

SmartLCD™

1/4 VGA Graphic LCD Interface Controller with 12-bit ADC and 12-bit DAC

Technical Manual

1724 Picasso Avenue, Davis, CA 95616-0547, USA
Tel: 530-758-0180 Fax: 530-758-0181
Email: sales@tern.com Web address: http://www.tern.com

COPYRIGHT

SmartLCD, NT-Kit, MemCard, A-Engine, A104, and ACTF are trademarks of
TERN, Inc.

Am188ES and Am186ES are trademarks of Advanced Micro Devices, Inc.
Paradigm C/C++ is a trademark of Paradigm Corporation

Microsoft, MS-DOS, Windows95/98/2000/XP are trademarks of Microsoft Corporation.
IBM is a trademark of International Business Machines Corporation.

Version 3.0

September 11, 2002

No part of this document may be copied or reproduced in any form or by any means
without the prior written consent of TERN, Inc.

© 1999
1724 Picasso Avenue, Davis, CA 95616-0547, USA

Tel: 530-758-0180 Fax: 530-758-0181
Email: sales@tern.com Web address: http://www.tern.com

Important Notice

TERN is developing complex, high technology integration systems. These systems are
integrated with software and hardware that are not 100% defect free. TERN products are
not designed, intended, authorized, or warranted to be suitable for use in life-support
applications, devices, or systems, or in other critical applications. TERN and the Buyer
agree that TERN will not be liable for incidental or consequential damages arising from
the use of TERN products. It is the Buyer's responsibility to protect life and property
against incidental failure.
 TERN reserves the right to make changes and improvements to its products
without providing notice.

SmartLCD Table of Contents

i

Table of Contents

Chapter page Chapter page

1. Introduction ... 1-1
 1.1 Functional Description 1-1
 1.2 Features .. 1-3
 1.3 Physical Description 1-4
 1.4 SmartLCD Programming Overview 1-4
 1.4.1 Step 1 .. 1-5
 1.4.2 Step 2 .. 1-6
 1.4.3 Step 3 .. 1-6
 1.5 Minimum Requirements 1-6
 1.5.1 Minimum Hardware Requirements 1-6
 1.5.2 Minimum Software Requirements.. 1-7

2. Installation ... 2-1
 2.1 Software Installation 2-1
 2.2 Hardware Installation 2-1
 2.2.1 Connecting the SmartLCD to
 the PC.. 2-2
 2.2.2 Powering-on the SmartLCD........... 2-3

3. Hardware ... 3-1
 3.1 188 CPU – Introduction 3-1
 3.2 188CPU – Features 3-1
 3.2.1 Clock .. 3-1
 3.2.2 External Interrupts and Schmitt
 Trigger Input Buffer 3-1
 3.2.3 Asynchronous Serial Ports 3-2
 3.2.4 Timer Control Unit 3-2
 3.2.5 PWM outputs and PWD................. 3-3
 3.2.6 Power-save Mode........................... 3-3
 3.3 188 CPU PIO lines................................. 3-3
 3.4 I/O Mapped Devices 3-5
 3.4.1 I/O Space 3-5
 3.4.2 SED1335 3-6
 3.4.3 Programmable Peripheral Interface
 (82C55A)... 3-6
 3.4.4 Real-time Clock RTC72423 3-8
 3.4.5 UART SCC2691 3-8
 3.5 Other Devices .. 3-8
 3.5.1 On-board Supervisor with Watchdog
 Timer... 3-8
 3.5.2 EEPROM....................................... 3-9
 3.6 Inputs and Outputs 3-9
 3.6.1 12-bit ADC (TLC2543) 3-9

 3.6.2 Dual 12-bit DAC3-10
 3.6.3 High-voltage, High-current
 Drivers ..3-11
 3.6.4 CCFL Inverter3-12
 3.6.5 Negative 24V Power Supply and
 adjustable contrast voltage..............3-12
 3.6.6 Touchscreen and Mechanical
 Pushbuttons....................................3-12
 3.7 Headers and Connectors3-13
 3.7.2 Expansion Ports3-14
 3.7.3 Jumpers and Headers3-15

4. Software .. 4-1
 4.1 AE.LIB ... 4-2
 4.2 Functions in AE.OBJ 4-2
 4.2.1 SmartLCD Initialization 4-2
 4.2.2 External Interrupt Initialization 4-4
 4.2.3 I/O Initialization 4-5
 4.2.4 Timer Units 4-5
 4.2.5 Analog-to-Digital Conversion 4-6
 4.2.6 Digital-to-Analog Conversion 4-7
 4.2.7 Other Library Functions 4-7
 4.3 Functions in SER0.OBJ/SER1.OBJ 4-9
 4.4 Functions in SCC.OBJ4-14
 4.5 Functions in AEEE.OBJ4-16
 4.6 Functions in SL.LIB4-17

Appendices:

A. SmartLCD LayoutA-1
 B. UART SCC2691B-1
 C. RTC72421 / 72423C-1
 D. Serial EEPROM MapD-1
 E. Software Glossary E-1
 F. Touchscreen Layout Template F-1

Schematics:

 SmartLCD

SmartLCD Chapter 1: Introduction

1-1

Chapter 1: Introduction

1.1 Functional Description

The SmartLCD (SL) is a complete C/C++ programmable user interface that includes a 320 x 240 graphic
LCD (1/4 VGA), touch screen, CCFL backlighting, LCD controller (SED1335), and an embedded
controller (188 CPU). The available on-board power supplies include a 5V switching regulator, -24V
voltage source, CCFL backlighting power, and software-programmable LCD contrast voltage.

320 x 240
¼ VGA
LCD

188 CPU
16-bit CPU

40 MHz
80x86

Compatible

16-Bit Timers (3)
Ext. Interrupts (8)

ADC U10
11 Ch. 12-bit

PPI U5

RTC U4

UART
SCC2961

EEPROM
U7

ROM/FLASH
512 KB

SRAM
512 KB

32 I/O lines
8-bit Data

Bus

Serial Ports (2)

RS232 Drivers

DMA(2)

SER 0 SER 1

Watchdog Timer

ADC U29
10 Ch. 12-bit

7 HV Drivers
U18

RS232
or

RS485

DAC outputs
U11 + U23
2 Ch. + 2 Ch.

H5

H16

H5

691 U6

J2

J1 & P1
(PC104)

H3

H5

H1
Ser0 -

DEBUG

H2
Ser1

SmartLCD

HV7

HV4+ HV6

Switching
regulator

VOFF U17

CCFL
H13

PPI
U20

H15

PPI
U27

H4/F1

14 Push-buttons
PB2-15

SED1335
LCD

controller
U15

Image
buffer
U16

H10

H11

H12

Sharp

Hantronix

Pixtech

Negative
Voltage

power supply
(-24V)

HV5

H7

LCD
contrast

adjustment

VA

Figure 1.1 Functional block diagram of the SmartLCD

Measuring 6.5 by 4.3 inches, the SmartLCD supports 512 KB ROM/Flash, 512 KB battery-backed
SRAM, a 512-byte serial EEPROM, real-time clock (RTC72423), lithium coin battery, three
timer/counters, watchdog timer, PWM, and up to three serial ports (RS-232/485). It also supports up to 20
channels 12-bit ADC, up to four channels of 12-bit DAC, and seven high-voltage drivers. A total of three
PPIs (82C55) provide 24x3 TTL I/Os in addition to the 32 multifunctional I/O pins from the CPU.

Chapter 1: Introduction SmartLCD

1-2

Additional memory can be added via the FlashCore-0 (FC-0) interface. Using the FC-0, 50-pin Compact
Flash memory cards may be added, with a capacity of up to 1GB.

Two DMA-driven serial ports from the CPU support high-speed, reliable serial communication at a rate of
up to 115,200 baud. An optional UART SCC2691 may be added for a third UART on board and can be
configured as RS-232 or RS-485, supporting either normal 8-bit or 9-bit multi-drop RS485/422 network
with twisted-pair wiring.

There are three 16-bit programmable timers/counters and a watchdog timer. Two timers can be used to
count or time external events, at a rate of up to 10 MHz, or to generate non-repetitive or variable-duty-
cycle waveforms as PWM outputs. Pulse Width Demodulation (PWD), a distinctive feature of the 188
CPU, can be used to measure the width of a signal in both its high and low phases. It can be used in many
applications, such as bar-code reading.

The 32 I/O pins from the CPU are multifunctional and user-programmable. Some of the I/O pins are used
for serial ports, timer I/Os, or clock, You may have 15 or more lines free to use, depending on your
application.

Three 82C55 PPI chips (U5, U20, U27) provide 72 bi-directional I/O lines, of which 3 lines (U5 I20, I21,
I22) are used for the ADC (U10) and 22 lines (U27 T00-07 T10-15, T20-27) are used to interface to 70
key matrix touch screen and 14 push bottoms. The 24 I/O lines at H15 from U20 and 21 I/O pins at H5
from (U5) are free for application.

Figure 1.2 Front view of the SmartLCD: 320x240 graphic LCD displaying bird

 In order to interface to a ¼ VGA, 320x240-pixel graphic LCD, an LCD controller (SED1335, SMOS)
and an image buffer are on-board. The 188 CPU can communicate with the SED1335 via high-speed 8-bit
data bus. Software drivers and sample programs are available for applications that require both graphics
and text display. Power supplies for the CCFL backlighting, -24V negative voltage, and the regulated 5V
can be controlled by software for low power consumption in portable battery applications. The battery
voltage can be measured using one channel of 12-bit ADC. The LCD display contrast voltage can be
adjusted using one channel of 12-bit DAC.

A transparent 10x7-key matrix touchscreen is adhered to the front of the 320x240 graphic LCD. A sample
program “sl_grid.c” will highlight the 70-key grid and respond to touch.

There are eight external interrupt inputs. Schmitt-trigger inverters are provided for six interrupt inputs, to
increase noise immunity and transform slowly-changing input signals into fast-changing and jitter-free
signals.

A supervisor chip with power failure detection, a watchdog timer, and an LED are on-board.

An optional real-time clock provides information on the year, month, date, hour, minute, second, and 1/64
second, and an interrupt signal.

Up to two 12-bit ADC chips (TLC2543) can be installed. The ADC chips each have 11 channels of analog
inputs with sample-and-hold and a high-impedance reference input (5V) that facilitate ratiometric

SmartLCD Chapter 1: Introduction

1-3

conversion, scaling, and isolation of analog circuitry from logic and supply noise, supporting conversion
up to a sample rate of approximately 10 KHz based on the 40 MHz CPU. The SL may use ADC to
monitor the power input.

Up to two, 2-channel 12-bit DAC chips can be installed on-board supporting a total of four channels 12-
bit, 0-4.095V analog voltage outputs capable of sinking or sourcing 5 mA. By default, one DAC channel
is used to control the LCD contrast.

There are seven solenoid drivers on-board, each capable of sinking 350 mA at 50V. Two solenoid drivers
are used to control the CCFL backlighting, and one solenoid driver is used to control the negative power
source.

1.2 Features

Standard Features
• Dimensions: 6.5 x 4.3 inches
• Program in C/C++
• Power consumption:
 100/170 mA at 9V for 40/20 MHz without CCFL and negative power-on.

 90/130 mA at 12V for 40/20 MHz without CCFL and negative power-on.
 In standby mode, less than 1 mA with Switching Regulator VOFF=high.
 280 mA at 12V with the CCFL back lighting and negative power on.

• Compact Flash card support, up to 1GB (via FC-0)
• Power input: +8.5V to +12 V unregulated DC. On-board +5V switching regulator.

Although the Switching Regulator is rated at +24V, no more than +12V input is
allowed. Higher input voltage will damage the CCFL power supply.

• Storage Temperature: -40°C to +80°C. Operating Temperature: -20°C to +70°C
• 320 x 240 graphic LCD, SED 1335, 10x7 touch screen, CCFL backlighting

(module size 167x109 mm; viewing area 121x91 mm)
• 16-bit CPU (188 CPU), Intel 80x86 compatible, 40 MHz or 20 MHz
• 512KB SRAM, and support for up to 512KB Flash/ROM
• 2 high-speed PWM outputs and Pulse Width Demodulation
• 24x3 bi-directional I/O lines from three PPIs (82C55).
• 512-byte serial EEPROM, external interrupt inputs, 3 16-bit timer/counters
• 2 CPU serial ports (RS-232)
• 2 channels of 12-bit DAC, 0-4.095V output. One DAC is used for the LCD contrast adjustment.
• 11 channels of 12-bit ADC in U10 and H5, sample rate up to 10 KHz (TLC2543)
• Supervisor chip (691) for power failure, reset, and watchdog
• 7 solenoid drivers: 2 for CCFL, one for negative power supply.

Optional Features:

• 10 additional channels of 12-bit ADC, sample rate up to 10 KHz (TLC2543)
• 2 additional channels of 12-bit DAC, 0-4.095V output
• 10 additional channels of 12-bit ADC in U29 and H16, sample rate up to 10 KHz (TLC2543)
• SCC2691 UART (on-board) supports 8-bit or 9-bit networking

UART comes with RS232 (default) or 485 drivers
• Real-time clock RTC72423, lithium coin battery

Chapter 1: Introduction SmartLCD

1-4

1.3 Physical Description

The physical layout of the SmartLCD is shown in Figure 1.3.

PPI

U27

SED1335

U15

74HC14
U24

74HC14
U25

PA
L

U

22

J11

P3
P2

H10 H11

J6

H12
H14

U
18

H

V
 D

ri
ve

r

U19

U26

O
p

am
p

32
4 U

28

U16

Image
buffer
SRAM

RT4

H7

H8

RT1

RT2

RT3

H6

PPI

U20

10

11

1

2

3

4

5

C
C

FL
 B

ac
kl

ig
ht

in
g

H13

12

13

14

H15

6

7

8

9

H
16

A
D

C

T
L

C

25
43

U29

Beeper

Touch screen F1

H5
H4

J3

J8 J5 J4

P1

H3

J14
RT5

H1

SER0

H2

SER1

R
S2

3

U12

SRAM

U1

PPI

U5

188 CPU

U2

RTC

U4

EE U7

U9

74
H

C

14

DAC U11

ADC
TLC2543

U10
J2

DAC U23

Step2

691

U6

J1

J9

U3
ROM/
Flash

U8

U
A
R
T

Step 2 jumper
(should be OFF
for debugging in
Step 1)

Figure 1.3 Physical layout of the SmartLCD

1.4 SmartLCD Programming Overview

Development of application software for the SmartLCD consists of three easy steps, as shown in the block
diagram below.

Replace DEBUG ROM, project is complete
STEP 3

Test SmartLCD in the field, away from PCSTEP 2
Application program resides in the battery-backed SRAM

 Debug C/C++ program on the SmartLCD with Remote Debugger
STEP 1 Serial link PC and SmartLCD, program in C/C++

Make application ROM or Download to Flash

SmartLCD Chapter 1: Introduction

1-5

You can program the SmartLCD from your PC via serial link with an RS232 interface. Your C/C++
program can be remotely debugged over the serial link at a rate of 115,000 baud. The C/C++ Evaluation
Kit (EV-P) or Development Kit (DV-P) from TERN provides the Paradigm C/C++ environment, complete
with a text editor, compiler, locater, I/O driver libraries, sample programs, and documentation. These kits
also include a DEBUG ROM (AE_0_115) to communicate with the Paradigm C/C++ environment, a PC-
V25 (DB9-IDE10) cable to the connect the controller to the PC, and a 9-volt wall transformer. See your
Evaluation/Development Kit Technical Manual for more information on these kits.

After you debug your program, you can test run the SmartLCD in the field, away from the PC, by
changing a single jumper, with the application program residing in the battery-backed SRAM. When the
field test is complete, application ROMs can be produced to replace the DEBUG ROM. The .HEX or .BIN
file can be easily generated using Paradigm C/C++. You may also use the DV-P Kit to download your
application code to on-board Flash.

The three steps in the development of a C/C++ application program are explained in detail below.

1.4.1 Step 1

STEP 1: Debugging

• Write your C/C++ application program in C/C++.

• Connect your controller to your PC via the PC-V25 serial link cable.

• Use Paradigm C/C+ to compile, link, locate, download, and debug your C/C++ application program.

or COM2
To COM1

PC

Red edge of cable connects
to pin 1 of H1 header

DB9

+9V 500mA center negative wall transformer

H1

DEBUG ROM

Am188ES

J2

J1

SmartLCD

J11

P1

Figure 1.4 Step 1 connections for the SmartLCD

Chapter 1: Introduction SmartLCD

1-6

1.4.2 Step 2

STEP 2: Standalone Field Test.

With Debug ROM installed and your application program residing in SRAM,

• Set the jumper on J2 pins 38-40 (Figure 1.5).

• At power-on or reset, if J2 pin 38 (P4) is low, the CPU will run the code that resides in the battery-
backed SRAM.

• If a jumper is on J2 pins 38-40 at power-on or reset, the SmartLCD will operate in Step 2 mode. If the
jumper is off J2 pins 38-40 at power-on or reset, the SmartLCD will operate in Step 1 mode. The
status of J2 pin 38 (signal P4) of the 188 CPU is only checked at power-on or at reset.

PPI

U27

SED1335

U15

74HC1
U24

74HC1
U25

PA
L

U
22

J11

P3
P2

H10 H11

J6

H12
H14

H
V

 D
ri

ve
r

U19

U26

O
p

am
p

32
4

U16

Image
buffer
SRAM

RT4

H7

H8

RT1

RT2

RT3

H6

PPI

U20

10

11

1

2

3

4

5

C
C

FL
 B

ac
kl

ig
ht

in
g

H13

12

13

14

H1

6

7

8

9

H
16 A
D

C
T

L
C

25
43

U29

Beeper

Touch screen F1

H5
H4

J3

J8J5J4

P1

H3

J14
RT5

H1

SER0H2

SER1
U12

SRAM

U1

PPI

U5

Am188E
S

U2

RTC

U4

EEU7

U9

DA
C

U11

ADC
TLC254

3U10
J2

DA
C

U23

Step2

691

U6

J1

J9

U3
ROM/
Flash

U8

U
A
R
T

Step Two
jumper:

J2
pins 38 = 40

Figure 1.5 Location of Step 2 jumper on the SmartLCD

1.4.3 Step 3

STEP 3: Production (DV-P Kit only)

Generate the application .BIN or .HEX file, make production ROMs or download your program to FLASH
via ACTF.

• If you are satisfied with the Step 2 standalone test, you can go back to your PC to generate your
application ROM to replace the DEBUG ROM (AE_0_115). You need to change
PDREMOTE/ROM to No Target/ROM in the Target Expert, in the Paradigm C/C++ environment.

The DV-P Kit is required to complete Step 3.

Please refer to the Tutorial of the Technical Manual of the EV-P/DV-P Kit for further details on
programming the SmartLCD.

1.5 Minimum Requirements for SmartLCD System Development

1.5.1 Minimum Hardware Requirements

• PC or PC-compatible computer with serial COMx port that supports 115,200 baud
• SmartLCD controller with DEBUG ROM AE_0_115

SmartLCD Chapter 1: Introduction

1-7

• PC-V25 serial cable (RS232; DB9 connector for PC COM port and IDE 2x5 connector for controller)
• Center negative wall transformer (+9V 500 mA)

1.5.2 Minimum Software Requirements

• TERN CD-Rom for EV-P or DV-P
• PC software environment: Windows95/98/2000/ME/NT/XP

The C/C++ Evaluation Kit (EV-P) and C/C++ Development Kit (DV-P) are available from TERN. The
EV-P Kit is a limited-functionality version of the DV-P Kit. With the EV-P Kit, you can program and
debug the SmartLCD in Step 1 and Step 2, but you cannot run Step 3. In order to generate an application
ROM/Flash file, make production version ROMs, and complete the project, you will need the
Development Kit (DV-P).

SmartLCD Chapter 2: Installation

2-1

Chapter 2: Installation

2.1 Software Installation

Please refer to the Technical manual for the “C/C++ Development Kit and Evaluation Kit for TERN
Embedded Microcontrollers” for information on installing software.

The README.TXT file on the TERN EV/DV disk contains important information about the installation
and evaluation of TERN controllers.

2.2 Hardware Installation

Hardware installation for the SmartLCD consists primarily of connecting the microcontroller to your PC.

Overview

• Connect PC-V25 cable:
For debugging (STEP 1), place the 5x2 pin header on SER0 (H1)
with red edge of cable at pin 1 of H1

• Connect wall transformer:
Connect 9V wall transformer to power and plug into power jack

Chapter 2: Installation SmartLCD

2-2

2.2.1 Connecting the SmartLCD to the PC

The following diagram (Figure 2.1) illustrates the connection between the SmartLCD and the PC. The
SmartLCD is linked to the PC via a serial cable (PC-V25).

The AE_0_115 DEBUG ROM communicates through SER0 by default. Install the 5x2 IDC connector on
the SER0 header (H1). IMPORTANT: Note that the red side of the cable must point to pin 1 of the H1
header. The DB9 connector should be connected to one of your PC's COM Ports (COM1 or COM2).

PC-V25 cable

To
COM1 or
COM2

Red stripe of serial cable
corresponds to pin 1 of

SER0 header

PPI

U27

SED133
5

U15

74HU2

74HU2

PA
L

2

J1

P3
P2

H1 H1

J6

H1
H1

U1

U2

O
p

am
pU16

Image
buffer
SRAM

RT4

H7

H

RT1

RT2

RT3

H6

PPI

U20

10

11

1

2

3

4

5

C
C

FL
 B

ac
kl

ig
ht

in
g

H1

12

13

14

H1

6

7

8

9

H
16 C

U2

Beeper

Touch F1

H5
H4

J3

J8J5J4

P1

H3

J14
RT5

H1

SERH2
SER1 U12

SRA
M

U1

PPI

U5

Am188
ES

U2

RTC

U4

EEU
7

U9

DA
C

U1
1

ADCTLC2U1
J2

DA
C

U2

Step
2

691

U6

J1

J9

U3
ROM

/

U

U
A
R
T

To SER0 for
DEBUGGING

Step2 jumper
should not be
installed for
debugging

Figure 2.1 Connecting the SmartLCD to the PC

SmartLCD Chapter 2: Installation

2-3

2.2.2 Powering-on the SmartLCD

Connect a wall transformer +9V DC output to the DC power jack.

The on-board LED should blink twice and remain on after the SmartLCD is powered-on or reset, as
shown in Figure 2.2.

While the on-board switching regulator is rated for an input of up to +24V, you may provide a
maximum input voltage of +12V. The input voltage is also routed to the CCFL power supply which
only allows a maximum input of +12V. Any higher voltage will damage the CCFL power supply.

Wall
transformer

PPI

U27

SED133
5

U15

74HC
14U2

74HC
14U2

PA
L

2
J1

P3
P2

H1 H1

J6
H1

H1

H
V

U1

U2

O
p

am
pU16

Image
buffer
SRAM

RT4

H7

H

RT1

RT2

RT3

H6

PPI

U20
10

11

1

2

3

4

5

C
C

FL

H1

12

13

14

H1

6

7

8

9

H
16

A
D

C
T

L
C

25
43

U2

Beeper

Touch F1

H5H4

J3
J8J5J4

P1

H3

J14 RT5

H1
SER0

H2
SER1 U1

SRA
M

U1

PPI

U5

Am188
ES

U2

RTC

U

EEU
7

U9
C

DA
C

U1
1

ADC
TLC25

43U1
J2

DA
C

U2

Step
2

691

U6

J1

J9

U3
ROM

/

U

U
A
R
T

Red
LED

Power
jack

Figure 2.2 The LED blinks twice after the SmartLCD is powered-on or reset

SmartLCD Chapter 3: Hardware

3-1

Chapter 3: Hardware

3.1 188 CPU – Introduction

The 188 CPU is based on industry-standard x86 architecture. The 188 CPU controllers are higher-
performance, more integrated versions of the 80C188 microprocessors. In addition, the 188 CPU has new
peripherals. The on-chip system interface logic can minimize total system cost. The 188 CPU has two
asynchronous serial ports, 32 PIOs, a watchdog timer, additional interrupt pins, a pulse width
demodulation option, DMA to and from serial ports, a 16-bit reset configuration register, and enhanced
chip-select functionality.

3.2 188 CPU – Features

3.2.1 Clock

Due to its integrated clock generation circuitry, the 188 CPU microcontroller allows the use of a times-one
crystal frequency. The design achieves 40 MHz CPU operation, while using a 40 MHz crystal.

The system CLKOUTA and CLKOUTB signal is not routed out from the CPU in the SmartLCD.

CLKOUTA remains active during reset and bus hold conditions. The SmartLCD initial function ae_init();
disables CLKOUTA and CLKOUTB with clka_en(0); and clkb_en(0);

You may use clka_en(1); to enable CLKOUTA.

3.2.2 External Interrupts and Schmitt Trigger Input Buffer

There are eight external interrupts: INT0-INT6 and NMI.

/INT0, J2 pin 8, is used by SCC2691 UART, if it is installed.
/INT1, J2 pin 6
/INT2, J2 pin 19
/INT3, J2 pin 21
/INT4, J2 pin 33
INT5=P12=DRQ0, J2 pin 5, used as output for LED/EE/HWD
INT6=P13=DRQ1, J2 pin 11
/NMI, J2 pin 7

Six external interrupt inputs, /INT0-4 and /NMI, are buffered by Schmitt-trigger inverters (U9 74HC14),
in order to increase noise immunity and transform slowly changing input signals to fast changing and
jitter-free signals. As a result of this buffering, these pins are capable of only acting as input.

These buffered external interrupt inputs require a falling edge (HIGH-to-LOW) to generate an interrupt.

The SmartLCD uses vector interrupt functions to respond to external interrupts. Refer to the 188 CPU
User’s manual for information about interrupt vectors.

Chapter 3: Hardware SmartLCD

3-2

U9F
/NMI=J2.7 NMI=U2.47

U9E
/INT3=J2.21 INT3=U2.53

U9D
/INT1=J2.6 INT1=U2.55

U9C
/INT0=J2.8 INT0=U2.56

U9B
/INT2=J2.19 INT2=U2.54

U9A
/INT4=J2.33 INT4=U2.52

Figure 3.1 External interrupt inputs with Schmitt-trigger inverters

3.2.3 Asynchronous Serial Ports

The 188 CPU has two asynchronous serial channels: SER0 and SER1. Both asynchronous serial ports
support the following:

• Full-duplex operation, 8-bit data transfers, no parity, one stop bit
• Error detection, no hardware flow control
• DMA receive from serial ports, transmit interrupts for each port
• Maximum baud rate of 1/16 of the CPU clock speed, independent baud rate generators

The software drivers for each serial port implement a ring-buffered DMA receiving and ring-buffered
interrupt transmitting arrangement. See the sample files s1_echo.c and s0_echo.c in the
tern\186\samples\ae directory.

The optional external SCC2691 UART is located in the U8 underneath the ROM. For more information
about the external UART SCC2691, please refer to section 3.4.5 and Appendix B.

3.2.4 Timer Control Unit

The timer/counter unit has three 16-bit programmable timers: Timer0, Timer1, and Timer2.

Timer0 and Timer1 are connected to four external pins:

Timer0 output = P10 = J2 pin 12
Timer0 input = P11 = J2 pin 14
Timer1 output = P1 = J2 pin 29
Timer1 input = P0 = J2 pin 20

These two timers can be used to count or time external events, or they can generate non-repetitive or
variable-duty-cycle waveforms.

SmartLCD Chapter 3: Hardware

3-3

Timer2 is not connected to any external pin. It can be used as an internal timer for real-time coding or
time-delay applications. It can also prescale timer 0 and timer 1 or be used as a DMA request source.

The maximum rate at which each timer can operate is 10 MHz, since each timer is serviced once every
fourth clock cycle. Timer output takes up to six clock cycles to respond to clock or gate events. See the
sample programs timer02.c and ae_cnt0.c in the \samples\ae directory.

3.2.5 PWM outputs and PWD

The Timer0 and Timer1 outputs can also be used to generate non-repetitive or variable-duty-cycle
waveforms. The timer output takes up to 6 clock cycles to respond to the clock input. Thus the minimum
timer output cycle is 25 ns x 6 = 150 ns (at 40 MHz).

Each timer has a maximum count register that defines the maximum value the timer will reach. Both
Timer0 and Timer1 have secondary maximum count registers for variable duty cycle output. Using both
the primary and secondary maximum count registers lets the timer alternate between two maximum
values.

MAX. COUNT A

MAX. COUNT B

Pulse Width Demodulation can be used to measure the input signal’s high and low phases on the
/INT2=J2 pin 19. See the sample code ae_pwd.c in the tern\186\samples\ae directory.

3.2.6 Power-save Mode

The SmartLCD can be used for low power consumption applications. The power-save mode of the 188
CPU reduces power consumption and heat dissipation, thereby extending battery life in portable systems.
In power-save mode, operation of the CPU and internal peripherals continues at a slower clock frequency.
When an interrupt occurs, it automatically returns to its normal operating frequency.

The RTC72423 on the SmartLCD has a VOFF signal routed to H7 pin 10. VOFF is controlled by the
battery-backed RTC72423. The VOFF signal can be programmed by software to be in tri-state or to be
active low. The RTC72423 can be programmed in interrupt mode to drive the VOFF pin at 1/64-second, 1
second-1 minute, or 1-hour intervals. The user can use the VOFF line to control the 5V switching power
regulator on/off. More details are available in the sample file poweroff.c in the 186\samples\ae sub-
directory. In power-off mode, the VOFF pin is pulled high via a 1M-ohm resistor, and the switching
regulator will be turned off. While in power-off mode, less than 1 mA overall current consumption can be
achieved. An external push button (RT1) or any external signal can short the VOFF pin to GND, to “wake
up” from power-off mode.

3.3 188 CPU PIO lines

The 188 CPU has 32 pins available as user-programmable I/O lines. Each of these pins can be used as a
user-programmable input or output signal, if the normal-shared function is not needed. A PIO line can be
configured to operate as an input or output with or without a weak pull-up or pull-down, or as an open-

Chapter 3: Hardware SmartLCD

3-4

drain output. A pin’s behavior, either pull-up or pull-down, is pre-determined and shown in the table
below.

After power-on/reset, PIO pins default to various configurations. The initialization routine provided by
TERN libraries reconfigures some of these pins as needed for specific on-board usage, as well. These
configurations, as well as the processor-internal peripheral usage configurations, are listed below in Table
3.1.

PIO Function Power-On/Reset status SmartLCD Pin
Number

SmartLCD Initial

P0 Timer1 in Input with pull-up J2 pin 20 Input with pull-up
P1 Timer1 out Input with pull-down J2 pin 29 CLK_1
P2 /PCS6/A2 Input with pull-up J2 pin 24 RTC select
P3 /PCS5/A1 Input with pull-up J2 pin 15 SCC2691 select
P4 DT/R Normal J2 pin 38 Input with pull-up Step 2
P5 /DEN/DS Normal J2 pin 30 Input with pull-up
P6 SRDY Normal J2 pin 35 Input with pull-down
P7 A17 Normal J8 pin 3 A17
P8 A18 Normal J8 pin 2 A18
P9 A19 Normal J8 pin 1 A19
P10 Timer0 out Input with pull-down J2 pin 12 Input with pull-down
P11 Timer0 in Input with pull-up J2 pin 14 Input with pull-up
P12 DRQ0/INT5 Input with pull-up J2 pin 5 Output for LED/EE/HWD
P13 DRQ1/INT6 Input with pull-up J2 pin 11 Input with pull-up
P14 /MCS0 Input with pull-up J2 pin 37 Input with pull-up
P15 /MCS1 Input with pull-up J2 pin 23 Input with pull-up
P16 /PCS0 Input with pull-up U22 pin 1 PAL chip select
P17 /PCS1 Input with pull-up J2 pin 13 U5 PPI, 82C55 select
P18 CTS1/PCS2 Input with pull-up J2 pin 22 J11 pin 19, chip select
P19 RTS1/PCS3 Input with pull-up J2 pin 31 Input with pull-up
P20 RTS0 Input with pull-up J2 pin 27 Input with pull-up
P21 CTS0 Input with pull-up J2 pin 36 Input with pull-up
P22 TxD0 Input with pull-up J2 pin 34 TxD0
P23 RxD0 Input with pull-up J2 pin 32 RxD0
P24 /MCS2 Input with pull-up J2 pin 17 Input with pull-up
P25 /MCS3 Input with pull-up J2 pin 18 Input with pull-up
P26 UZI Input with pull-up J2 pin 4 Input with pull-up*
P27 TxD1 Input with pull-up J2 pin 28 TxD1
P28 RxD1 Input with pull-up J2 pin 26 RxD1
P29 /CLKDIV2 Input with pull-up J2 pin 3 Input with pull-up*
P30 INT4 Input with pull-up J2 pin 33 Input with pull-up
P31 INT2 Input with pull-up J2 pin 19 Input with pull-up

Note: * P26 and P29 must NOT be forced low during power-on or reset

Table 3.1 I/O pin default configuration after power-on or reset

Four external interrupt lines are not shared with PIO pins:
INT0 = J2 pin 2
INT1 = J2 pin 6
INT3 = J2 pin 21

SmartLCD Chapter 3: Hardware

3-5

The 32 PIO lines, P0-P31, are configurable via two 16-bit registers, PIOMODE and PIODIRECTION.
The settings are as follows:

MODE PIOMODE reg. PIODIRECTION reg. PIN FUNCTION
0 0 0 Normal operation
1 0 1 INPUT with pull-up/pull-down
2 1 0 OUTPUT
3 1 1 INPUT without pull-up/pull-down

SmartLCD initialization on PIO pins in ae_init() is listed below:

outport(0xff78,0xe73c); // PDIR1, TxD0, RxD0, TxD1, RxD1, P16=PCS0, P17=PCS1=PPI
outport(0xff76,0x0000); // PIOM1
outport(0xff72,0xec7b); // PDIR0, P12,A19,A18,A17,P2=PCS6=RTC
outport(0xff70,0x1000); // PIOM0, P12=LED

The C function in the library ae_lib can be used to initial PIO pins.

void pio_init(char bit, char mode);

Where bit = 0-31 and mode = 0-3, see the table above.

Example:

pio_init(12, 2); will set P12 as output
 pio_init(1, 0); will set P1 as Timer1 output

void pio_wr(char bit, char dat);

pio_wr(12,1); set P12 pin high, if P12 is in output mode
pio_wr(12,0); set P12 pin low, if P12 is in output mode

unsigned int pio_rd(char port);
pio_rd (0); return 16-bit status of P0-P15, if corresponding pin is in input mode,
pio_rd (1); return 16-bit status of P16-P31, if corresponding pin is in input mode,

Most of the I/O lines are used by the SmartLCD system for on-board components (Table 3.2). We suggest
that you not use these lines unless you are sure that you are not interfering with the operation of such
components (i.e., if the component is not installed).

You should also note that the external interrupt PIO pins INT2, 4, 5, and 6 are not available for use as
output because of the inverters attached. The input values of these PIO interrupt lines will also be
inverted for the same reason. As a result, calling pio_rd to read the value of P31 (INT2) will return 1
when pin 19 on header J2 is pulled low, with the result reversed if the pin is pulled high.

Signal Pin Function
P2 /PCS6 U4 RTC72423 chip select at base I/O address 0x0600
P3 /PCS5 U8 SCC2691 UART chip select at base I/O address 0x0500
P4 /DT STEP 2 jumper
P11 Timer0 input Shared with U10 TLC2543 ADC and U7 24C04 EE data input
P12 DRQ0/INT5 Output for LED, CLK for U7 EE, U11 DAC, U23 DAC, Hit watchdog
P16 /PCS0 PAL16CEV8 (U22) chip select
P17 /PCS1 U5 PPI 82C55 chip select at base I/O address 0x0100
P18 /PCS2=/CTS1 J11 pin 19, Second PCMCIA MemCard interface
P22 TxD0 Default SER0 debug
P23 RxD0 Default SER0 debug
INT0 J2 pin 2 U8 SCC2691 UART interrupt.

Table 3.2 188 CPU PIO lines used for on-board components

Chapter 3: Hardware SmartLCD

3-6

3.4 I/O Mapped Devices

3.4.1 I/O Space

External I/O devices can use I/O mapping for access. You can access such I/O devices with inportb(port)
or outportb(port,dat). These functions will transfer one byte or word of data to the specified I/O address.
The external I/O space is 64K, ranging from 0x0000 to 0xffff.

The default I/O access time is 15 wait states. You may use the function void io_wait(char wait) to define
the I/O wait states from 0 to 15. The system clock is 25 ns, giving a clock speed of 40 MHz. Details
regarding this can be found in the Software chapter, and in the 188 CPU User’s Manual. Slower
components, such as most LCD interfaces, might find the maximum programmable wait state of 15 cycles
still insufficient. Due to the high bus speed of the system, some components need to be attached to I/O
pins directly.

For details regarding the chip select unit, please see Chapter 5 of the 188 CPU User’s Manual.

The table below shows more information about I/O mapping.

I/O space Select Location Usage
0x0000-0x00ff /PCS0 U17 pin 14=P16 PAL16V8CE (U22), J1, SED1335

(U15), PPI (U20), PPI1 (U27)
0x0100-0x01ff /PCS1 U5 pin 7=P17 PPI (U5), 82C55
0x0200-0x02ff /PCS2 J11 pin 19=CTS1 Second PCMCIA interface
0x0300-0x03ff /PCS3 J2 pin 31 = P19 User
0x0400-0x04ff /PCS4 Reserved
0x0500-0x05ff /PCS5 J2 pin 15=P3 UART, SCC2691
0x0600-0x06ff /PCS6 J2 pin 24=P2 RTC72423

3.4.2 SED1335

The SED1335, from SMOS Systems, Inc., is a versatile LCD controller that can display text and graphics
on a 320x240-pixel LCD panel. The SED1335 communicates with the host 188 CPU via 8-bit high-speed
data bus. The SED1335 can display layered text and graphics, scroll the display in any direction and
partition the display into multiple screens. The SED1335 stores text, character codes, and bit-mapped
graphics data in the external image frame buffer SRAM. Display functions include transferring data from
the host microprocessor to the image buffer, reading image data, converting data to display pixels and
generating timing signals for the buffer memory and the LCD panel. The SED1335 has an internal
character generator with 160 5x7 pixel characters.

For complete, detailed information on the hardware and software of the SED1335, users may contact
SMOS Systems, Inc., at telephone number 408-922-0200, or through their website at
http://www.smos.com.

3.4.3 Programmable Peripheral Interface (82C55A)

U5, U20, and U27 PPIs (82C55) are low-power CMOS programmable parallel interface units for use in
microcomputer systems. They each provide 24 I/O pins that may be individually programmed in two
groups of 12 and used in three major modes of operation.

SmartLCD Chapter 3: Hardware

3-7

In MODE 0, the two groups of 12 pins can be programmed in sets of 4 and 8 pins to be inputs or outputs.
In MODE 1, each of the two groups of 12 pins can be programmed to have 8 lines of input or output. Of
the four remaining pins, three are used for handshaking and interrupt control signals. MODE 2 is a
strobed bi-directional bus configuration.

7 6 012345

G R O U P 1
P o r t 2

(L o w e r)

P o r t 1

M o d e

0

1

0

1

0

1

O u t p u t

I n p u t

O u t p u t

I n p u t

M o d e 0

M o d e 1

G R O U P 2
P o r t 2

(U p p e r)

P o r t 0

M o d e

0

1

0

1

0 0

0 1

O u t p u t

I n p u t

O u t p u t

I n p u t

M o d e 0

M o d e 1

M o d e 21 X

C o m m a n d
S e l e c t

0

1

B i t
m a n i p u l a t i o n

M o d e
S e l e c t

Figure 3.2 Mode Select Command Word

The SmartLCD maps U5, the 82C55/uPD71055, at base I/O address 0x0100.

The SmartLCD maps U20, the 82C55/uPD71055, at base I/O address 0x0050.

The SmartLCD maps U27, the 82C55/uPD71055, at base I/O address 0x70.

To use U5 PPI as a program example, the Command Register = 0x0103; Port 0 = 0x0100; Port 1 =
0x0101; and Port 2 = 0x0102.

The following code example will set all ports to output mode:
outportb(0x0103,0x80); /* Mode 0 all output selection. */
outportb(0x0100,0x55); /* Sets port 0 to alternating high/low I/O pins. */
outportb(0x0101,0x55); /* Sets port 1 to alternating high/low I/O pins. */
outportb(0x0102,0x55); /* Sets port 2 to alternating high/low I/O pins. */

To set all ports to input mode:
outportb(0x0103,0x9f); /* Mode 0 all input selection. */

You may read the ports with:
inportb(0x0100); /* Port 0 */
inportb(0x0101); /* Port 1 */
inportb(0x0102); /* Port 2 */

This returns an 8-bit value for each port, with each bit corresponding to the appropriate line on the port.

Chapter 3: Hardware SmartLCD

3-8

You will find that numerous on-board components are controlled using PPI lines only. You will need to
use PPI access methods to control these, as well.

3.4.4 Real-time Clock RTC72423

If installed, the real-time clock RTC72423 (EPSON, U4) is mapped in the I/O address space 0x0600. It
must be backed up with a lithium coin battery. The RTC is accessed via software drivers rtc_init() or
rtc_rd() (see Appendix C and the Software chapter for details).

It is also possible to configure the real-time clock to raise an output line attached to an external interrupt,
at 1/64 second, 1 second, 1 minute, or 1 hour intervals. This can be used in a time-driven application, or
the VOFF signal can be used to turn on/off the controller using an external switching power supply. An
example of a program showing a similar application can be found in tern\186\samples\ae\poweroff.c.

3.4.5 UART SCC2691

The UART SCC2691 (Signetics, U8) is mapped into the I/O address space at 0x0500. The SCC2691 has a
full-duplex asynchronous receiver/transmitter, a quadruple buffered receiver data register, an interrupt
control mechanism, programmable data format, selectable baud rate for the receiver and transmitter, a
multi-functional and programmable 16-bit counter/timer, an on-chip crystal oscillator, and a multi-
purpose input/output including RTS and CTS mechanism.

For more information, refer to Appendix B. The SCC2691 on the SmartLCD may be used as a network
9-bit UART (for the TERN NT-Kit).

3.5 Other Devices

A number of other devices are also available on the SmartLCD. Some of these are optional, and might not
be installed on the particular controller you are using. For a discussion regarding the software interface
for these components, please see the Software chapter.

3.5.1 On-board Supervisor with Watchdog Timer

The MAX691/LTC691 (U6) is a supervisor chip. With it installed, the SmartLCD has several functions:
watchdog timer, battery backup, power-on-reset delay, power-supply monitoring, and power-failure
warning. These will significantly improve system reliability.

Watchdog Timer

The watchdog timer is activated by setting a jumper on J9 of the SmartLCD. The watchdog timer
provides a means of verifying proper software execution. In the user's application program, calls to the
function hitwd() (a routine that toggles the P12=HWD pin of the MAX691) should be arranged such that
the HWD pin is accessed at least once every 1.6 seconds. If the J9 jumper is on and the HWD pin is not
accessed within this time-out period, the watchdog timer pulls the WDO pin low, which asserts /RESET.
This automatic assertion of /RESET may recover the application program if something is wrong. After the
SmartLCD is reset, the WDO remains low until a transition occurs at the WDI pin of the MAX691. When
controllers are shipped from the factory the J9 jumper is off, which disables the watchdog timer.

The 188 CPU has an internal watchdog timer. This is disabled by default with ae_init().

SmartLCD Chapter 3: Hardware

3-9

PPI

U27

SED1335

U15

74HC
U24

74HC
U25

PA
L

J11

P3
P2

H10 H11

J6

H12
H14

8
H

V
 D

ri
ve

r

U19

U26

O
p

am
p

32
4

U16

Image
buffer
SRAM

RT4

H7

H8

RT1

RT2

RT3

H6

PPI

U20

10

11

1

2

3

4

5

C
C

FL
 B

ac
kl

ig
ht

in
g

H13

12

13

14

H1

6

7

8

9

H
16

A
D

C
T

L
C

25
43

U29

Beeper

Touch screen F1

H5
H4

J3

J8J5J4

P1

H3

J14
RT5

H1

SER0H2

SER1

R
S2

U12

SRAM

U1

PPI

U5

Am188E
S

U2

RTC

U4

EEU7

U9

DA
C

U11

ADC
TLC254

3U10
J2

DA
C

U23

Step2

691

U6

J1

J9

U3
ROM/
Flash

U8

U
A
R
T

J9
Watchdog enable

Figure 3.3 Location of watchdog timer enable jumper

Battery Backup Protection

The backup battery protection protects data stored in the SRAM and RTC. The battery-switch-over circuit
compares VCC to VBAT (+3 V lithium battery positive pin), and connects whichever is higher to the
VRAM (power for SRAM and RTC). Thus, the SRAM and the real-time clock RTC72423 are backed up.
In normal use, the lithium battery should last approximately 3-5 years without external power being
supplied. When the external power is on, the battery-switch-over circuit will select the VCC to connect to
the VRAM.

3.5.2 EEPROM

A serial EEPROM of 512 bytes (24C04), or 2K bytes (24C16) by special request, can be installed in U7.
The SmartLCD uses the P12=SCL (serial clock) and P11=SDA (serial data) to interface with the
EEPROM. The EEPROM can be used to store important data such as a node address, calibration
coefficients, and configuration codes. It typically has 1,000,000 erase/write cycles. The data retention is
more than 40 years. EEPROM can be read and written by simply calling functions the ee_rd() and
ee_wr().

The EEPROM and the 12-bit ADC (U10) share the same data input signal line, P11. The 12-bit ADC uses
I20 (PPI U5) line as chip select. If the I20 line is low, the ADC will be enabled and holds the P11 data
line, prohibiting EEPROM operation. The ae_init(); function sets I20 high. The ae_ad12(); function
brings I20 low only when it needs to. The user should be aware that they must always keep I20 high in
order to disable the ADC and free P11 line for the EEPROM. Any outportb(0x103, ??)l to access the PPI
mode register will set I20 low. The user should use outportb(0x102, 0x01 | inportb(0x102)); to bring I20
high.

A range of lower addresses in the EEPROM is reserved for TERN use. Details regarding which addresses
are reserved, and for what purpose, can be found in Appendix D of this manual.

3.6 Inputs and Outputs

3.6.1 12-bit ADC (TLC2543)

The TLC2543 is a 12-bit, switched-capacitor, successive-approximation, 11 channels, serial interface,
analog-to-digital converter.

Two 12-bit ADC chips, U10 and U29, can be installed on the SmartLCD.

Chapter 3: Hardware SmartLCD

3-10

For the U10 ADC:

Three PPI I/O lines are used, with /CS=I20; CLK=I22; and DIN=I21.

The U10 ADC digital data output communicates with a host through a serial tri-state output
(DOUT=P11). If I20=/CS is low, the U10 TLC2543 will have output on P11. If I20=/CS is high, the
U10 TLC2543 is disabled and P11 is free. I20 and P11 are pulled high by 10K resistors on board.

For the U29 ADC:

Three PPI I/O lines are used, with /CS=T17; CLK=I22; and DIN=I21.

The U29 ADC digital data output communicates with a host through a U27 PPI input line T00
(DOUT=I0). If T17=/CS is low, the U29 TLC2543 will have output on I0 and T00. If T17=/CS is
high, the U29 TLC2543 is disabled and I0 is pulled high by 10K resistors on board. I0 is the Schmitt-
trigger inverter input and T00 is the Schmitt-trigger inverter output.

The TLC2543 has an on-chip 14-channel multiplexer that can select any one of 11 inputs or any one of
three internal self-test voltages. The sample-and-hold function is automatic. At the end of conversion, the
end-of-conversion (EOC) output is not connected, although it goes high to indicate that conversion is
complete.

TLC2543 features differential high-impedance inputs that facilitate ratiometric conversion, scaling, and
isolation of analog circuitry from logic and supply noise. A switched-capacitor design allows low-error
conversion over the full operating temperature range. The analog input signal source impedance should be
less than 50Ω and capable of slewing the analog input voltage into a 60 pf capacitor.

A reference voltage less than VCC (+5V) can be provided for the TLC2543 if additional precision is
required. A voltage above 2.5V and less than +5V can be used for this purpose, and can be connected to
the REF+ pin.

The CLK signal to the ADC is toggled through an I/O pin, and serial access allows a conversion rate of up
to approximately 10 KHz, for a 40 MHz CPU.

In order to operate the U10 and U29 TLC2543, I/O lines are used, as listed below:

/CS Chip select = I20 for U10 and T17 for U29 , high to low transition enables
DOUT, DIN and CLK. Low to high transition disables DOUT, DIN and CLK.

DIN PPI I21 for both U10 and U29, serial data input
DOUT U10 use P11 of 188 CPU, U29 use I0/T00.
EOC Not Connected, End of Conversion, high indicates conversion complete and data

is ready
CLK I/O clock = PPI I22
REF+ Upper reference voltage (normally VCC)
REF- Lower reference voltage (normally GND)
VCC Power supply, +5 V input
GND Ground

The analog inputs AD0 to AD10 are available at H5 header. AD11 to AD20 are routed to H16. The
reference of U29 is fixed to 5V. The reference for U10 is available at H5 pin 17.

AD10 is connected to the operational amplifier U28 output to monitor the input power voltage (divided
by 5).

3.6.2 Dual 12-bit DAC

The LTC1446/LTC1446L is a dual 12-bit digital-to-analog converter (DAC) in an SO-8 package. It is
complete with a rail-to-rail voltage output amplifier, an internal reference and a 3-wire serial interface.

SmartLCD Chapter 3:

-11

The LTC1446 outputs a full-
full-

The buffered outputs can source or sink 5 mA. The outputs swing t
when unloaded. They have an equivalent output resistance of 40 Ω
buffer amplifiers can drive 1000 pf without going into oscillation.

e SmartLCD, and the outputs are routed to H5.

is used to convert the VA signal to negative LCD contrast adjustable voltage.

 DI, and P29 (U11) or I23 (U23) as LD/CS. Note that P26 and P29 are
also used by the high voltage driver U19. Writing to the DAC will cause these two high voltage outputs to

(1- -432 1900) for
more information. See also the sample program in the \ \ae

3.6.3 High- -Current Drivers

ULN2003 has high voltage, high current Darlington transistor arrays, consisting of seven silicon NPN
Darlington pair -collector outputs for

up to 600 mA sinking are allowed. U18 has seven high- ers (HV1-
paralleled to achieve high-
current rating of 350 mA at 50V. The maximum power dissipation allowed is 2.20 W per chip at 25
degrees C (C). The common substrate G is routed to H7 GND pins. All currents sinking in must return to

common ground return. K connects to the protection diodes in the ULN2003 chips and should be tied to

pin 8. ULN2003 is a driver, not a sourcing driver. An example of typical application wiring is
Figure 3.4.

K +12V

GND/SUB

GND/SUB

Solenoid

O1

 Drive inductive load with high voltage/current drivers.

Chapter 3: Hardware SmartLCD

3-12

The SmartLCD uses HV5 to control the negative power source and uses HV6 and HV4 to control the
CCFL inverter.

3.6.4 CCFL Inverter

A Cold Cathode Fluorescent Lighting (CCFL) plate is inserted behind the LCD. It is a replaceable
backlighting device. A CCFL inverter (H13) is on the SmartLCD to provide a modulated high voltage in
order to maintain constant current in the CCFL lamp. The CCFL lamp connector should plug into H14
with the white wire pointing to H14 pin 1. The CCFL inverter is powered by 12V DC and is switched on
and off by the on-board solenoid drivers HV6 and HV4. The software driver C function ccfl(1); can
power-on the CCFL, and ccfl(0); can turn it off in order to save power and lengthen the life of the
lamp and LCD. These functions are located in the c:\tern\186\samples\sl directory.

3.6.5 Negative 24V Power Supply and adjustable contrast voltage

The graphic LCD requires –24V power supply and approximately –17V adjustable negative voltage for
contrast adjustment of the display. In order to reduce power consumption, the negative power supply can
be turned off by solenoid driver HV5 with the software function neg_24(0);. The function
neg_24(1); can be used to turn it on.

A 12-bit DAC channel, VA, is dedicated to drive the contrast voltage by using the software function
contrast(int dat);.

These functions are located in the c:\tern\186\samples\sl directory.

3.6.6 Touchscreen and Mechanical Pushbuttons

A transparent 10x7 keypad, or touchscreen, is installed in front of the LCD. The user can see the LCD
clearly through the touchscreen. The flex cable of the touchscreen connects to the F1 header. There are
two Schmitt Trigger inverters, U24 and U25, to reduce the touchscreen key input noise.

The U27 PPI I/O pins are mainly used to scan the touchscreen. The 70 touchscreen keys can be scanned
and return keycodes by using I/O pins via the software function scan_touch_screen();.

In addition to the 70 touchscreen keys, 14 mechanical push buttons can be installed on the SmartLCD.
You may use the same function, scan_touch_screen();, to return the push-button status. For more
details, see the samples in

c:\tern\186\samples\sl\sl_grid.c

The following are HEX values for the 14 push buttons located at the lower edge of the SmartLCD:

BUTTON 1 2 3 4 5 6 7 8 9 10 11 12 13 14
HEX B0 C0 B1 C1 B6 B7 B2 C2 B3 C3 C4 B4 B5 C5

Five additional right-angle push buttons are located on the top edge of the board:

 RT1 = VOFF
 RT2 = /RESET
 RT3 = NC
 RT4 = /INT1
 RT5 = /INT2=P31

SmartLCD Chapter 3:

-13

3.7

PPI

U27

SED1335

U15

74HC14
U24

74HC14
U25

PA
L

U
22

J11

P3
P2

H10 H11

J6

H12
H14

H
V

 D
ri

ve
r

U19

U26

O
p

am
p

32
4U

28

U16

Image
buffer
SRAM

RT4

H7

H8

RT1

RT2

RT3

H6

PPI

U20

10

11

1

2

3

4

5

C
C

FL
 B

ac
kl

ig
ht

in
g

H13

12

13

14

H1

6

7

8

9

H
16

A
D

C
T

L
C

25
43

U29

Beeper

Touch screen F1

H5
H4

J3

J8J5J4

P1

H3

J14
RT5

H1

SER0

H2

SER1

2

U12

SRAM

U1

PPI

U5

Am188ES

U2

RTC

U4

EEU7

U9

14

DACU11

ADC
TLC2543

U10
J2

DAC U23

Step2

691

U6

J1

J9

U3
ROM/
Flash

U8

U
A
R
T

P1 H2
SER1

H1
SER0

H3

J2

J1

J11

STEP2

Figure 3.5 SmartLCD Headers and Connectors.

Chapter 3: Hardware SmartLCD

-14

3.7.2

The pin layouts of the headers on the SmartLCD are listed below.

J2 Signals

GND (Step 2
Jumper)

40 39 VCC

 P4 (Step 2
Jumper)

38 37 P14

/CTS0 36 35 P6
TxD0 34 33 /INT4
RxD0 32 31 /RTS1
P5 30 29 P1
TxD1 28 27 /RTS0
RxD1 26 25 GND
P2 24 23 P15
/CTS1 22 21 /INT3
P0 20 19 /INT2
P25 18 17 P24
/WR 16 15 P3
P11 14 13 P17
P10 12 11 P13
VCC 10 9 NC
/INT0 8 7 /NMI
/INT1 6 5 P12
P26 4 3 P29
GND 2 1 U11 12-bit

DAC VB

J1 Signals

VCC 1 2 GND
MPO 3 4 P1
RxD 5 6 GND
TxD 7 8 D0
VOFF 9 10 D1
PFI 11 12 D2
GND 13 14 D3
/RST 15 16 D4
RST 17 18 D5
P16 19 20 D6
MPI 21 22 D7
CLK 23 24 GND
HLDA 25 26 A7
HOLD 27 28 A6
/WR 29 30 A5
/RD 31 32 A4
VRAM 33 34 A3
VBAT 35 36 A2
GND 37 38 A1
VCC 39 40 A0

Signal definitions for J1:

VCC +5V power supply
GND Ground
CLK 188 CPU pin 16, system clock, 40 MHz (25 ns) as default
RxD data receive of UART SCC2691, U8
TxD data transmit of UART SCC2691, U8
MPO Multi-Purpose Output of SCC2691, U8
MPI Multi-Purpose Input of SCC2691, U8
VOFF real-time clock output of RTC72423 U4, open collector
D0-D7 188 CPU 8-bit external data lines
A0-A7 188 CPU address lines
PFI power failure input signal of MAX691
/RST reset signal, active low
RST reset signal, active high
P16 /PCS0, 188 CPU pin 66
HLDA 188 CPU pin 44
HOLD 188 CPU pin 45
/WR 188 CPU pin 5
/RD 188 CPU pin 6
VBAT +3V lithium battery positive pin
VRAM power for backing up SRAM and RTC

 Hardware

3-

Signal definitions for J2:

VCC
GND Ground
Pxx
/WR 188 CPU pin 5

 188 CPU pin 2, transmit data of serial channel 0
RxD0
TxD1 188 CPU pin 98, transmit data of serial channel 1

 188 CPU pin 99, receive data of serial cha
/CTS0 188 CPU pin 100, Clear- -Send signal for SER0
/CTS1 -to Send signal for SER1

 188 CPU pin 3, Request to-
/RTS1 188 CPU pin 62, Request- -Send signal for SER1
/INT0- Schmitt trigger inputs

H1
SER0 SERIAL DEBUG PORT, RS-232

H2
SER1 SERIAL PORT, RS-232

H3
SCC2691 UART PORT, RS-232 or
RS-485

 Jumpers and Headers

The following table lists the jumpers and connectors on the SmartLCD.

Name Function Possible Configuration

 5x2 SER0, RS-

 5x2 SER1, RS-

 5x2 SCC2691, RS-

 13x2 PPI U27, T00-

 20x2 U10 ADC, U11 & U23 DAC, U5 PPI

H6 RESET

H7 5x2

 2x2 GND, VCC, P25

H10 LCD Sharp LM32K071

H11 7x2 -1

H12 8x2

 -L10L (TDK

 4x1 CCFL-

 13x2 U20 PPI L00-

 5x2 U29 ADC

Chapter 3: Hardware SmartLCD

3-16

Name Size Function Possible Configuration

J1 20x2 Expansion header, MemCard1
interface

J2 20x2 Expansion header NOTE:

pin 38-40: Step 2 jumper (if not installed,
controller runs in Step 1 mode)

J3 3x1 SRAM selection: pin 2-3: SRAM 256KB-512KB
pin 1-2: SRAM 32KB-128KB

J4 3x1 ROM/Flash size selection: pin 1-2: ROM or Flash size 32KB-128KB
pin 2-3: ROM or Flash size 256KB-512KB

J5 3x1 ROM 512KB selection: pin 1-2: ROM size 512KB
pin 2-3: Flash 128KB-512KB, or ROM

<512 KB

J6 14x1 LCD Hantronix HDM3224TS-1

J8 12x1 High address lines, A8-A19

J9 2x1 Watchdog timer Enabled if Jumper is on
Disabled if jumper is off

J11 20x2 MemCard2 interface

J14 2x1 External battery power input: VBAT,
GND

P1 32x2 PC/104

SmartLCD Chapter 4: Software

4-1

Chapter 4: Software
Please refer to the Technical Manual of the “C/C++ Development Kit for TERN 16-bit Embedded
Microcontrollers” for details on debugging and programming tools.

For details regarding software function prototypes and sample files demonstrating their use, please refer to
the Software Glossary in Appendix E.

Guidelines, awareness, and problems in an interrupt driven environment
Although the C/C++ Development Kit provides a simple, low cost solution to application engineers, some
guidelines must be followed. If they are not followed, you may experience system crashes, PC hang-ups,
and other problems.

The debugging of interrupt handlers with the Remote Debugger can be a challenge. It is possible to debug
an interrupt handler, but there is a risk of experiencing problems. Most problems occur in multi-interrupt-
driven situations. Because the remote kernel running on the controller is interrupt-driven, it demands
interrupt services from the CPU. If an application program enables interrupt and occupies the interrupt
controller for longer than the remote debugger can accept, the debugger will time-out. As a result, your
PC may hang-up. In extreme cases, a power reset may be required to restart your PC.

For your reference, be aware that our system is remote kernel interrupt-driven for debugging.

The run-time environment on TERN controllers consists of an I/O address space and a memory address
space. I/O address space ranges from 0x0000 to 0xffff, or 64 KB. Memory address space ranges from
0x00000 to 0xfffff in real-mode, or 1 MB. These are accessed differently, and not all addresses can be
translated and handled correctly by hardware. I/O and memory mappings are done in software to define
how translations are implemented by the hardware. Implicit accesses to I/O and memory address space
occur throughout your program from TERN libraries as well as simple memory accesses to either code or
global and stack data. You can, however, explicitly access any address in I/O or memory space, and you
will probably need to do so in order to access processor registers and on-board peripheral components
(which often reside in I/O space) or non-mapped memory.

This is done with four different sets of similar functions, described below.

poke/pokeb
Arguments: unsigned int segment, unsigned int offset, unsigned int/unsigned char data
Return value: none

These standard C functions are used to place specified data at any memory space location. The segment
argument is left shifted by four and added to the offset argument to indicate the 20-bit address within
memory space. poke is used for writing 16 bits at a time, and pokeb is used for writing 8 bits.

The process of placing data into memory space means that the appropriate address and data are placed on
the address and data-bus, and any memory-space mappings in place for this particular range of memory
will be used to activate appropriate chip-select lines and the corresponding hardware component
responsible for handling this data.

 Chapter 4: Software SmartLCD

4-2

peek/peekb
Arguments: unsigned int segment, unsigned int offset
Return value: unsigned int/unsigned char data

These functions retrieve the data for a specified address in memory space. Once again, the segment
address is shifted left by four bits and added to the offset to find the 20-bit address. This address is then
output over the address bus, and the hardware component mapped to that address should return either an
8-bit or 16-bit value over the data bus. If there is no component mapped to that address, this function will
return random garbage values every time you try to peek into that address.

outport/outportb
Arguments: unsigned int address, unsigned int/unsigned char data
Return value: none

This function is used to place the data into the appropriate address in I/O space. It is used most often
when working with processor registers that are mapped into I/O space and must be accessed using either
one of these functions. This is also the function used in most cases when dealing with user-configured
peripheral components.

When dealing with processor registers, be sure to use the correct function. Use outport if you are dealing
with a 16-bit register.

inport/inportb
Arguments: unsigned int address
Return value: unsigned int/unsigned char data

This function can be used to retrieve data from components in I/O space. You will find that most
hardware options added to TERN controllers are mapped into I/O space, since memory space is valuable
and is reserved for uses related to the code and data. Using I/O mappings, the address is output over the
address bus, and the returned 16 or 8-bit value is the return value.

For a further discussion of I/O and memory mappings, please refer to the Hardware chapter of this
technical manual.

4.1 AE.LIB
AE.LIB is a C library for basic SmartLCD operations. It includes the following modules: AE.OBJ,
SER0.OBJ, SER1.OBJ, SCC.OBJ, and AEEE.OBJ. You need to link AE.LIB in your applications and
include the corresponding header files. The following is a list of the header files:

Include-file name Description

AE.H PPI, timer/counter, ADC, DAC, RTC, Watchdog,
SER0.H Internal serial port 0
SER1.H Internal serial port 1
SCC.H External UART SCC2691
AEEE.H on-board EEPROM

SmartLCD Chapter 4: Software

4-3

4.2 Functions in AE.OBJ

4.2.1 SmartLCD Initialization

ae_init

This function should be called at the beginning of every program running on SmartLCD core controllers.
It provides default initialization and configuration of the various I/O pins, interrupt vectors, sets up
expanded DOS I/O, and provides other processor-specific updates needed at the beginning of every
program.

There are certain default pin modes and interrupt settings you might wish to change. With that in mind,
the basic effects of ae_init are described below. For details regarding register use, you will want to refer
to the 188 CPU Microcontroller User’s manual in the Amd_docs directory.

Initialize the upper chip select to support the default ROM. The CPU registers are configured such
that:

Address space for the ROM is from 0x80000-0xfffff (to map MemCard I/O window)
512K ROM Block size operation.
Three wait state operation (allowing it to support up to 120 ns ROMs). With 70 ns ROMs, this can

actually be set to zero wait state if you require increased performance (at a risk of stability in
noisy environments). For details, see the UMCS (Upper Memory Chip Select Register)
reference in the processor User’s manual.

outport(0xffa0, 0x80bf); // UMCS, 512K ROM, 0x80000-0xfffff

Initialize LCS (Lower Chip Select) for use with the SRAM. It is configured so that:

Address space starts 0x00000, with a maximum of 512K RAM.
Three wait state operation. Reducing this value can improve performance.
Disables PSRAM, and disables need for external ready.

outport(0xffa2, 0x7fbf); // LMCS, base Mem address 0x0000

Initialize MMCS and MPCS so that MCS0 and PCS0-PCS6 (except for PCS4) are configured so:

MCS0 is mapped also to a 256K window at 0x80000. If used with MemCard, this
chip select line is used for the I/O window.

Sets up PCS5-6 lines as chip-select lines, with three wait state operation.
outport(0xffa8, 0xa0bf); // s8, 3 wait states
outport(0xffa6, 0x81ff); // CS0MSKH

Initialize PACS so that PCS0-PCS3 are configured so that:

Sets up PCS0-3 lines as chip-select lines, with fifteen wait state operation.
The chip select lines starts at I/O address 0x0000, with each successive chip select line addressed

0x100 higher in I/O space.
outport(0xffa4, 0x007f); // CS0MSKL, 512K, enable CS0 for RAM

Configure the two PIO ports for default operation. All pins are set up as default input, except for P12
(used for driving the LED), and peripheral function pins for SER0 and SER1, as well as chip
selects for the PPI.

outport(0xff78,0xe73c); // PDIR1, TxD0, RxD0, TxD1, RxD1,
// P16=PCS0, P17=PCS1=PPI

outport(0xff76,0x0000); // PIOM1
outport(0xff72,0xec7b); // PDIR0, P12,A19,A18,A17,P2=PCS6=RTC
outport(0xff70,0x1000); // PIOM0, P12=LED

Configure the PPI 82C55 to all inputs, except for lines I20-23 which are used as output for the ADC.
You can reset these to inputs if not being used for that function.

outportb(0x0103,0x9a); // all pins are input, I20-23 output

 Chapter 4: Software SmartLCD

4-4

outportb(0x0100,0);
outportb(0x0101,0);
outportb(0x0102,0x01); // I20=ADCS high

The chip select lines are by default set to 15 wait state. This makes it possible to interface with many
slower external peripheral components. If you require faster I/O access, you can modify this number
down as needed. Some TERN components, such as the Real-Time-Clock, might fail if the wait state is
decreased too dramatically. A function is provided for this purpose.

void io_wait
Arguments: char wait
Return value: none.

This function sets the current wait state depending on the argument wait.
wait=0, wait states = 0, I/O enable for 100 ns
wait=1, wait states = 1, I/O enable for 100+25 ns
wait=2, wait states = 2, I/O enable for 100+50 ns
wait=3, wait states = 3, I/O enable for 100+75 ns
wait=4, wait states = 5, I/O enable for 100+125 ns
wait=5, wait states = 7, I/O enable for 100+175 ns
wait=6, wait states = 9, I/O enable for 100+225 ns
wait=7, wait states = 15, I/O enable for 100+375 ns

4.2.2 External Interrupt Initialization

There are up to eight external interrupt sources on the SmartLCD, consisting of seven maskable interrupt
pins (INT6-INT0) and one non-maskable interrupt (NMI). There are also an additional eight internal
interrupt sources not connected to the external pins, consisting of three timers, two DMA channels, both
asynchronous serial ports, and the NMI from the watchdog timer. For a detailed discussion involving the
ICUs, the user should refer to Chapter 7 of the AMD 188 CPU Microcontroller User’s Manual.

TERN provides functions to enable/disable all of the eight external interrupts. The user can call any of
the interrupt init functions listed below for this purpose. The first argument indicates whether the
particular interrupt should be enabled, and the second is a function pointer to an appropriate interrupt
service routine that should be used to handle the interrupt. The TERN libraries will set up the interrupt
vectors correctly for the specified external interrupt line.

At the end of interrupt handlers, the appropriate in-service bit for the IR signal currently being handled
must be cleared. This can be done using the Nonspecific EOI command. At initialization time, interrupt
priority was placed in Fully Nested mode. This means the current highest priority interrupt will be
handled first, and a higher priority interrupt will interrupt any current interrupt handlers. So, if the user
chooses to clear the in-service bit for the interrupt currently being handled, the interrupt service routine
just needs to issue the nonspecific EOI command to clear the current highest priority IR.

To send the nonspecific EOI command, you need to write the EOI register word with 0x8000.
outport(0xff22, 0x8000);

void intx_init
Arguments: unsigned char i, void interrupt far(* intx_isr) ())
Return value: none

These functions can be used to initialize any one of the external interrupt channels (for pin locations and
other physical hardware details, see the Hardware chapter). The first argument i indicates whether this
particular interrupt should be enabled or disabled. The second argument is a function pointer which will
act as the interrupt service routine. The overhead on the interrupt service routine, when executed, is about
20 µs.

SmartLCD Chapter 4: Software

4-5

By default, the interrupts are all disabled after initialization. To disable them again, you can repeat the
call but pass in 0 as the first argument.

The NMI (Non-Maskable Interrupt) is special in that it can not be masked (disabled). The default ISR
will return on interrupt.

void int0_init(unsigned char i, void interrupt far(* int0_isr)());
void int1_init(unsigned char i, void interrupt far(* int1_isr)());
void int2_init(unsigned char i, void interrupt far(* int2_isr)());
void int3_init(unsigned char i, void interrupt far(* int3_isr)());
void int4_init(unsigned char i, void interrupt far(* int4_isr)());
void int5_init(unsigned char i, void interrupt far(* int5_isr)());
void int6_init(unsigned char i, void interrupt far(* int6_isr)());
void int7_init(unsigned char i, void interrupt far(* int7_isr)());
void int8_init(unsigned char i, void interrupt far(* int8_isr)());
void int9_init(unsigned char i, void interrupt far(* int9_isr)());
void nmi_init(void interrupt far (* nmi_isr)());

4.2.3 I/O Initialization

Two ports of 16 I/O pins each are available on the SmartLCD. Hardware details regarding these PIO lines
can be found in the Hardware chapter.

Several functions are provided for access to the PIO lines. At the beginning of any application where you
choose to use the PIO pins as input/output, you will probably need to initialize these pins in one of the
four available modes. Before selecting pins for this purpose, make sure that the peripheral mode
operation of the pin is not needed for a different use within the same application.

You should also confirm the PIO usage that is described above within ae_init(). During initialization,
several lines are reserved for TERN usage and you should understand that these are not available for your
application. There are several PIO lines that are used for other on-board purposes. These are all described
in some detail in the Hardware chapter of this technical manual. For a detailed discussion toward the I/O
ports, please refer to Chapter 11 of the AMD 188 CPU User’s Manual.

Please see the sample program ae_pio.c in tern\186\samples\ae. You will also find that these
functions are used throughout TERN sample files, as most applications do find it necessary to re-configure
the PIO lines.

The function pio_wr and pio_rd can be quite slow when accessing the PIO pins. Depending on the pin
being used, it might require from 5-10 µs. The maximum efficiency you can get from the PIO pins occur
if you instead modify the PIO registers directly with an outport instruction Performance in this case will
be around 1-2 µs to toggle any pin.

The data register is 0xff74 for PIO port 0, and 0xff7a for PIO port 1.

void pio_init
Arguments: char bit, char mode
Return value: none

bit refers to any one of the 32 PIO lines, 0-31.

mode refers to one of four modes of operation.

• 0, High-impedance Input operation
• 1, Open-drain output operation
• 2, output
• 3, peripheral mode

 Chapter 4: Software SmartLCD

4-6

unsigned int pio_rd:
Arguments: char port

Return value: byte indicating PIO status

Each bit of the returned 16-bit value indicates the current I/O value for the PIO pins in the selected port.

void pio_wr:
Arguments: char bit, char dat
Return value: none

Writes the passed in dat value (either 1/0) to the selected PIO.

4.2.4 Timer Units

The three timers present on the SmartLCD can be used for a variety of applications. All three timers run
at 1/4 of the processor clock rate, which determines the maximum resolution that can be obtained. Be
aware that if you enter power save mode, that means the timers will operate at a reduced speed as well.

These timers are controlled and configured through a mode register which is specified using the software
interfaces. The mode register is described in detail in chapter 8 of the AMD 188 CPU User’s Manual.

Pulse width demodulation is done by setting the PWD bit in the SYSCON register. Before doing this, you
will want to specify your interrupt service routines, which are used whenever the incoming digital signal
switches from high to low, and low to high.

The timers can be used to time execution of your user defined code by reading the timer values before and
after execution of any piece of code. For a sample file demonstrating this application, see the sample file
timer.c in the directory tern\186\samples\ae.

Two of the timers, Timer0 and Timer1 can be used to do pulse-width modulation with a variable duty
cycle. These timers contain two max counters, where the output is high until the counter counts up to
maxcount A before switching and counting up to maxcount B.

It is also possible to use the output of Timer2 to pre-scale one of the other timers, since 16-bit resolution
at the maximum clock rate specified gives you only 150 Hz. Only by using Timer2 can you slow this
down even further. The sample files timer02.c and timer12.c, located in tern\186\samples\ae,
demonstrate this.

The specific behavior that you might want to implement is described in detail in chapter 8 of the AMD
188 CPU User’s Manual.

void t0_init
void t1_init
Arguments: int tm, int ta, int tb, void interrupt far(*t_isr)()
Return values: none

Both of these timers have two maximum counters (MAXCOUNTA/B) available. These can all be
specified using ta and tb. The argument tm is the value that you wish placed into the T0CON/T1CON
mode registers for configuring the two timers.

The interrupt service routine t_isr specified here is called whenever the full count is reached, with other
behavior possible depending on the value specified for the control register.

void t2_init
Arguments: int tm, int ta, void interrupt far(*t_isr)()
Return values: none.

SmartLCD Chapter 4: Software

4-7

Timer2 behaves like the other timers, except it only has one max counter available.

4.2.5 Analog-to-Digital Conversion

Up to two ADC units, U10 and U29, may be installed. Each provides 11 channels of analog inputs based
on the reference voltage supplied to REF+. For details regarding the hardware configuration, see the
Hardware chapter.

In order to operate the U10 ADC, lines I20, I21,I22 from the U5 PPI must be configured as output. P11
must also be configured to be input. This line is also shared with the RTC and EEPROM, and left high at
power-on/reset. You should be sure not to re-program these pins for your own use. Be careful when using
the EEPROM concurrently with the ADC. If the ADC is enabled, the line P11 will be reserved for its use
and any attempt to access the EEPROM will time-out after some time.

To operate the U29 ADC, lines T17 from PPI U27 and lines I21 and I22 from PPI U5 must be configured
as output. T00 (U27) must also be configured to be input. The T00 signal is buffered by U25 Schmitt
Trigger input I0.

For a sample file demonstrating the use of the U10 ADC, please see ae_ad12.c in
tern\186\samples\ae. For the U29 ADC, see sl_ad12.c in tern\186\samples\sl.

int ae_ad12
int sl_ad12
Arguments: char c
Return values: int ad_value

The argument c selects the channel from which to do the next Analog to Digital conversion. A value of 0
corresponds to channel AD0, 1 corresponds to channel AD1, and so on.

The return value ad_value is the latched-in conversion value from the previous call to this function. This
means each call to this function actually returns the value latched-in from the previous analog-to-digital
conversion.

For example, this means the first analog-to-digital conversion done in an application will be similar to the
following:

ae_ad12(0); // Read from channel 0
chn_0_data = ae_ad12(0); // Start the next conversion, retrieve value.

4.2.6 Digital-to-Analog Conversion

Up to two LTC 1446 chips are available on the SmartLCD in positions U11 and U23. U11 offers two
channels, VA and VB, for digital-to-analog conversion. U23 offers channels VC and VD. Details
regarding hardware, such as pin-outs and performance specifications, can be found in the Hardware
chapter.

A sample program demonstrating the U11 DAC can be found in ae_da.c in the directory
tern\186\samples\ae. For the U23 DAC, refer to a104da.c in tern\186\samples\a104.

 Chapter 4: Software SmartLCD

4-8

void ae_da
void a104_da
Arguments: int dat1, int dat2
Return value: none

Argument dat1 is the current value to drive to channel VA of the chip, while argument dat2 is the value
to drive channel VB of the U11 chip (or channels VC and VD, respectively, of the U23 chip).

These argument values should range from 0-4095, with units of millivolts. This makes it possible to drive
a maximum of 4.906 volts to each channel.

A 12-bit DAC channel, VA, is dedicated to drive the contrast voltage by using the software function
contrast(int dat);.

4.2.7 Other library functions

On-board supervisor MAX691 or LTC691

The watchdog timer offered by the MAX691 or LTC691 offers an excellent way to monitor improper
program execution. If the watchdog timer (J9) jumper is set, the function hitwd() must be called every
1.6 seconds of program execution. If this is not executed because of a run-time error, such as an infinite
loop or stalled interrupt service routine, a hardware reset will occur.

void hitwd
Arguments: none
Return value: none

Resets the supervisor timer for another 1.6 seconds.

void led
Arguments: int ledd
Return value: none

Turns the on-board LED on or off according to the value of ledd.

Real-Time Clock

The real-time clock can be used to keep track of real time. Backed up by a lithium-coin battery, the real
time clock can be accessed and programmed using two interface functions.

The real time clock only allows storage of two digits of the year code, as reflected below. As a result,
application developers should be careful to account for a roll-over in digits in the year 2000. One solution
might be to store an offset value in non-volatile storage such as the EEPROM.

There is a common data structure used to access and use both interfaces.
typedef struct{
 unsigned char sec1; One second digit.
 unsigned char sec10; Ten second digit.
 unsigned char min1; One minute digit.
 unsigned char min10; Ten minute digit.
 unsigned char hour1; One hour digit.
 unsigned char hour10; Ten hour digit.
 unsigned char day1; One day digit.

SmartLCD Chapter 4: Software

4-9

 unsigned char day10; Ten day digit.
 unsigned char mon1; One month digit.
 unsigned char mon10; Ten month digit.
 unsigned char year1; One year digit.
 unsigned char year10; Ten year digit.
 unsigned char wk; Day of the week.
} TIM;

int rtc_rd

Arguments: TIM *r
Return value: int error_code

This function places the current value of the real time clock within the argument r structure. The
structure should be allocated by the user. This function returns 0 on success and returns 1 in case of error,
such as the clock failing to respond.

Void rtc_init
Arguments: char* t
Return value: none

This function is used to initialize and set a value into the real-time clock. The argument t should be a
null-terminated byte array that contains the new time value to be used.

The byte array should correspond to { weekday, year10, year1, month10, month1, day10, day1, hour10,
hour1, minute10, minute1, second10, second1, 0 }.

If, for example, the time to be initialized into the real time clock is June 5, 1998, Friday, 13:55:30, the
byte array would be initialized to:

unsigned char t[14] = { 5, 9, 8, 0, 6, 0, 5, 1, 3, 5, 5, 3, 0 };

Delay
In many applications it becomes useful to pause before executing any further code. There are functions
provided to make this process easy. For applications that require precision timing, you should use
hardware timers provided on-board for this purpose.

void delay0
Arguments: unsigned int t
Return value: none

This function is just a simple software loop. The actual time that it waits depends on processor speed as
well as interrupt latency. The code is functionally identical to:

While(t) { t--; }

Passing in a t value of 600 causes a delay of approximately 1 ms.

void delay_ms
Arguments: unsigned int
Return value: none

 Chapter 4: Software SmartLCD

4-10

This function is similar to delay0, but the passed in argument is in units of milliseconds instead of loop
iterations. Again, this function is highly dependent upon the processor speed.

unsigned int crc16
Arguments: unsigned char *wptr, unsigned int count
Return value: unsigned int value

This function returns a simple 16-bit CRC on a byte-array of count size pointed to by wptr.

void ae_reset
Arguments: none
Return value: none

This function is similar to a hardware reset, and can be used if your program needs to re-start the board
for any reason. Depending on the current hardware configuration, this might either start executing code
from the DEBUG ROM or from some other address.

4.3 Functions in SER0.OBJ/SER1.OBJ

The functions described in this section are prototyped in the header file ser0.h and ser1.h in the directory
tern\186\include.

The internal asynchronous serial ports are functionally identical. SER0 is used by the DEBUG ROM
provided as part of the TERN EV/DV software kits for communication with the PC. As a result, you will
not be able to debug code directly written for serial port 0.

Two asynchronous serial ports are integrated in the 188 CPU CPU: SER0 and SER1. Both ports have
baud rates based on the 40 MHz clock, and can operate at a maximum of 1/16 of that clock rate.

By default, SER0 is used by the DEBUG ROM for application download/debugging in Step One and Step
Two. We will use SER1 as the example in the following discussion; any of the interface functions which
are specific to SER1 can be easily changed into function calls for SER0. While selecting a serial port for
use, please realize that some pins might be shared with other peripheral functions. This means that in
certain limited cases, it might not be possible to use a certain serial port with other on-board controller
functions. For details, you should see both chapter 10 of the 188 CPU Microprocessor User’s Manual and
the schematic of the SmartLCD provided at the end of this manual.

TERN interface functions make it possible to use one of a number of predetermined baud rates. These
baud rates are achieved by specifying a divisor for 1/16 of the processor frequency.

The following table shows the function arguments that express each baud rate, to be used in TERN
functions. These are based on a 40 MHz system clock.

Function Argument Baud Rate

1 110
2 150
3 300
4 600
5 1200
6 2400
7 4800
8 9600
9 19,200 (default)

SmartLCD Chapter 4: Software

4-11

Function Argument Baud Rate

10 38,400
11 57,600
12 115,200
13 250,000
14 500,000
15 1,250,000

Table 4.1 Baud rate values

After initialization by calling s1_init(), SER1 is configured as a full-duplex serial port and is ready to
transmit/receive serial data at one of the specified 15 baud rates.

An input buffer, ser1_in_buf (whose size is specified by the user), will automatically store the
receiving serial data stream into the memory by DMA1 operation. In terms of receiving, there is no
software overhead or interrupt latency for user application programs even at the highest baud rate. DMA
transfer allows efficient handling of incoming data. The user only has to check the buffer status with
serhit1() and take out the data from the buffer with getser1(), if any. The input buffer is used as a
circular ring buffer, as shown in Figure 4.1. However, the transmit operation is interrupt-driven.

ibuf in_tail ibuf+isizin_head

Figure 4.1 Circular ring input buffer

The input buffer (ibuf), buffer size (isiz), and baud rate (baud) are specified by the user with s1_init()
with a default mode of 8-bit, 1 stop bit, no parity. After s1_init() you can set up a new mode with
different numbers for data-bit, stop bit, or parity by directly accessing the Serial Port 0/1 Control Register
(SP0CT/SP1CT) if necessary, as described in chapter 10 of the 188 CPU manual for asynchronous serial
ports.

Due to the nature of high-speed baud rates and possible effects from the external environment, serial input
data will automatically fill in the buffer circularly without stopping, regardless of overwrite. If the user
does not take out the data from the ring buffer with getser1() before the ring buffer is full, new data
will overwrite the old data without warning or control. Thus it is important to provide a sufficiently large
buffer if large amounts of data are transferred. For example, if you are receiving data at 9600 baud, a 4
KB buffer will be able to store data for approximately four seconds.

However, it is always important to take out data early from the input buffer, before the ring buffer rolls
over. You may designate a higher baud rate for transmitting data out and a slower baud rate for receiving
data. This will give you more time to do other things, without overrunning the input buffer. You can use
serhit1() to check the status of the input buffer and return the offset of the in_head pointer from the
in_tail pointer. A return value of 0 indicates no data is available in the buffer.

You can use getser1() to get the serial input data byte by byte using FIFO from the buffer. The in_tail
pointer will automatically increment after every getser1() call. It is not necessary to suspend external
devices from sending in serial data with /RTS. Only a hardware reset or s1_close() can stop this
receiving operation.

 Chapter 4: Software SmartLCD

4-12

For transmission, you can use putser1() to send out a byte, or use putsers1() to transmit a
character string. You can put data into the transmit ring buffer, s1_out_buf, at any time using this
method. The transmit ring buffer address (obuf) and buffer length (osiz) are also specified at the time of
initialization. The transmit interrupt service will check the availability of data in the transmit buffer. If
there is no more data (the head and tail pointers are equal), it will disable the transmit interrupt.
Otherwise, it will continue to take out the data from the out buffer, and transmit. After you call
putser1() and transmit functions, you are free to do other tasks with no additional software overhead
on the transmitting operation. It will automatically send out all the data you specify. After all data has
been sent, it will clear the busy flag and be ready for the next transmission.

The sample program ser1_0.c demonstrates how a protocol translator works. It would receive an input
HEX file from SER1 and translate every ‘:’ character to ‘?’. The translated HEX file is then transmitted
out of SER0. This sample program can be found in tern\186\samples\ae.

Software Interface

Before using the serial ports, they must be initialized.

There is a data structure containing important serial port state information that is passed as argument to
the TERN library interface functions. The COM structure should normally be manipulated only by
TERN libraries. It is provided to make debugging of the serial communication ports more practical.
Since it allows you to monitor the current value of the buffer and associated pointer values, you can watch
the transmission process.

The two serial ports have similar software interfaces. Any interface that makes reference to either s0 or
ser0 can be replaced with s1 or ser1, for example. Each serial port should use its own COM structure, as
defined in ae.h.

typedef struct {
 unsigned char ready; /* TRUE when ready */
 unsigned char baud;
 unsigned char mode;
 unsigned char iflag; /* interrupt status */
 unsigned char *in_buf; /* Input buffer */
 int in_tail; /* Input buffer TAIL ptr */
 int in_head; /* Input buffer HEAD ptr */
 int in_size; /* Input buffer size */
 int in_crcnt; /* Input <CR> count */
 unsigned char in_mt; /* Input buffer FLAG */
 unsigned char in_full; /* input buffer full */
 unsigned char *out_buf; /* Output buffer */
 int out_tail; /* Output buffer TAIL ptr */
 int out_head; /* Output buffer HEAD ptr */
 int out_size; /* Output buffer size */
 unsigned char out_full; /* Output buffer FLAG */
 unsigned char out_mt; /* Output buffer MT */
 unsigned char tmso; // transmit macro service operation
 unsigned char rts;
 unsigned char dtr;
 unsigned char en485;
 unsigned char err;
 unsigned char node;
 unsigned char cr; /* scc CR register */
 unsigned char slave;
 unsigned int in_segm; /* input buffer segment */
 unsigned int in_offs; /* input buffer offset */
 unsigned int out_segm; /* output buffer segment */

SmartLCD Chapter 4: Software

4-13

 unsigned int out_offs; /* output buffer offset */
 unsigned char byte_delay; /* V25 macro service byte delay */
} COM;

sn_init
Arguments: unsigned char b, unsigned char* ibuf, int isiz, unsigned char* obuf, int osiz, COM* c
Return value: none

This function initializes either SER0 or SER1 with the specified parameters. b is the baud rate value
shown in Table 4.1. Arguments ibuf and isiz specify the input-data buffer, and obuf and osiz specify the
location and size of the transmit ring buffer.

The serial ports are initialized for 8-bit, 1 stop bit, no parity communication.

There are a couple different functions used for transmission of data. You can place data within the output
buffer manually, incrementing the head and tail buffer pointers appropriately. If you do not call one of the
following functions, however, the driver interrupt for the appropriate serial-port will be disabled, which
means that no values will be transmitted. This allows you to control when you wish the transmission of
data within the outbound buffer to begin. Once the interrupts are enabled, it is dangerous to manipulate
the values of the outbound buffer, as well as the values of the buffer pointer.

putsern
Arguments: unsigned char outch, COM *c
Return value: int return_value

This function places one byte outch into the transmit buffer for the appropriate serial port. The return
value returns one in case of success, and zero in any other case.

putsersn
Arguments: char* str, COM *c
Return value: int return_value

This function places a null-terminated character string into the transmit buffer. The return value returns
one in case of success, and zero in any other case.

DMA transfer automatically places incoming data into the inbound buffer. serhitn() should be called
before trying to retrieve data.

serhitn
Arguments: COM *c
Return value: int value

This function returns 1 as value if there is anything present in the in-bound buffer for this serial port.

getsern
Arguments: COM *c
Return value: unsigned char value

This function returns the current byte from sn_in_buf, and increments the in_tail pointer. Once again,
this function assumes that serhitn has been called, and that there is a character present in the buffer.

 Chapter 4: Software SmartLCD

4-14

getsersn
Arguments: COM c, int len, char* str
Return value: int value

This function fills the character buffer str with at most len bytes from the input buffer. It also stops
retrieving data from the buffer if a carriage return (ASCII: 0x0d) is retrieved.

This function makes repeated calls to getser, and will block until len bytes are retrieved. The return
value indicates the number of bytes that were placed into the buffer.

Be careful when you are using this function. The returned character string is actually a byte array
terminated by a null character. This means that there might actually be multiple null characters in the
byte array, and the returned value is the only definite indicator of the number of bytes read. Normally, we
suggest that the getsers and putsers functions only be used with ASCII character strings. If you are
working with byte arrays, the single-byte versions of these functions are probably more appropriate.

Miscellaneous Serial Communication Functions

One thing to be aware of in both transmission and receiving of data through the serial port is that TERN
drivers only use the basic serial-port communication lines for transmitting and receiving data. Hardware
flow control in the form of CTS (Clear-To-Send) and RTS (Ready-To-Send) is not implemented. There
are, however, functions available that allow you to check and set the value of these I/O pins appropriate
for whatever form of flow control you wish to implement. Before using these functions, you should once
again be aware that the peripheral pin function you are using might not be selected as needed. For details,
please refer to the 188 CPU User’s Manual.

char sn_cts(void)
Retrieves value of CTS pin.

void sn_rts(char b)
Sets the value of RTS to b.

Completing Serial Communications

After completing your serial communications, there are a few functions that can be used to reset default
system resources.

sn_close
Arguments: COM *c
Return value: none

This closes down the serial port, by shutting down the hardware as well as disabling the interrupt.

clean_sern
Arguments: COM *c
Return value: none

This flushes the input buffer by resetting the tail and header buffer pointers.

The asynchronous serial I/O ports available on the 188 CPU Processor have many other features that
might be useful for your application. If you are truly interested in having more control, please read
Chapter 10 of the manual for a detailed discussion of other features available to you.

SmartLCD Chapter 4: Software

4-15

4.4 Functions in SCC.OBJ

The functions found in this object file are prototyped in scc.h in the tern\186\include directory.

The SCC is a component that is used to provide a third asynchronous port. It uses an 8 MHz crystal,
different from the system clock speed, for driving serial communications. This means the divisors and
function arguments for setting up the baud rate for this third port are different than for SER0 and SER1.

The SCC2691 component has its own 8 MHz crystal providing the clock signal. By default, this is set to
8 MHz to be consistent with earlier TERN controller designs. The highest standard baud rate is 19,200,
as shown in the table below. If your application requires a higher standard baud rate (115,200, for
example), it is possible to replace this crystal with a custom 3.6864 MHz crystal. A sample file
demonstrating how the software would be changed for this application is ae_scc1.c, found in the
tern\186\samples\ae\ directory.

Function Argument Baud Rate

1 110
2 150
3 300
4 600
5 1200
6 2400
7 4800
8 9600 (default)
9 19,200
10 31,250
11 62,500
12 125,000
13 250,000

Unlike the other serial ports, DMA transfer is not used to fill the input buffer for SCC. Instead, an
interrupt-service-routine is used to place characters into the input buffer. If the processor does not respond
to the interrupt—because it is masked, for example—the interrupt service routine might never be able to
complete this process. Over time, this means data might be lost in the SCC as bytes overflow.

Special control registers are used to define how the SCC operates. For a detailed description of registers
MR1 and MR2, please see Appendix B of this manual. In most TERN applications, MR1 is set to 0x57,
and MR2 is set to 0x07. This configures the SCC for no flow control (RTS, CTS not used/checked), no
parity, 8-bit, normal operation. Other configurations are also possible, providing self-echo, even-odd
parity, up to 2 stop bits, 5 bit operation, as well as automatic hardware flow control.

Initialization occurs in a manner otherwise similar to SER0 and SER1. A COM structure is once again
used to hold state information for the serial port. The in-bound and out-bound buffers operate as before,
and must be provided upon initialization.

scc_init
Arguments: unsigned char m1, unsigned char m2, unsigned char b, unsigned char* ibuf, int isiz,
unsigned char* obuf, int osiz, COM *c
Return value: none

This initializes the SCC2691 serial port to baud rate b, as defined in the table above. The values in m1
and m2 specify the values to be stored in to MR1 and MR2. As discussed above, these values are
normally 0x57 and 0x07, as shown in TERN sample programs.

 Chapter 4: Software SmartLCD

4-16

ibuf and isiz define the input buffer characteristics, and obuf and osiz define the output buffer.

After initializing the serial port, you must also set up the interrupt service routine. The SCC2691 UART
takes up external interrupt /INT0 on the CPU, and you must set up the appropriate interrupt vector to

handle this. An interrupt service routine, scc_isr(), has been written to handle the interrupt, and it
enables/disables the interrupt as needed to transmit and receive data with the data buffers. So, after
initialization, you will need to make a call to do this:

 int0_init(1, scc_isr);

By default, the SCC is disabled for both transmit and receive. Before using the port, you will need to
enable these functionalities.

When using RS232 in full-duplex mode, transmit and receive functions should both be enabled. Once
this is done, you can transmit and receive data as needed. If you do need to do limited flow control, the
MPO pin on the J1 header can be used for RTS. For a sample file showing RS232 full duplex
communications, please see ae_scc.c in the directory tern\186\samples\ae.

RS485 is slightly more complex to use than RS232. RS485 operation is half-duplex only, which means
transmission does not occur concurrently with reception. The RS485 driver will echo back bytes sent to
the SCC. As a result, assuming you are using the RS485 driver installed on another TERN peripheral
board, you will need to disable receive while transmitting. While transmitting, you will also need to
place the RS485 driver in transmission mode as well. This is done by using scc_rts(1). This uses pin
MPO (multi-purpose output) found on the J1 header. While you are receiving data, the RS485 driver will
need to be placed in receive mode using scc_rts(0). For a sample file showing RS485 communication,
please see ae_rs485.c in the directory tern\186\samples\ae.

en485
Arguments: int i
Return value: none

This function sets the pin MPO either high (i = 1) or low (i = 0). The function scc_rts() actually has a
similar function, by pulling the same pin high or low, but is intended for use in flow control.

scc_send_e/scc_rec_e
Arguments: none
Return value: none

This function enables transmission or reception on the SCC2691 UART. After initialization, both of
these functions are disabled by default. If you are using RS485, only one of these two functions should be
enabled at any one time.

scc_send_reset/scc_rec_reset
Arguments: none
Return value: none

This function resets the state of the send and receive function of the SCC2691. One major use of these
functions is to disable transmit and receive. If you are using RS485, you will need to use this feature
when transitioning from transmission to reception, or from reception to transmission.

Transmission and reception of data using the SCC is in most ways identical to SER0 and SER1. The
functions used to transmit and receive data are similar. For details regarding these functions, please refer
to the previous section.

SmartLCD Chapter 4: Software

4-17

putser_scc
See: putsern

putsers_scc

See: putsersn

getser_scc
See: getsern

getsers_scc

See: getsersn

Flow control is also handled in a mostly similar fashion. The CTS pin corresponds to the MPI pin, which
is not connected to either one of the headers. The RTS pin corresponds to the MPO pin found on the J1
header.

scc_cts
See: sn_cts

scc_rts
See: sn_rts

Other SCC functions are similar to those for SER0 and SER1.

scc_close

See: sn_close
serhit_scc

See: sn_hit
clean_ser_scc

See: clean_sn

Occasionally, it might also be necessary to check the state of the SCC for information regarding errors
that might have occurred. By calling scc_err, you can check for framing errors, parity errors (if parity is
enabled), and overrun errors.

scc_err
Arguments: none
Return value: unsigned char val

The returned value val will be in the form of 0ABC0000 in binary. Bit A is 1 to indicate a framing error.
Bit B is 1 to indicate a parity error, and bit C indicates an over-run error.

4.5 Functions in AEEE.OBJ

The 512-byte serial EEPROM (24C04) provided on-board allows easy storage of non-volatile program
parameters. This is usually an ideal location to store important configuration values that do not need to be
changed often. Access to the EEPROM is quite slow, compared to memory access on the rest of the
controller.

Part of the EEPROM is reserved for TERN use specifically for this purpose.

Addresses 0x00 to 0x1f on the EEPROM is reserved for system use, including configuration information
about the controller itself, jump address for Step Two, and other data that is of a more permanent nature.

The rest of the EEPROM memory space, 0x20 to 0x1ff, is available for your application use.

 Chapter 4: Software SmartLCD

4-18

ee_wr
Arguments: int addr, unsigned char dat
Return value: int status

This function is used to write the passed in dat to the specified addr. The return value is 0 in success.

ee_rd
Arguments: int addr
Return value: int data

This function returns one byte of data from the specified address.

4.6 Functions in SL.LIB

C function prototypes supporting SmartLCD hardware can be found in SL.H, in the
\tern\186\include directory.

The following sample programs can be found in the \tern\186\samples\SL directory:

 sl_grid.c
 sl_bird.c
 sl_ppi.c

sl_ccfl.c
sl_pb.c
sl_ad12.c
sl_text.c

4.7 Functions in SLB.LIB

Additional software drivers can be found in slb.h and other slb header files. The source code for these
functions is included in the tern\186\samples\sl\source directory. Functions in this library include drivers
to create buttons and handle button events. The following samples illustrate some of the basic operations:

 sl_bttn.c

 sl_demo.c

 sl_gpx.c

SmartLCD Chapter 4: Software

4-19

SmartLCD Appendix A: SmartLCD Layout

 A-1

Appendix A: SmartLCD Layout

The SmartLCD measures 6.40 x 4.65 inches. Its layout is shown below.
All dimensions are in inches. Shaded mounting holes are used for the LCD.

H3

SRAM

U1

188 CPU

U2 U8

U
A
R
T

J3

J8 J5 J4

EE U7

U9

74
H

C

14

DAC U11

691

U6

74HC14
U24

74HC14
U25

PPI

U27

PPI

U5 PPI

U20

U
18

H

V
 D

ri
ve

r

U3
ROM/
Flash

ADC
TLC2543

U10

(0.3, 0.03)

J2

(0.0, 0.0)

(-0.15, -0.18)

(0.3, 6.00) (0.00, 6.1)

(4.3, 0.0)

(4.30, 6.03)

(4.5, 6.22)

J1

DAC U23

RTC

U4

VOFF

RT1

RT2

RT4

RT5

RESET

P17

/INT2

B0
1

C0
2

B1
3

C1
4

B6
5

B7
6

B2
7

C2
8

B3
9

C3
10

C4
11

B4
12

B5
13

C5
14

/INT1

SED1335

U15

U19
7662

U26
7662

O
p

am
p

32
4 U

28
 PA

L

U
22

P1

(0.01, 5.625)

(0.01, 5.225)

(0.01, 4.825)

(0.01, 4.425)

(0.01, 4.025)

(0.01, 3.625)

(0.01, 3.225)

(0.01, 2.825)

(0.01, 2.425)

(0.01, 2.025)

(0.01, 1.625)

(0.01, 1.225)

(0.01, 0.825)

(0.01, 0.425)

(x, 5.23)

(x, 4.88)

(x, 3.48)

(x, 0.33)

(4.06, 0.01)

(3.36, 0.01)

(1.91, 0.01)

RT3

H
16

A
D

C

T
L

C

25
43

U29

J9

J14

Touch screen F1

C
C

FL
 B

ac
kl

ig
ht

in
g

H13

J11

H15

H1

SER0

H2

SER1

U16

Image
buffer
SRAM

R
S2

3

U12

H10 H11

Right-angle
push buttons:

x

y

J6

H12

H7

H5

H8

H4

P3
P2

H14

H6

Beeper

Key
Code

Step2

U13
U14

R
S2

32
/

48
5

(4.32 2.79)

(4.42, 3.24)

(2.22, 3.24)

(1.12, 0.89)

(1.19, 0.56)

(0.24, 1.42)

Appendix B: UART SCC2691 SmartLCD

B-1

Appendix B: UART SCC2691
1. Pin Description
 D0-D7 Data bus, active high, bi-directional, and having 3-State
 /CEN Chip enable, active-low input
 /WRN Write strobe, active-low input
 /RDN Read strobe, active-low input
 A0-A2 Address input, active-high address input to select the UART registers
 RESET Reset, active-high input
 INTRN Interrupt request, active-low output
 X1/CLK Crystal 1, crystal or external clock input
 X2 Crystal 2, the other side of crystal
 RxD Receive serial data input
 TxD Transmit serial data output
 MPO Multi-purpose output
 MPI Multi-purpose input
 Vcc Power supply, +5 V input
 GND Ground

2. Register Addressing

A2 A1 A0 READ (RDN=0) WRITE (WRN=0)
0 0 0 MR1,MR2 MR1, MR2
0 0 1 SR CSR
0 1 0 BRG Test CR
0 1 1 RHR THR
1 0 0 1x/16x Test ACR
1 0 1 ISR IMR
1 1 0 CTU CTUR
1 1 1 CTL CTLR

Note:
 ACR = Auxiliary control register
 BRG = Baud rate generator
 CR = Command register
 CSR = Clock select register
 CTL = Counter/timer lower
 CTLR = Counter/timer lower register
 CTU = Counter/timer upper
 CTUR = Counter/timer upper register
 MR = Mode register
 SR = Status register
 RHR = Rx holding register
 THR = Tx holding register

3. Register Bit Formats

MR1 (Mode Register 1):
 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

 RxRTS

 0 = no
 1 = yes

 RxINT

0=RxRDY
1=FFULL

 Error

 0 = char
1 = block

 ___Parity Mode___

 00 = with parity
 01 = Force parity
 10 = No parity
 11 = Special mode

Parity Type

 0 = Even
 1 = Odd

In Special
 mode:
 0 = Data
 1 = Addr

 Bits per Character

 00 = 5
 01 = 6
 10 = 7
 11 = 8

SmartLCD Appendix B: UART SCC2691

 B-2

MR2 (Mode Register 2):

 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

 Channel Mode

 TxRTS CTS Enable
Tx

 Stop Bit Length
(add 0.5 to cases 0-7 if channel is 5 bits/character)

 00 = Normal
 01 = Auto echo
 10 = Local loop
 11 = Remote loop

 0 = no
 1 = yes

 0 = no
 1 = yes

 0 = 0.563 4 = 0.813 8 = 1.563 C = 1.813
 1 = 0.625 5 = 0.875 9 = 1.625 D = 1.875
 2 = 0.688 6 = 0.938 A = 1.688 E = 1.938
 3 = 0.750 7 = 1.000 B = 1.750 F = 2.000

CSR (Clock Select Register):

 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

 Receiver Clock Select Transmitter Clock Select

when ACR[7] = 0:
0 = 50 1 = 110 2 = 134.5 3 = 200
4 = 300 5 = 600 6 = 1200 7 = 1050
8 = 2400 9 = 4800 A = 7200 B = 9600
C = 38.4k D = Timer E = MPI-16x F = MPI-1x

 when ACR[7] = 1:
0 = 75 1 = 110 2 = 134.5 3 = 150
4 = 300 5 = 600 6 = 1200 7 = 2000
8 = 2400 9 = 4800 A = 7200 B = 1800
C = 19.2k D = Timer E = MPI-16x F = MPI-1x

when ACR[7] = 0:
0 = 50 1 = 110 2 = 134.5 3 = 200
4 = 300 5 = 600 6 = 1200 7 = 1050
8 = 2400 9 = 4800 A = 7200 B = 9600
C = 38.4k D = Timer E = MPI-16x F = MPI-1x

when ACR[7] = 1:
0 = 75 1 = 110 2 = 134.5 3 = 150
4 = 300 5 = 600 6 = 1200 7 = 2000
8 = 2400 9 = 4800 A = 7200 B = 1800
C = 19.2k D = Timer E = MPI-16x F = MPI-1x

CR (Command Register):

 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

 Miscellaneous Commands Disable

 Tx
 Enable
 Tx

 Disable
 Rx

 Enable
 Rx

0 = no command 8 = start C/T
1 = reset MR pointer 9 = stop counter
2 = reset receiver A = assert RTSN
3 = reset transmitter B = negate RTSN
4 = reset error status C = reset MPI
5 = reset break change change INT
 INT D = reserved
6 = start break E = reserved
7 = stop break F = reserved

 0 = no
 1 = yes

 0 = no
 1 = yes

 0 = no
 1 = yes

 0 = no
 1 = yes

SR (Channel Status Register):

 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Received
 Break

 Framing
 Error

 Parity
 Error

 Overrun
 Error

 TxEMT TxRDY FFULL RxRDY

 0 = no
 1 = yes
 *

 0 = no
 1 = yes
 *

 0 = no
 1 = yes
 *

 0 = no
 1 = yes

 0 = no
 1 = yes

 0 = no
 1 = yes

 0 = no
 1 = yes

 0 = no
 1 = yes

Note:
* These status bits are appended to the corresponding data character in the receive FIFO. A read of the status register provides these bits [7:5]
from the top of the FIFO together with bits [4:0]. These bits are cleared by a reset error status command. In character mode they are reset when
the corresponding data character is read from the FIFO.

Appendix B: UART SCC2691 SmartLCD

B-3

ACR (Auxiliary Control Register):
 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

BRG Set
 Select

 Counter/Timer Mode and Source

 Power-
 Down
 Mode

 MPO Pin Function Select

0 = Baud
rate set 1,
see CSR
bit format

1 = Baud
rate set 2,
see CSR
bit format

 0 = counter, MPI pin
 1 = counter, MPI pin divided by
 16
 2 = counter, TxC-1x clock of the
 transmitter
 3 = counter, crystal or external
 clock (x1/CLK)
 4 = timer, MPI pin
 5 = timer, MPI pin divided by
 16
 6 = timer, crystal or external
 clock (x1/CLK)
 7 = timer, crystal or external
 clock (x1/CLK) divided by 16

 0 = on,
 power
 down
 active
 1 = off
 normal

 0 = RTSN
 1 = C/TO
 2 = TxC (1x)
 3 = TxC (16x)
 4 = RxC (1x)
 5 = RxC (16x)
 6 = TxRDY
 7 = RxRDY/FFULL

ISR (Interrupt Status Register):
 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

 MPI Pin
 Change

 MPI Pin
 Current
 State

 Not Used Counter
 Ready

 Delta
 Break

 RxRDY/
 FFULL

 TxEMT TxRDY

 0 = no
 1 = yes

 0 = low
 1 = high

 0 = no
 1 = yes

 0 = no
 1 = yes

 0 = no
 1 = yes

 0 = no
 1 = yes

 0 = no
 1 = yes

IMR (Interrupt Mask Register):

 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

 MPI
 Change
Interrupt

 MPI
 Level
 Interrupt

Not Used

 Counter
 Ready
 Interrupt

 Delta
 Break
 Interrupt

 RxRDY/
 FFULL
 Interrupt

 TxEMT
 Interrupt

 TxRDY
 Interrupt

 0 = off
 1 = 0n

 0 = off
 1 = 0n

 0 = off
 1 = 0n

 0 = off
 1 = 0n

 0 = off
 1 = 0n

 0 = off
 1 = 0n

 0 = off
 1 = 0n

CTUR (Counter/Timer Upper Register):
 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

 C/T [15] C/T [14] C/T [13] C/T [12] C/T [11] C/T [10] C/T [9] C/T [8]

CTLR (Counter/Timer Lower Register):
 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

 C/T [7] C/T [6] C/T [5] C/T [4] C/T [3] C/T [2] C/T [1] C/T[0]

SmartLCD Appendix C: RTC72421 / 72423

 C-1

Appendix C: RTC72421 / 72423

Function Table

 Address Data
A3 A2 A1 A0 Register D3 D2 D1 D0 Count

Value
 Remarks

0 0 0 0 S1 s8 s4 s2 s1 0~9 1-second digit register

0 0 0 1 S10 s40 s20 s10 0~5 10-second digit register

0 0 1 0 MI1 mi8 mi4 mi2 mi1 0~9 1-minute digit register

0 0 1 1 MI10 mi40 mi20 mi10 0~5 10-minute digit register

0 1 0 0 H1 h8 h4 h2 h1 0~9 1-hour digit register

0 1 0 1 H10 PM/AM h20 h10 0~2
or
0~1

PM/AM, 10-hour digit
register

0 1 1 0 D1 d8 d4 d2 d1 0~9 1-day digit register

0 1 1 1 D10 d20 d10 0~3 10-day digit register

1 0 0 0 MO1 mo8 mo4 mo2 mo1 0~9 1-month digit register

1 0 0 1 MO10 mo10 0~1 10-month digit register

1 0 1 0 Y1 y8 y4 y2 y1 0~9 1-year digit register

1 0 1 1 Y10 y80 y40 y20 y10 0~9 10-year digit register

1 1 0 0 W w4 w2 w1 0~6 Week register

1 1 0 1 Reg D 30s
Adj

IRQ
Flag

Busy Hold Control register D

1 1 1 0 Reg E t1 t0 INT/
STD

Mask Control register E

1 1 1 1 Reg F Test 24/ 12 Stop Rest Control register F

Note: 1) INT/STD = Interrupt/Standard, Rest = Reset;

 2) Mask AM/PM bit with 10's of hours operations;

 3) Busy is read only, IRQ can only be set low ("0");

 4)

Data bit PM/AM INT/STD 24/12
 1 PM INT 24
 0 AM STD 12

 5) Test bit should be "0".

Appendix D: Serial EEPROM Map SmartLCD

D-1

Appendix D: Serial EEPROM Map
Part of the on-board serial EEPROM is used by system software. Application programs must not use these
locations.

0x00-0x1F: Reserved
0x20-0x1FF: Free for application

0x00 Node Address, for networking
0x01 Board Type

0x02
0x03
0x04 SER0_receive, used by ser0.c
0x05 SER0_transmit, used by ser0.c
0x06 SER1_receive, used by ser1.c
0x07 SER1_transmit, used by ser1.c

0x10 CS high byte, used by ACTR™
0x11 CS low byte, used by ACTR™
0x12 IP high byte, used by ACTR™
0x13 IP low byte, used by ACTR™

0x14 – 0x1F Reserved

0x20 – 0x1FF Free for application

SmartLCD Appendix E: Software Glossary

 E-1

Appendix E: Software Glossary
The following is a glossary of library functions for the SmartLCD. Reference sample programs can be
found in two directories:

 C:\tern\186\samples\AE
 C:\tern\186\samples\SL

void ae_init(void) ae.h

 Initializes the Am188ES processor. The following is the source code for ae_init()
 outport(0xffa0,0xc0bf); // UMCS, 256K ROM, 3 wait states, disable AD15-0

outport(0xffa2,0x7fbc); // 512K RAM, 0 wait states
outport(0xffa8,0xa0bf); // 256K block, 64K MCS0, PCS I/O
outport(0xffa6,0x81ff); // MMCS, base 0x80000
outport(0xffa4,0x007f); // PACS, base 0, 15 wait

outport(0xff78,0xe73c); // PDIR1, TxD0, RxD0, TxD1, RxD1, P16=PCS0, P17=PCS1=PPI
outport(0xff76,0x0000); // PIOM1
outport(0xff72,0xec7b); // PDIR0, P12,A19,A18,A17,P2=PCS6=RTC
outport(0xff70,0x1000); // PIOM0, P12=LED

outportb(0x0103,0x9a); // all pins are input, I20-23 output
outportb(0x0100,0);
outportb(0x0101,0);
outportb(0x0102,0x01); // I20=ADCS high
clka_en(0);
enable();

Reference: led.c

void ae_reset(void) ae.h

 Resets Am188ES processor.

void delay_ms(int m) ae.h

Approximate microsecond delay. Does not use timer.

Var: m – Delay in approximate ms

Reference: led.c

void led(int i) ae.h

Toggles P12 used for led.

Var: i - Led on or off

Reference: led.c

Appendix E: Software Glossary SmartLCD

E-2

SmartLCD Appendix E: Software Glossary

 E-3

void delay0(unsigned int t) ae.h

Approximate loop delay. Does not use timer.

Var: m – Delay using simple for loop up to t.

Reference:

void pwr_save_en(int i) ae.h

Enables power save mode, which reduces clock speed. Timers and serial ports will be effected.
Disabled by external interrupt.

Var: i – 1 enables power save only. Does not disable.

Reference: ae_pwr.c

void clka_en(int i) ae.h

Enables signal CLK respectively for external peripheral use.

Var: i – 1 enables clock output, 0 disables (saves current when
disabled).

Reference:

void hitwd(void) ae.h

Hits the watchdog timer using P03. P03 must be connected to WDI of the MAX691 supervisor
chip.

Reference: See Hardware chapter of this manual for more information on the MAX691.

void pio_init(char bit, char mode) ae.h

Initializes a PIO line to the following:
mode=0, Normal operation
mode=1, Input with pullup/down
mode=2, Output
mode=3, input without pull

Var: bit – PIO line 0 - 31
 Mode – above mode select

Reference: ae_pio.c

Appendix E: Software Glossary SmartLCD

E-4

void pio_wr(char bit, char dat) ae.h

Writes a bit to a PIO line. PIO line must be in an output mode
mode=0, Normal operation
mode=1, Input with pullup/down
mode=2, Output
mode=3, input without pull

Var: bit – PIO line 0 - 31
 dat – 1/0

Reference: ae_pio.c

unsigned int pio_rd(char port) ae.h

Reads a 16-bit PIO port.

Var: port – 0: PIO 0 - 15
 1: PIO 16 – 31

Reference: ae_pio.c

void outport(int portid, int value) dos.h

Writes 16-bit value to I/O address portid.

Var: portid – I/O address
 value – 16 bit value

Reference: ae_ppi.c

void outportb(int portid, int value) dos.h

Writes 8-bit value to I/O address portid.

Var: portid – I/O address
 value – 8 bit value

Reference: ae_ppi.c

int inport(int portid) dos.h

Reads from an I/O address portid. Returns 16-bit value.

Var: portid – I/O address

Reference: ae_ppi.c

SmartLCD Appendix E: Software Glossary

 E-5

int inportb(int portid) dos.h

Reads from an I/O address portid. Returns 8-bit value.

Var: portid – I/O address

Reference: ae_ppi.c

int ee_wr(int addr, unsigned char dat) aeee.h

Writes to the serial EEPROM.

Var: addr – EEPROM data address
 dat - data

Reference: ae_ee.c

int ee_rd(int addr) aeee.h

Reads from the serial EEPROM. Returns 8-bit data

Var: addr – EEPROM data address

Reference: ae_ee.c

int ae_ad12(unsigned char c) ae.h

Reads from the 11-channel 12-bit ADC. Returns 12 bit AD data of the previous channel.
In order to operate ADC, I20,I21,I22 must be output and P11 must be input.

 P11 is shared by RTC, EE. It must left high at power-on/reset.
 Unipolar:
 Vref- = 0x000
 Vref+ = 0xfff

Use 1 wait state for Memory and I/O without RDY, < 300 us execution time
 Use 0 wait state for Memory and I/O with VEP010, < 270 us execution time

Var: c – ADC channel.

c = {0 … a}, input ch = 0 – 10
c = b, input ch = (vref+ - vref-) /2
c = c, input ch = vref-
c = d, input ch = vref+
c = e, software power down

Reference: ae_ad12.c

Appendix E: Software Glossary SmartLCD

E-6

void io_wait(char wait) ae.h

Setup I/O wait states for I/O instructions.

Var: wait – wait duration {0…7}
wait=0, wait states = 0, I/O enable for 100 ns
wait=1, wait states = 1, I/O enable for 100+25 ns
wait=2, wait states = 2, I/O enable for 100+50 ns
wait=3, wait states = 3, I/O enable for 100+75 ns
wait=4, wait states = 5, I/O enable for 100+125 ns
wait=5, wait states = 7, I/O enable for 100+175 ns
wait=6, wait states = 9, I/O enable for 100+225 ns
wait=7, wait states = 15, I/O enable for 100+375 ns

Reference:

void rtc_init(unsigned char * time) ae.h

Sets real time clock date, year and time.

Var: time – time and date string
 String sequence is the following:

time[0] = weekday
time[1] = year10
time[2] = year1
time[3] = mon10
time[4] = mon1
time[5] = day10
time[6] = day1
time[7] = hour10
time[8] = hour1
time[9] = min10
time[10] = min1
time[11] = sec10
time[12] = sec1

unsigned char time[]={2,9,8,0,7,0,1,1,3,1,0,2,0};
/* Tuesday, July 01, 1998, 13:10:20 */

Reference: rtc_init.c

int rtc_rd(TIM *r) ae.h

Reads from the real time clock.

Var: *r – Struct type TIM for all of the RTC data

typedef struct{
 unsigned char sec1, sec10, min1, min10, hour1, hour10;
 unsigned char day1, day10, mon1, mon10, year1, year10;
 unsigned char wk;

} TIM;

Reference: rtc.c

SmartLCD Appendix E: Software Glossary

 E-7

void t2_init(int tm, int ta, void interrupt far(*t2_isr)()); ae.h
void t1_init(int tm, int ta, int tb, void interrupt far(*t1_isr)());
void t0_init(int tm, int ta, int tb, void interrupt far(*t0_isr)());

Timer 0, 1, 2 initialization.

Var: tm – Timer mode. See pg. 8-3 and 8-5 of the AMD CPU Manual

ta – Count time a (1/4 clock speed).
tb – Count time b for timer 0 and 1 only (1/4 clock).

Time a and b establish timer duty cycle (PWM). See
hardware chapter.

 t#_isr – pointer to timer interrupt routine.
Reference: timer.c, timer1.c, timer02.c, timer2.c, timer0.c timer12.c

void nmi_init(void interrupt far (* nmi_isr)()); ae.h
void int0_init(unsigned char i, void interrupt far (*int0_isr)());
void int1_init(unsigned char i, void interrupt far (*int1_isr)());
void int2_init(unsigned char i, void interrupt far (*int2_isr)());
void int3_init(unsigned char i, void interrupt far (*int3_isr)());
void int4_init(unsigned char i, void interrupt far (*int4_isr)());
void int5_init(unsigned char i, void interrupt far (*int5_isr)());
void int6_init(unsigned char i, void interrupt far (*int6_isr)());

Initialization for interrupts 0 through 6 and NMI (Non-Maskable Interrupt).

Var: i – 1: enable, 0: disable.

 int#_isr – pointer to interrupt service.

Reference: intx.c

void s0_init(unsigned char b, unsigned char* ibuf, int isiz, ser0.h
 unsigned char* obuf, int osiz, COM *c) (void);

void s1_init(unsigned char b, unsigned char* ibuf, int isiz, ser1.h
 unsigned char* obuf, int osiz, COM *c) (void);

Serial port 0, 1 initialization.

Var: b – baud rate. Table below for 40MHz and 20MHz Clocks.
 ibuf – pointer to input buffer array
 isiz – input buffer size
 obuf – pointer to output buffer array
 osiz – ouput buffer size

c – pointer to serial port structure. See AE.H for COM
structure.

b baud (40MHz) baud (20MHz)

1 110 55
2 150 110
3 300 150
4 600 300
5 1200 600

Appendix E: Software Glossary SmartLCD

E-8

b baud (40MHz) baud (20MHz)

6 2400 1200
7 4800 2400
8 9600 4800
9 19200 9600
10 38400 19200
11 57600 38400
12 115200 57600
13 23400 115200
14 460800 23400
15 921600 460800

Reference: s0_echo.c, s1_echo.c, s1_0.c

void scc_init(unsigned char m1, unsigned char m2, unsigned char b, scc.h
unsigned char* ibuf,int isiz, unsigned char* obuf,int osiz, COM *c)

Serial port 0, 1 initialization.

Var: m1 = SCC691 MR1

m2 = SCC691 MR2
b – baud rate. Table below for 8MHz Clock.

 ibuf – pointer to input buffer array
 isiz – input buffer size
 obuf – pointer to output buffer array
 osiz – ouput buffer size

c – pointer to serial port structure. See AE.H for COM
structure.

m1 bit Definition

7 (RxRTS) receiver request-to-send control, 0=no, 1=yes
6 (RxINT) receiver interrupt select, 0=RxRDY, 1=FIFO

FULL
5 (Error Mode) Error Mode Select, 0 = Char., 1=Block
4-3 (Parity Mode), 00=with, 01=Force, 10=No, 11=Special
2 (Parity Type), 0=Even, 1=Odd
1-0 (# bits) 00=5, 01=6, 10=7, 11=8

m2 bit Definition

7-6 (Modes) 00=Normal, 01=Echo, 10=Local loop, 11=Remote
loop

5 (TxRTS) Transmit RTS control, 0=No, 1= Yes
4 (CTS Enable Tx), 0=No, 1=Yes
3-0 (Stop bit), 0111=1, 1111=2

b baud (8MHz)

1 110
2 150
3 300
4 600
5 1200
6 2400
7 4800
8 9600
9 19200
10 31250
11 62500

SmartLCD Appendix E: Software Glossary

 E-9

b baud (8MHz)

12 125000
13 250000

Reference: s0_echo.c, s1_echo.c, s1_0.c

int putser0(unsigned char ch, COM *c); ser0.h
int putser1(unsigned char ch, COM *c); ser1.h
int putser_scc(unsigned char ch, COM *c); scc.h

Output 1 character to serial port. Character will be sent to serial output with interrupt isr.

Var: ch – character to output
 c – pointer to serial port structure

Reference: s0_echo.c, s1_echo.c, s1_0.c

int putsers0(unsigned char *str, COM *c); ser0.h
int putsers1(unsigned char *str, COM *c); ser1.h
int putsers_scc(unsigned char ch, COM *c); scc.h

Output a character string to serial port. Character will be sent to serial output with interrupt isr.

Var: str – pointer to output character string
 c – pointer to serial port structure

Reference: ser1_sin.c

int serhit0(COM *c); ser0.h
int serhit1(COM *c); ser1.h
int serhit_scc(COM *c); scc.h

Checks input buffer for new input characters. Returns 1 if new character is in input buffer, else
0.

Var: c – pointer to serial port structure

Reference: s0_echo.c, s1_echo.c, s1_0.c

unsigned char getser0(COM *c); ser0.h
unsigned char getser1(COM *c); ser1.h
unsigned char getser_scc(COM *c); scc.h

Retrieve 1 character from the input buffer. Assumes that serhit routine was evaluated.

Var: c – pointer to serial port structure

Reference: s0_echo.c, s1_echo.c, s1_0.c

Appendix E: Software Glossary SmartLCD

E-10

int getsers0(COM *c, int len, unsigned char *str); ser0.h
int getsers1(COM *c, int len, unsigned char *str); ser1.h
int getsers_scc(COM *c, int len, unsigned char *str); scc.h

Retrieves a fixed length character string from the input buffer. If the buffer contains less
characters than the length requested, str will contain only the remaining characters from the
buffer. Appends a ‘\0’ character to the end of str. Returns the retrieved string length.

Var: c – pointer to serial port structure

len – desired string length
str – pointer to output character string

Reference: ser1.h, ser0.h for source code.

void draw_H_line(int x1, int x2, int y) sl.h

Draws a horizontal line from (x1,y) to (x2,y).

Var: x1, x2, y

Reference: sl_text.c

void clear_H_line(int x1, int x2, int y) sl.h

Clears a horizontal line from (x1,y) to (x2,y).

Var: x1, x2, y

Reference: sl_text.c

void fill_square(int upx, int upy, int length, int width) sl.h

Fills a square area at coordinate (upx, upy) with “1”s.

Var: upx, upy, length, width

Reference: sl_grid.c

void zero_square(int upx, int upy, int length, int width) sl.h

Fills a square area at coordinate (upx, upy) with zeros (“0”s).

Var: upx, upy, length, width

Reference: sl_grid.c

SmartLCD Appendix E: Software Glossary

 E-11

void write_text(char row, char col, char* buf) sl.h

Row = 1-30, col = 1-40
Places string text char*buf at row and column.

Var: row, col

Reference: sl_text.c

void clear_text(char row, char col, char num) sl.h

Row = 1-30, col = 1-40, col+num < 40
Clears text at row and col, fills in num “ “, up to 40 = col+num.

Var: row, col, num

Reference: sl_text.c

void sl_init(void) sl.h

Initial SmartLCD 320x240.
Graphics memory starts at 0x800. Text memory starts at 0x000.

Reference: sl_bird.c, sl_grid.c

void contrast(int vlc) sl.h

Outputs LCD contrast voltage with a 12-bit DAC, where vlc = 0 to 4095.

Var: vlc

Reference: sl_bird.c, sl_grid.c

int power_in(void) sl.h

Returns 12-bit ADC input reading at ADC channel 10 (U10), related to the DC power input.

Reference: ae_ad12.c

void ccfl(char onoff) sl.h

Turns the CCFL backlighting on/off with HV6 + HV4.
onoff=1, CCFL backlighting is on
onoff=0, CCFL backlighting is off

Var: onoff

Reference: sl_ccfl.c

Appendix E: Software Glossary SmartLCD

E-12

void neg_24(char onoff) sl.h

Turns the –24V on/off with HV5.
onoff=1, -24V is on
onoff=0, -24V is off

Var: onoff

Reference: sl_bird.c, sl_grid.c

void put_grid(unsigned char kpad) sl.h

Displays a grid on the LCD matching the touchscreen keypad.

Var: kpad

Reference: sl_grid.c

unsigned char scan_touch_screen(void) sl.h

Scans the 10x7 touchscreen (10 columns x 7 rows). Refer to Appendix F for details.
Returns a HEX value, 0xCR, which represents Row and Column coordinates as follows:

C = 1 to A
R = 1 to 7

Returns HEX values for the 14 push buttons located at the lower edge of the SmartLCD:

BUTTON 1 2 3 4 5 6 7 8 9 10 11 12 13 14
HEX B0 C0 B1 C1 B6 B7 B2 C2 B3 C3 C4 B4 B5 C5

If any key or keys are activated while the function is executing, the returned value will be for the

first key activated. If none of the touchscreen keys or pushbuttons is activated while the function is being
executed, the function will return zero (0).

Reference: sl_grid.c

void beep(int t, int l) sl.h

Toggles P26 to drive the beeper.

void beep ()
{
for (j=0; j<t; j++){
 pio_wr(26,0);
 delay0(l);
 pio_wr(26,1);
 delay0(l);
 }

SmartLCD Appendix E: Software Glossary

 E-13

Var: t, l

Reference: sl_bird.c

int sl_ad12(unsigned char c) sl.h

In order to operate the U29 ADC,
T22=CLK, T21=DIN, T17=/CS must be output and T00=DOUT must be input.

Var: c

Reference: sl_ad12.c

SmartLCD Appendix F: Touchscreen Layout Template

 F-1

Appendix F: Touchscreen Layout
Template

10x7-key screen/keypad layout template:

cable

Row

D
a
t
e
:

O
c
t
o
b
e
r

3
0
,

1
9
9
8
S
h
e
e
t

1

o
f

2

S
i
z
e
D
o
c
u
m
e
n
t

N
u
m
b
e
r

R
E
V

B
S
L
-
M
A
N
.
S
C
H

T
i
t
l
e

S
M
A
R
T
L
C
D

T
E
R
N

A
1
7

V
R
A
M
=
C
E
2

D
7
G
L
C
D

P
1
6

+
1
2
V

V
C
C

G
N
D

/
R
D

/
W
R

/
R
S
T

R
S
T

V
O
F
F

D
7

D
6

D
5

D
4

D
3

D
2

D
1

D
0

A
7

A
6

A
5

A
4

A
3

A
2

A
1

A
0

H
V
6

A
D
1
0

V
A

P
1
6
A

V
R
A
M

A
1
7

V
R
A
M

V
C
C

1

2

3

4

5

6

7

8

9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

3
3

3
4

3
5

3
6

3
7

3
8

3
9

4
0

J
1

H
D
R
D
4
0

1
2

3

J
4

1
2

3

J
3

V
C
C

A
1
8

/
W
B

/
W
B

A
/
W
=
/
W
B

V
C
C
=
A
1
7
P

1

2

3

4

5

6

7

8

9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

3
3

3
4

3
5

3
6

3
7

3
8

3
9

4
0

J
2

H
D
R
D
4
0

1
2

3

J
5

V
C
C

P
1
2

L
C

L
1

L
E
D

R
1

6
8
0

1

2

3

4

5

6

7

8

9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

3
3

3
4

3
5

3
6

3
7

3
8

3
9

4
0

H
5

H
D
R
D
4
0

V
C
C I
2
2

/
C
T
S

/
C
T
S

/
R
T
S

R
6

2
2
0 R
7

1
0
K

A
D
0

A
D
1

A
D
2

A
D
0

1

A
D
1

2

A
D
2

3

A
D
3

4

A
D
4

5

A
D
5

6

A
D
6

7

A
D
7

8

A
D
8

9

G
N
D

1
0

V
C
C

2
0

E
O
C

1
9

C
L
K

1
8

D
I
N

1
7

D
O
U
T

1
6

C
S

1
5

R
E
F
+

1
4

R
E
F
-

1
3

A
D
1
0

1
2

A
D
9

1
1

U
1
0

T
L
C
2
5
4
3

C
4

1
0
P
F

X
2

X
1

X
T
A
L
1

1
6
M
H
Z

C
5

1
0
P
F

V
C
C D
0
/
W
R

R
X
D

T
X
D

/
R
D

1

R
X
D

2

T
X
D

3

M
P
O

4

M
P
I

5

A
2

6

A
1

7

A
0

8

X
1

9

X
2

1
0

R
S
T

1
1

G
N
D

1
2

V
C
C

2
4

/
W
R

2
3

D
0

2
2

D
1

2
1

D
2

2
0

D
3

1
9

D
4

1
8

D
5

1
7

D
6

1
6

D
7

1
5

/
E
N

1
4

/
I
N
T

1
3

U
8

S
C
C
2
6
9
1

/
R
D

M
P
O

R
S
T

A
0

A
1

A
2

M
P
I

X
4

X
3

V
R
A
M

C
2

C
A
P
N
P

C
8
C
A
P
N
P

D
1
D
2
D
3
D
4
D
5
D
6
D
7

/
I
N
T
0

P
3

A
D
3

A
D
4

A
D
5

A
D
6

A
D
7

A
D
8

A
D
9

A
D
1
0

R
E
F
+

G
N
D

P
1
1

I
2
0

I
2
1

C
1
-

C
1
+

C
1
1

1
0
U
F
3
5
V

C
2
+

/
R
T
S

V
C
C

R
5

1
0
K C
1
2

1
0
U
F
3
5
V

R
E
F
+

V
C
C

I
1
7

I
0
1

I
0
3

I
0
5

I
0
7

I
2
4

I
2
6

I
0
0

I
0
2

I
0
4

I
0
6

I
2
7

I
2
5

I
2
3

I
1
6

I
1
5

I
1
4

I
1
3

I
1
2

I
1
1

I
1
0

I
2
2

G
N
D

R
X
D
0

T
X
D
1

R
X
D
1

T
X
D
0

P
2
5

P
2
4

P
1
5

V
C
C

/
R
T
S
0

/
C
T
S
0

/
C
T
S
1

/
R
T
S
1

P
5

P
4

P
0

P
2

P
1

P
6

/
I
N
T
2

/
I
N
T
3

/
I
N
T
4

P
1
4

D
7

D
6

D
5

D
4

D
3

D
2

D
1

D
0

V
C
C

V
C
C

G
N
D

/
R
S
T

G
N
D

R
S
T

G
N
D

P
1
6
A

+
1
2
V

P
1
6

D
0

D
1

D
2

D
3

D
4

D
5

D
6

A
3

A
4

A
5

A
6

A
7

V
C
C

G
N
D

/
R
D

/
W
R

/
R
S
T

R
S
T

V
O
F
F

A
D
1
0

P
1
6
A

D
5

D
6

D
7

G
N
D

R
S
T

V
C
C

1

2

3

4

5

6

7

8

9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

3
3

3
4

3
5

3
6

3
7

3
8

3
9

4
0

4
1

4
2

4
3

4
4

4
5

4
6

4
7

4
8

4
9

5
0

5
1

5
2

5
3

5
4

5
5

5
6

5
7

5
8

5
9

6
0

6
1

6
2

6
3

6
4

P
1

H
D
R
D
6
4

A
0

A
1

A
2

H
V
6

V
A

A
0

A
1

A
2

A
3

A
4

A
5

A
6

A
7

/
W
R

/
R
D

1

2

3

4

5

6

7

8

9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

3
3

3
4

3
5

3
6

3
7

3
8

3
9

4
0

J
1
1

H
D
R
D
4
0

G
N
D

P
1
7

/
W
R

P
1
2

P
1
3

P
3

P
1
0

P
1
1

P
2
9

P
2
6

/
N
M
I

/
I
N
T
1

/
I
N
T
0

P
1
7

A
D
0

A
D
1

A
D
2

A
D
3

A
D
4

A
D
5

A
D
6

A
D
7

A
D
8

A
D
9

A
D
1
0

V
B
V
D

V
A
V
C

G
N
D

C
6

C
A
P
N
P

C
3

C
A
P
N
P

V
C
C

D
7
D
6
D
5
D
4

I
1
7C
2
-

D
0
D
1
D
2
D
3

R
S
T

/
W
R

4
0

P
0
7

4
1

P
0
6

4
2

P
0
5

4
3

P
0
4

4
4

N
C

1

P
0
3

2

P
0
2

3

P
0
1

4

P
0
0

5

/
R
D

6

R S T3 9 D 03 8 D 13 7 D 23 6 D 33 5 N C3 4 D 43 3 D 53 2 D 63 1 D 73 0 V D D2 9

P
1
7

2
8

P
1
6

2
7

P
1
5

2
6

P
1
4

2
5

P
1
3

2
4

N
C

2
3

P
1
2

2
2

P
1
1

2
1

P
1
0

2
0

P
2
3

1
9

P
2
2

1
8

/ C S 7G N D 8A 1 9A 0 1 0P 2 7 1 1N C 1 2P 2 6 1 3P 2 5 1 4P 2 4 1 5P 2 0 1 6P 2 1 1 7

U
5

P
P
I
S

P
P
I
8
2
5
5

G
N
D

V
+

G
N
D

V
-

C
1
4

C
1
3

V
R
A
M

/
R
S
T

D
0

/
W
R

A
0

V
O
F
F

V
C
C

P
2

S
T
D

1

/
C
S

2

N
C

3

A
L
E

4

A
0

5

N
C

6

A
1

7

N
C

8

A
2

9

A
3

1
0

/
R
D

1
1

G

1
2

V
C
C

2
4

X
2

2
3

X
1

2
2

N
C

2
1

C
S
1

2
0

D
0

1
9

N
C

1
8

N
C

1
7

D
1

1
6

D
2

1
5

D
3

1
4

/
W
R

1
3

U
4

7
2
4
2
3

-

1

+

2

+

3

B
1

B
T
H
1

A
1

A
2

A
3

G
N
D

/
R
D

/
R
S
T

D
1
D
2
D
3
/
W
R

/
R
D

C
7

C
A
P
N
P

I
0
7

I
0
6

I
0
5

I
0
4

I
0
3

I
0
2

I
0
1

I
0
0

I
2
2

I
2
3

I
1
0

I
1
1

I
1
2

I
1
3

I
1
4

I
1
5

I
1
6

H
V
5

H
V
6

H
V
4

H
V
3

H
V
2

H
V
1

V
C
C

G
N
D

1

2

3

4

5

6

7

8

9

1
0

H
7

H
D
R
D
1
0

1

2

3

4

H
8

H
D
R
D
4

H
D
R
D
4

/
R
T
S
1

P
2
5

G
N
D

+
1
2
V
I

1 2 3J
1
3

T
3

+
B
A
T

G
N
D

1

2

J
1
4

H
D
R
D
2

+
B
A
T

/
C
T
S
1

D
7

D
6

D
5

D
4

D
3

D
2

D
1

D
0

V
C
C

V
C
C

G
N
D

/
R
S
T

G
N
D

R
S
T

G
N
D

D
0

D
1

D
2

D
3

D
4

A
1
5

A
1
6

A
1
7

A
1
8

A
1
9

P
6

+
1
2
V

/
W
R

/
R
D

-
5
V

-
1
2
V

/
W
R

/
R
D

A
R
D
Y

P
2

P
3

A
1
1

A
1
0 A
9

A
8

A
7

A
6

A
5

A
4

A
1
2

A
1
3

A
1
4

R
E
F
R

P
1
4

P
1
3

A
0

A
1

A
2

A
3

A
4

A
5

A
6

A
7

/
W
R

/
R
D

V
C
C G
N
D

C
3
+

C
3
-

C
4
+

V
+

/
C
T
S

/
R
T
S

C
1
+

1

V
+

2

C
1
-

3

C
2
+

4

C
2
-

5

V
-

6

T
2
O

7

R
2
I

8

V
C
C

1
6

G
N
D

1
5

T
1
O

1
4

R
1
I

1
3

R
1
O

1
2

T
1
I

1
1

T
2
I

1
0

R
2
O

9

U
1
3

M
A
X
2
3
2
A

V
C
C G
N
D

/
R
X
D
1

/
T
X
D
1

C
1
+

C
1
-

C
2
+

V
+

C
1
+

1

V
+

2

C
1
-

3

C
2
+

4

C
2
-

5

V
-

6

T
2
O

7

R
2
I

8

V
C
C

1
6

G
N
D

1
5

T
1
O

1
4

R
1
I

1
3

R
1
O

1
2

T
1
I

1
1

T
2
I

1
0

R
2
O

9

U
1
2

M
A
X
2
3
2
A

H
V
7

K
G
N
D

V
O
F
F

P
1
2

I
2
0I
2
1

C
3
-

C
3
+

C
4
+

C
1
5 1
0
U
F
3
5
V

C
1
6

1

2

J
9

H
D
R
D
2

A
0

A
1

G
N
D

I
2
7

I
2
6I
2
5I
2
4

P
1
7

X
3

C
1
0

1
0
P
F

W
D
I

V
B
A
T

C
1

C
A
P
N
P

X
4

X
T
A
L
2

1
6
M
H
Z

C
0

1
0
P
F

G
N
D
=
H
O
L
D

G
N
D

+
1
2
V
I

1

2

H
9

H
D
R
D
2

1

2

3

4

5

6

7

8

9

1
0

H
1

H
D
R
D
1
0

G
N
D

/
T
X
D
0

/
R
X
D
0

G
N
D

/
T
X
D
1

/
R
X
D
1

G
N
D

1

2

3

4

5

6

7

8

9

1
0

H
2

H
D
R
D
1
0

/
T
X
D

/
R
X
D

1

2

3

4

5

6

7

8

9

1
0

H
3

H
D
R
D
1
0

/
C
T
S

/
R
T
S

C
4
-

1 2

J
7

D
J
-
0
0
5

V
C
C

R
E
F
+

U
2
1

L
M
2
8
5

R
8

2
K G
N
D

+
B
A
T

V
R
A
M

V
B
A
T

/
R
S
T

R
S
T

T
X
D
0

R
X
D
0

T
X
D
1

R
X
D
1

/
T
X
D
0

/
R
X
D
0

C
2
-

V
-

V
B

1

V
O

2

V
C
C

3

G
N
D

4

B
O
N

5

/
L
L

6

O
S
I

7

O
S
S

8

R
S
T

1
6

/
R
S
T

1
5

W
D
O

1
4

C
E
I

1
3

C
E
O

1
2

W
D
I

1
1

P
F
O

1
0

P
F
I

9

U
6

M
A
X
6
9
1

V
C
C

G
N
D

A
0

1

A
1

2

A
2

3

V
S
S

4

V
C
C

8

W
P

7

S
C
L

6

S
D
A

5

U
7

2
4
C
0
4
S

C
4
-

V
-

M
P
O

M
P
I

T
X
D

R
X
D

/
R
X
D

/
T
X
D

A
1
9

A
1
8

A
1
7

A
1
6

A
1
5

A
1
4

A
1
3

A
1
2

A
1
1

A
1
0

A
9

1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

J
8

H
D
R
S
1
2

A
3

A
2

A
1

A
0

G
N
D

V
C
C

G
N
D

G
N
D

O
S
C

A
L
E

1
B

1

2
B

2

3
B

3

4
B

4

5
B

5

6
B

6

7
B

7

G

8

1
C

1
6

2
C

1
5

3
C

1
4

4
C

1
3

5
C

1
2

6
C

1
1

7
C

1
0

K

9

U
1
8

U
L
N
2
0
0
3

I
1
6

I
1
5

I
1
4

I
1
3

I
1
2

I
1
1

I
1
0

H
V
7

H
V
5

H
V
6

H
V
4

H
V
3

H
V
2

H
V
1

K

A
8

V
C
C /
C
T
S

/
R
T
S

R
O

1

/
R
E

2

D
E

3

D
I

4

V
C
C

8

B

7

A

6

G
N
D

5

U
1
4

L
T
C
4
8
5

P
1
1

P
1
2

R
X
D

T
X
D

M
P
O

G
N
D

P
1
2

V
D

C
K

1

D
I

2

L
D

3

D
O

4

V
B

8

5
V

7

G

6

V
A

5

U
2
3

L
T
C
1
4
4
6

V
C
C

V
C
C

G
N
D

W
D
I

/
R
A
M

W
D
O

/
P
F
O

/
L
C
S

P
1
2

V
B

C
K

1

D
I

2

L
D

3

D
O

4

V
B

8

5
V

7

G

6

V
A

5

U
1
1

L
T
C
1
4
4
6

V
C
C

+
1
2
V
I

+
1
2
V

3
+
1
2
V
I

R
3

1
0
K

V
C
CD
1

1
N
5
8
1
7

I
N
T
1

/
I
N
T
1

P
F
I
=
V
C
C

9

8

U
9
D

7
4
H
C
1
4

1
1

1
0

U
9
E

7
4
H
C
1
4

G
N
D

R
2

1
0
K

I
N
T
4

/
I
N
T
4

G
N
D

1

2

U
9
A

7
4
H
C
1
4

3

4

U
9
B

7
4
H
C
1
4

V
C
C I
2
0

/
R
S
T

1
0

9

8

7

6

5

4

3

2

1

R
N
1

1
0
K

/
I
N
T
2

/
I
N
T
3

/
I
N
T
4

/
N
M
I

/
I
N
T
0

/
I
N
T
1

P
1
1

I
N
T
2

I
N
T
0

/
I
N
T
2

/
I
N
T
0

V
C
C

5

6

U
9
C

7
4
H
C
1
4

N
M
I

I
N
T
3

/
I
N
T
3

/
N
M
IP
6

1
3

1
2

U
9
F

7
4
H
C
1
4

R
4
1
0
K

V
C
C

B
P
1

B
E
E
P

P
2
6

V
C
C

P
2
6

G
N
D

V
A

P
2
9

C
O
P
Y
R
I
G
H
T

1
9
9
8

S
T
E

V
C
C

P
2
6

G
N
D

V
C

I
2
3

D
a
t
e
:

O
c
t
o
b
e
r

3
0
,

1
9
9
8
S
h
e
e
t

2

o
f

2

S
i
z
e
D
o
c
u
m
e
n
t

N
u
m
b
e
r

R
E
V

B
S
L
-
M
A
N
.
2

S
T
E
/
T
E
R
N

P
B
1 P
B
0
1
0

P
B
1
6

V
O
F
F

I
5

T
2
7

P
B
7

P
B
1
5

G
N
D

-
2
4
V

X
D
0

X
D
2

V
O X
D
1

X
D
3

S
H
A
R
P

L
M
3
2
K
0
7
1

1

2

3

4

5

6

7

8

9

1
0

1
1

1
2

1
3

1
4

H
1
0

H
D
R
D
1
4

V I N 1V O U T 2G N D 3F B 4O F F / O N 5

U
1
7

L
M
2
5
7
5

+
1
2
V

D
2

1
N
5
8
1
7L
X
1

V
O
F
F
V
C
C

G
N
DV
C
C

+
1
2
V

I
1

3
3
0

u
H

R
C
H
1
1
0

R
9
1
M C
2
3

X
G

X
D

V
C
C

I
7C
2
1

1
0
P
F

C
2
2

1
0
P
F

X
T
A
L
4

1
0
M
H
Z

1
A

1

1
Y

2

2
A

3

2
Y

4

3
A

5

3
Y

6

G

7

V
1
4

6
A

1
3

6
Y

1
2

5
A

1
1

5
Y

1
0

4
A

9

4
Y

8

U
2
4

7
4
H
C
1
4
Z

X
D
0

X
D
2

/
O
N
O
F
FH
D
M
3
2
2
4
T
S
-
1

V
C
C L
P

C
P
1

1

2

3

4

5

6

7

8

9

1
0

1
1

1
2

1
3

1
4

H
1
1

H
D
R
D
1
4

X
D
1

X
D
3

Y
D

G
N
D

X
S
C
L

Y
D

C
P
2

S F
R
A
M
E

G
N
D

G
N
D

I
4

T
2
6

I
5

T
2
6

I
3

I
4

T
2
7

T
2
7

P
B
5

P
B
6

P
B
1
3

P
B
1
4

G
N
D

P
B
1
7

P
B
0
1
0

/
I
N
T
1

P
B
1
8

P
B
0
1
0

P
B
1
9

P
B
0
1
0

P
1
7

/
R
S
T

V
C
C

G
N
D

/
W
R

/
R
D

P
1
6

+
1
2
V

+
1
2
V

V
C
C

G
N
D

P
1
6

/
W
R

/
R
D

D
7

D
6

D
5

D
4

D
3

D
2

D
1

D
0

A
7

/
R
S
T

R
S
T

/
R
S
T

R
S
T

D
0

D
1

D
2

D
3

D
4

D
5

D
6

D
7

A
7

V
O
F
F

V
O
F
F

1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

J
6

H
D
R
S
1
4

H
D
R
S
1
4

X
D
0

X
D
2

/
O
N
O
F
F

X
D
1

X
D
3

/
I
N
T
2

G
N
D

T
2
6

I
3

T
2
6

I
7

T
2
6

I
2

T
2
7

I
2

P
B
4

P
B
8

P
B
9

P
B
1
2

Y
D

L
P
V
C
C

-
2
4
V

G
N
D

L
O
A
D

L
P

X
S
C
L

G
N
D

V
O

C
P

C
C
F
T
:

C
X
A
-
L
1
0
L
(
T
D
K
)

P
i
x
T
e
c
h

F
E
5
2
4
M
1

1

2

3

4

5

6

7

8

9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

H
1
2

H
D
R
D
1
6

G
N
D

I
6

I
5

I
4

I
3

I
2

T
0
7

T
0
6

T
0
5

T
0
4

T
0
3

T
0
2

V
C
C

I
1

1
A

1

1
Y

2

2
A

3

2
Y

4

3
A

5

3
Y

6

G

7

V
1
4

6
A

1
3

6
Y

1
2

5
A

1
1

5
Y

1
0

4
A

9

4
Y

8

U
2
5

7
4
H
C
1
4
Z

V
A
1
5

/
V
W
R

V
A
1
3

V
A
8

V
C
C

V
C
C

A
1
8

1

A
1
6

2

A
1
4

3

A
1
2

4

A
7

5

A
6

6

A
5

7

A
4

8

A
3

9

A
2

1
0

A
1

1
1

A
0

1
2

D
0

1
3

D
1

1
4

D
2

1
5

G
N
D

1
6

V
D
D

3
2

A
1
5

3
1

C
E
2

3
0

R
/
W

2
9

A
1
3

2
8

A
8

2
7

A
9

2
6

A
1
1

2
5

/
O
E

2
4

A
1
0

2
3

/
C
E
1

2
2

D
7

2
1

D
6

2
0

D
5

1
9

D
4

1
8

D
3

1
7

U
1
6

R
A
M
2
7
1
0
2
4

M
E
M
3
2
S

V
A
6

V
A
7

V
A
1
2

V
A
1
4

G
N
D

G
N
D

C
9

D
I
P
C
A
P

C
A
P
N
P

C
1
7

D
I
P
C
A
P

C
A
P
N
P

V
D
2

V
D
1

V
D
0

V
A
0

V
A
1

V
A
2

V
A
3

V
A
4

V
A
5

/
V
C
E

V
D
3

V
D
4

V
D
5

V
D
6

V
D
7

V
A
9

V
A
1
1

/
V
R
D

V
A
1
0

T
0
1

G
N
D

I
0
T
0
0

X
S
C
L

X
D
0

X
D
2

/
O
N
O
F
F

D
I
M

R
G
N
D

M
O
D
U
L
E

C
O
N
N
E
C
T
O
R
:
H
I
R
O
S
E

D
F
1
3
-
1
5
P
-
1
.
2
5
V

F
E
5
2
4
M
1

C
A
B
L
E

C
O
N
N
E
C
T
O
R
:

H
I
R
O
S
E

D
F
1
3
-
1
5
P
-
1
.
2
5
C

+
1
2
V

G
N
D

X
D
1

X
D
3

V
C
C

+
1
2
V

O
V
E
R
L
P

P
B
2

I
1

T
2
6

I
6

T
2
6

I
0

T
2
7

I
1

T
2
7

P
B
3

P
B
1
0

P
B
1
1

X
S
C
L

G
N
D

V
OY
D

L
P

V
C
C

-
2
4
V

G
N
D

A
0

A
1

A
2

A
3

A
4

A
5

A
6

A
6

A
5

A
4

A
3

A
2

A
1

A
0

H
V
6

H
V
6

V
A

V
A

A
D
1
0

A
D
1
0
P
1
6
A

P
1
6
A

T
1
0

T
1
2

T
1
4

T
1
6

T
2
1

T
2
3

T
2
5

T
2
7

G
N
D

I
6

1

2

3

4

5

6

7

8

9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

H
4

H
D
R
D
2
6

T
2
0

T
1
1

T
1
3

T
1
5

T
1
7

T
2
2

T
2
4

T
2
6

V
C
C

I
7

L
1
1

L
1
3

L
1
7

1

2

3

4

5

6

7

8

9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

H
1
5

H
D
R
D
2
6

L
1
0

L
1
2

I
0

T
2
6

D
0
D
1
D
2
D
3

V
C
C

D
7
D
6
D
5
D
4

T
1
7C
3
1

D
I
P
C
A
P

C
A
P
N
P

R
S
T

/
W
R

/
W
R

4
0

P
0
7

4
1

P
0
6

4
2

P
0
5

4
3

P
0
4

4
4

N
C

1

P
0
3

2

P
0
2

3

P
0
1

4

P
0
0

5

/
R
D

6

R S T3 9 D 03 8 D 13 7 D 23 6 D 33 5 N C3 4 D 43 3 D 53 2 D 63 1 D 73 0 V D D2 9

P
1
7

2
8

P
1
6

2
7

P
1
5

2
6

P
1
4

2
5

P
1
3

2
4

N
C

2
3

P
1
2

2
2

P
1
1

2
1

P
1
0

2
0

P
2
3

1
9

P
2
2

1
8

/ C S 7G N D 8A 1 9A 0 1 0P 2 7 1 1N C 1 2P 2 6 1 3P 2 5 1 4P 2 4 1 5P 2 0 1 6P 2 1 1 7

U
2
0 P
P
I
S

P
P
I
8
2
5
5

D
0
D
1
D
2
D
3

V
C
C

D
7
D
6
D
5
D
4

R
S
T

/
W
R

4
0

P
0
7

4
1

P
0
6

4
2

P
0
5

4
3

P
0
4

4
4

N
C

1

P
0
3

2

P
0
2

3

P
0
1

4

P
0
0

5

/
R
D

6

R S T3 9 D 03 8 D 13 7 D 23 6 D 33 5 N C3 4 D 43 3 D 53 2 D 63 1 D 73 0 V D D2 9

P
1
7

2
8

P
1
6

2
7

P
1
5

2
6

P
1
4

2
5

P
1
3

2
4

N
C

2
3

P
1
2

2
2

P
1
1

2
1

P
1
0

2
0

P
2
3

1
9

P
2
2

1
8

/ C S 7G N D 8A 1 9A 0 1 0P 2 7 1 1N C 1 2P 2 6 1 3P 2 5 1 4P 2 4 1 5P 2 0 1 6P 2 1 1 7

U
2
7 P
P
I
S

P
P
I
8
2
5
5

/
W
R

V
O
-
2
4
V

1 2 3P
3

H
D
R
S
3

C
3
0

D
I
P
C
A
P

C
A
P
N
P

D
I
M

1 2 3P
2

H
D
R
S
3

R
G
N
D

G
N
D

C
6
+

C
6
-

N
C

1

C
+

2

G

3

C
-

4

V
+

8

O
S

7

L
V

6

V
-

5

U
2
6

I
C
L
7
6
6
2

C
2
9

1
0
U
F
3
5
V

T
0
7

T
0
6

T
0
5

T
0
4

T
0
3

T
0
2

T
0
1

T
0
0

/
R
D

G
N
D -
1
2
V

+
1
2
V

C
2
8

1
0
U
F
3
5
V

A
L
C
A
P
2

T
2
2

T
2
3

T
1
0

T
1
1

T
1
2

T
1
3

T
1
4

T
1
5

T
1
6

L
0
7

L
0
6

L
0
5

L
0
4

L
0
3

L
0
2

L
0
1

L
0
0

/
R
D

L
2
2

L
2
3

L
1
0

L
1
1

L
1
2

L
1
3

L
1
4

L
1
5

L
1
6

L
2
7

L
2
5

L
2
0

L
2
2

L
1
4

L
1
6

L
0
6

L
0
4

L
0
2

L
0
0 G
N
D

I
1

I
3

I
5

I
4

I
2

I
0

T
1
1

T
1
3

T
1
5

L
2
6

L
2
4

L
2
1

L
2
3

L
1
5

L
1
7

L
0
7

L
0
5

L
0
3

L
0
1

V
C
C

I
4

I
2

I
0

I
5

I
3

I
1

T
1
0

T
1
2

T
1
4

1

2

3

4

5

6

7

8

9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

F
1

F
L
E
X
2
0

I
7

T
2
1

T
2
3

T
2
5

-
2
4
V

G
N
D

I
6

T
2
0

T
2
2

T
2
4

-
1
2
V

C
5
+

C
5
-

C
2
7

1
0
U
F
3
5
V

N
C

1

C
+

2

G

3

C
-

4

V
+

8

O
S

7

L
V

6

V
-

5

U
1
9

I
C
L
7
6
6
2

T
2
7

V
C
C

/
P
P
I

A
0

A
1

G
N
D

L
2
7

L
2
6L
2
5L
2
4L
2
0L
2
1

T
1
7

V
C
C

/
O
N
O
F
F

1
0

9

8

7

6

5

4

3

2

1

R
N
4

1
0
K

1
0

9

8

7

6

5

4

3

2

1

R
N
5

1
0
K

/
P
P
I
1

A
0

A
1

G
N
D

T
2
7

T
2
6T
2
5T
2
4T
2
0T
2
1

/
P
P
I

V
C
C

I
7

1
0

9

8

7

6

5

4

3

2

1

R
N
3

1
M

V
O

I
0
-

3

2

1

4 1 1

U
2
8
A

L
M
3
2
4
A

V
C
C

-
2
4
V

G
N
D

V
A

R
1
0

2
K

R
1
2

1
0
K

1 2 3 4 5H
1
3

C
X
A

C
X
A

+
1
2
V

H
V
6

A
C
1

1 2 3 4H
1
4

H
D
R
S
4

H
V
6

H
V
6

H
V
6

A
C
1 C
C
F
L

I
N
V
E
R
T
E
R
:
C
X
A
-
L
1
0
L
(
T
D
K
)

I
1
+

G
N
D

5

6

7

U
2
8
B

L
M
3
2
4
A

+
1
2
V

R
1
1

2
K

R
1
3

1
0
K

I
6
I
5
I
4
I
3
I
2
I
1
I
0

A
D
1
0

T
1
0

T
1
1

T
1
2

T
1
3

T
1
4

T
1
5

T
1
6

T
2
0

T
2
1

T
2
2

T
2
3

T
2
4

T
2
5

T
2
6

/
R
S
T

C
O
P
Y
R
I
G
H
T

S
T
E

1
9
9
8

1

2

H
6

H
D
R
D
2

H
D
R
D
2

G
N
D

+
1
2
V

-
1
2
V

C
2
5

1
0
U
F
3
5
V

C
2
6

1
0
U
F
3
5
V

-
2
4
V

C
2
4

4
7
U
F
3
5
V

A
L
C
A
P
2

