
Rochester Institute of Technology
School of Computer Science and Technology

Enhancements to
The Frame Virtual Machine

by
Archna Bhandari

A thesis, submitted to
The faculty of the School of Computer Science and Technology,

in partial fulfIllment of the requirements for the degree of
Master of Science in Computer Science

Approved by : -=-----=-_---:::-:------:---=-=-=-- _
Professor John A. Biles

Professor Kevin Donaghy

Professor Peter G. Anderson

October, 1989

Title of thesis Enhancements to the Frame Virtual Machine.

I Archna Bhandari hereby grant permission to the Wallance Memorial
Library of RIT to reproduce my thesis in whole or in part. Any reproduction
will not be for commercial use or profit.

Date 11113/89

ABSTRACT

The Enhanced Frame Package is a tool to build Expert Systems. It is a

frame based system, that initially was developed in C-Prolog by LaMora

S. Hiss at Rochester Institute of Technology in 1987 for her master's

thesis. It was enhanced in the current thsis to provide much larger

expressive power andgreater ease of use. Several operators were

modified/enhanced, and several new operators were added, while

providing the user a balance of computational tractability, expressive

power and consistency.

Major concepts provided in the Enhanced Frame Package include - local

consistency checking as opposed to global consistency checking and

how the user can have the best of both options; the flexibility of loading

a knowledge base file as a consistent system or as an inconsistent

system; operations that work on working memory and operations that

work on the original file in the working directory; the concept of a

knowledge analyzer; the way one sees the human mind, knowledge and

learning and its parallel in knowledge representation and the

surrounding issues of consistency, expressive power and computational

tractability.

TABLE OF CONTENTS

page no.

1 INTRODUCTION

2 BACKGROUND 3

2.1 THE FRAME CONCEPT 3

2.2 THE FRAME VIRTUALMACHINE (EarlierVersion) 5

3 PROPOSED ENHANCEMENTS TO THE

FRAME VIRTUAL MACHINE 8

3.1 A START 8

3.2 DISCUSSION 8

3.2. 1 Primary Feature Enhancements 10

3.2.2 Utility Related Feature Enhancements 17

3.2.3 Bugs in the Frame VirtualMachine 19

3.2.4 Documentation Improvements 20

4 KNOWLEDGE REPRESENTATION ISSUES 21

4.1 ISSUES 21

4.2 THE HUMANMIND, KNOWLEDGE AND LEARNING 24

5 IMPLEMENTATION CONCEPTS 27

5.1 DEFINITION OPERATORS 27

5.2 LOCAL CONSISTENCY CHECKING VS. GLOBAL

CONSISTENCY CHECKING 27

5.3 LOADING AS A CONSISTENT/INCONSISTENT SYSTEM 28

5.4 CREATING AND LOADING THE KNOWLEDGE BASE 28

5.5 OPERATIONS ONWORKINGMEMORY 29

5.6 OPERATORS THATMODIFY THE KNOWLEDGE BASE 30

5.7 ADDITION/REMOVALOFMULTIPLE ELEMENTS INTHE

VALUE FACET 31

5.8 ANOTEABOUT FACETOPERATORS 3 1

Enhanced Frame Package

5.9 PACKAGE BEHAVIOR: a difference from Prolog

5.10 INTERNAL FEATURES OF THE FRAME PACKAGE

5.11 TEMPORARY FILES

5.12 KNOWLEDGE BASE FILE VS. DEMON PREDICATE FILE

32

33

34

34

FRAME PACKAGE OPERATORS

6. 1 RUNNING THE FRAME PACKAGE

STORING KNOWLEDGE IN A KNOWLEDGE BASE FILE

6.2. 1 Definition Operators

6.2.2 Demons

LOAD

FILE_CREATE

FTLE.EDIT

PURGE

RELOAD

TEMP_EDIT

FRAME_EDIT

SAVEJFILE

SAVEJT

6.2

6.3

6.4

6.5

6.6

6.7

6.8

6.9

6.10

6.11

35

35

36

36

41

44

44

45

45

46

46

50

50

51

6.12 VALUE FACET OPERATORS

6. 12. 1 add_value_to_slot

6. 1 2.2 remove_value_from_slot

6.12.3 remove_all

6.12.4 change_value_of_slot

6.12.5 change_all

6.12.6 return_value_from_slot

52

52

53

54

55

56

57

6.13 MAX FACET OPERATORS

6.13.1 add_max_to_slot

6.13.2 remove_max_from_slot

6.13.3 change_max_of_slot

6.13.4 return_max_from_slot

58

58

59

60

61

Enhanced Frame Package

6.14 MIN FACET OPERATORS 63

6.14.1 add_min_to_slot 63

6.14.2 remove_min_from_slot 64

6.14.3 change_min_of_slot 65

6.14.4 return_min_from_slot 66

6.15 TYPE FACET OPERATORS 67

6.15.1 add_type_to_slot 67

6.15.2 remove_type_from_slot 68

6.15.3 change_type_of_slot 69

6.15.4 return_type_from_slot 70

6. 16 DEFAULT FACET OPERATORS 7 1

6.16.1 remove_default_from_slot 7 1

6.16.2 return_default_from_slot 72

6.17 FRAME OPERATORS 73

6.17.1 add_frame 73

6.17.2 rename_frame 73

6.17.3 undef_frame 74

6.17.4 frame_match_exact 75

6.17.5 frame_match_subset 76

6.17.6 frame_subsumes 77

6.18 KNOWLEDGE ANALYSIS OPERATORS 79

6.18.1 ka (knowledge_analyzer) 79

6.18.2 check_frame 79

6.19 UTILITY OPERATORS 80

6.19.1 trace_on/trace_off 80

6.19.2 print_tree 81

6.19.3 print_frame 82

6.19.4 show.all 83

6.19.5 show_file 85

iii

Enhanced Frame Package

6.20 DEMON FILE OPERATORS 86

6.20. 1 load_demon 86

6.20.2 edit_demon 86

6.20.3 create_demon 86

7 FUNCTIONAL DETAILS 88

88

88

89

91

92

93

94

95

96

97

98

99

99

7.12 VALUE FACET OPERATORS 100

7.12.1 add_value_to_slot 100

7.12.2 remove_value_from_slot 101

7.12.3 remove_all 102

7.12.4 change_value_of_slot 103

7.12.5 change_all 105

7.12.6 retum_value_from_slot 106

7.13 MAX FACETOPERATORS 108

7.13.1 add_max_to_slot 108

7.13.2 remove_max_from_slot 109

7.13.3 change_max_of_slot 110

7.13.4 return_max_from_slot 111

iv

7.1 DEFTNTTION OPERATORS

7.1.1 defjrame

7.1.2 def_slot

7.2 DEMONS

7.3 LOAD

7.4 FJXE_CREATE

7.5 FILE_EDIT

7.6 PURGE

7.7 RELOAD

7.8 TEMP_EDIT

7.9 FRAME_EDIT

7.10 SAVE_FILE

7.11 SAVE_IT

Enhanced Frame Package

7.14 MIN FACET OPERATORS 1 12

7.14.1 add_min_to_slot 112

7.14.2 remove_min_from_slot 113

7.14.3 change_min_of_slot 114

7 . 14.4 return_min_from_slot 115

7.15 TYPE FACETOPERATORS 116

7.15.1 add_type_to_slot 116

7.15.2 remove_type_from_slot 117

7.15.3 change_type_of_slot 118

7.15.4 return_type_from_slot 119

7.16 DEFAULT FACET OPERATORS 120

7.16.1 remove_default_from_slot 120

7.16.2 retum_default_from_slot 120

7.17 FRAME OPERATORS 122

7.17.1 add_frame 122

7.17.2 rename_frame 122

7.17.3 undef_frame 123

7.17.4 frame_match_exact 123

7.17.5 frame_match_subset 124

7.17.6 frame_subsumes 124

7.18 KNOWLEDGE ANALYSIS OPERATORS 126

7.18.1 ka (knowledge_analyzer) 126

7.18.2 check_frame 126

7.19 UnLiTY OPERATORS 128

7.19.1 trace_on/trace_off 128

7.19.2 print_tree 128

7.19.3 print_frame 128

7.19.4 show_all 129

7.19.5 show file 129

Enhanced Frame Package

7.20 DEMON FILE OPERATORS 130

7.20.1 load_demon 130

7.20.2 edit_demon 130

7.20.3 create_demon 130

8 CONCLUSIONS 131

8.1 INHERITANCE MECHANISM 132

8.2 TRACE FEATURE 134

8.3 LOCALDEPENDENCY BETWEEN SLOTS 1 34

8.4 HELP FACILITY 136

8.5 ERRORMESSAGES 136

8.6 NATURAL LANGUAGE INTERFACE 136

BIBLIOGRAPHY 137

APPENDIX A

Excerpts from [HISS87a]

APPENDIX B

Keywords and their definitions

APPENDIX C

animalkingdom knowledge base file

APPENDIX D

A sample session

VI

1 INTRODUCTION

'A frame virtual machine in
C-Prolog'

was first developed by LaMora S. Hiss at Rochester

Institute of Technology in 1987 as her Master's Thesis work. A perusal of this work

revealed that several enhancements could be made to the frame virtualmachine. Since then it

has been enhanced by the author as herMaster's Thesis work. Throughout this document,

the enhanced frame virtual machine in C-Prolog will be referred to as the frame package or

the enhanced frame package or the package.

This document assumes that the user is familiar with the concept of frames and the Prolog

language. The package implementation is in C-Prolog. The following will briefly describe

the topics covered in the thesis.

Chapter 2, BACKGROUND outlines the basic information about the frame concept in

general and specifically discusses the salient features of the frame virtual machine developed

by LaMora S. Hiss.

Chapter 3, SUGGESTED ENHANCEMENTS TO THE FRAME VIRTUAL MACHINE

discusses the major results of the critical examination of the frame virtual machine and

presents conceptual development, issues and proposed enhancements.

Chapter 4, KNOWLEDGE REPRESENTATION ISSUES talks about some fundamental

issues such as consistency, computational tractability and expressive power related to

knowledge representation systems. These issues surfaced during critical examination of the

frame virtual machine and while developing conceptual thoughts for enhancements. It also

discusses the techniques used in this package to deal with these issues.

Chapter 5 IMPLEMENTATION CONCEPTS describes the concepts that were developed for

the enhanced frame package keeping in mind the knowledge representation issues, the

proposed enhancements and the basic framework of the earlier version.

Chapter 6 FRAME PACKAGE OPERATORS defines each individual operator in terms of

name, syntax, purpose and an illustrative example. Functionality of the operators explaining

Enhanced Frame Package

all the major logical steps that are followed when an operation is performed has been

described in Chapter 7 FUNCTIONAL DETAILS.

The conclusions have been included in Chapter 8 CONCLUSIONS.

Four appendices have been included that cover - excerpts from [HISS87a] about other frame

packages, keywords and definitions, an example knowledge base file and an interactive

example session.

For the purpose of just using the package, a self-sufficient USER MANUAL and its

companion a TECHNICAL MANUAL also have been prepared. This way, a user does not

have to page through the details of this thesis.

The source code for the Enhanced Frame Package has been included separately in the

document "ENHANCED FRAME PACKAGE - SOURCE
CODE."

2 BACKGROUND

2.1 THE FRAME CONCEPT

In 1974, Marvin Minsky proposed a theory of
"frames"

as a mechanism for representing

knowledge in a computer. Minsky mentioned in his paper that the theories both in artificial

intelligence and in psychology have been on the whole too minute, local and unstructured to

account, either practically or phenomenologically, for the effectiveness of common-sense

thought. The
"chunks"

of reasoning, language, memory, and perception ought to be larger

and more structured, and their factual and procedural contents must be more intimately

connected in order to explain the apparent power and speed of mental activities

[MINS85,246].

According toMinsky, a frame is a data-structure for representing a stereotyped situation, like

being in a certain kind of living room or going to a child's birthday party. Attached to each

frame are several kinds of information. Some of this information is about how to use the

frame. Some is about what one can expect to happen next Some is about what to do if these

expectations are not confirmed.

Minsky perceived frames as a good model of human memory. He even went so far as to

propose a frame-based explanation of Freud's finding of early cognitive structures in

free-association thinking [MINS85,248]. He argued that researchers must model human

mind design and suggested that logical reasoning is not flexible enough to serve as a basis for

thinking[MINS85,262].

Minsky 's first paper on frames was published in 1975 and has evoked a great deal of

discussion and interest in exploring further levels of detail. It presents plausible and

provocative examples of the applications of frames to different problems in artificial

intelligence [KUIP75,152]. Since then, a lot of researchers have begun to distinguish the

various theoretical and technical issues in discussions of frames, and many variations of the

frame concept have been formulated.

Fikes and Kehler discuss the advantages of frame languages in their paper:

Enhanced Frame Package

"Frames capture the way experts typically think about much of their knowledge,

provide a concise structural representation of useful relations, and support a

concise definition-by-specialization technique that is easy formost domain experts

to use. In addition, special purpose deduction algorithms have been developed

that exploit the structural characteristics of frames to rapidly perform a set of

inferences commonly needed in knowledge system applications.

In addition to encoding and storing beliefs about a problem domain, a

representation facility typically performs a set of inferences that extends the

explicitly held set of beliefs to a larger, virtual set of beliefs. Thus, the

representation facility participates in the system's reasoning activities by

providing these
"automatic"

inferences as part of each assertion and retrieval

operation. Frame languages are particularly powerful in this regard because the

taxonomic relationships among frames enable descriptive information to be shared

among multiple frames (via inheritance) and because the internal structure of

frames enables semantic integrity constraints to be automatically
maintained."

[FIKE85,904-905]

During the process of acquiring knowledge for this thesis and while investigating current

advancements in the area of frame based knowledge representation systems; the following

frame packages were studied:

FRL [ROSE79]

KRL [BOBR85]

KRYPTON [BRAC85][PIGM84]

UNIT PACKAGE [STEF79]

KANDOR [PATE84]

KEE [FIKE85]

FRAME VIRTUALMACHINE [HISS87a]

Since the thesis relates to the enhancements of the frame virtual machine, the domain of the

frame package discussions here will be limited to the frame virtual machine. A

comprehensive description ofother frame packages has been included in the Appendix A.

Enhanced Frame Package

2.2 THE FRAME VIRTUAL MACHINE (Earlier Version)

The Frame Virtual Machine was developed at the Rochester Institute ofTechnology in 1987

by LaMora S. Hiss using C-Prolog [HISS87a]. The basic conceptual unit of the Frame

Virtual Machine is a frame, which is implemented as an abstract data type.

A frame is composed of a unique name and a list of any number of slots representing

knowledge about a frame. A slot is composed of a name and a list of one or more facets.

Facets represent descriptive knowledge, procedural knowledge and constraints for a slot's

value. There is a predefined set of possible facets : value, type, max, min, default, if_added,

if_needed and if_removed.

The value, type, max, min and default facets store declarative knowledge about a slot's

value. A value facet holds the value for a given slot. The value facet always contains a list,

and the cardinality determines how many values may be in that list. The cardinality of a slot

is constrained by the min and max facets. The type facet serves as a constraint on the

possible types of values that can appear in the value facet. The default facet provides a list of

values that is to be used for the slot's value if no other values are present.

The remaining three facets; if_needed, if_added and ifremoved store procedural knowledge

in the form of calls to prolog predicates or demons. Conceptually, a demon is a predicate that

will be invoked under the appropriate circumstances. These circumstances differ with each

of the three facets. A demon in the if_needed facet will be invoked when a value is requested

for a given slot but none is present in the slot. A demon in the if_added or if_removed facet

will be invoked when a value is added to a slot or removed from a slot, respectively.

Frames in the Frame Virtual Machine exist in hierarchies established by AKO (a_kind_of)

links. These links are established by the system defined slots is_a and instance_of. These

two links distinguish between generic frames and frames that are instantiations of those

generic frames. An is_a link represents a subsumptive relationship between two classes,

whereas instance_of represents a subsumptive relationship between a class and an individual

member of that class.

The hierarchical structuring of frames allows for inheritance of both descriptive and

Enhanced Frame Package

procedural knowledge. Inheritance of information from a frame's ancestor, however, is

always overridden by specific information in that frame. Inheritance in the Frame Virtual

Machine does not occur at the time of frame definition but rather when a value is needed. At

that time, if no value is found in a given slot, the frame hierarchy will be searched recursively

in a breadth-firstmanner until the slot is found in an ancestor frame or until there is nowhere

else to look. This ensures that the most current values will be inherited and that a local value

will always override an inherited value.

Frames can be created in a knowledge base using the def_frame operator. There is one

global slot defining operator also, def_slot, which allows for specifying the slot name and

facets within the slot. The slot defined by def_slot can be incorporated in any frame simply

by creating a slot with the defined name, without having to specify the facets again.

Three slot operators are defined to access the value facet of a given slot for a given frame,

once a frame is created in the knowledge base:

add_value_to_slot(FrameName, SlotName, Value)

remove_value_from_slot(FrameName, SlotName, Value)

return_value_from_slot(FrameName, SlotName, Value)

where:

FrameName is the name of the target frame

SlotName is the name of the target slot and

Value is the value to be added/removed/returned.

The add_value_to_slot operator allows for the addition of a value to a specified slot in a

specified frame. Similarly, remove_value_from_slot operator allows the removal of a value

from a specified slot in a specified frame and return_value_from_slot retrieves the value of a

specified slot from a specified frame.

The Frame Virtual Machine provides two frame match operators:

frame_match_exact(Prototype_List,List_of_Frames)

frame_match_subset(Prototype_List,List_of_Frames)

Enhanced Frame Package

The Prototype_List is defined as a list of slots, including values and other facets, in a frame.

The Prototype_List determines what is to be searched for, and List_of_Frames is the list of

frames that matches the Prototype_List. The only difference between these two frame match

operators is the value specification interpretation. For the frame_match_exact operator, the

list of values in the value facet of the frame's slot must be identical to those in the

Prototype_List, while frame_match_subset will match a frame whose list of values in the

value facet of a slot is a superset of the list of values in the value facet of the prototype's list.

Besides the three slot operators and two frame match operators, the frame virtual machine

provides a frame_subsumes operator to determine the relationship among frames in a

hierarchy:

frame_subsumes(Subsuming_Frame,Subsumed_Frame)

Where Subsuming_Frame is the potential ancestor frame and Subsumed_Frame is the

potential progeny frame. The frame_subsumes operator succeeds if the first argument

subsumes the second argument. The subsumptive relationship is based on theAKO links.

Also a utility operator print_frame(framename) is provided that allows an organized printing

of the specified frame framename.

3 PROPOSED ENHANCEMENTS TO THE FRAME VIRTUAL MACHINE

3.1 A START

An assignment was due 9 days from the first day of the class in ICSS782, Knowledge Based

Systems, at RIT in Fall, 1987. A copy of LaMora Hiss's Thesis [HISS87a] and the User's

manual [HISS87b] was distributed to every one in the class. The objective was to

understand the package, write a small knowledge base, test and critique the frame virtual

machine and its documentation. That is how this thesis got started.

The author of this thesis undertook the task of doing the same thing in greater detail and in

fact go beyond that and make some enhancements to the package as a final class project

during the last four weeks of the quarter.

Bits and pieces of information from the critique of all the students in the class were put

together and more extensive tests were performed on the complete range of features of the

frame package. A final critique was then prepared which not only organized and included all

the relevant points from the set of critiques but contained several additional ones that were

discovered during the test. It was quite interesting to create a comprehensive critique and

more interestingly a byproduct
- critique of critiques, that emerged inadvertently.

Development of additional interest later resulted into a thesis proposal on enhancements to the

frame virtual machine in May, 1988. During implementation, the scope of the thesis work

widened as more thinking was done and more time was spent experimenting with the

package. As a result, several enhancements in addition to the proposed ones, were made.

3.2 DISCUSSION

Critical examination of the frame virtual machine (the earlier version) in a nutshell showed

that it rested on a good theoretical foundation but could be enhanced and revised. There were

some bugs that existed, a lot of areas were identified where enhancements could be made and

several new features could be added. Also, the user manual needed major improvements and

Enhanced Frame Package

a complete redesign.

A lot of time was invested in developing a conceptual framework to accomplish the

aforementioned tasks. This involved:

study of the frame virtual machine - code and concepts.

planning enhancements without disturbing the underlying concepts of the frame

virtual machine.

keeping knowledge representation issues in mind (covered in Chapter 4).

literature search (which only turned out to be of a little additional help).

developing additional concepts (covered in Chapter 5) to accomplish enhancements

as well inclusion of new features.

The major enhancements have been divided into four parts:

Primary Feature Enhancements

Utility Related Feature Enhancements

Bugs in the Frame VirtualMachine

Documentation Improvements

Enhancements discussed under these topics are grouped together for similar functions rather

than by individual operators.

While going through the rest of this Chapter, one would note that Chapters 4 and 5 have been

referenced several times. Since a lot of issues and concepts were identified that were either

common to several of these enhancements or closely related to each other, it was decided that

it will be best to discuss them in one place. Chapters 4 and 5 cover these issues and

concepts. The functionality of each individual operator accounting for the application of

these issues and concepts, have been described in Chapter 7. General description of the

operators and the illustrative examples are covered in Chapter 6.

Enhanced Frame Package

3.2.1 Primary Feature Enhancements

Primary feature enhancements increase the representational power of the frame package. In

this section, several new operators are considered that operate on facets, slots and frames. It

also includes improvements of the earlier frame virtual machine operators. Each one of these

enhancements have been discussed below.

3.2.1.1 Access to All Facets

The earlier version allows access to only the value facet through the use of three slot

operators -

add_value_to_slot, remove_value_from_slot and return_value_from_slot. If the

package allowed similar access to other facets, it would provide additional flexibility to the

user. This will be a useful feature in order to provide increased information retrieval and an

augmented knowledge capability. For example, retrieval of the value in type facet or max or

min facets would provide additional information to the user. Addition or removal or change

of information in these facets would augment knowledge capability of the system.

This flexibility can be provided at the cost of greater consistency checking. For example,

when min or max facets are changed, the cardinality of the existing value facetwill need to be

rechecked for consistency.

Whether complete consistency should be maintained or not is an issue that needs

considerable thought. This is being covered in Chapters 4 and 5.

3.2.1.2 change value of slot Operator and if changed Facet

To change the value of the value facet in a slot, two operations are required in the earlier

version. First the use of:

remove_value_from_slot(FrameName,SlotName,01dValue)

operator followed by:

10

Enhanced Frame Package

add_value_to_slot(FrameName,SlotName,NewValue)

operator. For example, in the following frame:

def_frame(jim:

[is_a:[value:[male]],

status: [value: [single] ,

min:l]

])

In order to change the marital status, one has to first remove the value single and then add the

value married. Thus the min facetmust equal 0 to accommodate the removal, when in fact it

should always be equal to 1 to reflect that the slot should always have a value.

Both of these slot operators can be combined into one, and a new slot operator can be defined

as change_value_of_slot(FrameName, SlotName, OldValue, NewValue). Correspondingly

an if_changed facet can be define to activate a demon.

In fact, the change_value_of_slot operator can be implemented in such a way that it can also

provide the function of add_value_to_slot (if the OldValue is a null list) and

remove_value_from_slot (if the NewValue is a null list). However, one may still like to keep

add_value_to_slot and remove_value_from_slot operators so that efficiency is maintained, as

it is obvious that add_value_to_slot and remove_yalue_from_slot will be more efficient than

using change_value_of_slot to accomplish the task of only add_value or only remove_value.

When both remove and add need to be accomplished, using change_value_of_slot will be

much more convenient.

Change can also be implemented for facets other than value facet. The issues of consistency

checking also surface here and are covered
in Chapters 4 and 5.

3.2.1.3 Delete/Undefine Frame Operator

The inclusion of an undefine or a delete operator for a frame would be very useful when the

11

Enhanced Frame Package

knowledge base needs to be changed or updated frequently. In the earlier setup a frame

cannot be removed at all.

However, before implementation of the removal of a frame is considered, its impact on

knowledge base consistencies and computational tractability needs to be examined

thoroughly. Removal of a frame can affect the inheritance for example.

A solution to consider is to have the knowledge base file reconsulted every time a slot or a

frame is removed. This would confront the user with all the inconsistencies that the package

finds. However, this would mean that the removal is effected first, and then all

inconsistencies are brought up on reconsultation of the entire knowledge base file. Instead,

the system should warn the user of inconsistencies without actually effecting the removal of

the slot or frame in question. The user at that point should have the option of making

changes to remove some or all of those inconsistencies and then only actually confirm that the

system can proceed with the process of removal of the slots or frames in question.

Consideration needs to be given to the fact that reconsulting the whole knowledge base could

overburden the system (poor computational tractability), and an attempt should be made to

reduce the overhead.

Another solution would be to initiate some kind of a tracing function that would provide the

user a list of all those frames/slots that reference the underlying frame/slot. This tracing

function would be activated when an undefine request is made. The user can then check each

of those frames and slots andmake appropriate changes in them if desired. Only after a final

approval of the user will these changes take effect.

Another alternative would be to let the knowledge base simply become inconsistent.

A lot needed to be examined before any solution could be implemented. Again Chapters 4

and 5 deal with related issues and concepts that finally lead to the specific implementation.

3.2.1.4 Nonduplication in Value Facet

The earlier version allowed adding the same value more than once in the value facet if the

12

Enhanced Frame Package

max cardinality constraint allowed.

An example from the knowledge base file animalkingdom (Appendix C):

I?- def_frame(blrd :[.... reproduction :[value:[oviparous,oviparous]. ...]).

yes

This allowed
'oviparous'

to appear twice in the value facet above. Ifwe add

I?-
add_value_to_slot(bird, reproduction,oviparous).

yes

This will even add it a third time.

It is not quite clear if there was any specific purpose for allowing this. In fact it creates a

problem when remove_value_from_slot(bird,reproduction,oviparous) is used as it removes

only one instance of
'oviparous'

from the facet list.

It seems appropriate to only allow single instance of the same value in any facet This will

require additional search in the knowledge base; however, it will eliminate redundandy stored

knowledge. Additionally, a value facet is a set of possible values that a slot can have and

theoretically by definition, a set can have only have unique values.

3.2.1.5 Addition/Removal ofMultiple Elements in Value Facet

In the previous version, ifmore than one element needs to be added to or removed from the

value facet using slot operators, one needs to use the operator as many number of times as

the number of elements.

Consider the following example session from knowledge base file animalkingdom

(Appendix C):

I?- add_value_to_slot(anlmal,food_source,egg).

13

Enhanced Frame Package

yes

I?-
add_value_to_slot(anlmal,food_source,plant).

yes

I?-
add_value_to_slot(anlmal,food_source, [cake.coffee]).

yes

It adds [cake.coffee] as one element instead of two entries in the value list. The frame at this

point looks like:

animal:

[

food_source: [value: [[egg, plant,[cake.coffee]]

]

I?-
remove_value_from_slot(animal,food_source, [[cake,coffee],plant,egg]).

no

I?-
remove_value_from_slot(anImal,food_source,[coffee,cake]).

no

I?-
remove_value_from_slot(animal,food_source, [cake,coffee]).

yes

I?- remove_value_from_slot(animal,food_source, egg).

yes

Some convenient way of handling more than one element at a time can be a useful feature.

Similarly the order of atoms in the list [coffee,cake] matters. [coffee,cake] and [cake.coffee]

should be considered equivalent for this purpose.

Another problem with add_value_to_slot is encountered when a list is specified in value

parameter. When a list is specified in add_value_to_slot, the value facet becomes a nested

list. This can lead to problems with demon execution that relied on a single value in the

14

Enhanced Frame Package

earlier package. Consider the following example session from the knowledge base

bookprototype (Appendix D).

I?-
add_value_to_slot(typeface_type,avallable_types,[baskerville,tlmes]).

You want to add the typeface [baskerville.times]

Is this a regular fonty,or,n?

/-y.

What is the italic form of [baskerville.times]?

Instead of considering baskerville and times as two different typefaces, it considers

[baskerville,times] as single typeface which is not correct. There should be a betterway to

handle these types of situations.

The problem lies in the fact that in the above case the system recognizes atoms only. It

considers the list [baskerville,times] as an atom. A solution will be to make it recognize the

above as a list.

3.2.1.6 Loading vs. Working Environment

[HISS87a] gives the impression that the frame virtual machine maintains complete

knowledge base consistency from start to end. At the time of loading a knowledge base file

into the frame virtual machine (or in other words working memory), in the earlier version,

the frame virtual machine performs a complete consistency checking and does not load any

inconsistent frame into the working memory. However, during the session, some operators

for example -

'remove_value_from_slot'

can create inconsistencies in the knowledge base but

the user is still allowed to work with that inconsistent knowledge base during that session.

This way on one hand, the frame virtual machine does not allow to load inconsistent frames

to begin with but on the other hand, it allows creation of inconsistencies through the frame

virtual machine operators during the session.

15

Enhanced Frame Package

consider the situation if a utility existed that allowed saving this knowledge base during the

session then at the time of reloading the saved knowledge base, the frame virtual machine

will not allow the the loading because it has inconsistencies. The same frame virtualmachine

that allowed use of a knowledge base at one time, will not allow reuse of the same

knowledge base the next time!

A solution to consider would be that the package maintains complete consistency throughout

the session. But in order to maintain a complete consistent system, a lot of checking is

required throughout the knowledge base before performing any operation the user requests.

Maintaining a completely consistent system can therefore result in a poor computational

tractability of the package.

Another solution could be that the package provides a choice to the user at the start of the

session if he/she wants to start with a slower but consistent system or a faster but

inconsistent system.

Again before deciding the exact implementation, one needs to weigh the issue of consistency

checking and computational tractability.

These issues and final choice of implementation are discussed in Chapters 4 and 5.

16

Enhanced Frame Package

3.2.2 Utility Related Feature Enhancements

These features will help in development and debugging of knowledge base. These features

include knowledge base edit and save facility, a trace facility, a facility to print hierarchical

tree of frames, etc.

3.2.2.1 Edit and Save Changes in Knowledge Base

Sometimes a user can make typographical errors, accidentally entering wrong values while

creating the knowledge base. In the earlier version, attempts to overwrite a frame while in

the frame package results in an error stating that the frame already exists. Therefore, it

becomes necessary to exit from the package, reenter prolog and reconsult the knowledge base

file. Of course, one loses whatever the user has done during the previous session except for

the changes made specifically in the knowledge base file using the vi editor. The user will

have to reenter all other information.

To overcome this problem, editing facilities inside the frame package would be helpful, so

that to edit the knowledge base, one does not need to exit from the package and the prolog

Environment. Several editing features have been provided in the enhanced frame package

which have been covered in Chapters 5 and 6.

A usermay also need to interactively develop a knowledge base or make several changes for

some purpose by testing various scenarios by trial and error. It is obvious that the user will

want to save the knowledge base as it exists in its final form but in the earlier frame package,

the user cannot do this. The only way is to actually go into the knowledge base file(s)

outside of the frame virtual machine andmake changes, which can be done accurately only if

the user keeps a detailed record of all the things that were done during the interactive session.

Obviously there is a need for a knowledge augmentation technique that will not only allow

the system to learn but also retain new information.

An ability to save the most current
version of the knowledge base in the frame package would

be ideal. It should be possible to save it under a new name or replace the old one as per the

requirement of the user.

17

Enhanced Frame Package

3-2.2.2 Tracing Feahire

Tracing is the only feature other than syntax checking (of frames and slots) that helps the user

in debugging and understanding the knowledge base in the earlier package. Since the user

can best relate to the knowledge base he/she has created/used, the trace must conform to the

steps as they relate to the user's knowledge base. The trace provided in the earlier version,

by the prolog interpreter is too detailed and difficult to understand because it goes into the

details of the source code of the frame virtual machine. Hence the trace needs to be modified

in such a way that it only relates to the user's knowledge base. It would be useful to have a

facility to switch on the detailed trace (as it exists in the previous version) when required.

3.2.2.3 Printing Hierarchical Tree of Frames

The frame virtual machine represents knowledge in a tree structure of frames. Generic

knowledge is stored higher up in the hierarchy and shared by frames lower down. A facility

to quickly print the hierarchical tree of frame names of the knowledge base would be a very

useful utility. This would help in the debugging process and also serve as a nice tool for

displaying development ideas, especially when the knowledge base is very large and there is

a lot of inheritance.

3.2.2.4 Short Form of Slot OperatorNames

The operator names are very long, for example,

remove_value_from_slot(Framename,Slotname,Value),

and therefore, are cumbersome to use. Such long names may be helpful from the point of

view of providing a quick mini-definition of the operator embedded in the name of the

operator itself. However, for convenience, short operators are better; rem_val or some such

short name seems more appropriate.

18

Enhanced Frame Package

3.2.3 Bugs in the Frame Virtual Machine

Testing of the frame virtual machine lead to the identification of bugs that existed in the earlier

version. Most of these bugs were related to the functionality of the operators, some were

related to the differences in implementation from what was intended etc.

Some of these bugs were discussed in the thesis proposal and some were identified later on.

All of these bugs were fixed during the enhanced process.

19

Enhanced Frame Package

3.2.4 Documentation Improvements

The User's Manual [HISS87b] is very brief and does not clearly explain many of the

functions that are available in the frame virtual machine. The operators, facets, predefined

demons, etc. are described, but at times the descriptions are not clear on exactly how to use

them. Good examples on the proper and incorrect use of the frame and slot operators are

missing, and the use of demons has not been explained at all. Reference to the thesis

[HISS87a] is necessary in order to use the package, or else one has to resort to trial and

error.

For the enhanced package, the User Manual has completely redesigned. It includes the

purpose, the syntax, example(s) of usage of each operator. Additionally, a Technical Manual

has also been prepared that provides the functionality of each operator. The order in which

the information on the operators has been provided in the User Manual as well as the

Technical Manual is based on the type and functionality grouping of the operators. For

user's convenience an alphabetical index of the operators has also been included at the end of

both manuals.

To make it self sufficient, some major concepts of the package have also been discussed in

theUser Manual.

20

4 KNOWLEDGE REPRESENTATION ISSUES

The purpose of this chapter is to explain knowledge representation issues that played an

important role in the enhancement of this package. This will provide a basis for a lot of

answers to the questions such as -

"why a particular operation performs in a certain fashion

under certain conditions, for example, under consistent versus inconsistent option of the

package.

4.1 ISSUES

A perusal of the Frame Virtual Machine coupled with an investigative on-line usage brought

up the following issues:

Expressive Power

Consistency

Computational Tractability

One of the observations made during the study of the Frame Virtual Machine was, that the

expressive power of the system could be increased by introducing new facets, slots and

frame operators. For example, access to all facets in a slot; removal of a frame from the

knowledge base, etc. Removal of a frame may be a desirable thing to include; however, a

question comes up about consistency of the knowledge base after removal of a frame.

Removal of a frame can affect inheritance for example. Even allowing the deletion of a

terminal frame can result in inconsistencies. Assume that a type constraint allowed the

addition of a value to a slot because of frame l's existence and then frame 1 was removed. A

value that exists in a constrained slot would no longer meet the type constraint. Should the

system provide such inconsistencies or not? If the system maintains complete consistency,

then before performing the operation, it has to do a thorough consistency checking for each

slot of each frame in the knowledge base. If the knowledge base is large, consistency

checking is going to take forever and computational tractability will be poor.

The above discussion was intended to quickly provide a basic familiarity to these

Enhanced Frame Package

fundamental issues. Several researchers in artificial intelligence have also talked about these

issues, and some of the selected views are presented below:

An excerpt from Minsky's paper highlights the issue of consistency:

"Completeness is a trivial consequence of any exhaustive search procedure, and

any system can be
"completed"

by adjoining to it any other complete system and

interlacing the computational steps. Consistency is more refined; it requires

one's axioms to imply no contradictions. But I do not believe that consistency

is necessary or even desirable in a developing intelligent system. No one is ever

completely consistent. What is important is how one handle paradoxes or

conflict, how one learns from mistakes, how one turns aside suspected

inconsistencies."

[MINS85,261]

Minsky further concludes
"logical"

reasoning is not flexible enough to serve as a basis for

thinking. He prefers to think of it as a collection of heuristic methods, effective only when

applied to starkly simplified schematic plans. Minsky believes that the consistency that logic

demands is not otherwise usually available and probably not even desirable (!) because

consistent systems are likely to be too weak.

Bobrow, while discussing the features ofKRL, emphasizes the following:

"A knowledge representation language must provide a flexible set of underlying

tools, rather than embody specific comments
about either processing strategies or

the representation of specific areas of
knowledge."

[BOBR77,984]

Bobrow believes that a knowledge representation system should have an extensive and varied

repertoire ofmechanism in order to achieve intelligent performance [BOBR85,284]. KRL

(Knowledge Representation Language) was therefore designed to provide a large expressive

power.

The builders of the KNOBS system, which is a highly interactive experimental knowledge

based planning system for tactical air command and control, chose FRL (Frame

Representation Language) as a base for the representation,
access andmanipulation of frames

22

Enhanced Frame Package

[ENGE80,184]. The primary role ofKNOBS is checking the completeness and consistency

of a plan as it evolves through an interchange in which the user normally makes the

significant choices. The program supports the user by explaining clearly and judiciously

what inconsistencies have arisen, by understanding what has to be rechecked as the planner

changes elements of the plan in response to the program's criticism, and by providing the

planner with dynamically generated lists of recommendations for various plan elements

[ENGE81.141].

Designers of KANDOR believe that limiting the expressive power of a knowledge

representation system can guarantee that all its operations terminate in reasonable time. This

makes the system usable as part of larger knowledge based systems that have to deal with the

real world [PATE84.1 1]. For better computational tractability, the designers of KANDOR

had to trade off several features, one of them being the lack of ability to change information,

such as changing the slot fillers for some individual.

There is a tradeoff between the expressiveness and the tractability of a knowledge

representation scheme. Neither expressiveness nor tractability by itself determines the value

of a representation language[LEVE85,41]. Levesque and Brachman feel that there are many

interesting issues to pursue involving the tradeoff between expressiveness and tractability.

Although there has always been a temptation in knowledge representation to set the sights

either too low (and provide only a data structuring facility with litde or no inference) or too

high (and provide a full theorem proving facility), their paper argues for the rich world of

representation that lies between these two extremes.

What should one go for, then?

Better Computational Tractability?

or

Large Expressive Power?

or

Consistent System?

One would ideally like to have all the three capabilities. However,
this may not be possible

all the time. It seems that there is no simple answer. If the knowledge representation system

23

Enhanced Frame Package

has less expressive power, computational tractability will be better and operations can be

performed quickly. On the other hand, if the knowledge representation system incorporates a

lot of expressive power, the system would be able to do a lot; however, there may be a

possibility that the system never completes a particular operation when asked for it

Similarly, to maintain complete consistency, a knowledge representation systemmay need to

perform a very large number of checks resulting in poor computational tractability.

A knowledge representation system developed for a very small, limited domain can perhaps

have very good computational tractability while maintaining complete consistency and full

expressive power. In the real world however, applications can tend to be large and demand

knowledge representation schemes with large expressive power. In such cases maintaining

good tractability may require trading off expressive power for consistency or vice versa. For

example, KANDOR trades expressive power in order to provide good tractability. On the

other hand, KNOBS, using FRL as a base, maintains consistency and hence trades off

computational tractability. KRL provides a large expressive power but ultimately it was

reported as a failure, collapsing perhaps under the weight of its own features

[BOBR85.263]. As one thinks more and more about these issues, perhaps the best is to

choose an intermediate solution that will provide acceptable tractability and some kind of

limited expressive power and consistency. As computational power increases with

technological advances, obviously more can be achieved within the limits of such

computational power. These limits however, should be properly recognized. If the program

consumes a quantity of resources that is exponential in the size of the task, 0(kn), then each

doubling of available resources only means an additional (ln 2/ln k) words, regions or

clauses can be handled [MACK81.69]. It is the proper combination of all these attributes that

will determine the value of the knowledge representation system.

For this enhanced frame package, the concept that was used in deciding the tradeoffs is taken

from the way humans acquire knowledge and expertise.

4.2 THE HUMAN MIND, KNOWLEDGE AND LEARNING

Consider the human learning process. The human mind constantly keeps acquiring

knowledge by somehow absorbing various facts and reasonings. When a new fact is

24

Enhanced Frame Package

absorbed that does not fit well with previously acquired knowledge, the mind rejects that fact;

it accepts the fact if it is not found inconsistent with the previously acquired knowledge.

However, the level and depth of such consistency checking varies from time to time based on

several practical factors, for example, how much knowledge is already available on the

subject, how much time is available to analyze (i.e. how much detail can one afford to go

into) and how important the fact might be. At times one only checks for some immediate

concerns, and if there is nothing inconsistent found, then this new fact is accepted. Later, if

time permits, one may sit down and go through all the details to thoroughly analyze them. It

is quite possible that the detailed analysis later on reveals some inconsistencies thatmay need

to be resolved. Sometimes some of these inconsistencies do not get resolved, and the

individual may decide to live with them (as opposed to discarding them).

On the other hand, one may want to thoroughly satisfy all concerns every time some facts are

available to be absorbed by making sure that they do not generate any inconsistency with any

other knowledge acquired so far. This detailed analysis is generally very difficult and is not

done very often for complex situations.

The enhanced frame package reasoning attempts to parallel the above. Human knowledge

operations can be equated to the expressive power of the knowledge base developed by using

the enhanced frame package. How much detail can a human mind afford to go into can be

equated to the computational tractability. This analogy to the human mind makes it easier to

understand the tradeoffs between consistency, expressive power and computational

tractability. A completely consistent system with very large expressive power could become

so slow that it may take forever to analyze a situation (poor computational tractability). To

improve the computational tractability, therefore, some tradeoff is necessary. This could be

limited consistency checking to maintain a certain level of expressive power and

computational tractability in the system. This may be what one could describe as "normal

busy
mode"

of the busy system, perhaps equivalent to something like humans making

decisions "on the go". However, one can go a step further by allowing the option where the

computerwould do detailed consistency checking when asked for it (knowingly taking a long

time, of course). This would be done only once in a while when needed, for efficiency

reasons. This additional feature is provided in the enhanced package to analyze the full

details from time to time. With this operation, a complete consistency check can be run on all

the knowledge in the knowledge base when desired. This feature has been named the

25

Enhanced Frame Package

Knowledge Analyzer (KA).

The knowledge analyzer only reports the inconsistencies present at the time it is invoked and

leaves the option with the user to modify the knowledge base if so desired. A lot of times,

just as in the human learning process, certain inconsistencies may be left for an indefinite

period of time because there may not be a desirable solution, but that does not stop the human

mind from working. Similarly, the package does not freeze in such situations. Eventually if

a solution is found, the inconsistencies may be resolved, otherwise life still goes on.

With this philosophy in mind, most of the enhanced frame package operators perform local

consistency checking all the time, just like a human mind, which on a regular basis can only

afford to do a limited checking on immediate concerns. For example, before adding a new

value to a specified slot in a specified frame, cardinality and type constraint checking will be

done for that slot only. This is a case of local consistency checking or what will also be

referred to as limited consistency checking. The consistency checking done by the KA

(Knowledge Analyzer) will fall into the category of a complete or global consistency

checking.

26

5 IMPLEMENTATION CONCEPTS

Keeping enhancements and the underlying conceptual framework in mind, the following
concepts were developed for the enhanced frame package.

5.1 DEFINITION OPERATORS

Definition operators are provided to create objects of the frame data type. These include two

operators a frame defining operator and a slot defining operator. The frame defining

operator allows for specifying the frame name, defining slots within that frame and defining

facets within those slots. The global slot defining operator allows for specifying the slot

name and the facets within that slot

Since in this knowledge representation tool, the knowledge is stored in the form of frames

and slots, a knowledge base file is created using these definition operators. At the time of

loading a knowledge base file (or in other words, loading a frame/slot), these definition

operators are executed and if possible, frames and slots are loaded into working
memory.*

Once the knowledge base is loaded into working memory, several operations can be

performed to access, modify or analyze the knowledge base (for example, various facet

operations, editing knowledge base, saving knowledge base, knowledge analyzer etc; details

in Chapter 6).

5.2 LOCAL CONSISTENCY CHECKING VS. GLOBAL CONSISTENCY

CHECKING

As explained in the previous chapter, there is always a trade off between the three major

knowledge representation issues: consistency, computational tractability, and expressive

power, for any knowledge representation system. The philosophy that has been adopted for

* These definition operators check for the uniqueness of the chosen frame or slot name, check the syntax of

the frame or slot, check the values in the slot against any constraints (described in Section 6.2) and

load/add all acceptable frames and slots to the knowledge base/working memory. Frame(s) or slot(s) with

error(s) do not get loaded into working memory (constrained by the way prolog works).

Enhanced Frame Package

the enhanced frame package is parallel to human reasoning. Most of the enhanced frame

package operators perform local consistency checking all the time, just like a human mind,

which on a regular basis generally can afford to do only a limited checking on immediate

concerns. Before adding a new value to a specified slot in a specified frame, cardinality and

type constraint checking is done for that slot. The impact of this operation on the rest of the

knowledge base is not analyzed at that time. This is a case of local consistency checking or

limited consistency checking. When global or complete consistency checking is required,

then it can be done by the knowledge analyzer (analyzing the whole knowledge base). In

order to analyze a single frame with respect to the rest of the knowledge base, one could use

the check_frame operator (Section 6.18.2).

5.3 LOADING AS A CONSISTENT/INCONSISTENT SYSTEM

The enhanced package provides a choice for the user of loading a knowledge base file as a

consistent or an inconsistent system.

The set of operators available in both cases are the same; however, the system behaves a little

differendy when run as a consistent knowledge base versus an inconsistent one. In the case

of a consistent system, complete consistency checking of the knowledge base is performed at

the time of loading, in addition to the syntax checking of the knowledge base. In the case of

an inconsistent system, only syntax checking is performed, and no consistency checking is

done at the time of loading.

5.4 CREATING AND LOADING THE KNOWLEDGE BASE

As mentioned earlier, the enhanced frame package is an expert
system development tool. In

order to work with an expert system, one has to have a knowledge base. There are two ways

to create a knowledge base in this package: one
- outside the frame package using vi editor,

and two - inside the frame package using the file_create
operator (similar to the vi operator -

explained in Section 6.4). Allowing initial creation of the knowledge base in two ways is

primarily for convenience. Creating the knowledge
base outside the package saves the user

from entering the package, in the case
when the user just wants to create a knowledge base

28

Enhanced Frame Package

but does not want to work with it at that time. On the other hand, once in the package, the

facility to create a knowledge base from inside the package avoids repeatedly going out and

coming into the package in order to create a knowledge base.

An existing knowledge base file can be loaded into the frame package using the
Load'

operator (details in Section 6.3). If the knowledge base file was created from inside the

package, loading of the file is done automatically right after the creation.

The loading operation brings the contents of the knowledge base file into working memory.

At the time of loading a knowledge base file, the frame package performs the syntax

checking. Constraint checking is done if the system was loaded as a consistent system. In

case of any error(s), the following happens:

An errormessage is displayed.

The frame or slot that has the error is not loaded into working memory. (This is

constrained by the way prolog works.)

Hence, in order to correct the errors, one needs to access the knowledge base file as it exists

in the working directory. The access to this file is allowed from inside the frame package

using the
'file_edit'

operator (details in Section 6.5). The primary purpose of this operator is

to allow the user to correct syntax errors or any other errors encountered right after loading or

creating the knowledge base file without exiting from the package.

5.5 OPERATIONS ON WORKING MEMORY

'file_edit'

is the only operator that updates the knowledge base file present in the working

directory. All other operators act only on the material that is present in working memory

(they do not disturb the original knowledge base file in the directory). These operators allow

the user to modify the existing knowledge base in working memory. All of this is

transparent to the user. The concept used will be clear from the following example:

Consider a scenario where a user who, after loading a knowledge base in the

frame package, performs a few operations on frames/slots and modifies the

29

Enhanced Frame Package

knowledge base. At that point, suppose the user realizes that he/she should not

have made these changes and wants to restart from the original knowledge base

file. If all the operations were performed on the original knowledge base file,

then the original file gets modified, in which case the usermust remember what

changes were made and undo those changes manually. On the other hand, if

these operations were performed on the copy in working memory, then the user

just needs to replace the current contents ofworking memory for that particular

knowledge base file by reloading the contents of the original file from the

working directory. To do so, the enhanced frame package provides a

'reload(filename)'

operator (details in Chapter 6). This way, one does not even

have to go out and come back in to meet the above need.

Another useful operator available in the package is the
'save'

operator. The
'save'

operator

allows a user to save the updated version of the knowledge base file that is present in

workingmemory, into a user specified file at any time during the session. The user specified

file name can be the same as the original file name or some other new file name. The saved

version can be used later for furthermodifications. This comes in very handy for the original

development of a knowledge base. The combination of the ability tomanipulate the working

memory and to save the updated version provides the best of everything to the user. The

only negative aspect is the fact that any comments in the file are not saved.

5.6 OPERATORS THAT MODIFY THE KNOWLEDGE BASE

The enhanced frame package provides several operators for different needs. Some operators

are for the purpose of obtaining information from the knowledge base, some for the analysis

of the knowledge base, some for modifying the knowledge base, and some for utility

operations. All operators in these categories except for some of the modifying operators

behave similarly under the consistent and inconsistent system options.

The operators that modify the knowledge base can be divided in two parts:

1 . Type One Operators: Those operators that involve definition operator execution.

These are load, temp_edit, file_create, frame_edit and reload operators.

30

Enhanced Frame Package

2 Type Two Operators: All modifying operators other than the ones included above.

These include various facet, slot, and frame operators.

The details on these individual operators are included in Chapter 6.

As explained in Section 5.3, the execution of the definition operators is different for a

consistent system choice compared to an inconsistent system choice. Therefore, all Type

One Operators behave differently based on the user opted choice of a consistent versus

inconsistent system.

Type Two Operators and all other operators are independent of the definition operators, and

they behave the same way in both the options.

5.7 ADDITION/REMOVAL OF MULTIPLE ELEMENTS IN THE VALUE

FACET

The enhanced frame package allows addition/removal of a single value as well as multiple

values in the value facet through the following operators:

add_value_to_slot(framename,slotname, value).

remove_value_from_slot(framename,slotname, value).

Where value argument can be an atom or list of atoms. If the value argument is an atom, it

allows the user to add/remove a single value; whereas a list of atoms as value argument

allows the user to add/remove multiple values at a time. A list of atoms as value argument

can have one entry also, in that case it will be the same as adding/removing just one value

to/from the value facet.

5.8 A NOTE ABOUT FACET OPERATORS

A value facet contains a list of entries as its value and the cardinality of the number of entries

in the list is determined by the max and min constraints. Max, min and type facets on the

31

Enhanced Frame Package

other hand can have only one entry as their value. Because of this difference, add, remove

and change operators work on these facets differendy.

In value facet, one can add a value or a multiple number of values to the existing list of

values, or remove a value or a multiple number of values from the existing list, or change

part of the value list. However, for max, min and type facets, since they can have only one

entry as their value, add will take place only if that facet does not already exist locally.

Remove operators for such facets upon success, will remove that facet completely from the

slot and change operators will change the value of that local facet completely (one single

value replaced by another single value).

To remove the value facet completely, the remove_all operator has been provided. To change

the value facet completely, the change_all operator has been provided.

For change and remove operation on a facet, the facetmust be present locally in the slot.

5.9 PACKAGE BEHAVIOR: a difference from Prolog

The package is implemented in C-Prolog. However, one should not expect the exact same

behavior as C-Prolog from the package because the behavior of the package is geared

towards the functionality of the operations. Consider the following operator for example:

add_value_to_slot(framename,slotname,value)

from Prolog's perception, framename and slotname can be uninstantiated variables, however,

from the perception of the frame package, both of these should be instantiated variables. The

purpose of this operator is to put the knowledge about a slot's value into the knowledge base

and therefore the user must know the frame and slot names in which the value should be

added. In general, for all the facet operators, it is assumed that the framename and slotname

will be instantiated variables.

Consider another case. In the add_value_to_slot operator, value argument is assumed to be

an instantiated variable and it must either be an atom or a list of atoms. Value argument as a

32

Enhanced Frame Package

list of atoms implies the addition of more than one value at a time to the value facet. As an

example, successful execution of add_value_to_slot(jim,kitty,[annie,minnie]); values annie

and minnie will be added as two atoms rather than a list (of two atoms) in the value facet of

slot kitty in frame jim. Consider the following special case for better understanding:

add_value_to_slot(jim,kitty,annie)

add_value_to_slot(jim,kitty,[annie]).

Upon successful execution, from Prolog's perception the outcome should be different in both

the cases. In first case, it should add annie as an atom in the value facet and in the second

case, list [annie] to the value facet. However, from the package's perception, the outcome in

both of these situations will be the same. In both cases, it will add annie as an atom to the

value facet list.

5.10 INTERNAL FEATURES OF THE FRAME PACKAGE

When the frame package is being used, a lot of things happen that are completely transparent

to the user, however, they are very critical to the functionality and performance of the frame

package. For example, whenever a knowledge base file is loaded, it automatically

remembers what frames and slots belong to that file and in what order they appear on the file.

In the case of several knowledge base files, it remembers the order in which these files were

loaded. All this information will be referred to as 'internal information to the
package'

in the

documentation. This internal information is very important throughout the frame package

session. For example, during a temp_edit operation, the frame package identifies the frames

and slots and their order, then displays them in that order for the user to edit. If the frames

are moved in sequential position or if the frames are added, deleted or renamed during

editing, the package keeps track of that and, at the end of the temp_edit, utilizes the revised

status for all future operations.

Such automatic update of this internal information always takes place whenever a frame is

created(added), loaded, deleted or renamed through any of the frame package operations.

33

Enhanced Frame Package

5.11 TEMPORARY FILES

To perform tasks such as analyzing the knowledge base or editing the knowledge base (ka,

check_frame, temp_edit, frame_edit operators), the frame package uses temporary files.

These temporary files not only allow the user to perform the above tasks but also allow the

knowledge base to return to the same status as it was before such operations.

Two temporary files are created in a remote directory for this purpose. For the purpose of

explanation, lets call these files -

temp and temp2. One of the files say temp2, is used to

store the current knowledge base (or part of the knowledge base) facts as they exist so that

when needed, they can be consulted to restore the knowledge base as it was. The other file

temp is also used to store the current knowledge base (or part of the knowledge base), but it

is subjected to the operations. These operations are consistency checking in case of

analyzing the knowledge or editing in case of temp_edit and frame_edit operations. At the

end of such operations, file temp2 is reconsulted to get back to the exact same status of the

knowledge base as it was just before these operations, when needed. The details about the

functionality of these tasks are available in the Technical Manual (Section 2.8 and Section

2.18).

5.12 KNOWLEDGE BASE FILE VS. DEMON PREDICATE FILE

Another important concept of the enhanced package is related to the difference between

definition operators and demon predicates. A knowledge base file is composed of active

definition operators, which create unique instances of frames and slots. Demon predicates,

which are like any other Prolog predicates, are used to store procedural knowledge about the

knowledge base. Editing, loading and saving of demon predicates are completely different

from the definition operators. Hence it is highly recommended that the user create separate

files for the demon predicates and the knowledge base (definition operators). Available

demon operators are explained in the next chapter.

34

6 FRAME PACKAGE OPERATORS

This chapter describes all the operators available in the frame package. Some or all of the

following aspects are included in the discussion for each operator as deemed necessary:

the name and syntax of the operator

the purpose of the operator

an example to illustrate the operation(s)

the functionality of the operator, explaining all the major logical steps that are

followed when the operation is performed. The functionality has been included

separately in Chapter 7 for all the operators.

Material covered in the previous chapters should help in better understanding of the frame

package operators discussed here.

Please note that the illustrative examples use a different font for clarity. All system prompts

and responses are in regularHelvetica italic and the user responses are in boldHelvetica.

The order of the operators in this section is not alphabetical so that they can be grouped by

their functionality. This should facilitate easier understanding. However, an alphabetical

index for the operators is provided at the back of this manual for convenience.

6.1 RUNNING THE FRAME PACKAGE

To load the package from the system prompt, type 'prolog
/usr/local/lib/prolog/frameboot'

and press the enter key. This will load the frame package. The command

'/usr/local/lib/prolog/frameboot'

is installation dependent and may differ from system to

system. After loading the package, the user should respond with

start

The system will provide an option to start with a consistent or an inconsistent system. The

Enhanced Frame Package

user may respond with a
'yes'

for a consistent system or a
'no'

for an inconsistent system
('y'/'n'

respectively). The default is 'no'.

The operation
'exit'

will allow the user to exit from the Prolog and the package

environment, at any point. [Although 'half (as available in C-Prolog) can be used to

terminate the session;
'exit'

provides an opportunity to the user for saving updated

knowledge base files.]

Example

system prompt[3] prolog /usr/local/lib/prolog/frameboot

C-Prolog version 1.4

[Restoring file /usr/local/lib/prolog/frameboot]

yes

I?- start.

Do you want to enforce a consistent system?

/: I* The user can answer a
'yes'/'y'

or
'no'/'n'

*/

6.2 STORING KNOWLEDGE IN A KNOWLEDGE BASE FILE

The frame package stores knowledge in the form of frames and slots. Frames are stored in

the prolog knowledge base as structures that have the functors as frames. Similarly, global

slots are stored in the prolog knowledge base as structures that have the functor slot. The

operators that allow for defining frames and slots are called definition operators.

6.2.1 Definition Operators

Knowledge is stored in a knowledge base file using the definition operators. Two definition

operators have been provided: a frame defining operator and a global slot defining operator.

6.2.1.1 The Frame Defining Operator

The structure of the frame defining operator is:

36

Enhanced Frame Package

defframe(Frame)

where Frame is

framename : [list of slots]

where framename is any unique, legal Prolog atom, and the

structure of the list of slots is:

[slotlname : [list of facets],

slot2name : [list of facets],

slotNname : [list of facets]]

where the slot names are atoms that are unique to the frame and the structure of the

list of facets is:

[facet1name : facetvalue,

facet2name : facetvalue,

facetNname : facetvalue]

where a facetvalue is dependent upon the facetname.

The only valid facetnames are value, type, max, min, default, if_added, if_removed,

if_changed and if_needed. Please refer to the figure on page 40. All the facets have been

described in Section 2.1. Only one value can be stored in a min or max facet, and that value

must be an integer. Min by default is zero andmax is one. The value in the value and default

facets must be a list. The value in a type facet must be a legal type predicate, where a legal

type predicate is:

a frame name (legal type)

37

Enhanced Frame Package

a legal type@@ a legal type (or)

a legal type ## a legal type (and)

~

a legal type (not).

The value in the other facets may be either a single value or a list.

Example

def_frame(jim:

[in_of :

[value: [male]],

education:

[value: [ms,phd],

max :5],

complexion:

[value: [fair]],

status:

[value : [unmarried] ,

if_changed:change_status]]).

6.2.1.2 The Slot Defining Operator

The slot defining operator is very similar to the frame defining operator. It is used to

introduce predefined global slots into the knowledge base and has the following syntax:

def_slot(sIotname:[list of facets]).

Where list of facets is as defined in Section 6.2. 1. 1 . Also, refer to the figure on page 40.

Example

def_frame(male:

[is_a:[value:[Uving_thing]]).

38

Enhanced Frame Package

def_slot(father:

[min:0,

max:l,

type:male]).

Since the frame defining operator allows for slot definitions, the slot-defining operatormight

seem redundant. It seems desirable, however, to be able to define a global slot independently

that might occur in several unrelated frames. This slot definition would reduce redundant

entry of information. An example of this is the "system
defined"

slot is_a and in_of. It

would be redundant to include all facets of the is_a or in_of slot in every frame that contains

this slot. The slot definition allows for facets of a slot to be listed once but at the same time

makes it available to all frames using that slot.

is_a and in_of are system defined slots. is_a represents a subsumptive relationship between

two classes. An in_of(instance_of), on the other hand, represents a subsumptive relationship

between a class and an individual member of that class. The is_a and in_of slots can have

maximum of 999 values in the value facet by default.

39

Enhanced Frame Package

STRUCTURE OF A KNOWLEDGE BASE FILE

Knowledge

Base File

Frames

(through

def_frame)

Global Slots
(through

def_slot)

Slots System

Defined

Facets *

System

Defined

Facets **

*
max, min, type, value, default, if_added, if_needed, if_removed, ifchanged

**
max, min, type, value, default

40

Enhanced Frame Package

6.2.2 Demons (Prolog Predicates)

Demons store procedural knowledge about the world in the form ofProlog Predicate.

The syntax for a demon in case of:

a) facets: if_added, if_removed, if_needed -

demon_name(FName,SName,Value) :-

b) facet: if_changed -

demon_name(FName,SName,01dValue,NewValue) :-

where:

- demon_name is a prolog functor

FName is the name of the frame from where the demon gets invoked

- SName is the slot name in the frame FName

- Value is the value of the slot SName

Value can be an atom or list of atoms

- OldValue is the current value in the slot that gets replaced by NewValue

- NewValue is the new value that replaces the OldValue present in the slot

Example

Suppose the knowledge base file contains:

?- def_frame(jim:

[in_of :

[value: [male]],

education:

[value:[ms,phd],

max :5],

41

Enhanced Frame Package

complexion:

[value:[fair]],

status:

[value : [unmarried] ,

if_changed:change_status]

])

?- def_frame(john:

[in_of :

[value:[male]],

education:

[value :[bs],

max :5],

complexion:

[value: [dark]],

status:

[value: [widowed] ,

if_changed:change_status] ,

wife:

[value: [jane],

min : 0,

max : 1]]).

Frames jim and John both have if_changed facets with the demon change_status in slot

status. An example of the change_starus demon can be written as follows:

change_status(FName,SName,01dValue,NewValue)
:-

(

OldValue == unmarried,

NewValue= married,

write_sent('What is the name of the wife of, FName),

read(WifeName),

add_value_to_slot(FName,wife,WifeName)

42

Enhanced Frame Package

OldValue == widowed,

NewValue= married,

write_sentCWhat is the name of the new wife of, FName),

read(NewWifeName) ,

change_value_of_slot(FName,wife,01dName,NewWifeName)

)

Upon the execution of change_value_of_slot(jim,status,01dValue,married) (whose operator

is described in Section 6.12.4), the value of slot status will be changed from unmarried to

married and the change_status demon will be invoked. The change_status demon will ask

the user to enter Jim's wife's name and then it will add the slot wife to frame jim with the

wife's name as a value.

Upon the execution of change_value_of_slot(john,status,01dValue,married), the value of slot

status will be changed from widowed to married and the change_status demon will be

invoked. The change_status demon will ask the user to enter Jim's new wife's name, and

then it will change the value of slot wife from jane to the new wife's name.

Additional user supplied arguments also can be passed to demons. Such an example is

provided in Appendix D.

43

Enhanced Frame Package

6.3 load(filename)

This operator loads an existing knowledge base file into working memory. For every frame

or slot loaded successfully, a message will appear indicating the successful load, otherwise

an appropriate errormessage will be displayed.

Example

/ ?- load(animalkingdom).

Upon execution, the frames and slots defined in the knowledge base file

animalkingdom will be loaded into working memory.

Please note that the load operator must be used as explained above to load an existing

knowledge base file in to working memory. Do not try loading a knowledge base file as

follows:

I?- [filename].

which is what one would normally do, when loading or consulting a file filename in the

prolog environment. If a knowledge base file is loaded this way, it will not perform

as intended while using certain operators of the frame package e.g. temp_edit, frame_edit,

ka...etc. In order to access the frame package environment properly, one must use the load

operator for loading a knowledge base file.

To load a demon file (Section 6.20), one must use the load_demon operator or simply

consult the demon file.

6.4 filecreate(filename)

This operator creates a knowledge base file from inside the frame package. The file_create

operator is similar to the vi operator. At the end of the creation, the user can end the

operation exactly like leaving the vi editor by typing
":wq"

on the command line. At that

time the knowledge base file is saved in the working directory and then the contents are

loaded in working memory automatically as
if the operation load(filename) were performed.

44

Enhanced Frame Package

Example

/ ?- flle_create(anlmalland).

Upon execution, the user gets into the edit mode for the knowledge base file

animalland.

6.5 fileedit(filename)

This operator allows the user to edit the contents of the knowledge base file filename present

in the working directory (please note, working directory file as opposed to the working

memory file). The best place to use this operator is just after the load or create operation, as

explained in Section 5.4. Any erroneous segments of the knowledge base file will not be

loaded in the prolog environment. The main purpose of this operator is to allow the user to

fix syntax or other errors that exist in the erroneous segments of the knowledge base from

inside the frame package. The edit environment here is also exactly like the vi edit

environment.

Example

/
?- file_edit(animalkingdom).

Upon execution, the contents of the knowledge base file animalkingdom, as present

in working memory will get deleted. The contents present in the working directory,

will be displayed on the screen for editing. Loading of the file is performed

automatically at the end of editing. It also updates the knowledge base file in the

working directory.

6.6 purge(filename)

This operator purges the contents of the knowledge base file filename from working

memory. It does not purge that knowledge base file stored in the working directory. It is

45

Enhanced Frame Package

useful when the knowledge stored in a file is no longer required, e.g. while using the file, the

knowledge has been modified drastically to the extent that it is not useful anymore ormaybe

the user just wants to end working any further on that knowledge base file and possibly start

working with another knowledge base file.

Example

/ ?- purge(animalklngdom).

Upon execution, frames and slots stored in the file animalkingdom will no longer be

available in working memory for further frame package operations.

6.7 reload(filename)

This operator purges the current contents of the knowledge base file filename from working

memory and loads the contents of the same knowledge base file from the working directory

into working memory. When there are several knowledge base files already loaded in

working memory, the order in which they are loaded may be critical based upon the

relationship between the files. Reload maintains the original sequential position of the

knowledge base file in working memory. This operator comes in handy if the knowledge

stored in a file filename was modified drastically and for some reason the user wanted to go

back to the last saved version quickly.

Example

/ ?-reload(animalkingdom).

6.8 tempedit(filename)

The temp_edit is useful when knowledge needs to be modified in a knowledge base file at

several places. This operator moves the contents of the knowledge base file filename from

working memory into a temporary file
'temp'

for editing. All the editing takes place in the

46

Enhanced Frame Package

temp file. At the end of editing, the contents of the temp file are automatically loaded back

into working memory under the same filename. The edited file is not saved in the working

directory in this process. Edit commands are exactly like the vi editor.

As mentioned earlier in Section 5.4, frames and slots with error(s) do not get loaded back

into working memory. Hence, in a situation where the user makes a few errors while

editing frames/slots in a knowledge base file, upon loading, those frames/slots will not be

loaded back into working memory. The user then would not be able to perform any

operation(s) on those frames or slots during that session. To avoid that, the user is always

provided with the list of error messages and given a choice to undo the editing, as well as

continue the editing, before the actual loading.

The undo edit option gives the user a chance to go back to the point just before the temp_edit

operation (as if no editing was done). The continue edit option allows the user to pick up the

editing from the point where it was last left.

Example

Suppose that the knowledge base file information looks like:

?- def_frame(kim:

[father:

[value:[roy],

max:l],

status:

[value:[unmarried] ,

min:l,

max:l]

])

?- def_frame(reena:

[father:

[value:[ron],

max:l],

47

Enhanced Frame Package

status:

[value:[married],

min:l,

max:l],

husband:

[value:[ravi],

min:0,

max:l]

1).

now suppose the temp_edit operation is performed.

/ ?-temp_edit(information).

Upon execution, the contents of the file information would be placed into a

temporary file for editing. Assume after editing, the contents of the knowledge base

file in file temp looks as follows:

?- def_frame(kim:

[father:

[value:[roy],

max:nine],

status:

[value: [unmarried] ,

min:l,

max:l]

])

?- def_frame(reena:

[father:

[value :[ron],

max:l],

status:

[value: [divorced],

48

Enhanced Frame Package

min:l,

max:l],

husband:

[value: [ravi],

min:0,

max:l]]).

At the end of editing, the user will input :wq. At that time loading of the above

knowledge base file in working memory will take place and the following messages

will appear on the screen:

The max value of nine is not valid.

A facet structure in father:[value:[roy],max:nine] is bad.

The syntax of kim:[father:[value:[roy],max:nine],status:[value:[unmarried],

min:1,max:1]] is bad.

no

frame reena loaded successfully.

yes

temp reconsulted 248 bytes 0.766679 sec.

Would you like to

1. exit the edit.

2. undo the edit.

3. continue the edit.

Input your option.

In case of option 1, only frame reena (the updated version) will get loaded into

working memory. Frame kim (the edited version) has an error and, therefore, will

not get loaded back in working memory.

If case of option 2, the package will undo the editing and will load frame kim

and reena in working memory as they were before the editing was even started.

In case of option 3, the edited file with frames kim and reena will be displayed for

further editing.

49

Enhanced Frame Package

6.9 frameedit(framename)

When several changes in several frames of a knowledge base file are required, temp_edit is

the most convenient operator to use; however, if several changes are required in only one or

two frames, the frame_edit operator is more convenient and faster. It allows the user to edit

one frame at a time. The operation of this operator is similar to the temp_edit operator.

Example

/ ?-frame_edit(reena).

6.10 save_file(filename,newfilename)

This operator allows saving the updated version of the knowledge base file filename present

in working memory into the user defined file newfilename. The saved version can be used

later on. It is important to note that the comments are not saved using any of the save

operators. Only frames and slots are loaded into working memory. Comments are not

available in working memory, hence they obviously cannot be saved.

If newfilename already exists then the user is provided with an option to replace this file. A

'yes'/'y'

response would replace it, and any other response will not result in any file saving

operation. If the newfilename is not in the directory, the save_file operator creates it.

One can use these operators at any time during the session. Saving does not delete the

contents of that knowledge base file from working memory, so it is still available to the user

for further operations.

Example

/ ?-save_file(animalkingdom,ak).

Upon execution, contents of the knowledge base file animalkingdom from working

memory will be copied in the
knowledge base file ak in working directory.

50

Enhanced Frame Package

6.11 save_it(filename)

The operation of the operator save_it is almost exactly like save_file except that the

newfilename is the same as the filename. The operator always replaces the contents of the

knowledge base file filename present in the directorywith the contents of the knowledge base

file filename present in workingmemory.

Example

/ ?-save_lt(animalkingdom).

51

Enhanced Frame Package

6.12 VALUE FACET OPERATORS

The value facet contains a set of values that a particular slot can have. A set of operators is

provided to access and modify the value facet. These operators will add, remove,

modify(change) and return the slot values for the value facet.

6.12.1 add_value_to_slot(framename,slotname,value)

short_form add_vaI(framename,slotname,value)

It allows the addition of a value to a specified slot in a specified frame. Since this operator

also allows the addition ofmore than one value at a time, the value argument should be either

an atom or a list of atoms. Duplication in the value argument is automatically identified and

eliminated.

Upon successful execution of the add_value_to_slot operator, if_added demons get activated

ifpresent in the specified slot.

Example

Suppose the knowledge base file contains:

?- def_frame(photosynthesis:[]).

?- def_frame(animal:

[is_a:[value:[living_thing]],

food_source:[type:(~photosynthesis),max:999],

])

Upon performing:

/
?- add_val(animal,food_source,photosynthesis).

There is a type violation in slot food_source:[value:[photosynthesis], type:

(-photosynthesis),max:999] in frame animal

52

Enhanced Frame Package

Value not defined as -photosynthesis YET.

The operation fails.

no

The above operation fails because of the type constraint that exists in the frame

animal. It is specified that a value in the slot food_source must be other than

photosynthesis.

Upon performing:

/ ?- add_val(animal,food_source,[egg,milk]).

yes

Since the addition of values egg and milk in the slot food_source do not violate any

constraints, add_val succeeds.

6.12.2 removevaluefrom_slot(framename,slotname,value)

short_form rem_val(framename,slotname,value)

This operator allows the removal of a value from a specified slot in a specified frame. Since

this operator allows removal ofmultiple values at a time, the value argument can be either an

atom or a list of atoms. In the case of an uninstantiated variable as the value argument, the

first available value from the value facet gets removed. This operator identifies and ignores

any duplication present in the value argument.

Upon successful execution of the remove_value_from_slot operator, ifjemoved demons get

activated ifpresent in the specified slot.

Example

Suppose the knowledge base file contains:

53

Enhanced Frame Package

?- def_frame(jim:

[is_a: [value:[male]],

status:[value:[married],min:1],

kitty: [value: [annie,minnie,kannie],max:7]

])

Upon performing:

/
?-
rem_val(jim,status,married).

Removing the value would violate cardinality constraints.

The operation fails.

no

It is specified in the frame jim that the value facet of the slot status must contain

at least one value all the time becausemin=l.

/ ?- rem_val(jim,kitty,[annie,minnle]).

yes

Removal of values annie and minnie do not violate any constraints, so rem_val

succeeds.

6.12.3 remove_all(framename,slotname)

short_form rem_alI(framename,slotname)

This operator allows the removal of a value facet from a specified slot in a specified frame.

Example

Suppose the knowledge base file contains:

?- def_frame(jim:

[is_a: [value: [male]] ,

54

Enhanced Frame Package

status:[value:[married],min: 1],

kitty:[value:[annie,minnie,kannie],max:7]
])

Upon performing:

/ ?- rem_all(jim,status).

Removal of the value facet would violate the min constraint.

Operation fails.

no

I
?- rem_all(jim,kitty).

yes

6.12.4 change_vaIue_of_slot(framename,slotname,oldvalue,newvalue)

short_form -

change_val(framename,slotname,oldvalue,newvalue)

This operator can be used to change the value oldvalue, which must be present in the value

facet of a specified slot in a specified frame, to newvalue. It combines the operations of

rem_val and add_val. This operator is implemented in such a way that it provides the

function of add_val (if the oldvalue is a null list) and rem_val (if the newvalue is a null list).

The arguments oldvalue and newvalue, can be atoms or a lists of atoms.

Upon successful execution of the change_value_of_slot operator, if_changed demons get

activated ifpresent in the specified slot.

Example

Suppose the knowledge base file contains:

?- def_frame(jim:

[is_a: [value:[male]],

55

Enhanced Frame Package

status:[value:[married],min: 1],

kitty: [value: [annie,minnie,kannie] ,max:7]

])

Upon performing:

/ ?- change_val(jim,status,marrled,divorce).

yes

The valuemarried in slot status of frame jim will be changed to value divorce.

6.12.5 change_all(framename,sIotname,newvalue)

This operator allows replacement of the entire contents of the value facet in a specified slot of

a specified frame, with newvalue.

Example

Suppose the knowledge base file contains:

?- def_frame(jim:

[is_a: [value: [male]] ,

status: [value: [married] ,min: 1] ,

kid :[min:0,max:l],

kitty : [value: [annie,minnie,kannie] ,max:7]

])

Upon performing:

/ ?- change_all(jim,kld,[lauren,hardy]).

Slot kid has no value facet in frame jim.

The operation fails.

no

56

Enhanced Frame Package

/ ?- change_all(jlm,kltty,[barney,marry]).

yes

Value facet of the slot kitty will now have the values barney and marry instead of

annie, minnie and kannie.

6.12.6 return_value_from_slot(framename,sIotname,value)

short_form -

ret_vaI(framename,slotname,value)

This operator allows the retrieval of a value facet from a specified slot in a specified frame.

Value parameter is assumed to be an uninstantiated variable or an exact match of the entire

value facet.

If no value facet or default facet is available, if_needed demons get activated if present in the

specified slot.

Example

Suppose the knowledge base file contains:

?- def_frame(jim:

[is_a: [value: [male]] ,

status:[value:[married],min: 1],

kitty: [value: [annie,minnie,kannie],max:7]

])

Upon performing:

/
?- ret_val(jim,kitty,Value).

Value = [annie,minnie,kannie]

Values annie, minnie and kannie are retrieved from the local slot kitty of frame jim.

57

Enhanced Frame Package

6.13 MAX FACET OPERATORS

Themax facet contains the maximum number of values that a particular slot can have. A set

of operators is provided to access and modify the max facet. These operators will add,

remove, modify(change) and return the max facet. The system default for the max facet is

one except for the system defined slots is_a and in_of, where the max facet is defined as

999.

6.13.1 add_max_to_slot(framename,slotname,max)

short_form add_max(framename,slotname,max).

This operator allows the addition of amax facet to a specified slot in a specified frame.

Example

Suppose the knowledge base file contains:

?- def_frame(person:[]).

?- defJrame(boy:[is_a:[value: [male]]]).

?- def_frame(girl:[is_a:[value:[female]]]).

?- def_frame(class:

[teacher: [type :person] ,

student: [type: boy@@ girl,

max:30]

])

?- def_frame(grade4:

[is_a:[value:[class]],

teacher: [value: [ms_smith]] ,

student:[value:[kim,neena,reena],min:2]

])

58

Enhanced Frame Package

Currently, value facet [kim,neena,reena] does not violate max constraint because it

inherits 30 formax from slot student in frame class.

Upon performing:

/ ?-add_max(grade4,student,2).

Entries in value facet outside new min max range.

There is a cardinality violation in slot student:[max:2, value:[kim, neena,reena],min:2].

in frame grade4 max=2 andmin = 2.

New value ofmax results in cardinality violation , Operation fails.

no

j ?-add_max(grade4,student,10).

yes

Max = 10, does not violate the cardinality constraints.

6.13.2 removemaxfrom_slot(framename,slotname,max)

short_form -

rem_max(framename,slotname,max)

This operator allows the removal of themax facet from a specified slot in a specified frame.

Example

Suppose the knowledge base file contains:

?- def_frame(person:[]).

?- def_frame(boy:[is_a:[value:[male]]]).

?- def_frame(girl:[is_a:[value:[female]]]).

?- def_frame(class:

[teacher: [type:person] ,

59

Enhanced Frame Package

student: [type: boy@@ girl,

max:30]

])

?- def_frame(grade4:

[is_a:[value : [class]] ,

teacher: [value: [ms_smith]] ,

student:[vdue:[kim,neena,reena],min:3,max:10]]).

Upon performing:

I?-
rem_max(grade4,student,Max).

Max= 10

yes

Removal of the max facet does not violate any constraints.

6.13.3 change_max_of_sIot(framename,slotname,oIdmax,newmax)

short_form change_max(framename,slotname,oldmax,newmax)

This operator can be used to change the max facet with value oldmax of a specified slot in a

specified frame to newmax.

Example

Suppose the knowledge base file contains:

?- def_frame(person:[]).

?- def_frame(boy:[is_a:[value:[male]]]).

?- def_frame(girl:[is_a:[value:[female]]]).

?- def_frame(class:

60

Enhanced Frame Package

[teacher: [type:person] ,

student: [type: boy@@ girl,

max:30]

])

?- def_frame(grade4:

[is_a: [value: [class]] ,

teacher: [value: [ms_smith]],

smdent:[value:[lrim,neena,reena],min:2,rnax:5]

])

Upon performing:

/?-change_max(grade4,student,Max,lO).

Max = 5

yes

In slot student, max is changed from 5 to 10.

6.13.4 returnmaxfrom_slot(framename,slotname,max)

short_form ret_max(framename,slotname,max)

This operator allows the retrieval of the max facet of a specified slot in a specified frame.

Example

Suppose the knowledge base file contains:

?- def_frame(person:[]).

?- def_frame(boy:[is_a:[value:[male]]]).

?- def_frame(girl:[is_a:[value:[female]]]).

?- def_frame(class:

[teacher: [type:person] ,

61

Enhanced Frame Package

student: [type: boy@@ girl,

max:30]

])

Upon performing:

I?-
ret_max(class,student,Max).

Max = 30

yes

62

Enhanced Frame Package

6.14 MIN FACET OPERATORS

Min facet contains the minimum number of values that a particular slot can have. A set of

operators is provided to access and modify the min facet. These operators will add, remove,

modify(change) and return the min facet The system default for the min facet is zero.

6.14.1 add_min_to_slot(framename,slotname,min)

short_form add_min(framename,slotname,min).

This operator allows the addition of a min facet to a specified slot in a specified frame.

Example

Suppose the knowledge base file contains:

?- def_frame(photosynthesis:[]).

?- def_frame(animal:

[is_a:[value:[living_thing]],

food_source:[type:(~photosynthesis), max:999]]).

Upon performing:

/?- add_min(anlmal,food_source,1).

Entries in value facet outside min max range.

There is a cardinality violation in slot food_source:[min:1, type: (-photosynthesis),

max:999]. In frame animal max = 999 andmin =1.

New value of min results in cardinality violation. Operation fails.

no

/?-add_val(anlmal,food_source,mllk).

yes

/?-add_min(animal,food_source,1).

63

Enhanced Frame Package

yes

After adding the value milk in the value facet of the slot food_source, min =1 does

not violate the cardinality constraints.

6.14.2 remove_min_from_slot(framename,slotname,min)

short_form -

rem_min(framename,slotname,min)

This operator allows the removal of themin facet from a specified slot in a specified frame.

Example

Suppose the knowledge base file contains:

?- def_frame(photosynthesis:[]).

?- def_frame(animal:

[is_a: [value: [living_thing]] ,

food_source:[type:(~photosynthesis),max:999,

value:[milk,water,bread,meat,fruits],

min:5]

])

?- def_frame(bird:

[is_a: [value: [animal]] ,

food_source: [value:[water,vegetables], min:2]]).

Upon performing:

/
?- rem_m!n(bird,food_source,Min).

Removing this Min = 2 would create cardinality violation in value facet [water.vegetables]

Operation fails.

no

64

Enhanced Frame Package

/ ?- rem_m!n(anlmal,food_source,Mln).

Min = 5

yes

Removal of the min facet does not violate any constraints.

6.14.3
change_min_of_slot(framename,slotname,oldmin,newmin)

short_form -

change_min(framename,slotname,oldmin,newmin)

This operator can be used to change the min facet oldmin of a specified slot in a specified

frame with newmin.

Example

Suppose the knowledge base file contains:

?- def_frame(bird:

[is_a: [value:[animal]] ,

food_source: [value: [water,vegetables], min:2]

])

Upon performing:

/ ?- change_min(blrd,food_source,Min,3).

Number of entries in valuefacet less than newmin Operation fails.

no

I ?- change_min(animal,food_source,Min,1).

Min = 2

yes

In slot food_source, min gets changed from 2 to 1.

65

Enhanced Frame Package

6.14.4 returnminfrom_s!ot(framename,slotname,min)

short_form ret_min(framename,slotname,min)

This operator allows the retrieval of the min facet of a specified slot in a specified frame.

Example

Suppose the knowledge base file contains:

?- def_frame(bird:

[is_a: [value: [animal]] ,

food_source: [value: [water,vegetables], min:2]

])

Upon performing:

/?-ret_min(blrd,food_source,Mln).

Min = 2

yes

66

Enhanced Frame Package

6.15 TYPE FACET OPERATORS

A set of operators are provided to access and modify the type facet. These operators will

add, remove, modify (change) and return the type facet. The value in a type facet must be a

legal type predicate. A legal type predicate is defined as follows:

a frame name

a legal type ## a legal type (ANDed types)

a legal type@@ a legal type (ORed types)

~

a legal type (NOT type)

6.15.1 addtype_to_slot(framename,slotname,type)

short_form - add_type(framename,slotname,type).

This operator allows the addition of a type facet to a specified slot in a specified frame.

Example

Suppose the knowledge base file contains:

?- def_frame(body_covering_type:

[description: [value: [possible_types_of_body_covering]]]).

?- def_frame(hair:

[is_a:[value:[body_covering_type]]]).

?- def_frame(feathers:

[is_a:[value:[body_covering_type]]]).

?- def_frame(black_feathers:

[is_a:[value:[feathers]]]).

?- def_frame(crow:

[is_a: [value: [bird]],

body_covering:[value:[black_feathers]]

])

67

Enhanced Frame Package

Upon performing:

/ ?- add_type(crow,body_coverlng,halr).

Adding type hair would create type violation in value facet [blackjeathers] , Operation fails.

no

I ?- add_type(crow,body_coverlng,feathers).

yes

Type feathers does not violate any constraints.

6.15.2 remove_type_from_slot(framename,slotname,type)

shortjfbrm rem_type(framename,slotname,type)

This operator allows the removal of the type facet from a specified slot in a specified frame.

Example

Suppose the knowledge base file contains:

?- def_frame(feathers:[]).

?- def_frame(black_feathers:

[is_a:[value:[feathers]]]).

?- def_frame(crow:

[is_a: [value: [bird]] ,

body_covering:[value:[black_feathers],type:feathers]]).

Upon performing:

/ ?- rem_type(crow,body_coverlng,hair).

Hairdoes not exist in type facet for slot bodyjcovering in frame bird ,
Operation fails.

no

68

Enhanced Frame Package

/ ?- rem_type(crow,body_covering,feathers).

yes

Removal of the type facet does not violate any constraints.

6.15.3 change_type_of_sIot(framename,slotname,oldtype,newtype)

short_form -

change_type(framename,slotname,oldtype,newtype)

This operator can be used to change the type facet oldtype of a specified slot in a specified

frame with newtype.

Example

Suppose the knowledge base file contains:

?- def_frame(feathers:[]).

?- def_frame(black_feathers:

[is_a: [value : [feathers]]]) .

?- def_frame(crow:

[is_a: [value: [bird]],

body_covering:[value:[black_feathers],type:feathers]

])

Upon performing:

/ ?- change_type(crow,body_covering, feathers,hair).

Changing type with hair would create type violation in value facet [blackjeathers]

Operation fails.

no

/ ?- change_type(crow,body_covering,Type,feathers).

Type = feathers already exists in slot body_covering in
frame crow, hence ignored.

69

Enhanced Frame Package

no

/ ?-
change_type(crow,body_coverlng,Type,black_feathers).

Type = feathers

yes

In slot body_covering of frame crow, type gets changed from feathers to

black feathers.

6.15.4 return_typefrom_slot(framename,slotname,type)

short_form ret_type(framename,slotname,type)

This operator allows the retrieval of the type facet of a specified slot in a specified frame.

Example

Suppose the knowledge base file contains:

?- def_frame(feathers:[]).

?- def_frame(black_feathers:

[is_a:[value:[feathers]]]).

?- def_frame(crow:

[is_a: [value: [bird]] ,

body_covering: [value: [black_feathers] ,type:feathers]

])

Upon performing:

/ ?- ret_type(crow,body_covering,Answer).

Answer = feathers

yes

70

Enhanced Frame Package

6.16 DEFAULT FACET OPERATORS

The default facet provides a list of values that is to be used for the slot's value if no values are

present in the value facet. Once the value for a value facet is determined, then one might like

to create or modify the value facet itself and at that point might want to remove the default

facet. Hence, the operator remove_default is provided. change_default and add_default are

not provided because conceptually there will be little need to use those functions.

return_default is useful when one would like to find out what the default value is.

6.16.1 removedefaul t_from_sIot(framename,sIotname)

short_form rem_defauIt(framename,slotname)

This operator allows the removal of a default facet from a specified slot in a specified frame.

Example

Suppose the knowledge base file contains:

? - def_frame(grade4:

[is_a: [value: [class]] ,

teacher: [default:[miss_maria]] ,

student:[value:[jim,ken],min:2,max:30]]).

Suppose, that initially it was not decided who is going to teach grade4. Therefore, by

default, it was assumed that Miss Maria will teach grade4. However, at the starting of the

session, it was decided thatMiss Jinnie will teach the class. In that case, one would like to

do the following:

/ ?- add_val(grade4,teacher,miss_jlnnle).

yes

/?-rem_default(grade4, teacher).

yes

71

Enhanced Frame Package

6.16.2 returndefaultfrom_slot(framename,slotname,default)

short_form ret_default(framename,slotname,default)

This operator allows the retrieval of a default facet from a specified slot in a specified frame.

The default parameter is assumed to be an uninstantiated variable or an exact match of the

default facet.

Example

Suppose the knowledge base file contains:

?- def_frame(grade4:

[is_a: [value: [class]] ,

teacher:[default:[miss_maria]],

student: [value: [jim,ken] ,min:2,max:30]

])

On performing:

/ ?- ret_default(grade4,teacher,Default).

Default = [missjmaria]

yes

72

Enhanced Frame Package

6.17 FRAME OPERATORS

6.17.1 add_frame(filename,frame)

This operator allows the addition of a new frame while working with the knowledge base

from inside the frame package, filename is the name of the knowledge base file in which the

userwants to put the new frame. The new frame gets appended at the end of the knowledge

base file when the knowledge base file is saved. If the filename is specified as [], then that

frame will be available only during that session and it will not be saved with any knowledge

base file.

Example

/
?-

add_frame(personalinfo,

joy:[is_a:[value:[kid]],

father:[value:[ron]],

mother:[value:[kim]]]).

Here personalinfo is the filename, in which the frame joy gets added to working

memory.

The operation is very similar to the def_frame operation. There is a small difference

however. def_frame is used when creating a knowledge base file whereas add_frame is used

when new frames are added interactively during the session or through procedural

knowledge. Since the add_frame operator specifies a filename, this allows the system to

know and keep track of the fact that the particular frame belongs to a specified file.

6.17.2 renameframe(oldframename,newframename)

This operator allows the frame oldframename to be renamed as newframename in working

memory.

73

Enhanced Frame Package

Example

Suppose the knowledge base file contains:

?- def_frame(bird:

[is_a:

[value:[animal]],

body_covering:

[value: [feather]]

])

Upon performing:

/ ?- rename_frame(bird,pretty_bird).

yes

Now the knowledge base file in working memory will have pretty_bird as the frame

name instead of bird.

6.17.3 undef_frame(framename)

This operator deletes the frame framename from working memory.

Example

Suppose the knowledge base file contains:

?- def_frame(kitty:

[is_a:

[value: [cat]],

body_covering:

[value: [hair]]

1).

74

Enhanced Frame Package

When kitty dies, one would like to update the knowledge base by deleting the frame

kitty.

On performing:

/?- undef_frame(kitty).

yes.

Frame kitty will no longer be available in the knowledge base in working memory.

However, it will remain in the knowledge base file in the working directory in which

it currently resides.

6.17.4 frame_match_exact(prototype,list_of_frames)

This operator returns a list of the names of frames thatmatch a given pattern. This pattern is

defined by the argument prototype, which is considered to be a subset of slots in a matching

frame. The prototype list determines what is to be searched for, and list_of_frames is the list

of frames that matches the prototype list.

Prototypes are specified like the list of slots in a frame. However, only four facet types may

appear in the list of facets that describe the slots in a prototype. The allowed facets are value,

type, max and min. When they appear in a prototype, these facets are interpreted differently

fromwhen they appear in a frame or slot definition. The value specification indicates a value

that must be matched literally. A type specification in a prototype's slot indicates that the

value in the corresponding slot in any frame must meet this type constraint (Note that it does

not mean that the matching frame's slot's type facet matches the prototype's slot's type

facet). The min and max specifications similarly define a cardinality requirement for the

slot's value match. For example, if the min facet's value is three and the max facet's value is

five in a given prototype slot, only frames with a list containing three,
four or five values in

the value facet could match.

In frame_match_exact operator, the list of values in the value facet of the frame's slot must be

identical to those in the prototype list.

75

Enhanced Frame Package

Example

Suppose the knowledge base file contains:

?- def_frame(carnivorous:

[is_a:

[value: [food_source_type]],

characteristic_of :

[value: [cats,dogs],

max:999],

description:

[value:[eats_animal]]

])

Upon performing:

/?-frame_match_exact([characteristic_of:[value:[dogs]]],Answer).

no
I*
value match is not exact */

I?-
frame_match_exact([characteristlc_of:[value:[dogs,cats]]],Answer).

Answer= [carnivorous]

yes

6.17.5 frame_match_subset(prototype,list_of_frames)

frame_match_subset operator is the same as frame_match_exact except that it will match

frames whose list of values in the value facet of a slot is a superset of the list of values in a

value facet of the prototype list.

Example

Suppose the knowledge base file contains:

?- def_frame(carnivorous:

76

Enhanced Frame Package

[is_a:

[value: [food_source_type]],

characteristic_of :

[value:[cats,dogs],

max:999],

description:

[value: [eats_animal]]]).

Upon performing:

/ ?-frame_match_subset([characteristlc_of:[value:[dogs]]],Answer).

Answer=[carnivorous]

yes

6.17.6 frame_subsumes(subsuming_frame,subsumed_frame)

frame_subsumes operator determines the relationship among frames in a hierarchy, where

subsuming_frame is the potential ancestor frame and subsumed frame is the potential

progeny frame. This operator succeeds if the first argument subsumes the second argument.

Example

Suppose the knowledge base file contains:

?- def_frame(animal:

[is_a:

[value: [living_thing]]

])

?- def_frame(mammal:

[is_a:

[value:[animal]],

body_covering:

77

Enhanced Frame Package

[value:[hair]]

])

?- def_frame(bird:

[is_a:

[value:[animal]],

body_covering:

[value: [feather]]

])

Upon Performing:

I?- frame_subsumes(animal,blrd).

yes
I*
to determine bird is an animal */

/?- frame_subsumes(animal,Answer).

Answer= mammal;

Answer = bird;

no
I*
to find all the frames that are progeny of frame animal */

I?- frame_subsumes(Answer,bird).

Answer = animal;

yes
I*
to find ancestor frame of frame bird */

78

Enhanced Frame Package

6.18 KNOWLEDGE ANALYSIS OPERATORS

The enhanced frame package provides two commands to analyze the knowledge base. Both

of these commands tell the user only about inconsistencies that are present in the system.

They do not interfere with anything else and let the user work with the system as it stands

(whether consistent or inconsistent).

6.18.1 ka

ka, i.e. knowledge analyzer, analyzes the complete knowledge present in working memory to

check for consistency. It reports all the inconsistencies that it encounters during its analysis.

(use this command to find out what it can do!)

6.18.2 checkframe(framename)

ka goes through the whole knowledge base, whereas check_frame operator checks only a

particular frame framename for inconsistencies. This operator was created for efficiency

purposes when only a selected frame needs to be analyzed instead of the complete knowledge

base.

Example

/ ?- check_frame(animal).

79

Enhanced Frame Package

6.19 UTILITY OPERATORS

Some other useful operators available in the enhanced frame package are:

6.19.1 trace_on/trace_off

The trace feature helps the user in debugging and understanding the knowledge base. The

trace provided by the prolog interpreter turns out to be very detailed and difficult to

understand because it traces through the details of the source code of the frame package.

Since the user can best relate to the knowledge base he/she has created/used, a new trace

feature has been developed for the enhanced frame package. This trace confines itself to high

level frame package operators as they relate to the user's knowledge base.

Normally trace is kept off. The user can ask for the trace on by typing trace_on, in which

case the package traces and displays the decision path for the user. All comments that are

displayed as part of the tracing operation are preceded by an arrow '-->'.

If the trace is on during any loading function (e.g. load, file_create, file_edit ,etc.) the

number ofmessages displayed becomes very large and is not necessarily meaningful. If the

user leaves the trace on before any of these operations, the package recommends that the user

turn the trace off.

Once the user puts trace_on, trace will be on until the user puts trace_off again and vice

versa.

Example

Suppose the knowledge base file contains:

?- def_frame(animal:

[is_a:

[value:[hving_thing]] ,

food source:

80

Enhanced Frame Package

[value:[milk,water,bread],

min:5],

description:

[value: [partition_of_living_thing]]

])

?- def_frame(bird:

[is_a:

[value:[animal]],

body_covering:

[value:[feathers]]

])

On performing:

/ ?- trace_on.

yes

/ ?- ret_val(anlmal,description,Value).

--> value = [partition_of_living_thing] inherited from slot description in frame animal

Value = [partition_of_living_thing]

yes

6.19.2 printtree(framename)

Given the framename, this operator prints the immediate parent and children frame names.

This can be a good help in the debugging process. The package does not go beyond the

immediate parents and children for the sake of simplicity.

Example

Suppose the knowledge base file contains:

?- def_frame(living_thing:[]).

?- def_frame(animal:

81

Enhanced Frame Package

[is_a:

[value:[Uving_thing]]

1).

?- def_frame(mammal:

[is_a:

[value: [animal]],

body_covering:

[value: [hair]]

])

?- def_frame(bird:

[is_a:

[value:[animal]],

body_covering:

[value:[feathers]]]).

Upon performing:

/?-print_tree(animal).

PARENT FRAME(S):

living_thing

QUERYFRAME:

animal

CHILD FRAME(S):

mammal

bird

6.19.3 printframe(framename).

short_form pf(framename)

The print_frame operator prints the frame framename that is present in the working memory

in a well organized format. This operator comes in handy especially to look at a frame after

82

Enhanced Frame Package

modifications have been made using the frame package operators.

Example

Suppose the knowledge base file contains:

?- def_frame(bird:[is_a: [value: [animal]], body_covering:[value:[feathers]]]).

Upon performing:

/?-pf(bird).

bird:

[

is_a:

value:[animal]

body_covering:

value:[feathers]

1

yes

6.19.4 showall

This operator shows all the knowledge base file names along with a list of frame names that

are present in working memory for each one of the files. A slotname, if defined through a

def_slot operator, also appears as a list entry in the list of frame names.

Example

Suppose the knowledge base file parent contains:

?- def_slot(children:

[min:0, max:5]]).

?- def_frame(jim:

83

Enhanced Frame Package

[is_a:[value: [father]] ,

children: [value: [annie,kannie]] ,

wife: [value: [kati]]

])

?- def_frame(johny:

[is_a: [value : [father]] ,

children: [value:[minnie]] ,

wife: [value: [kavita]]]).

Suppose the knowledge base file kid contains:

?- def_frame(male:[is_a: [value: [living_thing]]]).

?- def_frame(female:[is_a:[value:[hving_thing]]]).

?- def_frame(leather: [is_a: [value: [material]]]).

?- def_slot(has_leather_shoes:

[min:0, max:5,type:leather]]).

?- def_frame(father:

[is_a: [value: [parent] ,

type: [male]]

])

?- def_frame(mother:

[is_a: [value: [parent] ,

type: [female]]

])

?- def_frame(annie:

[father: [value: [jim]] ,

mother: [value: [kati]]

])

?- def_frame(kannie:

[has_leather_shoe: [value: [white_italian]] ,

father:[value:[jim]],

mother:[value:[kati]]]).

?- def_frame(minnie:

[father: [value: [johny]] ,

84

Enhanced Frame Package

mother:[value:[kavita]]]).

Upon performing:

/ ?-show_all.

File -> parent Frames/Slots --> [[childrenjjimjohny]

File->kid Frames/Sbts-->[male,female,leather,[has_leather_shoes] , father,

mother,annie,kannie, minnie]

yes

Here children and has_leather_shoes are defined through def_slot operator.

6.19.5 showfile(filename)

This operator shows names of all the frames and slots that belong to the file filename present

in working memory.

Example

Suppose the knowledge base file parent is declared as above in Section 6.19.4.

Upon performing:

/ ?- show_file(parent).

File -> parent Frames/Slots -> [[children],jim,johny]

yes

85

Enhanced Frame Package

6.20 DEMON FILE OPERATORS

A set of operators are available for the demon predicate file.

6.20.1 loaddemon(filename)

This operator is used to load a demon predicate file in the frame package.

Example

/ ?- load_demon(ak_demon).

Upon execution, demon file ak_demon will be consulted into workingmemory.

To load a demon file, one must use the load_demon operator or simply consult the demon file

and to load a knowledge base file one should always use the load operator (Section 6.3).

6.20.2 editdemon(filename)

This operator allows the user to edit a demon predicate file from inside the enhanced frame

package.

Example

/ ?- edit_demon(ak_demon).

Upon execution, demon file ak_demon will be displayed for editing.

6.20.3 createdemon(file)

This operator allows the creation of a demon predicate file from inside the frame package.

86

Enhanced Frame Package

Example

/ ?- create_demon(ak2_demon).

Upon execution, demon file ak2_demon will be displayed for creation.

While Writing Demons

PLEASE NOTE :

1. If the user is creating new frames using procedural knowledge in demon

predicates, then the user must use add_frame instead of defjframe (because

through procedural knowledge, new frames are being added as opposed to

defining a frame at the time of creation of the knowledge base). Reference:

Appendix D.

2. The user must keep in mind while writing the demon predicates that the enhanced

package allows addition, removal ormodification of a single value as well as a list

of values. Reference: Appendix D.

87

7 FUNCTIONAL DETAILS

This chapter covers the additional technical details that include the functionality, criteria and

constraint checking aspects of the various frame package operators; complementing the

information provided in the previous chapter.

The order of the operators in this chapter has been kept the same as the order of operators in

Chapter 6. It was not kept alphabetical for the reason of being able to group them together by

their functionality. However, an index of operators has been provided at the back of this

thesis for a quick alphabetical reference.

7.1 Definition Operators

Definition operators - def_frame and def_slot are commands not just the simple prolog

clauses in the frame package. Definition operators therefore must be preceded by a
?- in any

knowledge base file.

7.1.1 def_frame(Frame)

Functionality:

(1) Check to assure that the argument is instantiated.

(2) Check the frame for correct syntax by assuring all of the following:

- the frame name is unique.

- the structure of the frame is:

framename: [list of slots]

- the list of slots is indeed a list.

- the list of facets for each slot is indeed a list

- the structure of each slot is:

slotname: [list of facets]

- the structure of each facet is:

Enhanced Frame Package

facetname:facetvalue

- the facetvalue is an atom, a list, or a type predicate

- the facetname is one of the predefined names.

- the type facet is one of the following legal types:

a frame name (legal type)

legal type && legal type

legal type $$ legal type

-legal type

- the max and min facets, if they exist,

contain a single integer

- the value and default facets, if they exist,

contain lists

(3) Check the frame for correct values by assuring the following:

(applicable only in the case of a consistent system option)

- type constraints have not been violated.

(all data in value and default facets are checked

against any type constraints that exist)

-

cardinality constraints have not been violated

(all data in value and default facets are checked

against max andmin constraints)

(4) Assert the frame into the knowledge base or return an errormessage and fail.

7.1.2 def_slot(slotname:[Iist of facets]).

Functionality:

(1) Check to assure that the argument is instantiated.

(2) Check the slotname is unique among the predefined slots.

(3) Check the slot for the correct syntax by assuring the following:

89

Enhanced Frame Package

- the slot has at least one facet.

- the structure of each slot is:

slotname: [list of facets]

- the list of facets for each slot is indeed a list.

- the structure of each facet is:

facetname:facetvalue

- the facetvalue is an atom, a list, or a type predicate

- the facetname is one of the predefined names.

- the type facet is one of the following legal type:

a frame name

legal type && legal type

legal type $$ legal type

-legal type

- the max and min facets, if they exist,

contain a single integer

- the value and default facets, if they exist,

contain lists

(4) Check the slot for correct values by assuring the following:

(applicable only in the case of a consistent system option)

- type constraint have not been violated.

(all data in value and default facets are checked

against any type constraints that exist)

-

cardinality constraints have not been violated

(all data in value and default facets are checked

against max andmin constraints)

(5) Assert the slot into the knowledge base or return an error message and fail.

90

Enhanced Frame Package

7.2 Demons

Functionality:

(1) - a demon in the if_added facet will be in invoked when a value

is added to a slot

- a demon in the if_removed facetwill be in invoked when a value

is removed from a slot

a demon in the ifjieeded facet will be in invoked when a value

is needed but none is present in the slot

- a demon in the if_changed facet will be in invoked when a value

is changed from a slot

(2) When a demon is invoked, arguments are sent automatically in the following

order for the first three facets listed above:

- user-defined arguments (if present), framename, slotname and value

the frame name and the slot name arguments are passed in addition to the

value argument to identify the source which activated the demon.

For the fourth facet i.e. for the if_changed facet, the following arguments are sent

automatically:

- user-defined arguments (if present) framename, slotname, oldvalue, and

newvalue

where the additional argument, oldvalue is the old value in the slot

slotname of the frame framename that is getting changed by the new value

newvalue.

91

Enhanced Frame Package

7.3 load(filename)

Functionality:

(1) Assure that filename is an instantiated atom.

(2) If the file filename does not exist in the directory, report an error and fail.

(3) Load the frames and slots from the file filename into workingmemory based upon the

following criteria:

if the user started with the choice of a consistent system

then perform syntax and consistency checking both

else perform syntax checking only.

(4) Update the internal information maintained by the package regarding the knowledge

base.

92

Enhanced Frame Package

7.4 filecreate(filename)

Functionality:

(1) Assure that filename is an instantiated atom.

(2) If the file filename already exists in the working directory, report an error and fail.

(3) Provide edit mode for the editing and the creation of file filename.

(4) At the end of creation, load the frames and slots from the file filename into working

memory based upon the following criteria:

if the user started with the choice of a consistent system

then perform syntax and consistency checking both

else perform syntax checking only.

(5) Save the file filename in the working directory also.

(6) Update the internal information maintained by the package regarding the knowledge

base.

93

Enhanced Frame Package

7.5 file_edit(filename)

Functionality:

(1) Assure that filename is an instantiated atom.

(2) If the file filename does not exist in working memory, report an error and fail.

(3) Delete all the frames and slots that belong to the knowledge base file filename from

working memory.

(4) Display the file filename as it exists in the working directory for editing using the vi

editor.

(5) At the end of editing, save the file filename in the working directory and load the

frames and slots from the file filename into working memory based upon the

following criteria:

if the user started with the choice of a consistent system

then perform syntax and consistency checking both

else perform syntax checking only

(6) Update the internal information maintained by the package regarding the knowledge

base.

The file_edit operator updates the knowledge base file in the working directory!

94

Enhanced Frame Package

7.6 purge(filename)

Functionality:

(1) Assure that filename is an instantiated atom.

(2) If the knowledge base file filename does not exist in working memory, report an

error and fail.

(3) Retract all the frames and slots of the knowledge base file filename from working

memory.

(4) Update the internal information maintained by the package regarding the knowledge

base.

95

Enhanced Frame Package

7.7 reload(filename)

Functionality:

(1) Assure that filename is an instantiated atom.

(2) If the knowledge base file filename does not exist in working memory, report an

error and fail.

(3) Retract all the frames and slots of the knowledge base file filename from working

memory.

(4) Load the knowledge base file filename from the working directory in the same

sequential position with respect to the other loaded knowledge base files in working

memory based upon the following criteria:

if the user started with the choice of a consistent system

then perform syntax and consistency checking both

else perform syntax checking only.

(5) Update the internal information maintained by the package regarding the knowledge

base.

The reload operator replaces the contents of the knowledge base file while maintaining the

existing sequential position of the file in the working memory;
where as the load operator

always loads the knowledge base file at the end of the sequence of all the loaded files.

96

Enhanced Frame Package

7.8 tempedit(filename)

Functionality:

(1) Assure that filename is an instantiated atom.

(2) If the knowledge base file filename is not present in working memory, report an error

and fail.

(3) Copy the frames and slots of the file filename from working memory into a storage

file say temp2 in a remote directory (needed for an undo option).

(4) Copy the contents of the file filename from workingmemory into another storage file

say temp in a remote directory for editing using def_frame and def_slot operators.

(5) Purge the contents of the file filename from working memory.

(6) Display file temp for editing.

(7) At the end of editing, load the edited file
'temp'

based upon the following criteria:

if the user started with the choice of a consistent system

then perform syntax and consistency checking both

else perform syntax checking only.

(for frames and slots defined in the temporary file temp.)

Keep in mind that temp_edit operates
on working memory. It does not change

the

original knowledge base file in the working directory. In step 7, loading is done in

such a way that valid/correct
frames and slots get loaded as part of the knowledge

base file filename in working memory. Step 7 also lists
all the errors that are present

in the edited version.

(8) Provide a list of options to the user as follows:

1 . exit edit

97

Enhanced Frame Package

2. undo edit

3 . continue edit

(9) Option 1 exit edit. The file edit operation ends and the edited version

is to be used for the file filename in working memory. Since the edited version is

already loaded in working memory (step 7), nothing further needs to be done.

(10) Option 2 undo edit. The file edit operation should be undone, i.e. the

system should return to the status as it was just before the editing was started. To

achieve this, the following steps are executed:

a. Purge all frames/slots from working memory that were loaded as part of step 7.

b. Consult file temp2.

(11) Option 3 continue edit. The file that was just being edited is redisplayed

for further editing. To achieve this, the following steps are executed:

a. Purge all frames/slots from working memory that were loaded as part of step 7.

b. Display file temp (edited version) for further editing.

c. Go back to step 6, above.

(12) At the end of the editing session, update the internal information maintained by the

package regarding the knowledge base.

7.9 frameedit(framename)

Functionality:

functionality of the frame_edit operator is similar to the temp_edit operator except that it

allows editing of a particular frame instead
of a particular file.

98

Enhanced Frame Package

7.10 save_file(filename,newfilename)

Functionality:

(1) Assure that the filename and newfilename both are instantiated atoms.

(2) If file filename is not present in working memory, report an error and fail.

(3) If file filename does not have any frames or slots, display amessage and fail.

(4) If the newfilename already exists in the working directory, provide an option to the

user for replacing it with the contents of the file filename present in workingmemory.

(5) If the file newfilename does not exist in the working directory, create a new file

newfilename in the working directory.

(6) Copy the contents of file filename fromworking memory into the file newfilename in

working directory.

7.11 saveit(filename)

Functionality:

functionality of the save_it operator is similar to the save_file operator except that

newfilename in save_file is the same as filename in save_it

99

Enhanced Frame Package

7.12 VALUE FACET OPERATORS

7.12.1 add_value_to_slot(framename,sIotname,value)

Functionality:

(1) Assure that framename and slotname are instantiated.

(2) If the value to be added is not valid (ie not a list or an atom), report an error and fail.

(3) If the frame does not exist, report an error and fail.

(4) Remove any duplication in the list of values to be added or if the value to be

added already exists in the value facet.

(5) If possible (see the criteria below), add the value by retracting the old frame and

asserting the frame with the amended value.

(6) If the addition was executed, activate any if_added demon(s), if present, in the

specified slot.

Criteria:

if the slot is local to the frame and has a value facet

then if constraints allow (see constraint checking below)

then add the value to the list

else report an error and fail

else if the slot is local and does not have a value facet

then if constraints allow

then put the value in the value facet

else report an error and fail

else the slot is not local

then if constraints allow

then add the slot to the list

100

Enhanced Frame Package

and put the value in the value facet

else report an error and fail

Constraint Checking:

check the value argument by assuring the following:

cardinality constraints have not been violated

(number of values present in the value facet along with

number ofvalues to be added (Value argument) is checked

against themax constraint)

type constraint has not been violated.

(value(s) to be added is checked against

any type constraints that exist.)

This operator adds to local information only or creates local information if there was none.

This allows for local information to override inherited information.

7.12.2 removevaluefrom_slot(framename,slotname,value)

Functionality:

(1) Assure that framename and slotname are instantiated.

(2) If the frame does not exist, report an error and fail.

(3) Remove any duplication in the list of
values to be removed.

(4) If possible (see the criteria below), remove the value by retracting the old frame and

asserting the amended frame.

(5) If the removal was executed, activate any if_removed demon(s), if present, in the

101

Enhanced Frame Package

specified slot.

Criteria:

if the slot is local to the frame and has a value facet

then if the value(s) to be removed is present

(in case of an uninstantiated variable as value argument, first entry

of the value facet becomes the value argument)

then if constraints allow (see below)

then remove the value

else report an error and fail

else fail

else fail

Constraint Checking:

check the value argument by assuring the following

cardinality constraints have not been violated

(number of values present in the value facet minus

number of values to be removed (Value argument) is checked

against themin constraint)

Removal of a value(s) takes place only if the value is present locally in a slot. If the removal

of a value produces an empty value facet, the facet is removed from its slot. If this removal

of the value facet produces an empty facet list, then that slot is removed from the frame.

7.12.3 remove_all(framename,sIotname)

Functionality:

(1) Assure that framename and slotname are instantiated.

(2) If the frame does not exist, report an error and fail.

102

Enhanced Frame Package

(3) If possible (see the criteria below), remove the value facet by retracting the old frame

and asserting the amended frame.

(4) If the removal of the value facet was executed, activate any if_removed demon(s), if

present, in the specified slot.

Criteria:

if the slot is local to the frame and has a value facet

then if constraints allow (see below)

then remove the value

else report an error and fail

else fail

Constraint Checking:

check the following:

cardinality constraints have not been violated

(min must be zero for that slot)

If this removal of the value facet produces an empty facet list, then that slot is removed from

the frame.

7.12.4 change_value_of_slot(framename,sIotname,oldvalue,newvalue)

Functionality:

(1) Assure that framename, slotname and newvalue arguments
are instantiated.

(2) If the value to be removed (oldvalue) is not an atom or a list of atoms, report an error

and fail.

(3) If the value to be added (newvalue) is not an atom, a list of atoms, or an

103

Enhanced Frame Package

uninstantiated variable, report an error and fail.

(4) If the frame does not exist, report an error and fail.

(5) Remove the duplication ifpresent in the oldvalue and newvalue arguments.

(6) If possible (see the criteria below), change the values by replacing oldvalue with

newvalue, and retracting the old frame and asserting the frame with the changed

value(s).

(7) If the change was executed, activate the if_changed demon(s), if present, in the

specified slot.

Criteria:

if the slot is local to the frame and has a value facet

then if constraints allow (see below)

then change the value of the value facet

else report an error and fail

else fail

Constraint Checking:

check the oldvalue argument by assuring the following:

value(s) to be removed should be present in the value facet

(if oldvalue is an instantiated variable, itmust be present in the value facet.

In case of an uninstantiated variable as oldvalue argument, the first entry

of the value facet becomes the oldvalue)

check the new argument by assuring the following:

type constraints have not been violated

(newvalue is checked against any type constraint that is present)

once the above two conditions are satisfied, ensure that the cardinality

104

Enhanced Frame Package

constraints have not been violated

(number of values present in the value facet plus

number of entries in newvalue minus number of entries in oldvalue

should be greater than or equal tomin and

less than or equal to the max constraint for that slot)

The change_value_of_slot operates only when the slot has a local value facet. If oldvalue

argument is [], then the change_value_of_slot will change [] to the newvalue; which is

equivalent of adding newvalue to the valuefacet Similarly, if newvalue argument is [], then

the change_value_of_slot will change oldvalue to []; which is equivalent of removing

oldvalue from the value facet. In all cases if_changed demon will be fired if present.

If the change of a value produces an empty value facet, the facet is removed from its slot If

this removal of the value facet produces an empty facet list, then that slot is removed from the

frame.

7.12.5 change_all(framename,slotname,newvalue)

Functionality:

(1) Assure that framename, slotname and newvalue arguments are instantiated.

(2) If the value to be added (newvalue) is not an atom, a list of atoms, or an

uninstantiated variable, report an error and fail.

(3) If the frame does not exist, report an error and fail.

(4) Remove any duplicate entries
in the newvalue argument.

(5) If possible (see the criteria below), change the value
facet by retracting the old frame

and asserting the frame
with the newvalue.

(6) If the change was executed, activate any
if_changed demon(s), if present, in the

105

Enhanced Frame Package

specified slot.

Criteria:

if the slot is local to the frame and has a value facet

then if constraints allow(see below)

then change the value of the value facet

else report an error and fail

else fail

Constraint Checking:

check the new argument by assuring the following:

type constraints have not been violated

(newvalue is checked against any type constraint that is present)

ensure that the cardinality constraints have not been violated

(number of unique entries present in the newvalue >= min and <= max

constraints for that slot)

change_all operates only when the slot has a local value facet.

7.12.6 return_value_from_slot(framename,slotname,vaIue)

Functionality:

(1) Framename and slotname must be instantiated variables.

(2) Value argument must be an uninstantiated variable or an exact match of the value

facet.

(3) If the frame does not exist, report an error and fail.

106

Enhanced Frame Package

(4) If a value facet can be found based upon the following value facet inheritance

algorithm, return that value facet.

(5) If a value facet cannot be found, fail.

The Value Facet Inheritance Algorithm:

if the value facet is local to the current slot

then use that value

else if the current slot contains a default facet

then use that value

else if the current slot contains an if_needed facet

then activate the demon(s)

and return the value returned by the last demon

else search the ancestors recursively*

{ if a value can be found

then use it] /*using the same criteria as above in the algorithm*/

else if the value facet is in a predefined slot

then use that value

else there is no value

*This search is done as a breadth-first search on all ancestors, so that the
"nearest"

ancestor supplies the value.

107

Enhanced Frame Package

7.13 MAX FACET OPERATORS

7.13.1 add_max_to_slot(framename,slotname,max)

Functionality:

(1) Assure that framename and slotname are instantiated.

(2) If the max to be added is not valid (ie not an integer), report an error and fail.

(3) If the frame does not exist, report an error and fail.

(4) If possible (see the criteria below), add the max by retracting the old frame and

asserting the frame with the amended max.

Criteria:

if the slot is local to the frame and has no max facet

then if constraints allow (see constraint checking below)

then add the max facet to the slot

else report an error and fail

else if the slot is local and has amax facet

then report an error and fail

else if the slot is not local

then if constraints allow

then create the slot to the list and add the max facet

else report an error and fail

Constraint Checking:

check the value argument by assuring the following:

cardinality constraints have not been violated
for value/default facet(s) if they exist

(number of entries in the value facet and/or default facet(s) must be <= max)

108

Enhanced Frame Package

It is worth noting that the max facet can have only one entry as its value; therefore, add_max

succeeds only if there is no local max facet

7.13.2 removemaxfrom_slot(framename,slotname,max)

Functionality:

(1) Assure that the framename and slotname are instantiated.

(2) If the frame does not exist, report an error and fail.

(3) If the max to be removed is not valid (i.e. neither an uninstantiated variable nor an

integer), report an error and fail.

(4) If possible (see the criteria below), remove the max by retracting the old frame and

asserting the amended frame.

Criteria:

if the slot is local to the frame and has amax facet

then if constraints allow (see below)

then remove the max facet from the slot

else report an error and fail

else fail

Constraint Checking:

check the max argument by assuring the following:

ifmax argument is an instantiated variable, then itmust exist in the max facet.

cardinality constraints have
not been violated

(number of entries in the value facet (if it exists), and in default facet (if it exists)

must be <= the new max. New max will be either inherited from an ancestor

109

Enhanced Frame Package

frame or a predefined global slot or the system default.)

Since the max facet can have only one entry, rem_max removes the max facet completely

from the specified slot. If this removal of the max facet produces an empty facet list, then

that slot is removed from the frame.

7.13.3 change_max_of_slot(framename,sIotname,oldmax,newmax)

Functionality:

(1) Assure that framename and slotname are instantiated.

(2) If the oldmax is not valid (i.e. not an integer), report an error and fail.

(3) If the newmax is not valid(i.e. not an integer), report an error and fail.

(4) If the frame does not exist, report an error and fail.

(5) If possible (see the criteria below), change the oldmax by retracting the old frame and

asserting the frame with the newmax.

Criteria:

if the slot is local to the frame and has amax facet

then if constraints allow(see below)

then change the max of themax facet

else report an error and fail

else report an error and fail

Constraint Checking:

if oldmax is an instantiated variable, it should be the
same as max facet entry of

the slot.

110

Enhanced Frame Package

ensure that the cardinality constraints have not been violated

(number of values present in the value facet (if it exists) and in default facet

(if it exists), must be <= newmax)

change_max_of_slot operates only when the slot has a local max facet.

7.13.4 returnmaxfrom_slot(framename,slotname,max)

Functionality:

(1) The framename and slotname must be instantiated variables.

(2) The max must be either an uninstantiated variable or an integer.

(3) If the frame does not exist, report an error and fail.

(4) If a max can be found based upon the following max facet inheritance algorithm,

return thatmax.

(5) If a max cannot be found, fail

The.Max Facet Inheritance Algorithm:

if themax facet is local to the current slot

then use thatmax

else search the ancestors
recursively*

{ if a max can be found

then use it }

else if the max facet is in a predefined global slot

then use that max

else use system defaultmax

* This search is done in a breadth first
search manner.

Ill

Enhanced Frame Package

7.14 MIN FACET OPERATORS

7.14.1 add_min_to_sIot(framename,s!otname,min)

Functionality:

(1) Assure that framename and slotname are instantiated.

(2) If the min to be added is not valid (i.e. not an integer), report an error and fail.

(3) If the frame does not exist, report an error and fail.

(4) If possible (see the criteria below), add the min by retracting the old frame and

asserting the frame with the amended min.

Criteria:

if the slot is local to the frame and has nomin facet

then if constraints allow (see constraint checking below)

then add themin facet to the slot

else report an error and fail

else if the slot is local and has amin facet

then report an error and fail

else if the slot is not local

then if constraints allow

then create the slot to the list and add themin facet

else report an error and fail

Constraint Checking:

check the value argument by assuring the following:

cardinality constraints
have not been violated for value and default facets if they exist

(number of entries in the value facet and/or default facetmust be
>= min.)

112

Enhanced Frame Package

It is worth noting that the min facet can have only one entry as its value; therefore, add_min

succeeds only if there is no localmin facet.

7.14.2 remove_min_from_slot(framename,slotname,min)

Functionality:

(1) Assure that framename and slotname are instantiated.

(2) If the frame does not exist, report an error and fail.

(3) If the min to be removed is not valid (i.e. neither an uninstantiated variable, nor an

integer), report an error and fail.

(4) If possible (see the criteria below), remove the min by retracting the old frame and

asserting the amended frame.

Criteria:

if the slot is local to the frame and has amin facet

then if constraints allow (see below)

then remove the min facet from the slot

else report an error and fail

else fail

Constraint Checking:

check themin argument by assuring the following:

ifmin argument is an instantiated variable, then itmust exist in the min facet.

cardinality constraints have not
been violated

(number of entries in the values facet (if it exists), and in default facet (if it

exists), is checked against the new min.

new min will be either inherited from the ancestor frame or a predefined global

113

Enhanced Frame Package

slot or the system default.)

Since min facet can have only one entry, rem_min removes the min facet completely from the

specified slot. If this removal of the min facet produces an empty facet list, then that slot is

removed from the frame.

7.14.3 change_min_of_sIot(framename,slotname,oldmin,newmin)

Functionality:

(1) Assure that framename and slotname are instantiated.

(2) If the oldmin is not valid (i.e. not an integer), report an error and fail.

(3) If the newmin is not valid(i.e. not an integer), report an error and fail.

(4) If the frame does not exist, report an error and fail.

(5) Ifpossible (see the criteria below), change the oldmin by retracting the old frame and

asserting the frame with the newmin).

Criteria:

if the slot is local to the frame and has amin facet

then if constraints allow(see below)

then change themin of the min facet

else report an error and fail

else report an error and fail

Constraint Checking:

if oldmin is an instantiated variable, it should be the same as min facet entry of

the slot.

114

Enhanced Frame Package

ensure that the cardinality constraints have not been violated

(# of values present in the value facet (if it exists) and in default facet

(if it exists), must be >= newmin)

change_min_of_slot operates only when the slot has a local min facet.

7.14.4 returnminfrom_slot(framename,slotname,min)

Functionality:

(1) Framename and slotname must be instantiated variables.

(2) Min must be either an uninstantiated variable or an integer.

(3) If the frame does not exist, report an error and fail.

(4) If a min can be found based upon the following min facet inheritance algorithm,

return thatmin.

(5) If a min cannot be found, fail

TheMin Facet InheritanceAlgorithm:

if the min facet is local to the current slot

then use thatmin

else search the ancestors
recursively*

{ if a min can be found

then use it }

else if the min facet is in a predefined global slot

then use thatmin

else use system defaultmin

* This search is done in a breadth first search manner.

115

Enhanced Frame Package

7.15 TYPE FACET OPERATORS

7.15.1 add_type_to_slot(framename,slotname,type)

Functionality:

(1) Assure that framename, slotname and type are instantiated.

(2) If the type to be added is not valid (ie a legal predicate), report an error and fail.

(3) If the frame does not exist, report an error and fail.

(4) If possible (see the criteria below), add the type by retracting the old frame and

asserting the frame with the amended type.

Criteria:

if the slot is local to the frame and has no type facet

then if constraints allow (see constraint checking below)

then add the type facet to the slot

else report an error and fail

else if the slot is local and has a type facet

then report an error and fail

else if the slot is not local

then create the slot to the list

and add the type facet

else report an error and fail

Constraint Checking:

check the value and default argument by assuring the following:

type constraint has not been violated

(entries in value facet (if it exists) and in type facet (if it exists),

must satisfy the new type constraint)

116

Enhanced Frame Package

It is worth noting that the type facet can have only one entry as its value, therefore add_type

succeeds only if there is no local type facet

7.15.2 removetype_from_slot(framename,slotname,type)

Functionality:

(1) Assure that framename and slotname are instantiated.

(2) If the type to be removed is not valid (ie neither an uninstantiated variable, nor an

integer), report an error and fail.

(3) If the frame does not exist, report an error and fail.

(4) If possible (see the criteria below), remove the type by retracting the old frame and

asserting the amended frame.

Criteria:

if the slot is local to the frame and has a type facet

then if constraints allow (see below)

then remove the type facet from the slot

else report an error and fail

else fail

Constraint Checking:

ensure the type constraint has not been violated:

entries in the value facet and in default facet (if they exist), must

satisfy the new type constraint if present. New type constraint

will be either inherited from the ancestor frame or a predefined

slot.

117

Enhanced Frame Package

Since type facet can have only one entry, rem_type removes the type facet completely from

the specified slot. If this removal of the type facet produces an empty facet list, then that slot

is removed from the frame.

7.15.3 change_type_of_slot(framename,slotname,oldtype,newtype)

Functionality:

(1) Assure that framename and slotname are instantiated.

(2) If the newtype is not valid (ie not a legal predicate or a combination of that), report an

error and fail.

(3) If the oldtype is not valid (neither an uninstantiated variable nor a legal predicate),

report an error and fail.

(4) If the frame does not exist, report an error and fail.

(5) If possible (see the criteria below), change the oldtype by retracting the old frame and

asserting the frame with the newtype).

Criteria:

if the slot is local to the frame and has a type facet

then if constraints allow(see below)

then change the type of the type facet

else report an error and fail

else report an error and fail

Constraint Checking:

check the oldtype argument by assuring the following:

if oldtype is an instantiated atom, itmust be present as the

118

Enhanced Frame Package

type facet entry, (in case of an uninstantiated variable, type facet

entry becomes the oldtype)

check the newtype argument by assuring the following:

type constraint has not been violated

(existing entries in value facet and default facet are

checked against the newtype)

7.15.4 returntypefrom_slot(framename,slotname,type)

Functionality:

(1) Assure that framename and slotname must be instantiated variables.

(2) If the frame does not exist, report an error and fail.

(3) If a type can be found based upon the following type facet inheritance algorithm,

return that type.

(4) If a type cannot be found, fail

The Type Facet Inheritance Algorithm:

if the type facet is local to the current slot

then use that type

else

search the ancestors
recursively*

{ if a type can be found

then use it }

else if the type facet is in a predefined slot

then use that type

* This search is done in a breadth first search manner.

119

Enhanced Frame Package

7.16 DEFAULT FACET OPERATORS

7.16.1 remove_default_from_slot(framename,sIotname,default)

Functionality:

(1) Assure that the framename and slotname are instantiated.

(2) If the frame does not exist, report an error and fail.

(3) Remove the default facet by retracting the old frame and asserting the amended frame

without the default facet.

If the removal of the default facet produces an empty facet list, then the slot automatically gets

removed from the frame.

7.16.2 returndefaultfrom_slot(framename,slotname,default)

Functionality:

(1) Assure that framename and slotname must be instantiated variables.

(2) Default argument must be an uninstantiated variable or an exact match of the default

facet.

(3) If the frame does not exist, report an error and fail.

(4) If a default can be found based upon the following default facet inheritance algorithm,

return that default.

(5) If a default cannot be found, fail

120

Enhanced Frame Package

The Default Facet Inheritance Algorithm:

if the default facet is local to the current slot

then use that default

else search the ancestors recursively*

{ if a default can be found

then use it }

else if the default is present in the predefined slot

then use that default

else there is no default

*This search is done as a breadth-first search on all ancestors.

121

Enhanced Frame Package

7.17 FRAME OPERATORS

7.17.1 add_frame(filename, frame)

Functionality:

(1) Assure that the filename and frame both arguments are instantiated.

(2) If the frame already exists, report an error and fail.

(3) Check the frame for the correct syntax as performed in def_frame operator (Section

7.1.1).

(4) If started the session with the consistent system option, perform constraints checking

as performed in def_frame operator(Section 7.1.1).

(5) If the filename is [], assert the frame into the working memory temporarily in a file by

the name just_for_session. just_for_session file is internal to the frame package.

(6) Else assert the frame at the end of the knowledge base file filename in the working

memory.

(7) If the file filename does not exist, create a new file filename in the working memory

and assert the frame in that file.

(8) If the frame gets added, update the internal information related to the knowledge base

file and the frame.

7.17.2 rename_frame(oldframename, newframename)

Functionality:

(1) Assure that the oldframename and newframename are instantiated.

122

Enhanced Frame Package

(2) If the frame oldframename does not exist, report an error and fail.

(3) If the frame newframename already exists, report an error and fail.

(4) Rename the oldframename by newframename and also update the internal information

related to the knowledge base file in which frame oldframename was present.

7.17.3 undef_frame(framename)

Functionality:

(1) Assure that the framename is instantiated.

(2) If the frame framename does not exist, report an error and fail.

(3) Delete the frame framename from the working memory.

(4) Update the internal information related to the knowledge base file in which frame

framename was present.

7.17.4 frame_match_exact(prototype,list of frames)

Functionality:

(1) If the prototype is uninstantiated, fail.

(2) If the syntax is incorrect, report an error and fail.

(3) If there are exactmatches in the value facet, return the list ofmatches.

(4) If there are no matches, fail.

123

Enhanced Frame Package

the algorithm for determining if a framematches the prototype:

for each of the prototype's slots do

if the frame does not have a value for the slot

then fail

else if the frame's value is not the same

then fail

else if the frame's value's types are not acceptable

then fail

else if the frame's value's cardinality is not acceptable

then fail

else add the frame's name to the list ofmatches

7.17.5 frame_match_subset(prototype,list of frames)

Functionality:

Functionality of frame_match_subset operator is same as frame_match_exact operator except

the difference in thematching criteria:

for the frame_match_exact operator, to find a match, the list of values in the value

facet in the prototype's slot and list of values in the value facet of the frame's slot

must be identical (except for order). The frame_match_subset operator, on the other

hand, will match a frame whose list of values in the value facet of a slot is a superset

of the list of values in the value facet of the prototype's slot.

7.17.6 frame_subsumes(subsuming_frame,subsumed_frame)

Functionality:

(1) If an instantiated argument does not exist, report an error and fail.

124

Enhanced Frame Package

(2) If a subsumptive relationship does not exist, fail.

One frame is considered to subsume another if either of the following is true:

there exists a chain of is_a links from the second frame to the first frame;

or there exists an instance_of link from the second frame to the first frame.

(3) If a subsumptive relationship does exist, succeed.

The frame_subsumes operator succeeds on backtracking.

125

Enhanced Frame Package

7.18 KNOWLEDGE ANALYSIS OPERATORS

7.18.1 ka

Functionality:

(1) Store all the frames and slots present in working memory in a temporary file say

temp2 in a remote directory.

(2) Also, store in a remote directory all the frames and slots in another temporary file say

temp using def_framel and def_slotl operators. def_framel and def_slotl operators

are internal to the package . These operators are similar to the def_frame and def_slot

operators but they always perform consistency checking upon execution.

The order of frames and slots in the file temp is the same as the order in which frames

and slots were defined in the existing knowledge base in working memory.

(3) Purge all the frames and slots from working memory.

(4) Load the file temp. At the time of loading, complete consistency checking is

performed through the defjxamel and def_slotl operators. All the inconsistencies

are displayed to the user.

(5) Delete all the frames and slots from working memory that were loaded in step 4 and

then consult the file temp2. This way, ka analyze the whole knowledge base (using

temp) and at the same time, does not change anything in working memory (using

temp2).

7.18.2 checkframe(framename)

Functionality:

(1) Assure that the framename is an instantiated variable.

126

Enhanced Frame Package

(2) If the frame framename does not exist report an error and fail.

(3) Rest of the functionality is similar to the KA (knowledge analyzer), accept that instead

of analyzing the whole knowledge base, it analyzes a particular frame.

127

Enhanced Frame Package

7.19 UTILITY OPERATORS

7.19.1 traceon/traceoff

Functionality:

(1) The frame package utilizes the concept of a trace switch. The trace switch is defined

as trace_sw. By default trace_sw is off. It is turned on by the trace_on operator, and

off by the trace_off operator.

(2) The entire coding of the frame package is embedded with trace_sw logic that displays

appropriate messages if the trace_sw is on. These messages allow the user to trace

the path for any operation. The trace confines to the steps as they relate to the user's

knowledge base (as opposed to the frame package details).

7.19.2 printtree(framename)

Functionality:

(1) Check to assure that the framename is an instantiated atom.

(2) If the frame framename does not exist report an error and fail.

(3) Find the immediate parent(s) and child(ren) of the query frame framename by tracing

a_kind_of links (is_a and in_of).

7.19.3 printframe(framename)

Functionality:

(1) Check to assure that the framename is an instantiated atom.

128

Enhanced Frame Package

(2) If the frame framename does not exist, report an error and fail.

(3) Print the frame details by utilizing proper indentation and line feeds at the level of

slots, facets and facet values.

7.19.4 showall

Functionality:

(1) Display knowledge base file names along with the frame names based upon the

internal information that the frame package maintains throughout the session, a

global slot name if defined through a def_slot operator, appears as a list entry in the

list of frame names.

7.19.5 showfile(filename)

Functionality:

(1) Assure that the filename is an instantiated atom.

(2) If the file filename was not loaded as a knowledge base file (i.e. using load operator),

report an error and fail.

(3) If file filename does not have any frames or slots, display a message and fail.

(4) Display the knowledge base file filename along with the frame names that belong to

the file filename; based upon the internal information that the frame package maintains

throughout the session. A slot name if defined through a def_slot operator, appears

as a list entry in the list of frame names.

129

Enhanced Frame Package

7.20 DEMON FILE OPERATORS

7.20.1 loaddemon(filename)

Functionality:

(1) Consult the file filename.

7.20.2 editdemon(filename)

Functionality:

(1) Display the file filename for editing using vi operator.

7.20.3 createdemon(filename)

Functionality:

(1) Assure that the file filename is an instantiated variable.

(2) If file filename already exists in the working directory, report an error and fail.

(3) Display file filename for creation using vi operator.

130

8 CONCLUSIONS

The enhanced frame package now provides much larger expressive power for a knowledge

base development. It has been made simpler to use, very flexible and a little more user

friendly. Several operators have been modified/enhanced and several new operators have

been added while providing the user a balance of computational tractability, expressive power

and consistency.

Some of the interesting concepts that were a major part of the development of the enhanced

frame package include local consistency checking as opposed to global consistency

checking and how the user can have the best of both options; the flexibility of loading a

knowledge base file as a consistent system or as an inconsistent system; operations that

work on the working memory and operations that work on the original file in the working

directory; the concept of a knowledge analyzer; the way one sees human mind, knowledge

and learning and its parallel in knowledge representation and the surrounding issues of

consistency, expressive power and computational tractability.

Some of the prominent features of the frame package include the ability to use a

knowledge base created from outside as well as inside the frame package, a large number of

operators to operate on the knowledge base, the option to start with a consistent or an

inconsistent system, the ability to work with several knowledge base files during a session,

an editing and saving facility of the knowledge base from inside the frame package, an ability

to explain its action during an operation and printing the hierarchical tree of frame names etc.

One of the most important features of the package is to analyze the stored knowledge in a

knowledge base using a knowledge analyzer.

Availability of the knowledge analyzer feature provides a very flexible method to achieve a

desired level of knowledge base consistency. Level of consistency requirement in reality is

application dependent. For example, a knowledge based system developed for tactical air

command and control for military applications cannot possibly afford to have inconsistencies.

On the other hand, it may be very difficult to make a completely consistent knowledge based

system for home furnishings. It may not even be desirable. One's perception of

consistencies for home furnishings may not be the same as other's perception. Obviously the

Enhanced Frame Package

level of consistency requirement changes from one application to the other. Hence any

package that provides a fixed level of consistency may not suit all the applications. The

enhanced frame package provides a flexible approach through the knowledge analyzer

feature. The user can run the knowledge analyzer as often as needed and selectively correct

the inconsistencies where and when desired. The control stays in the hands of the user.

For applications where complete consistency is required, one could consider another version

of this package that enforces consistency all the time by analyzing the entire knowledge base

before performing every single operation. The potential risk one may run into with this

solution will be of a poor computational tractability.

During the thesis work, some additional areas with scope for future work were identified.

These areas have been discussed below.

8.1 INHERITANCE MECHANISM

Inheritance in this package does not occur at the frame definition time, but rather when a

value for a facet is needed. At that time, if no value is found locally in a slot for a facet, it

will be searched for recursively until found or until there is nowhere else to look for. This

assures that the most current value will be inherited and that a local value will always override

an inherited value [HISS87a].

When a child has more than one parent at the same level, the first parent in the value facet list

ofAKO slot (is_a or in_of) becomes the primary parent. In case of inheritance for a facet

value, the child first inherits from this parent. If the parent frame does not have that facet, it

searches recursively through parent's ancestors. If that facet value cannot be inherited

through this path, then only it tries inheriting from the other parents one by one The search

stops as soon as the first value for the facet is found.

Consider the following example; represented in a graphical manner on the next page:

132

Enhanced Frame Package

frame x

frame a

for slot kid,max=2

frame y for slot kid, min=4

max=8

frame b

for slot kid,value = [1, m, n, q]

frame c is_a: [value: [a,b]]

Now frame c will inherit when needed, the following values for slot kid:

max = 2 (from frame a)

min = 4 (from frame y)

value = [l,m,n,q] (from frame b)

which are contradictory to each other.

The analogy of this to real life shows that there is a lack of communication in the family

resulting in a confused child situation. The child inherits different things from different

ancestors irrespective of whether they create contradictions or not. The inheritance here

completely depends upon the availability of the facet.

One solution to consider would be to allow the user selection of the frame from which to

inherit a value. It could be a combination of methods like global method always inherit

first/last value, or local method
-

using a facet inherit_from :

Example

?- def_frame(a: [is_a: [value: [x,y,z]] ,

inherit_from:[y]]).

133

Enhanced Frame Package

Another observation relates to the inheritance search that stops as soon as the first available

value is found for the facet. One could consider exploration of all possible values that can be

inherited as an alternative choice for the user. This would help the user know all the

alternatives that are available before selecting the specific frame to inherit from.

8.2 TRACE FEATURE

Trace_on (and trace_off) feature was included in the package to limit the trace to the steps as

they relate to the user's knowledge base. (The trace provided by the Prolog interpreter

otherwise is too difficult and detailed to understand because it forces one to look 'under the

hood'

into the source code of the frame package.) The trace provided in the enhanced frame

package, that relates to the user's knowledge base performs well, however, an additional

feature can be considered for further enhancements.

With trace_on, as and when any frame package operator gets executed, it traces and displays

the decision path of the operators. It also lets the user know if a demon was executed and

what parameters were passed. However, it does not trace the details of the source code of

demons, (the frame package operators encountered with in the demons are traced exacdy as

the operators encountered outside the demons.)

A facility that traces the entire demon code would be helpful to the user for debugging the

demons. This facility however, should limit to the demon code only; it should not trace the

frame package source code.

8.3 LOCAL DEPENDENCY BETWEEN SLOTS

Methods to provide local dependency between slots in a frame would be a nice feature to

explore.

For the following knowledge base example file:

?- def_frame(material_type:[]).

134

Enhanced Frame Package

?- def_frame(polyester: [is_a: [value: [material_type]]]).

?-def_frame(wool:[is_a:[value:[material_type]]]).
?-
def_frame(price_type:[]).

?-def_frame(inexpensive:[is_a:[value:[price_type]]]).

?-def_frame(expensive:[is_a:[value:[price_type]]]).

?-def_frame(very_expensive:[is_a:[value:[price_type]]]).
?-
def_frame(two_pc_suit:[

material : [value:[polyester],

max:l,

type :material_type] ,

price: [value:[inexpensive],

type:price_type],

])

If the material is changed from
'polyester'

to
'wool'

in the frame 'two_pc_suit', the price

also should change, since wool is expensive. It is quite likely that the user would change the

material and forget to change the price. This would result in an incorrect price for

two_pc_suit. This problem could be solved if there were some way to define a dependency

between the
'material'

slot and the
'price'

slot for this particular frame such that a change in

the value of any one of the slots would automatically prompt the user to change the value of

the other slot. In the present package one can do this in an indirect way by writing

appropriate demons in the knowledge base. The thought, however, is to have a generic

method included in the package that allows a user to simply define a local dependency.

There is a way around it even without defining a local dependency. For example, one could

make price a slot in the cotton and silk frames. This would also be a perfectly acceptable

solution as the price becomes an integral part of the polyester and wool frames. In fact, one

may always choose to use such a technique. But what
happens if a large knowledge base has

already been created and later the user realizes that certain dependencies should be

incorporated. At that point, such a slot dependency operator would be a big help instead of

going back to the original knowledge
base and redefining all those frames that need such

dependencies.

135

Enhanced Frame Package

Not much has been found in the literature on local dependency between slots. Jones

mentions that frame structures are often not deemed to imply temporal or causal relations

between their slots [JONE84.38-39] . The issue of causal relationships between slots must

be examined carefully. Adding local dependency between slots seems to be equivalent of

adding some "thinking
power"

to the knowledge representation system.

8.4 HELP FACILITY

For the convenience of the user, an on-line help facility for the frame package operators can

be provided. Depending on the level of details in the help facility, this could become quite

involved.

8.5 ERROR MESSAGES

The nature of the frame concept and the inheritance mechanism can result in a very

complicated and/or a large number of steps in order to perform an operation. This, at times

can generate several messages from these different steps. Some of these messages may

therefore provide the impression of duplicate messages. In terms of the frame package

design, they basically indicate the number of times the underlying reason got asserted in the

total process. For future enhancements, ehmination of redundantmessages can be one of the

challenging tasks, particularly because of no definite pattern of these duplications. Perhaps

one could write an expert system that will identify these duplications and eliminate them.

8.6 NATURAL LANGUAGE INTERFACE

The audience for the current package is limited to the users who are conversant with Prolog.

A Natural Language Interface can potentially make the power of this package available to non

Prolog users as well as make it more user friendly. Considering the size, variety and the

complexity of the operations of the frame package, the
natural language interface will be very

involved.

136

Enhanced Frame Package

BIBLIOGRAPHY

[BOBR77]

Bobrow, Daniel G., "A Panel on Knowledge Representation", Joint Conference on

Artificial Intelligence 1977,William Kaufman, Los Altos, Calif, pp. 983-992, 1977.

[BOBR85]

Bobrow, Daniel G., and Winograd, Terry, "An overview of KRL, a Knowledge

Representation Language", from Readings in Knowledge Representation, eds.

Brachman, Ronald J., and Levesque, Hector J., Morgan Kaufman Publishers, Los

Altos, Calif, pp. 263-285, 1985.

[BRAC85]

Brachman, Ronald J., Fikes, Richard E., and Levesque, Hector J., "KRYPTON: A

Functional Approach to Knowledge Representation", from Readings in Knowledge

Representation, eds. Brachman, Ronald J., and Levesque, Hector J., Morgan

Kaufman Publishers, Los Altos, Calif., pp. 411-429, 1985.

[ENGE80]

Engleman, Carl, Scarl, Ethan A., and Berg, Charles H., "Interactive Frame

Instantiation", First Annual National Conference on Artificial Intelligence 1980,

pp. 184-186, 1980.

[ENGE81]

Engleman, Carl, and Stanton, William M., "An Integrated Frame/Rule Architecture",

from Artificial and Human Intelligence, eds. Elithron, Alick, and Banerji, Raman,

Elsevier Science Publishers, B. V, pp. 141-145, 1981.

[FIKE85]

Fikes, Richard, and Kehler, Tom, "The Role of Frame-Based Representation in

Reasoning", Communications of the ACM, Vol. 28, No. 9, pp. 904-920, 1985.

137

Enhanced Frame Package

[HISS87a]

Hiss, LaMora S., A Frame Virtual Machine in C-Prolog, unpublishedMasters thesis,

School of Computer Science and Technology, Rochester Institute of Technology,

Rochester, NY, 1987.

[HISS87b]

Hiss, LaMora S., User's Manual for a Frame Virtual Machine in C-Prolog,

unpublished document, School of Computer Science and Technology, Rochester

Institute ofTechnology, Rochester, NY, 1987.

[JONE84]

Jones, Karen S., "Frame", from Catalogue ofArtificial Intelligence Tools, ed. Bundy,

Alan, Berlin; NY: Springer-Verlag, pp. 38-39, 1984.

[KUIP75]

Kuipers, Benjamin J., "A Frame for Frames", from Representation and

Understanding, eds. Bobrow, Daniel G., and Collins, Alan, Academic Press, Inc.,

New York, San Francisco, London, pp. 151-184, 1975.

[LEVE85]

Levesque, Hector J., and Brachman, Ronald J., "A Fundamental Tradeoff in

Knowledge Representation and Reasoning", from Readings in Knowledge

Representation, eds. Brachman, Ronald J., and Levesque, Hector J., Morgan

Kaufman Publishers, Los Altos, Calif, pp. 41-70, 1985.

[MACK81]

Mackworth, Alan K, "Consistency in Networks of Relations", from Readings in

Artificial Intelligence, eds. Webber, Bonnie L., and Nilson, Nils J., Tioga Publishing

Company, Palo Alto, Calif., pp. 69-78, 1981.

[MINS85]

Minsky, Marvin, "A Framework for Representing Knowledge", from Readings in

Knowledge Representation, eds. Brachman, Ronald J., and Levesque, Hector J.,

138

Enhanced Frame Package

Morgan Kaufman Publishers, Los Altos, Calif., pp. 245-262, 1985.

[PATE84]

Patel-Schneider, Peter F., "Small Can Be Beautiful in Knowledge Representation",

IEEE workshop on Principals ofKnowledge Based Systems 1984, IEEE Computer

Society Press, Silver Springs, Md, pp. 11-16, 1984.

[PIGM84]

Pigman, Victoria, "The Interaction Between Assertional and Terminological

Knowledge in KRYPTON", IEEE workshop on Principals ofKnowledge Based

Systems 1984, IEEE Computer Society Press, Silver Springs, Md, pp. 3-9, 1984.

[ROSE79]

Rosenberg, Steven and Roberts, Bruce, "CoReference in a Frame Database", Joint

Conference on Artificial Intelligence 1979, William Kaufman, Los Altos, Calif, pp.

729-734, 1979.

[STEF79]

Stefik, Mark, "An Examination of a Frame-Structured Representation System", Joint

Conference on Artificial Intelligence 1979, William Kaufman, Los Altos, Calif, pp.

845-852, 1979.

139

APPENDIX A

EXCERPTS FROM [HISS87a]

Enhanced Frame Package

2.2. Present Definitions of Frames

Many variations on the frame concept have been formulated since Minsky's first

paper on this knowledge representation structure. This study will attempt to give a sam

pling of some of these concepts rather than an exhaustive listing.

2.2.1. Frames in FRL

In the late I970's, Bruce Roberts and Ira Goldstein of MIT developed a frame-

based language called FRL (Frame Representation Language). FRL was developed as a

general purpose tool that was to be integrated into knowledge based applications, and

since then, a wide variety of applications have used it. Representative applications

domains are office schedules, wheat commodities market, . travel, and English text

[ROSE79][WINS79].

FRL provides the frame as the basic representational concept and operators that arc

used to manipulate those frames. A frame represents a concept and consists of a named

collection of slots. A slot is composed of an arbitrary number of user and system-defined

facets. The facets provide the slot's value as well as meta-knowlcdge about that value.

System defined facets are default, require, if-needed, if-added, and if-rcmoved. The

value facet contains the slot's value, while the default facet contains a default value that

can be used if the value facet is not present. The require facet establishes procedural

constraints on the slot's value. The remaining three system-defined facets allow for pro

cedural attachment in three cases: when a value is added to a slot, when a value is

removed from a slot, and when a value is needed but is not present in the slot [ROSE79].

Frames in FRL exist in hierarchies established by AKO (a-kind-of) links. These

links are established by the system-defined AKO slot. The value of an AKO slot must be

A Frame Virtual Machine

A-2

Enhanced Frame Package

a generic frame of which the current frame is a specialized instance. This hierarchical

representation allows for inheritance from generic frames to their specialized instances.

The inheritance is of two types: additive and restrictive. Additive inheritance allows a

specialization to add new non-contradictory facts to the information inherited from the

generic frame. Restrictive inheritance allows the information in a specialization to over

ride the information in the generic ancestor. Besides these two formal methods of inheri

tance, FRL also allows for
"idiosyncratic"

forms of inheritance through the use of

attached procedures [STEF79].

The set of frame operators in FRL allows for limited manipulation of frames and

the information in them and the matching of frames to a given pattern. Frames are put

into the knowledge base with an FASSERT operator. This allows establishment of the

frame name, list of slots, and the facet names and values. Once created, three operators

can act on the information in the frames: FPUT, FGET, and FREMOVE. FPUT allows

values to be put in any facet of any slot of any frame. FGET and FREMOVE, on the

other hand, oniy ailow the return or removal of the value in the value facet. This means,

therefore, that meta-knowlcdgc concerning a slot's value can be augmented by the user,

but never removed or retrieved by him.

Besides the manipulation of frames and their slot values, FRL provides an operator

to return frames that match a given prototype. This frame-match operator requires two

arguments: a reference frame and the prototype or pattern to be matched. The prototype

defines what is to be searched for and the reference frame defines the search space by

specifying the parent node below which to search.

FRL holds very cioseiy to Minsky's original concept of the frame. This is perhaps

to be expected, as FRL was developed rather shortly after Minsky's first paper on the

subject. FRL lacks many of the enhancements of later
frame-based systems, but provides

an obviously useful set of tools which serve as at least part of the conceptual basis of

A Frame Virtual Machine

A-3

Enhanced Frame Package

many later frame-based packages.

2.2.2. Frames in KRL

The frames used in KRL, Knowledge Representation Language, are one powerful

and complex variation. KRL's ultimate goal was to provide a programming language for

building systems for natural language understanding. The needs of KRL were seemingly

custom made for the frame concept: knowledge should be organized around conceptual

entities with associated descriptions and procedures; a description must be able to accom

modate multiple descriptors and incomplete knowledge; and comparison and/or contrast

with a known prototype must be a valid method of description.

A description is defined as "fundamentally intensional - the structure of the descrip

tion can be used in recognizing a conceptual entity and comparing it with
others"

[BOBR85a,265]. Three underlying operations were defined for descriptions: augmenting

a description to incorporate new knowledge; matching descriptions to see if they arc com

patible; and seeking referents for entities that match a specific description. The basic

data structures of KRL arc built of these descriptions which are clustered into units.

These units are analogous to Minsky's frames and serve as the unique representations of

categories and entities. The descriptions are actually referred to as slots. Each slot has a

name and can contain procedures, values, or constraints. Unlike Minsky's frames, how

ever, the units of KRL are categorized into seven distinct types: basic, abstract, speciali

zation, individual, manifestation, relation, and proposition. Abstract, basic and speciali

zation units are used principally as prototypes. An abstract unit serves as a prototype

whose descriptions will be inherited by entities based on this prototype. Basic units pro

duce a non-overlapping partitioning of the world into different types of entities. Speciali

zation units provide for further distinctions within a basic category. Both individual and

manifestation units represent unique entities in the world; individual units represent a

named entity, while manifestations represent an unidentified entity. A relation unit

A Frame Virtual Machine

A-4

Enhanced Frame Package

represents a predicate, while a proposition unit represents an instantiation of a relation.

Just as KRL has augmented the basic frame concept, KRL also elaborates upon

Minsky's concept of procedural attachment. It classifies procedural attachments along

two dimensions: when the procedure will be used; and whether the procedure is associ

ated with a prototype or an individual. Knowledge as to when a procedure will be used

determines whether it is a servant (which provides the method for carrying out an opera

tion) or a demon (which causes a secondary effect for an event). Servants are invoked

when the system needs a procedure in order to apply an operation to a data element. A

typical use of a servant might be to describe how to match a descriptor involving a rela

tion. A demon is invoked as a side effect of actions such as accessing or adding data.

Demons can be awakened when an action is, about to be done or after it is done. This

concept of when the procedure would be invoked is the first dimension of procedural

attachment. The second dimension involves the type of unit with which a procedure is

associated. Procedures associated v/ith individual data objects arc called traps, while

those associated with prototypes are called triggers. A list of triggers and traps can be

associated with each slot within a unit. Triggers and traps can be cither servants or

demons [BOBR85a].

The data structures of KRL are rather complex, but the originators felt that "any

representation language that is to be used in modeling thought or achieving
'intelligent'

performance will have to have an extensive and varied repertoire of
mechanisms"

[BOBR85a,284]. It may well have been the weight and complexity of these features that

brought about KRL's collapse, as KRL was ultimately a failure [BRAC85,263].

2.2.3. Frames in the Unit Package

The Unit Package was developed at Stanford University in the late 1970's as a

frame-based, interactive knowledge representation tool that could be used in hierarchical

planning applications. Knowledge is organized as a partitioned semantic network with

A Frame Virtual Machine

A-5

Enhanced Frame Package

10

frames as its nodes. The Unit Package's intended domain, computer planning of molecu

lar genetics experiments, was narrow enough to make uniform representation of informa

tion possible. The intent was to create representations that could be processed by uniform

network processing routines. As far as inferencing capability, the package only included

property inheritance, pattern matching, and procedural attachment. All other inferencing

was the responsibility of an application package. The Unit Package merely provided the

representational structure.

As in KRL, the term unit, rather than frame, is used to represent a node. There are

actually four kinds of nodes provided in the package. They are instance, schema, inde

finite, and description units. Instance and schema units are constant nodes. An instance

represents a unique individual and is, therefore, a terminal node. A schema node

represents a class and describes attributes necessary for potential progeny. Indefinite and

description units are nodes whose identities arc unknown. An indefinite node is a vari

able node that stands for an individual, while a description node is a variable node that

stands for a class. These variable nodes may be linked to constant nodes by co-

rcfcrential or anchoring links.

The links in the semantic network are represented by slots. These slots arc struc

tured and have a defined set of attributes. The attributes of the slots arc called aspects

and correspond to KEE's facets. There are six defined aspects for a slot: name, value,

definitional role, inheritance role, default, and datatype. The name aspect is simply the

name of the slot, while the value aspect is the value stored in the slot. The definitional

role aspect is the role that the slot takes in the definition of the unit. There are six

defined roles: part-of, property, relation, super-unit, equivalence, and documentation.

The inheritance role aspect dictates the method by which progeny will inherit the slot.

There are four defined inheritance methods: same, requirements, optional, and unique.

The
"same"

method indicates that all progeny inherit the same value. The
"requirements"

A Frame Virtual Machine

A-6

Enhanced Frame Package

n

method is limited to schema and causes the slot's value to be inherited as a requirement

or value-restriction for the corresponding slots in any progeny. The progeny must, there

fore, have a value that meets the value-restriction. The
"optional"

inheritance method is

similar to the
"requirements"

method, but it does not require that progeny have a value

for the slot; it requires only that if a value is present, it fulfill the requirements. The

"unique"

inheritance method is used for slot values that are not to be inherited by pro

geny; the slot wifl be inherited, but the slot's value will be unique at each level of the

hierarchy.

Like most of the other frame-based representation schemes, the Unit Package pro

vides for procedural attachment. These attached procedures are the main inferencing

mechanism in the Unit Package. Attachment is allowed at three distinct places: unit

attachment, slot attachment, and datatype attachment. The attached procedures are

activated by messages and have specific purposes. The purpose indicates when the pro

cedure should be activated. Sending a message with a purpose-matching token serves to

activate a procedure [STEf/9].

The Unit Package represents a hybrid conceptual model of sorts. The scheme is

very representative of Minsky's frame model and yet still clings tenaciously to the con

cept and vocabulary of the semantic network. Even with this strong semantic network fla

vor, however, the Unit Package serves as a fair representative of a frame-based

knowledge representation scheme.

2.2.4. Frames in KRYPTON

About 1983, the frame-based language KRYPTON was developed by researchers

working at Xerox PARC and Fairchild Laboratory for Artificial Intelligence Research.

The creators were concerned about the ways that frames could be accessed and manipu

lated. They found ambiguity in the factual versus definitional interpretations of frames

and in the actual meanings of the representations that are created by frames. Frames can

A Frame Virtual Machine

A-7

Enhanced Frame Package

12

either be interpreted as assertions or descriptions. Interpreting frames as assertions makes

expressions of incomplete knowledge or composite descriptions difficult if not impossible.

Interpreting frames as descriptions avoids the above problems, but can allow for misin

terpretation by a careless user. KRYPTON was designed to overcome these difficulties

because it distinguishes between functional and factual information.

This language is not defined in terms of the structures that can be manipulated, but

rather in terms of what can be asked or told about the domain. KRYPTON actually uses

two representational languages: one for descriptive terms and one for making statements

about the world. The terminological language is called TBox and is a simple frame

language. It supports expressions of Concepts (frames) and Roles (slots), allows establish

ment of taxonomies concerning these structures, and answers questions about analytical

relationships among the structures. There arc arc three Concept-defining operators:

PrimGeneric, ConGcneric, and VRGcncric. PrimGencric produces a primitive, unde

fined Concept which is considered to be a root node in the frame hierarchy. ConGcneric

produces a Concept that is a conjunction of an arbitrary number of Concepts. VRGcn

cric produces a value-restricted Concept. The functions allowed on Concepts, therefore,

are conjunction, value restriction, number restriction, decomposition, and specification of

necessary-but-not-sufficient conditions for a Concept definition. There are two Role-

defining operators: PrimRole and RoleChain. PrimRole produces a primitive, undefined

Role, while RoleChain produces a chain of primitive or defined Roles. The functions

allowed on Roles are role differentiation, role chaining, decomposition, and specification

of necessary-but-not-sufficient conditions for a Role definition.

The assertional language is called ABox. It is used to build descriptive theories

about a domain and to answer questions about these domains. ABox provides a first-

order predicate calculus language whose predicates come from TBox. Expressions in

TBox or ABox are used either to TELL the knowledge base or to ASK the knowledge

A Frame Virtual Machine

A-8

Enhanced Frame Package

13

base. TELLing an ABox expression asserts that it is true; TELLing a TBox expression

associates a symbol with the expression. ASKing an ABox expression asks if the expres

sion is true. There are two ASKs for TBox expressions; one asks whether one term sub

sumes another while the other asks whether two terms are disjoint.

The descriptive methods of KRYPTON are rather cumbersome and the set of

operators is small, but this language was created mainly out of academic interest so a full

set of operators and ease of use was probably not a goal of the project. The main goal

was to control access to the knowledge and to thus control the way that it could be inter

preted [BRAC85][PIGM84].

2.2.5. Frames in KANDOR

KANDOR was developed at Fairchild Laboratory for Artificial Intelligence

Research in 1984 as an attempt to build a limited knowledge representation system. The

limits were of two types. The interface to the knowledge base was intended to be well-

defined in hopes of limiting a user's manipulation of the underlying data structures in a

way unintended by the designers. The second limit was imposed on the cxprcssional

power. This limit hopefully assures that all
operations'

done on the knowledge within the

system will terminate in a reasonable period of time. The designers felt these limits made

it realistic to believe that KANDOR could be incorporated into a larger knowledge based

system.

The basic units of KANDOR's frame-based knowledge representation system arc

individuals and frames. Individuals represent objects in the real world, while frames

model collections of those objects. Slots associate information with an individual or

frame; slot fillers are the values associated with the slots.

A KANDOR frame specifies conditions for an individual being an instancc-of it,

and merely serves as a description. Two types of conditions may be specified by a frame:

superframes and restrictions. A superframe condition is satisfied if an individual is an

A Frame Virtual Machine

A-9

Enhanced Frame Package

instance-of each of the specified superframes. A restriction condition is simply a con

straint on slot fillers. In hopes of controlling computational time when determining sub

sumptive relationships, KANDOR limits these restrictions to three types. The first type

states that at least some number of slot fillers must be an instance-of some frame. A

second type of restriction requires that all slot fillers must be instances-of some frame.

The third restriction is a cardinality restriction on the number of slot fillers for a specific

slot. There are two types of frames in KANDOR: defined and primitive. In defined

frames, the conditions are both necessary and sufficient conditions, while in primitive

frames the conditions are only necessary.

Procedural attachment, a characteristic of most frame-based knowledge representa

tion schemes, is purposely absent in KANDOR. The designers believed it would jeop

ardize the character of the system and reduce it to a package for data structure manipula

tion.

Operators are provided that allow for the creation of individuals, slots, and frames.

Purpose! uii-y absent are upt-jtors that would allow a slot to be removed or a slot filler to

be changed. Again, this omission was made in hopes of assuring the integrity of the sys

tem. Operators exist that will determine if an individual is an instance-of a frame and if

one frame subsumes another.

KANDOR represents a frame-based knowledge scheme that uses a subset of the

concepts usually attributed to frames. The absence of default values and procedural

attachment produces an inconsistency with Minsky's basic concept. KANDOR is, how

ever, an example of a scheme that has chosen to represent a little less than Minsky sug

gested in hopes of producing a real-world useable system [PATE84].

2.2.6. Frames in KEE

One branch of research in knowledge representation has lead to the creation of

hybrid systems: systems that use more than one knowledge representation paradigm.

A Frame Virtual Machine

A -10

Enhanced Frame Package

15

KEE (Knowledge Engineering Environment) by Intellicorp is just such a system. This

system combines frames and production rules for a hybrid form of representation. The

frames provide the structure for describing objects referred to by the rules and the inher

itance and taxonomy that allow for some level of deductive capability. Frames may also

be used to
"house"

rules and provide partitioning, indexing, and organization of the rules.

KEE units (frames) are used to represent a class or individual and incorporate sets

of attributes called slots. Two kinds of links are provided between frames: member links

and subclass links. Member links represent membership in a class, while subclass links

represent subsumption of one class by another. Slots come in two basic varieties: own

slots and member slots. Own slots can occur in individual or class frames and belong to

the class or individual that contains them. Member slots can only occur in class frames

and are used to describe attributes of each member rather than the class itself. For exam

ple, a class frame, SOPHOMORES, might own an avcrage-agc-slot. It docs not make

sense, however, for an individual student to inherit that slot even though hc is a member

of the class. It would be more likely for there to be a member age-slot for members of

the class SOPHOMORE. Conversely, it would make little sense for the class frame

SOPHOMORE to have an age-slot. Slots are composed of facets. Facets are basically

descriptions of the attribute represented by the slot. Facets would include such informa

tion as cardinality, valid values, and actual values.

KEE provides a form of object-oriented programming by providing procedural

attachment to the frame structures. Two forms of procedural attachment arc provided:

methods and active values. Methods arc LISP procedures which are attached to frames

and are stored as values of special message respondcr slots. A method is activated by

sending a message to the appropriate slot. Active values are collections of rules or pro

cedures and are stored in slots as demons. An active value is activated by accessing a

slot's value.

A Frame Virtual Machine

A-ll

Enhanced Frame Package

16

KEE actually also uses frames to represent its rules. This allows rules to be

grouped into classes and associated with a non-rule frame. Several advantages result

from this feature. Rules and the classes to which they pertain can be linked. This can

increase the efficiency of the operation of a hybrid system since only a subset of the rules

need be
"active"

at any given time [FIKE85].

A Frame Virtual Machine

A -12

APPENDIX B

KEYWORDS AND THEIR DEFINITIONS

AKO/ a_kind_of:

In the frame package, is_a and in_of (instance_of) slots are used as 'a_kind_of

links to show subsumptive relationship between two classes (is_a) or between a

class and an individual member of that class (in_of). A frame that has an in_of slot

is a terminal node, while a frame with an is_a slot is a member of the parent class. A

frame with neither is_a or instance_of slot is a root node in the frame hierarchy.

Frame package uses this information for inheritance purposes only.

Computational Tractability:

It is related to the amount of time required to complete operations. A quicker

performance will implies better computational tractability.

Consistency:

It relates to the consistency (suitability/fitness/congruity) of all the knowledge base

elements with each other.

Declarative Knowledge:

In the frame package, the knowledge that is defined through max, min, type, default

and value facet is the declarative knowledge.

Default Facet:

The default facet provides a list of values that is to be used for the slot's value if no

other values are present.

Demon:

A demon is a prolog predicate that
represents procedural knowledge. A demon may

be invoked when a slot in a frame is accessed via the value facet operators. The

four facets - if_added, if_removed, if_changed and if_needed reflect the
four types

of demon operations on the value facet of a slot.

Enhanced Frame Package

Expressive Power:

It is related to the breadth of operations that are available in the knowledge

representation language that allows access, modifications, analysis and update of a

knowledge base.

If_added:

If_added facet stores the procedural knowledge about the slot's value in terms of

prolog predicate(s) or demon(s). A demon in the if_added facet will be invoked

when a value(s) is added to a slot

If_changed:

If_changed facet stores the procedural knowledge about the slot's value in terms of

prolog predicate(s) or demon(s). A demon in the if_changed facet will be invoked

when a value(s) of a slot is changed.

If_needed:

If_needed facet stores the procedural knowledge about the slot's value in terms of

prolog predicate(s) or demon(s). A demon in the if_needed facet will be invoked

when a value is requested for a given slot but none is present in the slot.

Ifremoved:

If_removed facet stores the procedural knowledge about the slot's value in terms of

prolog predicate(s) or demon(s). A demon in the if_removed facet will be invoked

when a value(s) is removed from a slot.

Internal Information:

Throughout the session, frame package maintains certain information regarding the

knowledge base which is completely transparent to the user. This information is

very critical to the performance of the
package. For example, information regarding

the order of various knowledge base files that were loaded during the session, the

order of frames in each knowledge base file etc. All this information is being

referred to as the internal information to the package.

B-2

Enhanced Frame Package

Facet:

Facets represent descriptive knowledge, procedural knowledge and constraints for a

slot's value. These are system defined facets. The value, type, max, min and

default facets store declarative knowledge about a slot. if_added, if_removed,

if_changed and if_needed facets store procedural knowledge about a slot.

Frame:

Basic conceptual unit of the frame package. A frame is composed of a unique name

and a list of any number of slots including zero number of slots.

Knowledge Analyzer:

Knowledge analyzer is an operator available in the frame package, that analyzes the

complete knowledge base as it exists at that point of time during a session for

consistency.

Max Facet:

The max facet indicates the maximum number of values that the value facet may

contain.

Min Facet:

The min facet indicates the minimum number of values that the value facet may

contain.

Original knowledge base file /

Knowledge base file in the working directory, and

Knowledge base file in working memory:

The knowledge base file as it stands saved in the working directory is referred to as

the original knowledge base file or the knowledge base file in the working directory.

When this file is loaded through the frame package, it then becomes available in

working memory also. This working memory file is what is referred to as the

knowledge base file in working memory.

The same knowledge base file can be present in the working directory as well as in

working memory. However, over time their contents can be different from each

B-3

Enhanced Frame Package

other as operations are performed on working memory file. (Most frame package

operators operate on working memory file only. They do not update the knowledge

base file in the working directory (see Chapter 5).)

Procedural Knowledge:

In the frame package, the procedural knowledge is stored in the form of prolog

predicates or demons. It is used with if_added, if_needed, if_removed and

if_changed facets. These prolog predicates get executed when any one of these

facets is invoked.

Slot:

A slot represents knowledge in a frame. In other words, slots are attributes of a

frame. A slot is composed of a name and a list of one or more system defined

facets.

Subsumptive Relationship:

Frame package uses this concept to determine relationship among frames in a

hierarchy. One frame is considered to subsume another if there exists a chain of is_a

links from the second frame to the first frame; or there exists an instance_of link

from the second frame to the first frame.

Type Facet:

The type facet serves as a constraint on the possible types of values that can appear

in the value facet. The value in a type facet must be a legal type predicate. A legal

type predicate is defined as a frame name or a logical combination (and, or, not) of

frame names.

B-4

APPENDED C

ANIMALKINGDOM KNOWLEDGE BASE FILE

This knowledge base file represents a very small amount of knowledge about five different

but interconnected domains: the animal kingdom, body temperature types, body covering

types, reproduction types and food sources of animals. While knowledge about any one of

these topics could be represented and used as an illustration, this example shows how

knowledge hierarchies can gain knowledge from each other. Five knowledge hierarchies are

established. The food_source_type hierarchy stores information about food_sources. The

body_temp_type hierarchy stores information about body temperature types. Putting

knowledge in these hierarchies rather than in the actual frames in the living_thing hierarchy

avoids the duplication of information and localizes the information so that additions or

deletions of knowledge about food source types or body temperature types are very easy.

The living_thing hierarchy stores information concerning the characteristics of different

groups within the animal kingdom and information concerning the relationship among those

groups [HISS87a,47].

Enhanced Frame Package

/*

^
/* Filename: animalkingdom */
/* This is a example knowledge base file */
/*

1t/

/*
v

/* TEST SLOT DEFINITIONS */
z* ::::::::::::::_:

v

?- def (reproduction:

[max:999]) .

/*
v

/* TEST FRAME DEFINITIONS */
/*

*/

/*
*/

/* frames in the REPRODUCTION_TYPE hierarchy */
/* */

?- def_frame(reproduction_type:

[description:

[value: [possible_types_of_reproduction]]]) .

?- def_frame (viviparous:

[is_a:

[value: [reproduction_type]] ,
description:

[value: [birth_to_live_young]]

])

?- def_frame(ovoviviparous:

[is_a:

[value: [reproduction_type]] ,

description:

[value: [eggs_hatch_inside_mother]]

])

?-
def_frame(oviparous:

[is_a :

[value: [reproduction_type]] ,

description:

[value: [lay_eggs]]

])

/* V

/* frames in the BODY COVERING TYPE hierarchy */

/* */

?- def_frame(body_covering_type:

[description:

[value: [possible_types_of_body_coverings]]]) .

?- def_frame(hair:

C-2

Enhanced Frame Package

t is_a :

[value: [body_covering_type]]]) .

?- def rame (feathers:

[is_a:

[value: [body_covering_type]]]) .

?- def_frame(scales:

[is_a:

[value: [body_covering_type]]]) .

/* */
/* frames in the BODY TEMP TYPE hierarchy */

/*

~ ~

*/

?- def rame (body
[description:

[value: [possible_body_temp_types]]]) .

?- def_frame(cold_blooded:

[is_a:

[value: [body_temp_type]] ,

description:

[value: [does_not_maintain_constant_temp]]

])

?- def_frame(warm_blooded:

[is_a:

[value: [body_temp_type]] ,

description:

[value: [maintains_constant_temp]]

])

/* v

/* frames in the FOOD SOURCE TYPE hierarchy */
'

*/

?- def_frame(food_source_type:

[description:

[value: [possible_food_sources]]]) .

?- def rame (omnivorous:

[is_a:

[value: [food_source_type]] ,

characteristic_of :

[value: [humans] ,

max: 999] ,

description:
,

[value: [eats_plants_and_ammals]]

])

?- def_frame (herbivorous:

[is_a:

[value: [f
ood_source_type]]

characteristic_of :

[value: [rodents, cattle] ,

max:999] ,

C-3

i

Enhanced Frame Package

description:

[value: [eats_plants]]
])

?-
def_frame(carnivorous:

[is_a :

[value: [food_source_type]] ,
characteristic_of :

[value: [cats, dogs] ,
max: 999] ,

description:

[value: [eats_animals]]
])

/* */
/* frames in the LIVING_THING hierarchy */
/* */

?- def_frame(living_thing: []) .

?-
def_frame(animal:

[is_a:

[value: [living_thing]] ,
food_source :

[type: (-photosynthesis) ,

max:999] ,

description:

[value: [partition_of_living_things]]

])

?- def_frame (mammal:

[is_a:

[value: [animal]] ,

food_source :

[default: [omnivorous] ,

type : food_source_type] ,

body_covering :

[value: [hair] ,

type:hair] ,

reproduction :

[value: [viviparous] ,

type:viviparous] ,

body_temperature :

[value: [warm_blooded] ,

type: warm_blooded]

])

?- def_frame (bird:

[is_a:

[value: [animal]] ,

body_covering :

[value: [feathers] ,

type : feathers] ,

reproduction :

[value: [oviparous] ,

C-4

Enhanced Frame Package

type: oviparous] ,

body_temperature :

[value: [warm_blooded] ,

type :warm_blooded]
])

?- def_frame(reptile:

[is_a :

[value: [animal]] ,

body ing :

[value: [scales] ,

type: scales] ,

reproduction :

[value: [ovoviviparous, oviparous] ,

type: ovoviviparous $$ oviparous] ,

body_temperature :

[value: [cold_blooded] ,

type : cold_blooded]
])

C-5

APPENDED D

A SAMPLE SESSION

The sample session uses
'bookprototype'

(short form bk) as the knowledge base file and
'bookprototype_demon'

(short form - bk_demon) as a demon file.

These knowledge base files represent knowledge about typesetting of documents. Three

knowledge hierarchies are established -

typeface_type, font_type and book_prototype. Two

of the hierarchies are interrelated and store knowledge about typeface and fonts. These

hierarchies represent knowledge about the classification of fonts and the relationships among

those classifications. The basic relationship represented is that each regular typeface has an

italic and a bold counterpart font. These counterparts are used in a document for quotations,

titles, section headings, subtitles, etc. The third hierarchy serves as a book prototype.

Information about the structure of a book is found in the hierarchy, as well as information

about how to typeset a book. This information about typesetting, however, is stored in a

very general manner. Typesetting characteristics such as font, font size and justification are

stored in such a way that they are inherited and adjusted at the time that a typesetting decision

is made. An example scenario might serve to clarify this description. Typesetting decisions

are based on the type of text being set: children's books are set in a different typeface than

adults book; textbooks are set in a different typeface than poetry books. If a prototype

contained specific information, one would need a different prototype for every text

possibility. If, on the other hand, only relationships and adjustments to a hypothetical

typeface were stored in the prototype, one prototype might serve for all books. Initial

decisions as to which basic typeface to use and what basic size to use will, after inheritance

and constraint propagation, leave the prototype completely specified. As can be seen in the

example prototype, title gets its font by inheritance and its size by unleashing a demon that

enlarges the basic size of a book_component. Once the prototype is designed, a simple

change to the book_component frame will change the entire typesetting information in the

prototype. The elegance of this method can be seen in the fact that alternative sets of

knowledge do not have to be stored; only a general pattern has to be specified
[HISS87a,41].

Enhanced Frame Package

knowledge base file bookprototype (short form bk)

D-2

Enhanced Frame Package

/* */
/*

. . Filename : bookprototype (short_name : bk) */
/*

. . This is an example knowledge base file */
/* */

/*==*/

/* PREDEFINED SLOTS */

?- def_slot (size:

[max : 1,
min : 0

]).

/*============BAS IC_TYPEFACE_TYPE HIERARCHY
============================*/

?- def_frame(typeface_type: [available_types: [if_added:get_others]]) .

?- def_frame(roman: [is_a: [value: [typeface_type]]]) .

?- def_slot (typeface:

[type: typeface_type ,

max : 1,
min : 0]) .

/*================= FONT, BOLD, and ITALIC TYPE HIERARCHY ==============*/

?- def_frame(font_type: []).

?- def_frame(bold_type: [is_a: [value: [font_type]]]) .

?- def_frame(italic_type: [is_a: [value: [font_type]]]) .

?- def_frame(regular_type: [is_a: [value: [font_type]]]) .

?- def_frame(roman_bold: [is_a: [value: [roman, bold_type]]]) .

?- def_frame(roman_italic: [is_a: [value: [roman, italic_type]]]) .

/*====================== BOOK COMPONENT HIERARCHY ======================*/

?- def_frame(book_component:

[typeface:

size:

font:

])

?- def frame (front_matter:

[value: [roman] ,

max : 1 ,

min : 1,
type : typeface_type]

[value: [11] ,

max: 1,

min : 0] ,

[value: [regular_type] ,

max : 1 ,

min: 0,
type: font_type]

D-3

Enhanced Frame Package

[is_a: [value: [book_component]]]) .

?- def_frame (title_page_component :

[is_a: [value: [front_matter]] ,
justification: [value: [centered]] ,
size: [if_needed: enlarge(3)]

])

?- def_frame (title:

[is_a: [value: [title_page_component]] ,
font: [if_needed: make_bold]

])

?-
def_frame(author:

[is_a: [value: [title_page_component]] ,
font: [if_needed: make_italic]

])

?- def_frame(publ isher:

[is_a: [value: [title_page_component]]])
?- def_frame(body_matter:

[is_a: [value: [book_component]]]) .

D-4

Enhanced Frame Package

demon file bookprototype_demon (short form -

bkdemon)

D-5

Enhanced Frame Package

/*
v

/*
. . Filename : bookprototype_demon (short_name: bk_demon) */

/*
. . This is an example demon file */

/* */

/*==================== DEMONS FOR BOOKPROTOTYPE =========================*/

/*============= if_needed demons and associated procedures =====
=======*/

enlarge (Enlarge_By , Frame , size ,
Value) :

-

find_ancestor_characteristic (Frame, size,Answer) ,
Value is Answer + Enlarge_By.

find_characteristic (Component,Characteristic, Answer) :
-

return_value_from_slot (Component ,Characteristic ,Answer) .

find_ancestor_characteristic (Component,Characteristic,Answer) :
-

(return_value_from_slot (Component , in_of ,Ancestors) ;

return_value_from_slot (Component, is_a,Ancestors)) ,

member (AnAncestor,Ancestors) ,

find_characteristic(AnAncestor,Characteristic,Answer) .

make_italic (Frame, font,Value)
:-

f ind_characteristic (Frame , typeface ,Answer) ,

member (SingleAnswer,Answer) ,

frame_match_subset (
[is_a: [value: [italic_type, SingleAnswer]]] , Value) .

make_bold(Frame, font,Value)
:-

find_characteristic (Frame , typeface ,Answer) ,

member (SingleAnswer,Answer) ,

frame_match_subset (
[is_a: [value: [bold_type, SingleAnswer]]] , Value) .

/*===========if demons and their associated procedures ============*/

get_others(_,_, []) .

/* when more than one value is added */

get_others (Frame, Slot,Value)
:-

Value = [H|T] ,
get_more_inf (H) ,
get_others (Frame , Slot , T) .

get_others (Frame, Slot, Value)
:-

atom (Value) ,

get_more_inf (Value) .

D-6

Enhanced Frame Package

get_more_inf (Value) :
-

write ('You want to add the typeface '),
write (Value) ,

nl,

write ('Is this a regular font (y,or,n)? '),

read(Y) ,

(member (Y, [y]) , enter_new_regular_font (Value)) .

enter_new_regular_font (Font)
:-

add_frame(bk,Font: [is_a: [value: [regular_type, typeface_type]]])f
write('What is the italic form of '),
write (Font) ,

writeC?') ,

nl,

read (Answer) ,

add_frame(bk,Answer: [is_a: [value: [italic_type,Font]]]) ,
write ('What is the bold form of '),
write (Font) ,

write ('?') ,

nl,

read(BoldAnswer) ,

add_frame(bk,BoldAnswer: [is_a: [value: [bold_type, Font]]]) .

D-7

Enhanced Frame Package

Sample Session

(using Enhanced Frame Package)

D-8

Enhanced Frame Package

balsa-axb9535[10] prolog /usr/local/lib/prolog/frameboot
C-Prolog version 1.4

[Restoring file /usr/local/lib/prolog/frameboot]

yes

|
?-
start.

Do you want to enforce a consistent system? [y or n] y.

yes

|
?-

load(bk) .

slot size loaded successfully.

yes

frame typeface_type loaded successfully.

yes

frame roman loaded successfully -

yes

slot typeface loaded successfully.

yes

frame font_type loaded successfully.

yes

frame bold_type loaded successfully.

yes

frame italic_type loaded successfully -

yes

frame regular_type loaded successfully.

yes

frame roman_bold loaded successfully.

yes

frame roman_italic loaded successfully.

yes

frame book_component loaded successfully.

yes

frame front_matter loaded successfully.

yes

frame title_page_component loaded successfully.

yes

frame title loaded successfully.

yes

frame author loaded successfully -

yes

frame publisher loaded successfully.

yes

frame body_matter loaded successfully.

yes

bk consulted 2508 bytes 8.76666 sec.

yes

| ?- load_demon(bk_demon) .

bk_demon reconsulted 1896 bytes 0.666673 sec.

yes

D-9

Enhanced Frame Package

?- trace on.

yes

|
?- ret_val (title_page_component, size,Value) .

> no value facet value available in KB for slot in_of in frame title_pag

onent

> value = [front_matter] from slot is_a in frame title_page_component

> value = [11] inherited from slot size in frame book_component

> Demon enlarge (3 ,title_page_component, size, 14) is called from slot size

aitie title_page_component

> value = 14 by activating if_needed demon from slot size in frame title

component

Value = 14

yes

|
?- trace_off.

yes

|
?- pf (title) .

title:

[
is_a:

value: [title_page_component]

font:

if_needed:make_bold

]
yes

|
?- ret_val (title, font,Value) .

Value = [roman_bold] ;

no

|
?- print_tree(title_page_component) .

PARENT FRAME (S) :

QUERY FRAME:

CHILD FRAME (S) :

front_matter

title_page_component

title

author

publisher

yes

| ?- change_val(book_component, typeface,
baskerville, roman)

Value baskerville does not exist in
value facet.

D-10

Enhanced Frame Package

Hence operation fails

no

|
?- pf (book_component) .

book_component :

[
typeface:

value: [roman]
max: 1

min: 1

type : typeface_type

size:

value: [11]
max: 1

min: 0

font:

value: [regular_type]
max: 1

min: 0

type : font_type

]
yes

|
?-

change_val (book_component, typeface, roman,baskerville) .

Type violation for baskerville wrt given type typeface_type

The operation fails.

no

|
?-

add_val(typeface_type,available_types, [baskerville, times]) .

Entries in value facet outside min max range.

There is a cardinality violation in slot available_types: [value: [baskervil

es] , i f : get_others] .

In frame typeface_type max = 1 and Min = 0 .

The operation fails.

no

| ?- pf (typeface_type) .

typeface_type :

[
available_types :

if_added : get_others

]
yes

| ?- add_max(typeface_type,available_types,5) .

yes

| ?- add_val (typeface_type,available_types, [baskerville, times]) .

You want to add the typeface baskerville

Is this a regular font (y,or,n)? y.

What is the italic form of baskerville?

|: baskerville_italic.

What is the bold form of baskerville?

D-ll

Enhanced Frame Package

|: baskerville_bold.

You want to add the typeface times

Is this a regular font (y,or,n)? y.

What is the italic form of times?

|: times_italic.

What is the bold form of times?

| : times_bold.

yes

|
?- pf (typeface_type) .

typeface_type :

[
available_types :

value: [baskerville, times]
max: 5

if_added : get_others

]
yes

|
?- change_val (book_component, typeface, roman,baskerville)

yes

|
?- pf (book_component) .

book_component :

[
typeface:

value: [baskerville]
max: 1

min: 1

type : typeface_type

size:

value: [11]
max: 1

min: 0

font:

value: [regular_type]

max: 1

min: 0

type : font_type

]
yes

| ?- ret_val (title, font,Value) .

Value = [baskerville_bold]

yes

| ?- ka.
slot size alright.

yes

frame typeface_type is consistent.

yes

frame roman is consistent.

D-12

Enhanced Frame Package

yes

slot typeface alright.

yes

frame font_type is consistent.

yes

frame bold_type is consistent.

yes

frame italic_type is consistent.

yes

frame regular_type is consistent.

yes

frame roman_bold is consistent.

yes

frame roman_italic is consistent.

yes

There is a type violation in slot typeface: [value: [baskerville] ,
max: 1,min:

:typeface_type] in frame book_component

Value not defined as typeface_type YET.

< Definition will not get considered here if defined later in KB. >

no

frame front_matter is consistent.

yes

frame title_page_component is consistent.

yes

frame title is consistent.

yes

frame author is consistent.

yes

frame publisher is consistent.

yes

frame body_matter is consistent.

yes

frame baskerville is consistent.

yes

frame baskerville_italic is consistent.

yes

frame baskerville_bold is consistent.

yes

frame times is consistent.

yes

frame times_italic is consistent.

yes

frame times_bold is consistent.

yes

/tmp/frml_1989 consulted 2596 bytes 12.25 sec.

/tmp/frm2_1986 consulted 3148 bytes 0.900016 sec.

yes

| ?- check_frame (baskerville) .

frame baskerville is consistent.

D-13

Enhanced Frame Package

yes

/tmp/frml_1989 consulted 116 bytes 0.600014 sec.

/tmp/frm2_1986 consulted 116 bytes 0.0666951 sec.

yes

|
?-

check_frame(book_component) .

frame book_component is consistent.

yes

/tmp/frml_1989 consulted 416 bytes 1.00002 sec.

/tmp/frm2_1986 consulted 416 bytes 0.116675 sec.

yes

|
?-

ret_max (title, font,Max) .

Max = 1

yes

|
?- trace_on.

yes

|
?-

ret_min (front_matter, typeface,Min) .

> min = 1 inherited from slot typeface in frame book_component

Min = 1

yes

|
?- trace_off.

yes

|
?-

show_file(bk) .

File > bk Frames/Slots > [[size] , typeface_type, roman, [typeface] , f

pe
,bold_type , ital ic_type ,

regular_type
,
roman_bold

,
roman_ital ic

, book__compone

nt_matter
,
title_page_component , title ,

author , publ isher , body_matter , baskervi

skerville_italic,baskerville_bold,times,times_italic,times_bold]

yes

| ?- frame_subsum.es (title_page_component,Ans) .

Ans = title ;

Ans = author ;

Ans = publisher ;

no

| ?- frame_match_exact ([is_a: [value: [regular_type,typeface_type]]] ,Ans) .

Ans = [times, baskerville] ;

no

| ?- frame_match_subset ([is_a : [value: [typeface_type]]] ,Ans) .

D-14

Enhanced Frame Package

Ans = [roman, times,baskerville] ;

no

|
?-

save_file(bk,bk_new) .

yes

|
?-
exit.

Did you save? Confirm exit! y.

[Prolog execution halted]

balsa-axb9535[ll] exit

D-15

Enhanced Frame Package

bk_new

(saved knowledge base file using the Enhanced Frame Package)

D-16

Enhanced Frame Package

?- def_slot(size:

[max: 1,
min:0

]).

?-
def_frame(typeface_type:

[available_types:

[value: [baskerville, times] ,

max : 5
,

if : get_others]
J).

?-
def_frame(roman:

[is_a :

[value: [typeface_type]]
])

?- def_slot (typeface:

[type: typeface_type,
max : 1

,

min: 0

])

?- def_frame (font_type :

[])

?- def_frame(bold_type:

[is_a:

[value: [font_type]]

])

?- def_frame(italic_type:

[is_a:

[value: [font_type]]

])

?- def rame (regular_type :

[is_a:

[value: [font_type]]

])

?- def rame (roman_bold :

[is_a :

[value: [roman, bold_type]]

])

?- def_frame(roman_italic:

[is_a:

[value: [roman, italic_type]]

])

D-17

Enhanced Frame Package

?- def_frame (book_component :

[typeface:

[value: [baskerville] ,

max: 1,
min: 1,
type: typeface_type] ,

size:

[value: [11] ,
max: 1,

min:0] ,

font:

[value: [regular_type] ,

max : 1
,

min: 0,
type : font_type]

])

?- def_frame(front_matter:

[is_a:

[value: [book_component]]
])

?- def_frame (title_page_component:

[is_a:

[value: [front_matter]] ,
justification:

[value: [centered]] ,

size:

[if : enlarge (3)]

])

?- def rame (title:

[is_a:

[value: [title_page_component]]

font:

[if :make_bold]

])

?-
def_frame(author:

[is_a:

[value: [title_page_component]]

font:

[if_needed:make__italic]

])

?- def_frame (publ isher:

[is_a:

[value: [title_page_component]]

])

? - def rame (bodyjmatter :

D-18

Enhanced Frame Package

[is_a :

[value: [book_component]]
])

?- def_frame (baskerville:

[is_a :

[value: [regular_type,typeface_type]]
])

?- def_frame(baskerville_italic:

[is_a:

[value: [italic_type,baskerville]]
])

?- def_frame(baskerville_bold:

[is_a:

[value: [bold_type,baskerville]]
])

?- def_frame(times:

[is_a:

[value: [regular_type, typeface_type]]

])

?- def_frame(times_italic:

[is_a:

[value: [italic_type, times]]

])

?- def_frame(times_bold:

[is_a:

[value: [bold_type, times]]

])

D-19

Enhanced Frame Package

INDEX OF FRAME PACKAGE OPERATORS

add_frame, 73, 122

add_max_to_slot, 58, 108

add_min_to_slot, 63, 112

add_type_to_slot, 67, 116

add_value_to_slot, 52, 100

change_all, 56, 105

change_max_of_slot, 60, 110

change_min_of_slot, 65, 114

change_type_of_slot, 69, 118

change_value_of_slot, 55, 103

check_frame, 79, 126

create_demon, 86, 130

def_frame, 36, 88

def_slot, 38, 89

demons, 41, 91

edit_demon, 86, 130

file_create, 44, 93

file_edit, 45, 94

frame_edit, 50, 98

frame_match_exact, 75, 123

frame_match_subset, 76, 124

frame_subsume, 77, 124

ka, 79, 126

load, 44, 92

load_demon, 86, 130

print_frame, 82, 128

print_tree, 81, 128

purge, 45, 95

reload, 46, 96

remove_all, 54, 102

Enhanced Frame Package

remove_default_from_slot, 71, 120

remove_max_from_slot, 59, 109

remove_min_from_slot, 64, 113

remove_type_from_slot, 68, 117

remove_value_from_slot, 53, 101

rename_frame, 73, 122

retum_default_from_slot, 72, 120

return_max_from_slot, 61, 111

return_min_from_slot, 66, 115

return_type_from_slot, 70, 1 19

retum_value_from_slot, 57, 106

save_file, 50, 99

save_it, 51, 99

show_all, 83, 129

show.file, 85, 129

temp_edit, 46, 97

trace_on/trace_off, 80, 128

undefjrame, 74, 123

	Book title
	Cover Page
	(R0004394590_0002.jpg)
	(R0004394590_0003.jpg)
	(R0004394590_0004.jpg)
	(R0004394590_0005.jpg)
	(R0004394590_0006.jpg)
	Table of Contents
	(R0004394590_0013.jpg)
	2 (R0004394590_0014.jpg)
	(R0004394590_0015.jpg)
	4 (R0004394590_0016.jpg)
	5 (R0004394590_0017.jpg)
	6 (R0004394590_0018.jpg)
	7 (R0004394590_0019.jpg)
	(R0004394590_0020.jpg)
	9 (R0004394590_0021.jpg)
	10 (R0004394590_0022.jpg)
	11 (R0004394590_0023.jpg)
	12 (R0004394590_0024.jpg)
	13 (R0004394590_0025.jpg)
	14 (R0004394590_0026.jpg)
	15 (R0004394590_0027.jpg)
	16 (R0004394590_0028.jpg)
	17 (R0004394590_0029.jpg)
	18 (R0004394590_0030.jpg)
	19 (R0004394590_0031.jpg)
	20 (R0004394590_0032.jpg)
	(R0004394590_0033.jpg)
	22 (R0004394590_0034.jpg)
	23 (R0004394590_0035.jpg)
	24 (R0004394590_0036.jpg)
	25 (R0004394590_0037.jpg)
	26 (R0004394590_0038.jpg)
	(R0004394590_0039.jpg)
	28 (R0004394590_0040.jpg)
	29 (R0004394590_0041.jpg)
	30 (R0004394590_0042.jpg)
	31 (R0004394590_0043.jpg)
	32 (R0004394590_0044.jpg)
	33 (R0004394590_0045.jpg)
	34 (R0004394590_0046.jpg)
	(R0004394590_0047.jpg)
	36 (R0004394590_0048.jpg)
	37 (R0004394590_0049.jpg)
	38 (R0004394590_0050.jpg)
	39 (R0004394590_0051.jpg)
	40 (R0004394590_0052.jpg)
	41 (R0004394590_0053.jpg)
	42 (R0004394590_0054.jpg)
	43 (R0004394590_0055.jpg)
	44 (R0004394590_0056.jpg)
	45 (R0004394590_0057.jpg)
	46 (R0004394590_0058.jpg)
	47 (R0004394590_0059.jpg)
	48 (R0004394590_0060.jpg)
	49 (R0004394590_0061.jpg)
	50 (R0004394590_0062.jpg)
	51 (R0004394590_0063.jpg)
	52 (R0004394590_0064.jpg)
	53 (R0004394590_0065.jpg)
	54 (R0004394590_0066.jpg)
	55 (R0004394590_0067.jpg)
	56 (R0004394590_0068.jpg)
	57 (R0004394590_0069.jpg)
	58 (R0004394590_0070.jpg)
	59 (R0004394590_0071.jpg)
	60 (R0004394590_0072.jpg)
	61 (R0004394590_0073.jpg)
	62 (R0004394590_0074.jpg)
	63 (R0004394590_0075.jpg)
	64 (R0004394590_0076.jpg)
	65 (R0004394590_0077.jpg)
	66 (R0004394590_0078.jpg)
	67 (R0004394590_0079.jpg)
	68 (R0004394590_0080.jpg)
	69 (R0004394590_0081.jpg)
	70 (R0004394590_0082.jpg)
	71 (R0004394590_0083.jpg)
	72 (R0004394590_0084.jpg)
	73 (R0004394590_0085.jpg)
	74 (R0004394590_0086.jpg)
	75 (R0004394590_0087.jpg)
	76 (R0004394590_0088.jpg)
	77 (R0004394590_0089.jpg)
	78 (R0004394590_0090.jpg)
	79 (R0004394590_0091.jpg)
	80 (R0004394590_0092.jpg)
	81 (R0004394590_0093.jpg)
	82 (R0004394590_0094.jpg)
	83 (R0004394590_0095.jpg)
	84 (R0004394590_0096.jpg)
	85 (R0004394590_0097.jpg)
	86 (R0004394590_0098.jpg)
	87 (R0004394590_0099.jpg)
	(R0004394590_0100.jpg)
	89 (R0004394590_0101.jpg)
	90 (R0004394590_0102.jpg)
	91 (R0004394590_0103.jpg)
	92 (R0004394590_0104.jpg)
	93 (R0004394590_0105.jpg)
	94 (R0004394590_0106.jpg)
	95 (R0004394590_0107.jpg)
	96 (R0004394590_0108.jpg)
	97 (R0004394590_0109.jpg)
	98 (R0004394590_0110.jpg)
	99 (R0004394590_0111.jpg)
	100 (R0004394590_0112.jpg)
	101 (R0004394590_0113.jpg)
	102 (R0004394590_0114.jpg)
	103 (R0004394590_0115.jpg)
	104 (R0004394590_0116.jpg)
	105 (R0004394590_0117.jpg)
	106 (R0004394590_0118.jpg)
	107 (R0004394590_0119.jpg)
	108 (R0004394590_0120.jpg)
	109 (R0004394590_0121.jpg)
	110 (R0004394590_0122.jpg)
	111 (R0004394590_0123.jpg)
	112 (R0004394590_0124.jpg)
	113 (R0004394590_0125.jpg)
	114 (R0004394590_0126.jpg)
	115 (R0004394590_0127.jpg)
	116 (R0004394590_0128.jpg)
	117 (R0004394590_0129.jpg)
	118 (R0004394590_0130.jpg)
	119 (R0004394590_0131.jpg)
	120 (R0004394590_0132.jpg)
	121 (R0004394590_0133.jpg)
	122 (R0004394590_0134.jpg)
	123 (R0004394590_0135.jpg)
	124 (R0004394590_0136.jpg)
	125 (R0004394590_0137.jpg)
	126 (R0004394590_0138.jpg)
	127 (R0004394590_0139.jpg)
	128 (R0004394590_0140.jpg)
	129 (R0004394590_0141.jpg)
	130 (R0004394590_0142.jpg)
	(R0004394590_0143.jpg)
	132 (R0004394590_0144.jpg)
	133 (R0004394590_0145.jpg)
	134 (R0004394590_0146.jpg)
	135 (R0004394590_0147.jpg)
	136 (R0004394590_0148.jpg)
	137 (R0004394590_0149.jpg)
	138 (R0004394590_0150.jpg)
	139 (R0004394590_0151.jpg)
	(R0004394590_0152.jpg)
	A-2 (R0004394590_0153.jpg)
	A-3 (R0004394590_0154.jpg)
	A-4 (R0004394590_0155.jpg)
	A-5 (R0004394590_0156.jpg)
	A-6 (R0004394590_0157.jpg)
	A-7 (R0004394590_0158.jpg)
	A-8 (R0004394590_0159.jpg)
	A-9 (R0004394590_0160.jpg)
	A-10 (R0004394590_0161.jpg)
	A-11 (R0004394590_0162.jpg)
	A-12 (R0004394590_0163.jpg)
	(R0004394590_0164.jpg)
	B-2 (R0004394590_0165.jpg)
	B-3 (R0004394590_0166.jpg)
	B-4 (R0004394590_0167.jpg)
	(R0004394590_0168.jpg)
	C-2 (R0004394590_0169.jpg)
	C-3 (R0004394590_0170.jpg)
	C-4 (R0004394590_0171.jpg)
	C-5 (R0004394590_0172.jpg)
	(R0004394590_0173.jpg)
	D-2 (R0004394590_0174.jpg)
	D-3 (R0004394590_0175.jpg)
	D-4 (R0004394590_0176.jpg)
	D-5 (R0004394590_0177.jpg)
	D-6 (R0004394590_0178.jpg)
	D-7 (R0004394590_0179.jpg)
	D-8 (R0004394590_0180.jpg)
	D-9 (R0004394590_0181.jpg)
	D-10 (R0004394590_0182.jpg)
	D-11 (R0004394590_0183.jpg)
	D-12 (R0004394590_0184.jpg)
	D-13 (R0004394590_0185.jpg)
	D-14 (R0004394590_0186.jpg)
	D-15 (R0004394590_0187.jpg)
	D-16 (R0004394590_0188.jpg)
	D-17 (R0004394590_0189.jpg)
	D-18 (R0004394590_0190.jpg)
	D-19 (R0004394590_0191.jpg)
	(R0004394590_0192.jpg)
	(R0004394590_0193.jpg)
	Cover Page

