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Part One 



CCR Resources 
The Center for Computational 
Research provides high performance 
computing resources to the 
University at Buffalo. 
�Supporting faculty research and classroom 

education, as well as local business and 
University collaborations. 
�High performance and high through-put 

cluster. 
�High performance remote visualization. 



CCR Cluster  
�Over 8,000 cores 
�Mix of 8, 12, 16 and 32 compute nodes. 
�A compute node is a linux machine with 

memory, disks, and cores (cpus), as well as both 
ethernet and Infiniband network connections. 

�Infiniband and ethernet networks 
�Panasas and Isilon storage 
�Linux - CentOS release 6.5 
More information on the CCR cluster 
specifications. 

http://ccr.buffalo.edu/support/research_facilities.html
http://ccr.buffalo.edu/support/research_facilities.html


CCR Cluster 

Coming soon: an Intel 
Xeon-Phi node 



CCR Cluster Compute Nodes 
�372 12-core nodes with 48GB and Qlogic IB 
�256 8-core nodes with 24GB and Mellanox IB 
�32 16-core nodes with 128GB and Mellanox IB 
�16 32-core nodes with 256GB and Qlogic IB 
�2 32-core nodes with 512GB and Qlogic IB 
�32 12-core nodes, each w/ 2 Nvidia Fermi 

GPUs, 48GB and Mellanox IB 
�2 12-core remote visualization nodes with 

256GB, 2 Nvidia Fermi GPUS  
�More on Compute Nodes 

http://ccr.buffalo.edu/support/research_facilities/general_compute.html


CCR Remote Visualization 
�The remote visualization machines have 

Nvidia Tesla GPUs, 12 cores and 256 GB of 
memory. 
�The visualization is enhanced with the use 

of NICE Remote Visual software. 
�NICE provides a desktop to the use. 
�Several software packages can make use of 

cluster compute nodes. 
�More information on using CCR Remote 

Visualization. 

http://www.nice-software.com/solutions/remote-visualization
http://ccr.buffalo.edu/support/research_facilities/remote-visualization.html
http://ccr.buffalo.edu/support/research_facilities/remote-visualization.html


Storage 
�Home directories are /user/username on 

the front-end login machine and all 
compute nodes. 
�The default size of a home directory is 2GB. 
�There is a daily back-up of home directories. 
�The iquota command shows the usage and 

quota. 
�All users may use the /panasas/scratch file 

system.    This file system is available on all 
compute nodes and the front-end. 
�There is no usage quota on /panasas/scratch 
�There is no backup of files on /panasas/scratch 
�Files are periodically deleted 



Storage 
�All compute nodes have a local /scratch. 
�Computations can use the local scratch space. 

�UB faculty can request a /projects directory 
for the research group. 
�The /projects directories are accessible from 

all compute nodes and the front-end 
machine. 
�The quota ranges from 200GB to 500GB. 
�There is no charge. 

�Storage space greater than 500GB has a one 
time fee.  Contact ccr-help for more 
information. 



Login to Front-end Machine 
�The front-end machine to the cluster is 

rush.ccr.buffalo.edu 
�32-core node with 256GB of memory. 

�Accessible from UB network only.  Use the Cisco 
AnyConnect Client to connect to the UB network 
from off campus.   The UBit software webpage 
has download links and installation instructions. 
�Users on campus should setup UB-Secure on 

their laptops for connecting through wireless. 
�Only secure protocols, such as ssh and sftp, are 

permitted to access the front-end. 

http://www.buffalo.edu/ubit/service-guides/software/downloading.html


Login to Front-end Machine 
�Only small test computations can run on the 

front-end machine. 
�CPU time limit of 15 minutes.  Processes that 

exceed the time limit are automatically 
terminated. 
�Be sure to monitor the processes using the top 

command. 
�In general, computations run on the cluster as jobs 

submitted to the SLURM scheduler.  
�The compute nodes and storage cannot be directly 

accessed from outside the cluster. 



Login to Front-end machine 
�Login from Linux or Mac 
�ssh -X rush.ccr.buffalo.edu 
�ssh -X UBITusername@rush.ccr.buffalo.edu 
�The -X flag enables a graphical display.  This is 

optional. 
 
�Windows users must install X-Win32 or PuTTY 

for the secure login, which can be 
downloaded from the UBit software 
webpage. 
�The X-Win32 program allows for a graphical 

display.   



Accessing the Cluster 
Details for X-Win32 setup 
�Select Manual in the configuration window. 
�Select ssh 
�Connection name:  rush 
�Host: rush.ccr.buffalo.edu 
�Login: your UBITusername 
�Command:  /usr/bin/xterm -ls 
�Password:  CCR password 
�Note:  Be sure to run only one X-Win32. 



Accessing the Cluster 
�sftp and scp are command line transfer 

commands.  See the CCR user manual for more 
information. 
�There are several graphical file transfer 

applications.  Be sure to specify secure file 
transfer (sftp).  Most can be downloaded from 
the UBit software webpage. 
�Filezilla is graphical file transfer program, which is 

available for Windows, Linux and MAC 
computers. 
�WinSCP for Windows. 
�Cyberduck for MACs. 



Get Help - Change Password 
�Send email to ccr-help@buffalo.edu for 

assistance. 
�Use the web form to request assistance. 
 
�Use the MyCCR web interface to change or 

reset the CCR password. 
�Login with UBitusername and Ubit 

password. 
�MyCCR 

mailto:ccr-help@buffalo.edu
http://ccr.buffalo.edu/support/ccr-help.html
http://ccr.buffalo.edu/support/ccr-help/accounts/myccr-account-management.html
http://ccr.buffalo.edu/support/ccr-help/accounts/myccr-account-management.html


Command Line Environment 
�The rush cluster is a command line UNIX 

environment. 
�The user’s login executes a shell. This is a process 

that accepts and executes the commands typed 
by the user. 

�By default the shell is set to bash.  
�The .bashrc file is executed on login. 
�This script resides in the user’s home 

directory. 
� Variables and paths can be set in the .bashrc 

file. 
�It is also executed when a job starts on a 

compute node. 



Command Line Environment 
�List contents of current directory: ls  
�Long listing: ls -l 
�Long list and hidden files:  ls -la 
�Reverse time order:  ls -latr 
�Show current directory pathname:  pwd 
�Create a directory:  mkdir directoryname 
�Change to given pathname:  cd /pathname 
�Change to one directory above: cd .. 
�Change to two directories above:  cd ../.. 
�Change to home directory: cd 



Command Line Environment 
�Remove a file: rm filename 
�Remove a directory: rm -R directoryname 
�If the directory is empty: rmdir dirname 

�Copy a file:  cp oldfile newfile 
�Display file to the screen:  cat filename 
�Display with page breaks:  more filename 
�Press space bar to page through the file. 
�Press enter to advance one line. 
�Forward direction only. 

�“Control c” to quit. 



Command Line Environment 
�All directories and files have permissions.  
� Users can set the permissions to allow or 

deny access to their files and directories. 
�Permissions are set for the user (u), the group 

(g) and everyone else (o). 
�The permissions are read (r), write (w) and 

execute (x). 
�Read (r) permission allows viewing and 

copying. 
�Write (w) permission allows changing and 

deleting. 



Command Line Environment 
�Execute (x) permission allows execution of a 

file and access to a directory. 
�Show permissions with “ls -l”. 
�This will also show the user and group 

associated with the file or directory. 
�drwxrwxrwx 
�-rwxrwxrwx 
�d indicates a directory 
�-rwxrwxrwx    user permissions 
�-rwxrwxrwx    group permissions 
�-rwxrwxrwx    other (world) permissions 



Command Line Environment 
�Change permissions with the chmod 

command. 
�chmod ugo+rwx filename 
�chmod ugo-rwx filename 
�ugo is user, group and other 
�rwx is read, write and execute 
�+ add a permission 
�- removes a permission 
�Adding write permission for group:  chmod 

g+w filename 



Command Line Environment 
�Removing all permissions for group and 

other on a directory and its contents:  chmod 
-R go-rwx dirname 
�The grep command is used to search for a 

pattern:  grep pattern file 
�Show the disk space:  df -h  
�Show the estimated disk space usage:  du -s -

h`ls` | sort -rn | more 
�The pipe symbol | is used to indicate that 

the output of the first command should be 
used as input to the second. 



Command Line Environment 
�There are several editors available:   emacs, 

nano and  vi 
�emacs can provide a graphical interface 

�Files edited on Windows machines can 
contain hidden characters, which may cause 
runtime problems. 
�Use the file command to show the type of 

file:  file filename 
�Use the dos2unix command to remove any 

hidden characters:  dos2unix filename 



Command Line Environment 
�The asterisk (*) is a wild card for many UNIX 

commands.  
�List all C files:  ls *.c 
�Show the type of file:  file filename 
�Manual pages are available for UNIX 

commands:  man ls 
�More information on UNIX commands:  CCR 

Reference Card 

http://ccr.buffalo.edu/support/UserGuide/BasicUNIX.html
http://ccr.buffalo.edu/support/UserGuide/BasicUNIX.html


Command Line Environment 
�Modules are used to set paths and variables for 

applications installed on the cluster. 
�List all available modules:  module avail 
�List modules currently loaded:  module list 
�Show what a module will do:  module show 

module-name 
�Load a module:  module load module-name 
�Unload a module:  module unload module-

name 
�Example:  module avail intel 
�List the Intel compilers 



Compilers 
�The GNU compilers and libraries are part of 

the Operating System and are in the default 
path. 
�C compiler:  gcc 
�C++ compiler: g++ 
�Fortran compilers:  g77, gfortran  
�gfortran is a Fortran 95 compiler. 
�Example:   
�gcc -o hello-gnu hello.c 
�./hello-gnu 



Compilers 
�The Intel compilers can take advantage of 

the processor and core architecture and 
features. 
�Load the module for the intel compiler: 

module load intel 
�C compiler:  icc 
�C++ compiler: icpc 
�Fortran compiler: ifort 
�Example:   
�icc -o hello-intel hello.c 
�./hello-intel 



Hello World 
�Hello World C program: 
 
#include <stdio.h> 
  
 int main(void) 
 { 
    printf("Hello, world!\n"); 
    return 0; 
 } 



Hello World 
�Hello World C++ program: 
#include <iostream> 
  
using namespace std; 
  
int main() 
{ 
    cout << "Hello, World!" << endl; 
    return 0; 
} 



Hello World 
�Hello World FORTRAN program: 
 
      program hello 
          write(*,*) 'Hello, World!' 
       end program hello 



 
 

Part Two 



What is SLURM? 
 
�SLURM is an acronym for Simple Linux 

Utility for Resource Management. 
�SLURM is a workload manager that 

provides a framework for job queues, 
allocation of compute nodes, and the start 
and execution of jobs. 

�SLURM is a comprehensive resource 
manager.   
�Individual node resources, such as GPUs or 

number of threads on a core, can be scheduled 
with SLURM. 



SLURM Partitions 
 
�The production partition for the CCR cluster 

is general-compute.  This is the default 
partition. 
�The debug partition has 7 nodes.  Jobs can 

run for a maximum of 1 hour. 
�4 8-core nodes 
�2 12-core nodes 
�1 16-core node with 2 GPUs. 

�The gpu, largemem, supporters and viz 
partitions have specific requirements. 



SLURM Partitions 
 
�These partitions have a higher priority than 

the general-compute partition. 
�Nodes in these partitions are also in the 

general-compute partition. 
�The gpu and largemem partitions are 

available to all users. 
�The guideline for submitting a job to the 

gpu partition is that the computation must 
make use of a GPU. 



SLURM Partitions 
 
�The guideline for submitting a job to the 

largemem partition is that the computation 
must require more than 100GB of memory. 
�The supporters partition is a higher priority 

partition for research groups that have 
made contributions to CCR. 
�The viz partition is dedicated to the remote 

visualization compute nodes. 



SLURM Commands 
�squeue – shows the status of jobs. 
�sbatch – submits a script job. 
�salloc – submits an interactive job. 
�srun – runs a command across nodes. 
�scancel – cancels a running or pending job. 
�sinfo – provides information on partitions 

and nodes. 
�sview – graphical interface to view job, node 

and partition information. 
�slurmjobvis –graphical job monitoring tool. 



squeue example 
squeue -u cdc 
 
 JOBID PARTITION NAME USER ST TIME NODES 

NODELIST(REASON)  
4832 general-c hello_te cdc R 0:20 2 f16n[10-11] 

 
�Job status: 
�R – job is running. 
�PD – job is waiting for resource. 
�Reasons are usually (Resources) or (Priority). 

�Others commons reasons are CA (cancelled) and 
CD (completed). 



sinfo example 
sinfo -p general-compute 
 
PARTITION       AVAIL  TIMELIMIT  NODES  STATE 
NODELIST 
general-comput*    up 3-00:00:00    264   idle d07n07s[01-
02],d07n08s[01-02], … 
�Node states: 
�alloc – all cores are in use. 
�mix – some cores are available. 
�idle – node is free. All cores are available. 
�down- node is down. 
�drained – node is offline. 



sinfo example 
More detailed sinfo query: 
sinfo --exact --partition=general-compute --format="%15P %5a 
%10A %.4c %6m %6G %16f %t %N" | more 
PARTITION       AVAIL NODES(A/I) CPUS MEMORY GRES   
FEATURES         STATE NODELIST 
general-comput* up    0/0          12 48000  gpu:2  IB,CPU-X5650     
down* d05n11s[01-02],d05n12s[0102],d05n20s[01-
02],d05n21s[01-02],d05n24s[01-02],d05n25s[01-02],d05n30s[01-
02],d05n31s[01-02],d05n39s[01-02],d05n40s[01-02] 
… 
general-comput* up    0/151        12 48000  (null) IB,CPU-E5645     
idle k13n17 
s[01-02],k13n18s[01-02],k13n19s[01-02],k13n23s[01-
02],k13n24s[01-02], 



sview example 



STUBL 
�STUBL = SLURM Tools and UBiLities 
�UB CCR Customizations of SLURM commands 
�A bit more user-friendly 
�Examples: 
�snodes – what nodes are available? 
�fisbatch – interactive job 
�sranks – what is my jobs priority? 
�sjeff, sueff – How efficient are my jobs? 
�stimes – When will my job start? 

�slurmhelp – list all SLURM and STUBL commands 
�Type any command followed by “--help” for usage info. 
 



Commonly used SLURM variables 
�$SLURM_JOBID  
�SLURM_JOB_NODELIST  
�Node list in SLURM format; for example f16n[04,06]. 

�$SLURM_NNODES  
�Number of nodes 

�$SLURMTMPDIR  
� /scratch/jobid   
�local to the compute node 

�$SLURM_SUBMIT_DIR  
�Directory from which the job was submitted   

�NOTE!  Jobs start in the $SLURM_SUBMIT_DIR. 



sbatch example 
Submit a job:  sbatch slurmHelloWorld 
Here is the SLURM script: 
#!/bin/sh  
##SBATCH --partition=debug 
#SBATCH --time=00:15:00  
#SBATCH --nodes=2         
#SBATCH --ntasks-per-node=8 
##SBATCH --mem=24000 
#SBATCH --job-name="hello_test“ 
#SBATCH  --output=test.out  
#SBATCH --mail-user=usename@buffalo.edu  
#SBATCH --mail-type=ALL 
echo "SLURM_JOBID="$SLURM_JOBID 
echo “SLURM_JOB_NODELIST"=$SLURM_JOB_NODELIST 
echo "SLURM_NNODES"=$SLURM_NNODES 
echo "SLURMTMPDIR="$SLURMTMPDIR 



sbatch example 
 
echo "working directory = “$SLURM_SUBMIT_DIR 
module load intel/14.0 
module load intel-mpi/4.1.3 
module list 
ulimit -s unlimited 
# 
#export I_MPI_DEBUG=4 
#NPROCS=`srun --nodes=${SLURM_NNODES} bash -c 'hostname' |wc -l` 
#echo "NPROCS="$NPROCS 
echo "Launch helloworld with srun" 
export I_MPI_PMI_LIBRARY=/usr/lib64/libpmi.so 
srun ./helloworld 
 
# 
echo "All Done!" 



sbatch example - annotated 
 
#!/bin/sh  
#SBATCH is a directive to SLURM 
## is a comment 
Specify the partition; default is general-compute 
##SBATCH --partition=debug 
Request 15 minutes 
#SBATCH --time=00:15:00  
Request compute nodes 
#SBATCH --nodes=2  
Specify 8 cores on a node        
#SBATCH —ntasks-per-node=8 
Specify memory limit of 24000MB per node 
##SBATCH —mem=24000 



sbatch example - annotated 
Specify name of job 
#SBATCH —job-name="hello_test“ 
Specify name of output file for stdout and stderr 
#SBATCH  --output=test.out  
Specify email address 
#SBATCH --mail-user=usename@buffalo.edu  
Send email on start and end of job 
#SBATCH --mail-type=ALL 
 
echo "SLURM_JOBID="$SLURM_JOBID 
echo “SLURM_JOB_NODELIST"=$SLURM_JOB_NODELIST 
echo "SLURM_NNODES"=$SLURM_NNODES 
echo "SLURMTMPDIR="$SLURMTMPDIR 
$SLURMTMPDIR is a directory created in /scratch on the compute 
nodes for this job 



sbatch example - annotated 
echo "working directory = “$SLURM_SUBMIT_DIR 
$SLURM_SUBMIT_DIR is the directory from which the job was 
submitted 
The job will always start in the $SLURM_SUBMIT_DIR 
Load Intel Compiler and Intel-MPI 
module load intel/14.0 
module load intel-mpi/4.1.3 
module list 
Unlimit the stack 
ulimit -s unlimited 
# 
Set debug for MPI if needed; maximum level 99 
#export I_MPI_DEBUG=4 



sbatch example - annotated 
Count number of processors in job; not used by srun, however issuing 
srun forces SLURM to run the prologue script to setup the nodes for 
the job 
NPROCS=`srun --nodes=${SLURM_NNODES} bash -c 'hostname' |wc -l` 
#echo "NPROCS="$NPROCS 
echo "Launch helloworld with srun” 
Must export PMI library for srun task launcher; comment out if using 
mpirun or mpiexec 
export I_MPI_PMI_LIBRARY=/usr/lib64/libpmi.so 
Run the code 
srun ./helloworld 
 
# 
echo "All Done!" 



Hello World MPI Code 
#include <stdio.h> 
#include "mpi.h" 
 
int main( argc, argv ) 
 int  argc; 
 char **argv; 
{ 
 int rank, size; 
 int len; 
 char procname[MPI_MAX_PROCESSOR_NAME]; 
 MPI_Init( &argc, &argv ); 
 MPI_Comm_size( MPI_COMM_WORLD, &size ); 
 MPI_Comm_rank( MPI_COMM_WORLD, &rank ); 
 MPI_Get_processor_name(procname,&len); 
 printf( "Hello world from process %d of %d on node  %s\n", rank, size, procname); 
 MPI_Finalize(); 
 return 0; 
} 



Compiling MPI Code 
�Load the Intel-MPI module.   
�module load intel-mpi/4.1.3 

�Compiling Hello World with GNU C: 
�mpicc -o helloworld helloworld.c 

�Compiling with Intel C: 
�module load intel/14.0 
�mpiicc -o helloworld helloworld.c 



Submit Job 
� Run on rush front-end: 
 

[cdc@rush:~]$ mpirun -np 2 ./helloworld 
Hello world from process 0 of 2 on node  k07n14 
Hello world from process 1 of 2 on node  k07n14 
[cdc@rush:~]$ slurmHelloWorld 

�Submit a job: sbatch slurmHelloWorld 
�Check status of job with squeue 
�Once the job starts running: 
�use slurmjobvis to monitor the job 
�login to the compute node with ssh and 

run top 



Task Launching 
�Use mpirun when testing on the rush front-

end. 
�srun will execute a command across nodes. 
�  Typically, this is the best choice for 

launching a parallel computation on more 
than 1 compute node. 

�Use srun when submitting a SLURM job (e.g. 
from within an sbatch script).   
�Intel-MPI mpirun and mpiexec are SLURM 

aware, however srun is the most robust task 
launcher 



 
 

Part Three 



Node Sharing 
�Compute nodes are shared among different 

jobs and users. 
�Tasks are limited to the number of cores and 

memory specified. 
�The integration of CPUSETS and SLURM 

makes this possible.  
�CPUSET is a Linux kernel level mechanism that 

can be used to control access to individual cores. 
�The default memory limit per core is 3GB. 
�Use the --mem flag to request more memory for 

a job. 



Node Sharing 
�--mem=24000 
�Requests 24GB per node. 

�--mem-per-core=16000 
�Requests 16GB on a core; use for serial job. 

�Jobs exceeding the memory limit will be 
terminated by the resource manager. 
�Check the General Compute Cluster  

webpage for node memory and core details. 
�The --exclusive flag will request the nodes 

as dedicated.  The nodes will not be shared. 

http://ccr.buffalo.edu/support/research_facilities/general_compute.html


Interactive Job 
�The salloc command requests the nodes. 
�Once the nodes have been allocated to the 

job, then the user can login to the compute 
node. 
�The user is not logged into the compute 

node when the job starts. 
�Typically, srun is used to execute commands 

on the allocated nodes. 
�ssh can only be used to login to nodes 

assigned to a given user’s job. 



Interactive Job 
�The fisbatch script can be used to submit and run 

an interactive job. 
� fisbatch --partition=debug --time=00:15:00 --

nodes=1 --ntasks-per-node=8 
�Once the job starts, you will be automatically 

logged into the node. 
�Failures or errors can cause the job to not 

launch properly, but still be listed in squeue.  
In that case, use scancel jobid to remove the 
job. 

�The salloc command can also be used to submit 
an interactive job. 



Example of an Interactive Job 
[cdc@rush:~]$ salloc --partition=general-compute --nodes=1 --
time=01:00:00 --exclusive 
salloc: Granted job allocation 54124 
[cdc@rush:~]$ export | grep SLURM 
declare -x SLURM_JOBID="54124" 
declare -x SLURM_JOB_CPUS_PER_NODE="8" 
declare -x SLURM_JOB_ID="54124" 
declare -x SLURM_JOB_NODELIST="d07n35s01" 
declare -x SLURM_JOB_NUM_NODES="1" 
declare -x SLURM_NNODES="1" 
declare -x SLURM_NODELIST="d07n35s01“ 
… 
[cdc@rush:~]$ exit 
exit 
salloc: Relinquishing job allocation 54124 
salloc: Job allocation 54124 has been revoked. 
[cdc@rush:~]$  
Note: salloc does not login to compute node! 



Example of an Interactive Job 
[cdc@rush ~]$ salloc --partition=general-compute --
nodes=1 --time=01:00:00 --exclusive  &  
[1] 14269  
[cdc@rush ~]$ salloc: Granted job allocation 4716  
[cdc@rush ~]$  
 

Note!  
Placing the salloc in the background allows the 
allocation to persist. 
The user is not logged into the compute node 
when the job starts. 



Job monitoring 
�The NEW slurmjobvis  is a graphical display 

of the activity on the node.  CPU, memory, 
network, as well as GPU utilization are 
displayed. 
�This an improved  
version of ccrjobvis. 
�User can also  login  
using ssh to the  
compute nodes  
in the job. 



More Information and Help 
�CCR SLURM web page  
�Most update information for running on the 

cluster. 
�Sample scripts, code, READMEs, pdfs and 

extensive instructions. 
�More sample SLURM scripts can be found in 

the /util/slurm-scripts directory on rush. 
�Compute Cluster web page 
�Remote Visualization web page 
�Users can get assistance by sending an email 

to ccr-help@ccr.buffalo.edu. 

http://ccr.buffalo.edu/support/UserGuide/slurm.html
http://ccr.buffalo.edu/support/research_facilities/u2.html
http://ccr.buffalo.edu/support/research_facilities/remote-visualization.html
mailto:ccr-help@ccr.buffalo.edu


Part 4 
�The following CCR reference card gives a handy 

review of important and useful commands. 
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