
Bright Cluster Manager 5.0

User Manual
Revision: 294

Date: Tue, 23 Feb 2010

Table of Contents

1 Introduction 1
1.1 What is a Beowulf Cluster 1
1.2 Physical hardware layout of a Cluster 1

2 Cluster Usage 3
2.1 Login To Your Environment 3
2.2 Setting Up Your Environment 3
2.3 Environment Modules . 4
2.4 Compiling Applications . 5

3 Using MPI 7
3.1 Interconnects . 7
3.2 Selecting an MPI implementation 7
3.3 Example MPI run . 8

4 Workload Management 11
4.1 Workload Management Basics 11

5 SGE 13
5.1 Writing a Job Script . 13
5.2 Submitting a Job . 16
5.3 Monitoring a Job . 16
5.4 Deleting a Job . 18

6 PBS 19
6.1 Writing a Job Script . 19
6.2 Submitting a Job . 22
6.3 Output . 23
6.4 Monitoring a Job . 23
6.5 Viewing job details . 25
6.6 Monitoring PBS nodes . 25
6.7 Deleting a Job . 26

7 Using GPUs 27
7.1 Packages . 27
7.2 Using CUDA . 27
7.3 Compiling code . 27
7.4 Available tools . 28

ii Table of Contents

A MPI Examples 29
A.1 Hello world . 29
A.2 MPI skeleton . 30
A.3 MPI Initialization and Finalization 32
A.4 Who Am I ? Who Are They ? 32
A.5 Sending messages . 32
A.6 Receiving messages . 32

Preface

Welcome to the User Manual for the Bright Cluster Manager 5.0 clus-
ter environment. This manual is intended for users of a cluster running
Bright Cluster Manager.

This manual covers the basics of using the Bright Cluster Manager
user environment to run compute jobs on the cluster. Although it does
cover some aspects of general Linux usage, it is by no means comprehen-
sive in this area. Readers are advised to make themselves familiar with
the basics of a Linux environment.

Our manuals constantly evolve to match the development of the Bright
Cluster Manager environment, the addition of new hardware and/or ap-
plications and the incorporation of customer feedback. Your input as a
user and/or administrator is of great value to us and we would be very
grateful if you could report any comments, suggestions or corrections to
us at manuals@brightcomputing.com.

1
Introduction

1.1 What is a Beowulf Cluster
Beowulf is the earliest surviving epic poem written in English. It is a
story about a hero of great strength and courage who defeated a mon-
ster called Grendel. Nowadays, Beowulf is a multi computer architecture
used for parallel computations. It is a system that usually consists of one
head node and one or more slave nodes connected together via Ether-
net or some other type of network. It is a system built using commodity
hardware components, like any PC capable of running Linux, standard
Ethernet adapters, and switches.

Beowulf also uses commodity software like the Linux operating sys-
tem, the GNU C compiler and Message Passing Interface (MPI). The head
node controls the whole cluster and serves files and information to the
slave nodes. It is also the cluster’s console and gateway to the outside
world. Large Beowulf machines might have more than one head node,
and possibly other nodes dedicated to particular tasks, for example con-
soles or monitoring stations. In most cases slave nodes in a Beowulf sys-
tem are dumb; the dumber the better.

Nodes are configured and controlled by the head node, and do only
what they are told to do. One of the main differences between Beowulf
and a Cluster of Workstations (COW) is the fact that Beowulf behaves
more like a single machine rather than many workstations. In most cases
slave nodes do not have keyboards or monitors, and are accessed only via
remote login or possibly serial terminal. Beowulf nodes can be thought of
as a CPU + memory package which can be plugged into the cluster, just
like a CPU or memory module can be plugged into a motherboard.

This manual is intended for cluster users who need a quick introduc-
tion to the Bright Beowulf Cluster Environment. It explains how to use
the MPI and batch environments, how to submit jobs to the queuing sys-
tem, and how to check job progress. The specific combination of hard-
ware and software installed may differ depending on the specification of
the cluster. This manual may refer to hardware, libraries or compilers not
relevant to the environment at hand.

1.2 Physical hardware layout of a Cluster
A Beowulf Cluster consists of a login, compile and job submission node,
called the head (or master) node, and one or more compute nodes, nor-

© Bright Computing, Inc.

2 Introduction

mally referred to as slave (or worker) nodes. A second (fail-over) head
node may be present in order to take control of the cluster in case the
main head node fails. Furthermore, a second fast network may also have
been installed for high performance communication between the (head
and the) slave nodes (see figure 1.1).

Figure 1.1: Cluster layout

The login node is used to compile software, to submit a parallel or
batch program to a job queuing system and to gather/analyse results.
Therefore, it should rarely be necessary for a user to log on to one of the
slave nodes and in some cases slave node logins are disabled altogether.
The head, login and slave nodes communicate with each other through
an Ethernet network. Usually a Gigabit Ethernet is in use, capable of
transmitting information at a maximum rate of 1000 Megabits/s.

Sometimes an additional network is added to the cluster for even
faster communication between the slave nodes. This particular network is
mainly used for programs dedicated to solving large scale computational
problems, which may require multiple machines and could involve the
exchange of vast amounts of information. One such network topology is
InfiniBand, capable of transmitting information at a maximum rate of 40
Gigabits/s and 1.2us latency on small packets.

Applications relying on message passing benefit greatly from lower
latency. The fast network is always complementary to a slower Ethernet
based network.

© Bright Computing, Inc.

2
Cluster Usage

2.1 Login To Your Environment
The login node is the node you where can log in to and work from. Sim-
ple clusters have a single login node, but large clusters sometimes have
multiple login nodes to improve reliability of the cluster. In most clusters,
the login node is also the master node from where the cluster is monitored
and installed. On the login node you are able to:

• compile your code

• develop applications

• submit applications to the cluster for execution

• monitor running applications

To login using a Unix-like operating system, you can use a terminal.
Then type:

$ ssh myname@cluster.hostname

On a Windows operating system, you can download a SSH client, for
instance, PuTTy, and enter the cluster’s address and click connect. Enter
your username and password when prompted.

If your administrator has changed the default SSH port from 22 to
something else, you can specify the port with the -p <port> option:

$ ssh -p <port> <user>@<cluster>

Optionally, you may change your password after logging in using the
passwd command:

$ passwd

2.2 Setting Up Your Environment
By default, each user uses the bash shell interpreter. Each time you login,
a file named .bashrc is executed to set up the shell environment.

In this file, you can add commands, load modules and add custom
environment settings you want to use each time you login.

© Bright Computing, Inc.

4 Cluster Usage

Also, your .bashrc is executed by each slave node you run your jobs
on, so the application executed will run under the same environment you
started with.

For example if you want to use the Open64 compiler each time you
login, you may edit the .bashrc file with nano, emacs or vi and add the
following line:

module add open64

Then log out and log back in again. You should now have your new
environment.

For more further information on environment modules, see section 2.3.

2.3 Environment Modules
On a complex computer system with often a wide choice of software
packages and software versions it can be quite hard to set up the cor-
rect environment to manage this. For instance, managing several MPI
software packages on the same system or even different versions of the
same MPI software package is almost impossible on a standard SuSE or
Red Hat system as many software packages use the same names for exe-
cutables and libraries.

As a user you could end up with the problem that you could never
be quite sure which libraries have been used for the compilation of a pro-
gram as multiple libraries with the same name may be installed. Very
often a user would like to test new versions of a software package before
permanently installing the package. Within Red Hat or SuSE this would
be quite a complex task to achieve. Environment modules make this pro-
cess much easier.

2.3.1 Available commands
$ module

(no arguments) print usage instructions

avail list available software modules

li currently loaded modules

load <module name> add a module to your environment

add <module name> add a module to your environment

unload <module name> remove a module

rm <module name> remove a module

purge remove all modules

initadd add module to shell init script

initrm remove module from shell init script

2.3.2 Using the commands
To see the modules loaded into your environment, type

$ module li

To load a module use the add or load command. You can specify a list
of modules by spacing them.

$ module add shared open64 openmpi/open64

Please note, although version numbers are shown in the module av,
you do not have to specify version numbers, unless multiple versions

© Bright Computing, Inc.

2.4 Compiling Applications 5

are available for a module. When no version is given, the latest will be
chosen.

To remove one or multiple, use the module unload or module rm com-
mand.

To remove all modules from your environment, use the module purge

command.
If you are unsure what the module is you can check with module

whatis

$ module whatis sge

sge : Adds sge to your environment

2.4 Compiling Applications
Compiling application is usually done on the head node or login node.
Typically, there are several compilers available on the master node. A few
examples: GNU compiler collection, Open64 compiler, Pathscale compil-
ers, Intel compilers, Portland Group compilers. The following table sum-
marizes the available compiler commands on the cluster:

Language GNU Open64 Portland Intel Pathscale

C gcc opencc pgcc icc pathcc

C++ g++ openCC pgCC icc pathCC

Fortran77 gfortran - pgf77 ifort -

Fortran90 gfortran openf90 pgf90 ifort pathf90

Fortran95 gfortran openf95 pgf95 ifort pathf95

Although commercial compilers are available through as packages in
the Bright Cluster Manager YUM repository, a license is needed in order
to make use of them. Please note that GNU compilers are the de facto
standard on Linux and are installed by default and do not require a li-
cense. Also Open64 is installed by default on RedHat based installations
of Bright Cluster Manager.

To make a compiler available to be used in your shell commands, the
appropriate module must be loaded first. See section 2.3 for more infor-
mation on environment modules. On most clusters two versions of GCC
are available:

• The version of GCC that comes natively with the Linux distribution

• The latest version suitable for general use

To use the latest version of GCC, the gcc module must be loaded. To
revert to the version of GCC that comes natively with the Linux distribu-
tion, the gcc module must be unloaded.

The commands referred to in the table above are specific for batch type
(single processor) applications. For parallel applications it is preferable
to use MPI based compilers. The necessary compilers are automatically
available after choosing the parallel environment (MPICH, MVAPICH,
OpenMPI, etc.). The following compiler commands are available:

© Bright Computing, Inc.

6 Cluster Usage

Language C C++ Fortran77 Fortran90 Fortran95

Command mpicc mpiCC mpif77 mpif90 mpiCC

Please check the documentation of the compiler and the makefile to
view which optimization flags are available. Usually there is a README,
BUILDING or INSTALL file available with software packages.

2.4.1 Mixing Compilers
Bright Cluster Manager comes with multiple OpenMPI packages for dif-
ferent compilers. However, sometimes it is desirable to mix compilers,
for example to combine gcc with pathf90. In such cases it is possible to
override the compiler by setting an environment variable, for example:

export OMPI_MPICC=gcc

export OMPI_MPIF90=pathf90

Variables that you may set are OMPI_MPICC, OMPI_MPIFC, OMPI_MPIF77,
OMPI_MPIF90 and OMPI_MPICXX.

© Bright Computing, Inc.

3
Using MPI

The available MPI implementations for MPI-1 are MPICH and MVAPICH.
For MPI-2 this is MPICH2 and MVAPICH2. OpenMPI supports both im-
plementations. These MPI compilers can be compiled with GCC, Open64,
Intel, PGI and/or Pathscale. Depending on your cluster, you can have
several interconnects at your disposal: Ethernet (GE), Infiniband (IB) or
Myrinet (MX).

Also depending on your cluster configuration, you can load the dif-
ferent MPI implementations which were be compiled with different com-
pilers. By default all GCC and Open64 compiled MPI implementations
are installed.

You can derive the interconnect and compiler from the module or
compiler name, e.g: openmpi-geib-intel-64.x86_64 (OpenMPI com-
piled for both Gigabit Ethernet (GE) and Infiniband (IB). Compiled with
the Intel compiler for 64 bits architecture) Please see module av for a com-
plete list of available compilers on your cluster.

3.1 Interconnects
Jobs can use a certain network for intra-node communication.

3.1.1 Gigabit Ethernet
Gigabit Ethernet is the interconnect that is most commonly available. For
Gigabit Ethernet, you do not need any additional modules or libraries.
The OpenMPI, MPICH and MPICH2 implementations will work over Gi-
gabit Ethernet.

3.1.2 InfiniBand
Infiniband is a high performance switched fabric which is characterized
by its high throughput and low latency. OpenMPI, MVAPICH and MVA-
PICH2 are suitable MPI implementations for InfiniBand.

3.2 Selecting an MPI implementation
To select an MPI implementation, you must load the appropriate module:

• mpich/ge/gcc/64/1.2.7

• mpich/ge/open64/64/1.2.7

© Bright Computing, Inc.

8 Using MPI

• mpich2/smpd/ge/gcc/64/1.1.1p1

• mpich2/smpd/ge/open64/64/1.1.1p1

• mvapich/gcc/64/1.1

• mvapich/open64/64/1.1

• mvapich2/gcc/64/1.2

• mvapich2/open64/64/1.2

• openmpi/gcc/64/1.3.3

• openmpi/open64/64/1.3.3

Once you have added the appropriate MPI module to your environ-
ment, you can start compiling your applications.

3.3 Example MPI run
This example covers a MPI run, which you can run inside and outside of
a queuing system.

To use mpirun, you must load the relevant environment modules. This
example will use mpich over Gigabit Ethernet (ge) compiled with GCC.

$ module add mpich/ge/gcc

To use InfiniBand, use for example:

$ module add mvapich/gcc/64/1.1

Depending on the libraries and compilers installed on your system,
the availability of these packages might differ. To see a full list on your
system, type module av .

3.3.1 Compiling and Preparing Your Application
The code must be compiled with an MPI compiler. Please find the correct
compiler command in the table.

Language C C++ Fortran77 Fortran90 Fortran95

Command mpicc mpiCC mpif77 mpif90 mpiCC

This example will use the MPI C compiler.

$ mpicc myapp.c

This will produce a binary a.out which can then be executed using
the mpirun command.

3.3.2 Creating a Machine File
A machine file contains a list of nodes which can be used by an MPI pro-
gram. Usually the workload management system will create a machine
file based on the nodes that were allocated for a job. However, if you are
running an MPI application “by hand”, you are responsible for creating a
machine file manually. Depending on the MPI implementation the layout
of this file may differ.

© Bright Computing, Inc.

3.3 Example MPI run 9

If you choose to have the workload management system allocate nodes
for your job and you may skip creating a machine file.

Machine files can generally be created in two ways:

• Listing the same node several times to indicate that more than one
process should be started on each node:

node001

node001

node002

node002

• Listing nodes once, but with a suffix for the number of CPU cores
to use on each node:

node001:2

node002:2

In both examples two CPUs on node001 and node002 will be used.

3.3.3 Running the Application
Using mpirun outside of the workload management system to run the
application:

$ mpirun -np 4 -machinefile hosts.txt ./a.out

0: We have 4 processors

0: Hello 1! Processor 1 reporting for duty

0: Hello 2! Processor 2 reporting for duty

0: Hello 3! Processor 3 reporting for duty

To run the application through the workload management system, a
job script is needed. The workload management system is responsible for
generating a machine file.
The following is an example for PBS (Torque)

#!/bin/sh

mpirun -np 4 -machinefile $PBS_NODEFILE ./a.out

An example for SGE:

#!/bin/sh

mpirun -np 4 -machinefile $TMP/machines ./a.out

Running jobs through a workload management system will be dis-
cussed in detail in chapter 4. Appendix A contains a number of simple
MPI programs.

© Bright Computing, Inc.

4
Workload Management

A workload management system (also know and a queueing system, job
scheduler or batch system) manages the available resources such as CPUs
and memory. It also manages jobs which have been submitted by users.

4.1 Workload Management Basics
A workload management system primarily manages the cluster resources
and jobs. Every workload management system fulfills some basic tasks,
such as:

• Monitor the status of the nodes (up, down, load average)

• Monitor all available resources (available cores, memory on the nodes)

• Monitor the jobs state (queued, on hold, deleted, done)

• Control the jobs (freeze/hold the job, resume the job, delete the job)

Some advanced options in workload management systems can prior-
itize jobs and add checkpoints to freeze a job.

Whenever a job is submitted, the workload management system will
check on the resources requested by the jobscript. It will assign cores and
memory to the job and send the job to the nodes for computation. If the
required number of cores or memory are not yet available, it will queue
the job until these resources become available.

The workload management system will keep track of the status of the
job and return the resources to the available pool when a job has finished
(either deleted, crashed or successfully completed).

The primary reason why workload management systems exist, is so
that users do not manually have to keep track of who is running jobs
on which nodes in a cluster. Users may still run jobs on the compute
nodes outside of the workload management system. However, this is not
recommended on a production cluster.

Jobs can only be submitted through a script; a jobscript. This script
looks very much like an ordinary shell script and you can put certain
commands and variables in there that are needed for your job; e.g. load
relevant modules or set environment variables. You can also put in some
directives for the workload management system, for example, request
certain resources, control the output, set an email address.

© Bright Computing, Inc.

12 Workload Management

Bright Cluster Manager comes either with SGE or PBS (i.e. Torque/Maui)
pre-configured. These workload management systems will be described
in chapters 5 and 6 respectively.

© Bright Computing, Inc.

5
SGE

Sun Grid Engine (SGE) is a workload management and job scheduling
system first developed to manage computing resources by Sun Microsys-
tems. SGE has both a graphical interface and command line tools for
submitting, monitoring, modifying and deleting jobs.

SGE uses ’jobscripts’ to submit and execute jobs. Various settings can
be put in the scriptfile such as number of processors, resource usage and
application specific variables.

The steps for running a job through SGE:

• Create a jobscript

• Select the directives to use

• Add your scripts and applications and runtime parameters

• Submit it to the workload management system

5.1 Writing a Job Script
You can not submit a binary directly to SGE, you will need a jobscript
for that. A jobscript can contain various settings and variables to go with
your application. Basically it looks like:

#!/bin/bash

#$ Script options # Optional script directives

shellscripts # Optional shell commands

application # Application itself

5.1.1 Directives
It is possible to specify options (’directives’) with SGE with �#$� in your
script. Please note the difference in the jobscript file:

Directive Treated as

Comment in shell and SGE

#$ Comment in shell, directive in SGE

$ Comment in shell and SGE

© Bright Computing, Inc.

14 SGE

5.1.2 SGE jobscript options
Available environment variables

$HOME - Home directory on execution machine

$USER - User ID of job owner

$JOB_ID - Current job ID

$JOB_NAME - Current job name; see the -N option

$HOSTNAME - Name of the execution host

$TASK_ID - Array job task index number

5.1.3 Job script examples
Given are some job scripts. Each job script can use a number of variables
and directives. Job script options

The following script options can be defined in the jobscript:

#$ {option} {parameter}

Available options:

Option / parameter Description

[-a date_time] request a job start time

[-ac context_list] add context variable(s)

[-A account_string] account string in accounting record

[-b y[es]|n[o]] handle command as binary

[-c ckpt_selector] define type of checkpointing for job

[-ckpt ckpt-name] request checkpoint method

[-clear] skip previous definitions for job

[-cwd] use current working directory

[-C directive_prefix] define command prefix for job script

[-dc simple_context_list] remove context variable(s)

[-dl date_time] request a deadline initiation time

[-e path_list] specify standard error stream path(s)

[-h] place user hold on job

[-hard] consider following requests ``hard''

[-help] print this help

[-hold_jid job_identifier_list] define jobnet interdependencies

[-i file_list] specify standard input stream file(s)

[-j y[es]|n[o]] merge stdout and stderr stream of job

[-js job_share] share tree or functional job share

[-l resource_list] request the given resources

[-m mail_options] define mail notification events

[-masterq wc_queue_list] bind master task to queue(s)

[-notify] notify job before killing/suspending it

[-now y[es]|n[o]] start job immediately or not at all

[-M mail_list] notify these e-mail addresses

[-N name] specify job name

[-o path_list] specify standard output stream path(s)

[-P project_name] set job's project

[-p priority] define job's relative priority

[-pe pe-name slot_range] request slot range for parallel jobs

[-q wc_queue_list] bind job to queue(s)

[-R y[es]|n[o]] reservation desired

[-r y[es]|n[o]] define job as (not) restartable

[-sc context_list] set job context (replaces old context)

[-soft] consider following requests as soft

[-sync y[es]|n[o]] wait for job to end and return exit code

© Bright Computing, Inc.

5.1 Writing a Job Script 15

[-S path_list] command interpreter to be used

[-t task_id_range] create a job-array with these tasks

[-terse] tersed output, print only the job-id

[-v variable_list] export these environment variables

[-verify] do not submit just verify

[-V] export all environment variables

[-w e|w|n|v] verify mode (error|warning|none|just verify) for jobs

[-@ file]

Single node example script
An example script for SGE.

#!/bin/sh

#$ -N sleep

#$ -S /bin/sh

Make sure that the .e and .o file arrive in the

working directory

#$ -cwd

#Merge the standard out and standard error to one file

#$ -j y

sleep 60

echo Now it is: `date`

Parallel example script
For parallel jobs you will need the pe environment assigned to the script.
Depending on the interconnect, you might have the choice between a
number of parallel environments such as MPICH (ethernet) or MVAPICH
(InfiniBand).

#!/bin/sh

#

Your job name

#$ -N My_Job

#

Use current working directory

#$ -cwd

#

Join stdout and stderr

#$ -j y

#

pe (Parallel environment) request. Set your number of processors here.

#$ -pe mpich NUMBER_OF_CPUS

#

Run job through bash shell

#$ -S /bin/bash

If modules are needed, source modules environment:

. /etc/profile.d/modules.sh

Add any modules you might require:

module add shared

The following output will show in the output file. Used for debugging.

echo ``Got $NSLOTS processors.''

© Bright Computing, Inc.

16 SGE

echo ``Machines:''

cat $TMPDIR/machines

Use MPIRUN to run the application

mpirun -np $NSLOTS -machinefile $TMPDIR/machines ./application

5.2 Submitting a Job
Please load the SGE module first so you can access the SGE commands:

$ module add shared sge

With SGE you can submit a job with qsub. The qsub command has the
following syntax:

qsub [options] [scriptfile | -- [script args]]

After completion (either successful or not), output will be put in your
current directory, appended with the job number which is assigned by
SGE. By deault, there is an error and an output file.

myapp.e#{JOBID}

myapp.o#{JOBID}

5.2.1 Submitting to a specific queue
Some clusters have specific queues for jobs which run are configured to
house a certain type of job: long and short duration jobs, high resource
jobs, or a queue for a specific type of node.

To see which queues are available on your cluster use qstat:

qstat -g c

CLUSTER QUEUE CQLOAD USED RES AVAIL TOTAL aoACDS cdsuE

long.q 0.01 0 0 144 288 0 144

default.q 0.01 0 0 144 288 0 144

Then submit the job, e.g. to the long.q queue:

qsub -q long.q sleeper.sh

5.3 Monitoring a Job
You can view the status of your job with qstat. In this example the
Sleeper script has been submitted. Using qstat without options will only
display a list of jobs with no queue status options. When using ’-f’, more
information will be displayed.

$ qstat

job-ID prior name user state submit/start at queue slots

249 0.00000 Sleeper1 root qw 12/03/2008 07:29:00 1

250 0.00000 Sleeper1 root qw 12/03/2008 07:29:01 1

251 0.00000 Sleeper1 root qw 12/03/2008 07:29:02 1

252 0.00000 Sleeper1 root qw 12/03/2008 07:29:02 1

253 0.00000 Sleeper1 root qw 12/03/2008 07:29:03 1

You can see more details with the -f option (full output):

© Bright Computing, Inc.

5.3 Monitoring a Job 17

• The Queuetype qtype can be Batch (B) or Interactive (I).

• The used/tot or used/free column is the count of used/free slots
in the queue.

• The states column is the state of the queue.

$ qstat -f

queuename qtype used/tot. load_avg arch states

--

all.q@node001.cm.cluster BI 0/16 -NA- lx26-amd64 au

--

all.q@node002.cm.cluster BI 0/16 -NA- lx26-amd64 au

##

- PENDING JOBS - PENDING JOBS - PENDING JOBS - PENDING JOBS - PENDING JOBS

##

249 0.55500 Sleeper1 root qw 12/03/2008 07:29:00 1

250 0.55500 Sleeper1 root qw 12/03/2008 07:29:01 1

Job state can be:

• d(eletion)

• E(rror)

• h(old)

• r(unning)

• R(estarted)

• s(uspended)

• S(uspended)

• t(ransfering)

• T(hreshold)

• w(aiting)

The queue state can be:

• u(nknown) if the corresponding sge_execd cannot be contacted

• a(larm) - the load threshold is currently exceeded

• A(larm) - the suspend threshold is currently exceeded

• C(alendar suspended) - see calendar_conf

• s(uspended) - see qmod

• S(ubordinate)

• d(isabled) - see qmod

• D(isabled) - see calendar_conf

• E(rror) - sge_execd was unable to locate the sge_shepherd - use
qmod to fix it.

© Bright Computing, Inc.

18 SGE

• o(rphaned) - for queue instances

By default the qstat command shows only jobs belonging to the cur-
rent user, i.e. the command is executed with the option -u $user. To see
also jobs from other users, use the following format:

$ qstat -u ``*''

5.4 Deleting a Job
You can delete a job in SGE with the following command

$ qdel <jobid>

The job-id is the number assigned by SGE when you submit the job
using qsub. You can only delete your own jobs. Please note that qdel
deletes the jobs regardless of whether the job is running or spooled.

© Bright Computing, Inc.

6
PBS

The Portable Batch System (PBS or Torque) is a workload management
and job scheduling system first developed to manage computing resources
at NASA. PBS has both a graphical interface and command line tools for
submitting, monitoring, modifying and deleting jobs.

Torque uses PBS ’jobscripts’ to submit and execute jobs. Various set-
tings can be put in the scriptfile such as number of processors, resource
usage and application specific variables.

The steps for running a job through PBS:

• Create a jobscript

• Select the directives to use

• Add your scripts and applications and runtime parameters

• Submit it to the workload management system

6.1 Writing a Job Script
To use Torque, you create a batch job which is a shell script containing the
set of commands you want to run. It also contains the resource require-
ments for the job. The batch job script is then submitted to PBS. A job
script can be resubmitted with different parameters (e.g. different sets of
data or variables).

Torque/PBS has several options (directives) which you can put in the
jobscript. The following is commented out for PBS (note the space):

PBS

The following is commented is a PBS directive:

#PBS

Please note that the file is essentially a shellscript. You can change the
shell interpreter to another shell interpreter by changing the first line to
your preferred shell. You can specify to PBS to run the job in a different
shell then what the shellscript is using by adding the -S directive.

By default the error and output log are jobname.e# and jobname.o#.
This can be changed by using the -e and -o directives.

The queueing system has a walltime per queue, please ask your ad-
ministrator about the value. If you exceed the walltime you will get the
errormessage:

© Bright Computing, Inc.

20 PBS

=>> PBS: job killed: walltime x(running time)x exceeded limit x(settime)x

6.1.1 Sample script
#!/bin/bash

#

#PBS -l walltime=1:00:00

#PBS -l mem=500mb

#PBS -j oe

cd ${HOME}/myprogs

myprog a b c

The directives with -l are resource directives, which specify argu-
ments to the -l option of qsub. In the above example script, a job time
of one hour and at least 500Mb are requested. The directive -j oe re-
quests standard out and standard error to be combined in the same file.
PBS stops reading directives at the first blank line. The last two lines sim-
ply say to change to the directory myprogs and then run the executable
myprog with arguments a b c. Additional directives

You can specify the number of nodes and the processors per nodes
(ppn). If you do not specify the any, the default will be 1 node, 1 core.

Here are some examples how the resource directive works.
If you want 8 cores, and it does not matter how the cores are allocated

(e.g. 8 per node or 1 on 8 nodes) you can just specify #PBS -l nodes=8

6.1.2 Resource directives

2 nodes, with 1 processor per node #PBS -l nodes=2:ppn=1

10 nodes with 8 processors per node #PBS -l nodes=10:ppn:8

Request memory #PBS -l mem=500mb

Set a maximum runtime (#PBS -l walltime=hh:mm:ss)

6.1.3 Job directives

Merge output and error #PBS -j o

Change the error / output #PBS -e jobname.err

#PBS -o jobname.log

Set a job name. #PBS -N jobname

Mail events to user #PBS -m #PBS -M myusername@myaddress

Events : (a)bort

(b)egin

(e)nd

(n) do not send email

Specify the queue #PBS -q

Change login shell #PBS -S

6.1.4 Sample batch submission script
This is an example script to test your queueing system. The walltime is 1
minute. This means the script will run at most 1 minute.

© Bright Computing, Inc.

6.1 Writing a Job Script 21

The $PBS_NODEFILE array can be used in your script. This array is
created and appended with hosts by the queueing system.

#!/bin/bash

#PBS -lwalltime=1:00

#PBS -l nodes=4:ppn=2

echo finding each node I have access to

for node in `cat ${PBS_NODEFILE}` ; do

/usr/bin/ssh $node hostname

done

This is a small example script, which can be used to submit non-
parallel jobs to PBS. Sample PBS script for Infinipath:

#!/bin/bash

#!

#! Sample PBS file

#!

#! Name of job

#PBS -N MPI

#! Number of nodes (in this case 8 nodes with 4 CPUs each)

#! The total number of nodes passed to mpirun will be nodes*ppn

#! Second entry: Total amount of wall-clock time (true time).

#! 02:00:00 indicates 02 hours

#PBS -l nodes=8:ppn=4,walltime=02:00:00

#! Mail to user when job terminates or aborts

#PBS -m ae

If modules are needed, source modules environment:

. /etc/profile.d/modules.sh

Add any modules you might require:

module add shared

#! Full path to application + application name

application=''<application>''

#! Run options for the application

options=''<options>''

#! Work directory

workdir=''<work dir>''

###

You should not have to change anything below this line

###

#! change the working directory (default is home directory)

cd $workdir

© Bright Computing, Inc.

22 PBS

echo Running on host `hostname`

echo Time is `date`

echo Directory is `pwd`

echo PBS job ID is $PBS_JOBID

echo This jobs runs on the following machines:

echo `cat $PBS_NODEFILE | uniq`

#! Create a machine file for MPI

cat $PBS_NODEFILE | uniq > machine.file.$PBS_JOBID

numnodes=`wc $PBS_NODEFILE | awk '{ print $1 }'`

#! Run the parallel MPI executable (nodes*ppn)

echo ``Running mpirun -np $numnodes -machinefile \

machine.file.$PBS_JOBID $application $options''

mpirun -np $numnodes -machinefile machine.file.$PBS_JOBID \

$application $options

As can be seen in the script, a machine file is built using the $PBS_NODEFILE
variable. This variable is supplied by the queuing system and contains the
node names that are reserved by the queuing system for running the job.
The configuration file is given a unique name (/tmp/$PBS_JOBID.conf)
in order to make sure that users can run multiple programs concurrently.

6.2 Submitting a Job
To submit a job to the PBS workload management system, please load the
following modules:

$ module add shared torque maui

The command qsub is used to submit jobs. The command will return
a unique job identifier, which is used to query and control the job and to
identify output. See the respective man-page for more options.

qsub <options> <jobscript>

-a datetime run the job at a certain time

-l list request certain resource(s)

-q queue jobs is run in this queue

-N name name of job

-S shell shell to run job under

-j oe join output and error files

To submit the job:

$ qsub mpirun.job

or to submit to in a specific queue:

$ qsub -q testq mpirun.job

Your job will be managed by Maui, which you can view with showq.
If you want to delete your job, you can use qdel.

© Bright Computing, Inc.

6.3 Output 23

6.3 Output
The output will be in your current working directory. By default, error
output is written to <scriptname>.e<jobid> and the application output
is written to <scriptname>.o<jobid>. You can also concatenate the error
and output file in one by using the -j oe directive. If you have specified
a specific output/error file, the output can be found there.

A number of useful links:

• Torque examples http://bmi.cchmc.org/resources/software/torque/
examples

• PBS script files: http://www.ccs.tulane.edu/computing/pbs/pbs.
phtml

• Running PBS jobs and directives: https://www.nersc.gov/nusers/
systems/franklin/running_jobs/

• Submitting PBS jobs: http://amdahl.physics.purdue.edu/using-cluster/
node23.html

6.4 Monitoring a Job
To use the commands in this example, you will need to load the torque

module.

$ module add torque

The main component is qstat, which has several options. In this ex-
ample, the most frequently used options will be discussed.

In PBS/Torque, the command qstat -an shows what jobs are cur-
rently submitted in the queuing system and the command qstat -q shows
what queues are available. An example output is:

mascm4.cm.cluster:

Job ID Username Queue Jobname SessID NDS TSK Memory Time S

-------------------- -------- -------- ---------------- ------ ----- --- ------

24.mascm4.cm cvsuppor testq TestJobPBS 10476 1 -- -- 02:00 R

node004/1+node004/0

25.mascm4.cm cvsuppor testq TestJobPBS -- 1 -- -- 02:00 Q

--

You can see the queue it has been assigned to, the user, jobname, the
number of nodes, requested time (-lwalltime), jobstate (S) and Elapsed
time. In this example, you can see one running (R), and one is queued
(Q).

© Bright Computing, Inc.

http://bmi.cchmc.org/resources/software/torque/examples
http://bmi.cchmc.org/resources/software/torque/examples
http://www.ccs.tulane.edu/computing/pbs/pbs.phtml
http://www.ccs.tulane.edu/computing/pbs/pbs.phtml
https://www.nersc.gov/nusers/systems/franklin/running_jobs/
https://www.nersc.gov/nusers/systems/franklin/running_jobs/
http://amdahl.physics.purdue.edu/using-cluster/node23.html
http://amdahl.physics.purdue.edu/using-cluster/node23.html

24 PBS

Job states Description

C Job is completed (regardless of success or failure)

E Job is exiting after having run

H Job is held

Q job is queued, eligible to run or routed

R job is running

S job is suspend

T job is being moved to new location

W job is waiting for its execution time

To view the queues, use the -q parameter. In this example, there is
one job running in the testq queue and 4 are queued.

$ qstat -q

server: master.cm.cluster

Queue Memory CPU Time Walltime Node Run Que Lm State

---------------- ------ -------- -------- ---- --- --- -- -----

testq -- -- 23:59:59 -- 1 4 -- E R

default -- -- 23:59:59 -- 0 0 -- E R

----- -----

1 4

Similar output can be viewed using showq which comes from the Maui
scheduler. To use this command you will need to load the maui module.
In this example, one dual-core node is available (1 node, 2 processors),
one job is running and 3 are queued (in Idle state).

$ showq

ACTIVE JOBS--------------------

JOBNAME USERNAME STATE PROC REMAINING STARTTIME

45 cvsupport Running 2 1:59:57 Tue Jul 14 12:46:20

1 Active Job 2 of 2 Processors Active (100.00%)

1 of 1 Nodes Active (100.00%)

IDLE JOBS----------------------

JOBNAME USERNAME STATE PROC WCLIMIT QUEUETIME

46 cvsupport Idle 2 2:00:00 Tue Jul 14 12:46:20

47 cvsupport Idle 2 2:00:00 Tue Jul 14 12:46:21

48 cvsupport Idle 2 2:00:00 Tue Jul 14 12:46:22

3 Idle Jobs

BLOCKED JOBS----------------

JOBNAME USERNAME STATE PROC WCLIMIT QUEUETIME

Total Jobs: 4 Active Jobs: 1 Idle Jobs: 3 Blocked Jobs: 0

© Bright Computing, Inc.

6.5 Viewing job details 25

6.5 Viewing job details
With qstat -f you will get full output of your job. You can see in the
output what the jobname is, where the error and output files are stored,
and various other settings and variables.

$ qstat -f

Job Id: 19.mascm4.cm.cluster

Job_Name = TestJobPBS

Job_Owner = cvsupport@mascm4.cm.cluster

job_state = Q

queue = testq

server = mascm4.cm.cluster

Checkpoint = u

ctime = Tue Jul 14 12:35:31 2009

Error_Path = mascm4.cm.cluster:/home/cvsupport/test-package/TestJobPBS

.e19

Hold_Types = n

Join_Path = n

Keep_Files = n

Mail_Points = a

mtime = Tue Jul 14 12:35:31 2009

Output_Path = mascm4.cm.cluster:/home/cvsupport/test-package/TestJobPB

S.o19

Priority = 0

qtime = Tue Jul 14 12:35:31 2009

Rerunable = True

Resource_List.nodect = 1

Resource_List.nodes = 1:ppn=2

Resource_List.walltime = 02:00:00

Variable_List = PBS_O_HOME=/home/cvsupport,PBS_O_LANG=en_US.UTF-8,

PBS_O_LOGNAME=cvsupport,

PBS_O_PATH=/usr/kerberos/bin:/usr/local/bin:/bin:/usr/bin:/sbin:/usr/

sbin:/home/cvsupport/bin:/cm/shared/apps/torque/2.3.5/bin:/cm/shar

ed/apps/torque/2.3.5/sbin,PBS_O_MAIL=/var/spool/mail/cvsupport,

PBS_O_SHELL=/bin/bash,PBS_SERVER=mascm4.cm.cluster,

PBS_O_HOST=mascm4.cm.cluster,

PBS_O_WORKDIR=/home/cvsupport/test-package,PBS_O_QUEUE=default

etime = Tue Jul 14 12:35:31 2009

submit_args = pbs.job -q default

6.6 Monitoring PBS nodes
You can view the nodes available for PBS execution with pbsnodes. The
following output is from 4 dual processor nodes. See also the np value
(2). When a node is used exclusively by one script, the state will be job-
exclusive. If the node is available to run scripts the state is free.

$ pbsnodes -a

node001.cm.cluster

state = free

np = 2

ntype = cluster

status = ...

© Bright Computing, Inc.

26 PBS

node002.cm.cluster

state = free

np = 2

ntype = cluster

status = ...

node003.cm.cluster

state = free

np = 2

ntype = cluster

status = ...

node004.cm.cluster

state = free

np = 2

ntype = cluster

status = ...

6.7 Deleting a Job
In case you would like to delete an already submitted job, this can be
done using the qdel command. The syntax is:

$ qdel <jobid>

The job id is printed to your terminal when you submit the job. You can
use

$ qstat

or

$ showq

to get the job id of your job in case you no longer know it.

© Bright Computing, Inc.

7
Using GPUs

Bright Cluster Manager contains several tools which can be used for using
GPUs for general purpose computations.

7.1 Packages
A number of different GPU-related packages are included in Bright Clus-
ter Manager:

• cuda-driver: Provides the driver

• cuda-libs: Provides the libraries that come with the driver (libcuda
etc)

• cuda-toolkit: Provides the compilers and libraries

• cuda-sdk: Provides additional tools and source examples

7.2 Using CUDA
Load the CUDA module. The module provides the necessary paths and
settings to compile CUDA applications.

module add cuda/2.3/toolkit

or shorter:

module add cuda

The toolkit comes with the necessary tools and compilers to compile
CUDA C code.

Documentation on the tools and usage can be found in the $CUDA_ROOT/doc
directory.

7.3 Compiling code
nvcc - NVIDIA CUDA compiler driver:

nvcc [options] <inputfile>

See nvcc man page for help.

© Bright Computing, Inc.

28 Using GPUs

7.4 Available tools
7.4.1 CUDA Utility Library
CUTIL is a simple utility library designed for use in the CUDA SDK sam-
ples.

It provides functions for:

• parsing command line arguments

• read and writing binary files and PPM format images

• comparing arrays of data (typically used for comparing GPU results
with CPU)

• timers

• macros for checking error codes

• checking for shared memory bank conflicts

The CUTIL utility is packed with the SDK.

© Bright Computing, Inc.

A
MPI Examples

A.1 Hello world
A quick application to test the MPI compilers and the network.

/*

``Hello World'' Type MPI Test Program

*/

#include <mpi.h>

#include <stdio.h>

#include <string.h>

#define BUFSIZE 128

#define TAG 0

int main(int argc, char *argv[])

{

char idstr[32];

char buff[BUFSIZE];

int numprocs;

int myid;

int i;

MPI_Status stat;

MPI_Init(&argc,&argv); /* all MPI programs start with MPI_Init; all 'N' processes exist thereafter */

MPI_Comm_size(MPI_COMM_WORLD,&numprocs); /* find out how big the SPMD world is */

MPI_Comm_rank(MPI_COMM_WORLD,&myid); /* and this processes' rank is */

/* At this point, all the programs are running equivalently, the rank is used to

distinguish the roles of the programs in the SPMD model, with rank 0 often used

specially... */

if(myid == 0)

{

printf(``%d: We have %d processors\n'', myid, numprocs);

for(i=1;i<numprocs;i++)

{

sprintf(buff, ``Hello %d! ``, i);

MPI_Send(buff, BUFSIZE, MPI_CHAR, i, TAG, MPI_COMM_WORLD);

}

for(i=1;i<numprocs;i++)

{

30 MPI Examples

MPI_Recv(buff, BUFSIZE, MPI_CHAR, i, TAG, MPI_COMM_WORLD, &stat);

printf(``%d: %s\n'', myid, buff);

}

}

else

{

/* receive from rank 0: */

MPI_Recv(buff, BUFSIZE, MPI_CHAR, 0, TAG, MPI_COMM_WORLD, &stat);

sprintf(idstr, ``Processor %d ``, myid);

strcat(buff, idstr);

strcat(buff, ``reporting for duty\n'');

/* send to rank 0: */

MPI_Send(buff, BUFSIZE, MPI_CHAR, 0, TAG, MPI_COMM_WORLD);

}

/* MPI Programs end with MPI Finalize; this is a weak synchronization point */

MPI_Finalize();

return 0;

}

A.2 MPI skeleton
The sample code below contains the complete communications skeleton
for a dynamically load balanced master/slave application. Following the
code is a description of some of the functions necessary for writing typical
parallel applications.

include <mpi.h>

#define WORKTAG 1

#define DIETAG 2

main(argc, argv)

int argc;

char *argv[];

{

int myrank;

MPI_Init(&argc, &argv); /* initialize MPI */

MPI_Comm_rank(

MPI_COMM_WORLD, /* always use this */

&myrank); /* process rank, 0 thru N-1 */

if (myrank == 0) {

master();

} else {

slave();

}

MPI_Finalize(); /* cleanup MPI */

}

master()

{

int ntasks, rank, work;

double result;

MPI_Status status;

MPI_Comm_size(

MPI_COMM_WORLD, /* always use this */

&ntasks); /* #processes in application */

A.2 MPI skeleton 31

/*

* Seed the slaves.

*/

for (rank = 1; rank < ntasks; ++rank) {

work = /* get_next_work_request */;

MPI_Send(&work, /* message buffer */

1, /* one data item */

MPI_INT, /* data item is an integer */

rank, /* destination process rank */

WORKTAG, /* user chosen message tag */

MPI_COMM_WORLD);/* always use this */

}

/*

* Receive a result from any slave and dispatch a new work

* request work requests have been exhausted.

*/

work = /* get_next_work_request */;

while (/* valid new work request */) {

MPI_Recv(&result, /* message buffer */

1, /* one data item */

MPI_DOUBLE, /* of type double real */

MPI_ANY_SOURCE, /* receive from any sender */

MPI_ANY_TAG, /* any type of message */

MPI_COMM_WORLD, /* always use this */

&status); /* received message info */

MPI_Send(&work, 1, MPI_INT, status.MPI_SOURCE,

WORKTAG, MPI_COMM_WORLD);

work = /* get_next_work_request */;

}

/*

* Receive results for outstanding work requests.

*/

for (rank = 1; rank < ntasks; ++rank) {

MPI_Recv(&result, 1, MPI_DOUBLE, MPI_ANY_SOURCE,

MPI_ANY_TAG, MPI_COMM_WORLD, &status);

}

/*

* Tell all the slaves to exit.

*/

for (rank = 1; rank < ntasks; ++rank) {

MPI_Send(0, 0, MPI_INT, rank, DIETAG, MPI_COMM_WORLD);

}

}

slave()

{

double result;

int work;

MPI_Status status;

for (;;) {

MPI_Recv(&work, 1, MPI_INT, 0, MPI_ANY_TAG,

MPI_COMM_WORLD, &status);

/*

32 MPI Examples

* Check the tag of the received message.

*/

if (status.MPI_TAG == DIETAG) {

return;

}

result = /* do the work */;

MPI_Send(&result, 1, MPI_DOUBLE, 0, 0, MPI_COMM_WORLD);

}

}

Processes are represented by a unique rank (integer) and ranks are
numbered 0, 1, 2, ..., N-1. MPI_COMM_WORLD means all the processes
in the MPI application. It is called a communicator and it provides all
information necessary to do message passing. Portable libraries do more
with communicators to provide synchronisation protection that most other
systems cannot handle.

A.3 MPI Initialization and Finalization
As with other systems, two functions are provided to initialise and clean
up an MPI process:

MPI_Init(&argc, &argv);

MPI_Finalize();

A.4 Who Am I ? Who Are They ?
Typically, a process in a parallel application needs to know who it is (its
rank) and how many other processes exist. A process finds out its own
rank by calling:

MPI_Comm_rank():

Int myrank;

MPI_Comm_rank(MPI_COMM_WORLD, &myrank);

The total number of processes is returned by MPI_Comm_size():

int nprocs;

MPI_Comm_size(MPI_COMM_WORLD, &nprocs);

A.5 Sending messages
A message is an array of elements of a given data type. MPI supports all
the basic data types and allows a more elaborate application to construct
new data types at runtime. A message is sent to a specific process and is
marked by a tag (integer value) specified by the user. Tags are used to dis-
tinguish between different message types a process might send/receive.
In the sample code above, the tag is used to distinguish between work
and termination messages.

MPI_Send(buffer, count, datatype, destination, tag, MPI_COMM_WORLD);

A.6 Receiving messages
A receiving process specifies the tag and the rank of the sending process.
MPI_ANY_TAG and MPI_ANY_SOURCE may be used optionally to receive a
message of any tag and from any sending process.

A.6 Receiving messages 33

MPI_Recv(buffer, maxcount, datatype, source, tag, MPI_COMM_WORLD, &status);

Information about the received message is returned in a status vari-
able. The received message tag is status.MPI_TAG and the rank of the
sending process is status.MPI_SOURCE. Another function, not used in
the sample code, returns the number of data type elements received. It
is used when the number of elements received might be smaller than
maxcount.

MPI_Get_count(&status, datatype, &nelements);

With these few functions, you are ready to program almost any appli-
cation. There are many other, more exotic functions in MPI, but all can be
built upon those presented here so far.

	Introduction
	What is a Beowulf Cluster
	Physical hardware layout of a Cluster

	Cluster Usage
	Login To Your Environment
	Setting Up Your Environment
	Environment Modules
	Compiling Applications

	Using MPI
	Interconnects
	Selecting an MPI implementation
	Example MPI run

	Workload Management
	Workload Management Basics

	SGE
	Writing a Job Script
	Submitting a Job
	Monitoring a Job
	Deleting a Job

	PBS
	Writing a Job Script
	Submitting a Job
	Output
	Monitoring a Job
	Viewing job details
	Monitoring PBS nodes
	Deleting a Job

	Using GPUs
	Packages
	Using CUDA
	Compiling code
	Available tools

	MPI Examples
	Hello world
	MPI skeleton
	MPI Initialization and Finalization
	Who Am I ? Who Are They ?
	Sending messages
	Receiving messages

