
  
 

Introduction to Running Computations on the  
High Performance Clusters at the  

Center for Computational Research 
 
 
 

L. Shawn Matott 
 

Center for Computational Research 
University at Buffalo, SUNY 

701 Ellicott St 
Buffalo, NY 14203 

  
  

ccr-help at ccr.buffalo.edu 
 

 
 

Fall 2014 



 
 

Part One 



CCR Resources 
The Center for Computational 
Research provides high performance 
computing resources to the 
University at Buffalo. 
�Supporting faculty research and classroom 

education, as well as local business and 
University collaborations. 
�High performance and high through-put 

cluster. 
�High performance remote visualization. 



CCR Cluster  
�Over 8,000 cores 
�Mix of 8, 12, 16 and 32 compute nodes. 
�A compute node is a linux machine with 

memory, disks, and cores (cpus), as well as both 
ethernet and Infiniband network connections. 

�Infiniband and ethernet networks 
�Panasas and Isilon storage 
�Linux - CentOS release 6.5 
More information on the CCR cluster 
specifications. 

http://ccr.buffalo.edu/support/research_facilities.html
http://ccr.buffalo.edu/support/research_facilities.html


CCR Cluster 

Coming soon: an Intel 
Xeon-Phi node 



CCR Cluster Compute Nodes 
�372 12-core nodes with 48GB and Qlogic IB 
�256 8-core nodes with 24GB and Mellanox IB 
�32 16-core nodes with 128GB and Mellanox IB 
�16 32-core nodes with 256GB and Qlogic IB 
�2 32-core nodes with 512GB and Qlogic IB 
�32 12-core nodes, each w/ 2 Nvidia Fermi 

GPUs, 48GB and Mellanox IB 
�2 12-core remote visualization nodes with 

256GB, 2 Nvidia Fermi GPUS  
�More on Compute Nodes 

http://ccr.buffalo.edu/support/research_facilities/general_compute.html


CCR Remote Visualization 
�The remote visualization machines have 

Nvidia Tesla GPUs, 12 cores and 256 GB of 
memory. 
�The visualization is enhanced with the use 

of NICE Remote Visual software. 
�NICE provides a desktop to the use. 
�Several software packages can make use of 

cluster compute nodes. 
�More information on using CCR Remote 

Visualization. 

http://www.nice-software.com/solutions/remote-visualization
http://ccr.buffalo.edu/support/research_facilities/remote-visualization.html
http://ccr.buffalo.edu/support/research_facilities/remote-visualization.html


Storage 
�Home directories are /user/username on 

the front-end login machine and all 
compute nodes. 
�The default size of a home directory is 2GB. 
�There is a daily back-up of home directories. 
�The iquota command shows the usage and 

quota. 
�All users may use the /panasas/scratch file 

system.    This file system is available on all 
compute nodes and the front-end. 
�There is no usage quota on /panasas/scratch 
�There is no backup of files on /panasas/scratch 
�Files are periodically deleted 



Storage 
�All compute nodes have a local /scratch. 
�Computations can use the local scratch space. 

�UB faculty can request a /projects directory 
for the research group. 
�The /projects directories are accessible from 

all compute nodes and the front-end 
machine. 
�The quota ranges from 200GB to 500GB. 
�There is no charge. 

�Storage space greater than 500GB has a one 
time fee.  Contact ccr-help for more 
information. 



Login to Front-end Machine 
�The front-end machine to the cluster is 

rush.ccr.buffalo.edu 
�32-core node with 256GB of memory. 

�Accessible from UB network only.  Use the Cisco 
AnyConnect Client to connect to the UB network 
from off campus.   The UBit software webpage 
has download links and installation instructions. 
�Users on campus should setup UB-Secure on 

their laptops for connecting through wireless. 
�Only secure protocols, such as ssh and sftp, are 

permitted to access the front-end. 

http://www.buffalo.edu/ubit/service-guides/software/downloading.html


Login to Front-end Machine 
�Only small test computations can run on the 

front-end machine. 
�CPU time limit of 15 minutes.  Processes that 

exceed the time limit are automatically 
terminated. 
�Be sure to monitor the processes using the top 

command. 
�In general, computations run on the cluster as jobs 

submitted to the SLURM scheduler.  
�The compute nodes and storage cannot be directly 

accessed from outside the cluster. 



Login to Front-end machine 
�Login from Linux or Mac 
�ssh -X rush.ccr.buffalo.edu 
�ssh -X UBITusername@rush.ccr.buffalo.edu 
�The -X flag enables a graphical display.  This is 

optional. 
 
�Windows users must install X-Win32 or PuTTY 

for the secure login, which can be 
downloaded from the UBit software 
webpage. 
�The X-Win32 program allows for a graphical 

display.   



Accessing the Cluster 
Details for X-Win32 setup 
�Select Manual in the configuration window. 
�Select ssh 
�Connection name:  rush 
�Host: rush.ccr.buffalo.edu 
�Login: your UBITusername 
�Command:  /usr/bin/xterm -ls 
�Password:  CCR password 
�Note:  Be sure to run only one X-Win32. 



Accessing the Cluster 
�sftp and scp are command line transfer 

commands.  See the CCR user manual for more 
information. 
�There are several graphical file transfer 

applications.  Be sure to specify secure file 
transfer (sftp).  Most can be downloaded from 
the UBit software webpage. 
�Filezilla is graphical file transfer program, which is 

available for Windows, Linux and MAC 
computers. 
�WinSCP for Windows. 
�Cyberduck for MACs. 



Get Help - Change Password 
�Send email to ccr-help@buffalo.edu for 

assistance. 
�Use the web form to request assistance. 
 
�Use the MyCCR web interface to change or 

reset the CCR password. 
�Login with UBitusername and Ubit 

password. 
�MyCCR 

mailto:ccr-help@buffalo.edu
http://ccr.buffalo.edu/support/ccr-help.html
http://ccr.buffalo.edu/support/ccr-help/accounts/myccr-account-management.html
http://ccr.buffalo.edu/support/ccr-help/accounts/myccr-account-management.html


Command Line Environment 
�The rush cluster is a command line UNIX 

environment. 
�The user’s login executes a shell. This is a process 

that accepts and executes the commands typed 
by the user. 

�By default the shell is set to bash.  
�The .bashrc file is executed on login. 
�This script resides in the user’s home 

directory. 
� Variables and paths can be set in the .bashrc 

file. 
�It is also executed when a job starts on a 

compute node. 



Command Line Environment 
�List contents of current directory: ls  
�Long listing: ls -l 
�Long list and hidden files:  ls -la 
�Reverse time order:  ls -latr 
�Show current directory pathname:  pwd 
�Create a directory:  mkdir directoryname 
�Change to given pathname:  cd /pathname 
�Change to one directory above: cd .. 
�Change to two directories above:  cd ../.. 
�Change to home directory: cd 



Command Line Environment 
�Remove a file: rm filename 
�Remove a directory: rm -R directoryname 
�If the directory is empty: rmdir dirname 

�Copy a file:  cp oldfile newfile 
�Display file to the screen:  cat filename 
�Display with page breaks:  more filename 
�Press space bar to page through the file. 
�Press enter to advance one line. 
�Forward direction only. 

�“Control c” to quit. 



Command Line Environment 
�All directories and files have permissions.  
� Users can set the permissions to allow or 

deny access to their files and directories. 
�Permissions are set for the user (u), the group 

(g) and everyone else (o). 
�The permissions are read (r), write (w) and 

execute (x). 
�Read (r) permission allows viewing and 

copying. 
�Write (w) permission allows changing and 

deleting. 



Command Line Environment 
�Execute (x) permission allows execution of a 

file and access to a directory. 
�Show permissions with “ls -l”. 
�This will also show the user and group 

associated with the file or directory. 
�drwxrwxrwx 
�-rwxrwxrwx 
�d indicates a directory 
�-rwxrwxrwx    user permissions 
�-rwxrwxrwx    group permissions 
�-rwxrwxrwx    other (world) permissions 



Command Line Environment 
�Change permissions with the chmod 

command. 
�chmod ugo+rwx filename 
�chmod ugo-rwx filename 
�ugo is user, group and other 
�rwx is read, write and execute 
�+ add a permission 
�- removes a permission 
�Adding write permission for group:  chmod 

g+w filename 



Command Line Environment 
�Removing all permissions for group and 

other on a directory and its contents:  chmod 
-R go-rwx dirname 
�The grep command is used to search for a 

pattern:  grep pattern file 
�Show the disk space:  df -h  
�Show the estimated disk space usage:  du -s -

h`ls` | sort -rn | more 
�The pipe symbol | is used to indicate that 

the output of the first command should be 
used as input to the second. 



Command Line Environment 
�There are several editors available:   emacs, 

nano and  vi 
�emacs can provide a graphical interface 

�Files edited on Windows machines can 
contain hidden characters, which may cause 
runtime problems. 
�Use the file command to show the type of 

file:  file filename 
�Use the dos2unix command to remove any 

hidden characters:  dos2unix filename 



Command Line Environment 
�The asterisk (*) is a wild card for many UNIX 

commands.  
�List all C files:  ls *.c 
�Show the type of file:  file filename 
�Manual pages are available for UNIX 

commands:  man ls 
�More information on UNIX commands:  CCR 

Reference Card 

http://ccr.buffalo.edu/support/UserGuide/BasicUNIX.html
http://ccr.buffalo.edu/support/UserGuide/BasicUNIX.html


Command Line Environment 
�Modules are used to set paths and variables for 

applications installed on the cluster. 
�List all available modules:  module avail 
�List modules currently loaded:  module list 
�Show what a module will do:  module show 

module-name 
�Load a module:  module load module-name 
�Unload a module:  module unload module-

name 
�Example:  module avail intel 
�List the Intel compilers 



Compilers 
�The GNU compilers and libraries are part of 

the Operating System and are in the default 
path. 
�C compiler:  gcc 
�C++ compiler: g++ 
�Fortran compilers:  g77, gfortran  
�gfortran is a Fortran 95 compiler. 
�Example:   
�gcc -o hello-gnu hello.c 
�./hello-gnu 



Compilers 
�The Intel compilers can take advantage of 

the processor and core architecture and 
features. 
�Load the module for the intel compiler: 

module load intel 
�C compiler:  icc 
�C++ compiler: icpc 
�Fortran compiler: ifort 
�Example:   
�icc -o hello-intel hello.c 
�./hello-intel 



Hello World 
�Hello World C program: 
 
#include <stdio.h> 
  
 int main(void) 
 { 
    printf("Hello, world!\n"); 
    return 0; 
 } 



Hello World 
�Hello World C++ program: 
#include <iostream> 
  
using namespace std; 
  
int main() 
{ 
    cout << "Hello, World!" << endl; 
    return 0; 
} 



Hello World 
�Hello World FORTRAN program: 
 
      program hello 
          write(*,*) 'Hello, World!' 
       end program hello 



 
 

Part Two 



What is SLURM? 
 
�SLURM is an acronym for Simple Linux 

Utility for Resource Management. 
�SLURM is a workload manager that 

provides a framework for job queues, 
allocation of compute nodes, and the start 
and execution of jobs. 

�SLURM is a comprehensive resource 
manager.   
�Individual node resources, such as GPUs or 

number of threads on a core, can be scheduled 
with SLURM. 



SLURM Partitions 
 
�The production partition for the CCR cluster 

is general-compute.  This is the default 
partition. 
�The debug partition has 7 nodes.  Jobs can 

run for a maximum of 1 hour. 
�4 8-core nodes 
�2 12-core nodes 
�1 16-core node with 2 GPUs. 

�The gpu, largemem, supporters and viz 
partitions have specific requirements. 



SLURM Partitions 
 
�These partitions have a higher priority than 

the general-compute partition. 
�Nodes in these partitions are also in the 

general-compute partition. 
�The gpu and largemem partitions are 

available to all users. 
�The guideline for submitting a job to the 

gpu partition is that the computation must 
make use of a GPU. 



SLURM Partitions 
 
�The guideline for submitting a job to the 

largemem partition is that the computation 
must require more than 100GB of memory. 
�The supporters partition is a higher priority 

partition for research groups that have 
made contributions to CCR. 
�The viz partition is dedicated to the remote 

visualization compute nodes. 



SLURM Commands 
�squeue – shows the status of jobs. 
�sbatch – submits a script job. 
�salloc – submits an interactive job. 
�srun – runs a command across nodes. 
�scancel – cancels a running or pending job. 
�sinfo – provides information on partitions 

and nodes. 
�sview – graphical interface to view job, node 

and partition information. 
�slurmjobvis –graphical job monitoring tool. 



squeue example 
squeue -u cdc 
 
 JOBID PARTITION NAME USER ST TIME NODES 

NODELIST(REASON)  
4832 general-c hello_te cdc R 0:20 2 f16n[10-11] 

 
�Job status: 
�R – job is running. 
�PD – job is waiting for resource. 
�Reasons are usually (Resources) or (Priority). 

�Others commons reasons are CA (cancelled) and 
CD (completed). 



sinfo example 
sinfo -p general-compute 
 
PARTITION       AVAIL  TIMELIMIT  NODES  STATE 
NODELIST 
general-comput*    up 3-00:00:00    264   idle d07n07s[01-
02],d07n08s[01-02], … 
�Node states: 
�alloc – all cores are in use. 
�mix – some cores are available. 
�idle – node is free. All cores are available. 
�down- node is down. 
�drained – node is offline. 



sinfo example 
More detailed sinfo query: 
sinfo --exact --partition=general-compute --format="%15P %5a 
%10A %.4c %6m %6G %16f %t %N" | more 
PARTITION       AVAIL NODES(A/I) CPUS MEMORY GRES   
FEATURES         STATE NODELIST 
general-comput* up    0/0          12 48000  gpu:2  IB,CPU-X5650     
down* d05n11s[01-02],d05n12s[0102],d05n20s[01-
02],d05n21s[01-02],d05n24s[01-02],d05n25s[01-02],d05n30s[01-
02],d05n31s[01-02],d05n39s[01-02],d05n40s[01-02] 
… 
general-comput* up    0/151        12 48000  (null) IB,CPU-E5645     
idle k13n17 
s[01-02],k13n18s[01-02],k13n19s[01-02],k13n23s[01-
02],k13n24s[01-02], 



sview example 



STUBL 
�STUBL = SLURM Tools and UBiLities 
�UB CCR Customizations of SLURM commands 
�A bit more user-friendly 
�Examples: 
�snodes – what nodes are available? 
�fisbatch – interactive job 
�sranks – what is my jobs priority? 
�sjeff, sueff – How efficient are my jobs? 
�stimes – When will my job start? 

�slurmhelp – list all SLURM and STUBL commands 
�Type any command followed by “--help” for usage info. 
 



Commonly used SLURM variables 
�$SLURM_JOBID  
�SLURM_JOB_NODELIST  
�Node list in SLURM format; for example f16n[04,06]. 

�$SLURM_NNODES  
�Number of nodes 

�$SLURMTMPDIR  
� /scratch/jobid   
�local to the compute node 

�$SLURM_SUBMIT_DIR  
�Directory from which the job was submitted   

�NOTE!  Jobs start in the $SLURM_SUBMIT_DIR. 



sbatch example 
Submit a job:  sbatch slurmHelloWorld 
Here is the SLURM script: 
#!/bin/sh  
##SBATCH --partition=debug 
#SBATCH --time=00:15:00  
#SBATCH --nodes=2         
#SBATCH --ntasks-per-node=8 
##SBATCH --mem=24000 
#SBATCH --job-name="hello_test“ 
#SBATCH  --output=test.out  
#SBATCH --mail-user=usename@buffalo.edu  
#SBATCH --mail-type=ALL 
echo "SLURM_JOBID="$SLURM_JOBID 
echo “SLURM_JOB_NODELIST"=$SLURM_JOB_NODELIST 
echo "SLURM_NNODES"=$SLURM_NNODES 
echo "SLURMTMPDIR="$SLURMTMPDIR 



sbatch example 
 
echo "working directory = “$SLURM_SUBMIT_DIR 
module load intel/14.0 
module load intel-mpi/4.1.3 
module list 
ulimit -s unlimited 
# 
#export I_MPI_DEBUG=4 
#NPROCS=`srun --nodes=${SLURM_NNODES} bash -c 'hostname' |wc -l` 
#echo "NPROCS="$NPROCS 
echo "Launch helloworld with srun" 
export I_MPI_PMI_LIBRARY=/usr/lib64/libpmi.so 
srun ./helloworld 
 
# 
echo "All Done!" 



sbatch example - annotated 
 
#!/bin/sh  
#SBATCH is a directive to SLURM 
## is a comment 
Specify the partition; default is general-compute 
##SBATCH --partition=debug 
Request 15 minutes 
#SBATCH --time=00:15:00  
Request compute nodes 
#SBATCH --nodes=2  
Specify 8 cores on a node        
#SBATCH —ntasks-per-node=8 
Specify memory limit of 24000MB per node 
##SBATCH —mem=24000 



sbatch example - annotated 
Specify name of job 
#SBATCH —job-name="hello_test“ 
Specify name of output file for stdout and stderr 
#SBATCH  --output=test.out  
Specify email address 
#SBATCH --mail-user=usename@buffalo.edu  
Send email on start and end of job 
#SBATCH --mail-type=ALL 
 
echo "SLURM_JOBID="$SLURM_JOBID 
echo “SLURM_JOB_NODELIST"=$SLURM_JOB_NODELIST 
echo "SLURM_NNODES"=$SLURM_NNODES 
echo "SLURMTMPDIR="$SLURMTMPDIR 
$SLURMTMPDIR is a directory created in /scratch on the compute 
nodes for this job 



sbatch example - annotated 
echo "working directory = “$SLURM_SUBMIT_DIR 
$SLURM_SUBMIT_DIR is the directory from which the job was 
submitted 
The job will always start in the $SLURM_SUBMIT_DIR 
Load Intel Compiler and Intel-MPI 
module load intel/14.0 
module load intel-mpi/4.1.3 
module list 
Unlimit the stack 
ulimit -s unlimited 
# 
Set debug for MPI if needed; maximum level 99 
#export I_MPI_DEBUG=4 



sbatch example - annotated 
Count number of processors in job; not used by srun, however issuing 
srun forces SLURM to run the prologue script to setup the nodes for 
the job 
NPROCS=`srun --nodes=${SLURM_NNODES} bash -c 'hostname' |wc -l` 
#echo "NPROCS="$NPROCS 
echo "Launch helloworld with srun” 
Must export PMI library for srun task launcher; comment out if using 
mpirun or mpiexec 
export I_MPI_PMI_LIBRARY=/usr/lib64/libpmi.so 
Run the code 
srun ./helloworld 
 
# 
echo "All Done!" 



Hello World MPI Code 
#include <stdio.h> 
#include "mpi.h" 
 
int main( argc, argv ) 
 int  argc; 
 char **argv; 
{ 
 int rank, size; 
 int len; 
 char procname[MPI_MAX_PROCESSOR_NAME]; 
 MPI_Init( &argc, &argv ); 
 MPI_Comm_size( MPI_COMM_WORLD, &size ); 
 MPI_Comm_rank( MPI_COMM_WORLD, &rank ); 
 MPI_Get_processor_name(procname,&len); 
 printf( "Hello world from process %d of %d on node  %s\n", rank, size, procname); 
 MPI_Finalize(); 
 return 0; 
} 



Compiling MPI Code 
�Load the Intel-MPI module.   
�module load intel-mpi/4.1.3 

�Compiling Hello World with GNU C: 
�mpicc -o helloworld helloworld.c 

�Compiling with Intel C: 
�module load intel/14.0 
�mpiicc -o helloworld helloworld.c 



Submit Job 
� Run on rush front-end: 
 

[cdc@rush:~]$ mpirun -np 2 ./helloworld 
Hello world from process 0 of 2 on node  k07n14 
Hello world from process 1 of 2 on node  k07n14 
[cdc@rush:~]$ slurmHelloWorld 

�Submit a job: sbatch slurmHelloWorld 
�Check status of job with squeue 
�Once the job starts running: 
�use slurmjobvis to monitor the job 
�login to the compute node with ssh and 

run top 



Task Launching 
�Use mpirun when testing on the rush front-

end. 
�srun will execute a command across nodes. 
�  Typically, this is the best choice for 

launching a parallel computation on more 
than 1 compute node. 

�Use srun when submitting a SLURM job (e.g. 
from within an sbatch script).   
�Intel-MPI mpirun and mpiexec are SLURM 

aware, however srun is the most robust task 
launcher 



 
 

Part Three 



Node Sharing 
�Compute nodes are shared among different 

jobs and users. 
�Tasks are limited to the number of cores and 

memory specified. 
�The integration of CPUSETS and SLURM 

makes this possible.  
�CPUSET is a Linux kernel level mechanism that 

can be used to control access to individual cores. 
�The default memory limit per core is 3GB. 
�Use the --mem flag to request more memory for 

a job. 



Node Sharing 
�--mem=24000 
�Requests 24GB per node. 

�--mem-per-core=16000 
�Requests 16GB on a core; use for serial job. 

�Jobs exceeding the memory limit will be 
terminated by the resource manager. 
�Check the General Compute Cluster  

webpage for node memory and core details. 
�The --exclusive flag will request the nodes 

as dedicated.  The nodes will not be shared. 

http://ccr.buffalo.edu/support/research_facilities/general_compute.html


Interactive Job 
�The salloc command requests the nodes. 
�Once the nodes have been allocated to the 

job, then the user can login to the compute 
node. 
�The user is not logged into the compute 

node when the job starts. 
�Typically, srun is used to execute commands 

on the allocated nodes. 
�ssh can only be used to login to nodes 

assigned to a given user’s job. 



Interactive Job 
�The fisbatch script can be used to submit and run 

an interactive job. 
� fisbatch --partition=debug --time=00:15:00 --

nodes=1 --ntasks-per-node=8 
�Once the job starts, you will be automatically 

logged into the node. 
�Failures or errors can cause the job to not 

launch properly, but still be listed in squeue.  
In that case, use scancel jobid to remove the 
job. 

�The salloc command can also be used to submit 
an interactive job. 



Example of an Interactive Job 
[cdc@rush:~]$ salloc --partition=general-compute --nodes=1 --
time=01:00:00 --exclusive 
salloc: Granted job allocation 54124 
[cdc@rush:~]$ export | grep SLURM 
declare -x SLURM_JOBID="54124" 
declare -x SLURM_JOB_CPUS_PER_NODE="8" 
declare -x SLURM_JOB_ID="54124" 
declare -x SLURM_JOB_NODELIST="d07n35s01" 
declare -x SLURM_JOB_NUM_NODES="1" 
declare -x SLURM_NNODES="1" 
declare -x SLURM_NODELIST="d07n35s01“ 
… 
[cdc@rush:~]$ exit 
exit 
salloc: Relinquishing job allocation 54124 
salloc: Job allocation 54124 has been revoked. 
[cdc@rush:~]$  
Note: salloc does not login to compute node! 



Example of an Interactive Job 
[cdc@rush ~]$ salloc --partition=general-compute --
nodes=1 --time=01:00:00 --exclusive  &  
[1] 14269  
[cdc@rush ~]$ salloc: Granted job allocation 4716  
[cdc@rush ~]$  
 

Note!  
Placing the salloc in the background allows the 
allocation to persist. 
The user is not logged into the compute node 
when the job starts. 



Job monitoring 
�The NEW slurmjobvis  is a graphical display 

of the activity on the node.  CPU, memory, 
network, as well as GPU utilization are 
displayed. 
�This an improved  
version of ccrjobvis. 
�User can also  login  
using ssh to the  
compute nodes  
in the job. 



More Information and Help 
�CCR SLURM web page  
�Most update information for running on the 

cluster. 
�Sample scripts, code, READMEs, pdfs and 

extensive instructions. 
�More sample SLURM scripts can be found in 

the /util/slurm-scripts directory on rush. 
�Compute Cluster web page 
�Remote Visualization web page 
�Users can get assistance by sending an email 

to ccr-help@ccr.buffalo.edu. 

http://ccr.buffalo.edu/support/UserGuide/slurm.html
http://ccr.buffalo.edu/support/research_facilities/u2.html
http://ccr.buffalo.edu/support/research_facilities/remote-visualization.html
mailto:ccr-help@ccr.buffalo.edu


Part 4 
�The following CCR reference card gives a handy 

review of important and useful commands. 


	 
	Slide Number 2
	CCR Resources
	CCR Cluster 
	CCR Cluster
	CCR Cluster Compute Nodes
	CCR Remote Visualization
	Storage
	Storage
	Login to Front-end Machine
	Login to Front-end Machine
	Login to Front-end machine
	Accessing the Cluster
	Accessing the Cluster
	Get Help - Change Password
	Command Line Environment
	Command Line Environment
	Command Line Environment
	Command Line Environment
	Command Line Environment
	Command Line Environment
	Command Line Environment
	Command Line Environment
	Command Line Environment
	Command Line Environment
	Compilers
	Compilers
	Hello World
	Hello World
	Hello World
	Slide Number 31
	What is SLURM?
	SLURM Partitions
	SLURM Partitions
	SLURM Partitions
	SLURM Commands
	squeue example
	sinfo example
	sinfo example
	sview example
	STUBL
	Commonly used SLURM variables
	sbatch example
	sbatch example
	sbatch example - annotated
	sbatch example - annotated
	sbatch example - annotated
	sbatch example - annotated
	Hello World MPI Code
	Compiling MPI Code
	Submit Job
	Task Launching
	Slide Number 53
	Node Sharing
	Node Sharing
	Interactive Job
	Interactive Job
	Example of an Interactive Job
	Example of an Interactive Job
	Job monitoring
	More Information and Help
	Part 4

