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65. Sailboat Racing.Referring to the figure, estimate to the
nearest knot the speed of the sailboat sailing at the follow-
ing angles to the wind: 30°, 75°, 135°, and 180°.

66. Sailboat Racing.Referring to the figure, estimate to the
nearest knot the speed of the sailboat sailing at the follow-
ing angles to the wind: 45°, 90°, 120°, and 150°.

67. Conic Sections.Using a graphing utility, graph the
equation

for the following values of e (called the eccentricity of the
conic) and identify each curve as a hyperbola, an ellipse,
or a parabola.

(A) e 5 0.4 (B) e 5 1 (C) e 5 1.6

(It is instructive to explore the graph for other positive val-
ues of e.)

68. Conic Sections.Using a graphing utility, graph the
equation

for the following values of eand identify each curve as a
hyperbola, an ellipse, or a parabola.

(A) e 5 0.6 (B) e 5 1 (C) e 5 2

★ 69. Astronomy.

(A) The planet Mercury travels around the sun in an
elliptical orbit given approximately by

r 5
8

1 2 e cos u

r 5
8

1 2 e cos u

where r is measured in miles and the sun is at the
pole. Graph the orbit. Use TRACE to find the distance
from Mercury to the sun at aphelion (greatest
distance from the sun) and at perihelion (shortest
distance from the sun).

(B) Johannes Kepler (1571–1630) showed that a line
joining a planet to the sun sweeps out equal areas in
space in equal intervals in time (see the figure). Use
this information to determine whether a planet travels
faster or slower at aphelion than at perihelion. Explain
your answer.

r 5
3.442 3 107

1 2 0.206 cos u

Section 7-6 Complex Numbers in Rectangular 
and Polar Forms

Rectangular Form
Polar Form
Multiplication and Division in Polar Form
Historical Note

Utilizing polar concepts studied in the last two sections, we now show how com-
plex numbers can be written in polar form, which can be very useful in many
applications. A brief review of Section 2-4 on complex numbers should prove
helpful before proceeding further.

Rectangular Form

Recall from Section 2-4 that a complex number is any number that can be writ-
ten in the form

a 1 bi
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where a and b are real numbers and i is the imaginary unit. Thus, associated with
each complex number a 1 bi is a unique ordered pair of real numbers (a, b), and
vice versa. For example,

3 2 5i corresponds to (3, 25)

Associating these ordered pairs of real numbers with points in a rectangular
coordinate system, we obtain a complex plane(see Fig. 1). When complex num-
bers are associated with points in a rectangular coordinate system, we refer to the
x axis as the real axis and the y axis as the imaginary axis. The complex num-
ber a 1 bi is said to be in rectangular form.

Plotting in the Complex Plane

Plot the following complex numbers in a complex plane:

A 5 2 1 3i B 5 23 1 5i C 5 24 D 5 23i

S o l u t i o n

Plot the following complex numbers in a complex plane:

A 5 4 1 2i B 5 2 2 3i C 5 25 D 5 4i

On a real number linethere is a one-to-one correspondence between the
set of real numbers and the set of points on the line: each real number is
associated with exactly one point on the line and each point on the line
is associated with exactly one real number. Does such a correspondence
exist between the set of complex numbers and the set of points in an
extended plane? Explain how a one-to-one correspondence can be
established.

Polar Form

Complex numbers also can be written in polar form. Using the polar–rectangu-
lar relationships from Section 7-5,

x 5 r cos u and y 5 r sin u

M A T C H E D  P R O B L E M

1

E X A M P L E

1

FIGURE 1
Complex plane.
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we can write the complex number z 5 x 1 iy in polar form as follows:

z 5 x 1 iy 5 r cos u 1 ir sin u 5 r(cos u 1 i sin u) (1)

This rectangular–polar relationship is illustrated in Figure 2. In a more advanced
treatment of the subject, the following famous equation is established:

ei u 5 cosu 1 i sin u (2)

where eiu obeys all the basic laws of exponents. Thus, equation (1) takes on the
form

z 5 x 1 yi 5 r(cos u 1 i sin u) 5 reiu (3)

We will freely use reiu as a polar form for a complex number. In fact, some graph-
ing calculators display the polar form of x 1 iy this way (see Fig. 3 where u is
in radians and numbers are displayed to two decimal places).

Since cos u and sin u are both periodic with period 2p, we have

cos(u 1 2kp) 5 cos u
k any integer

sin(u 1 2kp) 5 sin u

Thus, we can write a more general polar form for a complex number z 5 x 1 iy,
as given below, and observe that reiu is periodic with period 2kp, k any integer.

GENERAL POLAR FORM OF A COMPLEX NUMBER

For k any integer

z 5 x 1 iy 5 r[cos (u 1 2kp) 1 i sin (u 1 2kp)]

z 5 rei(u12kp)

The number r is called the modulus, or absolute value,of z and is denoted
by mod z or . The polar angle that the line joining z to the origin makes with
the polar axis is called the argument of z and is denoted by arg z. From Figure
2 we see the following relationships:

MODULUS AND ARGUMENT FOR z 5 x 1 iy

Never negative

k any integer

where sin u 5 y/r and cos u 5 x/r. The argument u is usually chosen so
that 2180° , u # 180° or 2p , u # p.

 arg z 5 u 1 2kp

 mod z 5 r 5 Ïx2 1 y2

|z|

FIGURE 2
Rectangular–polar relationship.

FIGURE 3
(1 1 i) 5 1.41e0.79i.

1

2
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From Rectangular to Polar Form

Write parts A–C in polar form, u in radians, 2p , u # p. Compute the mod-
ulus and arguments for parts A and B exactly; compute the modulus and argu-
ment for part C to two decimal places.

(A) z1 5 1 2 i (B) z2 5 (C) z 5 25 2 2i

S o l u t i o n s Locate in a complex plane first; then if x and y are associated with special angles,
r and u can often be determined by inspection.

(A) A sketch shows that z1 is associated with a special 45° triangle (Fig. 4). Thus,
by inspection, r 5 , u 5 2p/4 (not 7p/4), and

(B) A sketch shows that z2 is associated with a special 30°–60° triangle (Fig. 5).
Thus by inspection, r 5 2, u 5 5p/6, and

z2 5 2(cos 5p/6 1 i sin 5p/6)

5 2e(5p/6)i

(C) A sketch shows that z3 is not associated with a special triangle (Fig. 6). So,
we proceed as follows:

To two decimal places

To two decimal places

Thus,

z3 5 5.39[cos (22.76) 1 i sin (22.76)]

5 5.39e(22.76)i To two decimal places

Figure 7 shows the same conversion done by a graphing calculator with a built-
in conversion routine (with numbers displayed to two decimal places).

Write parts A–C in polar form, u in radians, 2p , u # p. Compute the modu-
lus and arguments for parts A and B exactly; compute the modulus and argument
for part C to two decimal places.

(A) 21 1 i (B) (C) 23 2 7i1 1 iÏ3

M A T C H E D  P R O B L E M

2

FIGURE 7
(25 2 2i) 5 5.39e(22.76)i.

 u 5 2p 1 tan21 (2
5d 5 22.76

 r 5 Ï(25)2 1 (22)2 5 5.39

 5 Ï2 e(2p/4)i

 z1 5 Ï2[cos (2p/4) 1 i sin (2p/4)]

Ï2

2Ï3 1 i

E X A M P L E

2

FIGURE 4

FIGURE 5

FIGURE 6
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From Polar to Rectangular Form

Write parts A–C in rectangular form. Compute the exact values for parts A
and B; for part C, compute a and b for a 1 bi to two decimal places.

(A) z1 5 2e(5p/6)i (B) z2 5 3e(260°)i (C) z3 5 7.19e(22.13)i

S o l u t i o n s (A)

(B)

(C)

Figure 8 shows the same conversion done by a graphing calculator with a
built-in conversion routine.

If your calculator has a built-in polar-to-rectangular conversion routine,
try it on and , then reverse the process to see if you get
back where you started. (For complex numbers in exponential polar form,
some calculators require u to be in radian mode for calculations. Check
your user’s manual.)

Write parts A–C in rectangular form. Compute the exact values for parts A and
B; for part C compute a and b for a 1 bi to two decimal places.

(A) z1 5 (B) z2 5 3e120°i (C) z3 5 6.49e(22.08)iÏ2e(2p/2)i

M A T C H E D  P R O B L E M

3

Ï2e(p/4)iÏ2e45°i

 5 23.81 2 6.09 i

 5 7.19[cos (22.13) 1 i sin (22.13)]

 x 1 iy 5 7.19e(22.13)i

 5
3

2
2

3Ï3

2
 i

 5 311

22 1 i312Ï3

2 2
 5 3[cos (260°) 1 i sin (260°)]

 x 1 iy 5 3e(260°)i

 5 2Ï3 1 i

 5 212Ï3

2 2 1 i211

22
 5 2[cos (5p/6) 1 i sin (5p/6)]

 x 1 iy 5 2e(5p/6)i

E X A M P L E

3

FIGURE 8
7.19e(22.13)i 5 23.81 2 6.09 i.
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Let z1 5 1 i and z2 5 1 1 i .

(A) Find z1z2 and z1/z2 using the rectangular forms of z1 and z2.

(B) Find z1z2 and z1/z2 using the exponential polar forms of z1 and z2, u
in degrees. (Assume the product and quotient exponent laws hold
for eiu.)

(C) Convert the results from part B back to rectangular form and com-
pare with the results in part A.

Multiplication and Division in Polar Form

There is a particular advantage in representing complex numbers in polar form:
multiplication and division become very easy. Theorem 1 provides the reason.
(The exponential polar form of a complex number obeys the product and quotient
rules for exponents: bmbn 5 bm1n and bm/bn 5 bm2n.)

PRODUCTS AND QUOTIENTS IN POLAR FORM

If and , then

1.

2.

We establish the multiplication property and leave the quotient property for
Problem 32 in Exercise 7-6.

Write in trigonometric
form.

5 r1r2(cos u1 1 i sin u1)(cos u2 1 i sin u2) Multiply.

5 r1r2(cos u1 cos u2 1 i cos u1 sin u2

1 i sin u1 cos u2 2 sin u1 sin u2)

5 r1r2[(cos u1 cos u2 2 sin u1 sin u2) Use sum identities.
1 i(cos u1 sin u2 1 sin u1 cos u2)]

5 r1r2[cos (u1 1 u2) 1 i sin (u1 1 u2)] Write in exponential
form.

Products and Quotients

If z1 5 8e45°i and z2 5 2e30°i, find

(A) z1z2 (B) z1/z2

S o l u t i o n s (A)

5 16e75°i5 8 ? 2ei(45°130°)

 z1z2 5 8e45°i ? 2e30°i

E X A M P L E

4

5 r1r2e
i(u11u2)

z1z2 5 r1e
iu1r2e

iu2

z1

z2

5
r1e

iu1

r2e
iu2

5
r1

r2

ei(u12u2)

z1z2 5 r1e
iu1r2e

iu2 5 r1r2e
i(u11u2)

z2 5 r2e
iu2z1 5 r1e

iu1

Ï3Ï3
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(B)

= 4e15°i

If z1 5 9e165°i and z2 5 3e55°i, find

(A) z1z2 (B) z1/z2

Historical Note

There is hardly an area in mathematics that does not have some imprint of the
famous Swiss mathematician Leonhard Euler (1707–1783), who spent most of
his productive life at the New St. Petersburg Academy in Russia and the Prus-
sian Academy in Berlin. One of the most prolific writers in the history of the sub-
ject, he is credited with making the following familiar notations standard:

f (x) function notation

e natural logarithmic base

i imaginary unit, 

For our immediate interest, he is also responsible for the extraordinary
relationship

eiu 5 cos u 1 i sin u

If we let u 5 p, we obtain an equation that relates five of the most important
numbers in the history of mathematics:

eip 1 1 5 0

A n s w e r s  t o  M a t c h e d  P r o b l e m s

1.

2. (A) (B) 2[cos (p/3) 1 i sin (p/3)] 5 2e(p/3)i

(C) 5.83[cos (22.11) 1 i sin (22.11)] 5 5.83e(22.11)i

3. (A) (B) (C)

4. (A) z1z2 5 27e220°i (B) z1/z2 5 3e110°i

23.16 2 5.67i2
3

2
1

3Ï3

2
i2iÏ2

Ï2[cos (3p/4) 1 i sin (3p/4)] 5 Ï2e(3p/4)i

Ï21

M A T C H E D  P R O B L E M

4

5 82ei(45°230°)

z1

z2

5
8e45°i

2e30°i
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EXERCISE 7-6

A

In Problems 1–8, plot each set of complex numbers in a
complex plane.

1. A 5 3 1 4i, B 5 22 2 i, C 5 2i

2. A 5 4 1 i, B 5 23 1 2i, C 5 23i

3. A 5 3 2 3i, B 5 4, C 5 22 1 3i

4. A 5 23, B 5 22 2 i, C 5 4 1 4i

5.

6.

7. A 5 4e(2150°)i, B 5 3e20°i, C 5 5e(290°)i

8. A 5 2e150°i, B 5 3e(250°)i, C 5 4e75°i

B

In Problems 9–12, change parts A–C to polar form. For
Problems 9 and 10, choose u in degrees, 2180°, u # 180°;
for Problems 11 and 12 choose u in radians, 2p , u # p.
Compute the modulus and arguments for parts A and B
exactly; compute the modulus and argument for part C to two
decimal places.

9. (A) (B) 21 2 i (C) 5 2 6i

10. (A) 21 1 i (B) 23i (C) 27 2 4i

11. (A) 2 i (B) 2 2 i (C) 28 1 5i

12. (A) 2 i (B) 22 1 2i (C) 6 2 5i

In Problems 13–16, change parts A–C to rectangular form.
Compute the exact values for parts A and B; for part C
compute a and b for a 1 bi to two decimal places.

13. (A) 2e(p/3)i (B) e(245°)i (C) 3.08e2.44i

14. (A) 2e30°i (B) e(23p/4)i (C) 5.71e(20.48)i

15. (A) 6e(p/6)i (B) e(290°)i (C) 4.09e(2122.88°)i

16. (A) e(2p/2)i (B) e135°i (C) 6.83e(2108.82°)i

In Problems 17–22, find z1z2 and z1/z2.

17. z1 5 7e82°i, z2 5 2e31°i 18. z1 5 6e132°i, z2 5 3e93°i

19. z1 5 5e52°i, z2 5 2e83°i 20. z1 5 3e67°i, z2 5 2e97°i

Ï2Ï3

Ï7

Ï2

Ï2

Ï3

Ï3Ï3

Ï3

Ï3 1 i

A 5 2e(p/6)i, B 5 4epi, C 5 Ï2e(3p/4)i

A 5 2e(p/3)i, B 5 Ï2e(p/4)i, C 5 4e(p/2)i

21. z1 5 3.05e1.76i, z2 5 11.94e2.59i

22. z1 5 7.11e0.79i, z2 5 2.66e1.07i

Simplify Problems 23–26 directly and by using polar forms.
Write answers in both rectangular and polar forms (u is in
degrees).

23. (21 1 i)2

24. (1 1 i)2

25. (21 1 i)(1 1 i)

26. (1 1 i )( 1 i)

27. (1 2 i)3

28. (1 1 i)3

C

29. Show that r1/3e(u/3)i is a cube root of reiu.

30. Show that r1/2e(u/2)i is a square root of reiu.

31. If z 5 reiu, show that z2 5 r2e2ui and z3 5 r3e3ui. What do
you think zn will be for n a natural number?

32. Prove

APPLICATIONS

33. Forces and Complex Numbers.An object is located at
the pole, and two forces u and v act on the object. Let the
forces be vectors going from the pole to the complex num-
bers 20e0°i and 10e60°i, respectively. Force u has a magni-
tude of 20 pounds in a direction of 0°. Force v has a
magnitude of 10 pounds in a direction of 60°.

(A) Convert the polar forms of these complex numbers to
rectangular form and add.

(B) Convert the sum from part A back to polar form.

(C) The vector going from the pole to the complex
number in part B is the resultant of the two original
forces. What is its magnitude and direction?

34. Forces and Complex Numbers.Repeat Problem 33 with
forces u and v associated with the complex numbers 8e0°i

and 6e30°i, respectively.

z1

z2

5
r1e

iu1

r2e
iu2

5
r1

r2

ei(u12u2)

Ï3Ï3


