Alarm Control Panels VERSA Firmware version 1.02

PROGRAMMING

The SATEL's goal is to continually upgrade the quality of its products, which may result in alterations of their technical specifications and firmware. The current information on the introduced modifications is available on our website.

Please visit us at: http://www.satel.eu

Changes made to the firmware version 1.02

Global parameters	New options:
	 ANSWERING/REMOTE CONTROL WHEN ARMED PARTITION 1
	 Answering/remote control when armed partition 2
Outputs	New output functions:
	20. ALARM/ARM STATUS
	 21. Detectors resetting
Expansion modules	Support for INT-VG voice module.
Messaging	Option to acknowledge voice messaging by entering code from the telephone keypad, if INT-VG module is connected to the control panel. The acknowledgement of voice messaging will cancel telephone messaging of the event.
	Capability to access the interactive voice menu after acknowledgement of voice messaging.
User schedules	New right: INT-VG ACCESS.

CONTENTS

1.	Coi	ntrol Panel Firmware Replacement	4
	1.1	Firmware replacement using the service function	4
	1.2	Firmware replacement without entering the service mode	
2.	Pro	gramming	
	2.1	Keypad	
	∠. ı 2.1.′	• •	
	2.1.2 2.1.3		
	2.1.4	, , ,	
	2.1.4	, ,	
	2.1.6		
	2.1.		
	2.1.	Selection from the single-choice list	
		Selection from the multiple-choice list	
		Entering decimal values	
		Entering hexadecimal values	. 12
		Programming telephone numbers	
		Entering names	
	2.1.8		. 14
		Selection from the single-choice list	
		Selection from the multiple-choice list	
		Entering decimal values Entering hexadecimal values	
		Programming telephone numbers	
	2.1.9		
	2.2	DLOADX program	
	2.2.	·	
	2.2.	·	
	2.2.3		
	2.2.	Identifiers	
		Telephone communication parameters	
		Parameters of communication via Ethernet (TCP/IP) network	
	2.2.4	4 Starting local programming without verification of identifiers	21
	2.2.	5 Starting local programming with verification of identifiers	. 21
	2.2.6	Starting local programming "from pins"	. 21
	2.2.		
	2.2.8		
		Configuring settings of modem connected to computer	
		Initiating connection from the DLOADX program	. 22
		Initiating connection from the DLOADX program, but with the control panel calling back and	22
		establishing connection	
	2.2.9	· · · · · · · · · · · · · · · · · · ·	
	2.2.	Initiating connection from the DLOADX program	
		Initiating a connection by the control panel	
3.	Glo	bal Parameters	
	3.1	Global options	
	3.2	Global times	
4.	Par	titions	29
	4.1	Partition parameters	29
5.		1es	
	5.1	Numeration of system zones	
	5.1.		
	5.1.2		
	5.2	End of line resistors	
	5.3	Zone parameters	33

5.4	Zone types	
5.5	Zone options	36
6. Ou	tputs	38
6.1	Numeration of outputs in the system	39
6.1	1 Hardwired outputs	39
6.1	2 Wireless outputs	39
6.2	Output functions	39
6.3	Output parameters	40
6.4	Output options	42
6.5	Quick control of outputs	44
7. Pro	ogramming Keypads and Expanders	44
7.1	VERSA-LCD-GR / VERSA-LED-GR keypad	
7.2	ETHM-1 Ethernet module	
7.3	ABAX wireless system controller	
7.3		
7.3	•	
7.3	3 Wireless sirens – general rules of programming	51
7.3		
7.3		
7.3	, , , , , , , , , , , , , , , , , , , ,	
7.3	, , , , , , , , , , , , , , , , , , , ,	
7.4	Proximity card arm/disarm device	
	ners	
9. Re	porting	60
9.1	Reporting parameters and options	61
9.2	Event codes	63
9.3	Starting the reporting	63
9.3	1 1 5	
9.3	2 Reporting via Ethernet network	64
10. Me	ssaging	64
10.1	Messaging parameters and options	65
10.2	Event assignment	66
10.3	SMS/Pager messages	66
10.4	Starting the messaging	66
11. Us	er Schedules	
11.1	Parameters of the user schedule	
11.1	Functions assigned to keyfob buttons	
11.3	Confirmation on LEDs in the APT-100 keyfob	
	·	
	mpliance with EN 50131 Standard Requirements for Grade 2	
13. His	story of Changes to the Manual Content	72

1. Control Panel Firmware Replacement

This manual applies to the control panels with firmware version 1.02. If a newer version of firmware is available on our **www.satel.eu** website, an update of the control panel firmware is possible. For this purpose, the control panel RS-232 (TTL) port (RJ type socket) should be connected to the computer COM port (DB9 type socket) with the SATEL made cable which is included in the DB9FC/RJ-KPL set.

Notes:

- From the moment of establishing communication between the control panel and the firmware updating program, the control panel will not execute its normal functions until the firmware replacement procedure is completed.
- If, for whatever reason, the firmware replacement procedure is abruptly terminated (e.g. because of power failure) and, as a result, the control panel firmware gets damaged, the control panel will not start normally, but will be waiting for the firmware replacement to begin.

1.1 Firmware replacement using the service function

- 1. Enter the **service code** on the keypad (by default: 12345) and press the ***** wey.
- 2. Press in turn the **QQQ # Q** keys to start the service mode.
- 3. Press in turn the wxyz # keys (the STARTER function will start). The "Run updating program on PC..." message will be displayed. The control panel will be waiting until communication with the firmware updating program is established (press the * w key to terminate operation of the STARTER function).
- 4. Start the control panel firmware update program in the computer.
- 5. Click on the button.
- 6. A window will open where you should indicate the computer COM port to which the control panel is connected and press the "OK" button. The firmware updating program will establish communication with the control panel.
- 7. Information will be displayed showing the version of firmware installed on the control panel and available in a file (version, compilation date, language) and a window will open, prompting whether you would like to continue. If the firmware is to be replaced, press "Yes" to begin the control panel firmware replacement.

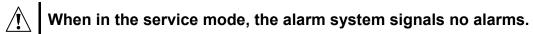
1.2 Firmware replacement without entering the service mode

- 1. Start the control panel firmware update program on the computer.
- 2. Click on the button.
- 3. A window will open where you should indicate the computer COM port to which the control panel is connected and select the RESTART field.
- 4. Power down the control panel (first switch off the 230 V AC circuit to which the control panel transformer is connected, and then the battery).
- 5. Power up the control panel (first switch on the battery, and then the 230 V AC circuit to which the control panel transformer is connected).
- 6. Information will be displayed showing the version of firmware installed on the control panel and available in a file (version, compilation date, language) and a window will open prompting whether you would like to continue. If the firmware is to be replaced, press

"Yes" (the control panel will only wait 10 seconds after power-up for the firmware replacement to begin). Then the replacement of control panel firmware will start.

2. Programming

The alarm control panel may be configured for operation by using the keypad (locally) or the computer with the DLOADX program installed (locally and remotely).


2.1 Keypad

Programming is only possible when the control panel is accessible to the service. By default, ([code] * * ▶0. SERVICE PERMANENT SERVICE **ACCESS** option is enabled ▶5. SERV. ACCESS). After the installation is completed, the user having DOWNLOAD/SERVICE right can disable the Permanent service access option and define each time the duration of service access to the control panel ([code] * ♦ ▶0. Service ▶6. ACCESS TIME).

Programming the control panel from keypad is carried out by using the functions grouped in the service mode menu. Access to the menu, submenus and particular functions is facilitated by numerical shortcuts. In case of the LED keypad, programming is subject to some limitations (e.g. entering names is impossible). **SATEL recommends that the LCD keypad be used for programming the control panel.**

The service mode is indicated on the keypads by means of the blue LED. The LED is lit on the keypad in which the service function menu is available, while it is blinking on all the other keypads connected to the control panel. The service mode may also be signaled acoustically, after the corresponding option is enabled. Additional information is provided by the LED, which is:

- blinking during navigation throughout the menu and submenus;
- lit when any service function is running.

2.1.1 Starting the service mode

- 1. Enter the **service code** (by default: 12345) and press the * wey.
- 2. Press in turn the **QQQ # U** keys to start the service mode.

2.1.2 Starting the service mode "from pins"

If entering the service mode in the normal way is impossible, you can use the emergency hardware procedure, so-called starting "from pins".

- 1. Power down the control panel (first, switch off power in the 230 V AC circuit, to which the control panel transformer is connected, and then disconnect the battery).
- 2. Place a jumper across the RESET pins on the control panel mainboard.
- 3. Power up the control panel (first, connect the battery, and then switch on power supply in the 230 V AC circuit, to which the control panel transformer is connected).
- 4. Wait a few seconds and remove the jumper from the RESET pins.
- 5. On the keypad with the lowest address, the LED will light up and the LED will start blinking, indicating that the service menu is available on the keypad (in case of the LCD keypad, the menu will be displayed). On the other keypads, the LEDs will start blinking.

If the Service mode from RESET PINS option is disabled in the control panel (see: Section Global options) then, depending on the type of keypad in which the lowest address is set:

- LCD: the A and LEDs of the second partition will be lit, and the message "Restore factory settings? 1=Yes" will come up on the display;
- LED: the and LEDs of the second partition will be lit and the LED will be blinking rapidly.

Pressing the key with digit 1 will reset the control panel to its factory settings, but will enable entering the service mode.

2.1.3 Access to functions by using arrow keys

This way of starting the function is only available in the VERSA-LCD-GR keypad.

- 1. Use the ★▼ and ►▲ keys to find the required submenu (the shape of submenu cursor is: >).
- 2. Press the or # 1 key to enter the submenu (use the key to return to the previous menu/submenus, and the * w key to return to the main menu).
- 3. Repeat the steps described in 1 and 2 until you find the required function (the shape of function indicating cursor is: →). Press the ★ or # ★ key to start the function.
- 4. When entering new settings, accept them using the # 1 key and return to the submenu.

 Press the * 4 key to cancel entering the new settings and return to the submenu.

2.1.4 Access to functions by using numerical shortcuts

This way of starting the function is available in both types of keypads supported by the VERSA control panels (VERSA-LCD-GR and VERSA-LED-GR). All submenus and functions are numbered. In order to enter a submenu, just press the key with number corresponding to the submenu number. In order to start a function, press the key with number corresponding to the function number, and then the # key. You can quickly start the selected function by entering at once a sequence of some digits (corresponding to the consecutive submenu numbers and the function number) and confirming them by pressing the # key.

For example, to start the expander identification function, first enter the service mode and then press in turn the **2**_{abc} **1 # 1** keys, where:

- enter 2. HARDWARE submenu;
- enter 1. KPDS & EXPS. submenu;
- # 🚺 start 1. IDENTIFICAT function.

In the VERSA-LCD-GR keypad, use the * key to return from a submenu to the main menu or from a function to a submenu, and use the * key to return from a submenu to the previous menu/submenu.

In the VERSA-LED-GR keypad, use the * we key to return to the main menu.

Notes:

- When using the numerical shortcuts, remember that the sequence of digits which starts a function e.g. from the service mode main menu level will not start the same function from the submenu level.
- In the LCD keypad, the shape of the submenu cursor is: >, and that of the function indicating cursor is: →.

2.1.5 "Step by step" programming method

Some components of the system (e.g. zones, outputs, expanders, wireless devices, event codes for reporting, etc.) should be programmed using the "step by step" method. When the function is called up and the component to be configured selected from the list, the first parameter available for programming will be displayed. Irrespective of whether or not it will be modified, pressing the # key will take you automatically to programming the next parameter (the changes will be saved). After all available parameters are configured, return to the submenu follows in the VERSA-LCD-GR keypad, and to the main menu in the VERSA-LED-GR keypad. The programming can be terminated at any moment by using the key (you will return to the submenu). The and LEDs of the first and second partitions show the programming step number in binary mode (see: page 15 Table 4).

2.1.6 Service mode menu

Shown in square brackets are sequences which enable calling up a particular submenu or starting a particular function from the main menu level.

```
SrvMod config
```

```
[00#]
        0. Quit SrvMod
[01#]
        1. VERSA id.
[02#]
        2. DloadX id.
[04#]
        4. DloadX tel.
[06#]
        6. SrvMod opt.
[07#]
        7. Restore all
[08#]
        8. Default usr.
[09#]
        9. STARTER
```

1. Partitions

```
1. Part. 1 zones
[11#]
[12#]
        2. Part. 2 zones
[13]
        3. Part. 1 times
                             1. Exit delay
                   [131#]
                   [132#]
                             2. Entry delay
                             3. Warning
                   [133#]
                            4. Verification
                   [134#]
                   [135#]
                             5. Autoarm delay
                   [136#]
                             6. A-arm defer
        4. Part. 2 times
[14]
                             1. Exit delay
                   [141#]
                   [142#]
                            2. Entry delay
                   [143#]
                             3. Warning
                             4. Verification
                   [144#]
```

[145#]

[146#]

5. Autoarm delay6. A-arm defer

[15#] 5. Part. 1 name[16#] 6. Part. 2 name[17#] 7. Part. options

2. Hardware

[21] 1. Kpds. & exps.

1. New device.

5. Synchronize 6. Test mode on

7. Test mode off

2. Config. device

3. Remove device 4. ACU-100 zones

[22#]

[23#]

[24]

[25#]

[26#]

[27#]

[31#]

[32#]

[33#]

[34#] [35#]

[36#]

[37#]

[38#]

[39#] [30#]

3. Global param.

2. Zones

```
[211#]
                    1. Identificat.
          [212#]
                    2. Settings
          [213#]
                    3. ACU-100
                               [213#1#]
                               [213#2#]
                               [213#3#]
                               [213#4#]
                               [213#5#]
                               [213#6#]
                               [213#7#]
          [214#]
                    4. Options
                    8. Rem.ABAX kfbs
          [218#]
          [219#]
                    Rem.RX k-fobs
          [210#]
                    0. Keypads addr.
2. Outputs
4. Quick control
          [241#]
                    1. Control 1#/1*
          [242#]
                    2. Control 2#/2*
          [243#]
                    3. Control 3#/3*
          [244#]
                    4. Control 4#/4*
          [245#]
                    5. Control 5#/5*
          [246#]
                    6. Control 6#/6*
          [247#]
                    7. Control 7#/7*
          [248#]
                    8. Control 8#/8*
          [249#]
                    9. Control 9#/9*
                    0. Control 0#/0*
          [240#]
5. EOL 1 resist.
6. EOL 2 resist.
7. VERSA zones
1. Options
2. Kpds al. time
3. Hide arm st.
4. AC trbl. delay
5. Tel. trbl. del.
RTC adjustm.
7. Daylight sav.
8. Summer time
9. Winter time
```

4. Timers

[41#] 1. Timer 1 name

0. Min.code len.

[42#] 2. Timer 2 name

```
[43#]
                   3. Timer 3 name
           [44#]
                   4. Timer 4 name
5. Monitoring
           [50#]
                   0. Stations
           [51]
                   1. Station 1
                                       1. Tel. number
                              [511#]
                                       2. Tel. format
                              [512#]
                                       3. Options
                              [513#]
                                       4. Attempts no.
                              [514#]
                                       5. Suspens. time
                              [515#]
                              [516]
                                       6. Identifiers
                                                               1. ld. 1
                                                  [5161#]
                                                  [5162#]
                                                               2. ld. 2
                                                               3. ld. 3
                                                  [5163#]
                                                               0. System Id.
                                                  [5160#]
                              [517#]
                                       7. T-M/SIA pref.
                              [518#]
                                       8. StationTCP/IP
           [52]
                   2. Station 2
                              [521#]
                                       1. Tel. number
                              [522#]
                                       2. Tel. format
                              [523#]
                                       3. Options
                              [524#]
                                       4. Attempts no.
                              [525#]
                                       5. Suspens. time
                              [526]
                                       6. Identifiers
                                                               1. ld. 1
                                                  [5261#]
                                                  [5262#]
                                                               2. ld. 2
                                                               3. ld. 3
                                                  [5263#]
                                                  [5260#]
                                                               0. System Id.
                              [527#]
                                       7. T-M/SIA pref.
                                       8. StationTCP/IP
                              [528#]
           [53#]
                   3. SIA options
          [54]
                   4. Event codes
                              [541]
                                       1. Partition 1
                                                               1. Arm by user
                                                  [5411#]
                                                  [5412#]
                                                               2. Arm other
                                                               3. Quick arm
                                                  [5413#]
                                                  [5414#]
                                                               4. Disarm by usr
                                                  [5415#]
                                                               5. Disarm other
                                                  [5416#]
                                                               6. Rest. by user
                                                  [5417#]
                                                               7. Restore other
                                                  [5418#]
                                                               8. Duress
                                                  [5419#]
                                                               9. Arming failed
                              [542]
                                       2. Partition 2
                                                  [5421#]
                                                               1. Arm by user
```

	[5422#]	2. Arm other
	[5423#]	
	[5424#]	
	[5425#]	•
		6. Rest. by user
		7. Restore other
		8. Duress
	[5429#]	9. Arming failed
[543]	3. Zones	_
	[5431#]	1. Alarm
	[5432#]	2. Alarm restore
	[5433#]	3. Tamper
	[5434#]	4. Tmp restore
	[5435#]	5. Trouble
	[5436#]	6. Trouble rest.
	[5437#]	7. Bypass
	[5438#]	8. Unbypass
[544]	4. ABAX zones	
	[5441#]	1. Commun. loss
	[5442#]	2. Commun. rst.
	[5443#]	3. Battery low
	[5444#]	4. Battery rst.
[545]	5. Exp. modules	
	[5451#]	1. Tamper
	[5452#]	2. Tmp restore
	[5453#]	3. Fire alarm
	[5454#]	4. Medical alarm
		5. Panic alarm
	[5456#]	6. 3 wrong codes
	[5457#]	7. 3 wrong cards
[546]	6. Exp. supply	
		1. AC trouble
		2. AC restore
	• •	3. Batt. trouble
		4. Batt. restore
		5. Overload
	[5466#]	6. Overload rst.
[547]	7. System	
		1. Troubles
		2. Troubles rst.
		3. Other
F= 40.00		4. RTC setting
[540#]	0. TELIM codes	

```
[56#]
                  6. Test every
                   7. Test (armed)
          [57#]
6. Messaging
                   1. Zone alarms
          [61#]
          [62#]
                  2. Output trig.
          [63]
                   3. Arming
                             [631#]
                                       1. Part. 1 user
                             [632#]
                                       2. Part. 1 other
                             [633#]
                                       3. Part. 2 user
                             [634#]
                                       4. Part. 2 other
                             [635#]
                                       Arm.p1 failed
                             [636#]
                                       6. Arm.p2 failed
          [64]
                  4. Disarming
                                       1. Part. 1 user
                             [641#]
                             [642#]
                                       2. Part. 1 other
                             [643#]
                                       3. Part. 2 user
                             [644#]
                                       4. Part. 2 other
          [65]
                   5. Other
                             [651#]
                                       1. Tamper alarm
                             [652#]
                                       2. Tamper rest.
                             [653#]
                                       3. AC trouble
                             [654#]
                                       4. AC restore
                             [655#]
                                       Battery trbl.
                             [656#]
                                       6. Battery rest.
                             [657#]
                                       7. Tel. lin. rest.
          [66]
                  Message type
                             [651#]
                                       1. Tel1 msg. type
                             [652#]
                                       2. Tel2 msg. type
                             [653#]
                                       3. Tel3 msg. type
                             [654#]
                                       4. Tel4 msg. type
                             [655#]
                                       1. Tel5 msg. type
                             [656#]
                                       2. Tel6 msg. type
                             [657#]
                                       3. Tel7 msg. type
                             [658#]
                                       4. Tel8 msg. type
          [67]
                  7. PAGER param.
                             [671#]
                                       1. PAGER1
                             [672#]
                                       2. PAGER2
          [68#]
                  8. Queues/tries
                  9. Messages
          [69#]
          [60#]
                  0. Tel. names
7. Answering
          [71#]
                   1. Rings to ans.
8. Usr templates
          [81#]
                   1. Settings
```

[82#] 2. Key fob func.

[83#] 3. Confirmations

[84#] 4. Name

9. User menu

The 9. User Menu function enables access to the user functions when the control panel remains in the service mode (press the * w key to return to the main menu of the service mode). The user menu and functions are described in the User Manual.

2.1.7 Entering data by means of the VERSA-LCD-GR keypad

The data being entered are presented on the display. The method of programming depends on the type of data to be entered by service function. To save the data in the control panel, press the # 1 key. To exit the function without saving the changes, press the * w key.

Selection from the single-choice list

The upper line of display shows the function name, and the lower one – the currently selected item. To scroll through the item list, use the keys (down) and the keys (up). The hand keys are not used.

Selection from the multiple-choice list

The upper line of display shows the function name, and the lower one – one of the items to choose from. To scroll through the item list, use the keys (down) and the keys (up). Shown in the upper right corner of the display is an additional symbol:

— displayed item is selected / option is enabled;

- displayed item is not selected / option is disabled.

Press any numerical key to change the currently shown symbol for another one.

Press the or key to switch over the keypad to the **graphical mode programming**. By means of the and symbols, the display presents the current status of all items accessible within this function (these can be e.g. zones, outputs, options, etc.). The key moves the cursor to the right, and the key – to the left. When you press the key, the keypad returns to the text mode.

Entering decimal values

Digits are entered by pressing the suitable keys. The key moves the cursor to the right, and the **4** or **4** key – to the left.

Entering hexadecimal values

Digits are entered by pressing the suitable keys. Characters from A to F available under the and the keys. Keep pressing the keys until the required character appears. The key moves the cursor to the right, and the keys until the left.

Programming telephone numbers

Keep pressing particular keys until the required character appears. Characters available in the keypad are presented in Table 1. Up to 16 characters can be programmed. Some of the special characters (a, b, c, d, # and *) are coded so that the character takes up two items, hence the maximum number of characters available for entering, if they are used, will be lower.

Shown on the right side in the upper line of the display is information about the letter case: [ABC] or [abc] (it will be displayed after pressing any key and will be visible for a few seconds after the last keystroke).

The **▶** key moves the cursor to the right, and the **♦** key – to the left. The **▶** key deletes the character on the left side of the cursor.

Characters available after next keystroke												
key		mode [ABC]				key		mode [abc]				
1	1	#		_		1	1	#				
2 _{abc}	2	В	С		_	2 _{abc}	2	а	b	С		
3def	3	D	Е	F		3def	3	d				
4 _{ghi}	4					4 _{ghi}	4		_			
5 jki	5					5 jki	5					
6 mno	6					6 _{mno}	6					
7 pqrs	7					7 pqrs	7					
8tuv	8					8tuv						
9wxyz	9		_			9wxyz	8		_			
	0	*				Q	0	*				

Table 1. Characters available in the keypad when entering telephone numbers (to change the letter case, press 🗶 🔻).

Special character	Function description					
В	switch-over to pulse dialing					
С	switch-over to tone dialing (DTMF)					
D	waiting for additional signal					
Е	3 second pause					
F	10 second pause					
*	signal ★ in DTMF mode					
#	signal # in DTMF mode					
а						
b	other signals generated in DTMF mode					
С	Other signals generated in Dirivir fillode					
d						

Table 2. Special character functions.

Entering names

Keep pressing particular keys until the required character appears. Characters available in the keypad are presented in Table 3. Hold down the key to display the digit assigned to the key.

Shown on the right side in the upper line of the display is information about the letter case: [ABC] or [abc] (it will be displayed after pressing any key and will be visible for a few seconds after the last keystroke).

The **▶** key moves the cursor to the right, and the **♦** key – to the left. The **▶** key deletes the character on the left side of the cursor.

Key	Characters available after next keystroke																	
1	!	?	•	`	Ţ	"	{	}	\$	%	&	@	\	٨		E	#	1
2 abc	а	b	С	2														
3 _{def}	d	е	f	3														
4 _{ghi}	g	h		4														
5 jkl	j	k		5														
6 _{mno}	m	n	0	6														
7 pqrs	р	σ	r	s	7								_					
8tuv	t	u	٧					†	+	÷	4	8						
9wxyz	W	Х	у	Z	9													
0 0	·		,	•	,	+	-	*	1	=	_	<	>	()	[]	0

Table 3. Characters available in the VERSA-LCD-GR keypad when entering names. The lower case letters are available under the same keys (to change the letter case, press 🗶 🔻).

2.1.8 Entering data by means of the VERSA-LED-GR keypad

The data being entered are presented by means of LEDs. The method of programming depends on the type of data to be entered by service function. To save the data in the control panel, press the # key. To exit the function without saving the changes, press the key.

Selection from the single-choice list

The lit LEDs show the available items on the list. Blinking LED indicates the current position of the cursor and, consequently, the item which is currently selected. The key moves the cursor to the right, and the key – to the left. As all the LEDs are numbered, you can use the numerical keys to select the item at once and move the cursor there. The and keys are not used.

Selection from the multiple-choice list

The lit LEDs show which items have been selected. Blinking LED indicates the current position of the cursor. The key moves the cursor to the right, and the key – to the left. Press any numerical key to toggle the status of the LED over which the cursor is placed (depending on its current status, the LED comes on or goes out). The and keys are not used.

Entering decimal values

After entering the selected parameter programming function, the currently programmed value will be presented in binary mode on LEDs 1-12 (see: Fig. 1). LEDs 1-4 present (see: page 15 Table 4) the first digit , LEDs 5-8 – the second one, LEDs 9-12 – the third one. To enter the new numerical value, press the corresponding numerical keys. You can enter:

- 1 digit it will be shown on LEDs 1-4 (the other LEDs are off);
- 2 digits they will be shown on LEDs 1-8 (the other LEDs are off);
- 3 digits they will be shown on LEDs 1-12.

The arrow keys are not used.

Correction of the entered value is only possible after re-entering the selected parameter programming function.

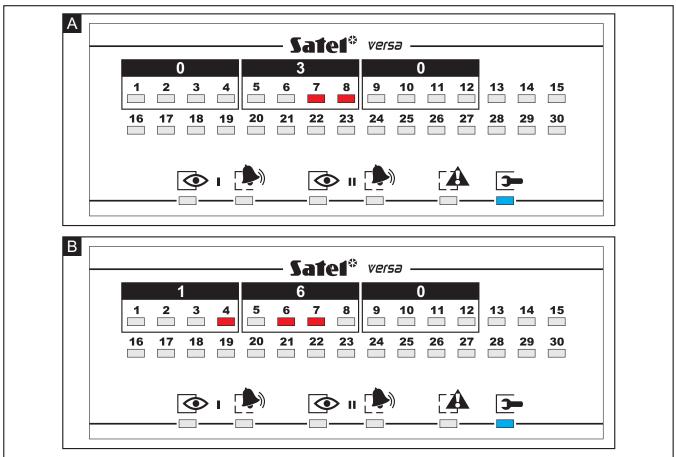


Fig. 1. Examples of presenting decimal values by means of LEDs in the VERSA-LED-GR keypad. Value 30 (030) is programmed in Example A, and value 160 in Example B.

LED status	Digits and characters	
	0	LED OFF
	1	LED ON
	2	
	3	
	4	
	5	
	6	
	7	
	8	
	9	
	Α	
	В	
	С	
	D	
	E	
	F	

Table 4. The binary mode of presenting digits and characters.

Entering hexadecimal values

After entering the selected parameter programming function, the currently programmed value will be presented on the LEDs. Up to 6 characters can be presented (most functions require a lesser number: 2 or 4 characters). LEDs 1-4 present in binary format (see: page 15 Table 4) the first character, LEDs 5-8 – the second one, LEDs 9-12 – the third one, LEDs 16-19 – the fourth one, 20-23 – the fifth one, and LEDs 24-27 – the sixth one.

The digits are to be entered by pressing the corresponding keys. Characters from A to F are available under the and and seys. Keep pressing the keys until the required character is displayed in binary mode on the LEDs (see: page 15 Table 4).

The arrow keys are not used.

Correction of the entered value is only possible after re-entering the selected parameter programming function.

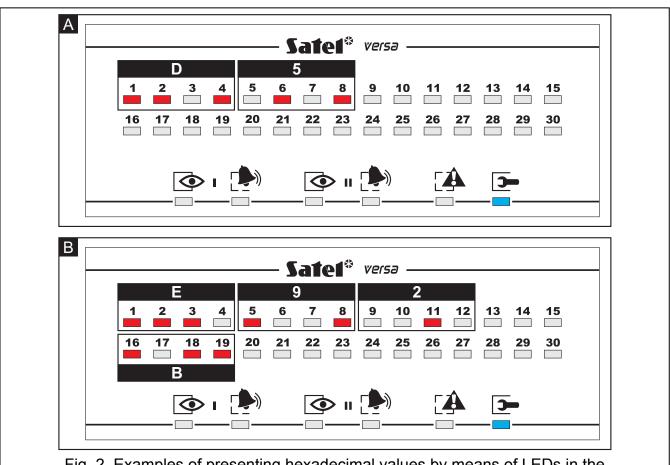


Fig. 2. Examples of presenting hexadecimal values by means of LEDs in the VERSA-LED-GR keypad. Two-character value D5 is programmed in Example A, and four-character value E92B in Example B.

Programming telephone numbers

The telephone numbers are entered in much the same way as in the VERSA-LCD-GR keypad, however the LEDs can only present the first 6 characters (only digits and characters B, C, D, E and F – see: page 15 Table 4).

The arrow keys are not used.

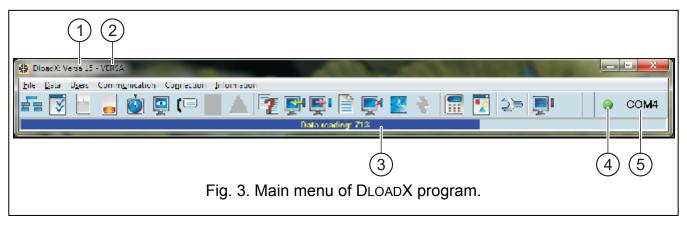
Correction of the entered value is only possible after re-entering the selected parameter programming function.

2.1.9 Quitting the service mode

In order to guit the service mode, use the QUIT SERVICE MODE function.

To end the service mode, do the following:

2.2 DLOADX program


The DLOADX program enables data exchange between the computer and the control panel, facilitates alarm system configuration, and ensures easy viewing of the status of zones, partitions, outputs, troubles, and other components of the system. Access to the program is protected by a code (password). To obtain access at the first run of the program, enter the factory default code: 1234 (you need not enter the factory code, just click on the "OK" button). It is recommended that the factory access code be changed.

Note: Entering an invalid code three times will terminate the program.

Communication between the program and the control panel is coded. The alarm control panel may be programmed locally or remotely:

- Local programming requires connection between the RS-232 (TTL) port on control
 panel mainboard (RJ type socket) and the computer COM port. The connection should be
 made by using the cable manufactured by SATEL and available in the DB9FC/RJ-KPL
 set.
- 2. In case of **remote programming**, communication with the control panel can be effected:
 - through the built-in 300 bps modem. This programming method requires connection
 of the control panel to the telephone line. An analog modem must be connected on the
 computer side.
 - through the ETHM-1 module connected to the control panel. The ETHM-1 module (with firmware version 1.04 or newer) and a computer with DLOADX program installed must be connected to the Ethernet network (TCP/IP protocol).

2.2.1 Main menu of the DLOADX program

Explanations for Fig. 3:

- 1 type of alarm control panel.
- 2 name of alarm system / data file.
- 3 information on data writing/reading progress.

- 4 icon indicating the status of communication with the control panel:
 - green color ready to send data;
 - alternating green and yellow color data transmission in progress;
 - gray color COM port disabled.

A click on the icon button:

- in case of communication via the RS-232 port will enable/disable the COM port;
- in case of other forms of communication will display a window referring to the given connection.
- 5 information on the way of communication with the alarm control panel:
 - COMn (n = number of COM port) communication via the RS-232 port;
 - Modem communication via the modem.
 - TCP/IP communication through the ETHM-1 module.

Buttons:

System and hardware structure – button opens the "Versa – Structure" window.

Options and global times – button opens the "Global parameters" window.

Zones data – button opens the "Versa – Zones" window.

Outputs data – button opens the "Versa – Outputs" window.

Timers – button opens the "Versa – Timers" window.

Reporting – button opens the "Versa – Reporting" window.

Telephone messaging – button opens the "Versa – Tel. messaging" window.

Warning – the button is displayed if noncompliance with the EN 50131 standard requirements for Grade 2 is found (with the GRADE 2 global option enabled). It opens a window with information on the inconsistencies.

Panel's data reading – button enables data reading from the control panel.

Write to panel – button enables data writing to the control panel.

Event log – button opens the window containing event log.

Cancel – button makes it possible to cancel the data reading/writing.

Clock setting – button saves the time in the control panel, based on the computer clock.

LCD keypad – button displays a virtual keypad.

System status – button opens the drop-down menu shown in Fig. 4.

Configuration – button opens the "Configuration" window.

Connection – button opens the drop-down menu, where you can select the method of establishing communication between the program and the alarm control panel.

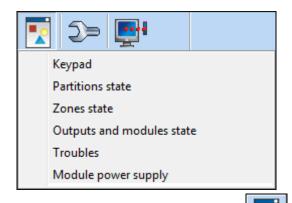


Fig. 4. Menu displayed after pressing the button

2.2.2 Changing the program access code

1. Open the FILE menu, select ACCESS SETUP and then CHANGE ACCESS CODE (see: Fig. 5).

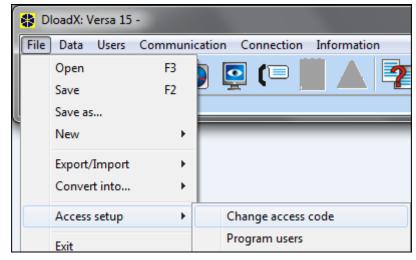


Fig. 5. Functions related to the access to DLOADX program.

- 2. Enter your present access code to the program and click on the "OK" button.
- 3. Enter the new access code to the program and click on the "OK" button.
- 4. Re-enter the new program access code and click on the "OK" button.

The program allows you to obtain access, based on additional access codes, which can be defined and for which the authority level can be defined (FILE \rightarrow ACCESS SETUP \rightarrow PROGRAM USERS – see: Fig. 5).

2.2.3 Parameters related to programming by means of the DLOADX program

In case of remote programming, it is necessary to configure some communication parameters and options in the control panel. In case of local programming without verification of identifiers, the parameters described below may be configured after communication with the control panel is established.

Identifiers

The identifiers can be programmed:

- in the DLOADX program, "Identifiers and tel. no" window. The command for opening this window is available in the COMMUNICATION menu. You can also open it by using the Ctrl+R key combination.
- in the keypad, 0. SRVMOD CONFIG submenu.

VERSA identifier – identifier of the alarm control panel which makes it possible to identify the control panel and match the data file to it, provided that the data file has been saved on the computer. It consists of 8 hexadecimal characters (digits or letters from A to F). The same identifier must not be programmed for different control panels operated from the same computer (the DLOADX program will be incapable of distinguishing between them).

DLOADX identifier – identifier of the computer with DLOADX program. If communication is effected, including verification of identifiers, the control panel will only establish connection with the program which uses the valid identifier. It consists of 8 hexadecimal characters (digits or letters from A to F).

Note: In case of establishing communication with the alarm system whose identifiers have factory defaults (00000000), the DLOADX program will suggest random generated identifiers.

Telephone communication parameters

The telephone numbers are programmed in:

- DLOADX program, "Identifiers and tel. no" window;
- keypad, 0. SRVMOD CONFIG submenu (only computer telephone number).

The number of rings is programmed in:

- DLOADX program, "Global parameters" window;
- keypad, 7. Answering submenu.

Options related to remote programming via the modem (e.g. Answering – MODEM and DOUBLE CALL) are described in Section GLOBAL OPTIONS.

VERSA panel telephone number – telephone number of the control panel. Available for programming only in DLOADX program.

PC telephone number – telephone number of the computer from which the control panel is to be programmed. It should be programmed if the telephone connection is to be made by the control panel (the panel initiates the connection or calls back).

Rings before answer – number of rings after which the control panel will go off hook.

Parameters of communication via Ethernet (TCP/IP) network

The IP address of computer with DLOADX program (SERVER), TCP port for communication through Ethernet network, encryption key (DLOADX KEY) and the DLOADX->ETHM-1 CONNECTION option are programmed for the ETHM-1 module (see: section ETHM-1 ETHERNET MODULE – p. 47):

- in the "Versa Structure" window, "Hardware" tab, after the ETHM-1 module has been selected in the list:
- in the keypad, by means of the SETTINGS function (SERVICE MODE ▶2. HARDWARE ▶1. KPDS. & EXPS. ▶2. SETTINGS), after the ETHM-1 module has been selected from the list that will be displayed (the programming is effected by the "step by step" method).

In the DLOADX program, the TCP port for communication via Ethernet network and the encryption key should be additionally defined in the "Identifiers and tel. no" window. The ETHM-1 module address should be programmed in the same window.

2.2.4 Starting local programming without verification of identifiers

With this method of establishing communication between computer and alarm control panel you do not have to know any identifiers programmed in the control panel (the START DWNLRS function will be activated automatically). After establishing communication with the control panel, identifiers will be read by the DLOADX program.

- 1. Connect the control panel RS-232 (TTL) port with the computer port.
- 2. Enter the **service code** (by default: 12345) and press the * w key.
- 3. Press in turn the **QQQ # I** keys to start the service mode.
- 4. Start the DLOADX program on the computer. If the control panel RS-232 (TTL) port is connected to the computer COM1 port, communication with the control panel will start

automatically. Otherwise, click on the button and, in the window that will open, indicate the computer port through which communication is to be effected.

5. The DLOADX program will signal establishing communication by displaying an appropriate message.

2.2.5 Starting local programming with verification of identifiers

Communication between the computer and the alarm control panel in this mode will be established, when the communication identifiers in control panel and program are identical or the identifiers programmed in the control panel have the factory value.

- 1. Connect the control panel RS-232 (TTL) port with the computer port.
- 2. Enter the **service code** (by default: 12345) and press the * w key.
- 3. Press in turn the **1 1 3 def # 1** keys (the START DWNLRS function will start).
- 4. Start the DLOADX program on the computer. If the control panel RS-232 (TTL) port is connected to the computer COM1 port, communication with the control panel will start

automatically. Otherwise, click on the button and, in the window that will open, indicate the computer port through which communication is to be effected.

5. The DLOADX program will signal establishing communication by displaying an appropriate message.

2.2.6 Starting local programming "from pins"

If the local programming cannot be started in normal manner, you can use the emergency hardware procedure, so-called starting "from pins".

- 1. Connect the control panel RS-232 (TTL) port with the computer port.
- 2. Start the service mode in the control panel "from pins" (see: Section STARTING THE SERVICE MODE "FROM PINS").
- 3. Start the DLOADX program on the computer. If the control panel RS-232 (TTL) port is connected to the computer COM1 port, communication with the control panel will start

automatically. Otherwise, click on the button and, in the window that will open, indicate the computer port through which communication is to be effected.

4. The DLOADX program will signal establishing communication by displaying an appropriate message.

2.2.7 Finishing local programming

The local programming function will stop automatically after 4 hours have elapsed since operation of the DLOADX program was completed. The function may also be terminated by using the FINISH DWNLRS command, available from the keypad.

- 1. Enter in the keypad the **service code** (by default 12345) and press the * we key.
- 2. Press in turn the **4** whi **4** keys (to start the FINISH DWNLRS function).

2.2.8 Starting remote programming via modem

For remote programming to be possible, the modem and the control panel must be suitably configured. Communication between the control panel and the modem can be established in a few ways:

- 1. Connection is initiated from the DLOADX program.
- 2. Connection is initiated from the DLOADX program, but the control panel calls back and establishes the connection.
- 3. Connection is initiated by the control panel.

Note: The communication identifiers in control panel and program must be identical, or the control panel identifiers must have their factory default value.

Configuring settings of modem connected to computer

Configuration of the modem connected to computer is possible by using the DLOADX

program. For this purpose, click on the button. The "Configuration" window will

open, in which you should click on the "Modem" tab. When you click on the button, you will be able to edit parameters of the port used for communication with the modem, as well as the initiation commands.

Initiating connection from the DLOADX program

Connection with the control panel can be established from any location. Make sure that in the control panel:

- the computer telephone number has not been programmed!
- the Answering modem option is enabled (Service mode ▶3. Global param.
 ▶1. Options ► Modem answering);
- you have defined the number of rings after which the control panel will go off-hook (Service Mode ▶7. Answering ▶1. Rings to ans.);
- you have defined whether the control panel will go off-hook after the first, or after the second call (Service MODE ▶3. GLOBAL PARAM. ▶1. OPTIONS ▶DOUBLE CALL).

Telephone number of the control panel must be programmed in the DLOADX program.

- 1. Start the DLOADX program on computer.
- 2. Initialize the modem connected to the computer. For the modem to be initialized,

click on the button and, from the menu that will be displayed, select the 300 bps modem. The window will then open where the modem initializing information will be shown.

- 3. Click on the "Connect" button.
- 4. After the preprogrammed number of rings (after the second call, if the DOUBLE CALL option is enabled), the control panel will answer the call and the connection will be established. The DLOADX program will signal it by an appropriate message.

Initiating connection from the DLOADX program, but with the control panel calling back and establishing connection

This method ensures better security of the system, because the control panel may only be remotely programmed from a specified locality. Make sure that in the control panel:

- you have programmed telephone number of the computer from which the control panel is to be programmed (Service MODE ▶0. SrvMod Config ▶4. DLOADX TEL.);
- the Answering modem option is enabled (Service mode ▶3. Global param.
 ▶1. Options ► Modem answering);
- you have defined the number of rings after which the control panel will go off-hook (SERVICE MODE ▶7. ANSWERING ▶1. RINGS TO ANS.);
- you have defined whether the control panel will go off-hook after the first, or after the second call (Service mode ▶3. Global param. ▶1. Options ▶Double call).

Telephone number of the control panel must be programmed in the DLOADX program.

- 1. Start the DLOADX program on computer.
- 2. Initialize the modem connected to the computer. For the modem to be initialized, click on the button and, from the menu that will be displayed, select the 300 bps modem. The window will then open where the modem initializing information will be shown.
- 3. Click on the "Connect" button.
- 4. After the preprogrammed number of rings (after the second call, if the DOUBLE CALL option is enabled), the control panel will answer the call, acknowledge receiving the connection, and then disconnect.
- 5. The control panel will call back the number programmed in the control panel and the connection will be established, which will be indicated by the DLOADX program by an appropriate message.

Initiating connection by the control panel

Like the previous method, also this one ensures enhanced security of the system, because the control panel may only be remotely programmed from a specified locality. It can be applied if the system user prefers that the remote programming cannot be carried out without his knowledge. Telephone number of the computer from the control panel is to be programmed must be programmed in the control panel (Service Mode ►0. SrvMod config ►4. DloadX Tel.).

- 1. Start the DLOADX program on computer.
- 2. Initialize the modem connected to the computer. For the modem to be initialized, click on the button and, from the menu that will be displayed, select the 300

click on the button and, from the menu that will be displayed, select the 300 bps modem. The window will then open where the modem initializing information will be shown.

- 3. Enter in the keypad the service code (by default 12345) or the code of user having the DOWNLOAD/SERVICE privilege and press the * w key.
- 4. Press in turn the **1 9 1 # 1** keys (the START DWNLTEL con. function will start).
- 5. The DLOADX program will signal establishing communication by an appropriate message.

2.2.9 Starting remote programming via Ethernet network

Communication between the DLOADX program and the control panel through the ETHM-1 module can be established in two ways:

- 1. Initiating connection from the DLOADX program.
- 2. Initiating connection by the control panel.

Note: The communication identifiers in control panel and program must be identical, or the control panel identifiers must have their factory default value.

Initiating connection from the DLOADX program

- enable the DLOADX→ETHM-1 option [the option is available in step 2];
- define the TCP port which will be used for communication (DLOADX PORT [step 9]);
- enter the data encryption key (DLOADX KEY [step 10]).

The following must be programmed in the DLOADX program ("Identifiers and tel. no" window):

- ETHM-1 module address (Server);
- TCP port that will be used for communication (PORT);
- data encryption key (DLOADX KEY).
- 1. Start the DLOADX program in the computer.
- 2. Click on the button and, in the menu that will be displayed, select the "TCP/IP: DloadX -> ETHM" command. The "TCP/IP: DloadX -> ETHM connection" window will open.
- 3. Click on the "Connect" button in the "TCP/IP: DloadX -> ETHM connection" window.
- 4. Establishing communication with the ETHM-1 module and the control panel will be confirmed by suitable messages.

Initiating a connection by the control panel

This method ensures better security of the system, because the control panel may only be remotely programmed from a specified location. It is applicable when the system user does not want the remote programming to be carried out without his knowledge.

The following must be programmed in the control panel (SERVICE MODE ▶2. HARDWARE ▶1. KPDS. & EXPS. ▶2. SETTINGS ▶ module name # 1 ["step by step" programming]):

- address of the computer with DLOADX program (DLOADX [step 8]);
- TCP port that will be used for communication (DLOADX PORT [step 9]);
- data encryption key (DLOADX KEY [step 10]).

The following must be programmed in the DLOADX program ("Identifiers and tel. no" window):

- TCP port that will be used for communication (PORT);
- data encryption key (DLOADX KEY).
- 1. Start the DLOADX program in the computer.

- 2. Click on the button and, in the menu that will be displayed, select the "TCP/IP: DloadX <- ETHM" command. A window will open in which information server activation will be displayed.
- 3. Enter in the keypad the service code (by default 12345) or the code of user having the DOWNLOAD/SERVICE right and press the * w key.
- 4. Press in turn the **□ • 7**pqrs **# •** keys (starting the ETHM-1→DLOADX function).
- 5. The DLOADX program will signal establishing communication with a suitable message.

3. Global Parameters

User code min. lenght – the minimum number of characters required for the control panel to accept a new code or a changed code.

3.1 Global options

Reporting – TELEPHONE – the control panel can send event codes to the monitoring station by means of the telephone line.

Reporting – ETHM – the control panel can send event codes to the monitoring station via the Ethernet network, using the TCP/IP protocols.

Telephone messaging – the control panel can notify about the occurrence of specific events by means of voice or text messages using the telephone links.

Answering – modem – external initiation of the modem communication with the control panel is possible.

Double call – the control panel must be called twice for the modem communication to be established. The first time you must wait for the preprogrammed number of rings and hang up. Then you must call back within three minutes and the control panel will answer the call immediately. This solution makes it possible to connect after the control panel some additional devices which will be activated after a preset number of rings (e.g. answering machine, fax, etc.).

Tone dialing – the control panel will tone dial the telephone numbers (pulse dial, if this option is disabled).

Pulse 1/1.5 (off 1/2) – this option applies to pulse dialing. Before you enable it, make yourself familiar with the valid standard of pulse dialing.

No dial tone test – the control panel will not perform the test for dial tone before dialing the number and will start dialing the number 5 seconds after going "off hook". This makes it possible for the control panel to dial the number when some non-standard tones occur on the telephone line after going off hook (e.g. interrupted tone). When this option is disabled, the control panel will start dialing the number 3 seconds after going off hook, provided that the dial tone is present.

No answer tone test – in case of notifying by means of voice messages, the control panel will not perform the test for "off hook" condition. The voice message will be played back 15 seconds after completion of the number dialing. In case of reporting, the control panel will ignore any signals (including the busy tone) received from the telephone exchange after dialing the telephone number, and will wait for the handshake from the monitoring station. Enable this option if, after dialing the number, non-standard signals are received from the telephone exchange or in case of very poor quality connections.

Store keyfob events – using the keyfob is written into the events log.

Trouble memory until review – the trouble memory is being signaled until it is cleared (clearing the trouble memory is possible when you quit the 7. SYSTEM STATE user function).

Grade 2 – the system operates in accordance with the EN 50131 standard requirements for Grade 2, i.e.:

- the way of informing the users about the system state by means of LEDs, display and beeps in the keypads meets the requirements of the standard (see: USER MANUAL);
- quick arming is not available;
- new codes in the system must be composed of at least 5 characters;
- prior to arming, the control panel checks that no circumstances have occurred that prevent arming (ref. Prevent arming if NOT READY global option),
- in case of arming by means of the VERSA-LCD-GR keypad, the control panel will check if there are any zones bypassed in the partition – information on the bypassed zones is presented, if the user has the INSPECTION right,
- the warning alarm feature is enabled in the system (see: WARNING ALARM global option),
- the warning alarm is signaled at the 2. INTERNAL SIREN function output (ref. WARNING ALARM ON INTERNAL SIRENS global option).

The option is available in the keypad in the 2. Hardware submenu (Service mode ▶2. Hardware ▶1. Kpds & exps. ▶4. Options ▶Grade2).

- **Serial data on OUT 3/4** OUT3 and OUT4 outputs send the system status data (zone alarms, fire alarms, troubles, armed modes, etc.) and do not execute any other programmed functions. The outputs may be used to control the NR2-DSC radio monitoring transmitter (NEMROD system PC-16 OUT format), made by NOKTON.
- **OUT 3/4 data extended mode** this option is active, if the SERIAL DATA ON OUT 3/4 option is enabled. The OUT3 and OUT4 outputs will send the system status data in the form of frames (PC-16 OUT UA format).
- Arming/Disarming/Clearing signaling from zones only outputs with the functions 1. EXTERNAL SIREN and 2. INTERNAL SIREN with enabled ARMING/DISARMING/CLEARING SIGNALING option will signal only:
 - starting of the arming procedure by zone or by means of keyfob;
 - no possibility of arming (see: PREVENT ARMING IF NOT READY option or GRADE 2 option), if the arming command has been sent from keyfob;
 - failed attempt of arming by means of keypad or keyfob (see: PREVENT ARMING IF NOT READY option or GRADE 2 option);
 - disarming by zone or by means of keyfob;
 - alarm clearing by zone or by means of keyfob.

Starting the arming procedure, disarming or alarm clearing by means of keypad, proximity card arm/disarm device or timer are not signaled.

- Clear messaging on alarm clearing clearing the alarm will automatically cancel messaging about this alarm, if the user clearing the alarm has the TELEPHONE MESSAGING CLEARING right.
- Service message after tamper alarm this option is active, if the TROUBLE MEMORY UNTIL REVIEW option is enabled. Information on the tamper alarm can only be cleared from the troubles memory by using the service code. In the LCD keypad, the "System tamper, call service" message will be displayed after the tamper alarm (unless the alarm messages are displayed). The message will no longer be displayed after the troubles memory is reset by the service.
- **Warning alarm** the system includes an activated warning alarm feature, whose purpose is to delay the loud signaling and reporting, if any mistakes are made when entering the protected facility. The warning alarm is not monitored. It can be signaled on the keypad,

proximity card arm/disarm device or outputs with the function 2. INTERNAL SIREN. The warning alarm is triggered by the following zone types:

- 0. Entry/Exit or 1. Entry/Exit final unless the system is disarmed before completion of the Entry Delay countdown;
- 2. Entry/Exit route if it is violated during the Entry Delay countdown, and the system is not disarmed before completion of the Delay TIME countdown;
- 3. INSTANT if it is violated during the ENTRY DELAY countdown.

The warning alarm lasts 30 seconds. Unless the alarm system is disarmed during this time, the alarm will be triggered by the zone.

Warning alarm on internal sirens – this option is active, if the WARNING ALARM option is enabled. The warning alarm will be signaled on outputs with the 2. INTERNAL SIREN function.

Tamper alarm always audible – the tamper alarm will be signaled always on outputs with the 1. EXTERNAL SIREN and 2. INTERNAL SIREN functions (if the option is disabled, only in armed mode). Also, lack of the expander is always saved in the event log as a tamper alarm. If the option is disabled, lack of the expander will be saved in the event log:

- as a trouble, if the partition to which the expander is assigned, is disarmed (but the keypad will signal tamper alarm anyway);
- as a tamper alarm, if the partition is armed.
- **Tamper alarm on internal sirens** the tamper alarm will be signaled always on outputs with the 2. INTERNAL SIREN function (in armed mode only if the option is disabled). Additionally, the output will always signal lack of the expander (also when the event is logged as a trouble see: Tamper Alarm Always audible option).
- **Block after 3 unknown codes/cards** after entering an invalid code / reading in an invalid card three times, the keypad / proximity card arm/disarm device will be blocked for 90 seconds. After this period of time has expired, each subsequent entry of an invalid code / read-in of an invalid card will block the keypad / proximity card arm/disarm device at once. The counter of invalid codes / cards will be reset after a correct code is used.
- Service Mode from RESET pins it is possible to start the service mode and local programming "from pins" (on the keypad this option is available in the 0. SRVMOD CONFIG submenu (▶SERVICE MODE ▶0. SRVMOD CONFIG ▶6. SRVMOD OPT. ▶SRVMOD VIA RESET)).
- **Limit storing "Test transmission" events** if the "Test transmission" events directly follow one another, they are only written to the event log 3 times. Information on sending next test transmissions is not recorded. Any other event occurring in the system will reset the counter of "Test transmission" events, i.e. it will be possible to log next three consecutive test transmissions.

Prevent arming if not ready – if the user arm the system by means of keypad or keyfob, the control panel checks that there are no circumstances that prevent the arming:

- a zone with PRIORITY option is violated in the partition which is to be armed;
- the 3. Instant, 4. Double knock, 5. 24H burglary, 6. 24H tamper, 7. 24H panic, 8. 24H panic silent, 9. 24H medical or 10. 24H fire type zone is violated in the partition which is to be armed;
- there is a trouble in the system.

If one of the aforementioned situations takes place, the control panel will not start the arming procedure (the VERSA-LCD-GR keypad enables forced arming – see: USER MANUAL). If none of the conditions is met, the control panel will start the arming procedure, but at the end of the exit delay countdown it will check again if the arming is possible (the quick arming being an exception). A violated zone or a trouble mean that the arming is not possible (i.e. the arming procedure will fail).

Additionally, when the option is enabled and the user has the INSPECTION right, the VERSA-LCD-GR keypad will inform, prior to arming, that there are bypassed zones in the partition (it does not apply to the quick arming).

The option is available in the keypad in the 2. Hardware submenu (Service mode ▶2. Hardware ▶1. Kpds & exps. ▶4. Options ▶Advanced arming).

Arm even if not ready after exit delay – the option is active, when the PREVENT ARMING IF NOT READY or GRADE 2 option is enabled. A zone violation or trouble found at the end of exit delay countdown does not affect the arming procedure – the system will be armed. The option is available in the keypad in the 2. HARDWARE submenu (SERVICE MODE ▶2. HARDWARE ▶1. KPDS & EXPS. ▶4. OPTIONS ▶ARM EXDLY W.TRBL).

Answering/remote control when armed partition 1 / 2 – telephone answering and remote control features are only available when selected partitions are armed.

Note: Additionally, the list of global options in the keypad includes:

- TMP ALARM IN P.2 alarm from the mainboard TMP zones is signaled in partition 2.
 In the DLOADX program, the partition in which alarm from TMP zones will be signaled is to be selected in the "Versa Structure" window, "Hardware" tab, after clicking on the system name on the left side;
- EVENTS LIMITAT., EXP. RESTART. REP., REST. AFT. BELL and REST. AFT. DISARM. —
 options available in the DLOADX program, "Versa Reporting" window, and
 described in section REPORTING PARAMETERS AND OPTIONS.

3.2 Global times

- **Keypad's alarm time** time period during which alarm is signaled in keypads and proximity card arm/disarm devices. Up to 255 seconds can be programmed. Programming the value 0 means that the Keypad's Alarm time will be 3 seconds.
- No armed indication after time counted from the moment of partition arming, after expiry of which the keypad LED indicating the partition armed status will go out. Up to 255 seconds can be programmed. Programming the value 0 means that the LED will be lit as long as the partition is armed.
- AC loss report delay time during which the control panel must be without AC power before the trouble is reported. A delay in reporting the trouble prevents sending information about short-time voltage decays, having no effect on normal operation of the system. The trouble reporting delay can be up to 255 minutes.
- **Telephone line loss report delay** time during which abnormal voltage must be on the telephone line for the control panel to report the telephone line trouble. A delay in reporting the trouble prevents sending information about short-time voltage dips (e.g. during a phone call) or decays. The trouble reporting delay can be up to 255 minutes.
- RTC clock correction if the accuracy of control panel clock is inadequate, the clock settings may be adjusted once per 24 hours (at midnight) by a defined time. The correction time is programmed in seconds. The maximum correction can be ±19 seconds per 24 hours.
- **Summer/winter time** the control panel can automatically adjust the clock settings due to a change from the summer time to the winter time and vice versa. The following correction schemes are available:
 - no correction;
 - according to the European Union rules;
 - according to the United States' rules;
 - correction by 1 hour according to dates;
 - correction by 2 hours according to dates.

Summer time from / Winter time from – if the control panel clock is to be corrected by 1 or 2 hours according to dates, you should enter the dates (day, month) after the clock is changed to the summer time (moved forward) or to the winter time (moved back).

4. Partitions

A system based on the VERSA control panels can be subdivided into 2 partitions. The partition means a separated area in the premises protected by the alarm system. Because the partitions can be armed independently, subdividing the system into partitions will allow the user to arm/disarm just a part of the premises. Additionally, the subdivision into partitions makes it possible to restrict access to a part of the premises to selected users.

In the DLOADX program, the partition parameters are programmed in the "Versa – Structure" window, "System" tab. The partitions and zones are presented in a tree-like form on the left side of the window (see: Fig. 6). In the keypad, the partition parameters are configured by using the functions available in the PARTITIONS submenu (SERVICE MODE ▶1. PARTITIONS).

Fig. 6. List of partitions and zones in a tree-like form in the "System" tab, "Versa – Structure" window (an example of configuration).

4.1 Partition parameters

Name – individual name of the partition (up to 16 characters).

Partition exit delay – the time counted from the moment of starting the partition arming procedure which enables the protected area to be left without triggering an alarm. Violation of the 0. Entry/Exit, 1. Entry/Exit final, 2. Entry/Exit route or 4. Double knock type zones during the exit delay time will trigger no alarm. Up to 255 seconds can be programmed.

Notes:

- The exit delay countdown can be terminated by means of the 1. Entry/Exit final or 16. Exit delay terminator type zones. All zones in the partition will be armed before expiry of the programmed exit delay time.

Infinite exit delay – the partition exit delay can only be ended by means of the 1. ENTRY/EXIT FINAL, 16. EXIT DELAY TERMINATOR or 17. SHUNT LOCK type zones. If the exit delay countdown is not completed, the armed mode will not be activated (only the 3. INSTANT type zones will be armed).

Entry delay – the time counted from the moment of entry into the protected area which enables the partition to be disarmed before triggering an alarm. This parameter applies to the 0. Entry/Exit and 1. Entry/Exit final type zones. The delay programmed for the partition is taken into account in case of the zones for which the value 0 has been individually programmed. The delay is programmed in seconds. Up to 255 seconds can be programmed. If the value 0 is programmed, the zone will act as an instant one.

Warning time – the time of warning alarm signaling for the partial armed mode (see: Warning in Partial arming zone option). The time is programmed in seconds. Up to 255 seconds can be programmed. If the value 0 is programmed, the Warning time will be 30 seconds. After expiry of the Warning time, unless the partition is disarmed, the burglary alarm will be triggered.

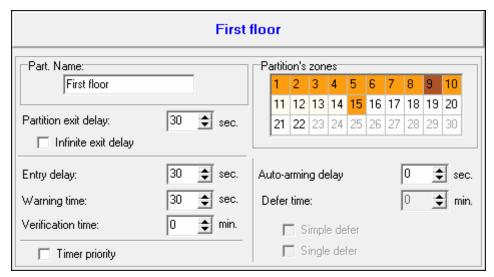


Fig. 7. Programming partition parameters in the "Versa – Structure" window, DLOADX program (an example of configuration).

Note: The Warning time parameter does not apply to the time of signaling the warning alarm which is generated when mistakes are made when entering into the protected object (see: Warning Alarm global option).

Verification time – programming a value different from 0 means activating the alarm verification feature in the partition. Subject to verification are alarms from 0 to 5 type zones. The VERIFICATION TIME runs from the moment of alarm being triggered by such a zone. If during the VERIFICATION TIME an alarm is triggered by another zone in the partition, programmed as 0 to 5 type, the control panel will report a verified alarm. The time is programmed in minutes. Up to 255 minutes can be programmed.

Timer priority – the timer will always disarm the partition according to the preset times (if this option is disabled, the timer will only disarm the partition, if the arming was done by the timer).

Auto-arming delay – the time counted from the moment when the timer is to arm the partition, enabling the arming to be deferred. The delay time is programmed in seconds. Up to 255 seconds can be programmed. Programming the value 0 means that the arming deferment will be unavailable.

Deferment time – the time by which the user can defer arming by the timer. The time is programmed in minutes. Up to 255 minutes can be programmed. Programming the value 0 means that the arming deferment will be unavailable.

Simple deferment – the user can defer auto-arming by pressing the **▼** key twice during the auto-arm delay time countdown.

Single deferment – the user can only use the simple deferment once, so as to postpone the auto-arming. Subsequent arming deferments are only possible by using the AUTO-ARMING DEFERMENT user function ([CODE] ★ ♦ ▶6. SETTINGS ▶1. A-ARM DEFER.).

5. Zones

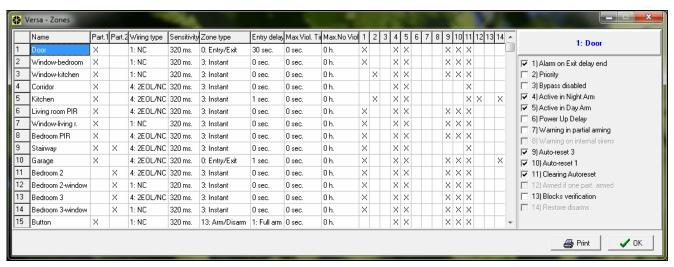


Fig. 8. "Versa – Zones" window in the DLOADX program.

A zone can be assigned to one or two partitions. If the zone is assigned to two partitions, it can be armed when both partitions are armed or one of them only.

The system supports the following zones:

- hardwired on the control panel PCB and in expanders. The number of available hardwired zones is determined by the control panel during the identification procedure.
- wireless after connection of the ACU-100 controller. The number of available wireless zones depends on the number of wireless devices registered in the system and is determined during the procedure of adding the same.
- virtual zones which do not physically exist, but are controlled by means of keyfobs.

In the DLOADX program, parameters and options of the zones can be programmed in the "Versa – Structure" window, "System" tab. Partition and zones are presented in the tree-like form on the left-hand side of the window (see: Fig. 6). The zone parameters and options can also be programmed in the "Versa – Zones" window (see: Fig. 8).

In the keypad, parameters and options of the zones are configured by means of the Zones function (Service Mode ▶2. Hardware ▶2. Zones). The programming is performed using the "step by step" method (the numbers are shown in binary form on the ♠ and ♠ LEDs of the first and second partitions):

- 1. Zone selection.
- 2. EOL type.
- Sensitivity [line type NO, NC, EOL and 2EOL].
- Pulse validity [only for ROLLER type of line].
- 5. Pulses count [only for ROLLER type of line].

- 6. Sensitivity [only for Vibration type of line].
- 7. Pulses count [only for Vibration type of line].
- 8. Zone type.
- 9. Alarm delay [ARM MODE should be programmed in this step for 13. ARM/DISARM and 14. ARMING type zones, and the EVENT parameter for the 19. TROUBLE type zone].
- 10. Max. violation time.
- 11. Max. no violation time.
- 12. Zone options.
- 13. Zone name [only in LCD keypad].

5.1 Numeration of system zones

5.1.1 Hardwired zones

Numbers are assigned to the hardwired zones automatically:

- the zones on control panel PCB always have initial numbers (1-5 for the VERSA 5 control panel; 1-10 for the VERSA 10 control panel; 1-15 for the VERSA 15 control panel);
- the zones in expanders are numbered depending on the address which is set in them:
 - expander with address 12 (0Ch) numbers from 7 to 14;
 - expander with address 13 (0Dh) numbers from 15 to 22;
 - expander with address 14 (0Eh) numbers from 23 to 30.

If the expander zones coincide with those on the control panel PCB, you may define which of the zones will be supported by the mainboard, and which ones by the expander. In the keypad, the VERSA ZONES service function (SERVICE MODE ▶2. HARDWARE ▶7. VERSA ZONES) is provided for this purpose. In the DLOADX program, this can be done in the "Versa – Structure" window, "System" tab, when programming the selected zone.

5.1.2 Wireless zones

The wireless zones may be assigned any numbers in the system. The numbers are assigned during the procedure of adding wireless devices. When the wireless zone number coincides with that of the hardwired zone, you may define which of the zones is to be supported. In the keypad, the ACU-100 ZONES service function (SERVICE MODE ▶2. HARDWARE ▶1. KPDS & EXPS. ▶3. ACU-100 ▶4. ACU-100 ZONES). is provided for this purpose. In the DLOADX program, this can be done in the "Versa − Structure" window, "System" tab, when programming the selected zone.

5.2 End of line resistors

For the zones on mainboard and in zone expanders identified by the control panel as CA-64 Ei and CA-64 EPSi, the value of resistors used in the EOL and 2EOL wiring types is programmable within the range from 500 Ω to 15 k Ω .

In the DLOADX program, the resistor value should be entered in the "Versa – Structure" window, "Hardware" tab, after indicating the mainboard or selected zone expander in the list. In the keypad, the resistor value should be programmed as follows:

- for mainboard by means of the EOL 1 RESISTOR and EOL 2 RESISTOR function (Service Mode ▶2. Hardware ▶5. EOL 1 RESIST. / ▶6. EOL 2 RESIST.).
- for zone expander during configuration of the expander by using the Settings function (Service Mode ▶2. Hardware ▶1. Kpds & exp. ▶2. Settings).

Notes:

- The sum of values programmed for the resistors R1 and R2 may not be lower than 500 Ω or higher than 15 $k\Omega$.
- In case of the zone expander, it is possible to program the value 0 for the resistor R2. The 2EOL wiring type requires that two resistors be used, each having resistance equal to half the value defined for the resistor R1.
- In the EOL wiring type, the resistance value is equal to the sum of values programmed for the resistors R1 and R2.

5.3 Zone parameters

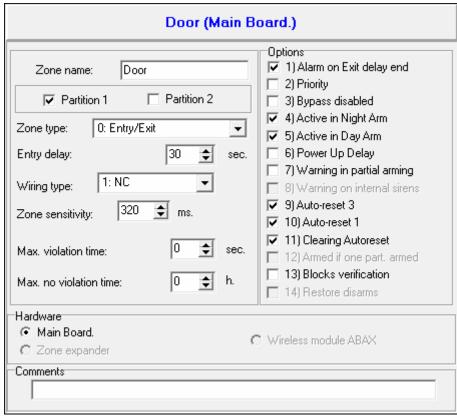


Fig. 9. Programming the zone parameters in "Versa – Structure" window in the DLOADX program (an example of configuration).

Zone name – individual name of zone (up to 16 characters).

Partition 1 / **Partition 2** – partition to which the zone is assigned. The zone must be assigned at least one partition, for its status to be supervised.

Entry delay – the time counted from the moment of violating the 0. ENTRY/EXIT or 1. ENTRY/EXIT FINAL type zone, which makes disarming possible before triggering the alarm. It is programmed in seconds and can be up to 255 seconds. If the value 0 is programmed, the ENTRY DELAY programmed for the partition will be taken into account. If the value 0 is programmed for both the zone and the partition, the zone will act as an instant one.

Delay time – the time counted from the moment of violating the 2. Entry/Exit route type zone, if it acts as a delayed one. The time is programmed in seconds and can be up to 255 seconds. If the value 0 is programmed, the Entry Delay programmed for the partition will be treated as the Delay time. If the value 0 is programmed for both the zone and the partition, the zone will act as an instant one.

Delay activation time – the time counted from the moment of violating the 18. ENTRY ROUTE ENABLING type zone. During countdown of this time, the 2. ENTRY/EXIT ROUTE type zone will

act as the delayed ones. The time is programmed in seconds and can be up to 255 seconds. If the value 0 is programmed, the ENTRY DELAY programmed for the partition will be treated as the Delay activation time. If the value 0 is programmed for both the zone and the partition, violation of the zone will have no effect.

Waiting time – the time counted from the moment of violating the 4. DOUBLE KNOCK type zone. If the zone is violated again during the waiting time, it will trigger alarm. The time is programmed in seconds and can be up to 255 seconds. Programming the value 0 means that the Waiting time will be 30 seconds.

Note: In the LCD keypad, the ENTRY DELAY, DELAY ACTIVATION TIME and WAITING TIME parameters are programmed as the ALARM DELAY.

Arm mode – the armed mode activated after violating the 13. ARM/DISARM or 14. ARMING type zone. You can select either fully arming, day arming or night arming.

Event – number of the event that will be written into the control panel memory and can be reported to the monitoring station upon violation of the 19. TROUBLE type zone. You can enter the following values for the corresponding codes of alarm events:

- 1 201 Low water pressure
- 2 202 Low CO2
- 3 203 Gate valve sensor
- 4 204 Low water level
- **5** 205 Pump activated
- 6 206 Pump failure
- **51** 151 Gas detected
- **52** 152 Refrigeration
- **53** 153 Loss of heat
- **54** 154 Water leakage
- 55 155 Foil break trouble
- **56** 156 Day trouble
- **57** 157 Low bottle gas level
- 58 158 High temperature
- **59** 159 Low temperature
- **61** 161 Loss of air flow
- 62 162 Carbon monoxide (CO) detected
- 63 163 Tank level trouble

Entering a different value means that the zone violation will trigger the trouble signaling, but no alarm events from zone will be written to the event log.

Wiring type – type of detector and the method of its connection (zone configuration):

no detector – no detector is connected to the zone;

NC – the zone supervise a detector of NC (normally closed) type;

NO – the zone supervise a detector of NO (normally open) type;

EOL – the zone supervise a NO or NC detector with single EOL resistor;

2EOL/NO – the zone supervise a NO detector with double EOL resistors;

2EOL/NC – the zone supervise a NC detector with double EOL resistors;

roller – the zone supervise a roller shutter detector;

vibration – the zone supervise a vibration detector.

Note: In case of the VIBRATION zone wiring, opening the circuit for 200 ms – irrespective of the programmed number of pulses and sensitivity (see below) – will be interpreted as violation. This solution enables a magnetic contact to be connected in series with the vibration detector.

Sensitivity – depending on selected wiring type:

- NO, NC, EOL and 2EOL the time during which the zone must be violated, so that it can be noted by the control panel. The sensitivity is programmed in milliseconds. Values from the 20 ms to 5100 ms range can be entered.
- Vibration the pulse whose duration is equal to or longer than the defined time will cause violation of the zone. Values from the 3 ms to 96 ms range can be programmed (every 3 ms).
- **Pulse validity** the time counted from the pulse occurrence during which subsequent pulses must occur (their number being defined as the PULSE COUNT) so that the zone is violated. The following values can be programmed: 30 s, 120 s, 240 s and 0. If no further pulses will occur within the defined time period, the pulse counter will be reset. The pulse counter is reset automatically at arming/disarming. If the value 0 is programmed, the counter will only be reset at arming/disarming. This parameter is programmed for the Roller zone wiring.
- **Pulse count** the number of pulses after which the zone will be violated. This parameter is programmed for the ROLLER and VIBRATION zone wiring. For the VIBRATION zone wiring, it is possible to program values from 0 to 7 (for the value 0, the pulses will not be counted, the SENSITIVITY parameter only being taken into account). For the ROLLER zone wiring, you can program values from 1 to 8.
- **Note:** In the DLOADX program, all the required parameters for zones in ROLLER and VIBRATION configuration are programmed in the SENSITIVITY field.
- **Max. violation time** exceeding the maximum violation time is recognized by the control panel as the detector trouble (e.g. damage or masking). The time is programmed in seconds and can be up to 255 seconds. Programming the value 0 means that the control panel will not check the zone for maximum violation time.
- **Max.** no violation time exceeding the maximum time of no violation is recognized by the control panel as the detector trouble (e.g. damage or masking). The time is programmed in hours and can be up to 255 hours. Programming the value 0 means that the control panel will not check whether the zone is violated or not.

5.4 Zone types

- **0.** ENTRY/EXIT a delayed zone combining two functions:
 - entry line violation of the zone triggers the entry delay countdown in the partition and activates delay for the 2. Entry/Exit route type zone. The entry delay may be signaled on keypads or proximity card arm/disarm devices.
 - *exit line* the zone status is monitored during the partition exit delay time. Violation of the zone is treated as an exit from the partition.
- **1. ENTRY/EXIT FINAL** the same as the 0. ENTRY/EXIT type, but if the arming procedure has started and the control panel registers the zone restore, the exit delay countdown will be terminated.
- 2. ENTRY/EXIT ROUTE during the countdown of ENTRY DELAY OR DELAY ACTIVATION TIME the zone acts as a delayed one (alarm will be triggered after expiry of the DELAY TIME). In other situations it acts as an instant zone.
- **3. INSTANT** instant zone. It enters the armed mode after the arming procedure has started, irrespective of the value of EXIT DELAY time programmed for the partition.
- **4. DOUBLE KNOCK** the zone triggers the burglary alarm only after the second violation. The first violation of the zone only results in the "Zone violation" event being logged (the event to may reported in format 4/2). The second violation must take place during the Waiting time countdown.

- **5. 24H BURGLARY** dedicated zone for the detectors which should be armed at all times (e.g. glass break detectors).
- **6. 24H TAMPER** dedicated, permanently armed zone for tamper circuits. Violation of the zone is additionally signaled as a trouble.
- **7. 24H PANIC** permanently armed zone, intended for operating the panic buttons.
- **8. 24H PANIC SILENT** permanently armed zone, intended for operating the panic buttons. Alarm from the zone is not signaled on keypads, proximity card arm/disarm devices and outputs, but the event code is sent to the monitoring station.
- 9. 24H MEDICAL permanently armed zone for calling medical assistance.
- **10. 24H FIRE** dedicated, permanently armed zone for operating fire detectors.
- **11. DETECTOR MASK** permanently armed zone for antimasking control. Violation of the zone is interpreted by the control panel as a detector trouble.
- **12. No ALARM ACTION** the zone may be used to control the output with function 13. Zone VIOLATION, 15. CONTROLLED or 16. READY STATUS. An additional option enables the zone to be used for supervision of the key box (KEYBOX CONTROL option).
- **13**. **ARM/DISARM** the zone controls the arming status of the partition it belongs to. Violation of the zone starts the arming procedure or disarms the partition (depending on the current status of the partition).
- **14. ARMING** violation of the zone starts the procedure of arming the partition to which the zone belongs.
- **15. DISARMING** violation of the zone disarms the partition to which the zone belongs.
- **16. Exit delay terminator** violation of the zone ends the partition exit delay countdown.
- **17. Shunt Lock** the zone ends the partition exit delay countdown and depending on the BLOCKS VERIFICATION option will disable verification or disarm the partition to which it belongs. The way of controlling (the zone violation / zone restore) is determined by the option Restore disables verification or Restore disarms.
- 18. ENTRY ROUTE ENABLING violation of the zone activates delay for the 2. ENTRY/EXIT ROUTE type zones in the partition to which the zone belongs. The zones will act as delayed ones for the Delay activation time. After expiry of the time, unless the system is disarmed, the zones will again act as the instant ones. If the Delay activation time for a zone will be programmed as equal to 0, and at the same time the ENTRY DELAY programmed for the partition is equal to 0, violation of the zone will have no effect.
- **19. TROUBLE** violation of the zone is treated by the control panel as a trouble. Additionally, an alarm event may be written into the control panel memory (see: EVENT parameter).

5.5 Zone options

Alarm on exit delay end – if the zone is violated at the moment of ending the exit delay countdown, it will trigger an alarm (if this option is disabled, the zone will only trigger the alarm when the status changes from normal to violation during the armed mode).

Priority – arming is impossible when the zone is violated.

Bypass disabled – user cannot bypass the zone using the functions available in the BYPASSES submenu (this restriction does not apply to the service).

Active in night arm – the zone is armed when the night armed mode is activated.

Active in day arm – the zone is armed when the day armed mode is activated.

Power-up delay – the zone is bypassed for 120 seconds after power supply is turned on (this will prevent triggering false alarms e.g. during start-up of the control panel).

Warning in partial arming — option for the zones which are armed when the day or night armed mode is activated in the partition. Violation of the zone will not immediately trigger the burglary alarm but the warning alarm which is not monitored. It may be signaled on the keypad, proximity card arm/disarm device or on the output with 2. INTERNAL SIREN function. The warning alarm at partial armed mode is signaled during the Warning time (see: Section Partition parameters). If the partition is not disarmed before expiry of the warning time, the zone will trigger the burglary alarm.

Note: Warning alarm in the partial armed mode will work irrespective of the WARNING ALARM global option, which refers to the delay of loud signaling and reporting if any mistakes are made when entering into the protected facility.

Warning on internal sirens – warning alarm in the partial armed mode, is signaled on the output with the 2. INTERNAL SIREN function.

Auto-reset 3 – the zone can trigger up to 3 alarms. As long as the alarm is not cleared or the partition is not armed/disarmed, violations of the zone will not trigger any alarm.

Auto-reset 1 – the zone can trigger only 1 alarm. As long as the alarm is not cleared or the partition is not armed/disarmed, violations of the zone will not trigger any alarm.

Note: If the AUTO-RESET 3 and AUTO-RESET 1 options are enabled at the same time, the AUTO-RESET 3 option will have priority.

Clearing Autoreset – the alarm counters for zones for which the AUTO-RESET 3 or AUTO-RESET 1 option is enabled will be automatically reset at midnight (violations of these zones will be able to trigger alarms again).

Armed if one partition armed – the option refers to the zones which are assigned to both partitions. The zone is armed when one of the partitions is armed. If this option is disabled, the zone is armed when both partitions are armed. The option is also available in the event of ubypassing zones during disarming (if the option is enabled, the zone will only be unbypassed after disarming both partitions).

Blocks verification – an option for the 0. ENTRY/EXIT, 1. ENTRY/EXIT FINAL and 17. SHUNT LOCK zone types. The zone will block alarm verification in the partition:

- after the zone violation the 0. ENTRY/EXIT and 1. ENTRY/EXIT FINAL zone types, and also the 17. Shunt Lock zone type, when the Restore disables verification option is disabled;
- after the zone restore the 17. Shunt Lock zone type, when the RESTORE DISABLES VERIFICATION option is enabled.

In case of the 17. Shunt Lock zone type, the zone will disarm the system when the BLOCKS VERIFICATION option is disabled.

Restore disarms – an option for the 17. Shunt lock zone type. It is active, if the Blocks verification option is disabled. The zone restore will disarm the partition to which the zone belongs, and the zone violation will shorten the exit delay time. If the Restore disarms option is disabled, the zone violation will disarm the partition, and zone restore will shorten the exit delay time.

Restore disables verification – an option for the 17. Shunt lock zone type. It is active, if the Blocks verification option is enabled. The zone restore will blocks verification in the partition to which the zone belongs, and the zone violation will shorten the exit delay time. If the option Restore disables verification is disabled, the zone violation will blocks verification, and the zone restore will shorten the exit delay time.

Alarm clearing – an option for the 13. ARM/DISARM and 15. DISARMING zone types. Together with disarming, the alarm is cleared (except for the tamper alarms). Violation of the 15. DISARMING type zone will also clear the alarm, when the system is not armed.

Write violations to event log – an option for the 12: NO ALARM ACTION zone type. Violation of the zone is saved into the event log (the way of saving the event depends on the KEYBOX CONTROL option).

Store event only if armed – an option for the 12: No ALARM ACTION zone type. It is active when the WRITE VIOLATIONS TO EVENT LOG option is enabled. Zone violations are saved in the event log when the partition to which the zone belongs is armed.

Keybox control – an option for the 12: No ALARM ACTION zone type. It is active when the WRITE VIOLATIONS TO EVENT LOG option is enabled. Violation of the zone will result in logging an event which informs that the keybox is open. The event code is sent to the monitoring station. If this option is disabled, an event will be logged informing about zone violation, which will not be reported.

LED	Name displayed on LCD keypad	Options	Zone type
1	Al. on exit end	Alarm on exit delay end	0-10
2	Priority	Priority	all
3	Bypass disabled	Bypass disabled	all
4	Active night arm	Active in night arm	0-4
5	Active day arm	Active in day arm	0-4
6	Power up delay	Power-up delay	all
7	Warn. in part. arm	Warning in partial arming	0-4
8	Warn. on int. sir.	Warning on internal sirens	0-4
9	Auto-bypass 3	Auto-reset 3	0-10, 19
10	Auto-bypass 1	Auto-reset 1	0-10, 19
11	Autobypass reset	Clearing Autoreset	0-10, 19
12	Arm with one n	Armed if one partition armed	0-4
12	Arm.with one p.	Keybox control	12
13	40 Disable signs	Blocks verification	0, 1, 17
13	Disable verific.	Write violations to event log	12
		Restore disarms	17
م ا	Finish exit time	Restore disables verification	17
14		Store event only if armed	12
		Alarm clearing	13, 15

Table 5. The method of presenting zone options on keypads. In graphic mode, the options in the LCD keypad are numbered in the same way as in the LED keypad.

6. Outputs

There can be up to 12 outputs in the system:

- hardwired on the control panel PCB and in the expander. The number of available hardwired outputs is determined by the control panel during the identification procedure.
- wireless after connection of the ACU-100 controller. The number of available wireless outputs depends on the number of wireless devices registered in the system and is determined during the procedure of adding the same.

In the DLOADX program, the parameters and options of outputs are programmed in the "Versa – Outputs" window (see: Fig. 10).

In the keypad, the parameters and options of outputs are configured by means of the OUTPUTS function (SERVICE MODE ▶2. HARDWARE ▶3. OUTPUTS). Programming is performed

by means of the "step by step" method (the numbers are displayed in binary mode on the and LEDs of the first and second partition):

- 1. Select output.
- 2. Output function.
- 3. Cut-off time.
- 4. Triggering zones [actually, the partition armed mode is selected for the outputs with functions 18. ARMED STATUS and 20. ALARM/ARM STATUS, and the troubles for the output with function 19. TROUBLE STATUS (see: Section OUTPUT PARAMETERS)].
- 5. Output options.
- 6. Output name [only in LCD keypad].

6.1 Numeration of outputs in the system

The control panel supports outputs having numbers from 1 to 12. The numbers of hardwired and wireless outputs may coincide. The control panel will support them simultaneously.

6.1.1 Hardwired outputs

The hardwired outputs are assigned numbers automatically:

- the outputs on control panel main board have numbers from 1 to 4;
- the outputs in expander have numbers from 5 to 12.

6.1.2 Wireless outputs

The wireless outputs can be assigned numbers from 1 to 30. The numbers are assigned during the procedure of adding wireless devices (the output number is the same as the number of selected zone). You should bear in mind that the control panel does not support the outputs with numbers from 13 to 30.

6.2 Output functions

- 0. NOT USED
- **1. EXTERNAL SIREN** signals the burglary, panic and tamper alarms.
- **2. INTERNAL SIREN** signals the burglary, panic and tamper alarms, as well as the warning alarms.

Note: The way of signaling the tamper alarms by the outputs with functions 1. EXTERNAL SIREN and 2. INTERNAL SIREN depends on the global options TAMPER ALARM ALWAYS AUDIBLE and TAMPER ALARM ON INTERNAL SIRENS.

- **3. Burglary** signals the alarms from 0 to 7 type zones.
- **4. Fire Alarm** signals the fire alarms from keypad and from 10. 24H FIRE type zones.
- "DURESS" ALARM signals that code with DURESS right was used for arming/disarming or alarm clearing.
- **6. Panic Alarm** signals the panic alarms from keypad and from 7. 24H PANIC type zones.
- **7. AUX.** ALARM signals the medical assistance call alarms triggered from keypad and from 9. 24H MEDICAL type zones.
- **8. ALARM NOT VERIFIED** signals the unverified alarms.
- **9. ALARM VERIFIED** signals the verified alarms.
- **10. TAMPER ALARM** signals the tamper alarms.
- **11. FIRE DETECTORS POWER SUPPLY** the dedicated output for power supply of the fire detectors with automatic verification alarm. After violation of the fire zone the output will be

disabled for 16 seconds. If, after the power is turned on again, another violation from the fire zone occurs, the fire alarm will be triggered.

- **12. Power supply on ARMED** the dedicated output for power supply of the detectors which should not be active when the system is disarmed. It gets activated at the moment of starting the arming procedure (the exit delay is not taken into account).
- **13. ZONE VIOLATION** signals violation of the zones.
- **14.** Chime signals violation of the zones when they are disarmed.
- **15. Controlled** controlled by means of zones, timers, keypad or from keyfob.
- **16. READY STATUS** indicates whether the system is ready for arming, i.e. whether there are no violated zones (active when there is no violation).
- 17. EXIT DELAY STATUS indicates that the EXIT DELAY countdown is running.
- **18. Armed Status** indicates the armed mode (after completion of the exit delay countdown).
- **19. Trouble status** indicates troubles.
- **20. ALARM/ARM STATUS** indicates alarms (pulsating mode) and arm status (continuous mode after end of the exit delay countdown).
- **21. DETECTORS RESETTING** dedicated output to control the alarm memory reset in detectors. Activated at the moment of starting the arming procedure (the exit delay is not taken into account). It can also be activated by using the OUTPUTS RESET user function.

6.3 Output parameters

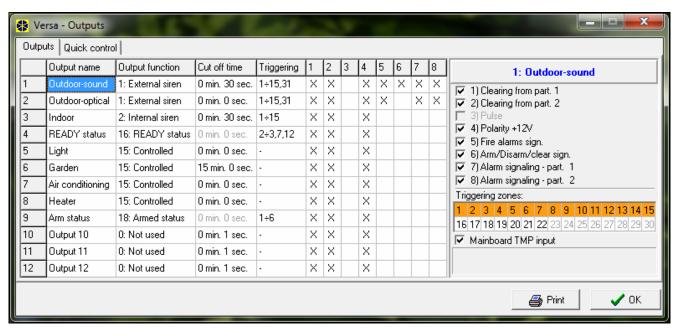


Fig. 10. "Versa – Outputs" window in the DLOADX program.

Output name – individual name of the output (up to 16 characters).

Cut-off time – time during which the alarm outputs and the outputs with functions 13. Zone VIOLATION, 14. CHIME, 15. CONTROLLED and 21. DETECTORS RESETTING are active. Entering the value 0 modifies the way of functioning of some outputs:

- alarm outputs remain active until the alarm is cleared,
- the 13. Zone violation output remains active throughout the time of zone violation (the Pulse option is disabled then),
- the 14. CHIME output remains active until deactivated by the OUTPUTS RESET user function,

 the 15. Controlled output remains active until another violation of the controlling zone, disabling of timer or disabling of the output by means of keypad (bistable mode).

Activation: zones – the zones whose status has effect on the output status.

Activation: partition armed mode – the armed modes whose activation in the partition will activate the 18. ARMED STATUS or 20. ALARM/ARM STATUS output (the number corresponds to the LED number in the LED keypad and to the item number in graphic mode in the LCD keypad):

- 1. Partition 1 full armed mode
- 2. Partition 1 night armed mode
- 3. Partition 1 day armed mode
- 4. Partition 2 full armed mode
- 5. Partition 2 night armed mode
- 6. Partition 2 day armed mode

In case of the 20. ALARM/ARM STATUS function output, selecting any armed mode in a partition means that the output will signal alarms from that partition.

Activation: troubles – the troubles the occurrence of which will activate the 19. TROUBLE STATUS output (the number corresponds to the LED number in the LED keypad and to the item number in graphic mode in the LCD keypad):

- AC loss control panel mainboard
- 2. Battery trouble control panel mainboard
- 3. Telephone line no voltage
- 4. Telephone line no dial tone
- 5. OUT1 output trouble
- 6. OUT2 output trouble
- 7. KPD output trouble
- 8. AUX output trouble
- Reporting trouble monitoring station 1
- Reporting trouble monitoring station 2
- 11. Wireless system jamming
- 12. Communication bus short circuit
- 13. Clock loss
- 14. RAM memory error
- 15. Mainboard TMP open
- 16. Zones tamper
- 17. Zones long violation
- 18. Zones no violation
- 19. Zones masking
- 20. Wireless device battery low
- 21. Wireless device communication loss
- 22. Module tamper
- 23. No presence (module)
- 24. AC loss (module)
- 25. Battery trouble (module)
- 26. Power output overload (module)
- 27. Low battery (keyfobs)
- 28. Module restart
- 29. Control panel restart

6.4 Output options

Clearing from partition 1 / Clearing from partition 2 – depending on the output function:

- alarm outputs the alarm can be cleared by users having access to the selected partition,
- the 1. EXTERNAL SIREN and 2. INTERNAL SIREN outputs with enabled ARMING/DISARMING/CLEARING SIGNALING option - the output will be activated when in the selected partition the procedure of arming has been initiated, arming is not possible, armed mode is deactivated, or when alarm is cleared in it.
- 5. "DURESS" ALARM the users having access to the selected partition can deactivate the output by means of the OUTPUTS RESET user function.

Partition 1 / Partition 2 – depending on the output function:

- 12. Power supply on ARMED the output is active when the selected partition is armed (it activates after starting the arming procedure, without taking the exit delay into account),
- 15. Controlled the output can be controlled by the users having access to the selected partition by means of the user function 8. Control (if no partition is selected, the function 8. Control will not be available in the keypad),
- 17. EXIT DELAY STATUS the output is active when the exit delay countdown is running in the selected partition,
- 21. DETECTORS RESETTING the output activates for a preset time, when the arming procedure is initiated in the selected partition (without taking into account the exit delay).
 The users authorized to access the given partition can activate the output by using the OUTPUTS RESET function.

Reset in partition 1 / **Reset in partition 2** – depending on the output function:

- 11. FIRE DETECTORS POWER SUPPLY the users having access to the selected partition can deactivate the output for 16 seconds by means of the OUTPUTS RESET user function,
- 14. CHIME, for which the CUT-OFF TIME equal to 0 has been programmed the users having access to the selected partition can deactivate the output by means of the OUTPUTS RESET user function.

Pulse – output with pulsating mode of operation (0.5/0.5 sec.). This option refers to the outputs for which the cut-off time is to be programmed (except for the 1. EXTERNAL SIREN and 2. INTERNAL SIREN outputs), and outputs with the 17. EXIT DELAY STATUS, 18. ARMED STATUS and 19. TROUBLE STATUS functions.

Polarity +12V – sets the output operating mode (see: Table 6).

	high-current output				
	option enabled (normal polarity)	option disabled (reverse polarity)			
active state	+12V voltage supplied	+12V voltage cut off			
inactive state	+12V voltage cut off +12V voltage				
	low-current output				
	option enabled	option disabled			
	(normal polarity)	(reverse polarity)			
active state	shorted to ground	disconnected from ground			
inactive state	disconnected from ground	shorted to ground			

Table 6. Mode of output operation depending on the Polarity +12V option.

Fire alarms signaling – option for the 1. EXTERNAL SIREN and 2. INTERNAL SIREN outputs. The output signals in pulsating mode the fire alarms from selected zones (see: ACTIVATION:

ZONES) and partitions (see: ALARM SIGNALING — PARTITION 1 and ALARM SIGNALING — PARTITION 2 output options).

- One partition armed signaling option for the 18. ARMED STATUS and 20. ALARM/ARM STATUS outputs. The output indicates armed mode when any of the two partitions is armed (if the option is disabled, only when both partitions are armed).
- **Arming/Disarming/Clearing signaling** option for the 1. EXTERNAL SIREN and 2. INTERNAL SIREN outputs (see also: CLEARING FROM PARTITION 1 and CLEARING FROM PARTITION 2 output options and ARMING/DISARMING/CLEARING SIGNALING FROM ZONES ONLY global option). The output signals:
 - starting the arming procedure (which is equivalent to arming if no exit delay has been programmed) – 1 pulse;
 - disarming 2 pulses;
 - alarm clearing 4 pulses;
 - denial of arming or arming procedure failure (see: PREVENT ARMING IF NOT READY global option or GRADE 2 global option) – 7 pulses.

One pulse duration is approx. 0.3 seconds.

- **Alarm signaling partition 1 / Alarm signaling partition 2** an option for the alarm outputs. The output signals the selected partition alarms which were not triggered by zones.
- **Timer 1 / Timer 2 / Timer 3 / Timer 4** options for the 15. Controlled outputs. The output is controlled by selected timer (if timer status changes to "ON", the output will be activated for the Cut-off time).
- **Mainboard TMP input** an option for the 1. EXTERNAL SIREN, 2. INTERNAL SIREN and 10. TAMPER ALARM outputs. The output will be activated by the mainboard tamper (violation of the mainboard TMP zone).

LED	Name displayed on LCD keypad	Options	Output function
		Clearing from partition 1	1-10
1	Part.1 clears	Partition 1	12, 15, 17, 21
		Reset in partition 1	11, 14
		Clearing from partition 2	1-10
2	Part.2 clears	Partition 2	12, 15, 17, 21
		Reset in partition 2	11, 14
3	Pulsation	Pulse	3-10, 13-15,
	Fulsation	ruise	17-19
4	Polarization +	Polarity +12V	all
	Fire alarm	Fire alarms signaling	1, 2
5		Timer 1	15
		One partition armed signaling	18, 20
6	Arm/dArm/Cl.chrp	Arming/Disarming/Clearing signaling	1, 2
0		Timer 2	15
7	Part.1 alarms	Alarm signaling – partition 1	1-10
<i>'</i>	Part. Falarms	Timer 3	15
8	Part.2 alarms	Alarm signaling – partition 2	1-10
0		Timer 4	15
9	31.TMP zone	Mainboard TMP input	1, 2, 10

Table 7. The way of presenting output options in keypads. The options in the graphic mode in the LCD keypad are numbered in the same way as in the LED keypad.

6.5 Quick control of outputs

If the quick control of the outputs 15. Controlled is to be available in keypads, the outputs of this type must be assigned to the corresponding keypad keys. One output can be assigned to each of the keys designated with numerals. To activate that output, press the key with respective numeral and confirm using the # key, and to deactivate the output, press the same key and confirm using the key.

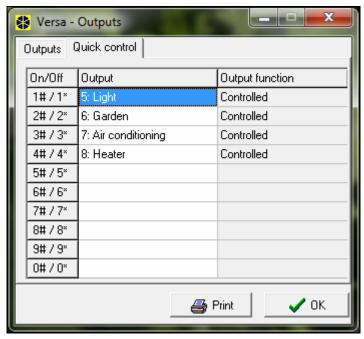


Fig. 11. Assigning the outputs to corresponding keypad keys in the DLOADX program (an example of configuration).

7. Programming Keypads and Expanders

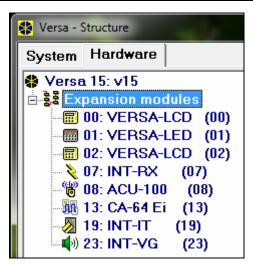


Fig. 12. List of devices connected to the control panel, displayed in the "Hardware" tab, "Versa – Structure" window (an example of configuration).

In the DLOADX program, the working parameters of keypads and expanders should be programmed in the "Versa – Structure" window, "Hardware" tab, after the required device is selected in the list (see. Fig. 12). In the keypad, their working parameters should be configured by means of the Settings function (Service mode ▶2. Hardware ▶1. Kpds &

EXPS. ▶2. SETTINGS). Having selected the device from the displayed list, the programming is performed using the "step by step" method.

The following can be programmed for all devices connected to the communication bus:

Name – individual name of the device (up to 16 characters).

Tamper signaled in partition – the partition in which tamper alarm will be triggered in the event of tamper or disconnection of the device from the system.

7.1 VERSA-LCD-GR / VERSA-LED-GR keypad

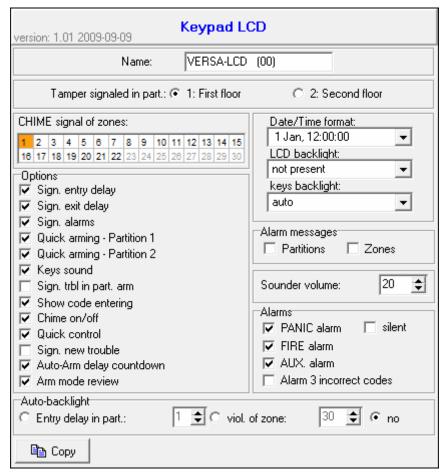


Fig. 13. Programming keypad settings in the DLOADX program (an example of configuration).

Signaling CHIME from zones – a list of zones which, when violated, will generate chime signal in the keypad.

Date/Time format – display mode for time and date.

LCD backlight – display backlight mode in the VERSA-LCD-GR keypad.

Keys backlight – backlight mode for the keys.

Auto-backlight – automatic illumination switch-on mode for the keys (in VERSA-LCD-GR keypad, also for the display).

Sounder volume – control of the loudness level of sounds generated in the keypad.

Keypad options

- Signal entry delay the keypad will acoustically signal the entry delay countdown.
- Signal exit delay the keypad will acoustically signal the exit delay countdown.

- Signal alarms the keypad will acoustically signal alarms. Duration of signaling is determined by the Keypad's Alarm TIME (see: Global TIMES). The alarms are not signaled when the Grade 2 global option is enabled.
- Quick arming Partition 1 quick arming is possible in partition 1 (see: USER MANUAL), unless the GRADE 2 global option is enabled.
- Quick arming Partition 2 quick arming is possible in partition 2 (see: USER MANUAL), unless the GRADE 2 global option is enabled.
- Key sound keystrokes on keypad are acoustically signaled.
- Signal trouble in partially armed the LED will be signaling trouble until both partitions are fully armed (if this option is disabled, activation of any armed mode in any partition will disable trouble signaling in the keypad).
- Show code entering the keypad will inform about a code being entered:
 VERSA-LCD-GR entering the code is shown by means of asterisks in the lower line of the LCD display;

VERSA-LED-GR – entering the code is shown by means of LEDs in the lower line of LEDs.

- Chime ON/OFF the chime signal can be enabled/disabled by means of the Btuv key (the key is to be pressed for about 3 seconds).
- Quick control the outputs can be quickly controlled by means of numerical keys. If any 15. Controlled output is assigned to the key (see: Section Quick Control of Outputs), press that key and confirm using # 1 to activate the output, and press the same key and confirm using * 4 to deactivate it.
- Signal new trouble the keypad will acoustically signal occurrence of a new trouble, if the TROUBLE MEMORY UNTIL REVIEW option is enabled (see: Section GLOBAL OPTIONS).
 The new troubles are not signaled when the GRADE 2 global option is enabled.
- Auto-arm delay countdown the keypad will acoustically signal the auto-arm delay countdown.

Alarms – options regarding the alarms triggered from keypad (the list of options in keypad includes also those for displaying alarm messages on the VERSA-LCD-GR keypad, as described below):

- Fire alarm press the ★ ♦ key for approx. 3 seconds to trigger the fire alarm.
- Panic alarm press the # 1 key for approx. 3 seconds to trigger the panic alarm.
- Panic alarm silent if the PANIC ALARM option is enabled, press the # 1 key for about 3 seconds to trigger the silent panic alarm. The silent panic alarm is not signaled, but the event code is reported to the monitoring station.
- Alarm: 3 incorrect codes if an invalid code is entered three times, alarm will be triggered.

Alarm messages – these options apply to the VERSA-LCD-GR keypad:

Partitions – an alarm in the partition will result in the alarm message being displayed.
 The message includes name of the partition in which the alarm was triggered.

Zones – an alarm from zone will result in the alarm message being displayed. The
message includes name of the zone which triggered the alarm. The zone alarm
message has priority.

The alarm messages are not displayed when the GRADE 2 global option is enabled.

7.2 ETHM-1 Ethernet module

- **Obtain IP address automatically (DHCP)** the module automatically downloads the IP address, subnet mask and gateway data from the DHCP server.
- Note: The IP address assigned to the module can be read out in the VERSA-LCD-GR keypad by means of the 8. EXPANDER VER. user function ([code] # ▶ 9. TESTS ▶ 8. EXPANDER VER.). For detailed description of the function use please refer to the user manual.
- **IP** address module IP address. The field is available, if the OBTAIN IP ADDRESS AUTOMATICALLY (DHCP) option is disabled.
- **Subnet mask** subnet mask in which the module works. The field is available, if the OBTAIN IP ADDRESS AUTOMATICALLY (DHCP) option is disabled.
- **Gateway** IP address of the network device by means of which the other devices of the given local network communicate with the devices in other networks. The field is available, if the Obtain IP address automatically (DHCP) option is disabled.
- **Obtain DNS server address automatically** the option is to be enabled, if the network address of DNS server is to be automatically downloaded from the DHCP server. The option is available, if the OBTAIN IP ADDRESS AUTOMATICALLY (DHCP) option is enabled.
- **DNS server** the DNS server to be used by the module. The field is available, if the OBTAIN IP ADDRESS AUTOMATICALLY (DHCP) option is disabled.

DLOADX

- **DloadX** -> ETHM-1 connection enable this option, if it is to be possible to initiate connection with the control panel via Ethernet from the DLOADX program.
- **Port** the number of TCP port which will be used for communication with the DLOADX program via Ethernet network. You can enter a value from 1 to 65535. It must be different from that entered for the other ports.
- **Note:** In most cases the port number programmed for the DLOADX program should be identical to that programmed for the ETHM-1 module (except for the situation when communication is effected through a network device with redirection to another port).
- **DLOADX server** the address of computer with DLOADX program. If communication is effected through a network device which is changing the address, e.g. in case of communication through a public network (WAN), it must be so-called public address. It can be entered in the IP address form (4 decimal numbers separated by dots) or as a name.
- **DloadX key** a sequence of 1 to 12 alphanumeric characters (digits, letters and special characters) defining the key to be used for encryption of the data sent through Ethernet network during communication with the DLOADX program. An identical key must be programmed in the DLOADX program and in the ETHM-1 module.

PING test

- Address to test address of the device to which the ping command is to be sent by the module to test the communication. It can be entered in the IP address form (4 decimal numbers separated by dots) or as a name.
- **Period** the interval between successive communication tests by means of ping command.

Tries no. before trouble – the number of unsuccessful communication tests (the module has received no answer to the ping command sent), after which a trouble will be reported.

Note: The function of communication testing by means of a ping command will be enabled after entering the address for testing, defining the period between successive tests (the value must be different from 0) and defining the rules of trouble reporting (the value must be different from 0).

7.3 ABAX wireless system controller

Response period – communication with the wireless devices takes place in preset time intervals. During that time the controller collects information on the status of devices and, if necessary, sends commands to the devices, e.g. switches the detectors to active/passive mode, enables/disables the test mode and modifies configuration of the devices. The response period can be **12**, **24** or **36** seconds. The less frequently communication between controller and wireless devices takes place, the more wireless devices can work within their mutual operating range (for 12 s – maximum 150, for 24 s – 300, and for 36 s – 450). Outside the response period, information on device tampers and on violations of active mode detectors is sent to the controller. Additionally, the Response Period has an effect on the level of energy consumption by the wireless devices. The less frequently communication between controller and wireless devices takes place, the lower energy consumption and the longer battery life is.

Synchronize – the function starts the procedure of synchronization, i.e. checking whether other ABAX wireless system controllers operate within the controller range. The controller will adjust the response period so that radio transmissions from several controllers should not be jammed by each other. Synchronization takes place automatically on starting the controller and after each operation of adding/removing devices supported by the controller.

Test mode – in the test mode, all wireless devices will signal communication with the controller by blinking LED, and the detectors will signal violations and tampers on their LED indicators. During normal operation of the wireless devices, the LED signaling is switched off for energy-saving considerations. Siren signaling is disabled in the test mode. The test mode is enabled/disabled during the response time, thus causing a delay, the duration of which depends on the defined response period. The test mode will be automatically exited after 30 minutes of:

- starting the test mode by using the DLOADX program (the 30 minutes' time runs from the moment of exiting the controller settings),
- terminating the service mode in control panel.

Note: According to requirements of the EN50131 standard, the level of radio signals sent by wireless devices is reduced during the test mode operation.

7.3.1 Parameters of ABAX system wireless devices

Filter – the number of consecutive response periods, during which establishing communication with the device was unsuccessful, for the loss of communication with the device to be reported. You can enter values from 0 to 50. Entering the digit 0 will disable the check for device availability in the system.

Always active — option available in most wireless detectors. It enables the detector to be permanently switched over to the active mode (see: Section WIRELESS DETECTORS — GENERAL PROGRAMMING RULES).

Note: The ALWAYS ACTIVE option does not have to be enabled for the wireless detectors assigned to 24-hr zones, because those zones are active at all times.

Configuration – some of the wireless devices provide additional parameters and options, which can be configured by radio:

- APD-100 wireless passive infrared detector. Sensitivity is to be programmed. In case
 of detectors with firmware version 2.01, determine additionally whether the option of
 immunity to pets up to 15 kg in weight should be enabled.
- **APMD-150** wireless dual motion detector. The following is to be programmed:
 - · sensitivity of infrared path;
 - sensitivity of microwave path;
 - test mode operation.
- AMD-100 and AMD-101 wireless magnetic contacts with an additional input. The AMD-101 detector takes up 2 zones in the system (the first: magnetic contact, the second: additional input of the detector). For detectors with electronics version 3.5 D or later, you should select the active reed switch.
- AMD-102 wireless magnetic contact with input for roller shutter detector. The detector takes up 2 zones in the system (the first: magnetic contact, the second: additional input). You should select an active reed switch for the magnetic contact and program operating parameters for the input for roller shutter detector:
 - number of pulses. Registering the preset number of pulses will result in zone violation.
 - pulse validity time. The time countdown runs from registering the pulse. Before the time expires, next pulses must be registered in sufficient number for the zone to be violated.

Note: The pulse counter is reset after expiry of the pulse validity time and after arming the partition to which the zone belongs.

- AGD-100 wireless glass break detector. Sensitivity of the high-frequency channel is to be programmed.
- AVD-100 wireless vibration detector and magnetic contact. The detector occupies 2 zones in the system (the first: magnetic contact, the second: vibration detector).
 Determine for the magnetic contact which of the two reed switches on the electronics board is to be active. Program the following for the vibration detector:
 - sensitivity. Sensing a single vibration meeting the sensitivity criterion will cause violation of the detector.
 - number of pulses. Registering the predefined number of vibrations within 30 seconds will cause violation of the detector. All vibrations count (they do not have to meet the sensitivity criterion). For the value 0, the pulses are not counted.

Note: Parameters are being independently analyzed. As a result, the detector can signal violation after registering a strong single vibration, caused by a powerful impact, as well as after a few slight vibrations, caused by a series of weak strikes.

- ASD-100 wireless smoke and heat detector. The following is to be programmed:
 - operating mode of the heat detector (you can disable the detector or select the detection class in accordance with Standard EN 54-5);
 - operating mode of the buzzer;
 - duration of alarm signaling by buzzer/LED.
- ARD-100 wireless reorientation detector. Sensitivity should be programmed for the detector.

- ASP-105 wireless triggered outdoor siren. It takes up 2 outputs and 2 zones in the system. The following is to be programmed:
 - · type of acoustic signaling;
 - maximum duration of acoustic signaling.
- ASP-205 wireless indoor siren. It takes up 2 outputs and 2 zones in the system. You
 can program two types of signaling, defining for each of them:
 - signaling maximum duration;
 - type of acoustic signaling;
 - whether optical signaling is to be enabled.
- ASW-100 E and ASW-100 F 230 V AC wireless controller. Operating mode should be selected.

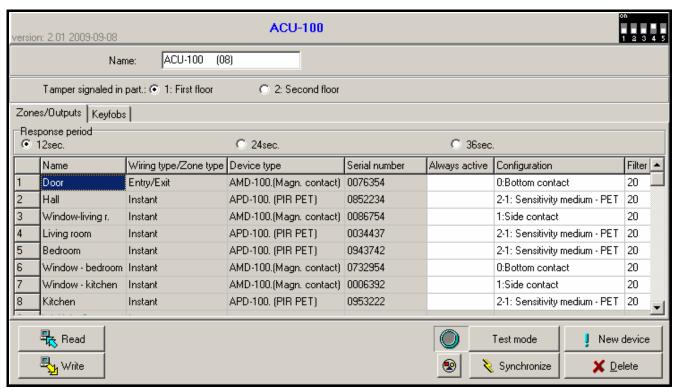


Fig. 14. Programming the settings of wireless system controller and wireless devices in the DLOADX program (an example of configuration).

7.3.2 Wireless detectors – general programming rules

The wireless detectors send information on violations, tampers and low battery. Information on violations and tampers is transmitted to the zones to which the detectors are assigned. The system zones to which the wireless detectors are assigned may be programmed as:

- NC, NO or EOL the zone will only inform about detector violation;
- 2EOL/NC or 2EOL/NO the zone will inform about detector violation and tamper.

The manner of operation of wireless detectors depends on the status of partition to which the zone with wireless detector belongs:

- partition is disarmed the detector works in passive mode. It is a battery saving mode, in which communication with the controller takes place mainly during time intervals determined by the RESPONSE PERIOD option, when information on violations and battery state is sent. Only detector tampers are sent immediately.
- partition is armed the detector works in active mode. The detector sends all information to the controller right away.

Changing the detector operating mode from passive to active and conversely takes place during the response time, hence it is carried out with a time delay as against the arming/disarming. Such a delay – depending on the selected frequency of polling – can be up to 12, 24 or 36 seconds.

The wireless detectors assigned to the 24-hr zones, which are always armed, are always in the active mode. Also other wireless detectors may always work in the active mode, if the ALWAYS ACTIVE option is enabled for them (see: Section PARAMETERS OF ABAX SYSTEM WIRELESS DEVICES).

According to the EN50131-3 standard all Hold-Up devices used with ACU-100 controller must be always in active mode.

Batteries ensure approx. 3 years' operation of the detectors, assuming that the detectors are in passive state for part of that period and that the RESPONSE PERIOD is 12 seconds. A longer polling period (24 or 36 seconds) means extension of the battery life time. The battery life time in the detectors switched permanently into the active mode is shorter than in those which are periodically switched to the passive mode. However, if the specific character of a detector or its installation place is such that the number of violations is low, switching the detector permanently into the active mode will not adversely affect the battery life time.

7.3.3 Wireless sirens – general rules of programming

The wireless sirens take up 2 outputs and 2 zones in the system. How the signaling is controlled depends on the siren:

- ASP-105 the first of outputs to which the siren is assigned controls the acoustic signaling. Parameters of the acoustic signaling are programmed for the siren (type and duration of acoustic signaling). The other output controls the optical signaling. The optical signaling is enabled when the output is active. The command to start signaling (and in case of optical signaling, also to stop it) is sent to the siren immediately.
- ASP-205 both outputs to which the siren is assigned control both acoustic and optical signaling. Parameters of the signaling triggered by each of the outputs are programmed separately for the siren. It makes it possible to configure two different, independently triggered ways of signaling. The outputs can thus separately control optical and acoustic signaling or signal different types of alarm (e.g. burglary and fire). The command to trigger signaling is sent to siren only during the response time. Hence the cut-off time for the control panel outputs which control the siren must be longer than the response time. It is recommended that that time correspond to the time programmed in the siren for signaling triggered by the output.

The system zones to which the wireless sirens are assigned may be programmed as:

- NC, NO or EOL the zone will only inform about troubles related to power supply;
- 2EOL/NC or 2EOL/NO the zone will inform about troubles related to power supply and tamper.

Zone type of the zones to which the wireless siren is assigned should be suitable for the information to be sent:

ASP-105

- first zone: low battery and tamper;
- second zone: 12 V DC external power loss and tamper.

• ASP-205

both zones: low battery and tamper.

Information on tamper is sent immediately, and that on troubles – during the response time.

Notes

- After starting the Service Mode or Test Mode and for 40 seconds after power-up, signaling in the siren is blocked to enable installation work to be carried out. Opening the tamper contact will not trigger any loud signaling, but information on tamper will be sent (when in service mode, the control panel is signaling no tamper alarms). The command to block/unblock signaling in connection with entering/exiting the test mode or service mode is sent during the response time.
- Tamper alarm on opening the tamper contact in the siren:
 - ASP-105 it lasts for the maximum time of acoustic signaling programmed for the siren (type of sound and optical signaling programmed);
 - ASP-205 it lasts 3 minutes (sound type 1 and optical signaling).

7.3.4 Wireless expanders of hardwired zones and outputs – general rules of programming

The wireless expander for hardwired zones and outputs (ACX-200 or ACX-201) takes up 4 zones and 4 outputs in the system. Parameters of the expander zones and outputs are programmed in the same way as for the other hardwired zones and outputs of control panel. You should however remember that the sensitivity of expander zones may be different from that programmed in the control panel:

- from 20 ms to 140 ms it corresponds to sensitivity programmed in the control panel;
- over 140 ms only some values are available: 300 ms, 500 ms, 700 ms, etc. every 200 ms (the programmed value is rounded off to that supported by the expander).

Note: The EN50131-3 standard requires that zones must react to signals lasting more than 400 ms. It means in case of the wireless expanders for hardwired zones and outputs that no values exceeding 300 ms should be entered when programming the sensitivity (the higher the value, the lower the sensitivity).

The expander provides on-line information about the zone status. The expander outputs are also controlled in the on-line mode. Only the programming of zones takes place during the response time (during one period, configuration data regarding one zone are sent to the expander, i.e. 4 response periods are required to send information on settings of 4 zones).

Note: If communication with the controller is lost, all previously activated outputs will be deactivated after 20 response periods.

Additionally, the ACX-201 expander will send information on:

- status of AUX1 and AUX2 power supply outputs information on overload is sent when the load current of AUX1 or AUX2 output exceeds 0.5 A.
- battery status information on low battery will be sent when the battery voltage drops below 11 V for more than 12 minutes (3 battery tests). The information will be sent to the controller when the battery voltage rises above 11 V more than 12 minutes (3 battery tests).
- AC supply status information on the loss of power supply will be sent when the AC power loss lasts for more than 30 seconds. The AC supply restore is reported with the same delay.

7.3.5 230 V AC wireless controllers – general rules of programming

Activation of the output to which the controller is assigned will result in energizing the 230 V electrical circuit (if reverse polarity of the output has been programmed, the circuit will be deenergized).

Depending on the operating mode, information on the button status (mode 0) or on the electrical circuit status (mode 1 and mode 2) will be sent to the control panel zone to which the controller is assigned. Information on the button status is being sent in on-line mode. Information on the electrical circuit status is sent during the response time. Pressing the button/closing the electrical circuit means violation of the zone to which the controller is assigned.

Be careful when selecting the FILTER value for ASW-100 E or ASW-100 F controller, i.e. the number of unanswered response periods after which the loss of communication with the controller will be reported. As the 230 V sockets are installed at low height, the controllers mounted in them are subject to the risk of being covered by people moving around the facility.

7.3.6 Configuration of wireless devices by means of the DLOADX program

In the DLOADX program, parameters of the wireless devices are configured in the "Versa – Structure" window, "Hardware" tab, after selecting the ACU-100 controller in the list of devices. Click on the "Read" button in the table to display the list of wireless devices available in the system. In order to save the new setting of wireless devices, click on the

"Write" button situated below the table (the LOADX program are not provided for reading/writing the settings of wireless devices supported by the controller). Described below is the procedure of programming additional parameters and options for wireless devices, available in the "Configuration" column.

APD-100 detector

For detectors with firmware version 2.01, enter a 2-digit sequence. The first digit relates to sensitivity (see: Table 8), and the second one – to the pet immunity option (0 – option disabled, 1 – option enabled). For detectors with older firmware, enter a digit from 1 to 3, which corresponds to the selected sensitivity (see: Table 8).

Digit Detector sensitivity	
1	low
2	medium
3	high

Table 8.

APMD-150 detector

Enter a 3-digit sequence:

1st digit – sensitivity of infrared path: from 1 to 4 (1 – minimum; 4 – maximum),

2nd digit – sensitivity of microwave path: from 1 to 8 (1 – minimum; 8 – maximum),

3rd digit – type of operation in the test mode: 0 (signaling violation after motion is sensed by both detectors), 1 (signaling violation after motion is sensed by infrared detector) or 2 (signaling violation after motion is sensed by microwave detector).

For example, entering the values 4-4-0 means that the infrared sensitivity path has been set to 4, the microwave sensitivity path also to 4, and in the test mode the detector will signal violation (the LED will light up) after motion is sensed by both detectors.

AMD-100 and AMD-101 magnetic contacts

For magnetic contacts with electronics version 3.5 D or newer, enter the digit 0 (the lower reed switch) or 1 (the side reed switch) to select which of the two reed switches is to be active. For magnetic contacts with an older electronics version, no additional parameters can be programmed (the active reed switch is selected by means of jumpers).

AMD-102 magnetic contact

For the magnetic contact (the first zone occupied by the AMD-102 magnetic contact), enter the digit 0 (the lower reed switch) or 1 (the side reed switch) to select which of the two reed switches is to be active.

For the roller shutter zone (the second zone occupied by the AMD-102 magnetic contact), enter 2 digits which correspond to the selected parameters:

1st digit – number of pulses: from 1 to 8;

2nd digit – pulse validity time: 0 (30 s), 1 (120 s), 2 (240 s) or 3 (unlimited time).

For example, entering the value 4-2 means that the zone will be violated after 4 pulses have been registered, 240 seconds being the maximum time that can elapse between the first and the last pulse.

AGD-100 detector

Enter a digit from 1 to 3 which corresponds to the selected sensitivity for the high-frequency channel (see: Table 8).

AVD-100 detector

For the magnetic contact (the first zone occupied by the AVD-100 detector), enter the digit 0 (the lower reed switch) or 1 (the side reed switch) to select which of the two reed switches is to be active.

For the vibration detector (the second zone occupied by the AVD-100 detector), enter a 2-digit sequence:

1st digit – sensitivity: from 1 to 8 (1 – minimum; 8 – maximum),

2nd digit – number of pulses: from 0 to 7.

For ex ample, entering the values 4-6 means that sensitivity has been set to 4, and the number of pulses to 6.

ASD-100 detector

Enter a 3-digit sequence corresponding to the selected parameters, as shown in Table 9.

1st digit		2nd digit		3rd digit	
digit	heat detector	digit	acoustic signaling	digit	signaling time
0	disabled	0	none	1	1 minute
1	A1	1	sound type 1	2	3 minutes
2	A2	2	sound type 2	3	6 minutes
3	В	3	sound type 3	4	9 minutes

Table 9.

For example, entering the 0-2-4 means that the heat detector has been disabled, acoustic signaling type 2 has been selected, and the signaling by means of buzzer/LEDs will last 9 minutes.

ARD-100 detector

Enter a number from the 1 to 16 range, according to the selected sensitivity (1 – minimum; 16 – maximum).

ASP-105 siren

Program the acoustic signaling parameters (the first zone to which the siren is assigned), i.e. enter the two-digit sequence, according Table 10.

	1st digit	2nd digit		
digit	acoustic signaling	digit	signaling time	
1	sound type 1	1	1 minute	
2	sound type 2	2	3 minutes	
3	sound type 3	3	6 minutes	
4	sound type 4	4	9 minutes	

Table 10.

For example, entering the values 2-3 means that acoustic signaling type 2 has been selected and that its duration will be 6 minutes.

ASP-205 siren

Configure the parameters of signaling triggered by the outputs to which the siren is assigned. Each output can trigger an individual type of signaling, thus you should program parameters for two signaling types, entering in each case a 3-digit sequence according to Table 11.

1st digit		2nd digit		3rd digit	
digit	signaling time	digit	acoustic signaling	digit	optical signaling
1	1 minute	0	none	0	disabled
2	3 minutes	1	sound type 1	1	enabled
3	6 minutes	2	sound type 2	-	-
4	9 minutes	3	sound type 3	-	-

Table 11.

For example, entering the values 2-0-1 means that the signaling will last 3 minutes, the acoustic signaling has been disabled, and the optical signaling enabled.

ASW-100 E and ASW-100 F controllers

Enter a digit from the 0 to 2 range, which corresponds to the selected mode of operation:

- **0** electric circuit is only remotely controlled;
- 1 electric circuit may be controlled remotely or manually;
- 2 electric circuit may be controlled remotely or manually, but remote control can be manually disabled.

7.3.7 Configuration of wireless devices by means of the LCD keypad

The working parameters for each wireless device are configured by the "step by step" method as the device is added to the system. In the first step, the FILTER parameter should be always programmed, which is applicable to nearly all wireless devices (except for the ARF-100 tester). The next steps depend on the type of device (e.g. for most detectors, it is defined in the next step whether the detector is to be always active).

The parameters of each wireless device can be modified at any moment by means of the Configure device function (Service mode ▶2. Hardware ▶1. Kpds & exps. ▶3. ACU-100 ▶2. Config. device). After the function is started, the keypad will display a list of zones to which the wireless devices are assigned. Even if the device occupies a few zones, only the first of them can be displayed. The number of displayed zones depends on the type of device. Using the ♠♠ and ♠♠♠ we select from the list the zone to which the device to be configured is assigned, and confirm your selection using the ♠♠♠♠ key. Described below is "step by step" programming the settings of the wireless devices for which additional configuration options and parameters are available.

APD-100 detector

- 1. Enter an appropriate value for the FILTER and press # 1.
- 2. Determine whether the detector is to be always active (− option disabled, □ − option enabled). Press # □.
- 3. Enter a digit from the 1 to 3 range, corresponding to the selected sensitivity level (see: page 53 Table 8). Press # 1.
- 4. Determine whether the pet immunity option is to be enabled (· − option disabled, □ − option enabled. Press # □.

Note: The last (fourth) step of programming is available for detectors with firmware version 2.01 or newer. In the detectors with older firmware, the programming ends after the third step.

APMD-150 detector

- 1. Enter an appropriate value for the FILTER and press # 1.
- 2. Determine whether the detector is to be always active (− option disabled, □ − option enabled). Press # □.
- 3. Enter a digit from the 1 to 4 range, corresponding to the selected sensitivity of infrared path (1 minimum; 4 maximum). Press # 1.
- 4. Enter a digit from the 1 to 8 range, corresponding to the selected sensitivity of microwave path (1 minimum; 8 maximum). Press # 1.
- 5. Using the and keys, select the way of operation in the test mode (PIR+MW, PIR or MW). Press # 1.

AMD-100 and AMD-101 magnetic contacts

- Enter an appropriate value for the FILTER and press # 1.
- 2. Determine whether the detector is to be always active (\cdot option disabled, \square option enabled). Press # \square .
- 3. Using the and keys, select which of the two reed switches (lower or side) is to be active. Press # 1.

Note: The last (third) step of programming is available for magnetic contacts with electronics version 3.5 D or newer. In the magnetic contacts with older electronics, the programming ends after the second step.

AMD-102 magnetic contact

Having selected the first zone to which the magnetic contact is assigned, do the following:

- Enter an appropriate value for the FILTER and press # 1.
- 2. Determine whether the detector is to be always active (− option disabled, □ − option enabled). Press # □.

3. Using the and keys, select which of the two reed switches (lower or side) is to be active. Press the # 1.

Having selected the second zone to which the magnetic contact is assigned, do the following:

- 1. Enter a number from the 1 to 8 range which corresponds to the number of pulses, the recording of which will violate the zone. Press the # 1.
- 2. Using the
 and
 keys, select the pulse validity time: 30, 120 or 240 seconds, or an unlimited time. Press the

 # ■.

AGD-100 detector

- 1. Enter an appropriate value for the FILTER and press # 1.
- 2. Determine whether the detector is to be always active (− option disabled, □ − option enabled). Press # □.
- 3. Enter a digit from the 1 to 3 range, corresponding to the selected sensitivity of high-frequency channel (see: page 53 Table 8). Press # 1.

AVD-100 detector

Select the first one of the two zones to which the detector is assigned and:

- 4. Enter an appropriate value for the FILTER and press # 1.
- 5. Determine whether the detector is to be always active (\cdot option disabled, \square option enabled). Press # \square .
- 6. Using the and keys, select which of the two reed switches of the magnetic contact (lower or side) is to be active. Press key #1.

Then select the second zone to which the detector is assigned and:

- 3. Enter a digit from the 1 to 8 range, corresponding to the selected sensitivity of vibration detector (1 minimum; 8 maximum). Press # 1.
- 4. Enter a digit from the 1 to 7 range, corresponding to the number of pulses, the recording of which will result in violation of the vibration detector. Press # 1.

ASD-100 detector

- 1. Enter an appropriate value for the FILTER and press # 1.
- 2. Using the ♠ and ▶ keys, define operating mode of the heat detectors. Press # ₺.
- 3. Using the
 and
 keys, define operating mode of the buzzer (· − acoustic signaling disabled; 1, 2 or 3 − type of acoustic signaling). Press # 1.
- 4. Using the

 A and

 keys, determine the time of alarm signaling by the detector (buzzer or LED). Press

 # ■.

ARD-100 detector

- Enter an appropriate value for the FILTER and press # 1.
- 2. Determine whether the detector is to be always active (− option disabled, □ − option enabled). Press # □.
- 3. Enter a number from the 1 to 16 range, corresponding to the selected sensitivity (1 minimum; 16 maximum). Press # 1.

ASP-105 siren

- 1. Enter an appropriate value for the FILTER and press # 1.
- 2. Using the and keys, select the type of acoustic signaling. Press #1.
- 3. Using the and keys, determine the time of alarm signaling. Press #1.

ASP-205 siren

In the event of the ASP-205 siren, two types of signaling are to be programmed. Select the first zone to which the siren is assigned to program the signaling triggered by the first siren control output. Select the second zones to program the signaling triggered by the second siren control output. In both cases, the process of configuration is almost identical (except that the FILTER parameter is not programmed for the second zone).

- 1. Enter an appropriate value for the FILTER and press # 1.
- 2. Using the and keys, select the operating mode of acoustic signaling (acoustic signaling disabled; 1, 2 or 3 type of acoustic signaling). Press # ■.
- 3. Using the

 and

 keys, determine the duration of acoustic signaling. Press

 # ■

 .
- 4. Define whether the optical signaling is to be enabled (− signaling disabled, □ − signaling enabled). Press # □.

ASW-100 E and ASW-100 F controllers

- 1. Enter an appropriate value for the FILTER and press # 1.
- 2. Using the and keys, select operation mode for the button ("inactive " − the electric circuit is only remotely controlled; "interim control" − the electric circuit may be controlled remotely or manually; "combined control" − the electric circuit may be controlled remotely or manually, but the remote control can be blocked manually). Press # ...

7.4 Proximity card arm/disarm device

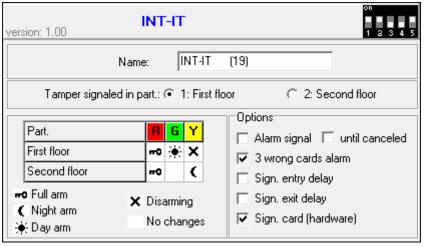


Fig. 15. Programming the proximity card arm/disarm device settings in the DLOADX program (an example of configuration).

- **LED R** reaction of the partition after removal of the card from the device, when the red LED is lit. The partition can be fully armed or its status may remain unchanged.
- **LED G / LED Y** reaction of the partition after removal of the card from the device, when the green / yellow LED is lit. One of the three armed modes can be enabled in the partition, the partition can be disarmed or its status may remain unchanged.

Note: In the DLOADX program, the type of partition reaction after removal of the card from the device is to be programmed by clicking in table on the field corresponding to the selected partition. A double click on the field will change the icon displayed in it. In the LCD keypad, the type of partition reaction should be selected from the list.

Device options

- Alarm signaling the device is audibly signaling alarms during the KEYPAD'S ALARM TIME.
- Alarm signaling until canceled the device is audibly signaling the alarm memory.
- 3 wrong cards alarm reading the unknown card code three times by the device will trigger alarm.
- **Signaling entry delay** the device is audibly signaling the entry delay countdown.
- Signaling exit delay the device is audibly signaling the exit delay and auto-arm delay countdown.
- Signaling card (hardware) the device is signaling by a single beep that the card code has been read out or the LED has lit up (the code will be sent to the control panel after removal of the card and only then the device will audibly signal its reaction to the read code).

8. Timers

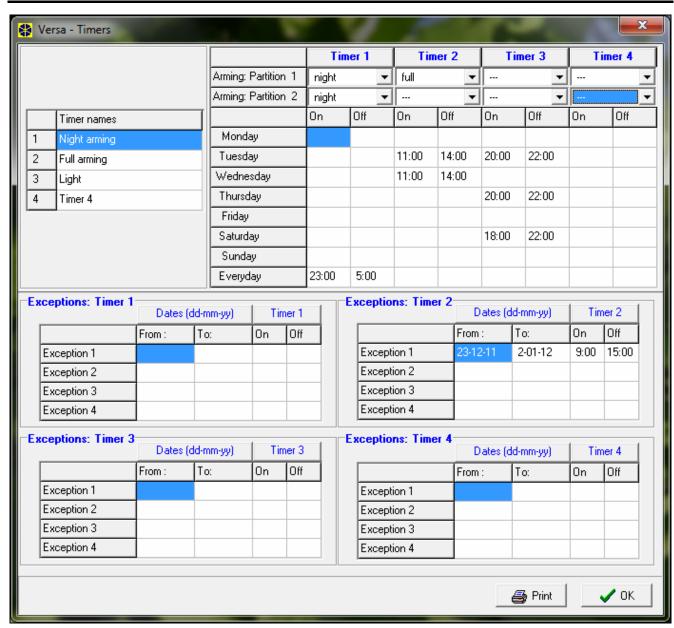


Fig. 16. "Versa – Timers" window in the DLOADX program.

4 timers can be programmed in the VERSA control panels. Using the timers, it is possible to control the armed mode of partitions and the outputs 15. Controlled. The timer compares time with the control panel clock and executes the selected function at a set time. In the LCD keypad, only the timer names can be programmed in the service mode. The other parameters are programmed by means of functions available in the user menu ([CODE] ▶ 6. Settings ▶ 3. Timers). In the DloadX program, all parameters can be programmed in the "Versa – Timers" window.

The following can be programmed for each timer:

- individual name (up to 16 characters);
- activation/deactivation time individually for each day of the week and globally for all days of the week (consequently, the timer can be activated/deactivated twice a day: according to the settings defined for that day and according to the settings defined for the whole week);
- 4 exceptions, i.e. the time periods when the timer will be activated/deactivated at a different time than that programmed individually for each day of the week or globally for all days of the week.

9. Reporting

The control panel can send event codes to two monitoring stations. The codes may be sent via the telephone line (telephone communicator built in the control panel) or the Ethernet network (ETHM-1 module with firmware version 1.04, connected to the control panel). If both forms of reporting are enabled, the control panel will first try to send the event code through the Ethernet network, and only when the attempt fails, it will switch over to the telephone reporting.

The following events can be reported:

- alarms,
- tampers,
- zone bypasses,
- troubles.
- arming/disarming,
- some other system related events (e.g. start and end of service mode, clock programming, end of remote programming, etc.).

Reporting options

- Station 1 or 2 event code will be sent to the station to which the control panel will be able to connect.
- Station 1 all event codes will be sent to Station 1.
- Station 2 all event codes will be sent to Station 2.
- Station 1 and 2 all event codes will be sent to both monitoring stations.
- Events amount limiting events from the same source are saved into the event log and reported to the monitoring station 3 times only. This option does not apply to the alarms from zones. For each zone, the number of alarms can be individually limited by means of the AUTO-RESET 3 or AUTO-RESET 1 option.
- Report module restarts in case of sending event codes in Contact ID or SIA format, the monitoring station is informed about module restarts.
- Restore after bell the zone restore code will only be sent to the monitoring station
 after the alarm signaling ends. If a few outputs are signaling alarm, the zone restore
 code will be sent when one of them stops signaling the alarm.

 Restore after disarm – the zone restore code will only be sent to the monitoring station after disarming the partition to which the zone belongs.

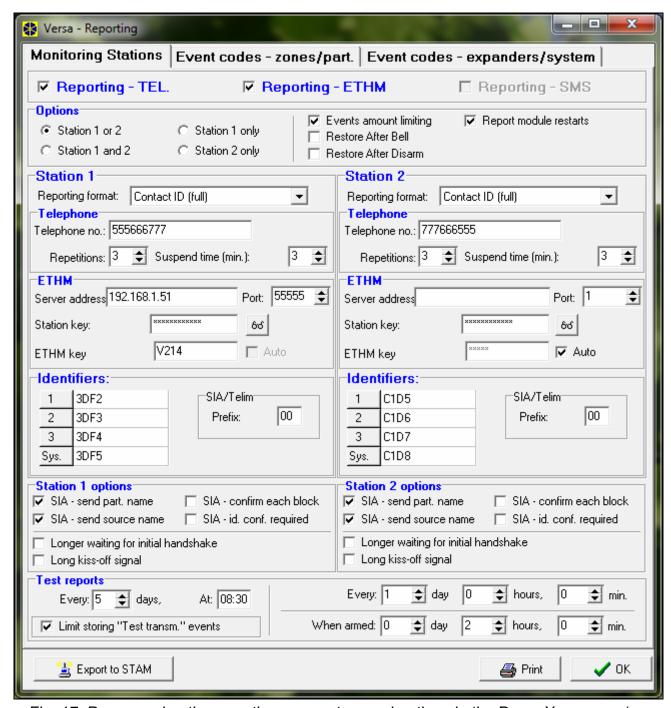


Fig. 17. Programming the reporting parameters and options in the DLOADX program (an example of configuration).

9.1 Reporting parameters and options

Station 1 / Station 2

Reporting format – format in which event codes are sent to the monitoring station. The VERSA series control panels allow to chose from several formats, including Contact ID and SIA.

Telephone number – telephone number of the monitoring station.

Repetitions – the number of attempts to establish telephone connection with the monitoring station after which, if there is no connection (busy number, no answer

- from the station, etc.), the control panel will suspend reporting. Up to 31 retries can be programmed. Programming the value 0 means that monitoring will be suspended after 8 attempts.
- Suspend time the time for which telephone reporting is suspended, after making the programmed number of attempts to establish connection with the monitoring station. The control panel will resume the attempt of establishing telephone connection with the monitoring station after this time expires or a next, new event occurs. Up to 30 minutes can be programmed. Programming the value 0 means that an attempt to establish telephone connection with the monitoring station will only be taken after occurrence of a new event in the system.
- **Server address** the address of STAM-2 monitoring station or SMET-256 converter. It can be entered in the form of IP address (4 decimal numbers separated by dots) or as a name.
- **Port** the number of TCP port through which communication with the monitoring station will be effected. You can enter values from 1 to 65535.
- **Station key** a sequence of 1 to 12 alphanumeric characters (digits, letters and special characters), defining the key to be used for encryption of data sent to the monitoring station.
- **ETHM key** a sequence of 1 to 5 alphanumeric characters to be used for identification of the control panel for the purposes of reporting via Ethernet.
- **Identifiers** event codes are sent to the monitoring station in one of the four identifiers:
 - identifier 1 events from zones (alarms, tampers, troubles);
 - identifier 2 alarms triggered from keypad, arming/disarming by means of zones, quick arming, loss of communication with wireless devices, as well as expander troubles and tampers;
 - identifier 3 arming/disarming and alarm clearing by means of code or proximity card;
 - system identifier power supply troubles, zone bypasses, troubles of control panel high-current outputs, communication bus trouble, programming related events, etc.
 - 4 hexadecimal characters (digits or letters from A to F) should be programmed for each identifier. Entering the value 0000 means that events assigned to that identifier will not be reported. Using the digit 0 in the identifiers is not recommended.
- **SIA / TELIM prefix** 2 characters which will precede each of the identifiers in case of the SIA and TELIM formats. Thus an identifier consisting of 6 characters can be obtained. 2 hexadecimal characters (digits or letters from A to F) can be programmed. Entering 00 means that the prefix will not be added. Using the digit 0 in the prefix is not recommended.

Station 1 options / Station 2 options

- Longer waiting for initial handshake the control panel will wait longer for handshake from the monitoring station in case of sending events in the Ademco Express, Contact ID or SIA format. Enable this option in the event of telephone reporting, if the monitoring station sends a non-standard initial handshake.
- Long kiss-off signal the control panel will accept a long kiss-off (acknowledgment) signal for receiving events in case of Ademco Express and Contact ID formats. Enable this option in the event of telephone reporting, if the monitoring station acknowledges receiving events in a non-standard way (the kissoff signal is longer than 800 ms).
- SIA send partition name in the SIA format, the name of partition where the
 event took place will also be sent, in addition to the event code.

- SIA send event source name in the SIA format, the name of event source (zone, user, etc.) will also be sent, in addition to the event code.
- SIA confirm each block the control panel will wait for acknowledgement by the monitoring station of receiving every data block sent in the SIA format. The option applies to telephone reporting.
- SIA identifier confirmation required the control panel will wait for acknowledgement by the monitoring station of receiving the identifier with which the data were sent. The option applies to telephone reporting.

Test transmissions – the test transmission may be sent:

- at a specified time. The test transmission code is sent regularly at a defined time. The number of days between transmissions and the time of sending transmission are programmed. Programming the value 0 for days means that the transmission will be sent everyday (in the same way, as in case programming the value 1).
- in specified time intervals. The test transmission code is sent after expiry of a defined time after the last transmission (irrespective of whether it was a test transmission or a code of another event was sent). The test transmission of this type may be sent in other time intervals, when the control panel is armed (which requires programming some additional parameters). The number of days, hours and minutes between transmissions are to be programmed.

All types of test transmission may be programmed simultaneously.

9.2 Event codes

For the pulse and Ademco Express formats, it is necessary to program codes which will be reported to the monitoring station if the defined events occur. The reported events are those for which a code different from "00" has been programmed. 2 hexadecimal characters (digits or letters from A to F) are to be programmed.

For the Contact ID and SIA formats, event codes consistent with format specification are sent. In case of the Contact ID (Selected) and SIA (Selected), the codes must be programmed at the events which are to be reported (not the programmed code, but a code consistent with the format specification will be sent).

9.3 Starting the reporting

Before you proceed to the programming, obtain from the monitoring station operator all data necessary to correctly start the reporting function:

- telephone number of the monitoring station (telephone reporting) or server address, TCP port number, Station KEY and ETHM KEY (reporting through Ethernet network),
- transmission format required by the monitoring station,
- identifiers assigned to the alarm system,
- list of event codes (not applicable to Contact ID and SIA formats).

9.3.1 Telephone reporting

- 1. Enable the REPORTING TELEPHONE option (see: GLOBAL OPTIONS).
- 2. Determine how the telephone numbers should be dialed (TONE DIALING global option; in case of the pulse dialing option PULSE 1/1,5 (OFF 1/2)).
- 3. Determine whether the control panel, prior to dialing the number, should check the telephone line for dialing signal (NO DIAL TONE TEST global option).
- 4. Determine the reaction to signals received after dialing the number (No answer tone test global option).

- 5. Determine whether the event codes will be sent to both monitoring stations or to one of them only (enable one of the options: STATION 1 OR 2, STATION 1, STATION 2 or STATION 1 AND 2).
- 6. Determine whether the number of events from the same source is to be limited (EVENTS AMOUNT LIMITING option).
- 7. Determine when the restore code is to be sent (RESTORE AFTER BELL, RESTORE AFTER DISARM options).
- 8. Program the following for the monitoring station to which event codes are to be sent:
 - format in which the codes will be sent.
 - telephone number,
 - the number of attempts to connect to the station after which, if there is no connection, the control panel will suspend reporting,
 - time for which reporting will be suspended after the programmed number of attempts to establish connection with the station has been made,
 - identifiers with which the events will be sent.
 - additional options (if Ademco Express, Contact ID, SIA or TELIM format is selected).
- 9. Define the parameters of test transmissions.
- 10. If a transmission format other than CONTACT ID (FULL) or SIA (FULL) is selected, program the codes for events which are to be reported.

9.3.2 Reporting via Ethernet network

Note: Events in TELIM format cannot be sent through Ethernet network.

- 1. Enable the REPORTING ETHM option (see: GLOBAL OPTIONS).
- 2. Determine whether the event codes will be sent to both monitoring stations or to one of them only (enable one of the options: STATION 1 OR 2, STATION 1, STATION 2 or STATION 1 AND 2).
- 3. Determine whether the number of events from the same source is to be limited (EVENTS AMOUNT LIMITING option).
- 4. Determine when the restore code is to be sent (RESTORE AFTER BELL, RESTORE AFTER DISARM options).
- 5. Program the following for the monitoring station to which event codes are to be sent:
 - format in which the codes will be sent.
 - server address.
 - TCP port,
 - encryption key (STATION KEY),
 - control panel identifier for the purposes of monitoring via Ethernet (ETHM KEY),
 - identifiers with which the events will be sent,
 - additional options if SIA format is selected.
- 6. Define the parameters of test transmissions.
- 7. If a transmission format other than CONTACT ID (FULL) or SIA (FULL) is selected, program the codes for events which are to be reported.

10. Messaging

The VERSA series control panels can notify about occurrence of specified events by means of 64 text messages (the SMS messages are sent by means of SATEL's GSM modules) and 16 voice messages (connection of the additional CA-64 SM or INT-VG module is required).

The messaging is effected independently of the reporting, however the reporting has priority. If, during the messaging, any events occur which must be reported by the control panel to the monitoring station, the messaging will be interrupted. The control panel will resume the messaging function after the event codes are sent to the monitoring station.

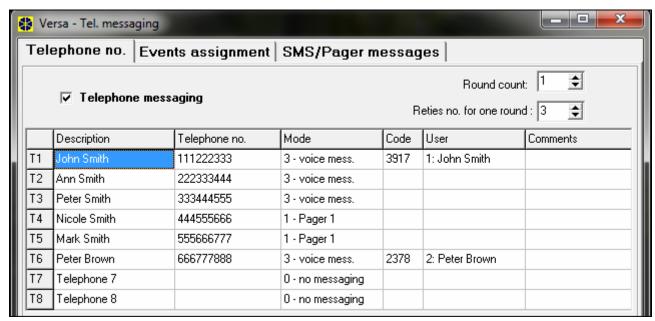


Fig. 18. Programming the messaging parameters in the DLOADX program (an example of configuration).

10.1 Messaging parameters and options

Round count – the number of event notification rounds to be completed by the control panel. Values from 1 to 7 can be programmed.

Retries number for one round – the number of unsuccessful attempts to notify a single telephone number about the event, after which the control panel gives up messaging to that number for the current round. Values from 1 to 7 can be programmed.

Description – individual name of the telephone number (up to 16 characters).

Telephone number – the telephone number to which messaging is effected.

Note: The users having the Programming right may edit the telephone numbers to be notified by means of the Telephone numbers user function ([code] ★ ◆ ► 6. Settings ► 4. Tel. Numbers).

Mode – selection of the form in which the indicated telephone number is to be notified (0 – no messaging, 1 – PAGER1, 2 – PAGER2, 3 – voice message).

Code – 4-digit code that can be used to acknowledge voice messaging from the telephone keypad, if the INT-VG module is connected to the control panel. Acknowledgement of the voice messaging will cancel telephone notification of the event.

User – a user having the INT-VG ACCESS right can be assigned to the telephone number. Thus, after acknowledgement of the voice messaging, the user will automatically get access to the voice menu, provided that the INT-VG module is connected to the control panel.

10.2 Event assignment

Enter the following information for the events of which the control panel is to notify:

- number of the text message by means of which messaging will be effected. If the messaging is to be effected in the form of text messages, the voice message assigned to the given text message will be used.
- telephone numbers to which the messaging will be effected if an event occurs.

10.3 SMS/Pager messages

The control panel makes it possible to program 64 different text messages to be used for messaging notification. The text messages are numbered from 1 to 64. After the CA-64 SM synthesizer or INT-VG voice module is connected, one voice message of 16 available, can be assigned to each text message. The voice messages are numbered from 0 to 15. The same voice message can be assigned to several text messages.

10.4 Starting the messaging

- 1. Enable the Telephone messaging option (see: Global options).
- 2. Define the mode of dialing the telephone numbers (global option TONE DIALING; in case of the pulse dialing option PULSE 1/1.5 (OFF 1/2)).
- 3. Determine whether the control panel, prior to dialing the number, should check the telephone line for dialing signal (global option NO DIAL TONE TEST).
- 4. Determine whether the control panel is to play back the voice message after going off-hook, or 15 seconds after the dialing is completed (global option NO ANSWER TONE TEST).
- 5. Determine whether alarm clearing should cancel the messaging (global option CLEAR MESSAGING ON ALARM CLEARING).
- 6. Define the number of attempts made by the control panel to notify about the event (parameters ROUND COUNT and RETRIES NUMBER FOR ONE ROUND).
- 7. Program the following data for at least one telephone to which notification messages will be sent:
 - description,
 - telephone number,
 - messaging type.
- 8. Record (CA-64 SM) / record or synthesize (INT-VG) the voice messages which are to be used for messaging (see: CA-64 SM synthesizer or INT-VG voice module manual).
- 9. Define the content of text messages which are to be used for messaging.
- 10. Assign the voice messages to the text messages.
- 11. Determine of which events to which telephone numbers and by means of which messages the control panel is to notify.
- 12. Program additional parameters for messaging by means of text messages.

11. User Schedules

The VERSA control panels enable 5 user schedules to be defined. These schedules are used when adding or editing users and specify their authority level. Additionally, they make it possible to define which functions will be assigned by default to the keyfob buttons, if keyfob is assigned to a user created with the use of the given schedule.

Note: Changing the rights in user schedule will change the rights of all users created with the use of that schedule, but changing the functions assigned to keyfob buttons will only have effect on the users to whom the keyfobs are yet to be added.

In the DLOADX program, the user schedules are programmed in the "Versa – Users" window, "User Schedules" tab (see: Fig. 19). In the keypad, the user schedules are configured by means of the function available in the USER TEMPLATES submenu (SERVICE MODE ▶8. USR TEMPLATES).

11.1 Parameters of the user schedule

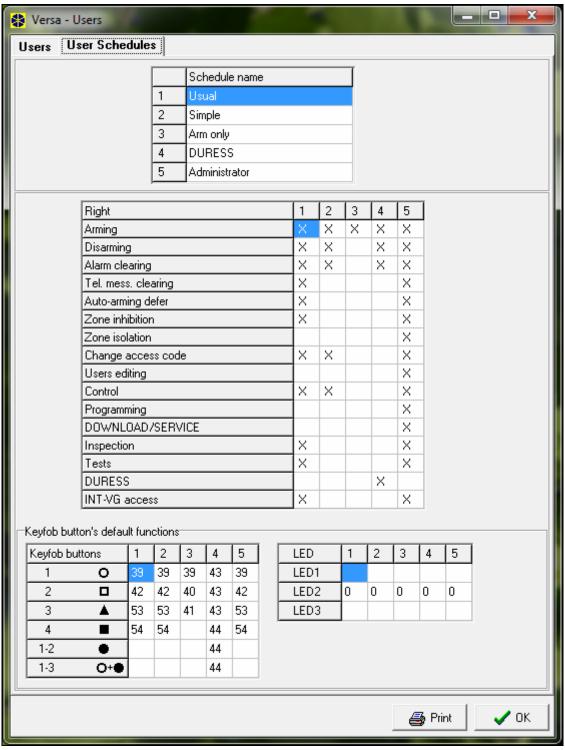


Fig. 19. Programming user schedules in the "Versa – Users" window, DLOADX program (example of settings).

Schedule name – individual name of the user schedule (up to 16 characters).

Right – defines which functions are available to the user. The following rights can be assigned to the user schedule (all or selected ones):

- Arming the user can arm the system.
- Disarming the user can disarm the system.
- Alarm clearing the user can clear alarms.
- Telephone messaging clearing the user can cancel messaging by means of the 3. ABORT MESSAGING user function (if he has at same time the ALARM CLEARING right and the CLEAR MESSAGING ON ALARM CLEARING global option is enabled, the messaging will be automatically canceled when the alarm is cleared).
- Auto-arming defer using the AUTO-ARMING DEFERMENT function ([CODE] * ◆
 ▶6. SETTINGS ▶1. A-ARM DEFER.), the user can defer arming by the timer.
- Zone inhibition the user can inhibit the system zones by means of the INHIBIT function ([CODE] ★ → ►4. BYPASSES ►1. INHIBIT).
- Zone isolation using the Isolate function ([CODE] * → 4. BYPASSES
 ▶1. ISOLATE), the user having additionally the ZONE INHIBITION right can isolate the system zones.
- Change access code the user can change own access code (1. Change code user function).
- Users editing the user can add, edit and delete users (2. Users user function).
- Control the user can control the outputs by means of the 8. Control user function.
- Programming the user has access to the 6. Settings user function, which allows him
 to program the control panel clock, timers and telephone numbers for messaging.
- DOWNLOAD/SERVICE the user has access to the 0. Service submenu, which
 allows him to determine the service access time and start the remote programming of
 the control panel (see: Section Starting Remote Programming VIA MODEM).
- Inspection the user has access to the 5. EVENT LOG and 7. SYSTEM STATE user functions. In case of arming by means of the VERSA-LCD-GR keypad, the user gets information about bypassed zones and causes of denial of arming, if any (the user can enforce the arming).
- Tests the user has access to the 9. Tests submenu.
- DURESS when a code/card with this right is used to perform any function the panel will send a DURESS reporting code to the central station. The DURESS alarm will be triggered in the partition in which alarm would be triggered in the event of tamper of the keypad/ proximity card arm/disarm device used for arming/disarming or alarm clearing.
- INT-VG access the user can operate the control panel by means of a telephone (DTMF), using the interactive voice menu available in the INT-VG module.

11.2 Functions assigned to keyfob buttons

Functions that can be assigned to the keyfob buttons are numbered, which makes easier their programming in the keypad (the keypad list can also be scrolled through by means of the $\mathbf{X} \mathbf{V}$ and $\mathbf{A} \mathbf{K} \mathbf{V}$).

In the LED keypad, the function number is presented in binary form on the LEDs 1-12, in the same way as the decimal values (see: page 15 Table 4). Only values corresponding to the function numbers can be entered.

- 1. Zone 1 violation
- 2. Zone 2 violation
- 3. Zone 3 violation
- 4. Zone 4 violation
- 5. Zone 5 violation
- 6. Zone 6 violation
- 7. Zone 7 violation
- 8. Zone 8 violation
- 9. Zone 9 violation
- 10. Zone 10 violation
- 11. Zone 11 violation
- 12. Zone 12 violation
- 13. Zone 13 violation
- 14. Zone 14 violation
- 15. Zone 15 violation
- 16. Zone 16 violation
- 17. Zone 17 violation
- 18. Zone 18 violation
- 19. Zone 19 violation
- 20. Zone 20 violation
- 21. Zone 21 violation
- 22. Zone 22 violation
- 23. Zone 23 violation
- 24. Zone 24 violation
- 25. Zone 25 violation
- 26. Zone 26 violation
- 27. Zone 27 violation
- 28. Zone 28 violation
- 29. Zone 29 violation
- 30. Zone 30 violation
- 31. Arming partition 1 full armed mode
- 32. Arming partition 1 night armed mode
- 33. Arming partition 1 day armed mode
- 34. Disarming / clearing alarm in partition 1
- 35. Arming partition 2 full armed mode
- 36. Arming partition 2 night armed mode
- 37. Arming partition 2 day armed mode
- 38. Disarming / clearing alarm in partition 2
- 39. Arming partitions 1 and 2 full armed mode
- 40. Arming partitions 1 and 2 night armed mode
- 41. Arming partitions 1 and 2 day armed mode
- 42. Disarming / clearing alarm in partitions 1 and 2
- 43. Loud panic alarm
- 44. Silent panic alarm
- 45. Fire alarm
- 46. Medical alarm
- 51. Output 1 activation
- 52. Output 2 activation

- 53. Output 3 activation
- 54. Output 4 activation
- 55. Output 5 activation
- 56. Output 6 activation
- 57. Output 7 activation
- 58. Output 8 activation
- 59. Output 9 activation
- 60. Output 10 activation
- 61. Output 11 activation
- 62. Output 12 activation
- 71. Output 1 deactivation
- 72. Output 2 deactivation
- 73. Output 3 deactivation
- 74. Output 4 deactivation
- 75. Output 5 deactivation
- 76. Output 6 deactivation
- 77. Output 7 deactivation
- 78. Output 8 deactivation
- 79. Output 9 deactivation
- 80. Output 10 deactivation
- 81. Output 11 deactivation
- 82. Output 12 deactivation
- 91. Output 1 switchover
- 92. Output 2 switchover
- 93. Output 3 switchover
- 94. Output 4 switchover
- 95. Output 5 switchover
- 96. Output 6 switchover
- 97. Output 7 switchover
- 98. Output 8 switchover
- 99. Output 9 switchover
- 100. Output 10 switchover
- 101. Output 11 switchover
- 102. Output 12 switchover

11.3 Confirmation on LEDs in the APT-100 keyfob

The list of information that may be presented on the keyfob LEDs is numbered, which makes programming easier (use the value keys to scroll through the list in the keypad). In the LED keypad, the number is presented in binary format on LEDs 1-12, in a similar way as the decimal values (see: page 15, Table 4). Only the values corresponding to the numbers on the list can be entered.

0. On

LED is lit when the control panel has confirmed receiving information on a keypress

1. Output 1 state

LED is lit when the selected output is active

2. Output 2 state

- 3. Output 3 state
- 4. Output 4 state
- 5. Output 5 state
- 6. Output 6 state
- 7. Output 7 state
- 8. Output 8 state
- 9. Output 9 state
- 10. Output 10 state
- 11. Output 11 state
- 12. Output 12 state

13. Arming: Partition 1	LED is lit when partition 1 is armed
14. Arming: Partition 2	LED is lit when partition 2 is armed
15. Arming: Partition 1 or 2	LED is lit when partition 1 or 2 is armed
16. Arming: Partition 1 and 2	LED is lit when partitions 1 and 2 are armed
17. Partition 1 – Full arm	LED is lit when partition 1 is fully armed
18. Partition 1 – Night arm	LED is lit when partition 1 is armed in night mode
19. Partition 1 – Day arm	LED is lit when partition 1 is armed in day mode
20. Partition 2 – Full arm	LED is lit when partition 2 is fully armed
21. Partition 2 – Night arm	LED is lit when partition 2 is armed in night mode
22. Partition 2 – Day arm	LED is lit when partition 2 is armed in day mode
23. Partition 1 – Alarm	LED is lit when there is alarm in partition 1
24. Partition 2 – Alarm	LED is lit when there is alarm in partition 2
25. Partition 1 or 2 – Alarm	LED is lit when there is alarm in partition 1 or 2
26. Trouble	LED is lit when there is trouble in the system

255. NOT PRESENT LED will not be used for confirmation

12. Compliance with EN 50131 Standard Requirements for Grade 2

To meet the requirements of EN 50131 standard for Grade 2, do the following:

- enable the global options:
 - GRADE 2;
 - TROUBLE MEMORY UNTIL REVIEW;
 - EVENTS AMOUNT LIMITING (in the DLOADX program, the option is available in the reporting options);
 - BLOCK AFTER 3 UNKNOWN CODES/CARDS.
- disable the global options:
 - TAMPER ALARM ALWAYS AUDIBLE;
 - ARM EVEN IF NOT READY AFTER EXIT DELAY.
- program the AC loss time after which a trouble will be reported to be no longer than 60 minutes (AC LOSS REPORT DELAY global parameter);
- in case of arming by means of timers, program the suitable auto-arming delay in partitions so that the system users can be warned of the automatic arming;
- program the entry delay to be no longer than 45 seconds;

- enable the AUTO-RESET 3 option for all burglary zones;
- disable the ALARM ON EXIT DELAY END option for alarm zones beyond the exit route;
- enable the BYPASS DISABLED option for tamper, panic and trouble zones;
- remember that the operation time of acoustic sirens should be minimum 90 seconds and maximum 15 minutes (which requires suitable configuration of the cut-off time of alarm signaling outputs).

13. History of Changes to the Manual Content

DATE	FIRMWARE VERSION	INTRODUCED CHANGES
2010-03	1.01	 Service mode menu has been updated (p. 7-12). Information on remote programming vie Ethernet network has been added (pages 17, 18, 20 and 24).
		• Section "Parameters related to programming by means of the DloadX program" has been modified (p. 19).
		Section "Starting remote programming via Ethernet network" has been added (p. 24).
		Description of a new global parameter "User code max. length" has been added (p. 25). Description of "Deporting FTUM" new entire has been added (p. 25).
		 Description of "Reporting - ETHM" new option has been added (p. 25). Description of "Grade 2" new global option has been added (p. 26).
		Description of "Arming/Disarming/Clearing signaling from zones only" global option has been updated (p. 26). Description of "Draward arming if not ready." now global artisp has been added.
		Description of "Prevent arming if not ready" new global option has been added (p. 27). Description of "Arm even if not ready after exit delay," new global entire has been
		 Description of "Arm even if not ready after exit delay" new global option has been added (p. 28). Description of "Event" parameter for "19. Trouble" reaction type zones has been
		added (p. 34). • Description of "19. Trouble" new reaction type zone has been added (p. 36).
		 Description of "Armed if one partition armed" zone option has been updated (p. 37).
		 Description of "Cut-off time" output parameter has been updated (p. 40). Description of "Clearing from partition 1" and "Clearing from partition 2" output options has been updated (p. 42).
		Description of "Reset in partition 1" and "Reset in partition 2" output options has been changed (p. 42).
		 Description of "Pulse" output option has been updated (p. 42). Description of "Arming/Disarming/Clearing signaling" output options has been
		updated (p. 43).
		 Description of "Mainboard TMP input" output options has been added (p. 43). Description of "Arm mode review" keypad option has been modified (p. 46).
		 Section "ETHM-1 Ethernet module" has been added (p. 47). Information on AMD-102 wireless magnetic contact and its programming has been added (pages 49, 54 and 56).
		 Information on ARD-100 wireless detector and its programming has been added (pages 49, 55 and 57).
		A note about panic devices interacting with ACU-100 controller has been added (p. 51).
		 Note about tamper alarm signaling by wireless sirens of ABAX system has been modified (p. 52).
		 A note about programming sensitivity of zones in wireless expanders of hard- wired zones and outputs has been added (p. 52).
		• Information on reporting events via Ethernet network after connection of ETHM-1 module has been added to section "Reporting" (p. 60).
		 Section "Reporting via Ethernet network" has been added (p. 64). Description of "Zone inhibition" and "Zone isolation" rights has been added (p. 68).
		- Decompliant of Zone limbulon and Zone isolation rights has been added (p. 00).

	 Description of "Inspection" user right has been updated (p. 68). Description of "DURESS" right has been supplemented (p. 68). Section "Confirmation on LEDs in APT-100 keyfob" has been added (p. 70). Section "Compliance with EN 50131 Standard Requirements for Grade 2" has been added (p. 71).
2011-06 1.02	 Some figures have been replaced (e.g. because of changing the DLOADX program appearance). Description of "Answering/remote control when armed partition 1 / 2" global options has been added (p. 28). Description of "20. Alarm/arm status" output function has been added (p. 40). Description of "21. Detectors resetting" output function has been added (p. 40). Section "Output parameters" has been updated (p. 40). Section "Output options" has been updated (p. 42). In section "Messaging parameters and options" the description of "Code" and "User" parameters has been added (p. 65). Description of "Zone isolation" right has been modified (p. 68). Description of "INT-VG access" right has been added (p. 68).

SATEL sp. z o.o. ul. Schuberta 79 80-172 Gdańsk POLAND tel. + 48 58 320 94 00 info@satel.pl www.satel.eu