proposal is also listed (SCHMIDT, Geoff, 2005).

The Future Proof Fingerprint operates in much the same way as Shazam, only it defines a

“codebook” beforehand which feature points from frequency domain data can be mapped

to, instead of Shazams method of finding relations between feature points.

By doing this the Future Proof Fingerprint algorithm generates what is essentially a highly

compressed representation of the audio. By doing this for several overlapping samples of

the audio and “jittering” the sample window around when you search you should be able to

reliably find matches despite timing distortions. Meaning a 10 second sample should be

simply found as a match to 10 seconds in the middle of a 2 hour recording. Also, the data

format for the fingerprints is kept open, allowing future modification without needing to re-

construct the entire database.

Every fingerprinting algorithm I came across during my research was purely based on

frequency domain data being hashed using various algorithms and searched for. To get the

data from time domain to frequency domain a transform is done on the data called the

Discrete Fourier Transform (DFT). The most widely used algorithm to perform DFT is called a

Fast Fourier Transform (FFT) which is an implementation to compute the DFT and its inverse.

FFT is a way to compute the same result as doing a DFT, only in less time but at the expense

of approximation error. The error introduced however can be made arbitrarily small by

increasing the computations performed.

FFT is not the only method that can be used to convert the time domain data into the non-

time-based frequency domain where frequency values only are returned. You can use

http://musicbrainz.org/

Nick Palmer A763896

9

Wavelets, “mathematical functions that cut up data into different frequency components,

and then study each component with a resolution matched to its scale” (IEEE, 1995). While

wavelet transforms might have offered better results for searching the spectrogram images

for feature points, as wavelet transforms after often used in computer vision fields, I could

only find one major publication that used wavelet transforms for audio fingerprinting.

Content Fingerprinting Using Wavelets, a paper by Shumeet Baluja and Michele Covell from

Google (BALUJA, Shumeet and Covell, Michele, 2006), outlines how they use computer

vision techniques to create compact fingerprints that can be matched efficiently. While the

paper is fairly detailed I had never come across wavelet transforms before this, and the lack

of other fingerprinting methods using it meant that I ruled out using wavelet transforms for

my project.

Nick Palmer A763896

10

3 Design

To increase the accuracy of audio fingerprinting there are two core ideas. The first idea is to

take a bigger sample or extract more “unique” audio perception feature data from each

sample but a bigger sample size, or attempting to extract more information from a normal

sized sample, might add distortion which over all pulls accuracy down and therefore the

opposite of the intended effect. Taking more data from a sample also increases the

likelihood for false positive matches as while each larger sample would have more capacity

for variation, and therefore uniqueness, it also has more chance of matching another

sample. With a larger sample size you’re increasing the length of audio that you’re

attempting to recognise, but only generating one little hash per sample and therefore any

variation is averaged out and lessened to the extent that quick variations can be lost where

previously they would have been hashed and matched.

The second idea to increase fingerprinting accuracy would be to take into account more than

just pitch and time based audio perception when computing the hash and searching for

matches. Instead you can add more unique factors in to the search which, hopefully, cut

down on search times while also reducing the chances of false positives. While two pieces of

audio might have similar fingerprints due to noise interference, they might still be

distinguishable by analysis to find the key the music was written in or the tempo. At the very

least, by restricting fingerprint searches to within a set distance from another factor, such as

tempo, you cut down the list of searchable items and reduce search times.

3.1 What I’m trying to do

I am going to attempt to implement a fairly rudimentary audio fingerprinting system, run it

through a series of tests, described in further detail in the testing section of this report, to

get a baseline set of results to compare to. Then by adding in other factors to my fingerprint

definition and search functions, tempo, loudness or key for example, I can run the tests

again to see if there is any statistically significant improvement in search time, accuracy or

reduction of false positives.

I’m not going to attempt to develop, or even implement, just a robust fingerprinting solution

that could compete with the commercial solutions currently available as it would take a lot

longer to research, implement and test a system comparable to solutions such as Shazam or

Gracenote.

Nick Palmer A763896

11

3.2 Criteria for success

To test my software and determine whether I have been successful in attaining my goal of

reducing false-positive matches and increasing search speed I will store fingerprints of music

of various genres using lossless compression so as to get a perfect master copy of the music

with which I can compare. Degrading the music files with compression (such as if the file was

converted to MP3) where frequency range is cut, adding noise at various volumes to the

sample to make finding musical features less reliable with code and therefore good to check

for matching purposes. With the degraded file I can then fingerprint them using both

methods and compare the search times and results. Hopefully showing a statistically

relevant improvement for the augmented fingerprint in terms of reduced search time and

reduced miss-matches and false positives.

3.3 Environment

To develop the software for this project I decided to use Java as a programming language,

detailed reasons outlined in the detailed design section later in this report. I also developed

on my standard PC primarily; this does however have a Solid State Drive which helped with

database insert/search times, and a 4 core processor which helps to improve the speeds of

multithreaded aspects of the system. While testing the system on Apples Mac OS X

operating system I did run into problems with larger audio samples as Mac OS X limits java

instances to only a small amount of the available memory. This error could be averted by

increasing the memory limit with the java parameter –Xmx1024m.

Nick Palmer A763896

12

4 Experimentation

Once I had the overall goal for my project I came up with some feasibility tests and

benchmarks to check that the implementation was possible in the given timeframe, was

possible to be developed by me and that my development methods were suitable.

Having never developed software for raw audio this complex and low level before

personally, I decided the first few benchmarks should be done to find out how Java, my

chosen language, handles audio data and how it could be manipulated and processed.

4.1 Reading Audio

Therefore first benchmark I did was to read in audio data from the microphone. While it

could be argued that reading audio from a file would have been a better test, I was aiming to

see how Java handled audio, not how file formats are handled, so I went with the simplest

method to start with. It didn’t take me long to program a simple java class to set up and read

from the microphone requiring only minimal searching and reading of the appropriate java

documentation. To test that this class worked correctly I made it record 10 seconds of audio

from the default audio line in device, in raw format 44,100 samples per second. With the

resulting 441,000 samples I wrote them to standard out, copied them manually and pasted

the raw audio data into Microsoft Excel, using the line graph functionality to generate the

current waveform diagram.

Figure 2 – Line graph of output drawn using Microsoft Excel

From the graph that Excel, shown in Figure 2, I determined that my code to read in the raw

audio data was working correctly.

Nick Palmer A763896

13

4.2 Spectrograms

Once I saw that I was correctly reading audio data form the microphone the next experiment

I did was to figure out the basis of all signal processing: FFT and spectrograms. When reading

data in from the microphone the data isn’t all that useful in its current format, in the time

domain, storing just the amplitude of a signal against time. Instead, for pretty much any

signal processing based system, you need to find out what frequencies are present in the

signal that you’re processing. This is vital to audio fingerprinting and so was a very important

part of feasibility testing.

While I could have written my own objects and methods to handle converting time domain

data into frequency domain data using the most common method, Discreet Fourier

Transform, I decided it would be far simpler, more reliable and a more effective use of my

time to instead use an existing class. The best solution I found written for Java was from

Princeton Universities Intro to Computer Science resources on data analysis (SEDGEWICK,

Robert and Wayne, Kevin, 2011).

Once data has been passed through the FFT function it can be drawn in a similar way to

drawing a waveform. Only instead of showing the amplitude of a wave over time, it showed

the magnitudes of various frequencies for chunks of the time domain data.

Figure 3 – Spectrogram of harmonica tones

The early example seen in Figure 3 above (flipped 90 ° clockwise for space considerations)

shows, in a linear non-logarithmic, scale the spectrogram being drawn as I played one note

on a harmonica then a higher pitched note and finally both notes together.

This spectrogram was the first indication I had that my code was working as expected, and it

looked similar to the spectrograms presented in (WANG, Avery Li-Chun, 2003) which I

included in the literature review as Figure 1.

Nick Palmer A763896

14

To check the spectrograms further I first tried some real music which has distinctive tones,

Rusko – Woo Boost! From the album O.M.G!, to see if actual audio showed up as a

recognisable image.

Figure 4 – Rusko – Woo Boost! Spectrogram

As you can see in Figure 4 above, this track has several, sometimes overlapping, frequencies

that change pitch and peak in intensity at times. This showed me that the fingerprinting

solution whereby I calculate key points from the spectrogram would indeed be possible as

it’s plainly visible how the music is made up of the frequencies and how they alter over time.

To test the accuracy of the spectrogram code I developed I decided to run some music

through where the artist has purposefully included frequencies that when drawn in a

spectrogram would show up as images. This is an aspect of stenography and not really

within the scope of this project, but it would reassure me that the correct magnitudes for

frequencies were being rendered.

Aphex Twin, an electronic musician and composer, released an album titled WindowLicker

which includes on the second track a spectrogram image of his own face. And a track by

Venetian Snares called Look, from the album titled Songs about my cats, which includes

images of the musician’s cats.

Nick Palmer A763896

15

Figure 5 – Aphex Twin Spectrogram

While you can make out the face of Aphex twin in Figure 5 above, it appears distorted. The

distortion is due to my spectrogram rendering algorithm using a linear scale, and the

software Aphex Twin used to encode the image of his face into audio using a logarithmic

frequency scale.

Figure 6 - Venetian Snares Spectrogram

There is some slight distortion on Figure 6, above, for the track by Venetian Snares but it’s

much less noticeable. The cats are easily visible in the first two parts, and the last part shows

Nick Palmer A763896

16

up very well. The middle two parts are less obvious to make out because of my linear

frequency scale.

While it seems the FFT operation and spectrogram rendering

code all work as I expected, there are some inherent flaws.

Due to harmonics in audio you can get reflections being

shown on the upper portions of the spectrogram. However

the reflections of the sound are only half as bright

magnitude wise, so they shouldn’t throw off my feature

finding algorithms. Also, due to mp3 compression, most

music doesn’t extend into the upper half of the human

hearing spectrum, and so can be ignored by setting an upper

frequency limit later on when finding feature points.

As FFT is designed around sine waves, and square waves can

be defined using sine waves with the Fourier series, when

rendering a spectrogram of a square wave that sweeps from

50-25000Hz the harmonics of sine waves that can represent

the square wave are very evident, as seen in the

spectrogram image Figure 7.

4.3 Reading in wave files

Reading audio data from the microphone was a relatively simple task, but it would not suit

the use of the final software that I hoped to develop. Instead I wished to generate various

versions of a file with varying levels of degradation to use as my test data. While I could have

played these files through speakers and into the microphone it would add an extra,

uncontrollable, level of distortion to the test data. Instead I deemed it a good idea to write

code that could instead read the audio data direct from audio files.

I originally intended to support various audio file formats, as then I could later easily

compare fingerprints generated from an audio file saved in “lossy” formats, like MP3 where

compression destroys some of the original signal, and lossless formats, like FLAC, which

store the whole signal. Java makes this task fairly difficult, and MP3 being a proprietary

format means that there is little support beyond playing the audio. Instead I struck upon the

java sound API which could, supposedly handle files in raw wave format. However, after a

few days of un-recognisable waveforms and errors I decided to pursue another avenue. A

Figure 7 - Square Wave Sweep
Spectrogram

Nick Palmer A763896

17

brief search for alternative ways to read in wave files resulted in a class developed by Dr.

Andrew Greensted as a simple, working, alternative (GREENSTED, Dr. Andrew, 2010). This

worked straight away, though is heavily modified and cut down in my implementation as

many methods, such as writing, were not used. I also changed it to extend an interface audio

reader class so, should I add support for other audio file formats, it will be simple to extend

the rest of the software.

4.4 Graphical User Interface

My only previous use of Java was while on placement where I worked on a large servlet

system that had no user interface other than through a web connection. I also chose to use

the Eclipse IDE, which doesn’t come with any inbuilt, standard GUI development tools. While

I could have written the code to generate the GUI manually, as a first time Java GUI

developer I decided it would be easier to have instant visual feedback and some visual

toolkit to help me design and manage the interface. A search on the internet returned Jigloo

(CLOUDGARDEN, 2010) as the best plugin for Eclipse for SWING, the API java has to provide

graphical user interfaces for java programs.

4.5 Databases

My only previous experience with Java and databases was between Java and Oracle while I

was on placement. While Oracle would be a valid option for the database system I could use

to store the fingerprints I decided that the overhead required for an Oracle database system

was too large. For this system I ended up using SQLite, with detailed design considerations

behind this being explain in the detailed design chapter later in this report.

SQLite doesn’t have an official binding for Java, but thankfully someone had implemented a

cross platform java API which I was able to use (ALM WORKS, 2010).

To test the library, java and SQLite’s performance I wrote a test class in java to create a

database with one table in, insert rows with words and then select back the rows printing

the words to standard out. This worked first time and was relatively simple to accomplish

with the library. Based on this test I found the library suited my needs and I could carry on

with development.

4.6 Fingerprinting

To check that I would be able to develop an algorithm in java that would generate a

fingerprint I decided to test how well I could find the feature points in the audio and see how

easy it was to compare these to a database of other points.

Nick Palmer A763896

18

To do this experiment I duplicated the spectrogram rendering class and modified it to display

the feature points for later comparison. To identify the feature points I went with a simple

banded high score system where the frequency domain data is split into groups, or bands, of

frequencies. Each band is looped through to find the frequency with the highest magnitude.

This high magnitude frequency is deemed notable and becomes my feature point.

While a simpler method than the more robust Shazam system where it checks around the

feature point to help eliminate noise throwing off the recognition, the banded high score

method worked ok and got roughly similar results.

To test if the feature points were comparable after distortion I saved two images of the

spectrograms showing the feature points. With post processing these images could be

combined using an image editing tool to remove all but the feature points, and overlay them

in such a way as to check accuracy. An example is given in Figure 8 where red pixels are the

original file, blue are the degraded file and green is where they overlap exactly. Ideally it

should be nothing but green pixels, but you can see how the noise has changed where

feature points are found in bands where there was not a major feature before.

Figure 8 – Comparing feature points

4.7 Other Factors

As well as a method to fingerprint the audio I also needed the optional fingerprinting

method whereby I would discern other factors from the audio sample. Figuring out tempo,

key and loudness are outside of the scope of this report so instead of developing it myself I

Nick Palmer A763896

19

used a well-known, reliable third party API from The Echo Nest (http://the.echonest.com/)

which I can access through a java library (http://code.google.com/p/jen-api/).

“The Echo Nest is a music intelligence company that powers smarter music applications for a

wide range of customers -- including MTV, The BBC, MOG, Thumbplay, Warner Music Group

and a community of about 7,000 independent app developers.” (THE ECHO NEST)

I first heard of The Echo Nest when I attended a weekend developer event in London, called

the London Music Hack day, http://london.musichackday.org/2010/, where developers get

together and for 24 solid hours work on developing small projects that have something to do

with music. When I attended in September 2010 The Echo Nest CEO and some developers

had flown in especially for the event from their offices in Boston, USA. They gave a talk

describing and demonstrating some of the features of their API, which I noted down at the

time as possibly being of use for this project.

After registering for a developer account with The Echo Nest, and downloading the java

library, I ran a few files through their system to check what extra data could be gathered and

to see how accurate it was.

While the results take quite a while to return, it gives me information on the time signature,

tempo, key, loudness as shown in Figure 9 below.

Figure 9 - Echo Nest Analysis

I can then use that extra metadata that The Echo Nest has computed to augment my search

for matches, hopefully getting me the result I’m after.

http://the.echonest.com/
http://code.google.com/p/jen-api/
http://london.musichackday.org/2010/

Nick Palmer A763896

20

5 Detailed Design

5.1 Development Choices

To develop all of the software for this project I decided to use the Java programming

language coupled with the Eclipse IDE.

When considering what language to develop in for this project I came up with a list of

languages that I already had some knowledge and previous use in and ranked them

according to my familiarity with them, suitability for digital signal processing and availability

of third party libraries and general support. From this the top 5 languages were:

1. Python

2. Java

3. C++

4. Ruby

5. C

From this list I disregarded Python because while there are many libraries to facilitate audio

processing, is cross platform, I’ve developed MIDI software in python before at the London

Music Hackday 2010, it’s not fast enough to process large raw audio files to compute

fingerprints in a reasonable time. While it can be compiled down to native code this isn’t

totally reliable and isn’t really a solution to the problem. Also, a lot of the libraries dealing

with Python and audio data are written in C, so using Python was mostly pointless aside

from some of the high level support it offers.

C++ has a lot of support and libraries available, and could be developed in for cross platform.

However I am not experienced enough to commit to developing this project in it.

Ruby is one of my favourite languages, and does have support for audio processing. But it

falls into the same pitfalls and Python with speed and pointless high level features.

C seemed like it could be the better choice due to low level support which would help make

for optimised audio data handling and processing. However, some of the higher level

processing to be done, such as image rendering and Graphical User Interfaces, are not so

simple to do. While I already know C fairly well, with the time constraints of the project and

the scope of development I wanted to undertake, it did not seem like a better choice over

Java.

Nick Palmer A763896

21

Java has a lot of support and libraries available, runs around the same speed as C, gives you

easy access to low level constructs where needed and also handles high level code, like

image rendering and Graphical User Interfaces, with ease. While Java isn’t my strongest

language with barely a year of use and almost entirely self-taught, it came out as the best

choice to develop this project in.

Once I had decided to use Java I looked at the IDE’s available to support my development. I

had only used JDeveloper (http://www.oracle.com/technetwork/developer-

tools/jdev/overview/index.html), Eclipse (http://www.eclipse.org/) and NetBeans

(http://www.netbeans.org/) before. While I could have tried out a new IDE, or gone low

level and just used a text editor and the command line to compile and debug my code, I

decided to go with Eclipse as I find it has all the tools I needed for the project while not being

slowed down with other features, like servlet containers and oracle database support, which

wasn’t needed for this project.

Speaking of databases, my project would also require a database of some form so that I

could store and search for fingerprints and track details. The options that sprang to mind

were MySQL (http://www.mysql.com/), Oracle

(http://www.oracle.com/us/products/database/index.html), PostgreSQL

(http://www.postgresql.org/) or SQLite (http://www.sqlite.org/). MySQL and PostgreSQL

both have similar features and are both suitable. Oracle might be free for this use, but

requires a fairly complex setup. While Oracle has the most features, it has nothing that this

project requires that another database system can fulfil and it requires the overhead of

running the oracle server. SQLite has enough features for use in this system. Between

MySQL, PostgreSQL and SQLite, SQLite stood out as the best choice due it its small size,

efficiency, available libraries for java and documentation. As this system doesn’t require a

server/client setup, a capacity for high volumes of connections and queries, a large dataset

or high concurrency then SQLite is fine. MySQL and PostgreSQL would also suit the job, but

require a lot more processing power and are made for purposes more complex than my

uses.

5.2 UML

A common method of modelling software during the design stage is to design UML

diagrams. For my system there is a relatively simple use case diagram as the software is

fairly compartmentalised and doesn’t link to anything external besides the user and The

http://www.oracle.com/technetwork/developer-tools/jdev/overview/index.html
http://www.oracle.com/technetwork/developer-tools/jdev/overview/index.html
http://www.eclipse.org/
http://www.netbeans.org/
http://www.mysql.com/
http://www.oracle.com/us/products/database/index.html
http://www.postgresql.org/
http://www.sqlite.org/

Nick Palmer A763896

22

Echo Nest. Figure 10, is a use case diagram showing an outline overview of the systems

functionality.

Figure 10 – UML – Use Case

UML also has a type of diagram to help developers design how processes interact with each

other, a sequence diagram. I designed three of these to help me refine the sequence of

operations that occur when a user fingerprints a file, searches for it in the database or stores

it in the database.

Figure 11 on the next page is the sequence diagram outlining the fingerprinting process for

both normal and augmented fingerprints.

Nick Palmer A763896

23

Figure 11 - UML - Fingerprinting

The next diagram, Figure 12, outlines the sequence of operations to store a fingerprint. This

is common for both basic and augmented fingerprints as the extra data for the augmented

fingerprint is stored along with the regular track information.

Nick Palmer A763896

24

Figure 12 - UML - Store Fingerprint

The next sequence diagram, Figure 13, shows an overview of searching for matches,

assuming the fingerprint object was already created by following through the fingerprint

process.

Figure 13 - Searching Fingerprints

Nick Palmer A763896

25

I also made a class diagram Figure 14, outlining the classes, methods and members of each

class and how they relate to each other. The relationships are all calling about the

WindowMain class, which creates instances of many of the other classes, but the main focus

is around the Fingerprint interface which the fingerprint classes implement, the fingerprinter

classes generate through and the main window stores.

Figure 14 - Class Diagram

5.3 HCI Considerations

Part of the software I plan to develop is an interface through which people can see the

fingerprint and results simply and also have options for viewing waveforms and

spectrograms. The interface wouldn’t have to display much data, but I still had to think

about the form and control design from a HCI standpoint.

With HCI there are 8 “Golden Rules” of interface design: (SHNEIDERMAN, Ben, 1998)

1. Consistency

2. Shortcuts

3. Informative feedback

4. Design dialogs to give closure

5. Error prevention and simple error handling

Nick Palmer A763896

26

6. Permit easy reversal of actions

7. Support internal locus of control

8. Reduce short term memory load

For my simple interface consistency was simple to achieve. Making sure that whenever a

user loaded a new file it would wipe any previous actions performed on previously loaded

files, static menus and labels and a static theme meant that the user interface was always

kept consistent with what the user would expect.

Due to the few controls on offer, shortcuts were simple to implement. By adding keyboard

shortcuts, like Ctrl+O to load a file, it makes it easier and faster for frequent users to

accomplish the task at hand.

Informative feedback will be displayed wherever needed. When doing some tasks, like

rendering a spectrogram or adding fingerprint data to the database, it can take a longer time

than the user may expect. To display the current status and inform the user of the

underlying process through the window title bar or a label on a form, the user will be able to

have feedback that their action is being worked on.

Dialogs should yield closure by either alerting the user via alert box when an action is

complete or by updating the interface as it works. In the case of the visual audio

representation windows, waveform and spectrogram drawing, I can update the display as it

renders.

Error prevention and handling will be done throughout. Making use of javas try/catch

structure I can catch any errors that do arise, attempt to salvage the current function and

alert the user to the problem.

As the only thing to be changed by the user is the database when a fingerprint is stored in it,

there are no features that might require reversal. While it could be argued that I should

make it easy for a user to remove the fingerprint data from the database, I didn’t feel it was

necessary for this project.

Locus of control remains solely in the users hands for this system. The only time control is

taken away is when the interface is busy using all processing power to compute operations

on the audio data. Otherwise the user has full control.

Nick Palmer A763896

27

All information that might be required by a user for this system will be displayed on the main

window. That way items like the file location that is currently being fingerprinted or the

fingerprint for that file are displayed and not required to be remembered.

Based on these decisions the following is a prototype user interface design for the main

window as seen in Figures 15 and 16. I decided the waveform and spectrogram windows

didn’t need any design from a HCI standpoint as there was no controls, just display.

Figure 15 - HCI - Main Window

Figure 16 - HCI - Menus

5.4 Database Design

The database design for this project was relatively simple. All I need to store was a set of

data for the fingerprint itself and to associate that data to a track where I could get details

Nick Palmer A763896

28

about the original piece of music. I also decided to add in a table to give information about

the fingerprint, such as the file path it was originally made from and the time it was created.

For the fingerprinting method I decided to implement, the fingerprint would be stored as the

maximum frequency in a range of frequency bands. So the print_data table stores the values

for each band, the chunk number it was taken from so I can search for successive parts of

the fingerprint, the track id so I can relate that table to the tracks table and the print_run_id

so I can relate it to the fingerprint run.

Figure 17 - Entity Relationship Diagram

Figure 17 is an Entity Relationship Diagram I designed. The SQL source to create the

database based on this diagram is listed in Appendix A at the end of this report.

5.5 Third Party Libraries

To analyse the audio samples and computer the other factors needed for my augmented

fingerprint I had two options. One was to develop the analysis code myself, which would

have alone been enough to warrant one or several final year project reports. This left me

with the other option of using a third party library.

There aren’t many libraries publicly available for this kind of audio analysis and the choices

available that suited this project were The Echo Nest (THE ECHO NEST), or VAMP (QUEEN

MARY, UNIVERSITY OF LONDON, 2007). While VAMP is a little more technical and has

specific audio analysis plugins, it’s only got wrappers for C++ and Python, which ruled it out

for my use in java unless I created a java library to wrap it. The Echo Nest, while having less

of a focus on audio analysis, does offer some analysis features through the use of their

server. There was also a java library that let me use their API. Therefore, The Echo Nest was

the third party audio analysis service I went with.

Nick Palmer A763896

29

5.6 Development Process

To develop the software for this project I looked at various development processes to find

out if any of them would be suitable. Almost all of the standard development

methodologies, such as waterfall or v-process, are designed with large teams of developers,

user-based requirements and deployment procedures in mind. My project had no user

requirements to capture however, aside from my own objectives. I was also the sole

developer, so I didn’t need to plan ahead to make sure people weren’t waiting on my code

to be finished or checked in to a source code repository. Therefore most of the generic

model of the Software Development Life Cycle; Requirements Capture, Design, Build, Test

and Implementation, did not apply to me.

Instead of going for the simple, but often error prone, route of the Build & Fix model I

instead opted to develop using the Extreme Programming method. Extreme Programming

was, as the creator Kent Beck said in his book “Extreme Programming Explained: Embrace

Change”, “developed to address the specific needs of software development conducted by

small teams in the face of vague and changing requirements” (BECK, Kent, 1995). This suited

my needs as while the design is done and the requirements known, as I progress through the

project I anticipate many changes to the requirements and will need a development method

that lets me keep agile.

In an article written by Microsoft they highlight that “In Extreme Programming, rather than

designing whole of the system at the start of the project, the preliminary design work is

reduced to solving the simple tasks that have already been identified” (MICROSOFT

CORPORATION, 2005). They also note that Extreme Programming should be used when the

developers are doing small, incremental releases with a very test driven development

process, are working with new technologies and have a small team size. All of which suit me

and this project.

Nick Palmer A763896

30

6 Implementation

To develop the software I split up the work into several key tasks, basing my decisions on the

results of my experimentation earlier and following the development principals laid out by

the Extreme Programming development model which calls for small, incremental releases

that start by building the core of the system and expanding it to meet requirements as it is

developed.

6.1 Audio Readers

The first task was to develop a robust system for reading the audio files in. While I only

wanted to implement the reading of wav files for this project, I knew that I might have time

to expand the system later to support other formats. With expansion and future work in

mind I decided to create an interface called AudioReader. This interface defines the common

methods that would be required to read any audio format, such as reading into a buffer,

getting information about the file and closing it. As developing a class to read in wav file data

wasn’t in the scope of the project, and the code java provided didn’t work reliably, I used a

third party class (GREENSTED, Dr. Andrew, 2010) which was modified to implement the

interface I defined. I cut out a lot of the overloaded methods in the third part class which I

didn’t require, and modified those that were left to fit with my interfaces requirements. I

also took the exception class that the wav reader class used and made it generic so that any

future audio reader classes could throw exceptions in the same way and be caught by the

code that used it.

Once the audio reading was implemented and tested by making it return the amplitude data

to standard out, the next task was to re-implement the waveform and spectrogram display.

While these displays are not required for the operation of the system they provide very

useful information about the workings of the system and are a great view when debugging

the fingerprinting methods later.

6.2 Waveform Window

The waveform window is called from the main window, being passed, by reference, the

buffer holding the audio data and the maximum amplitude of all the samples. While I

should, arguably, be passing just the file reference and doing a buffered read inside the

waveform drawing routine to cut down on long term memory use, it was simpler to do it this

way for the small audio samples I am dealing with.

Nick Palmer A763896

31

The waveform window then constructs a new window and calls the draw routine. The draw

routine sets up the Graphics2D object which is used to draw to a buffered image, which is

put inside a JLabel in the JFrame window. The draw routine then, after finding out how many

samples need to be taken in per vertical line of window space, starts drawing. For every

vertical 1 pixel line in the image a window of amplitude samples are taken and lines drawn

between them. While the loops are running to draw the data onto the buffered image

object, a new thread was instantiated which calls the update method every 50ms. The

update method puts the buffered image in the JLabel, clears the JFrame and then puts the

JLabel in that and then forces a redraw of the JFrame. This makes for a real-time display as

the waveform is drawn. Figure 18 is an example of the waveform window displaying the

waveform for the first 30 seconds of Rusko – Woo Boost!.

Figure 18 - Waveform Window

6.3 Spectrogram Window

The spectrogram window operates in much the same way, only before calling the draw

function it converts the time domain amplitude data into frequency domain frequency data.

To do this it fills a buffer of complex number objects, the complex class coming from

(SEDGEWICK, Robert and Wayne, Kevin, 2011), which can then be run through the FFT

function, the FFT class also coming from (SEDGEWICK, Robert and Wayne, Kevin, 2011). With

the chunks of data now in the frequency domain, the 2dimensional array of frequency data

is passed to the draw function. The draw method sets up the Graphics2D object again, but

this time loops through each chunk of processed data. For each chunk it runs through each

frequency to find out the feature points which the fingerprinting classes will later be based

around. Then it draws a 5x1 pixel rectangle for each frequency group in the chunk onto the

buffered image, using either full red as the colour for a feature point, a dark green for a

frequency band boundary or a blue saturation relative to the magnitude of the frequency.

Figure 19 is the spectrogram window for the first 30 seconds of Rusko – Woo Boost!.

Nick Palmer A763896

32

Figure 19 - Spectrogram Window

A zoomed in section from the above spectrogram, showing the frequencies from the audio

in detail as well as highlighting the feature points in red is shown below in Figure 20.

Figure 20 - Zoomed In Spectrogram

Nick Palmer A763896

33

6.4 Main window

Now that I had some visual feedback of the audio data I created the main window. Based on

the diagrams I designed after considering the impact of HCI on design laid out in the detailed

design chapter earlier in this report I developed a simple window with a menu layout for

controls, shortcut keys and with plenty of area for feedback to be displayed. I designed the

interface using a GUI builder plugin for the Eclipse IDE (CLOUDGARDEN, 2010). I also used

and modified icons for the interface (JAMES, Mark, 2005) (TANGO DESKTOP PROJECT, 2009).

A screenshot of the main window is shown in Figure 21 below, along with examples of the

menu content.

Figure 21 - Main window and menus

Nick Palmer A763896

34

6.5 Basic Fingerprinting

Now I had all the interface work developed the next task to do was the initial fingerprinting

algorithm. To do this I wasn’t striving for the perfect fingerprinting algorithm, I was just after

a fairly robust and simple method that could identify audio. To do this I referenced my

research from the literature review and saw that all methods found feature points and

based their fingerprints around those. The simplest method to find feature points was, after

splitting the audio buffer into chunks and running them through the FFT code, split the

chunks up into bands of frequencies. By having several bands of frequency I could get

standard, and hopefully repeatable, features found on samples. For each band I find the

frequency with the highest magnitude and take that as my feature point. While this can be

susceptible to error when noise occurs on a previously empty band I added in a lower

magnitude limit to try and reduce this problem.

With the feature points stored as frequency values per band for each chunk I could have

used the Shazam method of using a feature point as an anchor point and calculating vectors

between it and other feature points, but instead I opted to just store the frequency values

per band for each chunk. This is inefficient database wise as it means storing multiple values

per chunk. It is simpler, however, and let me see exactly what was happening as the

fingerprint was created. It also makes search algorithms slightly simpler, though it will mean

slower searches as there’s more data to search. To implement this in code I decided to

create a class, FingerprinterBasic.java with a static method to generate the fingerprint as

there was no need to consider concurrency as the system can only fingerprint one file at a

time. The fingerprint method splits the audio buffer into chunks, computes the FFT and finds

the feature points for the bands which can then be added to an array of results. This array is

then passed to the constructor of the BasicFingerprint.java class. The BasicFingerprint class

implements a common interface for fingerprint methods which the basic and augmented

fingerprint classes share. It stores the results for a fingerprint and contains methods to

display the fingerprint as a string, search for the fingerprint in the database or store the

fingerprint in the database.

6.6 Basic Fingerprint Storing & Searching

The store function in the BasicFingerprint class can then be called on the fingerprint instance

which gets stored in the main window after fingerprinting. To store a fingerprint the user is

prompted for the track details; provided a user enters the details and doesn’t click cancel

the function then creates a new row in the print_runs table to store the file location that is

Nick Palmer A763896

35

being fingerprinted along with the time. Then it stores a new row in the track table to store

the track artist, title and album name. Once the track is set up it can start looping through

every chunk of result data and store the values for each band in a column to be searched for

later. Provided no SQL errors are thrown and the user provided the track details, a true value

is returned by the function to let the main window know the store was successful.

The search function in the BasicFingerprint class can also be called once a fingerprint has

been generated. The search method implemented is very crude currently, but works

surprisingly well considering. It loops through each chunk of fingerprint data, looking

through all rows in the print_data table that have values within certain limits of each band. If

any chunk matches one from the database it retrieves the track_id of the matched row and

increments a value in a score map. The score map is then later iterated through to get the

track details and populate a hash map which it can return to the main window for display.

6.7 Augmented Fingerprint Storing & Searching

Now that I had it fingerprinting files I duplicated the FingerprinterBasic and BasicFingerprint

classes, renamed basic to augmented and added the code to augment the fingerprint. To do

this I added a block of code to the end of the fingerprint method in

FingerprinterAugmented.java which created a new Echo Nest API instance and uploads the

track to The Echo Nest servers for analysis. The Echo Nest API also hashes the file with a

normal MD5 hash to check if the file needs uploading. If the file has already been uploaded

based on the MD5 hash it uses previous analysis results to save upload time. Once the track

has been uploaded, or identified as having been uploaded previously, a new TrackAnalysis

instance is created which holds all the values I’m using for augmenting the audio fingerprint.

The TrackAnalysis instance is then used to create a HashMap which is then passed into the

constructor of AugmentedFingerprint alongside the normal fingerprint results so that

AugmentedFingerprint can later store and search using the values The Echo Nest has

derived. I stored the values in a HashMap here instead of passing through a reference to the

TrackAnalysis object because calls to get analysis values on the TrackAnalysis object are

going to the Echo Nest servers each time. By caching the value on the time-unimportant

fingerprint generate stage I can save time later when searching for the fingerprint.

AugmentedFingerprint.java operates in much the same way as BasicFingerprint.java did as

they both implement the same Fingerprint interface. The augmented fingerprint class,

Nick Palmer A763896

36

however, now inserts all the data it has about the track when it stores the row in the tracks

table.

When searching for a fingerprint it also checks that the augmented values in the tracks table

associated to the current print_data row are within range of the current fingerprints values

if The Echo Nest returns a high enough confidence value in its analysis. If they are it operates

a score system in the same way as the basic fingerprint search method and results in a

hashmap of track information to score being returned for the main window to display.

6.8 Database Handling

There is also a DBHandler.java file included in the project. This handles the opening, creation

and reference to the SQLite database. The class is all static and the open function is called

when the main window is instantiated. This served as a common place for database access

which the fingerprint classes call into when preparing statements while storing/searching.

Nick Palmer A763896

37

7 Testing

To test that the software I develop meets my goals I will conduct two sets of tests. One to

confirm my basic audio fingerprinter can reliably identify audio based upon musical

perception features and a second set of testing to see if there is any effect, hopefully

positive, on using an augmented fingerprint to search with.

To test the software can reliably identify audio based upon musical perception features I

have created a series of files. I’ve taken audio of various types: Classical music, Dupstep,

Metal, Pop, Chiptune and Jazz. Each piece of audio has been obtained in the highest quality I

could find, often FLAC (Free Lossless Audio Codec), and converted it to wav format. As the

wav file format is lossless I don’t lose any data due to compression and the test remains

valid. After fingerprinting each high quality version of the files and storing them in my

database I can then set about finding the limits of recognition. I will degrade the file by

adding various volumes of static noise or filtering out certain frequencies to simulate various

versions of the same file that many people may have. By comparing the fingerprint of the

degraded the file to that of the master copies I can check to see how robust and reliable my

fingerprinting software is. As well as recording the amount of matching chunks I will also

record any false positive matches or files that come close to being a false positive.

To test the effect of adding in other music factors, such as key, loudness or tempo into my

fingerprint I will compare the same files and check if there is any change in time spent

searching for matches and the number of false positive results / non matches.

7.1 Results

First, to set the baseline of the project and have something to compare my test results to I

ran all my test files through the basic fingerprinter and searched for matches after only

inserting the original, high quality fingerprints into the database. The results are shown in

Figure 22.

Time Top Match Time Top Match Time Top Match Time Top Match Time Top Match Time Top Match

Clean 2794 7261 2616 32934 2432 2234 2491 12235 2925 3949 2776 4637

Static 0.2 2461 2152 2642 MISSING 2248 -179 2503 MISSING 2425 2135 2456 MISSING

Static 0.4 3064 1407 2499 MISSING 2267 -109 2626 MISSING 2466 1618 2504 MISSING

Static 0.6 2848 869 2415 MISSING 2398 -292 2444 MISSING 2476 1222 2327 MISSING

Static 0.8 2583 759 2396 MISSING 2397 -250 2327 MISSING 2433 955 2316 MISSING

HPF 200Hz 2498 7308 3139 31305 2256 2124 2557 10977 2362 3357 2416 4259

HPF 400Hz 2419 6760 2715 28947 2224 2071 2413 8666 2362 2718 2435 3933

HPF 600Hz 2476 6114 2578 26146 2267 2007 2381 6791 2417 2395 2466 3566

HPF 800Hz 2245 5715 2616 23865 2283 1916 2576 5839 2399 2201 2344 3215

HPF 1000Hz 2513 5327 3295 22391 2192 1790 2349 5316 2395 2076 2463 3163 Overall Avg.

AVG 2590 2691 2296 2467 2466 2450 2493

Metal Rock

Basic Fingerprint

Chiptune Classical Dubstep Jazz

 Figure 22 - Basic Fingerprint Results

Nick Palmer A763896

38

The times given are milliseconds taken from the user clicking “Search Database” until it

returned a result. For testing purposes each search was done 3 times per search and the

time result was averaged. The Top Match column shows how many chunks matched when

doing a search. This number can be bigger the original file match if certain chunks end up

matching more than one chunk of the track in the database.

Results marked as missing are results where the fingerprinter did return matches but none

of them were the right match. Results in the negative are from where matches were found,

but the top match was incorrect, the difference between the intended result and the top

result is the negative value shown.

From the above table you can identify that times were roughly consistent across all searches

and only the quiet sample audio, such as the jazz, classical and rock samples, were

completely unable to match after noise has been added. The dubstep & noise tests came out

negative as each time the fingerprinting system incorrectly identified the sample as the

chiptune sample, only by a small margin however. This isn’t too big of a surprise as both

tracks used in this test do have similar frequencies used at the start but the chiptune sample

uses an 8 bit music effect which sounds like a rough, distorted, low bass which shows on the

spectrogram as bands of white noise following the soprano notes.

To see if augmenting the fingerprint with the values of key; e.g. C, G, F-Sharp; tempo and

time signature improved the accuracy or improved search speed I re-ran the tests with the

same samples and the same original sample fingerprints in the database. The results came

out as shown in Figure 23.

Time Top Match Time Top Match Time Top Match Time Top Match Time Top Match Time Top Match

Clean 2568 7261 1709 32934 2496 2234 2239 12235 2241 3949 2257 4637

Static 0.2 2636 2152 2568 MISSING MISSING MISSING MISSING MISSING 2363 2135 2434 MISSING

Static 0.4 2208 1407 MISSING MISSING 2087 -109 2166 MISSING 2332 1618 2291 MISSING

Static 0.6 2304 869 2213 MISSING 2174 -292 2056 MISSING 2305 1222 2318 MISSING

Static 0.8 2287 -115 2174 MISSING 2225 MISSING 2157 MISSING 2354 955 2257 MISSING

HPF 200Hz 2156 7308 MISSING MISSING 2061 2124 2188 10977 2140 3357 2564 4259

HPF 400Hz 2090 6760 MISSING MISSING 2050 2071 2173 8666 2157 2718 2386 MISSING

HPF 600Hz 2151 6114 2221 26146 2028 2007 2111 6791 2941 2395 2310 MISSING

HPF 800Hz 2179 5715 2196 23865 2029 1916 2050 5839 3031 2201 2430 MISSING

HPF 1000Hz 2097 5327 2211 22391 2083 1790 2159 5316 2071 2076 2215 MISSING Overall Avg.

AVG 2268 2185 2137 2144 2394 2346 2246

Rock

Augmented Fingerprint

Chiptune Classical Dubstep Jazz Metal

 Figure 23 - Augmented Fingerprint Results

As you can see at first glance over the table there are a lot more missing values. This seems

to contradict my idea that the augmented values would improve the matching accuracy.

There are reasons for this, however.

Nick Palmer A763896

39

The large number of missing values is a result of the inaccuracy of the analysis that The Echo

Nest does coupled with the strictness of my search algorithm. While The Echo Nest does

return a confidence value stating how accurate the result is likely to be, with noise

introduced or a high pass filter the calculation of important values, such as key, can be wildly

misinterpreted. This misinterpretation of the values I’m augmenting the fingerprint with

then eliminates the correct tracks from being matched leading to missing match values as

my search algorithm accepts augmenting values with a 50% confidence. It does mean

however that although the correct tracks are missing from the results list, the false positives

are cut down too though it isn’t really measurable with a small sample size.

However, it does seem that my hopes for the augmented fingerprint being faster to search

for were correct. Although the average overall time is only about 0.02 seconds faster on

average, it was a consistent average. Also, the small size of the database doesn’t reflect how

well the augmented fingerprint method would scale in comparison to the basic fingerprint in

terms of search times. However that hypothesis is difficult to test accurately with this system

as SQLite is not designed to handle large data sets well.

8 Conclusions

From the results I cannot conclusively determine whether my augmented fingerprint is

better or worse when compared to a standard fingerprinting method. The difference

between search times is negligible and at such small values can easily be affected by other

system processes while testing. While the augmented fingerprint method didn’t return so

many false positive results, it often returned no matches, which makes it difficult to assess if

it has provided an improvement or if it is worse.

Provided, with a database that was designed for larger data sets, the search time decreased

when more fingerprints had been added to the database I would conclude that the

augmented fingerprint was indeed an improvement. But currently, for this implementation

at least, it is not feasible to test.

Personally I would say that the reduction in false positives, even at the expense of extra no-

matches, is an improvement. While the system reports no match, no matches to me is more

accurate than misrepresenting a fingerprint as another as it’s erring on the side of caution

with regards to fingerprinting accuracy. However, for a unanimous improvement in accuracy

Nick Palmer A763896

40

I was looking for a reduction in matches for false positives but not a reduction on the actual

file.

8.1 Looking to the future

If I were to restart the project I would make several changes to my design and to my test

plan.

To the design I’d change from using The Echo Nest for my audio analysis and either learn

how to, and implement, the analysis features I need and build them into the project or

create a java library that wrapped the VAMP plugin system so I could get more accurate

analysis and hopefully reduce the occurrences of no-matches in the testing phase.

I’d also try to make time to add the features I felt could have improved the usability of the

system, such as support for other file formats and other fingerprinting methods. It would

have been nice to support more file formats because it would have saved time creating test

data and would have let me fingerprint all my music much faster.

If I added other fingerprinting methods into the system, such as a proper Shazam-style

fingerprinter or the use of a third party library like the one Gracenote provides I could test

my system against actual commercial systems. If I added my augmented style searching to

filter the results from a commercial system it might also be interesting to test if there was

any reduction in false positives.

Looking to the future I would dedicate more time to how I stored and searched for matches

with my fingerprint implementation. While it did fingerprint, store and search it was

inefficient in storing all the data for each band and the search algorithm could have been

more relaxed so as not to exclude some matches, while being stricter in what it defined as a

match so as not to match the same chunk many times.

Nick Palmer A763896

41

Bibliography

ALM WORKS. 2010. sqlite4java - Minimalistic high-performance Java wrapper for SQLite.

[online]. [Accessed Feb 2011]. Available from World Wide Web:

<http://code.google.com/p/sqlite4java/>

BALUJA, Shumeet and Michele COVELL. 2006. Content Fingerprinting Using Wavelets. In:

Visual Media Production, 2006. CVMP 2006. 3rd European Conference on. London, pp.198 -

207.

BECK, Kent. 1995. Extreme Programming Explained: Embrace Change. Addison-Wesley

Professional.

CLOUDGARDEN. 2010. Jigloo SWT/Swing GUI Builder for Eclipse and WebSphere. [online].

[Accessed January 2011]. Available from World Wide Web:

<http://www.cloudgarden.com/jigloo/>

ELLIS, Dan. 2011. E4896 - outline. [online]. [Accessed 2011]. Available from World Wide

Web: <http://www.ee.columbia.edu/~dpwe/e4896/lectures/E4896-L13.pdf>

GRACENOTE. 2011. Gracenote | Ford SYNC. [online]. [Accessed 2011]. Available from World

Wide Web: <http://www.gracenote.com/casestudies/ford_sync/>

GREENSTED, Dr. Andrew. 2010. Java Wav File IO. [online]. [Accessed December 2010].

Available from World Wide Web:

<http://www.labbookpages.co.uk/audio/javaWavFiles.html>

HAITSMA, Jaap and Ton KALKER. 2002. A Highly Robust Audio Fingerprinting System. In: Int

Symp Music Info Retrieval, Vol. 32. Ircam - Centre Pompidou, pp.107-115.

IEEE. 1995. IEEE Computational Science and Engineering. IEEE Computer Society.

JAMES, Mark. 2005. Silk Icons. [online]. [Accessed January 2011]. Available from World Wide

Web: <http://www.famfamfam.com/lab/icons/silk/>

LAST.FM. 2007. Audio Fingerprinting for Clean Metadata. [online]. [Accessed 2011].

Available from World Wide Web: <http://blog.last.fm/2007/08/29/audio-fingerprinting-for-

clean-metadata>

MICROSOFT CORPORATION. 2005. Testing Methodologies. [online]. [Accessed 2011].

Available from World Wide Web: <http://msdn.microsoft.com/en-us/library/ff649520.aspx>

http://code.google.com/p/sqlite4java/
http://www.cloudgarden.com/jigloo/
http://www.ee.columbia.edu/~dpwe/e4896/lectures/E4896-L13.pdf
http://www.gracenote.com/casestudies/ford_sync/
http://www.labbookpages.co.uk/audio/javaWavFiles.html
http://www.famfamfam.com/lab/icons/silk/
http://blog.last.fm/2007/08/29/audio-fingerprinting-for-clean-metadata
http://blog.last.fm/2007/08/29/audio-fingerprinting-for-clean-metadata
http://msdn.microsoft.com/en-us/library/ff649520.aspx

Nick Palmer A763896

42

MUSIC BRAINZ. 2006. Future Proof Fingerprint. [online]. [Accessed December 2010].

Available from World Wide Web: <http://musicbrainz.org/doc/Future_Proof_Fingerprint>

QUEEN MARY, UNIVERSITY OF LONDON. 2007. Vamp Plugins. [online]. [Accessed 2010].

Available from World Wide Web: <http://vamp-plugins.org/>

SCHMIDT, Geoff. 2005. Future Proof Fingerprint Function. [online]. [Accessed December

2010]. Available from World Wide Web:

<http://musicbrainz.org/doc/Future_Proof_Fingerprint_Function>

SEDGEWICK, Robert and Kevin WAYNE. 2011. Complex.java. [online]. [Accessed December

2010]. Available from World Wide Web:

<http://introcs.cs.princeton.edu/97data/Complex.java.html>

SEDGEWICK, Robert and Kevin WAYNE. 2011. Data Analysis. [online]. [Accessed December

2010]. Available from World Wide Web: <http://introcs.cs.princeton.edu/97data/>

SEDGEWICK, Robert and Kevin WAYNE. 2011. FFT.java. [online]. [Accessed March 2011].

Available from World Wide Web: <http://introcs.cs.princeton.edu/97data/FFT.java.html>

SHNEIDERMAN, Ben. 1998. Designing the user interface: Strategies for effective human-

computer interaction. Reading, MA: Addison-Wesley.

TANGO DESKTOP PROJECT. 2009. Tango Desktop Project. [online]. [Accessed January 2011].

Available from World Wide Web: <http://tango.freedesktop.org/Tango_Desktop_Project>

THE ECHO NEST. About Us. [online]. [Accessed 2011]. Available from World Wide Web:

<http://the.echonest.com/company/>

WANG, Avery Li-Chun. 2003. An Industrial-Strength Audio Search Algorithm. [online].

[Accessed 2010]. Available from World Wide Web:

<http://www.ee.columbia.edu/~dpwe/papers/Wang03-shazam.pdf>

YOUTUBE. 2008. Copyright Overview. [online]. [Accessed 2011]. Available from World Wide

Web: <http://www.youtube.com/t/content_management>

http://musicbrainz.org/doc/Future_Proof_Fingerprint
http://vamp-plugins.org/
http://musicbrainz.org/doc/Future_Proof_Fingerprint_Function
http://introcs.cs.princeton.edu/97data/Complex.java.html
http://introcs.cs.princeton.edu/97data/
http://introcs.cs.princeton.edu/97data/FFT.java.html
http://tango.freedesktop.org/Tango_Desktop_Project
http://the.echonest.com/company/
http://www.ee.columbia.edu/~dpwe/papers/Wang03-shazam.pdf
http://www.youtube.com/t/content_management

Nick Palmer A763896

43

Appendices

Appendix A - Database SQL

CREATE TABLE IF NOT EXISTS tracks (

 id INTEGER PRIMARY KEY,

 artist VARCHAR(128),

 title VARCHAR(128),

 album VARCHAR(128),

 duration NUMERIC,

 tempo NUMERIC,

 key NUMERIC,

 mode NUMERIC,

 time_signature NUMERIC,

 loudness NUMERIC

);

CREATE TABLE IF NOT EXISTS print_runs (

 id INTEGER PRIMARY KEY,

 augmented NUMERIC,

 timestamp VARCHAR(128),

 filename VARCHAR(128)

);

CREATE TABLE IF NOT EXISTS print_data (

 chunk INTEGER,

 band1 INTEGER,

 band2 INTEGER,

 band3 INTEGER,

 band4 INTEGER,

 band5 INTEGER,

 band6 INTEGER,

 band7 INTEGER,

 band8 INTEGER,

 band9 INTEGER,

 track_id INTEGER,

 print_run_id INTEGER

);

Nick Palmer A763896

44

Appendix B – User Manual

To fingerprint, either basic or augmented, an audio file click File -> Load File from the menu,

or press Ctrl+O to get the file chooser. Choose the file you wish to fingerprint and click open.

Once the file is loaded you can look at the waveform or spectrogram of the audio by

selecting the value from the Window menu or by pressing Ctrl+W or Ctrl+G repectively, or

generate a basic or augmented fingerprint using the options in the Fingerprint menu.

Once a fingerprint has been generated a text representation of it will show up in the box

labelled Fingerprint on the main form. You can then either add the fingerprint to the

database or search for it in the database using Ctrl+S or Ctrl+F respectively.

Nick Palmer A763896

45

After a search has finished results are displayed in the list on the main window labelled

Results.

Nick Palmer A763896

46

Appendix C – Gantt Chart

Nick Palmer A763896

47

Appendix D – Source Code Listing

Source code files included in the project are listed to the

left.

Along with the source files are a set of libraries that must

be linked in to the project for it to compile. For the origins

of the libraries, look to the third party library section of the

detailed design and the bibliography.

All source code and libraries are included on the CD provided

with this report. A compiled version is also included in the

form of a runnable jar. If running on Apple Mac OS X, see the

end of the Environment section in the design earlier in this

report for a command line option to increase Javas default

memory limits.

	1 Introduction
	1.1 What I’m trying to do
	1.2 Needs & Uses of Audio Fingerprinting
	1.3 Current Methods
	1.4 How I plan to improve

	2 Literature Review
	3 Design
	3.1 What I’m trying to do
	3.2 Criteria for success
	3.3 Environment

	4 Experimentation
	4.1 Reading Audio
	4.2 Spectrograms
	4.3 Reading in wave files
	4.4 Graphical User Interface
	4.5 Databases
	4.6 Fingerprinting
	4.7 Other Factors

	5 Detailed Design
	5.1 Development Choices
	5.2 UML
	5.3 HCI Considerations
	5.4 Database Design
	5.5 Third Party Libraries
	5.6 Development Process

	6 Implementation
	6.1 Audio Readers
	6.2 Waveform Window
	6.3 Spectrogram Window
	6.4 Main window
	6.5 Basic Fingerprinting
	6.6 Basic Fingerprint Storing & Searching
	6.7 Augmented Fingerprint Storing & Searching
	6.8 Database Handling

	7 Testing
	7.1 Results

	8 Conclusions
	8.1 Looking to the future

	Bibliography
	Appendices
	Appendix A - Database SQL
	Appendix B – User Manual
	Appendix C – Gantt Chart
	Appendix D – Source Code Listing

