SmartLCD™

1/4 VGA Graphic LCD Interface Controller with 12-bit ADC and 12-bit DAC

Technical Manual

Trery

1724 Picasso Avenue, Davis, CA 95616-0547, USA
Tel: 530-758-0180 Fax: 530-758-0181
Email: sales@tern.com Web address: http://www.tern.com

COPYRIGHT

SmartLCD, NT-Kit, MemCard, A-Engine, A104, and ACTF are trademarks of
TERN, Inc.
AmI188ES and Am186ES are trademarks of Advanced Micro Devices, Inc.
Paradigm C/C++ is atrademark of Paradigm Corporation
Microsoft, MS-DOS, Windows95/98/2000/X P are trademarks of Microsoft Corporation.
IBM is atrademark of International Business Machines Corporation.

Version 3.0
September 11, 2002

No part of this document may be copied or reproduced in any form or by any means
without the prior written consent of TERN, Inc.

© 1999 ’I TERN

1724 Picasso Avenue, Davis, CA 95616-0547, USA
Tel: 530-758-0180 Fax: 530-758-0181
Email: sales@tern.com Web address: http://www.tern.com

Important Notice

TERN is developing complex, high technology integration systems. These systems are
integrated with software and hardware that are not 100% defect free. TERN products are
not designed, intended, authorized, or warranted to be suitable for use in life-support
applications, devices, or systems, or in other critical applications. TERN and the Buyer
agree that TERN will not be liable for incidental or consequential damages arising from
the use of TERN products. It is the Buyer's responsibility to protect life and property
againgt incidental failure.

TERN reserves the right to make changes and improvements to its products
without providing notice.

SmartLCD Table of Contents
Table of Contents
Chapter page Chapter page
L INtroductionccoceveereneneneee e 1-1 3.6.2 Dual 12-bit DACccccovvvreene. 3-10
1.1 Functional Descriptioncc.ccceveenee 1-1 3.6.3 High-voltage, High-current
12 FEatUreS ...occveieeieeieee e 1-3 DIiVELS .o 3-11
1.3 Physical Descriptioncccevceeeiieeenee 1-4 3.6.4 CCFL Inverter......ccccoveveveneeennnnn. 312
1.4 SmartLCD Programming Overview 1-4 3.6.5 Negative 24V Power Supply and
1AL1SEP L i 1-5 adjustable contrast voltage.............. 312
1A2SEP 2 i 1-6 3.6.6 Touchscreen and Mechanical
LA3SEP 3 oo 1-6 PushbULtoNS.........ccoeeeiiiiiieiee 3-12
1.5 Minimum Requirementsc.ccoceenee 1-6 3.7 Headers and Connectors...........cceevuvenne 3-13
1.5.1 Minimum Hardware Requirements 1-6 3.7.2 Expansion Portsc.ccceeveeenen. 3-14
1.5.2 Minimum Software Requirements.. 1-7 3.7.3 Jumpers and Headers 3-15
2. Installationccoceeveeiieneeneee 2-1 4. SOFtWAIE ...cveeieeieeieertee et 4-1
2.1 Software Installationc.ccoceeeeeienenne 2-1 A1AELIB .coiiiiet e 4-2
2.2 Hardware Installationcc.cecvveenneene 2-1 4.2 Functionsin AE.OBJcccevveiienenns 4-2
2.2.1 Connecting the SmartL CD to 4.2.1 SmartLCD Initialization 4-2
the PC..coeie e 2-2 4.2.2 External Interrupt Initialization 4-4
2.2.2 Powering-on the SmartLCD............ 2-3 4.2.31/O Initiaizationccccceeveeenen. 4-5
424 Timer UNitS .ooceeeeeeeee e 4-5
3. Hardwarec.oooeiiiiiie e 31 4.2.5 Analog-to-Digital Conversion 4-6
3.1188 CPU — Introductioncccceueene 31 4.2.6 Digital-to-Analog Conversion 4-7
3.2 188CPU — Featurescccooveeveeenneenns 31 4.2.7 Other Library Functions 4-7
321 ClOCK ..oovieiiieiereeee e 31 4.3 Functionsin SER0.OBJSER1.0BJ....... 4-9
3.2.2 Externa Interrupts and Schmitt 4.4 Functionsin SCC.OBJccccoeeeeeen. 4-14
Trigger Input Buffercccceceeeee 31 4.5 Functionsin AEEE.OBJ............ccccc...... 4-16
3.2.3 Asynchronous Serial Ports............. 3-2 4.6 Functionsin SL.LIBcccooceviiieennen. 4-17
3.2.4 Timer Control Unit..........ccccoeennne. 32
3.25 PWM outputsand PWD.................. 33 Appendices:
3.2.6 Power-save Mode...........ccoeeeeeennene 3-3
3.3188 CPU PIOliNES......ccceeieiriirienieieens 3-3 A. SMartLCD Layoutccccevvrevreeiieene A-1
3.4 1/O Mapped DeviCesccovereereenienenns 3-5 B. UART SCC2691ccoceeieiriirieriieieins B-1
341 1/O SPACE....cceeiiiiieeee e 3-5 C.RTC72421] 72423ccveiiveeen C-1
342 SED1335 ..o 3-6 D. Serial EEPROM Mapcccooovvereeninnins D-1
3.4.3 Programmable Peripheral Interface E. Software Glossaryccceveeevieeiieeenee E-1
(B2CB5A)....eiiiie it 3-6 F. Touchscreen Layout Template................ F-1
3.4.4 Real-time Clock RTC72423 3-8
345 UART SCC2691.......ccoevuvrurreennnn 3-8
3.5 0ther DeVICES.....c.eeveerieeiierieeieesieeniee 3-8 Schematics:
3.5.1 On-board Supervisor with Watchdog
TIMEN i 3-8 SmartLCD
3.5.2EEPROM....cccoiiiiiiieice e 39
3.6 Inputs and OULPULScceeeveeerieerneenns 39

3.6.1 12-bit ADC (TLC2543)c...... 39

SmartLCD Chapter 1. Introduction

Chapter 1. Introduction

1.1 Functional Description

The SmartLCD (SL) is a complete C/C++ programmable user interface that includes a 320 x 240 graphic
LCD (/4 VGA), touch screen, CCFL backlighting, LCD controller (SED1335), and an embedded
controller (188 CPU). The available on-board power supplies include a 5V switching regulator, -24V
voltage source, CCFL backlighting power, and software-programmable LCD contrast voltage.

SmartLCh S——TY
o C
~_| | 16-Bit Timers (3) 188_ CPU (PC104)
< | |Ext. Interrupts (8) 16-bit CPU ROM/FLASH
o1 UG —. 40 MHz
1 Watchdog Timer 80x86 512 KB
J2 Compatible @ SRAM
[] 512 KB
:‘l l,: RS232
N\ 8-bit Data <:> @ UART | o ol or <::(>
. H3
N—/32 1/0 lines Bus SCC2961 Rsags
EEFL’JRTOM P € »|RTC U4
oL <>
:> ADCU10 | Serial Ports (2
H5 11 Ch. 12-bit A A
ADC U29 SERO W ¥ SER1 @ H4/F1
H16 :V'\ 10 Ch. 12-bit RS232 Drivers
Hs < ,: DL'JAltl: gultJDZUPES <P ﬁ ﬁ 14 Push-buttons
PB2-15
2Ch.+2Ch. H1 H2
VA — Ser0 - Serl
DEBUG
LCD SED1335 <>Lee US H5
contrast Image Leco K>
adjustment bﬂflfgr <> controller | |
LT3 7 HV Drivers
11K
< H10 -
ErEy it | o
320 x 240 regulator |
N u17
%VGA [Hantronix |« R
LCD HV4+ HV6
4—
«12 [ccn]
Negative HV5
Voltage
power supply
(-24V) 4
H7

Figure 1.1 Functional block diagram of the SmartLCD

Measuring 6.5 by 4.3 inches, the SmartLCD supports 512 KB ROM/Fash, 512 KB battery-backed
SRAM, a 512-byte seriadl EEPROM, real-time clock (RTC72423), lithium coin battery, three
timer/counters, watchdog timer, PWM, and up to three serial ports (RS-232/485). It also supports up to 20
channels 12-bit ADC, up to four channels of 12-bit DAC, and seven high-voltage drivers. A total of three
PPIs (82C55) provide 24x3 TTL 1/Os in addition to the 32 multifunctional I/O pins from the CPU.

1-1

Chapter 1: Introduction SmartLCD

Additiona memory can be added via the FlashCore-0 (FC-0) interface. Using the FC-0, 50-pin Compact
Flash memory cards may be added, with a capacity of up to 1GB.

Two DMA-driven serial ports from the CPU support high-speed, reliable serial communication at a rate of
up to 115,200 baud. An optional UART SCC2691 may be added for a third UART on board and can be
configured as RS-232 or RS-485, supporting either normal 8-bit or 9-bit multi-drop R$485/422 network
with twisted-pair wiring.

There are three 16-bit programmable timers/counters and a watchdog timer. Two timers can be used to
count or time external events, a a rate of up to 10 MHz, or to generate non-repetitive or variable-duty-
cycle waveforms as PWM outputs. Pulse Width Demodulation (PWD), a distinctive feature of the 188
CPU, can be used to measure the width of a signal in both its high and low phases. It can be used in many
applications, such as bar-code reading.

The 32 1/0 pins from the CPU are multifunctional and user-programmable. Some of the 1/0 pins are used
for serial ports, timer 1/Os, or clock, You may have 15 or more lines free to use, depending on your
application.

Three 82C55 PPI chips (U5, U20, U27) provide 72 bi-directional 1/O lines, of which 3 lines (U5 120, 121,
122) are used for the ADC (U10) and 22 lines (U27 T00-07 T10-15, T20-27) are used to interface to 70
key matrix touch screen and 14 push bottoms. The 24 1/O lines at H15 from U20 and 21 1/O pins at H5
from (U5) are free for application.

S e—me 5 !
Figure 1.2 Front view of the SmartLCD: 320x240 graphic LCD displaying bird

In order to interface to a ¥4 VGA, 320x240-pixel graphic LCD, an LCD controller (SED1335, SMOS)
and an image buffer are on-board. The 188 CPU can communicate with the SED1335 via high-speed 8-bit
data bus. Software drivers and sample programs are available for applications that require both graphics
and text display. Power supplies for the CCFL backlighting, -24V negative voltage, and the regulated 5V
can be controlled by software for low power consumption in portable battery applications. The battery
voltage can be measured using one channel of 12-bit ADC. The LCD display contrast voltage can be
adjusted using one channel of 12-bit DAC.

A transparent 10x7-key matrix touchscreen is adhered to the front of the 320x240 graphic LCD. A sample
program “sl_grid.c” will highlight the 70-key grid and respond to touch.

There are eight external interrupt inputs. Schmitt-trigger inverters are provided for six interrupt inputs, to
increase noise immunity and transform slowly-changing input signals into fast-changing and jitter-free
signals.

A supervisor chip with power failure detection, a watchdog timer, and an LED are on-board.

An optional real-time clock provides information on the year, month, date, hour, minute, second, and 1/64
second, and an interrupt signal.

Up to two 12-bit ADC chips (TLC2543) can be installed. The ADC chips each have 11 channels of analog
inputs with sample-and-hold and a high-impedance reference input (5V) that facilitate ratiometric

1-2

SmartLCD Chapter 1: Introduction

conversion, scaling, and isolation of analog circuitry from logic and supply noise, supporting conversion
up to a sample rate of approximately 10 KHz based on the 40 MHz CPU. The SL may use ADC to
monitor the power input.

Up to two, 2-channel 12-bit DAC chips can be installed on-board supporting a total of four channels 12-
bit, 0-4.095V analog voltage outputs capable of sinking or sourcing 5 mA. By default, one DAC channel
is used to control the LCD contrast.

There are seven solenoid drivers on-board, each capable of sinking 350 mA at 50V. Two solenoid drivers
are used to control the CCFL backlighting, and one solenoid driver is used to control the negative power
source.

1.2 Features

Standard Features
Dimensions: 6.5 x 4.3 inches
Program in C/C++
Power consumption:
100/170 mA at 9V for 40/20 MHz without CCFL and negative power-on.
90/130 mA at 12V for 40/20 MHz without CCFL and negative power-on.
In standby mode, less than 1 mA with Switching Regulator V OFF=high.
280 mA at 12V with the CCFL back lighting and negative power on.
Compact Flash card support, up to 1GB (via FC-0)
Power input: +8.5V to +12 V unregulated DC. On-board +5V switching regulator.

Although the Switching Regulator israted at +24V, no morethan +12V input is
allowed. Higher input voltage will damage the CCFL power supply.

Storage Temperature: -40°C to +80°C. Operating Temperature: -20°C to +70°C

320 x 240 graphic LCD, SED 1335, 10x7 touch screen, CCFL backlighting
(module size 167x109 mm,; viewing area 121x91 mm)

16-bit CPU (188 CPU), Intel 80x86 compatible, 40 MHz or 20 MHz

512KB SRAM, and support for up to 512KB Flash/ROM

2 high-speed PWM outputs and Pulse Width Demaodulation

24x3 bi-directional 1/0 lines from three PPIs (82C55).

512-byte seriadl EEPROM, external interrupt inputs, 3 16-bit timer/counters

2 CPU serid ports (RS-232)

2 channels of 12-bit DAC, 0-4.095V output. One DAC is used for the LCD contrast adjustment.

11 channels of 12-bit ADC in U10 and H5, sample rate up to 10 KHz (TLC2543)

Supervisor chip (691) for power failure, reset, and watchdog

7 solenoid drivers: 2 for CCFL, one for negative power supply.

Optional Features:

10 additional channels of 12-bit ADC, sample rate up to 10 KHz (TLC2543)
2 additional channels of 12-bit DAC, 0-4.095V output
10 additional channels of 12-bit ADC in U29 and H16, sample rate up to 10 KHz (TLC2543)
SCC2691 UART (on-board) supports 8-hit or 9-bit networking
UART comes with RS232 (default) or 485 drivers
Real-time clock RTC72423, lithium coin battery

Chapter 1: Introduction SmartLCD

1.3 Physical Description

The physical layout of the SmartLCD is shown in Figure 1.3.

O o %
H14
H11 H12
P3
1l
jo2]
[] E .
£ SED1335 Image
2 k=) buffer
= SRAM
g u1s
@ u16
-
L
Q
I H13 E]
74HC14 =]
. u27 .
a1 g
O =
>
I

Q Jgﬂ Touch screen I:l F1
"Oog us

g a

T <>'—'§

IZI u29 PPl
. PPI u us ui1
10 A -
R
=

III u20 ST 0 wecru |V7[EE]
- s uL U2 &3
H1 || g5 o FOW B e
D L s . oLE|| Step 2 jumper
2 (should be OFF
|_| P1 | L
. = | for debugging in
2 Step 1)

14 J14

D m SER1 SERO
O @) [e]e)e) [:l H3 H2 HL O
Figure 1.3 Physical layout of the SmartLCD

1.4 SmartL CD Programming Overview

Development of application software for the SmartLCD consists of three easy steps, as shown in the block
diagram below.

STEP 1 Serid link PC and SmartLCD, program in C/C++
Debug C/C++ program on the SmartL CD with Remote Debugger

STEP 2 Test SmartLCD in the field, away from PC
Application program resides in the battery-backed SRAM

STEP 3 Make application ROM or Download to Flash
Replace DEBUG ROM, project is complete

1-4

SmartLCD Chapter 1: Introduction

You can program the SmartLCD from your PC via serial link with an RS232 interface. Your C/C++
program can be remotely debugged over the seria link at a rate of 115,000 baud. The C/C++ Evaluation
Kit (EV-P) or Development Kit (DV-P) from TERN provides the Paradigm C/C++ environment, complete
with atext editor, compiler, locater, 1/0 driver libraries, sample programs, and documentation. These kits
also include a DEBUG ROM (AE_0_115) to communicate with the Paradigm C/C++ environment, a PC-
V25 (DB9-IDE10) cable to the connect the controller to the PC, and a 9-volt wall transformer. See your
Evaluation/Devel opment Kit Technical Manual for more information on these kits.

After you debug your program, you can test run the SmartLCD in the field, away from the PC, by
changing a single jumper, with the application program residing in the battery-backed SRAM. When the
field test is complete, application ROMs can be produced to replace the DEBUG ROM. The .HEX or .BIN
file can be easily generated using Paradigm C/C++. You may aso use the DV-P Kit to download your
application code to on-board Flash.

The three steps in the development of a C/C++ application program are explained in detail below.

1.4.1 Step 1

STEP 1: Debugging
Write your C/C++ application program in C/C++.
Connect your controller to your PC viathe PC-V 25 serial link cable.

Use Paradigm C/C+ to compile, link, locate, download, and debug your C/C++ application program.

+9V 500mA center negative wall transformer

[| | a1 |

oS3
or
- —
DB9 S
— [)

e

o0 o ==

SmartLCD

J2

Red edge of cable connects
to pin 1 of H1 header

Figure 1.4 Step 1 connections for the SmartLCD

Chapter 1: Introduction SmartLCD

1.4.2 Step 2

STEP 2: Standalone Field Test.
With Debug ROM installed and your application program residing in SRAM,
Set the jJumper on J2 pins 38-40 (Figure 1.5).

At power-on or reset, if J2 pin 38 (P4) is low, the CPU will run the code that resides in the battery-
backed SRAM.

If ajumper is on J2 pins 38-40 at power-on or reset, the SmartL CD will operate in Step 2 mode. If the
jumper is off J2 pins 38-40 at power-on or reset, the SmartLCD will operate in Step 1 mode. The
status of J2 pin 38 (signal P4) of the 188 CPU is only checked at power-on or at reset.

o

P IEAF IE T T O
CCFL Backlighting

N = |

o= == e Step Two
D; RTC (\[TEE 2 J umper:
L1~ J2

“ B » T pins38=40
Goe :

O OFms Dm :‘:‘O

Figure 1.5 Location of Step 2 jumper on the SmartLCD

1.4.3 Step 3

STEP 3: Production (DV-P Kit only)

Generate the application .BIN or .HEX file, make production ROMs or download your program to FLASH
viaACTF.

If you are satisfied with the Step 2 standalone test, you can go back to your PC to generate your
application ROM to replace the DEBUG ROM (AE_0_115). You need to change
PDREMOTE/ROM to No Target/ROM in the Target Expert, in the Paradigm C/C++ environment.

The DV-PKit isrequired to complete Step 3.

Please refer to the Tutorial of the Technical Manual of the EV-P/IDV-P Kit for further details on
programming the SmartL CD.

1.5 Minimum Requirementsfor SmartL CD System Development

1.5.1 Minimum Hardware Requirements

PC or PC-compatible computer with serial COMx port that supports 115,200 baud
SmartLCD controller with DEBUG ROM AE_0_115

1-6

SmartLCD Chapter 1: Introduction

PC-V 25 serial cable (RS232; DB9 connector for PC COM port and IDE 2x5 connector for controller)
Center negative wall transformer (+9V 500 mA)

1.5.2 Minimum Software Requirements

TERN CD-Rom for EV-Por DV-P
PC software environment: Windows95/98/2000/ME/NT/XP

The C/C++ Evaluation Kit (EV-P) and C/C++ Development Kit (DV-P) are available from TERN. The
EV-P Kit is a limited-functionality version of the DV-P Kit. With the EV-P Kit, you can program and
debug the SmartLCD in Step 1 and Step 2, but you cannot run Step 3. In order to generate an application
ROM/Flash file, make production verson ROMs, and complete the project, you will need the
Development Kit (DV-P).

SmartLCD Chapter 2: Installation

Chapter 2. Installation

2.1 Software I nstallation

Please refer to the Technical manual for the “C/C++ Development Kit and Evaluation Kit for TERN
Embedded Microcontrollers’ for information on installing software.

The README.TXT file on the TERN EV/DV disk contains important information about the installation
and evaluation of TERN controllers.

2.2 Hardwar e I nstallation

Hardware installation for the SmartL CD consists primarily of connecting the microcontroller to your PC.

Overview

- Connect PC-V25 cable:
For debugging (STEP 1), place the 5x2 pin header on SERO (H1)
with red edge of cable at pin 1 of H1

- Connect wall transformer:
Connect 9V wall transformer to power and plug into power jack

2-1

Chapter 2: Installation SmartLCD

2.2.1 Connecting the SmartLCD to the PC

The following diagram (Figure 2.1) illustrates the connection between the SmartLCD and the PC. The
SmartLCD islinked to the PC viaa seria cable (PC-V25).

The AE_0_115 DEBUG ROM communicates through SERO by default. Install the 5x2 IDC connector on
the SERO header (H1). IMPORTANT: Note that the red side of the cable must point to pin 1 of the H1
header. The DB9 connector should be connected to one of your PC's COM Ports (COM1 or COM2).

U SED133
s
u1s

% CCFL Backlighting

Step2 jumper

should not be
installed for
debugging

O EJEJEJEJEIR IF JE1b Jp eI TR 1F] O

To SERO for
DEBUGGING

PC-V25 cable

- 1

! Red stripe of serial cable |
| correspondsto pin 1of |
| SERO header !

Figure 2.1 Connecting the SmartLCD to the PC

2-2

SmartLCD

Chapter 2: Installation

2.2.2 Powering-on the SmartLCD

Connect awall transformer +9V DC output to the DC power jack.

The on-board LED should blink twice and remain on after the SmartLCD is powered-on or reset, as

shown in Figure 2.2.

While the on-board switching regulator is rated for an input of up to +24V, you may provide a
maximum input voltage of +12V. The input voltage is also routed to the CCFL power supply which
only allows a maximum input of +12V. Any higher voltage will damage the CCFL power supply.

U1 [pA]

P

Al -
us
N =] [==
|;| A oM 2. m
o) - w A0
% S % ¥ |:|
0 Omu\nn\ o Loy ©
Power
jack
Wall
transformer

Step

Figure 2.2 The LED blinks twice after the SmartLCD is powered-on or reset

2-3

SmartLCD Chapter 3: Hardware

Chapter 3: Hardware

3.1 188 CPU —Introduction

The 188 CPU is based on industry-standard x86 architecture. The 188 CPU controllers are higher-
performance, more integrated versions of the 80C188 microprocessors. In addition, the 188 CPU has new
peripherals. The on-chip system interface logic can minimize total system cost. The 188 CPU has two
asynchronous serial ports, 32 PIOs, a watchdog timer, additional interrupt pins, a pulse width
demodulation option, DMA to and from serial ports, a 16-bit reset configuration register, and enhanced
chip-select functionality.

3.2 188 CPU — Features

3.2.1 Clock

Dueto itsintegrated clock generation circuitry, the 188 CPU microcontroller allows the use of atimes-one
crystal frequency. The design achieves 40 MHz CPU operation, while using a40 MHz crystal.

The system CLKOUTA and CLKOUTB signal is not routed out from the CPU in the SmartLCD.

CLKOUTA remains active during reset and bus hold conditions. The SmartL CD initial function ae_init();
disables CLKOUTA and CLKOUTB with clka_en(0); and clkb_en(0);

You may use clka_en(1); to enable CLKOUTA.

3.2.2 External Interrupts and Schmitt Trigger | nput Buffer

There are eight external interrupts: INTO-INT6 and NMI.

/INTO, J2 pin 8, is used by SCC2691 UART, if it isinstalled.

/INT1, 2 pin 6

/INT2, 32 pin 19

/INT3, J2 pin 21

/INT4, 32 pin 33

INT5=P12=DRQO0, J2 pin 5, used as output for LED/EE/HWD

INT6=P13=DRQ1, J2 pin 11

/INMI, J2 pin 7
Six external interrupt inputs, /INTO-4 and /NMI, are buffered by Schmitt-trigger inverters (U9 74HC14),
in order to increase noise immunity and transform slowly changing input signals to fast changing and
jitter-free signals. As aresult of this buffering, these pins are capable of only acting as input.

These buffered external interrupt inputs require a faling edge (HIGH-to-LOW) to generate an interrupt.

The SmartLCD uses vector interrupt functions to respond to external interrupts. Refer to the 188 CPU
User’s manual for information about interrupt vectors.

Chapter 3: Hardware SmartLCD

/INT4=J2.33 INT4=U2.52
U9A O

/INT2=J2.19 INT2=U2.54
u9B O

/INT0=J2.8 INTO=U2.56
— U9C O

/INT1=12.6 INT1=U2.55
T ——— U9 0

/INT3=32.21 INT3=U2.53
U9E @)

INMI=32.7 NMI=U2.47
— U9F @)

Figure 3.1 External interrupt inputs with Schmitt-trigger inverters

3.2.3 Asynchronous Serial Ports

The 188 CPU has two asynchronous serial channels: SERO and SER1. Both asynchronous seria ports
support the following:

Full-duplex operation, 8-bit data transfers, no parity, one stop bit

Error detection, no hardware flow control

DMA receive from serial ports, transmit interrupts for each port

Maximum baud rate of 1/16 of the CPU clock speed, independent baud rate generators
The software drivers for each serial port implement a ring-buffered DMA receiving and ring-buffered
interrupt transmitting arrangement. See the sample files sl echo.c and SO _echo.c in the
tern\186\samples\ae directory.

The optional external SCC2691 UART is located in the U8 underneath the ROM. For more information
about the external UART SCC2691, please refer to section 3.4.5 and Appendix B.

3.2.4 Timer Control Unit

The timer/counter unit has three 16-bit programmable timers: TimerO, Timerl, and Timer2.

Timer0 and Timerl are connected to four external pins:

TimerO output = P10 = J2 pin 12

TimerO input = P11 = J2 pin 14

Timerl output = P1 = J2 pin 29

Timerl input = PO =J2 pin 20
These two timers can be used to count or time external events, or they can generate non-repetitive or
variable-duty-cycle waveforms.

3-2

SmartLCD Chapter 3: Hardware

Timer2 is not connected to any external pin. It can be used as an internal timer for real-time coding or
time-delay applications. It can also prescale timer O and timer 1 or be used as a DMA reguest source.

The maximum rate at which each timer can operate is 10 MHz, since each timer is serviced once every
fourth clock cycle. Timer output takes up to six clock cycles to respond to clock or gate events. See the
sample programs timer02.c and ae_cnt0.c in the\ sanpl es\ ae directory.

3.2.5 PWM outputs and PWD

The Timer0 and Timerl outputs can also be used to generate non-repetitive or variable-duty-cycle
waveforms. The timer output takes up to 6 clock cycles to respond to the clock input. Thus the minimum
timer output cycleis 25 nsx 6 = 150 ns (at 40 MHz).

Each timer has a maximum count register that defines the maximum value the timer will reach. Both
TimerO and Timerl have secondary maximum count registers for variable duty cycle output. Using both
the primary and secondary maximum count registers lets the timer alternate between two maximum
values.

MAX. COUNT A

v
—1 L

MAX. COUNT B

Pulse Width Demodulation can be used to measure the input signal’s high and low phases on the
/INT2=J2 pin 19. See the sample code ae_pwd.c in the tern\186\sampl es\ae directory.

3.2.6 Power-save Mode

The SmartLCD can be used for low power consumption applications. The power-save mode of the 188
CPU reduces power consumption and heat dissipation, thereby extending battery life in portable systems.
In power-save mode, operation of the CPU and internal peripherals continues at a slower clock frequency.
When an interrupt occurs, it automatically returnsto its normal operating frequency.

The RTC72423 on the SmartLCD has a VOFF signal routed to H7 pin 10. VOFF is controlled by the
battery-backed RTC72423. The VOFF signal can be programmed by software to be in tri-state or to be
active low. The RTC72423 can be programmed in interrupt mode to drive the VOFF pin at 1/64-second, 1
second-1 minute, or 1-hour intervals. The user can use the VOFF line to control the 5V switching power
regulator on/off. More details are available in the sample file poweroff.c in the 186\ sanpl es\ ae sub-
directory. In power-off mode, the VOFF pin is pulled high via a 1M-ohm resistor, and the switching
regulator will be turned off. While in power-off mode, less than 1 mA overall current consumption can be
achieved. An external push button (RT1) or any external signal can short the VOFF pin to GND, to “wake
up” from power-off mode.

3.3188 CPU PIO lines

The 188 CPU has 32 pins available as user-programmable 1/0 lines. Each of these pins can be used as a
user-programmable input or output signal, if the normal-shared function is not needed. A PIO line can be
configured to operate as an input or output with or without a weak pull-up or pull-down, or as an open-

3-3

Chapter 3: Hardware SmartLCD

drain output. A pin's behavior, either pull-up or pull-down, is pre-determined and shown in the table
below.

After power-on/reset, PIO pins default to various configurations. The initialization routine provided by
TERN libraries reconfigures some of these pins as needed for specific on-board usage, as well. These
configurations, as well as the processor-internal peripheral usage configurations, are listed below in Table
3.1

PIO Function Power-On/Reset status SmartLCD Pin SmartLCD Initial
Number

PO Timerlin Input with pull-up J2 pin 20 Input with pull-up

P1 Timerl out Input with pull-down J2 pin 29 CLK 1

P2 /PCSB/A2 Input with pull-up J2 pin 24 RTC select

P3 /PCS5/A1 Input with pull-up J2 pin 15 SCC2691 select

P4 DT/R Normal J2 pin 38 Input with pull-up Step 2

P5 /DEN/DS Normal J2 pin 30 Input with pull-up

P6 SRDY Normal J2 pin 35 Input with pull-down

P7 Al17 Normal J8pin3 Al17

P8 A18 Normal J8 pin 2 A18

P9 A19 Normal J8pinl A19

P10 TimerO out Input with pull-down J2 pin 12 Input with pull-down

P11 TimerOin Input with pull-up J2 pin 14 Input with pull-up

P12 DRQU/INTS Input with pull-up J2pin5 Output for LED/EE/HWD

P13 DRQY/INT6 Input with pull-up J2 pin11 Input with pull-up

P14 /MCSO Input with pull-up J2 pin 37 Input with pull-up

P15 /MCS1 Input with pull-up J2 pin 23 Input with pull-up

P16 /PCSO Input with pull-up U22 pinl PAL chip select

P17 /PCS1 Input with pull-up J2 pin 13 U5 PPI, 82C55 select

P18 CTSI/PCS2 Input with pull-up J2 pin 22 J11 pin 19, chip select

P19 RTSVUPCS3 Input with pull-up J2 pin 31 Input with pull-up

P20 RTSO Input with pull-up J2 pin 27 Input with pull-up

P21 CTSO Input with pull-up J2 pin 36 Input with pull-up

P22 TxDO Input with pull-up J2 pin 34 TxDO

P23 RxDO Input with pull-up J2 pin 32 RxDO

P24 /MCS2 Input with pull-up J2 pin 17 Input with pull-up

P25 /MCS3 Input with pull-up J2 pin 18 Input with pull-up

P26 Uzl Input with pull-up J2pin4 Input with pull-up*

P27 TxD1 Input with pull-up J2 pin 28 TxD1

P28 RxD1 Input with pull-up J2 pin 26 RxD1

P29 /CLKDIV2 Input with pull-up J2pin3 Input with pull-up*

P30 INT4 Input with pull-up J2 pin 33 Input with pull-up

P31 INT2 Input with pull-up J2 pin 19 Input with pull-up

Note: * P26 and P29 must NOT be forced low during power-on or reset
Table 3.1 I/O pin default configuration after power-on or reset

Four external interrupt lines are not shared with PIO pins:
INTO=J2pin2
INT1=J2pin6
INT3=J2pin 21

SmartLCD Chapter 3: Hardware

The 32 PIO lines, PO-P31, are configurable via two 16-bit registers, PPFOMODE and PIODIRECTION.
The settings are as follows:

MODE PIOMODEreg. PIODIRECTION reg. PIN FUNCTION

0 0 0 Normal operation

1 0 1 INPUT with pull-up/pull-down

2 1 0 OUTPUT

3 1 1 INPUT without pull-up/pull-down

SmartL CD initialization on PIO pinsin ae_init() islisted below:

outport(Oxff78,0xe73c); /I PDIR1, TXDO, RXDO, TxD1, RxD1, P16=PCS0, P17=PCS1=PPI
outport(Oxff76,0x0000); /I PIOM1

outport(Oxff72,0xec7b); /l PDIRO, P12,A19,A18,A17,P2=PCS6=RTC
outport(0xff70,0x1000); /I PIOMO, P12=LED

The C function in the library ae_lib can be used to initial PIO pins.
void pio_init(char bit, char mode);
Where bit = 0-31 and mode = 0-3, see the table above.

Example:
pio_init(12, 2); will set P12 as output
pio_init(1, 0); will set P1 as Timerl output

void pio_wr(char bit, char dat);
pio_wr(12,1); set P12 pin high, if P12 isin output mode
pio_wr(12,0); set P12 pin low, if P12 isin output mode
unsigned int pio_rd(char port);
pio_rd (0); return 16-bit status of PO-P15, if corresponding pin isin input mode,
pio_rd (1); return 16-bit status of P16-P31, if corresponding pin isin input mode,
Most of the I/O lines are used by the SmartL CD system for on-board components (Table 3.2). We suggest

that you not use these lines unless you are sure that you are not interfering with the operation of such
components (i.e., if the component is not installed).

You should also note that the external interrupt PIO pins INT2, 4, 5, and 6 are not available for use as
output because of the inverters attached. The input values of these PIO interrupt lines will aso be
inverted for the same reason. As a result, calling pio_rd to read the value of P31 (INT2) will return 1
when pin 19 on header J2 is pulled low, with the result reversed if the pin is pulled high.

Signal | Pin Function

P2 /PCS6 U4 RTC72423 chip select at base |/O address 0x0600

P3 /PCS5 U8 SCC2691 UART chip select at base 1/0 address 0x0500
P4 /DT STEP 2 jumper

P11 TimerOinput | Shared with U10 TLC2543 ADC and U7 24C04 EE data input
P12 DRQO/INTS Output for LED, CLK for U7 EE, U11 DAC, U23 DAC, Hit watchdog

P16 /PCSO PAL16CEV8 (U22) chip select

P17 /PCS1 U5 PPI 82C55 chip select at base 1/0 address 0x0100
P18 /PCS2=/CTS1 | J11 pin 19, Second PCMCIA MemCard interface
P22 TxDO Default SERO debug

P23 RxDO Default SERO debug

INTO J2pin2 U8 SCC2691 UART interrupt.

Table 3.2 188 CPU PIO lines used for on-board components

Chapter 3: Hardware SmartLCD

3.41/0 Mapped Devices

3.4.11/0O Space

External 1/0O devices can use I/O mapping for access. Y ou can access such I/O devices with inportb(port)
or outportb(port,dat). These functions will transfer one byte or word of data to the specified I/0O address.
The external 1/0 space is 64K, ranging from 0x0000 to Oxffff.

The default 1/O access time is 15 wait states. Y ou may use the function void io_wait(char wait) to define
the 1/O wait states from O to 15. The system clock is 25 ns, giving a clock speed of 40 MHz. Details
regarding this can be found in the Software chapter, and in the 188 CPU User's Manual. Slower
components, such as most LCD interfaces, might find the maximum programmable wait state of 15 cycles
still insufficient. Due to the high bus speed of the system, some components need to be attached to 1/0
pins directly.

For details regarding the chip select unit, please see Chapter 5 of the 188 CPU User’s Manual.
The table below shows more information about 1/O mapping.

I/0 space Select | Location Usage

0x0000-0x00ff | /PCSO | U17 pin 14=P16 PAL16V8CE (U22), J1, SED1335
(U15), PPI (U20), PPI1 (U27)
0x0100-0x01ff | /PCS1 | U5 pin 7=P17 PPl (U5), 82C55

0x0200-0x02ff | /PCS2 | J11pin19=CTS1 | Second PCMCIA interface
0x0300-0x03ff | /PCS3 | J2 pin 31 =P19 User

0x0400-0x04ff | /PCSA Reserved

0x0500-0x05ff | /PCS5 | J2 pin 15=P3 UART, SCC2691

0x0600-0x06ff | /PCS6 | J2 pin 24=P2 RTC72423
3.4.2 SED1335

The SED1335, from SMOS Systems, Inc., is aversatile LCD controller that can display text and graphics
on a 320x240-pixel LCD panel. The SED1335 communicates with the host 188 CPU via 8-bit high-speed
data bus. The SED1335 can display layered text and graphics, scroll the display in any direction and
partition the display into multiple screens. The SED1335 stores text, character codes, and bit-mapped
graphics data in the external image frame buffer SRAM. Display functions include transferring data from
the host microprocessor to the image buffer, reading image data, converting data to display pixels and
generating timing signals for the buffer memory and the LCD panel. The SED1335 has an interna
character generator with 160 5x7 pixel characters.

For complete, detailed information on the hardware and software of the SED1335, users may contact
SMOS Systems, Inc, a telephone number 408-922-0200, or through their website at
http://www.smos.com.

3.4.3 Programmable Peripheral I nterface (82C55A)

U5, U20, and U27 PPIs (82C55) are low-power CMOS programmable parallel interface units for use in
microcomputer systems. They each provide 24 1/0 pins that may be individually programmed in two
groups of 12 and used in three major modes of operation.

SmartLCD Chapter 3: Hardware

In MODE 0, the two groups of 12 pins can be programmed in sets of 4 and 8 pins to be inputs or outputs.
In MODE 1, each of the two groups of 12 pins can be programmed to have 8 lines of input or output. Of
the four remaining pins, three are used for handshaking and interrupt control signals. MODE 2 is a
strobed bi-directional bus configuration.

C T T T T T T T3
|—J GROUP 1
Port 2 0 Output
(Lower)

1 Input

Port 1 0 Output

1 Input

M ode 0 M ode O

1 M ode 1

GROUP 2
Port 2 0 Output
(Upper)

1 Input

Port 0 0 Output

1 Input

M ode 00 M ode O

01 M ode 1

1X M ode 2

Command 0 Bit

Select manipulation

1 M ode

Select

Figure 3.2 Mode Select Command Word

The SmartLCD maps U5, the 82C55/uPD71055, at base 1/0 address 0x0100.
The SmartLCD maps U20, the 82C55/uPD 71055, at base I/0O address 0x0050.
The SmartLCD maps U27, the 82C55/uPD71055, at base I/0O address 0x70.

To use U5 PPl as a program example, the Command Register = 0x0103; Port 0 = 0x0100; Port 1 =
0x0101; and Port 2 = 0x0102.

The following code example will set al ports to output mode:

out port b(0x0103, 0x80); /* Mode 0 all output selection. */

out port b(0x0100, Ox55); /* Sets port O to alternating high/low /O pins. */

out port b(0x0101, Ox55);/* Sets port 1 to alternating high/low /O pins. */

out port b(0x0102, 0x55); /* Sets port 2 to alternating high/low /O pins. */
To set al portsto input mode:

out port b(0x0103, 0x9f) ; /* Mode O all input selection. */

Y ou may read the ports with:
i nport b(0x0100); /* Port 0 */
i nport b(0x0101); /* Port 1 */
i nport b(0x0102); /* Port 2 */

This returns an 8-bit value for each port, with each bit corresponding to the appropriate line on the port.

3-7

Chapter 3: Hardware SmartLCD

You will find that numerous on-board components are controlled using PPl lines only. You will need to
use PPl access methods to control these, as well.

3.4.4 Real-time Clock RTC72423

If installed, the real-time clock RTC72423 (EPSON, U4) is mapped in the 1/O address space 0x0600. It
must be backed up with a lithium coin battery. The RTC is accessed via software drivers rtc_init() or
rtc_rd() (see Appendix C and the Software chapter for details).

It is also possible to configure the real-time clock to raise an output line attached to an external interrupt,
at 1/64 second, 1 second, 1 minute, or 1 hour intervals. This can be used in a time-driven application, or
the VOFF signal can be used to turn on/off the controller using an external switching power supply. An
example of a program showing a similar application can be found in tern\186\sampl es\ae\power off.c.

3.4.5 UART SCC2691

The UART SCC2691 (Signetics, U8) is mapped into the 1/0 address space at 0x0500. The SCC2691 has a
full-duplex asynchronous receiver/transmitter, a quadruple buffered receiver data register, an interrupt
control mechanism, programmable data format, selectable baud rate for the receiver and transmitter, a
multi-functional and programmable 16-bit counter/timer, an on-chip crystal oscillator, and a multi-
purpose input/output including RTS and CTS mechanism.

For more information, refer to Appendix B. The SCC2691 on the SmartLCD may be used as a network
9-bit UART (for the TERN NT-Kit).

3.5 Other Devices

A number of other devices are also available on the SmartLCD. Some of these are optional, and might not
be installed on the particular controller you are using. For a discussion regarding the software interface
for these components, please see the Software chapter.

3.5.1 On-board Supervisor with Watchdog Timer

The MAX691/LTC691 (U6) is a supervisor chip. With it installed, the SmartLCD has several functions:
watchdog timer, battery backup, power-on-reset delay, power-supply monitoring, and power-failure
warning. These will significantly improve system reliability.

Watchdog Timer

The watchdog timer is activated by setting a jumper on J9 of the SmartLCD. The watchdog timer
provides a means of verifying proper software execution. In the user's application program, calls to the
function hitwd() (a routine that toggles the P12=HWD pin of the MAX691) should be arranged such that
the HWD pin is accessed at least once every 1.6 seconds. If the J9 jumper is on and the HWD pin is not
accessed within this time-out period, the watchdog timer pulls the WDO pin low, which asserts /RESET.
This automatic assertion of /RESET may recover the application program if something is wrong. After the
SmartLCD isreset, the WDO remains low until atransition occurs at the WDI pin of the MAX691. When
controllers are shipped from the factory the J9 jumper is off, which disables the watchdog timer.

The 188 CPU has an internal watchdog timer. Thisis disabled by default with ae_init().

SmartLCD Chapter 3: Hardware

@)

U SED1335

CCFL Backlighting
c

[

FIEIETEE] ©

J9
Watchdog enable [~

| step2

g . |
[CHE]
o O;mil:lﬂm m 03 o O

Figure 3.3 Location of watchdog timer enable jumper

I JEIE I oI

Battery Backup Protection

The backup battery protection protects data stored in the SRAM and RTC. The battery-switch-over circuit
compares VCC to VBAT (+3 V lithium battery positive pin), and connects whichever is higher to the
VRAM (power for SRAM and RTC). Thus, the SRAM and the real-time clock RTC72423 are backed up.
In normal use, the lithium battery should last approximately 3-5 years without external power being
supplied. When the external power is on, the battery-switch-over circuit will select the VCC to connect to
the VRAM.

3.5.2 EEPROM

A serial EEPROM of 512 bytes (24C04), or 2K bytes (24C16) by special request, can be installed in U7.
The SmartLCD uses the P12=SCL (serial clock) and P11=SDA (serial data) to interface with the
EEPROM. The EEPROM can be used to store important data such as a node address, calibration
coefficients, and configuration codes. It typically has 1,000,000 erase/write cycles. The data retention is
more than 40 years. EEPROM can be read and written by simply calling functions the ee rd() and
ee wr().

The EEPROM and the 12-bit ADC (U10) share the same data input signal line, P11. The 12-bit ADC uses
120 (PPl U5) line as chip select. If the 120 line is low, the ADC will be enabled and holds the P11 data
line, prohibiting EEPROM operation. The ae init(); function sets 120 high. The ae_ad12(); function
brings 120 low only when it needs to. The user should be aware that they must always keep 120 high in
order to disable the ADC and free P11 line for the EEPROM. Any outportb(0x103, ??)| to access the PPI
mode register will set 120 low. The user should use outportb(0x102, 0x01 | inportb(0x102)); to bring 120
high.

A range of lower addresses in the EEPROM isreserved for TERN use. Details regarding which addresses
are reserved, and for what purpose, can be found in Appendix D of this manual.

3.6 Inputsand Outputs

3.6.1 12-hit ADC (TLC2543)

The TLC2543 is a 12-bit, switched-capacitor, successive-approximation, 11 channels, seria interface,
analog-to-digital converter.

Two 12-bit ADC chips, U10 and U29, can be installed on the SmartLCD.

Chapter 3: Hardware SmartLCD

For the U10 ADC:
Three PPl 1/0 lines are used, with /CS=120; CLK=122; and DIN=I21.

The U10 ADC digital data output communicates with a host through a serial tri-state output
(DOUT=P11). If 120=/CSis low, the U10 TLC2543 will have output on P11. If 120=/CSis high, the
U10 TLC2543 is disabled and P11 isfree. 120 and P11 are pulled high by 10K resistors on board.

For the U29 ADC:
Three PPI 1/0 lines are used, with /CS=T17; CLK=122; and DIN=I21.

The U29 ADC digital data output communicates with a host through a U27 PPl input line TOO
(DOUT=I0). If T17=/CS is low, the U29 TLC2543 will have output on 10 and TOO. If T17=/CS is
high, the U29 TLC2543 isdisabled and 10 is pulled high by 10K resistors on board. 10 is the Schmitt-
trigger inverter input and TOO is the Schmitt-trigger inverter output.

The TLC2543 has an on-chip 14-channel multiplexer that can select any one of 11 inputs or any one of
three internal self-test voltages. The sample-and-hold function is automatic. At the end of conversion, the
end-of-conversion (EOC) output is not connected, athough it goes high to indicate that conversion is
complete.

TLC2543 features differential high-impedance inputs that facilitate ratiometric conversion, scaling, and
isolation of analog circuitry from logic and supply noise. A switched-capacitor design allows low-error
conversion over the full operating temperature range. The analog input signal source impedance should be
less than 50W and capable of slewing the analog input voltage into a 60 pf capacitor.

A reference voltage less than VCC (+5V) can be provided for the TLC2543 if additional precision is
required. A voltage above 2.5V and less than +5V can be used for this purpose, and can be connected to
the REF+ pin.

The CLK signal to the ADC is toggled through an 1/O pin, and serial access allows a conversion rate of up
to approximately 10 KHz, for a40 MHz CPU.

In order to operate the U10 and U29 TLC2543, 1/0O lines are used, as listed below:

/ICS Chip select =120 for U10 and T17 for U29 , high to low transition enables
DOUT, DIN and CLK. Low to high transition disables DOUT, DIN and CLK.

DIN PPI 121 for both U10 and U29, serial datainput

DOUT U10use P11 of 188 CPU, U29 use 10/T0O.

EOC Not Connected, End of Conversion, high indicates conversion complete and data
is ready

CLK 1/0O clock = PPI 122

REF+ Upper reference voltage (normally VCC)

REF- Lower reference voltage (normally GND)

VCC Power supply, +5 V input

GND Ground

The analog inputs ADO to AD10 are available at H5 header. AD11 to AD20 are routed to H16. The
reference of U29 isfixed to 5V. The reference for U10 is available at H5 pin 17.

AD10 is connected to the operational amplifier U28 output to monitor the input power voltage (divided
by 5).

3.6.2 Dual 12-bit DAC

The LTC1446/LTC1446L is a dual 12-bit digital-to-analog converter (DAC) in an SO-8 package. It is
complete with a rail-to-rail voltage output amplifier, an internal reference and a 3-wire serial interface.

3-10

SmartLCD Chapter 3:

The LTC1446 outputs a full-
full-

The buffered outputs can source or sink 5 mA. The outputs swing t
when unloaded. They have an equivalent output resistance of 40 W
buffer amplifiers can drive 1000 pf without going into oscillation.

e SmartLCD, and the outputs are routed to H5.

is used to convert the VA signal to negative LCD contrast adjustable voltage.

DI, and P29 (U11) or 123 (U23) as LD/CS. Note that P26 and P29 are
also used by the high voltage driver U19. Writing to the DAC will cause these two high voltage outputs to
(13- -432 1900) for

more information. See also the sample program in the\ \ ae

3.6.3 High- -Current Drivers

ULN2003 has high voltage, high current Darlington transistor arrays, consisting of seven silicon NPN
Darlington pair -collector outputs for
up to 600 mA sinking are allowed. U18 has seven high- ers (HV1-

paraleled to achieve high-
current rating of 350 mA at 50V. The maximum power dissipation allowed is 2.20 W per chip at 25
degrees C (C). The common substrate G is routed to H7 GND pins. All currents sinking in must return to

common ground return. K connects to the protection diodes in the ULN2003 chips and should be tied to

pin 8. ULN2003 is a driver, not a sourcing driver. An example of typical application wiring is
Figure 3.4.

o1

[Solenoid |

|

GND/SUB

XX

O 0.
K +12v
IGND/SUB

Drive inductive load with high voltage/current drivers.

-11

Chapter 3: Hardware SmartLCD

The SmartLCD uses HV5 to control the negative power source and uses HV6 and HV4 to control the
CCFL inverter.

3.6.4 CCFL Inverter

A Cold Cathode Fluorescent Lighting (CCFL) plate is inserted behind the LCD. It is a replaceable
backlighting device. A CCFL inverter (H13) is on the SmartLCD to provide a modulated high voltage in
order to maintain constant current in the CCFL lamp. The CCFL lamp connector should plug into H14
with the white wire pointing to H14 pin 1. The CCFL inverter is powered by 12V DC and is switched on
and off by the on-board solenoid drivers HV6 and HV4. The software driver C function ccfl (1); can
power-on the CCFL, and ccfl (0); can turn it off in order to save power and lengthen the life of the
lamp and LCD. These functions are located inthe c: \ t er n\ 186\ sanpl es\ sl directory.

3.6.5 Negative 24V Power Supply and adjustable contrast voltage

The graphic LCD requires —24V power supply and approximately —17V adjustable negative voltage for
contrast adjustment of the display. In order to reduce power consumption, the negative power supply can
be turned off by solenoid driver HV5 with the software function neg_24(0);. The function
neg_24(1); canbeusedtoturniton.

A 12-bit DAC channel, VA, is dedicated to drive the contrast voltage by using the software function
contrast(int dat);.

These functions are located inthe c: \ t er n\ 186\ sanpl es\ sl directory.

3.6.6 Touchscreen and Mechanical Pushbuttons

A transparent 10x7 keypad, or touchscreen, is installed in front of the LCD. The user can see the LCD
clearly through the touchscreen. The flex cable of the touchscreen connects to the F1 header. There are
two Schmitt Trigger inverters, U24 and U25, to reduce the touchscreen key input noise.

The U27 PPl 1/O pins are mainly used to scan the touchscreen. The 70 touchscreen keys can be scanned
and return keycodes by using I/O pins via the software function scan_t ouch_screen(); .

In addition to the 70 touchscreen keys, 14 mechanical push buttons can be installed on the SmartLCD.
You may use the same function, scan_t ouch_screen() ; , to return the push-button status. For more
details, see the samplesin

c:\tern\186\sanples\sl\sl _grid.c
The following are HEX values for the 14 push buttons located at the lower edge of the SmartL CD:

BUTTON 1 2 3 4 5 6 7 8 9 10 11 12 13 14
HEX BO CO B1I C1 B6 B7 B2 C2 B3 C3 C4 B4 B5 G5

Five additional right-angle push buttons are located on the top edge of the board:

RT1=VOFF
RT2 =/RESET
RT3=NC

RT4 =/INT1

RT5 =/INT2=P31

3-12

SmartLCD

3.7

J11

O
@)

J6

orrG000|[onno0000
Qrbie el [yrasese

0r 20000
OH120000

o
o
P3

L

O[]

J3

D N "
N
j=2 =1
i
] z U SED1335 Image
2 k= - buffer
=] g SRAM
2] u1s
3 a u16
-
L
74HC14]
4 u2a || PPI
1 H13 e
74HC14| u19
= i
u2s5
5 11 B
a8
\l_O z O H8
6
Beeper U26 m
H5
, Wy | H
Touch screen F1
o[691 [_Touch screen N [PAduzs
i [¥]3 [
< 298 AD
T EGLY 32
|;| u29 PPI
DAC
PPI u us o -
10 2 _
U20 = SRAM messs \U7
<
45 uL U2 "
12 ROM/
JLI[U3 [Flash
3435 J8
=0 O

0000000000000 0000000O0 0
0000000000000000000000

00000
00000

SER1

H2//

u12

Hl'\O

]

JI‘LF@

Figure 3.5 SmartLCD Headers and Connectors.

H2

SER1

H1

SERO

-13

Chapter 3: Hardware

SmartLCD

3.7.2

The pin layouts of the headers on the SmartLCD are listed below.

Signal definitions for J1:

-14

J1 Signals J2 Signals
VCC 1 2 GND GND (Step2 40 39 VCC
MPO 3 4 P1 Jumper)
RxD 5 6 GND P4 (Sep 2 38 37 P14
TxD 7 8 DO Jumper)
VOFF 9 10 D1 /CTSO 36 35 P6
PFI 11 12 D2 TxDO 34 33 /INT4
GND 13 14 D3 RxDO 32 31 /RTS1
/RST 15 16 D4 P5 30 29 P1
RST 17 18 D5 TxD1 28 27 /RTSO
P16 19 20 D6 RxD1 26 25 GND
MPI 21 22 D7 P2 24 23 P15
CLK 23 24 GND /CTS1 22 21 /INT3
HLDA 25 26 A7 PO 20 19 /INT2
HOLD 27 28 A6 P25 18 17 P24
/WR 29 30 A5 /WR 16 15 P3
/RD 31 32 A4 P11 14 13 P17
VRAM 33 34 A3 P10 12 11 P13
VBAT 35 36 A2 VCC 10 9 NC
GND 37 38 Al /INTO 8 7 /INMI
VCC 39 40 A0 /INT1 6 5 P12
P26 4 3 P29
GND 2 1 U1l 12-hit
DACVB

VCC
GND
CLK
RxD
TxD
MPO
MPI
VOFF
DO-D7
AOQ-A7
PFI
IRST
RST
P16
HLDA
HOLD
/WR
/RD
VBAT
VRAM

+5V power supply
Ground

188 CPU pin 16, system clock, 40 MHz (25 ns) as default

data receive of UART SCC2691, U8
data transmit of UART SCC2691, U8

Multi-Purpose Output of SCC2691, U8

Multi-Purpose Input of SCC2691, U8

real-time clock output of RTC72423 U4, open collector

188 CPU 8-bit external data lines

188 CPU address lines

power failure input signal of MAX691
reset signa, active low

reset signal, active high

/PCS0, 188 CPU pin 66

188 CPU pin 44

188 CPU pin 45

188 CPU pin5

188 CPU pin 6

+3V lithium battery positive pin
power for backing up SRAM and RTC

Hardware

Signal definitions for J2:

VCC
GND Ground
Pxx
/WR 188 CPU pin 5
188 CPU pin 2, transmit data of serial channel O
RxDO

TxD1 188 CPU pin 98, transmit data of serial channel 1
188 CPU pin 99, receive data of serial cha

/CTSO 188 CPU pin 100, Clear- -Send signal for SERO

/CTS1 -to Send signal for SER1
188 CPU pin 3, Reguest to-

/RTS1 188 CPU pin 62, Request- -Send signal for SER1

/INTO- Schmitt trigger inputs

H1 H2

SERO SERIAL DEBUG PORT, RS-232 SER1 SERIAL PORT, RS-232
H3

SCC2691 UART PORT, RS-232 or

RS-485

Jumpers and Headers

The following table lists the jumpers and connectors on the SmartLCD.

Name Function Possible Configuration

5x2 SERO, RS

5x2 SER1, RS

5x2 SCC2691, RS

13x2 | PPl U27, TOO-

20x2 | UI0ADC, U1l & U23 DAC, US PPI

H6 RESET
H7 5x2
2x2 GND, VCC, P25
H10 LCD Sharp LM32K071
H1l x2 -1
H12 8x2
-L10L (TDK
4x1 CCFL-

13x2 | U20 PPI LOO-

5x2 U29 ADC

Chapter 3: Hardware SmartLCD

Name | Size | Function Possible Configuration
J 20x2 | Expansion header, MemCard1l

interface
2 20x2 | Expansion header NOTE:

pin 38-40: Step 2 jumper (if not installed,
controller runsin Step 1 mode)

33 3x1 SRAM selection: pin 2-3: SRAM 256K B-512KB
pin 1-2: SRAM 32KB-128KB
N 3x1 ROM/Flash size selection: pin 1-2: ROM or Flash size 32KB-128KB
pin 2-3: ROM or Flash size 256K B-512KB
J5 3x1 ROM 512KB selection: pin 1-2: ROM size 512KB
pin 2-3: Flash 128K B-512K B, or ROM
<512 KB
J6 14x1 | LCD Hantronix HDM3224TS-1
J8 12x1 | High addresslines, A8-A19
N e 2x1 Watchdog timer Enabled if Jumper ison

Disabled if jumper is off

Ji1 20x2 | MemCard2 interface

Ji4 2x1 External battery power input: VBAT,
GND

P1 32x2 | PC/104

3-16

SmartLCD Chapter 4. Software

Chapter 4. Software

Please refer to the Technical Manual of the “C/C++ Development Kit for TERN 16-bit Embedded
Microcontrollers’” for details on debugging and programming tools.

For details regarding software function prototypes and sample files demonstrating their use, please refer to
the Software Glossary in Appendix E.

Guidedlines, awar eness, and problemsin an interrupt driven environment

Although the C/C++ Development Kit provides a simple, low cost solution to application engineers, some
guidelines must be followed. If they are not followed, you may experience system crashes, PC hang-ups,
and other problems.

The debugging of interrupt handlers with the Remote Debugger can be a challenge. It is possible to debug
an interrupt handler, but there is arisk of experiencing problems. Most problems occur in multi-interrupt-
driven situations. Because the remote kernel running on the controller is interrupt-driven, it demands
interrupt services from the CPU. If an application program enables interrupt and occupies the interrupt
controller for longer than the remote debugger can accept, the debugger will time-out. As a result, your
PC may hang-up. In extreme cases, a power reset may be required to restart your PC.

For your reference, be aware that our system is remote kernel interrupt-driven for debugging.

The run-time environment on TERN controllers consists of an 1/0 address space and a memory address
space. 1/O address space ranges from 0x0000 to Oxffff, or 64 KB. Memory address space ranges from
0x00000 to Oxfffff in real-mode, or 1 MB. These are accessed differently, and not all addresses can be
translated and handled correctly by hardware. 1/0 and memory mappings are done in software to define
how trandlations are implemented by the hardware. Implicit accesses to 1/O and memory address space
occur throughout your program from TERN libraries as well as simple memory accesses to either code or
global and stack data. You can, however, explicitly access any addressin 1/O or memory space, and you
will probably need to do so in order to access processor registers and on-board peripheral components
(which often reside in 1/0O space) or non-mapped memory.

This is done with four different sets of similar functions, described below.

poke/pokeb
Arguments: unsigned int segment, unsigned int offset, unsigned int/unsigned char data
Return value: none

These standard C functions are used to place specified data at any memory space location. The segment
argument is left shifted by four and added to the offset argument to indicate the 20-bit address within
memory space. pokeis used for writing 16 bits at atime, and pokeb is used for writing 8 bits.

The process of placing data into memory space means that the appropriate address and data are placed on
the address and data-bus, and any memory-space mappings in place for this particular range of memory
will be used to activate appropriate chip-select lines and the corresponding hardware component
responsible for handling this data.

Chapter 4: Software SmartLCD

peek/peekb
Arguments: unsigned int segment, unsigned int offset
Return value: unsigned int/unsigned char data

These functions retrieve the data for a specified address in memory space. Once again, the segment
address is shifted left by four bits and added to the offset to find the 20-bit address. This addressis then
output over the address bus, and the hardware component mapped to that address should return either an
8-bit or 16-hit value over the data bus. If there is no component mapped to that address, this function will
return random garbage values every time you try to peek into that address.

outport/outportb
Arguments: unsigned int address, unsigned int/unsigned char data
Return value: none

This function is used to place the data into the appropriate addressin I/O space. It isused most often
when working with processor registers that are mapped into 1/O space and must be accessed using either
one of these functions. Thisis also the function used in most cases when dealing with user-configured
peripheral components.

When dealing with processor registers, be sure to use the correct function. Use outport if you are dealing
with a 16-bit register.

inport/inportb
Arguments: unsigned int address
Return value: unsigned int/unsigned char data

This function can be used to retrieve data from components in I/O space. Y ou will find that most
hardware options added to TERN controllers are mapped into I/O space, since memory space is valuable
and is reserved for uses related to the code and data. Using 1/0O mappings, the address is output over the
address bus, and the returned 16 or 8-bit value is the return value.

For afurther discussion of 1/0O and memory mappings, please refer to the Hardware chapter of this
technical manual.

41AE.LIB

AE.LIB is a C library for basic SmartLCD operations. It includes the following modules: AE.OBJ,
SER0.0BJ, SER1.0BJ, SCC.OBJ, and AEEE.OBJ. You need to link AE.LIB in your applications and
include the corresponding header files. The following is alist of the header files:

Include-filename | Description

AEH PPI, timer/counter, ADC, DAC, RTC, Watchdog,
SERO.H Internal serial port O

SER1.H Internal serial port 1

SCC.H External UART SCC2691

AEEEH on-board EEPROM

SmartLCD Chapter 4. Software

4.2 Functionsin AE.OBJ

4.2.1 SmartLCD Initialization

ae init

This function should be called at the beginning of every program running on SmartLCD core controllers.
It provides default initialization and configuration of the various 1/O pins, interrupt vectors, sets up
expanded DOS /O, and provides other processor-specific updates needed at the beginning of every
program.

There are certain default pin modes and interrupt settings you might wish to change. With that in mind,
the basic effects of ae init are described below. For details regarding register use, you will want to refer
to the 188 CPU Microcontroller User’s manual in the Amd_docs directory.

Initialize the upper chip select to support the default ROM. The CPU registers are configured such
that:

Address space for the ROM is from 0x80000-0xfffff (to map MemCard 1/O window)

512K ROM Block size operation.

Three wait state operation (allowing it to support up to 120 ns ROMs). With 70 ns ROMs, this can
actually be set to zero wait state if you require increased performance (at arisk of stability in
noisy environments). For details, see the UMCS (Upper Memory Chip Select Register)

reference in the processor User’s manual .
out port (Oxffal, 0x80bf); // UMCS, 512K ROM 0x80000- Oxfffff

Initialize LCS (Lower Chip Select) for use with the SRAM. It is configured so that:

Address space starts 0x00000, with a maximum of 512K RAM.
Three wait state operation. Reducing this value can improve performance.

Disables PSRAM, and disables need for external ready.
out port (Oxffa2, Ox7fbf); // LMCS, base Mem address 0x0000

Initialize MMCS and MPCS so that M CS0 and PCS0-PCS6 (except for PC4) are configured so:

MCS0 is mapped also to a 256K window at 0x80000. If used with MemCard, this
chip select line is used for the I/O window.

Sets up PCS5-6 lines as chip-select lines, with three wait state operation.
out port (Oxffa8, OxaObf); // s8, 3 wait states
out port (Oxffa6, 0x81ff); // CSOMSKH

Initialize PACS so that PCS0-PCS3 are configured so that:

Sets up PCS0-3 lines as chip-select lines, with fifteen wait state operation.
The chip select lines starts at 1/0 address 0x0000, with each successive chip select line addressed

0x100 higher in 1/O space.
out port (Oxffa4, 0x007f); // CSOMSKL, 512K, enable CSO for RAM

Configure the two PIO ports for default operation. All pins are set up as default input, except for P12
(used for driving the LED), and peripheral function pins for SERO and SER1, as well as chip

selects for the PPI.
out port (Oxff 78, 0xe73c) ; /1 PDI R1, TxDO, Rx DO, TxD1, RxD1,
// P16=PCS0, P17=PCS1=PPI
out port (Oxf f 76, 0x0000) ; /1 Pl OML
out port (Oxff72, Oxec7b); // PDI RO, P12, A19, A18, Al7, P2=PCS6=RTC
out port (Oxf f 70, 0x1000) ; // PIOMD, P12=LED

Configure the PPl 82C55 to all inputs, except for lines 120-23 which are used as output for the ADC.
You can reset these to inputs if not being used for that function.
out port b(0x0103, 0x9a) ; /1 all pins are input, [20-23 out put

Chapter 4: Software SmartLCD

out por t b(0x0100, 0) ;
out por t b(0x0101, 0) ;
out port b(0x0102, 0x01); /1 120=ADCS hi gh

The chip select lines are by default set to 15 wait state. This makes it possible to interface with many
slower external peripheral components. If you require faster 1/O access, you can modify this number
down as needed. Some TERN components, such as the Real-Time-Clock, might fail if the wait state is
decreased too dramatically. A function is provided for this purpose.

void io_wait
Arguments: char wait
Return value: none.

This function sets the current wait state depending on the argument wait.

wai t=0, wait states I/ O enable for 100 ns

wai t=1, wait states I/ O enable for 100+25 ns
wait=2, wait states I/ O enable for 100+50 ns
wai t=3, wait states I/ O enable for 100+75 ns
wait=4, wait states I/ O enable for 100+125 ns
wai t=5, wait states I/ O enable for 100+175 ns
wai t=6, wait states I/ O enable for 100+225 ns
wait=7, wait states 5, 1/0 enable for 100+375 ns

PONUIWNRO

4.2.2 External Interrupt I nitialization

There are up to eight external interrupt sources on the SmartL CD, consisting of seven maskable interrupt
pins (INT6-INTO) and one non-maskable interrupt (NM1). There are also an additional eight internal
interrupt sources not connected to the external pins, consisting of three timers, two DMA channels, both
asynchronous serial ports, and the NM1 from the watchdog timer. For a detailed discussion involving the
ICUs, the user should refer to Chapter 7 of the AMD 188 CPU Microcontroller User’s Manual.

TERN provides functions to enable/disable all of the eight external interrupts. The user can call any of
the interrupt init functions listed below for this purpose. The first argument indicates whether the
particular interrupt should be enabled, and the second is a function pointer to an appropriate interrupt
service routine that should be used to handle the interrupt. The TERN libraries will set up the interrupt
vectors correctly for the specified external interrupt line.

At the end of interrupt handlers, the appropriate in-service bit for the IR signal currently being handled
must be cleared. This can be done using the Nonspecific EOl command. At initialization time, interrupt
priority was placed in Fully Nested mode. This means the current highest priority interrupt will be
handled first, and a higher priority interrupt will interrupt any current interrupt handlers. So, if the user
chooses to clear the in-service bit for the interrupt currently being handled, the interrupt service routine
just needs to issue the nonspecific EOl command to clear the current highest priority IR.

To send the nonspecific EOl command, you need to write the EOI register word with 0x8000.
out port (0xff22, 0x8000);

void intx_init
Arguments: unsigned char i, void interrupt far(* intx_isr) ())
Return value: none

These functions can be used to initialize any one of the external interrupt channels (for pin locations and
other physical hardware details, see the Hardware chapter). The first argument i indicates whether this
particular interrupt should be enabled or disabled. The second argument is a function pointer which will
act as the interrupt service routine. The overhead on the interrupt service routine, when executed, is about
20 ns.

4-4

SmartLCD Chapter 4. Software

By default, the interrupts are al disabled after initialization. To disable them again, you can repeat the
call but passin 0 as the first argument.

The NMI (Non-Maskable Interrupt) is special in that it can not be masked (disabled). The default ISR
will return on interrupt.

void intO_init(unsigned char i, void interrupt far(* intO_isr)());
void intl init(unsigned char i, void interrupt far(* intl_isr)());
void int2_init(unsigned char i, void interrupt far(* int2_isr)());
void int3_init(unsigned char i, void interrupt far(* int3_isr)());
void int4_init(unsigned char i, void interrupt far(* intd4d_isr)());
void int5_init(unsigned char i, void interrupt far(* int5_isr)());
void int6_init(unsigned char i, void interrupt far(* int6_isr)());
void int7_init(unsigned char i, void interrupt far(* int7_isr)());
void int8 init(unsigned char i, void interrupt far(* int8_isr)());
void int9 init(unsigned char i, void interrupt far(* int9_isr)());
void nm _init(void interrupt far (* nm _isr)());

4.2.3 1/O Initialization

Two ports of 16 1/0 pins each are available on the SmartL CD. Hardware details regarding these PIO lines
can be found in the Hardware chapter.

Several functions are provided for access to the PIO lines. At the beginning of any application where you
choose to use the PIO pins as input/output, you will probably need to initialize these pins in one of the
four available modes. Before selecting pins for this purpose, make sure that the peripheral mode
operation of the pin is not needed for a different use within the same application.

You should also confirm the PIO usage that is described above within ae_init(). During initialization,
several lines are reserved for TERN usage and you should understand that these are not available for your
application. There are several PIO lines that are used for other on-board purposes. These are all described
in some detail in the Hardware chapter of this technical manual. For a detailed discussion toward the 1/0
ports, please refer to Chapter 11 of the AMD 188 CPU User’s Manual.

Please see the sample program ae pio.c in t er n\ 186\ sanpl es\ ae. You will also find that these
functions are used throughout TERN sample files, as most applications do find it necessary to re-configure
the PIO lines.

The function pio_wr and pio_rd can be quite low when accessing the PIO pins. Depending on the pin
being used, it might require from 5-10 ns. The maximum efficiency you can get from the PIO pins occur
if you instead modify the PIO registers directly with an outport instruction Performance in this case will
be around 1-2 s to toggle any pin.

The data register is Oxff74 for PIO port 0, and Oxff7a for PIO port 1.

void pio_init
Arguments: char bit, char mode
Return value: none

bit refers to any one of the 32 PIO lines, 0-31.
mode refers to one of four modes of operation.
0, High-impedance Input operation
1, Open-drain output operation

2, output
3, peripheral mode

Chapter 4: Software SmartLCD

unsigned int pio_rd:
Arguments: char port

Return value: byteindicating PlO status

Each bit of the returned 16-bit value indicates the current I/O value for the PIO pinsin the selected port.
void pio_wr:

Arguments: char bit, char dat

Return value none

Writes the passed in dat value (either 1/0) to the selected PIO.

4.2.4 Timer Units

The three timers present on the SmartLCD can be used for a variety of applications. All three timers run
at 1/4 of the processor clock rate, which determines the maximum resolution that can be obtained. Be
aware that if you enter power save mode, that means the timers will operate at a reduced speed as well.

These timers are controlled and configured through a mode register which is specified using the software
interfaces. The mode register is described in detail in chapter 8 of the AMD 188 CPU User's Manual.

Pulse width demodulation is done by setting the PWD bit in the SY SCON register. Before doing this, you
will want to specify your interrupt service routines, which are used whenever the incoming digital signa
switches from high to low, and low to high.

The timers can be used to time execution of your user defined code by reading the timer values before and
after execution of any piece of code. For a sample file demonstrating this application, see the sample file
timer.c in the directory tern\186\samples\ae.

Two of the timers, TimerO and Timer1 can be used to do pulse-width modulation with a variable duty
cycle. These timers contain two max counters, where the output is high until the counter counts up to
maxcount A before switching and counting up to maxcount B.

It is also possible to use the output of Timer2 to pre-scale one of the other timers, since 16-bit resolution
at the maximum clock rate specified gives you only 150 Hz. Only by using Timer2 can you sow this
down even further. The sample files timer02.c and timerl12.c, located in tern\186\samples\ae,
demonstrate this.

The specific behavior that you might want to implement is described in detail in chapter 8 of the AMD
188 CPU User’s Manual.

void t0_init

void t1_init

Arguments: int tm, int ta, int tb, void interrupt far(*t_isr)()

Return values: none

Both of these timers have two maximum counters (MAXCOUNTA/B) available. These can al be
specified using ta and tb. The argument tm is the value that you wish placed into the TOCON/T1CON
mode registers for configuring the two timers.

The interrupt service routine t_isr specified here is called whenever the full count is reached, with other
behavior possible depending on the value specified for the control register.

void t2_init
Arguments: int tm, int ta, void interrupt far(*t_isr)()
Return values: none.

46

SmartLCD Chapter 4. Software

Timer 2 behaves like the other timers, except it only has one max counter available.

4.2.5 Analog-to-Digital Conversion

Up to two ADC units, U10 and U29, may be installed. Each provides 11 channels of analog inputs based
on the reference voltage supplied to REF+. For details regarding the hardware configuration, see the
Hardware chapter.

In order to operate the U10 ADC, lines 120, 121,122 from the U5 PPI must be configured as output. P11
must also be configured to be input. Thislineis also shared with the RTC and EEPROM, and left high at
power-on/reset. Y ou should be sure not to re-program these pins for your own use. Be careful when using
the EEPROM concurrently with the ADC. If the ADC is enabled, the line P11 will be reserved for its use
and any attempt to access the EEPROM will time-out after some time.

To operate the U29 ADC, lines T17 from PPl U27 and lines 121 and 122 from PPI U5 must be configured
as output. TOO (U27) must also be configured to be input. The TOO signa is buffered by U25 Schmitt
Trigger input 10.

For a sample file demonstrating the use of the U10 ADC, please see ae adl2.c in
t er n\ 186\ sanpl es\ ae. For the U29 ADC, seed_ad12.cint er n\ 186\ sanpl es\ sl .

int ae ad12

intsd_adl2

Arguments: char ¢

Return values: int ad_value

The argument c selects the channel from which to do the next Analog to Digital conversion. A value of 0
corresponds to channel ADO, 1 corresponds to channel AD1, and so on.

The return value ad_value is the latched-in conversion value from the previous call to this function. This
means each call to this function actually returns the value latched-in from the previous anal og-to-digital
conversion.

For example, this means the first analog-to-digital conversion done in an application will be similar to the
following:

ae_adl2(0); // Read from channel 0
chn_0_data = ae_ad12(0); // Start the next conversion, retrieve val ue.

4.2.6 Digital-to-Analog Conversion

Up to two LTC 1446 chips are available on the SmartLCD in positions U11 and U23. U11 offers two
channels, VA and VB, for digital-to-analog conversion. U23 offers channels VC and VD. Details
regarding hardware, such as pin-outs and performance specifications, can be found in the Hardware
chapter.

A sample program demonstrating the U1l DAC can be found in ae da.c in the directory
t er n\ 186\ sanpl es\ ae. For the U23 DAC, refer to al04da.cint er n\ 186\ sanpl es\ a104.

Chapter 4: Software SmartLCD

void ae da

void al04 da

Arguments: int datl, int dat2
Return value: none

Argument dat1 isthe current value to drive to channel VA of the chip, while argument dat2 is the value
to drive channel VB of the U11 chip (or channels VC and VD, respectively, of the U23 chip).

These argument values should range from 0-4095, with units of millivolts. This makesit possible to drive
amaximum of 4.906 volts to each channel.

A 12-bit DAC channel, VA, is dedicated to drive the contrast voltage by using the software function
contrast(int dat);.

4.2.7 Other library functions

On-board supervisor MAX691 or LTC691

The watchdog timer offered by the MAX691 or LTC691 offers an excellent way to monitor improper
program execution. If the watchdog timer (J9) jumper is set, the function hitwd() must be called every
1.6 seconds of program execution. If thisis not executed because of a run-time error, such as an infinite
loop or stalled interrupt service routine, a hardware reset will occur.

void hitwd
Arguments: none
Return value: none

Resets the supervisor timer for another 1.6 seconds.
void led
Arguments: int ledd

Return value: none

Turns the on-board LED on or off according to the value of ledd.

Real-Time Clock

The real-time clock can be used to keep track of real time. Backed up by a lithium-coin battery, the real
time clock can be accessed and programmed using two interface functions.

The real time clock only allows storage of two digits of the year code, as reflected below. As a result,
application developers should be careful to account for aroll-over in digits in the year 2000. One solution
might be to store an offset value in non-volatile storage such as the EEPROM.

There is a common data structure used to access and use both interfaces.

typedef struct{

unsi gned char secl; One second digit.
unsi gned char secl10; Ten second digit.
unsi gned char mnl; One mnute digit.
unsi gned char mnl0; Ten minute digit.
unsi gned char hourl; One hour digit.
unsi gned char hour10; Ten hour digit.
unsi gned char dayl; One day digit.

4-8

SmartLCD Chapter 4. Software

unsi gned char dayl10; Ten da¥ digit.
unsi gned char nonl; One nonth digit.
unsi gned char nonl0; Ten nmonth digit.
unsi gned char yearl; One year digit.
unsi gned char year10; Ten year digit.
unsi gned char wk; Day of the week.

} TIM

intrtc rd

Arguments: TIM *r
Return value: int error_code

This function places the current value of the real time clock within the argument r structure. The
structure should be allocated by the user. This function returns O on success and returns 1 in case of error,
such as the clock failing to respond.

Void rtc_init
Arguments: char* t
Return value: none

This function is used to initialize and set a value into the real-time clock. The argument t should be a
null-terminated byte array that contains the new time value to be used.

The byte array should correspond to { weekday, year10, year1, month10, month1, day10, dayl, hour10,
hourl, minutel0, minutel, second10, secondl, 0}.

If, for example, the time to be initialized into the real time clock is June 5, 1998, Friday, 13:55:30, the
byte array would be initialized to:

unsi gned char t[14] ={ 5, 9, 8 0, 6, 0, 5 1, 3, 5, 5 3, 0},

Delay

In many applications it becomes useful to pause before executing any further code. There are functions
provided to make this process easy. For applications that require precision timing, you should use
hardware timers provided on-board for this purpose.

void delayO
Arguments: unsigned int t
Return value: none

Thisfunction isjust a simple software loop. The actual time that it waits depends on processor speed as
well asinterrupt latency. The code is functionally identical to:

Wiile(t) { t--; }
Passing in at value of 600 causes a delay of approximately 1 ms.
void delay_ms

Arguments: unsigned int
Return value: none

Chapter 4: Software SmartLCD

This function is similar to delay0, but the passed in argument is in units of milliseconds instead of loop
iterations. Again, this function is highly dependent upon the processor speed.

unsigned int crcl6
Arguments: unsigned char *wptr, unsigned int count
Return value: unsigned int value

This function returns a simple 16-bit CRC on a byte-array of count size pointed to by wptr.

void ae reset
| Arguments: none
Return value: none

This function is similar to a hardware reset, and can be used if your program needs to re-start the board
for any reason. Depending on the current hardware configuration, this might either start executing code
from the DEBUG ROM or from some other address.

4.3 Functionsin SER0.OBJ/SER1.0BJ

The functions described in this section are prototyped in the header file ser0.h and ser1.h in the directory
tern\ 186\ i ncl ude.

The internal asynchronous serial ports are functionally identical. SERO is used by the DEBUG ROM
provided as part of the TERN EV/DV software kits for communication with the PC. Asaresult, you will
not be able to debug code directly written for serial port O.

Two asynchronous serial ports are integrated in the 188 CPU CPU: SERO and SER1. Both ports have
baud rates based on the 40 MHz clock, and can operate at a maximum of 1/16 of that clock rate.

By default, SERO is used by the DEBUG ROM for application download/debugging in Step One and Step
Two. We will use SER1 as the example in the following discussion; any of the interface functions which
are specific to SER1 can be easily changed into function calls for SERO. While selecting a serial port for
use, please realize that some pins might be shared with other peripheral functions. This means that in
certain limited cases, it might not be possible to use a certain serial port with other on-board controller
functions. For details, you should see both chapter 10 of the 188 CPU Microprocessor User’s Manual and
the schematic of the SmartLCD provided at the end of this manual.

TERN interface functions make it possible to use one of a number of predetermined baud rates. These
baud rates are achieved by specifying a divisor for 1/16 of the processor frequency.

The following table shows the function arguments that express each baud rate, to be used in TERN
functions. These are based on a40 MHz system clock.

Function Argument | Baud Rate

110
150

300

600

1200

2400

4800

9600

19,200 (default)

© 00 ~NO Ul WN B

4-10

SmartLCD Chapter 4: Software

Function Argument | Baud Rate
10 38,400

11 57,600

12 115,200
13 250,000
14 500,000
15 1,250,000

Table 4.1 Baud rate values

After initialization by calling s1_i ni t (), SER1is configured as afull-duplex serial port and is ready to
transmit/receive serial data at one of the specified 15 baud rates.

An input buffer, ser1 i n_buf (whose size is specified by the user), will automatically store the
receiving serial data stream into the memory by DMA1 operation. In terms of receiving, there is no
software overhead or interrupt latency for user application programs even at the highest baud rate. DMA
transfer allows efficient handling of incoming data. The user only has to check the buffer status with
serhit 1() and take out the data from the buffer with get ser 1() , if any. The input buffer isused asa
circular ring buffer, as shown in Figure 4.1. However, the transmit operation is interrupt-driven.

ibuf in_tail in_head ibuf+isiz

v oovv J
[T 1]

Figure 4.1 Circular ring input buffer

The input buffer (ibuf), buffer size (isiz), and baud rate (baud) are specified by the user withs1 i nit ()
with a default mode of 8-bit, 1 stop bit, no parity. After s1_init() you can set up a new mode with
different numbers for data-bit, stop bit, or parity by directly accessing the Serial Port 0/1 Control Register
(SPOCT/SPICT) if necessary, as described in chapter 10 of the 188 CPU manual for asynchronous serial
ports.

Due to the nature of high-speed baud rates and possible effects from the external environment, serial input
data will automatically fill in the buffer circularly without stopping, regardless of overwrite. If the user
does not take out the data from the ring buffer with get ser 1() before the ring buffer is full, new data
will overwrite the old data without warning or control. Thusit isimportant to provide a sufficiently large
buffer if large amounts of data are transferred. For example, if you are receiving data at 9600 baud, a 4
KB buffer will be able to store data for approximately four seconds.

However, it is always important to take out data early from the input buffer, before the ring buffer rolls
over. You may designate a higher baud rate for transmitting data out and a slower baud rate for receiving
data. Thiswill give you more time to do other things, without overrunning the input buffer. You can use
serhit1() to check the status of the input buffer and return the offset of the in_head pointer from the
in_tail pointer. A return value of O indicates no datais available in the buffer.

You can use get ser 1() to get the serial input data byte by byte using FIFO from the buffer. The in_tail
pointer will automatically increment after every get ser 1() call. It is not necessary to suspend external
devices from sending in serial data with /RTS. Only a hardware reset or s1_cl ose() can stop this
receiving operation.

4-11

Chapter 4: Software SmartLCD

For transmission, you can use put ser1() to send out a byte, or use put sers1() to transmit a
character string. You can put data into the transmit ring buffer, s1_out _buf, a any time using this
method. The transmit ring buffer address (obuf) and buffer length (osiz) are also specified at the time of
initialization. The transmit interrupt service will check the availability of data in the transmit buffer. If
there is no more data (the head and tail pointers are equal), it will disable the transmit interrupt.
Otherwise, it will continue to take out the data from the out buffer, and transmit. After you call
put ser 1() and transmit functions, you are free to do other tasks with no additional software overhead
on the transmitting operation. It will automatically send out all the data you specify. After all data has
been sent, it will clear the busy flag and be ready for the next transmission.

The sample program ser 1_0. ¢ demonstrates how a protocol translator works. 1t would receive an input
HEX file from SER1 and translate every ‘' character to *?. The translated HEX file is then transmitted
out of SERO. This sample program can befound int er n\ 186\ sanpl es\ ae.

Softwar e Interface
Before using the serial ports, they must be initialized.

There is a data structure containing important serial port state information that is passed as argument to
the TERN library interface functions. The COM structure should normally be manipulated only by
TERN libraries. It is provided to make debugging of the serial communication ports more practical.
Since it alows you to monitor the current value of the buffer and associated pointer values, you can watch
the transmission process.

The two seria ports have similar software interfaces. Any interface that makes reference to either s0 or
ser 0 can be replaced with s1 or ser1, for example. Each seria port should use its own COM structure, as
defined in ae.h.

typedef struct {
unsi gned char ready; /* TRUE when ready */
unsi gned char baud;
unsi gned char node;

unsi gned char ifl ag; /* interrupt status */
unsi gned char *in_buf; /* Input buffer */
int in_tail; /* Input buffer TAIL ptr */

int in_head; /* Input buffer HEAD ptr */

int in_size; /* Input buffer size */

int in_crcnt; /* Input <CR> count */

unsi gned char in_nmt; /* Input buffer FLAG */
unsi gned char in_full; /* input buffer full */
unsi gned char *out _buf; /* Qutput buffer */

int out_tail; /* Qutput buffer TAIL ptr */

i nt out_head; /* Qutput buffer HEAD ptr */

int out_size; /* Qutput buffer size */

unsi gned char out_full; /* Qutput buffer FLAG */
unsi gned char out_nt; /* Qutput buffer MI */

unsi gned char tnso; /l transmit macro service operation
unsi gned char rts;

unsi gned char dtr;

unsi gned char en485;

unsi gned char err;

unsi gned char node;

unsi gned char cr; /* scc CR register */

unsi gned char sl ave;

unsi gned int in_segm /* input buffer segnent */
unsigned int in_offs; /* input buffer offset */
unsi gned int out_segm /* output buffer segnment */

4-12

SmartLCD Chapter 4. Software

unsigned int out offs; /* output buffer offset */
unsi gned char byTe_del ay; /* V25 macro service byte delay */

} com

sn_init

Arguments: unsigned char b, unsigned char* ibuf, int isiz, unsigned char* obuf, int osiz, COM* ¢
Return value: none

This function initializes either SERO or SER1 with the specified parameters. b isthe baud rate value
shown in Table 4.1. Arguments ibuf and isiz specify the input-data buffer, and obuf and osiz specify the
location and size of the transmit ring buffer.

The serial portsareinitialized for 8-bit, 1 stop bit, no parity communication.

There are a couple different functions used for transmission of data. Y ou can place data within the output
buffer manually, incrementing the head and tail buffer pointers appropriately. 1f you do not call one of the
following functions, however, the driver interrupt for the appropriate serial-port will be disabled, which
means that no values will be transmitted. This allows you to control when you wish the transmission of
data within the outbound buffer to begin. Once the interrupts are enabled, it is dangerous to manipulate
the values of the outbound buffer, as well as the values of the buffer pointer.

putsern
Arguments: unsigned char outch, COM *c
Return value: int return_value

This function places one byte outch into the transmit buffer for the appropriate serial port. The return
value returns one in case of success, and zero in any other case.

putsersn

Arguments: char* str, COM *c

Return value: int return_value

This function places a null-terminated character string into the transmit buffer. The return value returns
one in case of success, and zero in any other case.

DMA transfer automatically places incoming data into the inbound buffer. serhitn() should be called
before trying to retrieve data.

serhitn
Arguments: COM *c
Return value: int value

This function returns 1 as value if there is anything present in the in-bound buffer for this serial port.
getsern
Arguments: COM *c

Return value: unsigned char value

This function returns the current byte from sn_in_buf, and increments the in_tail pointer. Once again,
this function assumes that serhitn has been called, and that there is a character present in the buffer.

4-13

Chapter 4: Software SmartLCD

etser sn)
rguments. COM c, int len, char* str

Return value: int value

This function fills the character buffer str with at most len bytes from the input buffer. It also stops
retrieving data from the buffer if a carriage return (ASCII: 0x0d) is retrieved.

This function makes repeated calls to getser, and will block until len bytes are retrieved. The return
value indicates the number of bytes that were placed into the buffer.

Be careful when you are using this function. The returned character string is actually a byte array
terminated by anull character. This means that there might actually be multiple null charactersin the
byte array, and the returned value is the only definite indicator of the number of bytesread. Normally, we
suggest that the getser s and putser s functions only be used with ASCII character strings. If you are
working with byte arrays, the single-byte versions of these functions are probably more appropriate.

Miscellaneous Serial Communication Functions

One thing to be aware of in both transmission and receiving of data through the serial port isthat TERN
drivers only use the basic serial-port communication lines for transmitting and receiving data. Hardware
flow control in the form of CTS (Clear-To-Send) and RTS (Ready-To-Send) is not implemented. There
are, however, functions available that allow you to check and set the value of these 1/0O pins appropriate
for whatever form of flow control you wish to implement. Before using these functions, you should once
again be aware that the peripheral pin function you are using might not be selected as needed. For details,
please refer to the 188 CPU User’s Manual .

char sn_cts(void)
Retrieves value of CTS pin.

void sn_rts(char b)
Setsthe value of RTSto b.

Completing Serial Communications

After completing your serial communications, there are a few functions that can be used to reset default
system resources.

sn_close
Arguments: COM *c
Return value: none

This closes down the serial port, by shutting down the hardware as well as disabling the interrupt.

clean_sern
Arguments: COM *c
Return value: none

This flushes the input buffer by resetting the tail and header buffer pointers.

The asynchronous seria 1/0 ports available on the 188 CPU Processor have many other features that
might be useful for your application. If you are truly interested in having more control, please read
Chapter 10 of the manual for a detailed discussion of other features available to you.

4-14

SmartLCD Chapter 4. Software

4.4 Functionsin SCC.OBJ

The functions found in this object file are prototyped in scc.h inthet er n\ 186\ i ncl ude directory.

The SCC is a component that is used to provide a third asynchronous port. It uses an 8 MHz crystal,
different from the system clock speed, for driving serial communications. This means the divisors and
function arguments for setting up the baud rate for this third port are different than for SERO and SER1.

The SCC2691 component has its own 8 MHz crystal providing the clock signal. By default, thisis set to
8 MHz to be consistent with earlier TERN controller designs. The highest standard baud rate is 19,200,
as shown in the table below. If your application requires a higher standard baud rate (115,200, for
example), it is possible to replace this crystal with a custom 3.6864 MHz crystal. A sample file
demonstrating how the software would be changed for this application is ae sccl.c, found in the
tern\186\samples\ae\ directory.

Function Argument | Baud Rate

110
150

300

600

1200

2400

4800

9600 (default)
19,200
31,250
62,500
125,000
250,000

© 00 ~NO Ul &~ WN B

e
N R O

=Y
w

Unlike the other serial ports, DMA transfer is not used to fill the input buffer for SCC. Instead, an
interrupt-service-routine is used to place characters into the input buffer. If the processor does not respond
to the interrupt—because it is masked, for example—the interrupt service routine might never be able to
complete this process. Over time, this means data might be lost in the SCC as bytes overflow.

Special control registers are used to define how the SCC operates. For a detailed description of registers
MR1 and MR2, please see Appendix B of this manual. In most TERN applications, MR1 is set to 0x57,
and MR2 is set to 0x07. This configures the SCC for no flow control (RTS, CTS not used/checked), no
parity, 8-bit, normal operation. Other configurations are also possible, providing self-echo, even-odd
parity, up to 2 stop bits, 5 bit operation, as well as automatic hardware flow control.

Initialization occurs in a manner otherwise similar to SERO and SER1. A COM structure is once again
used to hold state information for the serial port. The in-bound and out-bound buffers operate as before,
and must be provided upon initialization.

scc_init

Arguments: unsigned char m1, unsigned char m2, unsigned char b, unsigned char* ibuf, int isiz,
unsigned char* obuf, int osiz, COM *c

Return value: none

Thisinitializes the SCC2691 serial port to baud rate b, as defined in the table above. The valuesin m1
and m2 specify the values to be stored into MR1 and MR2. Asdiscussed above, these values are
normally 0x57 and 0x07, as shown in TERN sample programs.

4-15

Chapter 4: Software SmartLCD

ibuf and isiz define the input buffer characteristics, and obuf and osiz define the output buffer.

After initializing the serial port, you must also set up the interrupt service routine. The SCC2691 UART
takes up external interrupt /INTO on the CPU, and you must set up the appropriate interrupt vector to

handle this. An interrupt service routine, scc_isr(), has been written to handle the interrupt, and it
enables/disables the interrupt as needed to transmit and receive data with the data buffers. So, after
initialization, you will need to make a call to do this:

intO_init(1, scc_isr);
By default, the SCC is disabled for both transmit and receive. Before using the port, you will need to
enable these functionalities.

When using RS232 in full-duplex mode, transmit and receive functions should both be enabled. Once
this is done, you can transmit and receive data as needed. If you do need to do limited flow control, the
MPO pin on the J1 header can be used for RTS. For a sample file showing RS232 full duplex
communications, please see ae_scc.c in the directory t er n\ 186\ sanpl es\ ae.

R385 is dlightly more complex to use than RS232. RS485 operation is half-duplex only, which means
transmission does not occur concurrently with reception. The RS485 driver will echo back bytes sent to
the SCC. As a result, assuming you are using the R$485 driver installed on another TERN peripheral
board, you will need to disable receive while transmitting. While transmitting, you will also need to
place the RS485 driver in transmission mode as well. This is done by using scc_rts(1). This uses pin
MPO (multi-purpose output) found on the J1 header. While you are receiving data, the RS485 driver will
need to be placed in receive mode using scc_rts(0). For a sample file showing RS485 communication,
please see ae rs485.cinthe directory t er n\ 186\ sanpl es\ ae.

en485
Arguments: int i
Return value: none

This function sets the pin MPO either high (i = 1) or low (i = 0). The function scc_rts() actually has a
similar function, by pulling the same pin high or low, but isintended for use in flow control.

scc_send_e/scc rec e
Arguments: none
Return value: none

This function enables transmission or reception on the SCC2691 UART. After initialization, both of
these functions are disabled by default. If you are using RS485, only one of these two functions should be
enabled at any one time.

scc_send_reset/scc_rec reset
Arguments: none
Return value: none

This function resets the state of the send and receive function of the SCC2691. One major use of these
functionsisto disable transmit and receive. If you are using R$485, you will need to use this feature
when transitioning from transmission to reception, or from reception to transmission.

Transmission and reception of data using the SCC isin most ways identical to SERO and SER1. The
functions used to transmit and receive data are similar. For details regarding these functions, please refer
to the previous section.

4-16

SmartLCD Chapter 4. Software

putser_scc
See: putsern

putsers scc
See: putsersn

getser_scc
See: getsern

getsers scc
See: getsersn

Flow control is aso handled in a mostly similar fashion. The CTS pin corresponds to the MPI pin, which
is not connected to either one of the headers. The RTS pin corresponds to the MPO pin found on the J1
header.

scc_cts
See. sn_cts

scc_rts
See. sn_rts

Other SCC functions are similar to those for SERO and SER1.

scc_close

See: sn_cl ose
serhit_scc

See: sn_hit
clean_ser_scc

See: clean_sn
Occasionally, it might also be necessary to check the state of the SCC for information regarding errors
that might have occurred. By calling scc_err, you can check for framing errors, parity errors (if parity is
enabled), and overrun errors.

scc_err
Arguments: none
Return value: unsigned char val

The returned value val will bein the form of OABCO0000 in binary. Bit A is1 to indicate aframing error.
Bit B is 1 to indicate a parity error, and bit C indicates an over-run error.

4.5 Functionsin AEEE.OBJ

The 512-byte serial EEPROM (24C04) provided on-board allows easy storage of non-volatile program
parameters. Thisisusually anideal location to store important configuration values that do not need to be
changed often. Access to the EEPROM is quite slow, compared to memory access on the rest of the
controller.

Part of the EEPROM is reserved for TERN use specifically for this purpose.

Addresses 0x00 to 0x1f on the EEPROM s reserved for system use, including configuration information
about the controller itself, jump address for Step Two, and other data that is of a more permanent nature.

The rest of the EEPROM memory space, 0x20 to Ox1ff, is available for your application use.

4-17

Chapter 4: Software SmartLCD

ee wr
Arguments: int addr, unsigned char dat
Return value: int status

This function is used to write the passed in dat to the specified addr. The return valueis 0 in success.
ee rd

Arguments: int addr

Return value: int data

This function returns one byte of data from the specified address.

4.6 Functionsin SL.LIB

C function prototypes supporting SmartLCD hardware can be found in SL.H, in the
\'t ern\ 186\ i ncl ude directory.

The following sample programs can be found in the\ t er n\ 186\ sanpl es\ SL directory:

d_grid.c
d_hird.c
d_ppi.c
d ccfl.c
d_pb.c

d adl2.c
d_text.c

4.7 Functionsin SLB.LIB

Additional software drivers can be found in slb.h and other slb header files. The source code for these
functions is included in the tern\186\samples\sl\source directory. Functions in this library include drivers
to create buttons and handle button events. The following samplesillustrate some of the basic operations:

d_bttn.c
d_demo.c

d_gpx.c

4-18

SmartLCD Chapter 4. Software

4-19

SmartLCD

Appendix A: SmartL CD L ayout

Appendix A: SmartL CD L ayout

The SmartL CD measures 6.40 x 4.65 inches. Its layout is shown below.

All dimensions are in inches. Shaded mounting holes are used for the LCD.

(0.00,6.1) (0.3, 6.00) (4.30, 6.03)
Key @ d H14 2
Code| H10 Hl H12 (4.5, 6.22)
(0.01,5.625) 55 O p3
L1 | N P2 Right-angle
(0.01,5.225) —| [] 2 - push buttons:
’ co \\2 % _ SED1335 meafge vorr (X 5.23)
< | = < urrer
— ~ a SRAM ? H6_|RT2
OOL 4829 5t 3 b E [E Reser (X, 4.88)
u16 8
i d g RT3
(0.01, 4.425) O g o7
¢ O 74HC14]
L4 1124 . PPl
(0.01, 4.025) ——| [Hi3 e .
B6| [74HC14 u27 =) 9
| Fl=
0.01, 3.625)]| =
(©.0L) T O (2.22, 3.24) = O L
" /INT1 (x, 3.48)
(0.01, 3.225) |
B2 ve | H5 bl\
(0.01, 2.825) ——| [oo | Louchsren) [PAdJuzs (4.42,3.24)
c2 :8_ 0O LA - - [T
—— & |&% rre PN\[T(25a| | 1
(0.01,2.425) - 2 o) 110 (4.32 2.79)
L9 | . | U4
(0.01, 2.025) - U Us u11
L 10 | A
] i u7
(0.01,1.625) u20 T SRAM wacr |V7[EE] .
L 11 | S
— i
(0.01, 1.228) — us oL U2 ¥
|10 | 15 1| yg ROV e
— ep.
0.01,0.825) —{[_ 1R 18
e o - ol
(0.01, 0.425) ——| [e £t |
C5 J14 N ° g RT5
Ha 29 4 L | [nT2 (x, 0.33)
-@ —~ L SER1 L2 SERO
(0.0,0.0) OILS) H3 H2 HL .
/
0.3,0.03 1.19, 0.56 . .
(-0.15, -0.18) ()]) (1.91,0.01) \ (4.06, 0.01) 43.00)
(024, 1.42) (1.12, 0.89) (3.36,0.01)

A-1

Appendix B: UART SCC2691 SmartLCD
1. Pin Description
D0-D7 Data bus, active high, bi-directional, and having 3-State
/CEN Chip enable, active-low input
/WRN Write strobe, active-low input
/RDN Read strobe, active-low input
AQ-A2 Address input, active-high addressinput to select the UART registers
RESET Reset, active-high input
INTRN Interrupt request, active-low output
XUCLK Crystal 1, crystal or external clock input
X2 Crystd 2, the other side of crystal
RxD Receive seria datainput
TxD Transmit serial data output
MPO Multi-purpose output
MPI Multi-purpose input
Vce Power supply, +5V input
GND Ground
2. Register Addressing
A2 Al A0 READ (RDN=0) WRITE (WRN=0)
0 0 0 MRLMR2 MR1, MR2
0 0 1 SR CSR
0 1 0 BRG Test CR
0 1 1 RHR THR
1 0 0 1x/16x Test ACR
1 0 1 ISR IMR
1 1 0 CTU CTUR
1 1 1 CTL CTLR
Note:
ACR = Auxiliary control register
BRG = Baud rate generator
CR = Command register
CSR = Clock select register
CTL = Counter/timer lower
CTLR = Counter/timer lower register
CTU = Counter/timer upper
CTUR = Counter/timer upper register
MR = Mode register
SR = Status register
RHR = Rx holding register
THR = Tx holding register
3. Register Bit Formats
MR1 (Mode Register 1):
Bit 7 | Bité [Bits | Bit4 [Bit3 [Bit2 [Bit1 [Bito
RXRTS RxXINT Error __ Parity Mode___ Parity Type Bits per Character
0=no 0=RxRDY 0= char 00 = with parity 0=Even 00=5
1=yes 1=FFULL 1= block 01 = Force parity 1=0dd 01=6
10 = No parity 10=7
11 = Specia mode In Specia 11=8
mode:
0=Data
1=Addr

B-1

SmartLCD Appendix B: UART SCC2691
MR2 (Mode Register 2):
[Bit7 [Bit6 [Bit5 [Bit4 [Bit3 [Bit2 | Bit1 [Bito |
Channel Mode TXRTS CTS Enable Stop Bit Length
TX (add 0.5 to cases 0-7 if channdl is 5 bits/character)
00 = Normal 0=no 0=no 0=0563 4=0813 8=1563 C=1.813
01 = Auto echo 1=yes 1=yes 1=0625 5=0.875 9=1.625 D=1.875
10 = Local loop 2=0688 6=0.938 A=1.688 E=1938
11 = Remote loop 3=0.750 7=1.000 B=1.750 F=2.000
CSR (Clock Select Register):
[Bit7 [Bit6 [Bit5 [Bit4 [Bit3 [Bit2 | Bit1 [Bito |
Receiver Clock Select Transmitter Clock Select
when ACR[7] =0: when ACR[7] = 0:
0= 50 1=110 2=1345 3= 200 0= 50 1=110 2=1345 3= 200
4=300 5=600 6=1200 7 =1050 4=300 5=600 6=1200 7 =1050
8=2400 9=4800 A =7200 B = 9600 8=2400 9=4800 A =7200 B = 9600
C=384k D=Timer E=MPI-16x F=MPI-1x C=384k D=Timer E=MPI-16x F=MPI-1x
when ACR[7] = 1: when ACR[7] = 1:
0= 75 1=110 2=1345 3= 150 0= 75 1=110 2=1345 3=150
4=300 5=600 6=1200 7 =2000 4=300 5=600 6=1200 7 =2000
8=2400 9=4800 A =7200 B =1800 8=2400 9=4800 A =7200 B =1800
C=19.2k D=Timer E=MPI-16x F=MPI-1x C=19.2k D=Timer E=MPI-16x F=MPI-1x
CR (Command Register):
[Bit7 | Bit6 [Bit5 [Bit4 [Bit3 [Bit2 [Bit1 [Bito |
Miscellaneous Commands Disable Enable Disable Enable
TX TX Rx Rx
0= no command 8=gtart C/T 0=no 0=no 0=no 0=no
1 =reset MR pointer 9 = stop counter 1=yes 1=yes 1=yes 1=yes
2 = reset receiver A = assert RTSN
3 = reset transmitter B = negate RTSN
4 = reset error status C =reset MPI
5 = reset break change change INT
INT D =reserved
6 = start break E = reserved
7 = stop bresk F = reserved
SR (Channel Status Register):
[Bit7 | Bit6 [Bit5 [Bit4 [Bit3 [Bit2 [Bit1 [Bito |
Received Framing Parity Overrun TXEMT TXRDY FFULL RxRDY
Break Error Error Error
0=no 0=no 0=no 0=no 0=no 0=no 0=no 0=no
1=yes 1=yes 1=yes 1=yes 1=yes 1=yes 1=yes 1=yes
* * *
Note:

* These status bits are appended to the corresponding data character in the receive FIFO. A read of the status register provides these bits [7:5]
from the top of the FIFO together with bits [4:0]. These bits are cleared by areset error status command. In character mode they are reset when

the corresponding data character is read from the FIFO.

B-2

Appendix B: UART SCC2691 SmartLCD
ACR (Auxiliary Control Register):
[Bit7 Bit 6 | Bit5 [Bit4 [Bit3 [Bit2 [Bit1 [Bito |
BRG Set Counter/Timer Mode and Source Power- MPO Pin Function Select
Select Down
Mode

0=Baud 0 = counter, MPI pin 0=on, 0=RTSN
rate set 1, 1 = counter, MPI pin divided by power 1=CITO
e CSR 16 down 2=TxC (1x)
bit format 2 = counter, TxC-1x clock of the active 3=TxC (16x)

transmitter 1=off 4=RxC (1x)
1= Baud 3 = counter, crystal or external normal 5=RxC (16x)
rate set 2, clock (xX/CLK) 6 =TxRDY
e CSR 4 =timer, MPI pin 7 =RxRDY/FFULL
bit format 5 =timer, MPI pin divided by

16

6 = timer, crystal or external
clock (xX/CLK)
7 =timer, crystal or external

clock (x1/CLK) divided by 16
ISR (Interrupt Status Register):

[Bit7 Bit 6 [Bit5 [Bit4 [Bit3 [Bit2 [Bit1 [Bito |
MPI Pin MPI Pin Not Used Counter Delta RxRDY/ TXEMT TXRDY
Change Current Ready Break FFULL

State
0=no 0=low 0=no 0=no 0=no 0=no 0=no
1=yes 1=high 1=yes 1=yes 1=yes 1=yes 1=yes
IMR (Interrupt Mask Register):
[Bit7 [Bit6 [Bit5 [Bit4 [Bit3 [Bit2 [Bit1 [Bito |
MPI MPI Counter Delta RxRDY/ TXEMT TXRDY
Change Leve Not Used Ready Break FFULL Interrupt Interrupt
Interrupt Interrupt Interrupt Interrupt Interrupt
0= off 0= off 0= off 0= off 0= off 0 = off 0= off
1=0n 1=0n 1=0n 1=0n 1=0n 1=0n 1=0n
CTUR (Counter/Timer Upper Register):
[Bit7 Bit 6 [Bit5 [Bit4 [Bit3 [Bit2 [Bit1 [Bito |
[cmag [crra4 | crqal | otz | oty | CTlag [cTl9 [crig |
CTLR (Counter/Timer Lower Register):
[Bit7 [Bit6 [Bit5 [Bit4 [Bit3 [Bit2 [Bit1 [Bito |
[c1m | ciTig | cTr9 | cT[4 | cT[3 | cT[2 | o[y | cmo |

B-3

SmartLCD

Appendix C: RTC72421 / 72423

Appendix C: RTC72421 / 72423

Function Table

Address Data
Az | A, | A | Ay | Register | Dg D, D, Dy Count Remarks
Value
0O [0 |0 |0 [§ Sg S S, S, 0-9 1-second digit register
0 [0 |0 |1 [S S10 So | Sio 0-5 10-second digit register
0O (0 |1 |0 |Ml mig | miy mi, | mi; 0-9 1-minute digit register
0 [0 |1 |1 |Mly Mi 40 Miyy | Migy | 0~5 10-minute digit register
0O (1 |0 |0 [H hg h, h, h; 0-9 1-hour digit register
0 [1 [0 |1 |Hyp PM/AM | hyy | hyg 0~2 | PM/AM, 10-hour digit
or register
0-1
0O (1 |1 |0 |[Dg dg d, d, d; 0-9 1-day digit register
0 (1 |1 |1 |Dy dyg | dig 0-3 10-day digit register
110 |0 |0 [MO mog | Mo, mo, | mo; | 0-9 1-month digit register
1 10 |0 |1 [MOyy mo;, | 0~1 10-month digit register
1 0 1 0 Y, Yg Y4 Yo V21 0~9 1-year digit register
1 10 (1 [1 |Yy Yso | Yao Yoo | Y10 0-9 10-year digit register
1|1 |0 |0 W W, Wy | Wy 0~6 | Week register
1 1 0 1 Reg D 30s | IRQ Busy | Hold Control register D
Adj | Flag
1 |1 |1 |0 |RegE ty ty INT/ | Mask Control register E
STD
1 1 1 1 Reg F Test | 24/ 12 Stop | Rest Control register F
Note: 1) INT/STD = Interrupt/Standard, Rest = Reset;
2) Mask AM/PM bit with 10's of hours operations;
3) Busy isread only, IRQ can only be set low ("0");
4)
Databit | PM/AM INT/STD 24/12
1 PM INT 24
0 AM STD 12

5) Test bit should be "0".

Appendix D: Serial EEPROM Map SmartLCD

Appendix D: Serial EEPROM Map

Part of the on-board serial EEPROM is used by system software. Application programs must not use these
locations.

0x00-0x1F: Reserved
0x20-0x1FF: Free for application

0x00 Node Address, for networking
0x01 Board Type

0x02

0x03

0x04 SERO _receive, used by ser0.c
0x05 SEROQ_transmit, used by ser0.c
0x06 SER1 receive, used by serl.c
0x07 SER1 transmit, used by serl.c
0x10 CS high byte, used by ACTR™
0x11 CSlow byte, used by ACTR™
0x12 IP high byte, used by ACTR™
0x13 IP low byte, used by ACTR™

0x14 — Ox1F Reserved

0x20 — Ox1FF Freefor application

D-1

SmartLCD Appendix E: Software Glossary

Appendix E: Software Glossary

The following is a glossary of library functions for the SmartLCD. Reference sample programs can be
found in two directories:

C:\tern\ 186\ sanpl es\ AE
C:\tern\ 186\ sanpl es\ SL

void ae _init(void) ae.h

Initializes the Am188ES processor. The following is the source code for ae_init()
outport(Oxffa0,0xcObf); // UMCS, 256K ROM, 3 wait states, disable AD15-0
outport(Oxffa2,0x7fbc); // 512K RAM, 0 wait states

outport(Oxffa8,0xa0bf); // 256K block, 64K MCS0D, PCS1/0O
outport(Oxffa6,0x81ff); // MMCS, base 0x80000

outport(Oxffa4,0x007f); // PACS, base 0, 15 wait

outport(Oxff78,0xe73c); // PDIRL, TxDO, RxDO, TxD1, RxD1, P16=PCS0, P17=PCSl=PPI
outport(Oxff76,0x0000); // PIOM1

outport(Oxff72,0xec7b); // PDIRO, P12,A19,A18,A17,P2=PCS6=RTC
outport(Oxff70,0x1000); // PIOMO, P12=LED

outportb(0x0103,0x9a); // all pins are input, 120-23 output
outportb(0x0100,0);

outportb(0x0101,0);

outportb(0x0102,0x01); // 120=ADCShigh

clka_en(0);

enabl e() ;

Reference: led.c

void ae_reset(void) ae.h
Resets Am188ES processor.
void delay_ms(int m) ae.h

Approximate microsecond delay. Does not use timer.

Var: m-— Delay in approxi mate ns

Reference: led.c

void led(int i) aeh

Toggles P12 used for led.

Var: i - Led on or off

Reference: led.c

E-1

Appendix E: Software Glossary SmartLCD

E-2

SmartLCD Appendix E: Software Glossary

void delayO(unsigned int t) ae.h

Approximate loop delay. Does not use timer.

Var: m-— Delay using sinple for loop up to t.

Reference:

void pwr_save en(int i) ae.h

Enables power save mode, which reduces clock speed. Timers and serial ports will be effected.
Disabled by external interrupt.

Var: i — 1 enables power save only. Does not disable.

Reference: ae_pwr.c

void clka_en(int i) ae.h

Enables signal CLK respectively for external peripheral use.

Var: i — 1 enables clock output, O disables (saves current when
di sabl ed) .
Reference:

void hitwd(void) aeh

Hits the watchdog timer using P0O3. P03 must be connected to WDI of the MAX691 supervisor
chip.

Reference: See Hardware chapter of this manual for more information on the MAX691.

void pio_init(char bit, char mode) ae.h

Initializesa PO line to the following:
mode=0, Normal operation
mode=1, Input with pullup/down
mode=2, Output
mode=3, input without pull

Var: bit — PIOline 0 - 31
Mbde — above npde sel ect

Reference: ae pio.c

E-3

Appendix E: Software Glossary SmartLCD

void pio_wr(char bit, char dat) ae.h

Writes abit to aPIO line. PIO line must be in an output mode
mode=0, Normal operation
mode=1, Input with pullup/down
mode=2, Output
mode=3, input without pull

Var: bit — PIOline 0 - 31
dat — 1/0

Reference: ae pio.c

unsigned int pio_rd(char port) ae.h

Reads a 16-bit PIO port.

Var: port — 0: PIOO - 15
1: PIO 16 - 31

Reference: ae _pio.c

void outport(int portid, int value) dos.h

Writes 16-bit value to I/O address portid.

Var: portid — 1/O address
value — 16 bit val ue

Reference: ae_ppi.c

void outportb(int portid, int value) dos.h

Writes 8-bit value to 1/O address portid.

Var: portid — 1/O address
value — 8 bit val ue

Reference: ae_ppi.c

int inport(int portid) dos.h

Reads from an /O address portid. Returns 16-bit value.

Var: portid — 1/O address

Reference: ae_ppi.c

E-4

SmartLCD Appendix E: Software Glossary

int inportb(int portid) dos.h

Reads from an 1/O address portid. Returns 8-bit value.

Var: portid — 1/O address

Reference: ae_ppi.c

int ee_wr(int addr, unsigned char dat) aeeeh

Writes to the serial EEPROM.

Var: addr — EEPROM dat a addr ess
dat - data

Reference: ae ee.c

int ee_rd(int addr) aeeeh

Reads from the seriadl EEPROM. Returns 8-bit data

Var: addr — EEPROM dat a addr ess

Reference: ae ee.c

int ae_ad12(unsigned char c) ae.h

Reads from the 11-channel 12-bit ADC. Returns 12 bit AD data of the previous channel.
In order to operate ADC, 120,121,122 must be output and P11 must be input.
P11 isshared by RTC, EE. It must |eft high at power-on/reset.
Unipolar:
Vref- = 0x000
Vref+ = Oxfff
Use 1 wait state for Memory and 1/0 without RDY, < 300 us execution time
Use 0 wait state for Memory and 1/0 with VEPO10, < 270 us execution time

Var: ¢ — ADC channe

I
c ={0 ...a}, input ch =0 - 10
c = b, i nput ch = (vref+ - vref-) /2
c = ¢, i nput ch = vref-
c =d, i nput ch = vref+
c = e, sof tware power down

Reference: ae adl12.c

E-5

Appendix E: Software Glossary SmartLCD
void io_wait(char wait) ae.h
Setup 1/O wait states for 1/O instructions.
Var: wait — wait duration {0..7}
wait=0, wait states = 0, |I/O enable for 100 ns
wait=1, wait states = 1, |I/O enable for 100+25 ns
wait=2, wait states = 2, |/0O enable for 100+50 ns
wait=3, wait states = 3, |/0O enable for 100+75 ns
wait=4, wait states = 5, |/O enable for 100+125 ns
wait=5, wait states = 7, |/O enable for 100+175 ns
wait=6, wait states = 9, |/O enable for 100+225 ns
wait=7, wait states = 15, |/ O enable for 100+375 ns
Reference:
void rtc_init(unsigned char * time) ae.h

Setsreal time clock date, year and time.

Var :

time — tinme and

String sequence

ti
ti
ti
ti
ti
ti
ti
ti
ti
ti
ti
ti
ti

me[0]
me[1]
me[2]
me[3]
me[4]
me[5]
me[6]
me[7]
me[8]
me[9]
me[10]
me[11]
me[12]

date string
is the foll ow ng:

weekday
year 10
yearl
monl0
monl
day10
day1l
hour 10
hour 1
m nl10
m nl
secl0
secl

unsi gned char time[]={2,9,8,0,7,0,1,1,3,1,0, 2, 0};
July 01, 1998, 13:10:20 */

/* Tuesday,

Reference: rtc_init.c

intrtc_rd(TIM *r)

Reads from the real time clock.

Var :

typedef struct{
unsigned char secl, sec10, minl, minl0, hourl, hourl0;

Reference: rte.c

unsigned char day1, day10, monl, monl0, yearl, year10;

unsigned char wk;

} TIM;

*r — Struct type TIMfor all

ae.h

of the RTC data

E-6

SmartLCD Appendix E: Software Glossary

void t2_init(int tm, int ta, void interrupt far(*t2_isr)()); ae.h
void t1_init(int tm, int ta, int tb, void interrupt far(*t1_isr)());
void tO_init(int tm, int ta, int tb, void interrupt far(*t0_isr)());

Timer 0, 1, 2 initialization.

Var: tm-— Tiner node. See pg. 8-3 and 8-5 of the AMD CPU Manual
ta — Count time a (1/4 clock speed).
tb — Count time b for tiner O and 1 only (1/4 clock).
Time a and b establish timer duty cycle (PW). See
har dwar e chapter.
t# isr — pointer to timer interrupt routine.
Reference: timer.c, timer1.c, timer02.c, timer 2.c, timer0.c timer 12.c

void nmi_init(void interrupt far (* nmi_isr)()); ae.h
void intO_init(unsigned char i, void interrupt far (*intO_isr)());
void intl_init(unsigned char i, void interrupt far (*intl_isr)());
void int2_init(unsigned char i, void interrupt far (*int2_isr)());
void int3_init(unsigned char i, void interrupt far (*int3_isr)());
void int4_init(unsigned char i, void interrupt far (*int4_isr)());
void int5_init(unsigned char i, void interrupt far (*int5_isr)());
void int6_init(unsigned char i, void interrupt far (*int6_isr)());

Initialization for interrupts O through 6 and NMI (Non-Maskable Interrupt).

Var: i - 1: enable, 0: disable.
int# isr — pointer to interrupt service.

Reference: intx.c

void SO _init(unsigned char b, unsigned char* ibuf, int isiz, ser0.h
unsigned char* obuf, int osiz, COM *c) (void);
void sl _init(unsigned char b, unsigned char* ibuf, int isiz, serl.h

unsigned char* obuf, int osiz, COM *c) (void);
Serial port O, 1 initialization.

Var: b - baud rate. Table below for 40MH#z and 20MHz C ocks.
i buf — pointer to input buffer array
isiz — input buffer size
obuf — pointer to output buffer array
0Si z — ouput buffer size
C — pointer to serial port structure. See AE.H for COM

structure.
b | baud (40MH) |baud (20M)
1| 110 55
2 | 150 110
3 | 300 150
4 | 600 300
5 | 1200 600

E-7

Appendix E: Software Glossary

SmartLCD

b baud (40MHz) baud (20MHz)
6 2400 1200

7 4800 2400

8 9600 4800

9 19200 9600
10 | 38400 19200
11 | 57600 38400
12 | 115200 57600
13 | 23400 115200
14 | 460800 23400
15 | 921600 460800

Reference: sO_echo.c, sl _echo.c, s1 0.c

void scc_init(unsigned char ml, unsigned char m2, unsigned char b, scc.h

unsigned char* ibuf,int isiz, unsigned char* obuf,int osiz, COM *¢)

Seria port 0, 1 initialization.

Var: ml = SCC691 MR1
m2 = SCC691 MR2
b — baud rate. Table below for 8MHz O ock.
i buf — pointer to input buffer array
isiz — input buffer size
obuf — pointer to output buffer array
0Si z — ouput buffer size
C — pointer to serial port structure. See AE.H for COM
structure.

nml bit Definition

7 (RXRTS) receiver request-to-send control, 0O=no, 1=yes

6 (RxI NT) receiver interrupt select, O0=RxRDY, 1=FIFO

FULL

5 (Error Mode) Error Mdde Select, 0 = Char., 1=Block

4-3 (Parity Mode), 00=with, Ol=Force, 10=No, 11=Specia

2 (Parity Type), 0=Even, 1=0Qdd

1-0 (# bits) 00=5, 01=6, 10=7, 11=8

n2 bit Definition

7-6 (Modes) 00=Nor mal, 0l1=Echo, 10=Local | oop, 11=Renpte

| oop

5 (TXRTS) Transnmit RTS control, 0=No, 1= Yes

4 (CTS Enabl e Tx), 0=No, 1=Yes

3-0 (Stop bit), 0111=1, 1111=2
b baud (8MHz)
1 110
2 150
3 300
4 600
5 1200
6 2400
7 4800
8 9600
9 19200
10 | 31250
11 | 62500

E-8

SmartLCD Appendix E: Software Glossary

b baud (8MHz)

12 125000
13 250000

Reference: sO_echo.c, sl _echo.c, s1 0.c

int putserO(unsigned char ch, COM *c); ser0.h
int putser1(unsigned char ch, COM *c); serl.h
int putser_scc(unsigned char ch, COM *¢); scc.h

Output 1 character to serial port. Character will be sent to serial output with interrupt isr.

Var: ch — character to output
C — pointer to serial port structure

Reference: sO_echo.c, sl _echo.c, s1 0.c

int putsersO(unsigned char *str, COM *¢); ser0.h
int putsersl(unsigned char *str, COM *¢); serl.h
int putsers_scc(unsigned char ch, COM *¢); scc.h

Output a character string to serial port. Character will be sent to serial output with interrupt isr.

Var: str — pointer to output character string
C — pointer to serial port structure

Reference: serl sin.c

int serhit0O(COM *c); ser0.h
int serhitl(COM *c); serl.h
int serhit_scc(COM *c); scc.h

Checks input buffer for new input characters. Returns 1 if new character isin input buffer, else
0.

Var: ¢ — pointer to serial port structure

Reference: sO_echo.c, sl _echo.c, s1 0.c

unsigned char getserO(COM *¢); ser0.h
unsigned char getser1(COM *¢); serl.h
unsigned char getser_scc(COM *¢); scc.h

Retrieve 1 character from the input buffer. Assumes that serhit routine was evaluated.

Var: ¢ — pointer to serial port structure

Reference: sO_echo.c, sl _echo.c, s1 0.c

E-9

Appendix E: Software Glossary

SmartLCD

int getsersO(COM *c, int len, unsigned char *str);
int getsers1(COM *c, int len, unsigned char *str);
int getsers_scc(COM *c, int len, unsigned char *str);

Retrieves a fixed length character string from the input buffer. If the buffer contains less

characters than the length requested, str will contain only the remaining characters from the

buffer. Appendsa‘\0’ character to the end of str. Returns the retrieved string length.

Var: ¢ — pointer to serial port structure

len — desired string | ength

str — pointer to output character string

Reference: serl.h, ser0.h for sour ce code.

void draw_H_lineg(int x1, int x2, int y)

Draws a horizontal line from (x1,y) to (x2,y).

Var: x1, x2, y

Reference: dl_text.c

d.h

void clear_H_ling(int x1, int x2, int y)

Clears a horizonta line from (x1,y) to (x2,y).

Var: x1, x2, y

Reference: dl_text.c

d.h

void fill_square(int upx, int upy, int length, int width)

Fills a square area at coordinate (upx, upy) with “1”s.

Var: upx, upy, length, wdth

Reference: d_grid.c

d.h

void zero_square(int upx, int upy, int length, int width)

Fills a square area at coordinate (upx, upy) with zeros (“0”s).

Var: upx, upy, length, wdth

Reference: d_grid.c

d.h

E-10

SmartLCD Appendix E: Software Glossary

void write_text(char row, char col, char* buf) d.h

Row = 1-30, col = 1-40
Places string text char* buf at row and column.

Var: row, col

Reference: dl_text.c

void clear_text(char row, char col, char num) d.h

Row = 1-30, col = 1-40, col+num < 40
Clearstext at row and col, fillsin num “ *, up to 40 = col+num.

Var: row, col, num

Reference: dl_text.c

void §_init(void) gh

Initial SmartLCD 320x240.
Graphics memory starts at 0x800. Text memory starts at 0x000.

Reference: d_bird.c, sl_grid.c

void contrast(int vic) d.h

Outputs LCD contrast voltage with a 12-bit DAC, where vic = 0 to 4095.

Var: vlc

Reference: d_bird.c, sl_grid.c

int power_in(void) d.h
Returns 12-bit ADC input reading at ADC channel 10 (U10), related to the DC power inpuit.

Reference: ae ad12.c

void ccfl(char onoff) d.h

Turns the CCFL backlighting on/off with HV6 + HV 4.
onoff=1, CCFL backlighting is on
onoff=0, CCFL backlighting is off

Var: onoff

Reference: d_ccfl.c

E-11

Appendix E: Software Glossary SmartLCD

void neg_24(char onoff) d.h

Turns the —24V on/off with HV5.
onoff=1, -24V ison
onoff=0, -24V is off

Var: onoff

Reference: d_bird.c, sl_grid.c

void put_grid(unsigned char kpad) d.h

Displays a grid on the LCD matching the touchscreen keypad.
Var: kpad

Reference: d_grid.c

unsigned char scan_touch_screen(void) d.h

Scans the 10x7 touchscreen (10 columns x 7 rows). Refer to Appendix F for details.
Returns aHEX value, OxCR, which represents Row and Column coordinates as follows:
C=1toA
R=1to7

Returns HEX values for the 14 push buttons located at the lower edge of the SmartL CD:

BUTTON 1 | 2 3 4 5 6 7 8 9 10 11 12 13 14
HEX BO CO Bl1 C1 B6 B7 B2 C2 B3 C3 C4 B4 B5 G5

If any key or keys are activated while the function is executing, the returned value will be for the
first key activated. If none of the touchscreen keys or pushbuttons is activated while the function is being
executed, the function will return zero (0).

Reference: d_grid.c

void beep(int t, int 1) d.h

Toggles P26 to drive the beeper.
voi d beep ()

for (j=0; j<t; j++){
pi o_w (26, 0);
del ay0(l);
pi o_w (26, 1);
del ay0(l);
}

E-12

SmartLCD Appendix E: Software Glossary

Var: t, |

Reference: d_bird.c

int s_ad12(unsigned char c) d.h

In order to operate the U29 ADC,
T22=CLK, T21=DIN, T17=/CS must be output and TOO=DOUT must be input.

Var : c

Reference: sl _adl12.c

E-13

SmartLCD Appendix F: Touchscreen Layout Template

Appendix F: Touchscreen Layout
Template

10x7-key screen/keypad layout template:

O — N M S D © S0 O — N+ © o~ 0o o — © oo
CANm e O~ Y2 T2 22RARIIIQIAIIISsARLIBREE8R 2

[@N)
o RGNS S v@mu oo = o —

z 0 1 155US[8661 08 1940150 5 1Ed
HOS NWA -TS g
AT JagqunN juaunoog|az IS YTOHY L VYTOHV .
QOIS 1S 866T LHD MAMOO
81111 4338 WN 2T ST AN/ OINT © S OINT/
92d
N&3L [Yaarel| 9P HTOLT 46N o8N
OR vIoRv. ~od VYV TIOR vionve
S5A S VYA Od v VYA § | VYA Od e MOT o
a0 12, ddE_Ezr @ o 12, 9 [e_se Tdg
0A 7 1A% S 9ed Dons A% ST ocd EINT OT TEIN1/ ZINT ¥ € CINT/
RV S8voL1 an e T 2id 8A 8 T ¢id
ao = €en TN 0T D0A= I4d 36N a6n
£002NTIN S v axy 308 VYO PTIOHY. AV VY aND vToHYL
sy o Y 39 e 6N & Mot 2
N 28/ 9 g 3/ O
612, 47 [B S22 1%, B _aw TE9XWN
TAH 0 L9 58 |] LT8SNT TINT 8 6 TINI/ VINT ¢ T VINT/
e 11298919 ¢ 20N 7N OOA 6 | J3d SO g
o 35 a5 03d 10 |_A|
H ¢ S v 63d/ 0 7 ATT+ N ACT+ aen ven
H St av i 17/
e |3 v ¢ Syoovz T D e [a
SNH ¥ € ¢ v 2] 90 N8 IS i
oAH 61 (2¢8¢ 71 Tid & | V9SS SSA 5 SO/ € AYS) soo-ra sr 0TaHaH oTaHaH 0TaMaH
o oTatr s v oan 20A |
A9 T 0 cid o | a4 oI 2N 0N IRZTF_E _|_ o o o o
£ ao /s z A Lvar o g 88 _aw ot 6 _ao o g 6 _aw
08 8 |27 ov [T Isd oT | 1S¥ A T 1van ao T S &L 8 & 8 &
n ST o 3 s oy Jo 3 STaxy 93 s oaxis
an SV € axl/ v € TaxX1/ v £ 0aXL /
Mz S8an] z T z T T C O
¥9aMaH eH H ™
VZEZXWN VZEZXWN s
abD v €0 D 20N 8 Ten
ao 2o 2 919 ov axa 6 |9 J@ e o a6 | 9% 1 ek
530 09 55 1V aXL o1 |S+ O%L [LOxI7 0axI or] |S+ O% [Loaxi/ &W
SON 85 1S oV OdN T Ao A Taxi 1 B A 0 4doT
3V _9S SS eV A R R - o e 9% B) 2qaH 010 91 40T
5 O SES SO/ ET| B B0 e/ er] B 1D f¥se) Zid ¢ T ian ©®
2S S O T =\ SId/ vt ano A k>4 -€0 TAaXLl/ vT ano A € -0 +0 6r eX X 2a49aH
0S 5 o 6r 9Y oEmoIO o a® eT| 3 JA[e_A a® st Al A ZIVIX o O
By S S v IV OV 07 o Q_6E ot) &ot T+ ao T Z IACTF
oy 3 SToy v v _se S Su8 20N £In 20N Zn ASEH oz [ZZ1 6H
v 3 Qev ev v _os 3 See -9 ST oY dNdVD
Z Tr o &V pe = S ee 1o Vel v L TH1g
6E T ze 2 ST aay 0TQNaH o2 | a\3) ¥ N
EEETI:TS J€ 7V SV__Of 62U/ _ Fxse) T2 loklblellclolel] 2% O aoH=aN® IVaA _m B
ET se eV ov s = Si¢ JOA 0T 6 _a T v
= 3 - 5 2a9aH S Idd T|T[T[T|T(T|T|T +
vid v o Q £ VIV IV _9¢ o Q 6¢ 5 o 8 3 QL I soza 1 &W z
b 8 o5 oI ol OB Fe 5 S EC e 2 v dvEe S oS —gH 10759020108 ANV]
Zd S §eeow Ja 2z 2 1 vIc iz S & 22q ¢ 222 REINE qu
3 Lz i Serisny 2N ¢ T TAH Zz1 81 ddddd " a" "9 7 oL
o o £2d 00d -2
[9¢ ~ oS¢ 8IV O oLl _isd H €21 61 oTd Tod 00 1sd/
ad/ vz €2 61V ¥ O ST 1d/ 0T 1 02 v 10 ezvzl
O & O O T1d 20d =
b Y Tz od €T YOUaH TTT T2 | opy £0d 4 WM/ 9
0 S eT AV Z T YaHAH AR W47 Z €0 T E AR)
0 = <2 1N N ea ad/
ATT+_8 /T O a0 6 ez |, o [T &g v 53 T’
i ST 1a 8 337 Tvar TSIH7 ¥ € ged ETT v | otd vod vy v g 1|4 & &Y
RT3 8 QEL e a9 g S aNd o o v11 5¢ | 71d aod 'ev 50 1a_ot | X3 e _—av
= Z Tt _€d — ¥ Omlmg INCT+ 0N 2 -1 aND dNdVO w 92 9Td g | 20d f47 m LT 15N v —
< ¢ PN & Yis A5 41d 2957022108 M/ [SE—550 i 0d N Fe—
TIC Adadandddas 4 SO oV
ON S o) 10| P N s o
Fo—o0 o9 o er OvaEaH &V s OvaEcH s eloftiglelz|alolzlsle . 1iiTx N N
— 0 O—x o o o ZEEEEEEEEER el X
Td oY S SBE_ T 3 8¢ _ab VAT S 82 dNdvD €10 e |25, Sdle 2d
v __8e Qe 62d € 9zd _OAE 30N _ 15 WYEA b2 VEEE)
v oe Q S 2id & 2 TIN |/ oy s 2 Tav Hi= yla 00 aND m
=—0 O—32&— o 0 O 54 -
eV ve e WN /2 8 0N I/ 2av 2 8 eav o) o 1q
ze Te ad7/ 6 0 d 6 0 [a®
v S0t 62N/ €Td T FARG) v T 21 _Jav ASEANOT ¥a Ee IO dNdvO
A/ oV 8¢ Sz /1d € T V€ N 7] LS
A N o 2 sz €d G T, 01av_§ ao 2z Y ¥
& ae ve o See Ved /T o O BT Ged +ddd T o O 8T 00 reo)
L 44 1 ¢INT/ 6 0c 0Od T 6 0z 00 +20 169200S
& 0z 3 Servold elNI/ 1z 9 S ez 18107 €01 1z 3 S22 20 INT/ OND |
8 1T s STd £ 9 S v _ed S0l Ec Z $0l ASEdNOT [evS5zo1L dNdvD oINI/ € z
v o O—4 & N3/ 1S
od 9T ~ o-STUsd/ ____S¢ 5 S 9C IaXy L01 S¢ ~ £ 92 90 110 6av ao 8 £ Pre 2x L 1SH
S £ oS/ 12 82 TAX1 S¢1 12 82 /¢ 6av_T ot 1a s 0T _ ex
a z T Td_6¢ 0£ &d Y21 6¢ 0g_Ge ¥ otav gr | 0QY 8av ¢ NVIA od X & e
za < < o 4 0f v =34 Qv s ov
T 6 TSIM/ 1T 0aXa 221 1 € b € 8 Jav 7 8 OV
& 0 3 3 3 3 +138 wav ¥a v
8 7 VINI/ € 0aX1 STl € 7 £ v / N 8 I 1V
va 8 3 3 3 3 MOT 3 e} sav £a v
aND_9 S od G 0s157 SIS Y AN 9 N 6 5 2v
« 2 9% vid e 2 J 88 td BTl e & J8e ¢ SVVYSIET TTid ot |MOd WV Ay zad 0z]9 N IFeTN
oa =0 & = 2 Y < N ia av <H1a odn
ao ¢ T SOA 0N 68 oy _aND TTT 65 o 0 20N AN] v A Ta Tz % O
1a MO v od axl
Tc OOA cc1_81 1553 Tav & A S lun/ axd 1€ axXL
@® MOT SLI55A oav Fe—HY 0T W/ ECipn quy e—OXd
WA SON| dLTY=00A_ W T &oz T oav or Sve T ad/
ZIONVEN 7T WYan [T 30N &N 8TV W /M SD ZHN
4 1 ¥ 4 ¢] AN a3l 089 v 7 20N 01N ST To 20N an
Zid .\._A 57 VYVy o QgL X _H_ ZX 4doT
ec e c T TIOON SIDT G ST TIVIX

10 ¢ 199US[866T '0E 190010 :o1ed
Z NWA -1S a
JaqunN juaunoog|ez IS (IAL)T0TT VX0 ™IALHAAN | 1400
866T IIS 1HD MAOO
NY3L ALS
2aMaH YARNeY 0 T 01 Ot
2V 2a4aH T2 T 11 6
ASEANLY ASE4NOT 5 o Z2l 8 2Tl 8 Zl 8
v20 ao ¢z TISa7 AN €11/ £
X AZTIASEINOT oH [T o
AvZ- ATT+ 920 T 299/ 1 Gzl G STL G SIS
A 5 Z 9Tl v
AVZ-_ S 2 .mwvmmH_DOH /2l € /Tl € L1_€
514 3 [eReT= dd /¢ 4TRO 72 z
GBS AN E— +_||_mo L2 SONA Tyior o OA Tyt N N TNT eny e | Mz
61N N RS VA
oz [zz1 o21] [ZzL onT & o™
ozxad ErAl (o174 Sl oY vrzanT I € OND
[A v vel] v b ¢
Se 6T ve 0z ano 0zl ano oV
mm 5 m mm Yelblstrlele|tloflele[F 9t/ YelolslvEleltlolelelz| '@ B Zdvo ™ vIH
7 O & & 5 92auaH S Idd TIT[T|T|TIT|T|T S Idd T[T|T|T[T[T[T|T AGESNOT
ST % 5 5528 Idd 5528 Idd 825 299,70 |
o O o Xke 10759Q201IdS 1075902 01dS \—/
o o6 4 O0A 9¢ S & SCaND — 22d ¢ ¢2ZZNZVVND qy/ 22d ¢¢ C¢22ZNZVVND qy/ ‘A DO
7 701 v L 221 81 ddddd d 97 7 2zl st ddddd d 97 ad / ATT.S 2 -0|\GE4N0T
o C 1. 7e & o-Bc 901 = €ed ood (2 = €zd ood -2 A1 ©
0Tl 9 S TIL 501 22 Tz 10 £e1 61| ;55 20q [E_00 gel 61 ;59 T0g [E_00L 9 |9 45 [EAO
ZTL € Erl €07 0z 00 [AARA) 0TT 0z | 315 209 T0 OTL 0z | 15 zoa TOL L 1N E 620
YL ¢ T STl 107 /T_00] TT1 1¢ AN TIL Tc £ 20 AT+ 8 T +90
i S = = Z1d €0d = 21d €0d
= €2 ST cc 2T 22 | Z €0 2Tl _cc | Z €0l 92N
4 ol 4 <C {oN ON ¢C i oN ON
92qHAH 1c o o—EL-0¢ < 1eTd vod [<l e1d vod |-E
v2l ¢ TT Gc €11 ve Yv %0 ET1 ve v %Ol
o) & vid S0d = 1d S0d
[F4 9¢ 6 /¢ vT1 Gg €7 S0 L G¢ €y _SOL £SUaH
- %3 = = STd 90d = z STd 90d
€2 7 /9 ST1 92 290 Z 2v_90
T2 ST S ST o171 /2| 9da L £0d My 69 121 9da L L0d 0 € P awed
53 T > 21 1T 82 LTdQL9SYOEZT0S M/ [op—"yn7 711 6] L1 AL 9SFOEZTOS WA/ G g7 2P—na
0 O O o1 AdddaNnddaas 1 AdadaNndddas TP
O O
S STH zd
o O ozn 6P[tlelel|sloligle rzn elofz/elelrlsiolLlele
€ C[EE[EEEIEE[EIEE ZIEE[EEEEEIEEE cNdvD
w m T dNdvD dvod Ia
5 o6 0N _ sy dvod [d 0N _ _1sd Yo
7 20 oa Y 20 oa L
S a a ¥ a d 0eD
€ 1 1>0)
T va ea va Ea
ol I e TN
zad 0SZ 'T-dST-€140 3SO4 H OLD3INNOO_378v0 &V
ASZ 'T-dST -£T4d 3SOY H MOLO3ANNOO I 1NAON o ao
ol Q0771 Wrezs3ad 1159 b
otad 9TAMAH 81| &9 Sals
o o - ZVTOHYL SAA 6T | o 6o 7T IaA
T Q 9% 35z1 o7 ° Csrawed v 5 A0z | 5q oy [ETOA
edd oA vT 2 S ErAC B] 7 _ao /aA T¢ ZT OVA
AZT* ¢ T WId A EOANAA R
T Q0 7=r dTHIN 2 &6 7007 o1 | S OIVA €2 2v,
o FAN VS AZ D/ &y
T1dd 2aX_8 /_2ax T v QIN/ b2 6 &VA dNdWO
O o548 A9 VT [HE— ity W
o o T S _0oax 00L 2T|yg 47 lE TIVA 52 gy 4 A dvod id
91 Q O ger ao S—¢ osx o1 1| X° Of [e_ToL 6VA_ 9z oy oy [LSvA Y
8dd ax ¢ T dil S T TI &A e |8y, v [9 oY ¥
2TH 20N Sen SIVA_ 8¢ S IV, 60
T 2.8 oer TPZSad Ud91X Id AW\ /62 zm,m\w i [rema
6dd SoL) DN el &y oty [EXIVA dNdvO
GIdL)T0TT VXD 1400 YIOHY L STVA Tt 2 A dvodid
Z1 0 _O—3zr > 5 DA ze | 9N 8V e Y
ved ¥ TAHAH 20l 8 1oy A¢ L QB SCaNaN +
ci 6 |/l Cel9 eol V20T LaNvd LT
T .8 7er ao v €T__OA YOL 0T|Gd jy G €l 9N
otoad z1ad Avz- ¢ TT_ao v T ¥ G0l
5 o o o 6 osxd S0l 2] S Vile s OTTHOY ,1gaNT
ZINT/ —— ao €1 —s— 92l avol di / ol 1 ¥ Crle—zo1 - Hn ogge
81dd sdad I QA9 o S J90ONO / o T L1 1
Qe eax 20N ven ﬂ_l za
otogad — 0 o0———— o
S o0—— &I 2=zl ax ¢ T o0ax YS)
TINT/ P ao €1ad TTH & on ™1
L1ad T -SLYZZanaH 20A
il Q_O0—77r EESN T+
oT0gd — slvlelz
o o - vTad Y TQEaH &W -
71d — o 50—
61dd il Q 0 ozr v €T ot 6 NEOLN
o108 98d S_TGA ¢l o I d7 1dd zz Jo 0dNA |
o o o o 2d0 TOSX 0 6 00N Jdot OX SX 4d0T NTT+ 1"O0A
1S97 P ao> ST e 92l aND 7 PIVIX 4 A
Tdd /ad X S _Tax 3 sisaNd
20X S¢ eax © 41N
0 0o 0 O g
4-0A 2 o Ell 2= 2l AvZ- ¢ T OA
91dd s1ad OTH

TLOMZANT dAWHS

