
Triskan TS8 Firmware Development Kit

User Manual

2010-10-20

Andrei Birjukov, Jaanus Sepp, Anti Sullin, Ivari Horm

© Artec Group LLC, 2010

Triskan TS8 Firmware Development Kit

User Manual

Table of Contents

1.About This Document..4

1.1.Intended Audience..4

1.2.Required Skills..4

1.3.Conventions...4

1.4.References..4

1.5.Vocabulary...4

2.Introduction...6

2.1.FDK DVD layout...7

2.2.Requirements...7

3.Hardware Reference...8

3.1.Triskan TS8 Components..8

3.2.Hardware Specifications...9

3.3.Flash Memory Layout...9

4.Installing Development Tools...11

4.1.Installing Cross-Compiler Toolchain...11

4.2.Installing distCC distributed compiler servers (optional)..12

4.3.Installing Maintenance Tools..14

4.4.Installing Eclipse CDT...15

5.Creating Development Tree..16

5.1.Installing Firmware Build Tree...16

5.2.Installing External Dependencies...16

5.3.Doing Initial Build..16

5.4.Creating Eclipse Projects...18

6.Building Target Firmware...23

6.1.Firmware Build Flow..23

6.2.Building Firmware Images...25

6.3.Deploying Firmware Package...25

6.4.Deploying Recovery Image..27

6.5.Application Linkage..28

6.6.Building User Applications...29

7.Running Applications..30

7.1.Accessing Development Console...30

7.2.Transferring Files to Target...31

7.3.Debugging via GDB...33

7.4.Resetting Target Device..34

8.Developing Applications..35

8.1.Storage Media...35

8.2.Communication Interfaces...36

8.3.Scanner Interfaces..40

8.4.User Interface...40

© Artec Group, 2010 Phone: +372 671 8550

Teaduspargi 6/2, 12618, Tallinn, Estonia Fax: +372 671 8555 Page 2 of 47

Triskan TS8 Firmware Development Kit

User Manual

8.5.System Interfaces...42

9.Appendix A: Auxiliary Files...45

10.Appendix B: Licensing...46

11.Appendix C: Change log..47

© Artec Group, 2010 Phone: +372 671 8550

Teaduspargi 6/2, 12618, Tallinn, Estonia Fax: +372 671 8555 Page 3 of 47

Triskan TS8 Firmware Development Kit

User Manual

1. About This Document

This manual describes the development kit components and software development for Artec Triskan TS8

mobile data terminal, including the process of building firmware and debugging user applications.

1.1. Intended Audience

This document is intended for software engineers and system integrators who are planning to integrate the

Triskan TS8 mobile data terminal and develop firmware and applications for it.

1.2. Required Skills

To use this development kit, a developer must be familiar with the following issues and possess the

following skills.

• Embedded Linux OS with 2.6 kernel

• General understanding of cross-compiling and target debugging

C and C++ skills for development of applications using GNU toolchain

1.3. Conventions

This document uses the following conventions.

 Courier Used to identify source code samples, commands and their parameters,

expressions, data types, etc.

Italic Used for emphasis and identification of file names and new terms.

$ command Refers to a shell command executed on the host machine.

command Refers to a shell command executed on the target TS8 device.

1.4. References

The following documents are referenced from this document.

1. API documentation – libspatha library.

2. API documentation - exynthoo library.

1.5. Vocabulary

Term Definition

Atmel SAM-BA SAM Boot Assistant, the toolset from Atmel for programming AT91 devices.

© Artec Group, 2010 Phone: +372 671 8550

Teaduspargi 6/2, 12618, Tallinn, Estonia Fax: +372 671 8555 Page 4 of 47

Triskan TS8 Firmware Development Kit

User Manual

Term Definition

Eclipse CDT Eclipse C/C++ Development Tooling, the C and C++ IDE of the Eclipse platform.

FDK Firmware Development Kit, a software development kit for Triskan TS8

Target Target device, Triskan TS8 in this context.

Toolchain A set of tools for software development.

Xynth A lightweight GUI engine, http://www.xynth.org

eXynth Extended Xynth library maintained by Artec. Simplifies application library routines by

minimizing threading and unifies event handling system.

eXynthoo Extended Xytnth Object library. This library is developed by Artec to provide basic UI

components for developing graphical user interfaces to TS8 devices.

© Artec Group, 2010 Phone: +372 671 8550

Teaduspargi 6/2, 12618, Tallinn, Estonia Fax: +372 671 8555 Page 5 of 47

http://www.xynth.org/

Triskan TS8 Firmware Development Kit

User Manual

2. Introduction

Triskan TS8 platform runs an embedded Linux operating system with a custom root filesystem. The

development environment of the host machine is also Linux based and employs a CodeSourcery cross-

compiler toolchain for building the OS kernel, board-specific drivers, root filesystem and user space

applications and utilities. Additional libraries required to support applications are built from their original

source code packages and installed to the target filesystem.

Development kit contains the following hardware items.

• Triskan TS8 mobile data terminal with integrated TS8-G11 GPRS communication module

-or-

• Triskan TS8 mobile data terminal with integrated TS8-W11 WLAN communication module

• TS8-RB1R0 reader module with 1D laser scanner

• TS8-B201 battery

• TS8-PR11 power supply

• TS8-RB0R0 development adapter

• TS8-S017 grey neck strap

• Micro-SD card

• 2x Mini-USB cable

• Minigrip bag with screws and boot mode selection jumper

• Quick-start guide with attached download area credentials

• DVD with development environment and documentation

Development kit contains the following software on the DVD media.

• Firmware development tree archive

• Artec libspatha hardware support library and documentation

• Artec exynthoo C++ GUI library and documentation

• Platform bootloader binary image

• Bootloader splash graphics and configuration images

• Adapted and optimized Xynth GUI engine (eXynth)

• Linux kernel version 2.6.33.3 source code

• Busybox version 1.16.1 source code

• Auxiliary libraries and tools (freetype, expat, libpng, etc)

• Eclipse Helios with CDT

• CodeSourcery cross-compiler toolchain for ARM (arm-2010q1)

• Documentation

© Artec Group, 2010 Phone: +372 671 8550

Teaduspargi 6/2, 12618, Tallinn, Estonia Fax: +372 671 8555 Page 6 of 47

Triskan TS8 Firmware Development Kit

User Manual

2.1. FDK DVD layout

The following table contains a list of related files and directories on the provided FDK DVD.

Name Description

doc/ Contains development kit documentation (manuals in PDF format

as well as libexynthoo and libspatha documentation as HTML files

packed into .tar.gz archive)

tools/ Contains development tools

– arm-2010q1-202-arm-none-linux-

gnueabi-i686-pc-linux-gnu.tar.bz2

CodeSourcery G++ Lite 2010q1-202 for ARM GNU/Linux packed into

archive

– arm-2010q1-202-arm-none-linux-

gnueabi.src.tar.bz2

CodeSourcery G++ Lite 2010q1-202 for ARM GNU/Linux installer

source code

- eclipse-cpp-helios-SR1-linux-

gtk.tar.gz

Eclipse IDE for C/C++ developers package

source/ Contains firmware development tree as an archive file

external/ Contains auxiliary libraries needed for firmware compilation.

2.2. Requirements

• GNU/Linux based x86 host machine, preferably Debian based

• Internet access to install missing packages, if any

• Basic knowledge about embedded and cross-platform software development

© Artec Group, 2010 Phone: +372 671 8550

Teaduspargi 6/2, 12618, Tallinn, Estonia Fax: +372 671 8555 Page 7 of 47

Triskan TS8 Firmware Development Kit

User Manual

3. Hardware Reference

3.1. Triskan TS8 Components

Figure 1. TriskanTS8 components.

1. Triskan TS8 main unit

2. Reader module containing 1D laser scanner and optional HF RFID reader

3. Reader module connector

4. Triskan TS8 Mini-USB connector (under the rubber flap)

5. Charger connector

6. Removable GSM/WLAN antenna

7. Micro-SD card slot (under the rubber flap)

8. SIM card slot

© Artec Group, 2010 Phone: +372 671 8550

Teaduspargi 6/2, 12618, Tallinn, Estonia Fax: +372 671 8555 Page 8 of 47

1

3

5

6

7

8

9

10

11

12

13

14

4

15

2

Triskan TS8 Firmware Development Kit

User Manual

9. Reset pin hole

10. Keypad

11. Indicator LEDs

12. Battery pack

13. Triskan TS8 development adapter

14. Development console mini-USB connector

15. Boot mode selection header

3.2. Hardware Specifications

• ARM926EJ CPU core

• 32MB mobile SDRAM

• 16MB on-board NOR flash

• 2.8'' color OLED QVGA display, 320x240 65K colors 10000:1 contrast

• Removable micro-SD card up to 2GB

• 1D laser scanner with optional HF RFID

• GPRS class 10 or 802.11g WLAN communication modules

• Bluetooth 2.0 base band controller

• Replaceable and rechargeable battery pack, Li-Pol 2000mAh

• Dome, sealed, back-lit keypad

• Mini-USB connector with device interface for service and development

• Operating temperatures -5C — +55C

3.3. Flash Memory Layout

Internal NOR flash of Triskan TS8 is divided into a number of partitions to achieve flexibility. The complete

NOR flash range is 0x00000000-0x01000000, with 16MB total size. The table below lists partitions supported

by the given development kit firmware.

Address Range Blocks* Flash Device Description

0x00000000-0x00020000 1:0 /dev/mtd1 Contains U-boot bootloader

© Artec Group, 2010 Phone: +372 671 8550

Teaduspargi 6/2, 12618, Tallinn, Estonia Fax: +372 671 8555 Page 9 of 47

Triskan TS8 Firmware Development Kit

User Manual

Address Range Blocks* Flash Device Description

0x00020000-0x00040000 1:1 /dev/mtd2 Contains U-boot configuration block

0x00040000-0x00080000 1:2-3 /dev/mtd3 Contains splash graphics in raw format

0x00080000-0x00200000 1:4-15 /dev/mtd4 Accommodates Linux kernel

0x00200000-0x00F60000 1:16-122 /dev/mtd5 Contains JFFS2 root file system

0x00F60000-0x01000000 1:123-127 /dev/mtd6 Contains JFFS2 configuration file system

* The “Blocks” field identifies flash memory blocks allocated for the given partitions, in U-boot format. The

first number identifies the flash chip. Each block is 128KB.

© Artec Group, 2010 Phone: +372 671 8550

Teaduspargi 6/2, 12618, Tallinn, Estonia Fax: +372 671 8555 Page 10 of 47

Triskan TS8 Firmware Development Kit

User Manual

4. Installing Development Tools

This section describes the process of installing Triskan TS8 firmware development tools to the host

machine. The host machine must be running a stable GNU/Linux distribution, e. g. Debian Etch or Ubuntu

either on physical hardware or in a virtual machine environment. The virtual machine known to work is

from VMWare. Other virtualization software (e. g. VirtualBox) might have unexpected issues, especially

regarding the USB connectivity.

The main development tool is the ARM cross-compiler toolchain supplied by CodeSourcery. The toolchain

is used to compile the target firmware, applications and utilities on the host machine. The libraries

supplied by the toolchain, e. g. libc, are also used to build the target root filesystem.

The development environment is complemented by the widely popular Eclipse IDE. In the scope of the given

development kit, Eclipse CDT is used to edit and build the application source code.

Root access on the development machine is not strictly required, but it may be still needed if the tools are

installed outside of the user home directory. Root access is required to install maintenance tools and

establishing necessary symbolic links if any of them is missing.

4.1. Installing Cross-Compiler Toolchain

This development kit uses arm-2010q1-202-arm-none-linux-gnueabi release of the GNU ARM cross-

compiler. It is strongly recommended to use the above version since other versions require additional

modifications in the development tree. The toolchain can be downloaded from the official CodeSourcery

site at http://www.codesourcery.com/gnu_toolchains/arm under GPL/LGPL license. The toolchain installer

is also provided on the development kit DVD.

Extract the toolchain from the archive file located on development kit DVD to /opt/arm-2010q1.

$ tar -jxvf /media/cdrom/tools/arm-2010q1-202-arm-none-linux-gnueabi-i686-pc-linux-

gnu.tar.bz2 -C /opt

Create symbolic links for the cross compiler. We create symbolic links with compiler name in it to allow

setting up multiple different compiler versions for different projects. To do that, execute the following

commands as root user:

$ cd /usr/local/bin

$ for I in /opt/arm-2010q1/bin/* ; \

 do ln -s $I `basename $I | sed 's/gnueabi/gnueabi2010q1/'` ; \

 done

© Artec Group, 2010 Phone: +372 671 8550

Teaduspargi 6/2, 12618, Tallinn, Estonia Fax: +372 671 8555 Page 11 of 47

http://www.codesourcery.com/gnu_toolchains/arm

Triskan TS8 Firmware Development Kit

User Manual

After installation is complete, make sure the cross-compiler is registered correctly in the environment

variables. In a terminal, check the reported version:

$ arm-none-linux-gnueabi2010q1-gcc –version

arm-none-linux-gnueabi2010q1-gcc (Sourcery G++ Lite 2010q1-202) 4.4.1

4.2. Installing distCC distributed compiler servers (optional)

You can use distCC to accelerate the build process by running it in parallel on multiple build hosts. For

example, if multiple developers are working on the project, they can share their CPU power with each other

to accelerate the build and benefit from the other idle machines. As an alternative, you can run specialized

build servers to further speed up the build process.

To take advantage of distCC, all machines participating in the build process must have distCC server and

the cross-compiler toolchain installed. The machine(s) that coordinates the build, must have distCC client

side configuration installed as well as the distCC server.

Installing distCC is optional; without it the build process is performed on local machine only. For example,

the full build process on AMD Athlon64 3400 machine takes approximately 15 minutes. When adding a

Core2 Quad and a Core2 Duo machine for compilation and using the localhost only for decompressing and

preprocessing, it completes in less than 4 minutes.

4.2.1. Installing distCC server

DistCC daemon is run as distCC user or as nobody if distCC user is not present. It is listening for

compilation requests on a TCP socket. Client connects to distCC build server and uploads the preprocessed

code to be compiled and the command line to compile it. DistCC server executes the compiler and does the

compilation, after that the resulting binary is uploaded back to first host. All the build hosts must have the

exact same compilers installed at the same locations. To support multiple compilers, we insert the

compiler version to the compiler executable name in the symbolic link we create (e. g. arm-none-linux-

gnueabi2010q1-gcc). The symbolic links are created in /usr/local/bin, where distCC can reach them.

First, install cross compiler toolchain as described in 4.1. Install the distCC package from distribution

repository (as root):

$ apt-get install distcc

Edit the /etc/default/distcc file to match your network setup, i. e. (substitute 10.0.0.0/8 with your LAN

network subnet):

© Artec Group, 2010 Phone: +372 671 8550

Teaduspargi 6/2, 12618, Tallinn, Estonia Fax: +372 671 8555 Page 12 of 47

Triskan TS8 Firmware Development Kit

User Manual

STARTDISTCC="true"

ALLOWEDNETS="127.0.0.1 10.0.0.0/8"

LISTENER=""

Restart the distcc:

/etc/init.d/distcc restart

4.2.2. Installing the distCC client configuration

All distCC clients should have distCC server installed as described in 4.2.1. To have the compilation job

performed by distCC, distCC must be called instead of the real compiler. This is performed by creating

another set of symbolic links in /opt/distcc and setting them only to your user PATH. DistCC picks up the

executable (symbolic link) name it is called as and executes the real compiler with the same name. As the

compilation is performed as distcc/nobody user, that user does not have /opt/distcc in the PATH and the

real compiler link is executed from /usr/local/bin on one of the build machines.

To set up the distCC client, create the distcc symbolic links:

$ mkdir /opt/distcc

$ cd /opt/distcc

$ ln -s /usr/bin/distcc arm-none-linux-gnueabi2010q1-gcc

$ ln -s /usr/bin/distcc arm-none-linux-gnueabi2010q1-g++

Configure your user PATH to reach distCC before the real compiler – append to the end of ~/.bashrc file in

your home directory:

distcc

export PATH="/opt/distcc:${PATH}"

Create your distcc configuration file(~/.distcc/hosts) to specify which machines to use for compilation:

host1/5

host2/3

localhost/1

This file specifies the names of hosts to be used for distributed compilation. The number at the end is the

maximal number of concurrent jobs to be submitted to that host, it should be set 1 more than the number

of CPUs on remote hosts. The list is in priority order. As your machine is busy doing all the archive

extracting, configuring and preprocessing, its priority should not be very high; you might trying removing it

from the list at all.

© Artec Group, 2010 Phone: +372 671 8550

Teaduspargi 6/2, 12618, Tallinn, Estonia Fax: +372 671 8555 Page 13 of 47

Triskan TS8 Firmware Development Kit

User Manual

To benefit from parallel compilation, you should run from now on make commands with -jX switch; X is the

number of processes launched in parallel. This should usually be equal to the sum of processes defined in

your distCC configuration file. Prefix the make command with “time” and experiment with different

configurations to find the most optimal one.

To monitor distCC, run the following command in a separate terminal window:

$ distccmon-text 1

Compile your project (with make -jX flag) and observe the allocation of jobs over build hosts. If using

Eclipse, set in project properties the C/C++ build Behaviour Use Parallel Build option and the number→ →

of jobs as shown in the following image:

4.3. Installing Maintenance Tools

A number of tools and libraries are required to be installed on the host machine in order to build the target

firmware correctly. The required tools and libraries are typically available as packages for your GNU/Linux

distribution. Listed below are the equivalent Debian packages.

• netpbm – required to convert bootloader splash graphics

• mtd-tools – required to build JFFS2 filesystem on host

© Artec Group, 2010 Phone: +372 671 8550

Teaduspargi 6/2, 12618, Tallinn, Estonia Fax: +372 671 8555 Page 14 of 47

Triskan TS8 Firmware Development Kit

User Manual

• patch – required to apply patches to the source tree

• libncurses5-dev – required by Linux kernel menuconfig (optional)

• sharutils – required for transferring files from host system to target device using uuencode

(optional)

Install the required tools and libraries by executing:

$ sudo apt-get install netpbm mtd-tools patch

4.4. Installing Eclipse CDT

Extract the Eclipse CDT package from the development kit DVD to any suitable directory on your host

machine.

$ cd /your/path

$ tar -zxvf /media/cdrom/tools/eclipse-cpp-helios-SR1-linux-gtk.tar.gz

If your host machine does not have Java runtime environment, please install it either from a package of the

OS distribution repository, or directly from Oracle website: http://java.sun.com/javase/downloads .

Use Oracle Java as other Java implementations might cause unexpected problems.

Run Eclipse IDE either from console or by means of a custom shortcut.

© Artec Group, 2010 Phone: +372 671 8550

Teaduspargi 6/2, 12618, Tallinn, Estonia Fax: +372 671 8555 Page 15 of 47

http://java.sun.com/javase/downloads
http://java.sun.com/javase/downloads

Triskan TS8 Firmware Development Kit

User Manual

5. Creating Development Tree

The development tree contains source code and binary files required to build firmware and applications for

Triskan TS8 mobile data terminal. The development tree may be used to build complete firmware images

for device update and recovery, as well as application and library binaries separately.

For a complete overview of the files contained on the FDK DVD and the location of the development files

refer to 2.1.

5.1. Installing Firmware Build Tree

Unpack the development source tree from the development kit DVD to a suitable directory on your host

machine.

$ cd /homr/user

$ tar -zxvf /media/cdrom/source/ts8-fdk-rev02.tar.gz

The development source tree is organized in subdirectories that contain various parts of the target

firmware, e. g. kernel, busybox, applications. Certain directories contain README files that provide detailed

technical information about the building process or directory contents. Please refer to section 6 for details

about the tree structure.

The default location of the firmware build tree is further assumed to be /home/user/ts8-fdk.

5.2. Installing External Dependencies

In order to build valid firmware images, the external directory of the build tree must contain a number of

dependency files, as listed in Appendix A: Auxiliary Files. Binary files are not included in the development

source tree archive and must be copied manually.

$ cd /home/user/ts8-fdk

$ tar -zxvf /media/cdrom/external/external.tar.gz

Platform build scripts will automatically extract the auxiliary archives from external directory during the

building process and compile them when needed.

5.3. Doing Initial Build

Before the individual project can be managed, the firmware should be initially built. This extracts the

kernel and creates the building environment so that all the dependencies can be properly resolved. Doing

the initial build also confirms that the compiler (and optionally distCC) works properly.

© Artec Group, 2010 Phone: +372 671 8550

Teaduspargi 6/2, 12618, Tallinn, Estonia Fax: +372 671 8555 Page 16 of 47

Triskan TS8 Firmware Development Kit

User Manual

To build the firmware simply execute make command (with optional -j X for parallel make) in the root of the

development tree:

$ cd /home/user/ts8-fdk

$ make

Note that building the firmware from scratch takes some time. During the build process the kernel and

libraries are automatically extracted, placed into proper locations. Patches will be applied and the software

will be compiled automatically. Also the custom root filesystem will be generated and populated with

binaries necessary to run the firmware on the target machine.

For the detailed description of the building process and development tree structure please refer to section

6 of this document.

© Artec Group, 2010 Phone: +372 671 8550

Teaduspargi 6/2, 12618, Tallinn, Estonia Fax: +372 671 8555 Page 17 of 47

Triskan TS8 Firmware Development Kit

User Manual

5.4. Creating Eclipse Projects

Eclipse CDT IDE simplifies editing and building the Triskan TS8 source code. In this development kit,

Eclipse CDT is recommended to build the provided applications and libraries via separate Makefile projects.

NB! If the development tree was not built yet, Eclipse projects may generate dependency errors. Refer to

section 6 for building instructions.

5.4.1. Adding Development Tree Project

First, add a project for a whole target development tree by following the procedure below:

• Create a new project with type "Project". File New Project. → → Do NOT use "C Project" as the

Eclipse indexer will be overloaded by the kernel source code.

• Enter project name: ts8.

• Uncheck "Use default location" and click Browse.

© Artec Group, 2010 Phone: +372 671 8550

Teaduspargi 6/2, 12618, Tallinn, Estonia Fax: +372 671 8555 Page 18 of 47

Triskan TS8 Firmware Development Kit

User Manual

• Find your FDK source tree, e. g. go to /home/user/ts8-fdk and click OK.

• Click Finish.

5.4.2. Adding libspatha Project

Next, add libspatha library to Eclipse projects. For this purpose, create a new C++ project as described

below.

• Select File New C++ Project.→ →

© Artec Group, 2010 Phone: +372 671 8550

Teaduspargi 6/2, 12618, Tallinn, Estonia Fax: +372 671 8555 Page 19 of 47

Triskan TS8 Firmware Development Kit

User Manual

• Enter project name: libspatha.

• Uncheck "Use default location" and click Browse.

• Find your FDK source tree. Under that location, go to applications/libspatha and click OK.

• Select Makefile project Empty Project under Project type.→

• Select Linux GCC under Toolchains.

• Click Next.

• Make sure that the Linux GCC toolchain and Default configuration is selected. Click Advanced

settings...

© Artec Group, 2010 Phone: +372 671 8550

Teaduspargi 6/2, 12618, Tallinn, Estonia Fax: +372 671 8555 Page 20 of 47

Triskan TS8 Firmware Development Kit

User Manual

• Select C/C++ Build Discovery options tab.→

• Change GCC C++ Compiler invocation command to arm-none-linux-gnueabi2010q1-g++.

• Change GCC C Compiler invocation command to arm-none-linux-gnueabi2010q1-gcc.

• Click OK to close settings.

• Click Finish to create the project.

Right-click on project and click on "Clean project". This executes a "make clean" command on the project

and then rebuilds the project; this also synchronizes Eclipse environment. You can build the system by

right-clicking the project and selecting "Build all". Eclipse automatically rebuilds the project when a

change is saved to disk. Alternatively, you can disable the automatic building by unchecking the Project →

Build automatically option.

© Artec Group, 2010 Phone: +372 671 8550

Teaduspargi 6/2, 12618, Tallinn, Estonia Fax: +372 671 8555 Page 21 of 47

Triskan TS8 Firmware Development Kit

User Manual

5.4.3. Adding Other Projects

Finally, add the demo application to Eclipse projects. You may also add libexynth, libexynthoo libraries, if

required. Follow the same procedure as for libspatha project.

• Data collector demo application: (C++ project) ts8-fdk/applications/dataCollector

• Simple demo slideshow: (C++ project) ts8-fdk/applications/demoApp

• Ticket verify demo: (C++ project) ts8-fdk/applications/ticketDemo

• libexynth library: (C project) ts8-fdk/applications/libexynth

• libexynthoo library: (C++ project) ts8-fdk/applications/libexynthoo

It is also possible to create Managed Build C/C++ projects in Eclipse CDT for user applications and

configure them to use the ARM cross-compiler. However, managed build projects require integration into

the development tree via Makefile all and install targets. Managed build projects are not discussed in the

scope of the current version of this document.

© Artec Group, 2010 Phone: +372 671 8550

Teaduspargi 6/2, 12618, Tallinn, Estonia Fax: +372 671 8555 Page 22 of 47

Triskan TS8 Firmware Development Kit

User Manual

6. Building Target Firmware

Before the target firmware may be built in a newly deployed development tree, the external directory must

contain files listed in the Appendix A. Refer to section 5.2 for installation procedure.

The table below describes the directory structure of the development source tree.

Location Description

applications Contains applications and libraries required to support them.

applications/demoApp Contains a sample GUI application.

applications/ticketDemo Contains a sample ticket demo application.

applications/dataCollector Contains a sample data collector demo application.

applications/libspatha Contains a Triskan TS8 hardware support library.

applications/libexynth Contains an embedded GUI engine.

applications/libexynthoo Contains a C++ skinnable GUI support library for Xynth engine.

applications/utils Contains various utilities used by the target device.

bootsplash Contains utilities required to prepare the bootloader splash image.

busybox Contains Busybox configuration and patches for the given platform, also

accommodates unpacked Busybox source.

external Contains auxiliary archives and binary images.

fs_build Accommodates a build filesystem, with unstripped libraries and headers.

This directory is created and filled by the building process.

fs_dist Accommodates a release filesystem with stripped binaries. This directory

directly reflects the target root filesystem. This directory is crated and

filled during the build process.

fs_template Contains the original template of the target filesystem. The contents is

copied to the fs_dist/ directory and populated with compiled binaries

during a building process.

kernel Contains board source files, board specific drivers, kernel patches and

also accommodates an unpacked Linux source tree.

mkdistimage Contains image building utilities

mksysroot Contains an installer script for prebuilt tools and libraries taken from a

cross-compiler toolchain.

6.1. Firmware Build Flow

The diagram below illustrates the Triskan TS8 firmware image building sequence, as performed by

Makefile scripts of given development tree.

• Template filesystem is created from fs_template directory. The files are installed to fs_dist.

© Artec Group, 2010 Phone: +372 671 8550

Teaduspargi 6/2, 12618, Tallinn, Estonia Fax: +372 671 8555 Page 23 of 47

Triskan TS8 Firmware Development Kit

User Manual

• System root (sysroot) filesystem is built using mksysroot. The files are installed to fs_dist.

• Kernel and Busybox are built and installed to fs_dist directory.

• Libraries are built in their local directories. Include files are installed to fs_build directory.

• Applications are built in their local directories, using fs_build as include path.

• Shared libraries with debug information are installed to fs_build directory. Applications are linked

dynamically against these libraries.

• Stripped shared libraries are installed to fs_dist directory from fs_build.

• Applications are stripped and installed to fs_dist directory.

• Firmware update and recovery images are generated basing on the contents of fs_dist directory.

© Artec Group, 2010 Phone: +372 671 8550

Teaduspargi 6/2, 12618, Tallinn, Estonia Fax: +372 671 8555 Page 24 of 47

fs_dist

Recovery image

(local)Application

Library

fs_template

sysroot

fs_build

Update image
make

.o, binary

make install

stripped binary

make install

stripped binary (.so)

make

.h, .a, .so

headers, libraries

Triskan TS8 Firmware Development Kit

User Manual

6.2. Building Firmware Images

The directory structure of the source tree is outlined in the table above. Most subdirectories of the

development tree contain corresponding makefiles called during the firmware building process. The

Makefile and Makefile.conf scripts located in the root directory manage the complete build process and

generate firmware update image and firmware recovery image at the output.

To start building firmware images, go to the root of the development tree and execute make command.

$ cd /home/user/ts8-fdk

$ make

The make script will automatically unpack and build Busybox and Linux kernel for the target device, install

libc and other libraries from the cross-compiler toolchain, and then proceed to building applications and

utilities.

The result of the build process described above is a number of intermediate image files listed below:

File Description

kernel/mki_zimage Compressed kernel image.

mkdistimage/flashdisk_jffs2 NOR partition image with JFFS2 filesystem containing the root

filesystem, kernel modules, libraries and applications.

mkdistimage/confdisk_jffs2 NOR partition image with JFFS2 filesystem containing configuration files

of mobile data terminal.

The intermediate image files are further packaged into final redistributable images listed below.

File Description

ts8-fdk-fw.pkg Deployable firmware update package suitable for in-field upgrades using

the micro-SD memory card.

ts8-fdk-recovery.bin Raw firmware image for NOR flash re-initialization at service locations

using a development header.

6.3. Deploying Firmware Package

To install a newly compiled firmware image on a Triskan TS8 unit with functional firmware, please copy the

ts8-fdk-fw.pkg file to the _ts8-service/ directory in the root of the micro-SD media. The destination

directory must be created if it is missing.

© Artec Group, 2010 Phone: +372 671 8550

Teaduspargi 6/2, 12618, Tallinn, Estonia Fax: +372 671 8555 Page 25 of 47

Triskan TS8 Firmware Development Kit

User Manual

This method is suitable for in-field firmware upgrade scenario. The complete firmware update procedure is

listed below in a step-by-step fashion.

1. Shut down the target unit if it is currently operational.

2. Insert a spare micro-SD flash card into the target unit's card slot. Note that the micro-SD media

must have a valid partition table and a single partition formatted with FAT16 or FAT32 filesystem.

3. Connect an external battery charger if the unit battery is not fully charged. The battery must not

run flat during the firmware upgrade procedure, otherwise the flash memory contents may be

corrupted.

4. Connect the target unit to the host machine via USB mini-B cable. Allow the unit to boot up and

display splash graphics.

5. Two new USB disk drives should be recognized by the host machine. Please wait until the USB

drive detection procedure is complete.

6. Using a file manager, browse to the last detected removable drive (further referred to as ts8-usd)

and make sure it is readable. Note that the size of ts8-usd must match the size of the inserted

micro-SD card. In case of an error, disconnect USB cable, remove the micro-SD card and prepare

the card in a stand-alone card reader connected to the host machine.

7. If your host machine OS does not mount the USB storage automatically, mount it manually.

$ cat /proc/partitions

...

8 32 640 sdc # TS8 configuration partition

8 48 122959 sdd # TS8 micro-SD partition

$ mount /dev/sdd /mnt/ts8-usd

8. In the root of ts8-usd create a new directory named _ts8-service. Skip this step if it exists already.

$ mkdir /mnt/ts8-usd/_ts8-service

9. Copy the provided firmware update package named ts8-fdk-fw.pkg to _ts8-service directory. After

the file is copied, unmount the ts8-usd media.

10. Disconnect USB cable. The unit must automatically reboot and show splash graphics.

11. Please wait until the unit beeps and the following prompt appears on the screen.

Found firmware update

Press OK to update

© Artec Group, 2010 Phone: +372 671 8550

Teaduspargi 6/2, 12618, Tallinn, Estonia Fax: +372 671 8555 Page 26 of 47

Triskan TS8 Firmware Development Kit

User Manual

Press DEL to delete

Any other key to shut down

12. If such text does not appear, please make sure that previous steps were completed correctly and

the provided firmware update is designed for the Triskan TS8 development kit application.

13. Press OK button on the target unit to start the firmware update procedure. The following text

should appear on the screen. The unit will also report update status while in progress.

Updating firmware...

14. After the update procedure is complete, the target unit will display the following text and shut

down automatically.

Done. Shutting down.

15. Remove the micro-SD card from the card slot. Alternatively, you may keep the card inside and

delete the update package by pressing DEL button during the next boot.

16. Power up the unit by pressing SCAN button. Check that the unit boots up normally and starts a

demo application.

6.4. Deploying Recovery Image

To install a NOR flash recovery image on a functional or non-functional (due to blank or corrupted flash

media) Triskan TS8 unit, the compiled ts8-fdk-recovery.bin file must be uploaded to the unit using the

provided Atmel SAM-BA utility.

This method is suitable for development and service firmware update scenario. The complete firmware

recovery procedure is listed below in a step-by-step fashion.

1. Go to the install directory of the development tree and install the required configuration files to

your Linux host machine. This step is required only once.

$ cd install

$ sudo cp modprobe.d/atmel /etc/modprobe.d

$ sudo cp udev_rules.d/atmel.rules /etc/udev/rules.d

$ sudo udevadm control --reload-rules

2. Shut down target unit if it is currently operational, remove the battery and reader module

3. Connect the development adapter and install the boot mode selection jumper (Fig. 1, item 15).

4. With battery removed, connect the target unit to the host machine via USB mini-B cable. The unit

should power-up, but the screen must remain blank.

© Artec Group, 2010 Phone: +372 671 8550

Teaduspargi 6/2, 12618, Tallinn, Estonia Fax: +372 671 8555 Page 27 of 47

Triskan TS8 Firmware Development Kit

User Manual

5. Go to the root of the development tree and execute make install.

6. The build system will install Atmel SAM-BA utility if it has not been previously installed, and

connect to the target unit via USB.

-I- TCL platform : Linux

-I- SAM-BA OS : linux

-I- argv 0 : /dev/ttyUSB0

7. The build system will automatically write the ts8-fdk-recovery.bin image to the RAM of the

connected unit and launch a re-flashing procedure.

Writing image to board

Init SDRAM

Send image

-I- File size = [n] byte(s)

Start image

Done

8. After the SAM-BA utility terminates, Triskan TS8 unit will proceed to erasing and writing NOR

flash. The procedure may take a couple of minutes. The unit will generate a number of beeps and

reboot automatically after a final longer beep.

9. After the flashing procedure is complete, check that the unit boots up normally and starts a demo

application.

6.5. Application Linkage

The diagram below illustrates the concept of an application linkage with corresponding dependencies, as

designed by this development kit.

© Artec Group, 2010 Phone: +372 671 8550

Teaduspargi 6/2, 12618, Tallinn, Estonia Fax: +372 671 8555 Page 28 of 47

Triskan TS8 Firmware Development Kit

User Manual

6.6. Building User Applications

The demo application, or any other user application, may be recompiled independently of the complete

development source tree to save time. Note that applications typically require libspatha library and eXynth

engine to be built beforehand, as they make use include headers and link against corresponding libraries.

To build an application, go to an appropriate directory and execute make:

$ cd applications/libspatha

$ make

...

$ cd ../libexynth

$ make

...

$ cd ../dataCollector

$ make

Note that executing make install in dataCollector, libspatha, and libexynth directories will install the

compiled files to the target filesystem under fs_dist/.

© Artec Group, 2010 Phone: +372 671 8550

Teaduspargi 6/2, 12618, Tallinn, Estonia Fax: +372 671 8555 Page 29 of 47

Triskan TS8 Firmware Development Kit

User Manual

7. Running Applications

In order to launch a developed application on a target device, the compiled binary must be either copied to

a target's internal filesystem (flash or micro-SD), or accessed over network from a mounted filesystem.

The original firmware attempts to launch a script at the specific location every time it is booted without

USB attached. The location of the script is /bin/runapp, which refers to an executable file in the internal

NOR memory. The runapp script launches the dataCollector binary from the /usr/bin directory.

The above procedure can be overridden by changing the target boot mode to one of the options described in

the table below. The boot mode may be set by writing the shell U-boot environment variable.

Boot mode Description

0 Normal start: check for firmware update, run internal /bin/runapp script.

1 Run shell: start a system console on development serial port and await further commands.

2 Run external script: start a user script from micro-SD at /mnt/mmc/_ts8-service/startup.

Please refer to the following section for details about setting U-boot environment variables.

7.1. Accessing Development Console

Triskan TS8 provides a dedicated serial port for development purposes accessible via /dev/ttyAT0 device.

The port is typically used to run a console with a Busybox shell and allows for access to system internals.

This development kit includes an adapter that plugs into the serial port connector and exposes it via USB

interface.

Remove the reader module and attach the supplied development adapter connecting it to the 6-pin service

header and the scanner connector of the target unit. On a host machine, run a terminal utility (e. g.

minicom) and select 115200 baud, 1 stop bit, no parity, no flow control mode for a /dev/ttyUSBx serial port

emulated via the USB to serial converter. Restart the target unit, you should initially receive bootloader

messages.

U-Boot 1.1.5 (Nov 27 2008 - 18:24:39)

DRAM: 32 MB

Flash: 16 MB

...

Press Enter key in the terminal window immediately after the target boots and the first U-boot messages

are received. This has to be done quickly, otherwise U-boot proceeds to autoboot and starts loading kernel.

The U-boot prompt will appear in the terminal. Disable the system watchdog by entering wdtdis, otherwise

the unit will be reset in ~15 seconds.

© Artec Group, 2010 Phone: +372 671 8550

Teaduspargi 6/2, 12618, Tallinn, Estonia Fax: +372 671 8555 Page 30 of 47

Triskan TS8 Firmware Development Kit

User Manual

Hit any key to stop autoboot: 0

> wdtdis

In terminal U-boot console, enter the following commands to enable a system console on the development

serial port.

> setenv shell 1

> saveenv

Saving Environment to Flash...

...

. done

Protected 1 sectors

Power-cycle the target unit, you should see the console prompt in the terminal window.

BusyBox v1.14.3 (2010-02-12 10:30:00 EET) built-in shell (ash)

Enter 'help' for a list of built-in commands.

/ #

When activated, the console provides access to available Busybox commands and compiled applications

that are integrated into the firmware. For example, the demo application may be launched as follows:

/usr/bin/dataCollector

The U-boot environment libraries may be also read and written via OS shell commands, as shown below.

ugetenv shell

1

usetenv shell 0

Unlocking flash...

...

U-boot variable 'shell' is set to [0]

7.2. Transferring Files to Target

7.2.1. Internal micro-SD media

• Power down the Triskan TS8 unit

• Plug USB cable in and wait until the splash graphics appears on the screen.

• Mount the last detected USB mass storage device on your development host. The mounted

filesystem is located on micro-SD media of the target device.

• Copy the compiled applications and data files to the micro-SD media.

© Artec Group, 2010 Phone: +372 671 8550

Teaduspargi 6/2, 12618, Tallinn, Estonia Fax: +372 671 8555 Page 31 of 47

Triskan TS8 Firmware Development Kit

User Manual

• If running in shell=2 mode, you can create a startup script in the root of the micro-SD media. For

example, the script below will start the dataCollector application from micro-SD when the device

boots.

#!/bin/sh

echo “Running application from MMC/SD”

/mnt/mmc/dataCollector

• Unmount the media and disconnect the cable. The device will shut down automatically. Start it

again to test the new setup.

7.2.2. Internal NOR flash

An attached development adapter is required to access an integrated debugging console to install binaries

to the internal NOR flash. If prepared files are located on the micro-SD media, you can use the following

commands to copy them to the NOR flash memory.

mount -t vfat /dev/mmcblk0p1 /mnt/mmc

mount -o remount,rw /

cp /mnt/mmc/sample/executable /usr/bin/

cp /mnt/mmc/sample/data /usr/share/sample/

mount -o remount,ro /

Note that mounting MMC/SD and remounting the root filesystem as read/write is not necessary if those

steps were completed before.

If the files are located on the host system, you can use the serial link to transfer them. In an example

below, the integrated Busybox uudecode utility is used to receive the file on the target device.

On target device, execute:

cd /tmp

uudecode

On host system, execute:

$ uuencode source.file target.file >/dev/ttyUSB0

(replace ttyUSB0 with your development adapter port name)

7.2.3. External NFS drive

An attached development adapter is required to access an integrated debugging console to mount a shared

filesystem from the development host over the USB network interface (Fig. 1, item 4). The USB stack of a

© Artec Group, 2010 Phone: +372 671 8550

Teaduspargi 6/2, 12618, Tallinn, Estonia Fax: +372 671 8555 Page 32 of 47

Triskan TS8 Firmware Development Kit

User Manual

target device must be first initialized to function as a network interface. For this purpose, insert the

following kernel modules into the kernel of the target device:

modprobe at91_udc.ko

dmesg

udc: at91_udc version 3 May 2006

modprobe g_ether.ko

dmesg

g_ether gadget: using random self ethernet address

usb0: MAC <MAC_ADDRESS>

Please check using dmesg that the host machine has correctly identified a new USB device, which results

in the “CDC Ethernet” profile usage. After USB network interfaces have been successfully created on both

target and host systems, assign IP addresses:

On target device, execute:

ifconfig usb0 10.254.0.1

On host system, execute:

$ sudo ifconfig usb0 up 10.254.254.254 netmask 255.255.0.0

Finally, after the TCP/IP setup is complete, mount a remote NFS share on the target device:

mount -t nfs -o nolock,nfsvers=2 10.254.254.254:/home/user/ts8-fdk /mnt/nfs

After mount succeeds, the remote filesystem will be available under /mnt/nfs. Note that the host system

must export the /home/user/ts8-fdk directory as an NFS share. For more information on Linux file sharing,

please refer to the NFS howto.

7.3. Debugging via GDB

7.3.1. gdb – the GNU debugger

GDB may be used for remote debugging of applications that run on a target device. The following example

illustrates debugging of a demo application on remote target with gdb running on the host machine. On the

host machine, enter the following commands to run ARM gdb.

$ cd applications/dataCollector

$ arm-none-linux-gnueabi2010q1-gdb dataCollector

(gdb) target remote 10.254.0.1:12345

Remote debugging using 10.254.0.1:12345

0x0000abcd in _start ()

© Artec Group, 2010 Phone: +372 671 8550

Teaduspargi 6/2, 12618, Tallinn, Estonia Fax: +372 671 8555 Page 33 of 47

http://www.faqs.org/docs/Linux-HOWTO/NFS-HOWTO.html

Triskan TS8 Firmware Development Kit

User Manual

(gdb) continue

Continuing.

7.3.2. gdbserver – the remote server for the GNU debugger

Gdbserver should be manually started on the target device. It requires shared versions the same libpthread

and libthread_db libraries that were used for building the application binary, in case if the latter is linked

statically. The versions must match exactly, otherwise errors and SIG32 interrupts are reported and

debugging of threaded applications is not possible. Current firmware development kit installs both

gdbserver and libraries from the cross-compiler toolchain to the target root filesystem.

To start gdbserver on the target, enter

gdbserver localhost:12345 /path/to/application

It is convenient if the application binary is located on a network share, in such case there is no need to

transfer it to the target system every time.

Alternatively, gdbserver may be started in a multi-process mode. In such case, gdb running on host may

take advantage of remote put command to transfer the application and set remote exec-file to select the

application to run.

gdbserver --multi localhost:12345

7.4. Resetting Target Device

The unit may be reset in hardware at an arbitrary time by inserting a steel rod into the provided reset hole

located under the battery near the SIM card slot (see Figure. 1). CPU is reset and the system will reboot.

© Artec Group, 2010 Phone: +372 671 8550

Teaduspargi 6/2, 12618, Tallinn, Estonia Fax: +372 671 8555 Page 34 of 47

Triskan TS8 Firmware Development Kit

User Manual

8. Developing Applications

This section refers to system interfaces and API required to develop a user application for Triskan TS8

mobile data terminal.

The following table contains a list of related files and directories on the provided DVD.

Name Description

doc/ Contains development kit documentation

– libspatha-doc.tar.gz Package containing documentation for libspatha library

– libexynthoo-doc.tar.gz Package containing documentation for eXynth Objects library

In order to simplify the application development process, Artec provides a hardware support library called

libspatha. The library documentation is available separately, located on the FDK DVD and packaged in

libspatha-doc.tar.gz. Libspatha library encapsulates a number of C++ classes that support most of the

hardware interfaces available to Triskan TS8 applications. The library source code is provided under the

LGPL license and is located under applications/libspatha/ within the main firmware build tree.

8.1. Storage Media

8.1.1. NOR Flash

Nor flash is available as MTD device. Use mtdparts command line option to specify partition start

addresses and lengths. The flash can be accessed via /dev/mtdX as character device or via /dev/mtdblockX

as a block device via mtdblock flash to block device wrapper (where X is partitions number). Refer to the

Flash Memory Layout section for more information on available flash partitions. Usage of a regular read-

write filesystem on mtdblock device is discouraged as it will wear out the flash very fast with unoptimized

access patterns.

For NOR flashes, there are no bad blocks on new flash chips and the flash blocks will last for a number of

writes. For a rarely written partition (i. e. bootloader, kernel), the data can reside on the partition itself and

no bad block handling is needed.

Usage:

For raw flash access without bad block handling use /dev/mtdX interfaces. The utility flash_erase or

flash_eraseall has to be used to erase the corresponding flash area before writing to it. Flash area can be

read and written like a regular character device (i. e. with dd utility).

© Artec Group, 2010 Phone: +372 671 8550

Teaduspargi 6/2, 12618, Tallinn, Estonia Fax: +372 671 8555 Page 35 of 47

Triskan TS8 Firmware Development Kit

User Manual

For filesystems (especially read-write filesystems), usage of JFFS2 file system is encouraged. The JFFS2

shuffles blocks of data and evenly distributes the writes across the whole partition. This prevents wearing

out some more frequently written areas of the flash (i. e. FAT table locations).

More information:

http://www.linux-mtd.infradead.org/faq/general.html

http://sourceware.org/jffs2/

8.1.2. Micro-SD Card

The SD card is available to userspace applications from /dev/mmcblk0 interface as a regular block device.

If partition table exists on the SD card, the partitions are available as /dev/mmcblk0pX (where X is

partitions number). All SD cards are shipped with a partition table and one FAT partition having the whole

card space. A card can be formatted without partition table, if needed (creating FAT filesystem on

/dev/mmcblk0). Leaving the card as-is would be recommended, though.

The card can be swapped while the device is running. Indeed, the card should be unmounted first. The card

must not be swapped while the device is in sleep state, the device can not detect card change then;

buffered data from first card may be applied to the second card.

Usage:

Mount your card to a mount point using vfat filesystem:

mount -t vfat /dev/mmcblk0p1 /mnt/mmc

Do not leave the FAT filesystem mounted read-write mode while you are not using the file system as some

changes may be buffered and not written back to card before unmounting the file system. Remount the

filesystem as read-only if it is not used for writing:

mount -t vfat /dev/mmcblk0p1 /mnt/mmc -o remount,ro

8.2. Communication Interfaces

8.2.1. TS8-G11 GPRS Communication Module

The TS8-G11 GPRS communication module incorporates a Telit GE864 GSM/GPRS modem and uses

USART1 serial port as its data communication and some extra GPIO pins as control lines. In addition, the

system power management driver should be used to tristate (high-z) the USART when the device is

powered down, otherwise power will leak via USART lines.

© Artec Group, 2010 Phone: +372 671 8550

Teaduspargi 6/2, 12618, Tallinn, Estonia Fax: +372 671 8555 Page 36 of 47

http://sourceware.org/jffs2/
http://www.linux-mtd.infradead.org/faq/general.html

Triskan TS8 Firmware Development Kit

User Manual

For communication, use /dev/ttyAT1 serial port. This is a full-featured serial port, having bidirectional data

transfer and hardware flow control. Enable the flow control to avoid flooding the modems input buffer with

large amounts of data. The modem is usually used at 115200baud/sec baud rate. Configure the serial port,

and connect to modem. The modem will do autobauding and detect the baud rate. On first use after

powering up set the serial port baud rate on modem side to a fixed value with AT commands to prevent

problems with autobauding recalculating the baud rate to a wrong value.

For control, the modem has 4 output and 1 input GPIO pin (see System Power Management section for

control):

● O_PIN_GPRS_PWR – Power switch on main board. This can be used to turn off the modem's power

and hard-resetting the modem. The switch is defaulted to on position (even when the main CPU is

powered off) to power the RTC in the modem. This switch is intended only for resetting the modem

in case it does not respond. It should not be used for switching off the modem.

● O_PIN_GPRS_RST – Modem RESET input. This pin can be used to generate a reset pulse to the

modem.

● O_PIN_GPRS_ON – Modem ON input. Generate a pulse on this pin to power up the modem. Note

that the U-boot bootloader generates a ~1s pulse automatically when the system is started, to save

time. The application should first check the I_PIN_GPRS_PWRGD signal state to see if the modem

is already powered up.

● O_PIN_GPRS_DTR – This pin controls the modems DTR input. The DTR input is needed for

controlling the modems power save state.

● I_PIN_GPRS_PWRGD – This input indicates the modem's power good state. This can be used to

check if the modem is booted up.

Usage:

Given below is a sample shell script that uses pwrctrl write interface to control GPIOs. A compiled

application should use the IOCTL interface instead. Refer to the System Power Management section for

more information.

echo 'o05'>/dev/pwrctrl # cut power to GPRS modem

echo 'O05'>/dev/pwrctrl # re-enable power

sleep 1

echo 'O07'>/dev/pwrctrl # generate GPRS_ON line pulse

sleep 1

echo 'o07'>/dev/pwrctrl

stty -F /dev/ttyAT1 -echo crtscts # setup serial port

© Artec Group, 2010 Phone: +372 671 8550

Teaduspargi 6/2, 12618, Tallinn, Estonia Fax: +372 671 8555 Page 37 of 47

Triskan TS8 Firmware Development Kit

User Manual

cat /dev/ttyAT1 & # dump serial port input

echo -e "AT+CGMR\r" > /dev/ttyAT1 # send modem version request command

More information:

http://www.telit.com/en/products/gsm-gprs.php?p_id=12&p_ac=show&p=11

8.2.2. TS8-W11 WLAN Communication Module

The TS8-W11 WLAN communication module is based on the Ralink RT3070 chipset and uses USB for data

communication and signaling. The communication module is supported by the rt3070sta driver

implemented as a loadable kernel module. The driver is supplied with this FDK and is built automatically

within the firmware build tree. The communication module appears as a conventional wireless network

interface ra0 to the operating system.

Additionally, WLAN module can be controlled using the following GPIO pins (see system power

management section):

● O_PIN_MPCIE3VEN – controls the power supply to WLAN communication module. Default: on

● O_PIN_WLAN_RADIO_ON – enables the radio interface of the communication module. Default: off

Usage:

insmod /lib/modules/wireless/rt3070sta.ko

ifconfig ra0 up

iwpriv ra0 set NetworkType=Infra

iwpriv ra0 set AuthMode=WPA2PSK

iwpriv ra0 set EncrypType=AES

iwpriv ra0 set SSID="YourNetwork"

iwpriv ra0 set WPAPSK="NetworkKey"

udhcpc -nR -i ra0

More information:

kernel/drivers/wireless/ in the firmware build tree

8.2.3. USB Device Interface

The USB device port is handled by the Linux usb gadget subsystem. There are various drivers, the drivers

are compiled as modules and are loaded as needed and can be swapped.

USB Mass Storage Gadget – This gadget can be used to offer one or more block devices or image files

as USB mass storage devices. These show up as regular mass storage drives on host computer and the

© Artec Group, 2010 Phone: +372 671 8550

Teaduspargi 6/2, 12618, Tallinn, Estonia Fax: +372 671 8555 Page 38 of 47

http://www.telit.com/en/products/gsm-gprs.php?p_id=12&p_ac=show&p=11

Triskan TS8 Firmware Development Kit

User Manual

host can copy files via the USB link. Always unmount the block device before giving it to USB mass storage

gadget driver, as file systems can not be accessed simultaneously from multiple locations.

For example, the SD card can be shared across the USB to create a USB SD card reader:

modprobe at91_udc.ko

modprobe g_file_storage.ko stall=0 removable=y

echo '/dev/mmcblk0p1'>/sys/devices/platform/at91_udc/gadget/gadget-lun0/file

USB Ethernet Gadget – This gadget can be used to create a ethernet connection over USB between the

host and the device. Basically, it shows up on host as an ethernet adapter and on device also as an ethernet

adapter. It acts as these there were two ethernet adapters connected to each other with crossover cables.

The virtual ethernet adapter can be bridged on host side to allow access to physical network via the host.

This network configuration can be easily used to share files between the host and the device. All common

network tools can be used. The device can mount a NFS directory from host and run directly the

applications from the host's filesystem. The device can run a GDB server for remote application debugging

controlled from the host.

Given below is a sample shell script that configures the usb0 network interface and mounts an NFS share:

modprobe at91_udc.ko

modprobe g_ether.ko

ifconfig usb0 192.168.1.2

mount -t nfs -o nolock,nfsvers=2 192.168.1.2:/home/user/share /mnt/nfs

Warning: the MAC addresses of the network adapters are generated randomly in a range allowed for local

use. If using multiple devices in same network (ie connected to a same computer or bridged to a same

network), ensure that the random number generators on the devices are not generating same numbers to

avoid MAC address collisions or allocate MAC addresses manually (it is sufficient to set the system time

from RTC before before loading USB ethernet gadget driver).

More information:

http://www.linux-usb.org/gadget/

8.2.4. Bluetooth Interface

The bluetooth chip is connected via external 16550 UART compatible serial port chip and can be accessed

via /dev/ttyS0 serial port. The chip needs to be initialized on power-up according to its datasheet. Bluetooth

uses MAC addresses and the user needs to provide a unique address to every device during the power-up

initialization.

More information:

© Artec Group, 2010 Phone: +372 671 8550

Teaduspargi 6/2, 12618, Tallinn, Estonia Fax: +372 671 8555 Page 39 of 47

http://www.linux-usb.org/gadget/

Triskan TS8 Firmware Development Kit

User Manual

http://www.national.com/pf/LM/LMX9830.html

8.3. Scanner Interfaces

8.3.1. TS8-RB1R0 Barcode Scanner

The TS8-RB1R0 reader module incorporates an Opticon 1D barcode laser scanner. The barcode scanner is

connected to USART2 serial port for data connection and to some GPIO pins for control. In addition, the

system power management driver is used to tristate the USART when the device is powered down.

The data port of the reader can be accessed via /dev/ttyAT2. The reader is defaulted to 9600 baud, 8N1. The

reader has its own internal configuration flash and the settings changed are stored. Be sure not to lock

yourself out when re-configuring the device!

For control, the following GPIO pins are used (see system power management section):

● O_PIN_2D_PWR – controls the power supply to turn on/off the 2D readers power. Default: off

● O_PIN_2D_DWNLD_N – controls the readers DWNLD# pin. Usage not documented.

● O_PIN_2D_AIM – controls the readers AIM/WAKEUP pin.

● I_PIN_2D_PWR_DWN – indicates the readers PWR_DWN pin state.

To read a barcode, power up the reader (set pins DWNLD_N and AIM high, then set pin PWR high), wait

until the reader powers up, issue a continuous trigger command (<ESC>Y0<CR>), issue a trigger command

(<ESC>Z<CR>), wait for data, issue a detrigger command (<ESC>Y<CR>), optionally power down the reader

(tristate the serial port and set pins PWR, DWNLD_N, AIM low).

More information:

http://old.opticon.com/uploads/Manual/Menubook_en.zip

8.4. User Interface

In order to simplify the graphical user interface development for Triskan TS8 applications, Artec provides

an optimized version of Xynth GUI engine and a custom GUI layout library called libexynthoo. The library

source code is provided under the LGPL license and is available under applications/libexynthoo within the

main firmware build tree. Documentation for the library is provided separately on the FDK DVD in

libexynthoo-doc.tar.gz package.

© Artec Group, 2010 Phone: +372 671 8550

Teaduspargi 6/2, 12618, Tallinn, Estonia Fax: +372 671 8555 Page 40 of 47

http://old.opticon.com/uploads/Manual/Menubook_en.zip
http://www.national.com/pf/LM/LMX9830.html

Triskan TS8 Firmware Development Kit

User Manual

The items listed below refer to a direct access to the user interface hardware of the mobile data terminal.

Direct access may be desired for smaller utilities, for performance critical applications, or for any other

case where the Xynth approach is not applicable.

8.4.1. OLED Display

OLED display is provided to application as a framebuffer device at /dev/fb0. The application can map the

framebuffer memory using that interface or use the interface directly to read/write framebuffer.

Framebuffer can even be read using usual shell commands like dd or even redirecting some command

returning standard output to framebuffer device. For example, showing gzipped raw framebuffer images:

zcat file.gz>/dev/fb0

More information:

http://www.linux-fbdev.org/

8.4.2. Keypad

Keyboard is available as event device. An application can access the keyboard via /dev/eventX. Application

should loop through event devices and poll EVIOCGBIT command to get event types provided by that event

device. The application should find the event device providing EV_KEY support.

The following table lists the possible key codes:

Key Description

KEY_0 .. KEY_9 Numeric keys 0..9

KEY_BACKSPACE DEL key

KEY_ENTER OK key

KEY_DOT Key for special characters (located at the lower left corner)

KEY_UP, KEY_DOWN UP and DOWN arrow keys

KEY_F1 .. KEY_F5 Function keys F1..F5

KEY_F11 Shift key (located at the lower right corner)

KEY_MENU MENU key

KEY_POWER Scan / Power key

SCAN-button is also used as power button. When connecting the device to computer via USB, the device

must power on, because of that a pulse is generated on SCAN button by rising +5V in USB connector. The

© Artec Group, 2010 Phone: +372 671 8550

Teaduspargi 6/2, 12618, Tallinn, Estonia Fax: +372 671 8555 Page 41 of 47

http://www.linux-fbdev.org/

Triskan TS8 Firmware Development Kit

User Manual

application can poll the USB +5V line via system power management driver to filter out button presses

caused by plugging in the USB.

More information:

http://www.linuxjournal.com/article/6429

utils/get_keypress.c utility in the firmware build tree

8.4.3. Speaker

The speaker is available as an event device at /dev/input/eventX. This is a special case of event device, that

can control output devices. Poll EVIOCGBIT command to find event device providing EV_SND support. Send

and event with value equal to the frequency to start the speaker oscillator. Send frequency 0 to stop the

speaker oscillator.

See also:

applications/utils/sprktest.c utility in the firmware build tree

8.4.4. LED Indicators

Two LED indicators on top of the keypad are available to user applications. For control, the following GPIO

pins are used (see system power management section):

● O_PIN_LED_R – enables the red LED indicator

● O_PIN_LED_G – enables the green LED indicator

When the mobile terminal is connected via USB to a host, the LED outputs are driven by battery charger

circuitry. The software may then override charger outputs to enable LED indicators.

8.4.5. Ambient Light Sensor

The ambient lighting data can be read from the on-board ISL29001 sensor from /sys/devices/platform/i2c-

gpio/i2c-adapter:i2c-0/0-0044/illum1_input.

8.5. System Interfaces

8.5.1. CPU Power Management

Atmel AT91 SoC is capable of switching the system clock to RTT oscillator (32kHz) and stopping the fast

PLLs and main oscillator to save power. With all peripherals off and system idle, the current consumption

© Artec Group, 2010 Phone: +372 671 8550

Teaduspargi 6/2, 12618, Tallinn, Estonia Fax: +372 671 8555 Page 42 of 47

http://www.linuxjournal.com/article/6429

Triskan TS8 Firmware Development Kit

User Manual

(measured between the battery) is ~80mA when system clock is derived from the main oscillator and

~20mA when system clock is switched to RTT oscillator and the fast PLLs and main oscillator are stopped.

To go to the low power mode, write “mem” to /system/power/state.

echo “mem” > /system/power/state

The system will wake up on either RTT (real-time timer, see below) interrupt or another configured wake-

up source (for example, buttons). By default, all wake-up sources are enabled, but they can be disabled via

sysfs.

8.5.2. System Power Management

The power manager driver is used to control the system power supplies (via GPIO pins), adjust keyboard

backlight, tristate USART ports and control GPIO ports. The driver can be controlled using either ioctl or

write interfaces via /dev/pwrctrl.

IOCTL interface (unsigned long command, unsigned long argument):

IOCTL Command Argument Description

PWRCTRL_SET_GPIO_HI bits 0-7: gpio out id Set GPIO output pin id high (pin id's are defined in

pwrctrl.h)

PWRCTRL_SET_GPIO_LO bits 0-7: gpio out id Set GPIO output pin id low

PWRCTRL_GET_GPIO bits 0-7: gpio out id Get the GPIO input pin id state

PWRCTRL_SET_KBDBL bits 0-7: intensity Set the keyboard backlight intensity to a defined

value

PWRCTRL_FADE_KBDBL_TO bits 0-7: final

intensity

Fade the keyboard backlight to the selected final

intensity in 25 ms steps.

USART_TRISTATE_ON bits 0-7: usart id Mux the usart id pins to high-z state.

USART_TRISTATE_OFF bits 0-7: usart id Mux the usart id pins to USART.

Write interface (argument xx is in HEX):

Write

command

Description

Oxx Set GPIO output pin xx high (pin id's are defined in pwrctrl.h)

oxx Set GPIO output pin xx low

Lxx Set the keyboard backlight intensity to xx

Axx Fade the keyboard backlight to intensity xx in 25 ms steps

Txx Mux the usart xx pins to high-z state.

© Artec Group, 2010 Phone: +372 671 8550

Teaduspargi 6/2, 12618, Tallinn, Estonia Fax: +372 671 8555 Page 43 of 47

Triskan TS8 Firmware Development Kit

User Manual

Write

command

Description

txx Mux the usart xx pins to USART.

The write interface is intended to make easier controlling of the device from shell scripts, ie:

echo “AFF” > /dev/pwrctrl

8.5.3. Real-Time Timer

AT91 contains a real-time timer. This timer is run from 32768Hz oscillator and it is running even while the

system is powered off. The timer counter is incremented at 1Hz and can only be read, not written. The

counter is set to 0 on connecting the battery. The RTT is capable of generating an alarm interrupt and

waking up the system from suspended state or power-down state.

The real-time timer serves mainly two purposes: keeping time while the system is in suspend and waking

up the system from suspend state at a predefined interval.

Access to the RTT timer is provided through standard Linux RTC interface.

8.5.4. Battery Voltage

There is a dedicated chip on board for reading the battery voltage. The value can be read at

/sys/devices/platform/atmel_spi.1/spi1.3/in_input0.

8.5.5. Temperature Sensor

The temperature can be read from the on-board LM75 temperature sensor from /sys/devices/platform/i2c-

gpio/i2c-adapter:i2c-0/0-0048/temp1_input.

© Artec Group, 2010 Phone: +372 671 8550

Teaduspargi 6/2, 12618, Tallinn, Estonia Fax: +372 671 8555 Page 44 of 47

Triskan TS8 Firmware Development Kit

User Manual

9. Appendix A: Auxiliary Files

Listed below are the files required for building the target firmware. The files are located in the external/

directory of the development kit build tree.

File Description

2009_0525_RT3070_Linux_STA_

v2.1.1.0.bz2

WLAN interface driver for Ralink RT3070 mini-PCI express card

bootsplash.png Bootloader splash image in PNG format

busybox-1.16.1.tar.bz2 BusyBox source code tarball

dosfstools-3.0.9.tar.bz2 Filesystem tools

expat-2.0.1.tar.gz XML parser library

freetype-2.3.12.tar.bz2 Font rendering library

libpng-1.4.1.tar.gz PNG imaging library

linux-2.6.33.3.tar.bz2 Linux kernel source tarball

ppp-2.4.5.tar.gz PPP services

zlib-1.2.5.tar.bz2 Compression library

u-boot.bin U-boot bootloader binary

wireless_tools.29.tar.gz Wireless network tools

© Artec Group, 2010 Phone: +372 671 8550

Teaduspargi 6/2, 12618, Tallinn, Estonia Fax: +372 671 8555 Page 45 of 47

Triskan TS8 Firmware Development Kit

User Manual

10. Appendix B: Licensing

Triskan TS8 firmware development kit contains software components that are GNU GPLv2 and GNU

LGPLv2.1 licensed. A copy of these licenses are included on the FDK DVD along with the source code for all

related components.

Portions of this software are copyright © 2008 The FreeType Project (www.freetype.org). All rights

reserved.

© Artec Group, 2010 Phone: +372 671 8550

Teaduspargi 6/2, 12618, Tallinn, Estonia Fax: +372 671 8555 Page 46 of 47

Triskan TS8 Firmware Development Kit

User Manual

11. Appendix C: Change log

2010-10-20:

• Changed gcc version in example commands to 2010q1

• Added screenshots for configuring Eclipse IDE

• Updated developer tree to reflect the changes for moving to eXynth and eXynthoo libraries

• Updated external program version numbers

• Created FDK DVD layout section 2.1

• Created additional section 5.3 describing initial build procedure

2009-12-04:

• Fixed example gcc version query example in section 4.1

2009-06-29:

• Added the “Required Skills” paragraph

2009-04-24:

• Changed compiler set-up procedure to have compiler version in executable name.

• Added distributed/parallel build instructions

© Artec Group, 2010 Phone: +372 671 8550

Teaduspargi 6/2, 12618, Tallinn, Estonia Fax: +372 671 8555 Page 47 of 47

	1. About This Document
	1.1. Intended Audience
	1.2. Required Skills
	1.3. Conventions
	1.4. References
	1.5. Vocabulary

	2. Introduction
	2.1. FDK DVD layout
	2.2. Requirements

	3. Hardware Reference
	3.1. Triskan TS8 Components
	3.2. Hardware Specifications
	3.3. Flash Memory Layout

	4. Installing Development Tools
	4.1. Installing Cross-Compiler Toolchain
	4.2. Installing distCC distributed compiler servers (optional)
	4.2.1. Installing distCC server
	4.2.2. Installing the distCC client configuration

	4.3. Installing Maintenance Tools
	4.4. Installing Eclipse CDT

	5. Creating Development Tree
	5.1. Installing Firmware Build Tree
	5.2. Installing External Dependencies
	5.3. Doing Initial Build
	5.4. Creating Eclipse Projects
	5.4.1. Adding Development Tree Project
	5.4.2. Adding libspatha Project
	5.4.3. Adding Other Projects

	6. Building Target Firmware
	6.1. Firmware Build Flow
	6.2. Building Firmware Images
	6.3. Deploying Firmware Package
	6.4. Deploying Recovery Image
	6.5. Application Linkage
	6.6. Building User Applications

	7. Running Applications
	7.1. Accessing Development Console
	7.2. Transferring Files to Target
	7.2.1. Internal micro-SD media
	7.2.2. Internal NOR flash
	7.2.3. External NFS drive

	7.3. Debugging via GDB
	7.3.1. gdb – the GNU debugger
	7.3.2. gdbserver – the remote server for the GNU debugger

	7.4. Resetting Target Device

	8. Developing Applications
	8.1. Storage Media
	8.1.1. NOR Flash
	8.1.2. Micro-SD Card

	8.2. Communication Interfaces
	8.2.1. TS8-G11 GPRS Communication Module
	8.2.2. TS8-W11 WLAN Communication Module
	8.2.3. USB Device Interface
	8.2.4. Bluetooth Interface

	8.3. Scanner Interfaces
	8.3.1. TS8-RB1R0 Barcode Scanner

	8.4. User Interface
	8.4.1. OLED Display
	8.4.2. Keypad
	8.4.3. Speaker
	8.4.4. LED Indicators
	8.4.5. Ambient Light Sensor

	8.5. System Interfaces
	8.5.1. CPU Power Management
	8.5.2. System Power Management
	8.5.3. Real-Time Timer
	8.5.4. Battery Voltage
	8.5.5. Temperature Sensor

	9. Appendix A: Auxiliary Files
	10. Appendix B: Licensing
	11. Appendix C: Change log

