
Teal User’s Manual

Version 0.60

Mike Mintz

Apple Valley Software

Teal User’s Manual 0.58

Copyright 2004 Mike Mintz Page: 2 of 45

Table of Contents
Mike Mintz... 1

CHAPTER 1 OVERVIEW .. 5
CHAPTER 2 COMPONENTS OF A TEAL VERIFICATION SYSTEM.. 6
CHAPTER 3 INSTALLATION OF TEAL ... 7
CHAPTER 4 THE USER MAIN PROGRAM .. 8

Section 4.1.1 Overview... 8
Section 4.1.2 Theory of Operation ... 8
Section 4.1.3 Interface.. 9
Section 4.1.4 Examples... 9

CHAPTER 5 THE REG OBJECT ... 11
SECTION 5.1 OVERVIEW .. 11

Section 5.1.1 Theory of Operation ... 11
SECTION 5.2 C\C++ INTERFACE .. 11

Section 5.2.1 Creating, copying and destroying a reg ... 11
Section 5.2.2 Reg access functions ... 12
Section 5.2.3 Math functions .. 12
Section 5.2.4 Logic functions.. 13
Section 5.2.5 Printing functions ... 14
Section 5.2.6 Functions for HDL coherency .. 14

SECTION 5.3 EXAMPLES:.. 14
CHAPTER 6 THE VREG OBJECT .. 16

SECTION 6.1 OVERVIEW .. 16
SECTION 6.2 THEORY OF OPERATION .. 16
SECTION 6.3 C/C++ INTERFACE .. 16

Section 6.3.1 Creating, copying, and destroying a vreg... 16
Section 6.3.2 Functions for HDL coherency .. 16

SECTION 6.4 EXAMPLES:.. 17
CHAPTER 7 LOGGING SIMULATION OUTPUT... 18

SECTION 7.1 THEORY OF OPERATION .. 18
SECTION 7.2 C/C++ INTERFACE .. 18

Section 7.2.1 Creating, copying, and destroying a Vout .. 18
Section 7.2.2 Statistics.. 19
Section 7.2.3 Output of the standard types... 19
Section 7.2.4 Output of the standard types... 19

SECTION 7.3 EXAMPLES:.. 19
CHAPTER 8 RANDOM NUMBER GENERATION... 21

SECTION 8.1 OVERVIEW .. 21
SECTION 8.2 THEORY OF OPERATION ... 21
SECTION 8.3 INTERFACE .. 22

Section 8.3.1 Required Initialization .. 22
Section 8.3.2 Common macros ... 22
Section 8.3.3 Creating, copying and destroying a trandom ... 22
Section 8.3.4 Getting random numbers .. 22
Section 8.3.5 Creating, copying and destroying a random_range ... 23

SECTION 8.4 EXAMPLES... 23
Section 8.4.1 Constrained Random Testing.. 25

CHAPTER 9 ACCESSING MEMORY .. 26

Teal User’s Manual 0.58

Copyright 2004 Mike Mintz Page: 3 of 45

SECTION 9.1 OVERVIEW... 26
SECTION 9.2 THEORY OF OPERATION .. 26
SECTION 9.3 INTERFACE .. 27

Section 9.3.1 Memory functions ... 27
Section 9.3.2 Creating, copying and destroying a memory_bank .. 27
Section 9.3.3 Determining the right memory bank ... 28
Section 9.3.4 Actually reading and writing memory... 28
Section 9.3.5 Examples... 28

CHAPTER 10 CONCURRENCY IN TEAL ... 30
SECTION 10.1 OVERVIEW... 30
SECTION 10.2 THEORY OF OPERATION .. 30
SECTION 10.3 C/C++ INTERFACE .. 31

Section 10.3.1 Creating and Destroying Threads... 31
Section 10.3.2 Creating and Destroying a Mutex... 32
Section 10.3.3 Working with a Mutex... 33
Section 10.3.4 Creating and destroying a Condition.. 33
Section 10.3.5 Working with a condition.. 33
Section 10.3.6 Examples... 34

CHAPTER 11 DICTIONARY NAMESPACE.. 36
SECTION 11.1 OVERVIEW... 36
SECTION 11.2 THEORY OF OPERATION .. 36
SECTION 11.3 C/C++ INTERFACE .. 36

Section 11.3.1 Dictionary main functions... 36
SECTION 11.4 WORKING WITH THE DICTIONARY ... 36

11.4.1.1 Examples... 37
CHAPTER 12 THE RUN_LOOP OBJECT .. 38

SECTION 12.1 THEORY OF OPERATION .. 38
SECTION 12.2 INTERFACE .. 38

Section 12.2.1 Constructing, copying, and destroying a run_loop... 38
Section 12.2.2 Working with a run_loop object.. 38

SECTION 12.3 EXAMPLES ... 39
CHAPTER 13 APPENDIX.. 40

SECTION 13.1 TEAL CODING CONVENTIONS .. 40
SECTION 13.2 BUILDING TEAL FROM SOURCE CODE ... 40

List of Figures

FIGURE 1 BASIC COMPONENTS OF TEAL BASED VERIFICATION 6
FIGURE 2 PROCESS FLOW 9
FIGURE 3 AN EXAMPLE VERILOG TESTBENCH.V 9

Teal User’s Manual 0.58

Copyright 2004 Mike Mintz Page: 4 of 45

About this Manual

This document describes Teal, a c/c++ Test Environment Abstraction Layer. It is intended
for verification engineers who use Teal.

This manual assumes you are familiar with Hardware Description Languages (HDL) such
as Verilog or VHDL. It also assumes a general knowledge of the problem of hardware
verification and assumes you are familiar with software programming in c++. It also
assumes you know the use of the Linux Operating System.

One-liner about what the document is about

Throughout this document, text written in this font is intended to be written in c/c++
or an HDL.

Customer support:

To report an error in Teal, go to www.sourceforge.com/projects/teal and click on the
“bugs” section.

For support, send e-mail to support@applevalleysoftware.com.

Teal User’s Manual 0.58

Copyright 2004 Mike Mintz Page: 5 of 45

Chapter 1 Overview

Engineers perform verification in order to:

• Minimize the probability of hardware functional errors

• Ensure that the hardware meets performance requirements

• Ensure that the hardware is usable by software

Teal aids in this endevor by providing a set of capabilities that access HDL signals and
enable actions based on changes in the values of these signals. In addition, it encourages
independent generators, transactors and checkers by providing for management of
independent user created threads.

Because Teal is a c/c++ library, algorithms can be developed that both validate the
hardware design and can be re-used in the production software. In addition, the c/c++
language is well defined and is well documented.

Teal User’s Manual 0.58

Copyright 2004 Mike Mintz Page: 6 of 45

Chapter 2 Components of a Teal Verification System

The basic Teal verification components are a Teal library, a set of Verilog design files, a
design top, and a set of c/c++ source files. There is also probably a run script and some
makefiles.

Figure 1 Basic Components of Teal based verification

HDL Test Harness/Design Top

HDL DUT

Teal Library

Test File
Your c/c++ user_main() and other c/c++ files

Log File

Test File

Test File

Teal User’s Manual 0.58

Copyright 2004 Mike Mintz Page: 7 of 45

Chapter 3 Installation of Teal

To install Teal:

1. Go to from www.sourceforge.com/projects/teal.

2. Click the teal-binary download text.

3. Extract Teal to a directory, making sure that the directory you use is on your INCLUDE
path (to enable C/C++ compilations).

4. Set the environment variable VERIL_INST_DIR to the path for your simulator

5. Set the environment variable SIM to your simulator (currently only ivl, mti, or
mti_2_0)

6. cd to the test sub-directory and type “run –c –clean $(SIM) –l

test_list” to run all the examples, or “run –c -$SIM –t <some_test>” to
run a single test (denoted by a pair of .cpp and Verilog files with the same root name).

Teal User’s Manual 0.58

Copyright 2004 Mike Mintz Page: 8 of 45

Chapter 4 The User Main Program

Section 4.1.1 Overview

This chapter discusses how Teal is hooked into the simulator. Specifically, this chapter
describes what you must add to your HDL testbench code to use Teal.

Section 4.1.2 Theory of Operation

Teal uses PLI to allow c/c++ code to co-exist with the HDL. To this end, a call must be put
somewhere in the HDL to start Teal. This is usually done in an initial block in the top level.

The call to $teal_main causes teal to start the threading system and call your

user_main() function. Your user_main() function usually initializes global objects,
like the random number generator, dictionary, and your own top level code and then waits
for a init_done or out_of_reset signal from the HDL testbench.

After the DUT is ready, the user_main() usually starts a series of transactors and
checkers, possible under the control of dictionary variables or command line switches.
During execution, your code prints log messages for checks that pass and errors that occur.

The user_main() then waits for some signal from the lower level units that they are
done. This may happen when a certain amount time has passed, or traffic generators are
done, or maybe an error threshold has been reached.

Finally, the user_main() usually prints some statistics and signals to the HDL testbench
to quit. The HDL testbench calls $finish to shut down the simulation.

Teal User’s Manual 0.58

Copyright 2004 Mike Mintz Page: 9 of 45

Figure 2 Process flow

Section 4.1.3 Interface
void user_main ();

Teal calls this function during initialization.

Figure 3 An example Verilog testbench.v

Section 4.1.4 Examples

Given the testbench example above, this simple program just runs for 20 clock pulses.

timescale 1ns/1ns

module testbench

<your wires, clocks, etc>

reg clk;

always #0.5 clk = ~clk;

<your DUT instance>

initial $teal_main; //hookup

to Teal

end

HDL Simulator Teal

start

Initial $teal_main
user_main ()

at (posedge (reset_n));

reset_n <= 1; start transactors, etc

… vreg finish (“tb.finish”) = 1;

initial begin
 wait (finish);
 $finish ()
end

Teal User’s Manual 0.58

Copyright 2004 Mike Mintz Page: 10 of 45

#include “teal.h”

using namespace teal;

int user_main ()

{

 vreg clock (“testbench.clk”);

dictionary::start (“simple_clock_test.txt”);

uint number_of_periods (dictionary::find (“number_of_clocks”, 20));

dictionary::stop ();

for (int i(0); i < number_of_periods; ++i) {

 vout::get (note) << “i is “ << i << clock is << clock << endl;

}

vout::get (expected) << “test completed” << endl;

}

In this example, the test simply runs for a number of positive edges in a clock register. The
duration is picked up by the test file “simple_clock_test.txt”. This file only has one line
“number_of_clocks 234”, which defines the length of the run.

Teal User’s Manual 0.58

Copyright 2004 Mike Mintz Page: 11 of 45

Chapter 5 The reg object

Section 5.1 Overview

When one starts to design a class library, an important decision is the creation of the
“common currency” of the system. This chapter and the next few describe the common
currency of the Teal system. These are the basic generic building blocks of a Teal based
verification system. The reg clas is the most basic and is described first.

Section 5.1.1 Theory of Operation

Hardware simulators compute in four possible values for a bit1, those being 1, 0, X, and Z.

In addition, hardware languages support arrays of bits. The Teal class reg implements this
four-state logic and makes sure X’s propagate through calculations.

The reg class supports the usual HDL wire/register operations such as addition,
subtraction, shifting, boolean operations, and four state comparison. Note that since
multiplication and division are not part of the standard HDL operations, they are not

provided. As in HDL languages, bitfields or subranges of reg/vreg is supported. They
can be on either the left or right side of an expression.

The reg class supports display as an aval/bval series2 or as a formatted hex string.

Section 5.2 C\C++ Interface

Section 5.2.1 Creating, copying and destroying a reg

There are four basic constructors and a copy constructor for Reg. The default constructor is

marked explicit to prevent accindentially creating a one-bit register. The length class is a
little helper class used in the constructor to force the register to be a specific length, for

example, reg a (length (45)); will create a 45 bit register. The length class only
has an explicit integer constructor.

The reg_slice class is another helper class that is automatically created (and destroyed)
when a register subfield is used. The register constructor is automatically used when a

register is needed in an expression. For example reg a(length(45)); reg b

(a(10,0)); will create a reg_slice of a. As reg_slice is a temporary object
automatically created during left-hand assignment, it is not documented further.

1 Some simulators use 8 logic vlaues, but Teal uses only four because the concept of drive strenght is not
relevant to functional verification.
2 As per the standard, i.e if bval is 0, aval is the usual 0 or 1, or is bval is 1 aval is X or Z, respectively

Teal User’s Manual 0.58

Copyright 2004 Mike Mintz Page: 12 of 45

The last reg constructor takes in an integer and creates a 64-bit reg set to that value. This

constructor allows statements like reg a(length(32)); a = a + 5; and a(4:0)
+= 1;.

The operator=() method sets this to the rhs but does not change the length of this.
Specifically, it will extend (with 0) or truncate, as appropriate, depending on the length of
the rhs.

The virtual destructor allows for subclasses to cleanup any allocated storage.

 reg () [explicit]

 reg (const length &)

 reg (const reg_slice &)

 reg (uint64)

 reg (const reg &)

reg& reg::operator= (const reg &)

~reg () [virtual]

Section 5.2.2 Reg access functions

This set of functions provides read/write/display capability.

The single argument operator() is the bit index function of a register. You use this function
to get a single bit. You must use the two argument function to set a single bit.

The constant two argument function returns a copy of the bits of the reg as specified by the
arguments. This is called automatically by the compiler when the slicing operation is on the
right hand side of an expression.

The two argument non-constant function returns a reference to the bits of the reg as
specified by the arguments. This is called automatically by the compiler when the slicing
operation is on the left hand side of an expression.

char operator() (uint32 b) const

reg operator() (uint32 u, uint32 l) const

reg_slice operator() (uint32 u, uint32 l)

Section 5.2.3 Math functions

These functions come in two flavors. One is as a global function. The other is as a member
function that sends its results back to itself (the <x>= operators). The global functions exist
because they are symmetrical. They are used when it is not appropriate to put it as a
member function, usually because to reg objects are passed in or because the operation is
commutative.

reg operator+ (const reg & lhs, const reg & rhs)

Teal User’s Manual 0.58

Copyright 2004 Mike Mintz Page: 13 of 45

reg operator- (const reg & lhs, const reg & rhs)

reg& operator+= (const reg & rhs)

reg& operator-= (const reg & rhs)

The functions listed below perform left and right shift operations. There are equivalent
symmetrical operators as well. These functions, while seemingly complex, provide

capabilities that make reg act like a built-in type.

Note that 0’s are shifted in during a right shift.

reg& roperator<< (unsigned rhs)

reg& operator>> (unsigned3 rhs)

vout& operator<< (vout & c, const reg & rhs)

reg operator>> (const reg & lhs, const uint32 rhs)

Section 5.2.4 Logic functions

These functions implement the boolean operations associated with a register. Some
functions also implement the logic as a four_state enumeration as in HDL. As with the
math functions, some are global and symmetrical, while others are methods. They are used
when it is not appropriate to put it as a member function, usually because to reg objects are
passed in or because the operation is commutative.

By default, the relational (less or greater than) operators act like the normal two-state
mathematical less-than. However, when a single bit is X, the result is X.

The triple_equal function is intended to model the “===” operator of Verilog.

 enum four_state {zero=0, one, X, Z}

bool operator== (const reg & lhs, const reg & rhs)

reg operator~ (const reg & lhs)

reg operator| (const reg & lhs, const reg & rhs)

reg& reg::operator|= (const reg & rhs)

reg operator & (const reg & lhs, const reg & rhs)

reg& reg::operator &= (const reg & rhs)

bool operator!= (const reg & lhs, const reg & rhs)

four_state operator< (const reg & lhs, const reg & rhs)

four_state operator< (const reg & lhs, const reg & rhs)

four_state triple_equal (const reg & lhs, const reg & rhs)

3 Shouldn’t this take a uint32?

Teal User’s Manual 0.58

Copyright 2004 Mike Mintz Page: 14 of 45

Section 5.2.5 Printing functions

The following functions allow a reg (and any derived classes) to be printed as part of a vout
line. See vout, in Chapter 7. The reg::operator<<() is the virtual method to allow reg and all
subclasses to be printed as a built-in type. By default, it prints the aval/bval state of the
object and its bit length.4

The format_string() function returns a hex representation of the reg, e.g. 4’hf.5

vout & reg::operator<< (vout & c) const [virtual]

vout & operator<< (vout & c, const reg&)

std::string format_string () const

Section 5.2.6 Functions for HDL coherency

The following methods are used by derived classes like vreg to allow it to make sure the
HDL signal and the c/c++ world agrees.Within reg, all these methods do nothing. The
read_check() method is called before every access to the reg internal storage (aval/bval
array). The write_check() method is the corollary to read_check(), in that it is called
whenever any part of the reg is updated.

virtual void read_check () const [virtual]

virtual void write_through () const [virtual]

Section 5.3 Examples:

This section shows some basic examples of reg and vreg. They can be used as an
introduction of the capabilities and use of these classes.

1. Declarations:

reg a(23); //64 bit register/initialize it with the value 23

reg b(length (323)); //323 bit register with the initial value of all X’s

b = 0x11; //assign b to 11 (clearing the upper bits)

b(315,300) = a; //set bits 315 to 300 of b to 23.

a = b(63,0); //uses the lower 64 bits of b

reg c(b); //323 it register with the initial value of b’s current value

c(440, 413) = 1; //illegal – run time error, bit index out of range

vreg d(“tb.chip.reset_n); //create a vreg that is tied to reset_n

c = d; //clear all but the lowest bit of c, c(0) = current value of

reset_n

4 Note to me. How to cleanly hook this into format_string?
5 Not to me; Should really get the vout mode and format it to hex or decimal. What about a format_int? or at
lest making the operator<< out put an int. Isn’t 99% <= 64 bits?

Teal User’s Manual 0.58

Copyright 2004 Mike Mintz Page: 15 of 45

d = 0x0; //push reset_n to 0;

2. Math on reg/vreg.

std::string path (“testbench.top.main_bus”); //the root of the bus module

vreg addr(path + “.address”); //address, bit length copied from HDL

reg b(length (32));

b(31:0) = 0x12; //init b

addr += 2; //increment address, push to HDL

addr = b << 3; //same as addr(addr.length() –1, 3) = b; addr(2,0) = 0;

3. Bit fields

reg b (101);

std::string root (“tb”);

std::string module (“bus”);

vreg addr (root + “.” + module + “.rd_addr”);

addr(1,0) = b(28,27); //copy the two bits, push to HDL

int c (addr (31,28).format_int()); //get current upper nibble of address

addr(27,20) &= 0x55; //do some bit bashing

Teal User’s Manual 0.58

Copyright 2004 Mike Mintz Page: 16 of 45

Chapter 6 The vreg object

Section 6.1 Overview

The reg class is neat, but, by itself, has very little to do with simulation. The vreg class is
derived from reg, and implements the hookup to the HDL.

Section 6.2 Theory of Operation

Passing in a path to the HDL creates a vreg, e.g. vreg (“testbench.uart.clk”)

or vreg (“tb.usb_dp”). Vreg’s differ from regs in that their value is initilized
and conceptually exists in the HDL. Therefore, any assignment (or subrange assignment) is
pushed to the HDL as if it were a non-blocking assignment67.

Because reg was designed with vreg in mind, there are backdoor methods to know when a
reg should be written to the HDL or the most recent HDL value is needed.

Section 6.3 C/C++ Interface

Section 6.3.1 Creating, copying, and destroying a vreg

The way to create a vreg is to pass in a string path down to the wire or register. The path is
copied so that later printing functions can print the signal by name. If the path does not map
to an HDL signal, an error is issued an all subsequent usage of this vreg will fail.

 vreg (const std::string & path_and_name)

 ~vreg ()

vreg & vreg::operator= (const reg &)8

Section 6.3.2 Functions for HDL coherency

The following methods are overridden by vreg to allow it to make sure the HDL signal and
the c/c++ world agrees. The read_check() method checks the current integer global state
and if it’s value is not the same, calls the HDL to get the current value of the signal. Then it
sets its internal state variable to the global one. The write_check() implementation pushes a
value to the HDL, as though it were a non blocking assignment.

6 Note to me: Write a ctor from a string and consider adding rand method or additional function.
7 Note to me: Implement a 2 state reg?
8 This is a bug in reg::operator=() It must call the write_through() at the end.

Teal User’s Manual 0.58

Copyright 2004 Mike Mintz Page: 17 of 45

Invalidate_all_vregs() is a method used only by the threads management system. It is called
when the c/c++ code is called from the HDL side. This causes the global state value to
change, causing all vregs to get a new value when/if they are referenced.

virtual void read_check () const

void write_through () const

void vinvalidate_all_vregs () [static]

Section 6.4 Examples:

This section shows some basic examples of reg and vreg. They can be used as an
introduction of the capabilities and use of these classes.

1. Declarations:

std::string path (“testbench.top.main_bus”); //root of the main bus

vreg addr(path + “.address”); //access the address, bit length from HDL

vreg clk((“testbench.top.clk”);

vreg a(23); //illegal. Need a path

reg b(length (72)); //create a 72 bit register, initial value of all X’s

b(71,32) = addr; //set bits 71 to 32 of b to current value of address.

clk = 0x0; //force clk to 0;

2. Bit fields

reg b (101);

std::string root (“tb”);

std::string module (“bus”);

vreg addr (root + “.” + module + “.rd_addr”);

addr(1,0) = b(28,27); //copy the two bits, push to HDL

int c (addr (31,28).format_int()); //get current upper nibble of address

addr(27,20) &= 0x55; //do some bit bashing

Teal User’s Manual 0.58

Copyright 2004 Mike Mintz Page: 18 of 45

Chapter 7 Logging simulation output

Section 7.1 Theory of Operation

Often, a log file is used as a trace of what happened during a simulation. It is important to
have a consistent message format, to enable post processing, error counting and possibly

filtering9. The Teal class vlog encourages such uniformity.

The vlog class is modeled after the c++ cout object. It directly supports output of the
standard types. By following a few simple rules, complex objects can be printed as
convientely as the standard types. See example three.

The vout class supports the concept of a singleton. That is, there is only one logger in the

entire system and it is globally available. The method vout::get (message_type)
creates the vout object if it does not exist and starts a line of the appropriate message type.

The message type can be either note, expected or error. The note type is used for

standard messages. The expected type is used when a test has been performed and the
result is correct. An example would be receiving the correct byte at the correct time. The

error type is used when the test failed. The number of expected and error messages are
counted and can be used for end of test checking or summary reports.

When the vout object is created, it scans the command line for

+output_file+<filename>. If found, all output is also sent to the file specified.10

The vout class also supports either decimal or hex output. By placing either a hex or dec
in the vout message line, that output basis is selected.

Section 7.2 C/C++ Interface

Section 7.2.1 Creating, copying, and destroying a Vout

Vout is unlike a “normal” class in that it is expected to always be there. As such, there is no
explicit construction step. By simple calling either of the get() methods, a vout will be
created. Also, because vout is implementing a singleton, it cannot be copied or assigned.
Finally, because it will exist for the duration of the simulation, it is not destroyed.

The message type describes whaqt type of message is being printed.

9 Note to me: Add a mechinism to override what type of vour gets created, make all outupt methods virtual.
Conside an add on package to filter output. Consider printing the thread name. Consider verilog hook to
capture verilog output (like teal_display()). Could get messy though. Consider adding a error threshold, after
which the system would be shutdown.
10 Note to me: Have to move this scan args into a arg_dictionary object, or maybe merge it with the
dictionary, maybe with a call in the dictionary namespace.

Teal User’s Manual 0.58

Copyright 2004 Mike Mintz Page: 19 of 45

enum message_type = {

note

expected

error}

vout & get () [static]

vout & get (message_type) [static]

Section 7.2.2 Statistics

As each type of message is printed, vout increments a counter. The current values of the
counters are retrived by the following calls.

int error_count () [static]

int expected_count () [static]

int note_count () [static]

Section 7.2.3 Output of the standard types

The following functions handle outputting of the standard types in c/c++.

vout& operator<< (vout &(* f)(vout &))

vout & operator<< (double)

vout & operator<< (const std::string &)

vout & operator<< (long long unsigned int)

vout & operator<< (long)

vout & operator<< (unsigned int)

vout & operator<< (int)

vout & operator<< (char)

Section 7.2.4 Output of the standard types

The following functions set the output type and end a line. WARNING: You must call

endl()to end a line. This is the matching call to the get(message_type) function. Calling

endl() signals to the vout object to allow another thread to begin output.

vout& dec (vout & a_vout)

vout& endl (vout & a_vout)

vout& hex (vout & a_vout)

Section 7.3 Examples:

1: Simple

#include “vout.h”

Teal User’s Manual 0.58

Copyright 2004 Mike Mintz Page: 20 of 45

using namespace teal;

Vout::get(note) << “Hello World ” << 42 << endl;

Assuming this is called at sim time 565 nano-seconds, the output is:

[565 ns] Hello World 42

2. Logging a reg

reg a(23);

reg b(length (48)); b[7:4] = 3;

vout::get(note) << “basic a is” << a << endl;

vout::get(expected) << “a is” << a << “ and also 0x“ << hex << a << endl;

vout::get (error) <, “b is “ << b.format_string () << endl;

Assuming this is called at sim time 565 nano-seconds, the output is:

[565 ns] Note: basic a is bit length 64, aval[0] = 23, aval[1] 0, bval[0] = 0, bval[1] = 0

[565 ns] EXPECTED: a is 23 and also 0x17

[565 ns] ERROR: b is 512’hXXXXXXXXXX3X

3. Output of an object:

In this example, code will be shown to enable complex objects to be printed as native
types. First, Declare the base operator<<() method as virtual, to allow derived classes to
have their own output.

#include <vout.h> using namespace teal;

class base {

 virtual vout& operator<< (vout& v) const {v << “Base class”; return

v;}

};

Now, declare a single global function to call the virtual one. The compiler will

automatically find this function when you do a vout::get(note) << base_instance <<
endl;

inline vout& operator<< (vout& v, const base& b) {return b.operator<<

(v);}

class derived : public base {

 virtual vout& operator<< (vout& v) const { v << “Derived “; return v;}

};

base a_base;

derived a_derived;

vout::get (note) << a_base << “ and “ << a_derived << endl;

Assuming this is called at sim time 565 nano-seconds, the output is:

[565 ns] Base class and derived

Teal User’s Manual 0.58

Copyright 2004 Mike Mintz Page: 21 of 45

Chapter 8 Random Number Generation

Section 8.1 Overview

Using random numbers for test values is a staple of modern verification. The numbers must
be well distributed and be stable across runs. The first is important because you need to
find all the possible valid values and the second is important because, once your found a
bug, you will need to rerun that simulation at least twice: once to create a vcd file and
another to confirm its fixed. You might want to put that run in a regression suite as well.
The re-runs of that simulation must produce exactly the same sequence of random
numbers.

This chapter describes Teal’s random number capability.

Section 8.2 Theory of operation

Teal’s trandom class provides a simple stable random number generator. In order to
provide independent streams of random numbers, it takes in a string and in integer and uses
this to create the start seed11. In addition, the random class is initialized with a master seed,
which provides a tie in to all the streams. In this way, a single number, given to the static

random::init() function, possibly from the command line12 or test file, can be used to
guide all random number streams.

The basic random number class generates a [0..1.0) random double on every draw. The

random_range class maps this double to a range of integers. The base object is simple
to allow for subclasses that are more complicated.

In order to support stability, the string and or number passed into the constructor must be
carefully chosen. The examples below show some common techniques that have been used
extensively to provide the appropriate level of flexibility and stability.

11 Note to me: Vera 6.0 also hashes in the thread name, so that the same object in differen threads has its own
stream. Should I do that?
12 Note to me: GOTTA implement this!

Teal User’s Manual 0.58

Copyright 2004 Mike Mintz Page: 22 of 45

Section 8.3 Interface

Section 8.3.1 Required Initialization

Before using any random numbers, you must initialize the generator. The path to the master
seed file is passed in. This file, if it exists, will be searched for a dictionary entry of master-
seed. If found, this will be the master seed.13

void trandom::init (const std::string & master_seed_path)

[static]

Section 8.3.2 Common macros

Before describing the trandom class, you should know about some common macros. These
are the ones that will be used a lot. The RAND_8 and RAND_32 generate random numbers
of the appropriate bit length. The RAND_RANGE() macro generates a bounded random
number.

 RANDOM_RANGE (output_value, min_value, max_value);

 RAND_8 (output_value);

 RAND_32 (output_value);

Section 8.3.3 Creating, copying and destroying a trandom

Once the random number generation is initialized, you can build trandom objects. The
connstructor takes in a string and a line of which both are optional. However, omitting both
will create the identical random number generators. The default copy constructor and

operator=() can be used to copy a random number stream or set one stream to match
another. As there is no dynamic data created, there is no destructor14.

 trandom (const std::string & file, uint32 line)

Section 8.3.4 Getting random numbers

The draw() method is used to draw a random number. The number will be between 0 and 1
specifically [0..1).

double draw ()

13 Note to me: This is really lame. I’ve gotta implement a direct integer one and not store it in the file!
14 Note to ne. Should put a virtual one in there. Subclasses might need it.

Teal User’s Manual 0.58

Copyright 2004 Mike Mintz Page: 23 of 45

Section 8.3.5 Creating, copying and destroying a random_range15

A simple derived class of trandom is random_range. This class shifts the 0..1 double into a
uint32 based range.

random_range (const std::string &, uint32)

Section 8.4 Examples

1. Super stable random number streams:

As a general technique, it is useful to enclose each call to a random number generator
(RAND_RANGE, RAND8, etc) within a static function at the top of a file. This is because
the default macros use __FILE__ and __LINE__ as the seed and we don’t want those
changing. For example:

static uint32 get_next_channel (uint32 a_min, uint32 a_max) {

uint32 r; RAND_RANGE (r, a_min, a_max); return r; }

};

2. Direct use of the trandom class

You could also just bypass the macro and provide your own string (or number). This would
also be stable across code changes. For example:

trandom my_random (“Hello World”, 0);

uint32 my_random_value = my_random.draw ();

3. Cycling through random numbers

Sometimes it is necessary to track which random number has been handed out. This is
usually when either we want to walk an entire range before returning to a previous value,
or we want to make sure we never hand out a duplicate. Another common case is when the
number represents a resource, like an endpoint number, which can be “allocated” and
“released” randomly during a simulation.

In this case, a boolean array of the appropriate size may be used. Alternately, a map can be
used to map the random number to a boolean. For example, assume that we are handing out
uint8s. Using the technique in example 1 to isolate random number streams in a static
function at the top of the file, we could have:

static uint8 next_channel () {

 uint8 x;

 uint32 deadlock = 100000; //This is good enough for most cases.

 static bool used[256] = {0};

 do { RAND_8 (x);}while (--deadlock &&used[x]);

15 Shouldn’t this be trandom_range ?

Teal User’s Manual 0.58

Copyright 2004 Mike Mintz Page: 24 of 45

 if (!deadlock) vout::get (error) << :Deadlock! no more channels at”

 << __FILE__ << __LINE__ <<

endl;

 }

};

Note that the deadlock ensures that the system never is hung up. This is an important point
whenever constraining a random value. As the interactions of the random numbers
increases, so does the possibility of a deadlock.

4. Selecting a boolean via a 0..100% probability

Sometimes it’s useful to skew a random distribution so that it’s not gaussian. There are
many ways to do this. For a single bit (or a boolean), one simple way is by providing a
threshold, which represents probability of success. Then by generating a random number
between 0 and 99, and comparing it to the threshold, we can skew a distribution.

static bool get_use_tone_detection () {

 uint8 threshold = dictionary::get (“tone_detection”, 50); //default is

50%

 uint8 x; RAND_RANGE (x, 0, 99);

 return (x < threshold);

};

5. Selecting a uint32 via a probability distribution

A way to control the distribution of a uint32 is to choose a random number that include all
the possible values and then map these values on to a final value16. For example:

#include <algorithm> using namespace std;

typedef enum valid_address_type {config, io, cached, uncached};

typedef address_probability pair<valid_addresses, uint32>

static valid_address_type get_next_address

(std::list<address_probability> addresses) {

static total_range =sum<std::list<address_probability>> (addresses)

uint32 x; RAND_RANGE (0, total_range –1);

return find<std::list<address_probability>> (addresses, x).first;

};

6. Subclassing trandom

Yet another way is to subclass the trandom or trandom_range object and apply a

post-processing step. For example, taking the log of the result of the draw () method
will produce a logorithmic distibution.

16 Note to me SOMEBODY CHECK THIS! I am winging it here!

Teal User’s Manual 0.58

Copyright 2004 Mike Mintz Page: 25 of 45

Section 8.4.1 Constrained Random Testing

Often it is useful to constrain the generation of random numbers via an external to the test
mechanism. This allows one test to have several different runs. One way to do this is via
the master seed picked differently for each run. Another way is to use a test file that
provides variables to be used as bounds in the thresholds or distributions shown in the
examples above. See the dictionary namespace in Section 10.3.2 for some examples of
how to get external variables into your test.

Teal User’s Manual 0.58

Copyright 2004 Mike Mintz Page: 26 of 45

Chapter 9 Accessing Memory

Section 9.1 Overview

Almost every chip that is verified has internal memory or interacts with external memory.
This chapter covers Teal’s capability for testing those interfaces. It discusses what types of
memory is supported and how these are mapped to integer address ranges. It discusses how
memory building blocks can be used to support error injection, grouped memory and
bank/front door memory access.

Section 9.2 Theory of Operation

For simulation, the storage for memory can be implemented in c/c++ or in the HDL.
Implementing the memory in c/c++ is appropriate for extremely large memories, when all
accesses must be checked, or when statistics must be gathered. Since a c/c++
implementation could be built on top of Teal (using the vreg class, the run_loop class (see

Chapter 12), and the memory_bank class (see below), it is not discussed. This chapter is
concerned with memory implemented in the HDL. It is assumed that the memory is
implemented as a HDL register array.

There are two ways to get access to HDL implemented memory. One is to give Teal the

complete path to the memory, as is done for vreg17. Another is to put a hook task into the

module that contains the register bank (see teal_memory_note()). In either case, a

memory_bank object is created for each hook function call. This object contains code to
access the internal memory of the simulator that is implementing the HDL register array.

The memory_bank created by the hook function contains to_memory() and

from_memory() methods, which carry out the access without advancing simulation

time. The memory_bank also has low and high address 64 bit integers, which are used to
allow access via an integer address.

The memory namespace keeps track of all memory banks. Note that memory banks are the
workhorses of the memory namespace. They do the actual work; the namespace just figures
out which one to hand the access request to. In order for this to happen, the memory banks

must be mapped into an integer address range. The memory::map() function maps a

memory_bank to an address range. You could put this mapping in the initialization code

of your user_main(). That way, all other code can just read/write by integer address.

Sometimes several memory banks are grouped together to provide one logical memory
bank. In this case, you need to write a special memory bank that first retrives all the sub-

17 Note to me: BUG: This should be trivial to implement! Do it

Teal User’s Manual 0.58

Copyright 2004 Mike Mintz Page: 27 of 45

memory banks (using memory::bank_lookup ()) and then adds itself to the

memory namespace’s list of memory banks (using memory::add_bank()).

Sometimes you want to inject errors in the memory system. This is accomplished in a
similar manner to the grouped case, where you looking the bank in question, and add a new
bank that handles the memory accesses.18

Often it may be beneficial to randomly use either front door access (via a memory bank
that uses a bus transactor, like pci or ahb) or back door access via a memory bank that is
connected to an HDL model. The front door access is slower and takes simulation time, but
front door access will test that path and may also test contention.

Finally, because memory is accessed by integer address, a silicon based memory bank
implementation can access the memory with just a pointer de-reference19.

Section 9.3 Interface

Section 9.3.1 Memory functions

The memory manager has a fairly simple interface. You can map memory to some integer
range. You can also add banks of memory for special purpose memory. Later, other parts
of your simulation can retrive this memory by address or by path. And yes, you can read
and write this memory!

void add_map (const std::string & path, uint64 first_address,

uint64 last_address)

void add_memory_bank (memory_bank *)

memory_bank * lookup (const std::string & parial_path)

memory_bank * lookup (uint64 address_in_range)

reg read (uint64 global_address)

void write (uint64 global_address, const reg & value)

Section 9.3.2 Creating, copying and destroying a memory_bank

A memory_bank, at the lowest level, conects to the HDL DUT. This class is internal to the
memory namespace and is created whenever a note_memory_bank is placed in the HDL.
However, you may want to aggregrate or add special functions for a memory range. In this
case, you want to create your own memory bank. The only parameter is the name of the
memory bank.

18 note to me: really want a forget_bank call that takes the bank out if the runing. Can either take it out of the
list, or add a boolean to memory_bank like is_subbank and have the lookup skip these types (or do them on a
second pass if we init the bank type to subbank?).
19 Note to me: Build a silion memory map, create one automatically in the silicon memory.cpp.

Teal User’s Manual 0.58

Copyright 2004 Mike Mintz Page: 28 of 45

memory_bank::memory_bank (const std::string &)

Section 9.3.3 Determining the right memory bank

In order for the memory functions to work, they must determine which memory_bank

object will handle the access. This is done by the contains() methods. Note that there are
two, once for lookup by address and the other for lookup by name.

bool memory_bank::contains (uint64 address) const

bool memory::memory_bank::contains (const std::string & path)

const

Section 9.3.4 Actually reading and writing memory

Once a bank has been selected, the memory function will call one of the following two
methods.

virtual reg from_memory (uint64 address) [pure virtual]

virtual void to_memory (uint64 address, const reg & value)

[pure virtual]

Section 9.3.5 Examples

1. Simple memory use

..assuming, in tb.v... :

initial $teal_memory_note() //in module tb.memory_1

initial $teal_memory_note() //in module tb.memory_2

...in a main.cpp...

memory::add_map (“memory_1”, 0x100, 0x200);

memory::add_map (“memory_1”, 0x201, 0x400);

memory::write (0x10a, 22); //write local offset 0xa in memory_1 to 22.

if (memory::read (0x10a) != 22) {

 vout::get(error) << “At memory_1[“ 0xa << “] “ got “

 << memory::read (0x10a) << “ expected 22.”

}

memory::write (0x20b, 33); //write local offset 0xb in memory_2 to 33.

if (memory::read (0x20b) != 22) {

 vout::get(error) << “At memory_2[“ 0xb << “] “ got “

 << memory::read (0x20b) << “ expected 33.”

}

2. Directly interacting with a memory_bank

..assuming, in tb.v... :

Teal User’s Manual 0.58

Copyright 2004 Mike Mintz Page: 29 of 45

initial $teal_memory_note() //in module tb.memory_2

...in a main.cpp...

memory_bank* bank = memory::lookup (“memory_2”); //partial path

bank->to_memory (0x10, 44); //directly write a 44 to local offset 0x10

if (bank_from_memory (0x10) != 44) {

 vout::get(error) << “At memory_2[“ 0x10 << “] “ got “

 << memory::read (0x10) << “ expected 44.”

}

Teal User’s Manual 0.58

Copyright 2004 Mike Mintz Page: 30 of 45

Chapter 10 Concurrency In Teal

Section 10.1 Overview

Verification is a complicated task. If a complicated task can be broken down to a set of
simpler, independent tasks the problem becomes less complicated. These tasks are then
concurrent, and their creation, management, and interaction is the subject of this chapter.

Section 10.2 Theory of Operation

As discussed in Chapter 4, the user_main() c function is your top-level controller thread.
Generally, this thread waits for the DUT to be ready and then initializes the dictionary and
random number subsystems. After that, a series of generators/checkers/transactors are
started and some end condition is tested. When the end condition occurs, all threads are
stopped and the main thread exits.

The user_main() creates threads using the run_thread() function. Run_thread()
takes in the function you want to run and a pointer to a data area. A thread is created and
the function is called. Normally, the thread never returns, it is cancelled by your “main”

thread with kill_thread()2021.If, however, the thread is a temporary one, and thus

returns, the last line must be note_thread_completed(). Teal needs this call for

internal reasons.

When a thread is started, including user_main(), it runs until it reaches a waiting
point. A waiting point tells Teal that control can be returned to the HDL simulator. Once a
wait condition has been satisified, the blocked thread runs. There are three types of waiting

points. They are at(), mutex::enter() and semaphore::wait().

The at() function is the most common wait point. It is intended to model the “@”

statement in Verilog. It takes in a sensitivity list of vreg signals. The signals are matched

on the posedge, negedge or any change. A statement such as at (posedge (clk)

|| change (reset_n)); would mean to pause the thread until the clk signal went
from an X, Z, or 0 to a 1 or any change occurred in the reset_n signal. Execution would
then continue after that statement.

The mutex::enter() wait point is used when two or more threads need access to some
common hardware resource. A good example is the PCI or AHB bus in the system. In the
test system and in the software, there may be many threads competing to access the bus(as

the same master). The mutex::enter() call waits until no other thread is using that

20 Note to me: should kill_thread be renamed to stop_thread and run_thread be start_thread?
21 The exception to this rule is generally the user_main() thread, which spawns other threads and then returns.

Teal User’s Manual 0.58

Copyright 2004 Mike Mintz Page: 31 of 45

mutex object and then locks the object. After your thread is done using the hardware, you

must call mutex::unlock () to tell Teal that you are done. At that point, any other
waiting thread is allowed to access the hardware. See the utility object

mutex_sentry() for simple mutex management.22

The last wait point is semaphore::wait (). The semaphore object is intended to
loosely model the event object in Verilog. This is most often used for inter-thread
communication. For example, suppose you have a monitor thread and your test is waiting
for an ACK packet to be sent. You would declare a semaphore object for ack in the monitor

object (which also is a separate thread) and have a method wait_for_ack() that calls

semaphore::wait() on the ack semaphore. When the main loop of the monitor object

sees an ack on the wire, it would call semaphore::signal () on the ack object. This

would cause the wait_for_ack() method to return and the calling thread to continue
running.

Note that, for running on silicon, the at() clause is not supported. This is because vregs
do not exist in the silicon23.

The synch module also provides the function vtime(), this returns a uint64 of the

current simulation time.24

The function called thread_name(pthread_t) returns the name associated with the

thread id, which is returned by run_thread()25.

Section 10.3 C/C++ Interface

Section 10.3.1 Creating and Destroying Threads

A new task is created with run_thread(). This function takes in a function to run, a data
parameter and a task name. It returns an id to be used to kill the thread (or any other

pthread function). The function kill_thread() takes in a thread id and stops that thread.

In general, a thread runs until it is stopped by another thread. If however a thread runs to
completion and returns from the user_thread function, it must call

note_task_completed() to let Teal clean up internal data structures26.

22 Note to me: Code THIS! Test this in mutex_test
23 Note to me: create a CSR utility class that takes in a vreg and an address.
24 Note to me: add a time_in() function that takes in an enum and converts all vtime measurements to that
timebase. Does this mean vtime should be a double? If so, operator== gets weird. If no, we could loose
precision. At any rate, shouldn’t we move this into the utilities area?
25 Note to me: Well here is an intersting point about a teal.h general header. People don’t care that this is a
synh thing. It’s really a utility thing!

Teal User’s Manual 0.58

Copyright 2004 Mike Mintz Page: 32 of 45

The thread_name() function converts between the thread_id and the task name.

void (user_thread) (void* user_data)

pthread_t run_thread (user_thread, void * user_data, const

std::string & name)

void * kill_thread (pthread_t)

void note_task_completed ()

std::string thread_name (pthread_t)

The teal_main_misc() function is the actual verilog hook to convert the $teal_main call
in the HDL testbench to this c routine. It must be in a pli or vpi call back structure. See the
figure below.

void teal_main_misc (int user_data, int reason)

The vtime() function returns the current simulation time.

uint64 vtime ()

The at() function is the main way a task pauses. It is given a sensitivity list, which is an
object that is automatically created (and destroyed) by calling posedge(), negedge() or

change() with a vreg as its argument. The list is also extended when you have multiple
vreg changes (negedge, posedge, or change) seperated by the || operator.

NOTE: posedge() and negedge() only test the lowest bit for the appropriate edge. If you
need to test for a different bit, you must build a vreg on a specific bit.27

void at (const sensitivity &)

 posedge (vreg & v)

 negedge (vreg & v)

 change (vreg & v)

Section 10.3.2 Creating and Destroying a Mutex

Often several independent threads need to use a common hardware resource, such as a bus.
In the case that each thread has it’s own master id and the bus has hardware arbitrartion,
each task can arbitrate for the bus. However, if the independent tasks are the same master
(as if they are emulating multiple software threads on a cpu), they need a simulation
mechanism to arbitrate. This is the purpose of the mutex class. Once constructed, it’s
pointer is passed to all affected modules (or hidden in a common transactor, like bus

master). Each task calls lock() to either gain access to the hardware or block until the

26 Note to me: Gotta write and test a kill_all_threads()
27 Note: It would be a simple matter to have a second constructor on posedge/negedge that take in a bit
position and watch that bit.

Teal User’s Manual 0.58

Copyright 2004 Mike Mintz Page: 33 of 45

current task is finished with the hardware. Once the lock() method returns, you access

the hardware and then call release() to inform Teal that you are done with the hardware.
At that point, any waiting threads re-arbitrate for the mutex.

The constructor only takes in a name for the mutex.

 mutex (const std::string & name)

~mutex ()

Section 10.3.3 Working with a Mutex

There are only two operations on Mutex. One is to acquire the mutex, by calling lock() and
the other is to release the mutex by calling unlock().

void lock ()

void unlock ()

Section 10.3.4 Creating and destroying a Condition

Whenever you have multiple tasks, there is a good chance that they will need to
communicate. While tasks can put data into work queues and take data out, there must be
some mechanism to signal that one task as just put some data in (or taken something out).
Also, a monitor task may need to announce a particular condition (like ack, nak, or
byte_sent). There may or may not be a receiver to note the announced event. The

condition class provides such inter-task communication28.

A condition isgiven a name when constructed.

condition (const std::string & name)

 ~condition ()

Section 10.3.5 Working with a condition

Once a condition is created, it’s pointer is passed to the affected tasks (or buried in a

method of a class, like monitor::wait_for_ack ()). At the appropriate time, one task

calls wait() and it blocks until another thread calls signal.

void signal ()

void wait ()

28 Note to me: BUG have to remove the got to wait after signalled logic or modify it to wait at least one
simulation step by noting the vtime() and doing a return only of vtime is > signal time. HAVE TO THINK
ABOUT THIS.

Teal User’s Manual 0.58

Copyright 2004 Mike Mintz Page: 34 of 45

Section 10.3.6 Examples

1. Simple at() expressions

vreg address (“testbench.address”);

vreg clk (“tb.clk”);

at (posedge (clk) || change (address)); //wait until next rising clk or

any address change

at (negedge (clk)); //falling edge test

2. Mutex

mutex main_bus_mutex (“main bus”);

run_thread (master_one, &bus_mutex, “task one”);

run_thread (master_two, &bus_mutex, “task two”);

void master_one (void* context) {

 mutex* m = static_cast<mutex*> context;

 m.lock ();

 vreg address (“tb.address”); address = 0x10;

 vreg clk (“tb.clk”);

 at (posedge (clk)); //wait one clk pulse

 vreg data (“tb.data”); vout << thread_name() << “data is “ << data <<

endl;

}

void master_two (void* context) {

 mutex* m = static_cast<mutex*> context;

 m.lock ();

 vreg address (“tb.address”); address = 0x16;

 vreg clk (“tb.clk”);

 at (posedge (clk)); //wait one clk pulse

 vreg data (“tb.data”); vout << thread_name() << “data is “ << data <<

endl;

}

3. Semaphore

struct context {

 void context (): mailbox (“main mailbox”),{};

 semaphore mailbox;

 std::vector <uint32> work_queue;

}

context my_context;

run_thread (producer, context, “producer”);

run_thread (consumer, context, “consumer”);

Teal User’s Manual 0.58

Copyright 2004 Mike Mintz Page: 35 of 45

void producer (void* c) {

 context* the_context = static_cast<context*> (c);

 the_context.work_queue.push_back (10);

 the_context.mailbox.signal ();

 the_context.work_queue.push_back (20);

 the_context.mailbox.signal ();

}

void consumer (void* c) {

 context* the_context = static_cast<context*> (c);

 for (;;) {

 the_context.mailbox.wait ();

 vout::get (note) << thread_name () << received <<

the_context.work_queue.front ();

 the_context.work_queue.pop_front ();

 }

}

Teal User’s Manual 0.58

Copyright 2004 Mike Mintz Page: 36 of 45

Chapter 11 Dictionary Namespace

Section 11.1 Overview

This chapter introduces a namespace to solve a common problem in simulation: getting test
parameters.29

Section 11.2 Theory of Operation

Sometimes you want to control a test via an external file. This allows a single test to have
many different directed runs. These runs would still use random numbers, except that their
range might be constrained by the test file. For example, the probability of an feature, or
error may be an external variable. Alternatively, maybe your test file can be used to turn on
and off features.

Teal provides a simple dictionary namespace for this purpose. After the dictionary
namespace is initialized with a filename, the file is opened and the first word in every line

is cached. Then, your test can query the dictionary (with the find() function) and see what
the value after the keyword is. For example, if the file had “number_of_streams 33” on a

line, a call to dictionary::find (“number_of_streams”); would return 33.

Section 11.3 C/C++ Interface

Section 11.3.1 Dictionary main functions

In order to use the dictionary, you must first call start(). This function opens the file and
indexes all the entries. When you are done with the file, call stop().

void start (const std::string & path)

void stop ()

Section 11.4 Working with the dictionary

In order to see if an entry exists, call the find() function that returns a std::ifstream. If

the stream is bad (using the std::bad() function in iostreams) the entry does not exist. If
you are looking up an integer and just want a default value to be used if there is no entry,
call the find that returns a uint32.

uint32 find (const std::string & name, uint32 default_val)

std::ifstream& find (const std::string & name)

29 Note to self: Gotta add an include directive so that dictionary can be a hierachy, Also, consider merging in
command line parameters and dictionary. This would imply virtual functions and a define new() somewhere.

Teal User’s Manual 0.58

Copyright 2004 Mike Mintz Page: 37 of 45

11.4.1.1 Examples

1. Simple at() expressions

dictionary::start (“teal_test.txt”); //assume it has a line “foo 10”

vout::get(note) << “Foo is “ << dictioary::find (“foo”, 20) << endl;

std::ifstream bar (dictionary::find (“bar));

if (bar.bad ()) {

 vout::get(warning) <, “bar not found” << endl;

}

else {

 double bar_val; bar_val << bar; //read it in, use bar_val<< std::hex <<

bar; if the valus is in hexidecimal

 vout::get(note) << “Bar is “ << bar_val << endl;

}

2. A min max integer

mutex main_bus_mutex (“main bus”);

std::ifstream bar (dictionary::find (“channel_range));

if (bar.bad ()) {

 vout::get(warning) <, “channel range not found” << endl;

}

else {

 uint32 min_val (0);

 uint32 max_val (0);

 min_val << max_val << bar;

 vout::get(note) << “Min is “ << min_val << “ and max is “ << max_val <<

endl;

}

Teal User’s Manual 0.58

Copyright 2004 Mike Mintz Page: 38 of 45

Chapter 12 The run_loop object

Section 12.1 Theory of Operation

While the run_thread() and kill_thread() functions are adequate, it is extremely common to
have an object that represents a checker, generator, or transactor30. All of these types of
objects have a common theme. You create them, you start them and then sometime later,
you stop them. Once they are started, they are in an infinite loop that has a wait point
statement and then a loop body31. The run_loop class provides exactly this functionality.

The run-loop constructor takes in a path to the HDL root for this object and a name for the

created thread. It has virtual start() and stop() methods, which, by default, start and
stop a thread. That thread is an infinite loop that first calls the pure virtual method do_at

(), and then calls one_iteration ().

Section 12.2 Interface

Section 12.2.1 Constructing, copying, and destroying a run_loop

The run_loop construction takes in a path to be used to hook up to the HDL and a name to
be used for the task that is created. The copy constructor is priovate to prevent copying a

run_loop object32.

 run_loop (const std::string & path, const std::string name)

virtual ~run_loop ()

Section 12.2.2 Working with a run_loop object

Since a run_loop abstracts a common infinate loop, calling start() creates and runs the

independent task running. The stop() method is used to stop the task.

It is up to the implementor of a derived class to determine what to put in the do_at() and

the one_iteration() methods. Maybe you are implementing a monitor and the do_at()
is just a at(negedge (reset_n) or posedge (clk)) and the one_iteration() is a
state machine of the protocol. Or maybe this is a consumer similar to the semaphore

example and the do_at() is just a semaphore.wait() and the one_iteration() pops a
value from a work queue and processes the data.

virtual void start ()

30 Note to self, the generator may not need an hdl path, the checker may or may not depending on the level.
31 Note to me: Should the method name be loop_body() ?

Teal User’s Manual 0.58

Copyright 2004 Mike Mintz Page: 39 of 45

virtual void stop ()

virtual voiddo_at () = 0;

virtual void one_iteration = 0;

Section 12.3 Examples

Simple one as in test, and an interrupt handler with different subclasses for simulation and
silicon.

32 Note to me; Gotta implement this!

Teal User’s Manual 0.58

Copyright 2004 Mike Mintz Page: 40 of 45

Chapter 13 Appendix

Section 13.1 Teal Coding Conventions

Teal follows a few simple rules in the interface (and implementation). All code
components are within the teal namespace, with the exception of the user_main() function,
which is implemented by you.

Within a class, public methods and data members come first, followed by protected and
then private members. This rule may be broken is a public member is closely tied to a
protected member.

In general, all compiler-generated methods are defined in an appropriate access area. For
example, in the vout class, one is not supposed to copy or assign a vout, so those methods
are both not implemented and placed in the private scope.

Some objects only have one instance by design. If so, there is a static method, called get()
that returns a reference to the singleton.

Any data or method that is intended to be in the protected or private scope has a trailing
underscore.

Inline methods are generally not used, but may be present if it seems more elegant.
Obviously, that is a judgement call.

Very few MACROS are used. They exist mainly where the macro expansion, as when
using __FILE__ (see trandom.h)

Section 13.2 Building Teal from Source Code

In general, set the SIM and VERILOG_INST_DIR and type make. The define vpi_2_0
causes Teal to use the vpi interface, omitting it uses the 1.0 interface. The output is an
archive called libteal_$(SIM).a

Teal User’s Manual 0.58

Copyright 2004 Mike Mintz Page: 41 of 45

~

~condition
teal::condition · 36

~mutex
teal::mutex · 35

~reg
teal::reg · 12

~run_loop
teal::run_loop · 40

A

add_map
teal::memory · 29

add_memory_bank
teal::memory · 29

at
teal · 34

C

change
teal::change · 34

condition
teal::condition · 35

contains
teal::memory::memory_bank · 30

D

dec
teal · 21

do_at
teal::run_loop · 41

draw
teal::trandom · 25

E

endl
teal · 21

error
teal · 20

error_count
teal::vout · 20

expected
teal · 20

expected_count
teal::vout · 20

F

find
teal::dictionary · 39

format_string
teal::reg · 15

from_memory
teal::memory::memory_bank · 30

G

get
teal::vout · 20

H

hex
teal · 21

I

init
teal::trandom · 24

invalidate_all_vregs
teal::vreg · 18

K

kill_thread
teal · 34

Teal User’s Manual 0.58

Copyright 2004 Mike Mintz Page: 42 of 45

L

lock
teal::mutex · 35

lookup
teal::memory · 29

M

memory_bank
teal::memory::memory_bank · 30

message_type
teal · 20

mutex
teal::mutex · 35

N

negedge
teal::negedge · 34

note
teal · 20

note_count
teal::vout · 20

note_task_completed
teal · 34

O

one_iteration
teal::run_loop · 41

operator-
teal · 13

operator &
teal · 14

operator &=
teal::reg · 14

operator!=
teal · 14

operator()
teal::reg · 12

operator|
teal::reg · 14

operator|=
teal::reg · 14

operator~
teal::reg · 14

operator+
teal · 13

operator+=
teal::reg · 13

operator<
teal::reg · 14

operator<<
teal::reg · 13, 14, 15
teal::vout · 20, 21

operator=
teal::vreg · 12, 17

operator-=
teal::reg · 13

operator==
teal::reg · 14

operator>>
teal::reg · 13

P

posedge
teal::posedge · 34

R

RAND_32
teal:: RAND_32 · 24

RAND_8
teal:: RAND_8 · 24

random_range
teal::random_range · 25

RANDOM_RANGE
teal::RANDOM_RANGE · 24

read
teal::memory · 29

read_check
teal::reg · 15
teal::vreg · 18

reg
teal::reg · 12

run_loop
teal::run_loop · 40

run_thread
teal · 34

S

signal
teal::condition · 36

start
teal::dictionary · 38

Teal User’s Manual 0.58

Copyright 2004 Mike Mintz Page: 43 of 45

teal::run_loop · 41
stop

teal::dictionary · 38
teal::run_loop · 41

T

teal
at · 34
dec · 21
endl · 21
error · 20
expected · 20
hex · 21
kill_thread · 34
message_type · 20
note · 20
note_task_completed · 34
operator- · 13
operator & · 14
operator!= · 14
operator+ · 13
run_thread · 34
teal_main_misc · 34
thread_name · 34
user_thread · 34
vtime · 34

teal:: RAND_32 · 24
teal:: RAND_8 · 24
teal::change

change · 34
teal::condition

~condition · 36
condition · 35
signal · 36
wait · 36

teal::dictionary
find · 39
start · 38
stop · 38

teal::memory
add_map · 29
add_memory_bank · 29
lookup · 29
read · 29
write · 30

teal::memory::memory_bank
contains · 30
from_memory · 30
memory_bank · 30
to_memory · 30

teal::mutex

~mutex · 35
lock · 35
mutex · 35
unlock · 35

teal::negedge
negedge · 34

teal::operator<<
teal::reg · 13

teal::posedge
posedge · 34

teal::random_range
random_range · 25

teal::RANDOM_RANGE · 24
teal::reg

~reg · 12
format_string · 15
operator &= · 14
operator() · 12
operator| · 14
operator|= · 14
operator~ · 14
operator+= · 13
operator< · 14
operator<< · 13, 14, 15
operator-= · 13
operator== · 14
operator> · 14
operator>> · 13
read_check · 15
reg · 12
teal::operator<< · 13
triple_equal · 14
write_through · 15

teal::run_loop
~run_loop · 40
do_at · 41
one_iteration · 41
run_loop · 40
start · 41
stop · 41

teal::trandom
draw · 25
init · 24
trandom · 24

teal::vout
error_count · 20
expected_count · 20
get · 20
note_count · 20
operator<< · 20, 21

teal::vreg
~vreg · 17
invalidate_all_vregs · 18
operator= · 12, 17

Teal User’s Manual 0.58

Copyright 2004 Mike Mintz Page: 44 of 45

read_check · 18
vreg · 17
write_through · 18

teal_main_misc
teal · 34

thread_name
teal · 34

to_memory
teal::memory::memory_bank · 30

trandom
teal::trandom · 24

triple_equal
teal::reg · 14

U

unlock
teal::mutex · 35

user_thread
teal · 34

V

vreg
teal::~vreg · 17
teal::vreg · 17

vtime
teal · 34

W

wait
teal::condition · 36

write
teal::memory · 30

write_through
teal::reg · 15
teal::vreg · 18

