
SNA: A tool for Stochastic Network Analysis

(CE737 Course Project)

Shahrzad Azizzadeh

5/5/2010

Abstract

This document is the user manual to the SNA: Stochastic Network

Analysis tool. It provides complete information on how to use the system

as well as description of tools and algorithms which are provided in the

software. The Examples provided in this tutorial are all tested properly

by the software.

1

Contents

1 Introduction 3

2 SNA's Technology Dependencies 4

3 SNA Network Basics 5

3.1 How to Create a network 5

3.1.1 Creating a network manually 5

3.1.2 Reading a network from �le 6

4 Working with algorithms 7

4.1 Connectivity . 7

4.2 Shortest Path . 7

4.3 Max Flow . 8

4.4 Capacity Reliability Estimation 8

5 Network Visulalization 9

6 An extended example 10

7 How to install the project 12

7.1 Run on Windows . 12

7.2 Run on Linux . 12

8 Appendix 1:A Sample Data set 12

2

1 Introduction

SNA is a software for stochastic �ow network analysis. It enables the user to ac-

complish basic and more advanced network analysis under uncertain conditions.

The software is designed and implemented for audiences majoring in math and

engineering. Background on network and graph analysis will help in using the

system, but the manual is complete enough to help the users not familiar with

graph theory as well.

Stochastic network analysis is used to describe the behavior of many com-

plex systems including lifeline networks. The analysis of the performance of

such networks should be done under uncertainty. Uncertainties stem from the

natural variations in the availability of network components and due to failures,

degradations. Also in real world networks, usually partial information is pro-

vided about the demand in the system and it may also follow a distribution other

than being a completely known value. These issues reveal the need to a tool

which gives the opportunity to perform network analysis under uncertainties.

In addition to the basic famous network analysis problems such as shortest

path and connectivity analysis, this tool estimates more advance network met-

rics such as capacity reliability of the system under uncertainties conditions.

Also this tool provides good visualization capabilities.

The software is based on two di�erent yet interacting tools:

• Monte Carlo Simulation

• Network Analysis tool

The uncertainty analysis is done by means of Monte Carlo simulation. The
results of the simulations are passed to the network analysis tool as the input
data.

The following �gure depicts the high level architecture of SNA.

3

Sim
ula

tor

Ra
nd

om
Fa

cto
ry

Sw
ing

UI
Te
rm

ina
l

Common
Math Lib

Jung Lib

Alg
SP

Flow

Graph
Node

Capacitated Link
Capacitated Network

Graph
SP
Distance

Shortest Path

Flow
Max Flow

Graph
GeneratorProperty File

DB
Graph

XML
Key Value

<XML>

DBGraph

2 SNA's Technology Dependencies

SNA depends on two java libraries: Commons Math 2.1 API and Jung 2.0 (
Java Universal Network/Graph).

• Commons Math API:

This library is used for generating random numbers from some of the famous
probability distribution functions. The library is available for free download at
:

http://commons.apache.org/math/download_math.cgi
and the javadoc of the library is reachable at :
http://commons.apache.org/math/api-2.1/index.html

• JUNG 2.0:

Graph and network classes of SNA extend some of the classes of this library.
Also it is used for graph visualizations in SNA. The library is available for free
download at :

http://jung.sourceforge.net/doc/index.html
and the javadoc of the library is reachable at :
http://jung.sourceforge.net/doc/api/index.html

4

3 SNA Network Basics

SNA is an object oriented software. It represents a network as a directed graph

which has been read through its incidence matrix. Although SNA uses some of

the classes and interfaces of JUNG and JGRAPHT libraries, it introduces its

own classes for a lot of objects needed for its speci�c purposes. The structure

of a network in SNA is brie�y introduced in the following. For a more complete

list of the classes please see the SNA javadoc. The following �gure depicts the

high level SNA network architecture.

Capacitated Link

Extends

Directed Sparse Multi
Graph

Capacitated
NetworkGraphNode

Fields :
Id,Name
Methods:
ToString,Compare to

Fields :
Capacity,Weight,Id,Name
Methods:
Fields setters and getters

Methods :
Demand Setter and
getters
getVertex
getEdge

3.1 How to Create a network

There are three alternatives for forming a network in SNA :

• Creating a network manually

• Reading from a �le

• Generating a random network

3.1.1 Creating a network manually

In SNA nodes should be of the de�ned �Node� class and links should be of the
de�ned �CapacitatedLink� class. The following command initiates a network
named g :

CapacitatedNetworkGraph<Node, CapacitatedLink> g = new Capacitated-
NetworkGraph<Node, CapacitatedLink>();

5

As class CapacitatedNetworkGraph of SNA extends theDirectedOrderedSparse-
Multigraph of Jung library, it inherits its methods, so you can add a node with
the id i to your network by :

g.addVertex(i);

You can also add an edge e to between nodes �source� and �sink� by :

g.addEdge(e, source, sink);

For a complete set of commands like setting the link distributions, demand
and etc , please see the javadoc of SNA.

3.1.2 Reading a network from �le

In this method creating the network begins by de�ning a properties �le. You
need to determine the following to be able to form your network. The names
between � � are key values.

• �Graph_Nodes� : Set of Graph Nodes.

• �Random_Capacity� : Your graph capacity data is random ? True or
False.

• �Graph_Capacity� : If the data is not random provide it here.

• �Graph_Weight� : Edge weights go here.

• �Probability_Distribution�: If the capacity data is probabilistic, provide
the distributions here.

• �Demand_Mean�: The mean of demand of the network

• �Demand_Sigma� : The standard deviation of demand of the network

Here is a sample set of data for properties �le of a network with 5 nodes :

Graph_Nodes =(Node0, Node1, Node2 , Node3, Node4)
Random_Capacity = True
Graph_Capacity={(Null,6,Null,Null,Null);(Null,Null,3,3,Null);(Null,Null,Null,3,Null);
(Null,Null,Null,Null,6);(Null,Null,Null,Null,Null)}
Graph_Weight={(Null,1,Null,Null,Null);(Null,Null,1,2,Null);(Null,Null,Null,1,Null);
(Null,Null,Null,Null,4);(Null,Null,Null,Null,Null)}
(Comment :N:Normal,E=Exponential,U=uniform)
Probability_Distribution = {(Null,N[6-1],Null,Null,Null);(Null,Null,U[2-4],U[2-

4],Null);
(Null,Null,Null,E[3],Null);(Null,Null,Null,Null,N[6-1]);(Null,Null,Null,Null,Null)}
Demand_Mean = 2.5
Demand_Sigma = 0.5

6

4 Working with algorithms

After creating a network using one of the methods introduced earlier, you can
try some algorithm on your network. The following will show you how you can
run these algotithms in the software.

4.1 Connectivity

There are a lot of explorations you can do using this tool , connectivity of a
pair of node, connectivity of the over all network and etc. As an example we
have provided the code to investigate whether a given node of the network is
connected to all the other nodes.

GraphGenerator<Node, CapacitatedLink> gg = PropertyFileGraphGenera-
tor.getInstance();

CapacitatedNetworkGraph<Node, CapacitatedLink> cng = gg.getGraph();
ConnectivityLabeler<Node, CapacitatedLink> cl = new ConnectivityLabeler<Node,

CapacitatedLink>();
System.out.println("Is Graph Connected : " + ((cl.isConnected(cng, cng.getVertex(fromNode))

? "Yes" : "No")));
System.out.println("Number of Nodes " + fromNode + " is disconnected

from : " + cl.disconnectedNodesCount(cng, cng.getVertex(fromNode)) + " Nodes");

System.out.println("Number of Nodes " + fromNode + " is directly discon-
nected from : " + cl.disconnectedNodesDirectlyCount(cng, cng.getVertex(fromNode))
+ " Nodes");

4.2 Shortest Path

To calculate the shortest path between a pair of nodes using Dijkastra's algo-
rithm you can use the following sample code. The transformer is used to return
the links weight.

GraphGenerator<Node, CapacitatedLink> gg = PropertyFileGraphGenera-
tor.getInstance();

CapacitatedNetworkGraph<Node, CapacitatedLink> cng = gg.getGraph();
Transformer<CapacitatedLink, Double> wTransformer = new Transformer<CapacitatedLink,

Double>() {
public Double transform(CapacitatedLink link) { return link.getWeight(); }
};
DijkstraShortestPath<Node, CapacitatedLink> spAlgorithm = new DijkstraShort-

estPath<Node, CapacitatedLink>(cng, wTransformer);
java.util.List<CapacitatedLink> path = spAlgorithm.getPath(cng.getVertex(fromNode),

cng.getVertex(toNode));
Number distance = spAlgorithm.getDistance(cng.getVertex(fromNode), cng.getVertex(toNode));

7

System.out.println(" Distance from :" + "Node-" + fromNode + " to " +
toNode + " is : " + distance);

System.out.println(" Path from :" + "Node-" + fromNode + " to " + toNode
+ " is : " + path);

4.3 Max Flow

To calculate the maximum �ow passing through a pair of nodes considering the
link capacities the sofware uses Edmonds Karp algorithm which is an imple-
mentation of Ford Folkerson method. You can use the following sample code to
calculate the max �ow on your network between desired nodes.

GraphGenerator<Node, CapacitatedLink> gg = PropertyFileGraphGenera-
tor.getInstance();

CapacitatedNetworkGraph<Node, CapacitatedLink> cng = gg.getGraph();
Transformer<CapacitatedLink, Double> capTransformer = new Transformer<CapacitatedLink,

Double>() {
public Double transform(CapacitatedLink link) { return link.getCapacity();

} };
Map<CapacitatedLink, Double> edgeFlowMap = new HashMap<CapacitatedLink,

Double>();
// This Factory produces new edges for use by the algorithm
Factory<CapacitatedLink> edgeFactory = new Factory<CapacitatedLink>()

{
public CapacitatedLink create() { return new CapacitatedLink(1, 1.0, 1.0);

} };
try { EdmondsKarpMaxFlow<Node, CapacitatedLink> maxFlowAlgorithm
= new EdmondsKarpMaxFlow(cng, cng.getVertex(fromNode), cng.getVertex(toNode),

capTransformer,
edgeFlowMap, edgeFactory); maxFlowAlgorithm.evaluate();
System.out.println(" Maximum Flow from :" + "Node-" + fromNode + " to

" + toNode + " is : " +
maxFlowAlgorithm.getMaxFlow()); }
catch (IllegalArgumentException e) {
System.out.println(" Maximum Flow from :" + "Node-" + fromNode + " to

" + toNode + " is : No Flow"); }

4.4 Capacity Reliability Estimation

The capacity reliability estimation method has the following steps :

1. Sampling from all the link capacities

2. Calculating the Max Flow of the network using the data provided in step
1.

8

3. Sample the demand from its distribution

4. Comparing the demand and the maximum �ow

5. For the desired number of iterations do steps 1-4

6. return the percentage of times the maximum �ow the network is able to
provide exceedes the demand.

You can use the following commands to run such a simulation for 1000 times
for the �ow between your hypothetical 0 and 4 nodes and get the results.

GraphGenerator graphGenerator = PropertyFileGraphGenerator.getInstance();

ReliabilityEvaluation re = new ReliabilityEvaluation(1000);
System.out.println("Capacity Reliability Estimation" + re.estimate(graphGenerator,

0, 4));

5 Network Visulalization

By now, you have created your desired graph and implemented some algorithms.
SNA also gives the ability to visualize your work. SNA's network visualization
takes advantage of the great visual features of Jung library. You can use the
Visual Demo class in SNA as a user interface for implementing most of the
algorithms discussed so far. Here is a sample view of what SNA is able to
provide.

9

6 An extended example

Implementation of all the methods and algorithms available through the software
is provided here using an extended example. As all the necessary commands
have been discussed in the previous sections, here we only introduce a case for
which the creating is via �reading from �le� and implementing the algorithm is
by using the interface.

1. Create a properties �le in your project directory, the name of the �le can
be : exam1.properties . The sample of the �le for a 15 node graph is
provided in the appendix.

2. Run Visula Demo.java �le

3. From the �rst combo box choose the desired source (origin) node.

4. From the second combo box choose the desired sink (destination) node.

10

5. The sofware will calculate and return the followings :

(a) Minimum Distance between the node pair

(b) Maximum Flow between the node pair

(c) If the node is connected to all other nodes of the network

6. By clicking on the �CapRelEst� the program will run a simulation and
returns the capacity reliability estimation.

7. Here is how the result look like for the sample graph at one of the runs:

11

7 How to install the project

To run the program on Windows or Linux you need to have java run time
environment (JRE) 1.6+ installed. To install the project download the binary
�les at the following address:

http://www4.ncsu.edu/~sazizza/737/project/sna/sna-1_0_source.jar

unzip the compressed �le into a folder.

7.1 Run on Windows

Before running the project on windows set the JAVA_HOME in windows En-
vironment Variables or open run.bat with notepad and change the line pointing
to your java home directory by removing �REM� from the following statement.
For example change

REM set JAVA_HOME=C:\Program Files\Java\jdk1.6.0_18

to

set JAVA_HOME=<YOUR JAVA HOME DIRECTORY>

after modifying run.bat �le, simply execute the �le by double clicking or
using Command Prompt.

7.2 Run on Linux

Make sure that JRE 1.6+ is installed and java bin directory is added to system
PATH variables then run.sh by either one of these commands:

./run.sh
sh run.sh

8 Appendix 1:A Sample Data set

Sample properties �le data set for the discussed network:

Comments#15NodeConnectedNetwork
#N:Normal,E=Exponential,U=uniform

Probability_Distribution=
{(Null,U[0-3],N[10-1.5],Null,Null,Null,Null,Null,Null,Null,Null,Null,Null,Null,Null);(U[0-

3],Null,N[8-1],Null,Null,Null,Null,Null,Null,Null,Null,Null,Null,Null,Null);(Null,Null,Null,N[18-
2],Null,Null,Null,Null,Null,Null,Null,Null,Null,Null,Null);(Null,Null,Null,Null,N[3-
0.5],Null,N[3-0.5],Null,N[12-2],Null,Null,Null,Null,Null,Null);(Null,Null,Null,Null,Null,E[3-
1],Null,N[2-0.25],Null,Null,Null,Null,Null,Null,Null);(Null,Null,Null,Null,Null,Null,Null,E[3-
1],Null,Null,Null,Null,Null,Null,Null);(Null,Null,Null,Null,Null,Null,Null,Null,N[3-
0.5],N[3-0.5],Null,Null,Null,Null,Null);(Null,Null,Null,Null,Null,Null,Null,Null,Null,Null,N[3-
1],Null,Null,Null,Null);(Null,Null,Null,Null,Null,Null,N[3-0.5],N[5-1],Null,U[3-6],Null,N[6-

12

2],Null,N[7-2],N[8-1]);(Null,Null,Null,Null,Null,Null,Null,Null,U[3-6],Null,Null,N[5-
1],Null,Null,Null);(Null,Null,Null,Null,Null,Null,Null,Null,Null,Null,Null,Null,N[3-
0.5],N[2-0.25],Null);(Null,Null,Null,Null,Null,Null,Null,Null,Null,Null,Null,Null,Null,Null,U[2-
4]);(Null,Null,Null,Null,Null,Null,Null,Null,Null,Null,Null,Null,Null,Null,Null);(Null,Null,Null,Null,Null,Null,Null,Null,Null,Null,Null,Null,Null,Null,N[16-
2]);(Null,Null,Null,Null,Null,Null,Null,Null,Null,Null,Null,Null,Null,N[18-2],Null)}

Graph_Capacity=
{(Null,1,2,Null,Null,Null,Null,Null,Null,Null,Null,Null,Null,Null,Null);(1,Null,2,Null,Null,Null,Null,Null,Null,Null,Null,Null,Null,Null,Null);(Null,Null,Null,3,Null,Null,Null,Null,Null,Null,Null,Null,Null,Null,Null);(Null,Null,Null,Null,2,Null,1,Null,3,Null,Null,Null,Null,Null,Null);(Null,Null,Null,Null,Null,3,Null,4,Null,Null,Null,Null,Null,Null,Null);(Null,Null,Null,Null,Null,Null,Null,3,Null,Null,Null,Null,Null,Null,Null);(Null,Null,Null,Null,Null,Null,Null,Null,2,1,Null,Null,Null,Null,Null);(Null,Null,Null,Null,Null,Null,Null,Null,Null,Null,2,Null,Null,Null,Null);(Null,Null,Null,Null,Null,Null,2,3,Null,1,Null,2,Null,4,5);(Null,Null,Null,Null,Null,Null,Null,Null,1,Null,Null,2,Null,Null,Null);(Null,Null,Null,Null,Null,Null,Null,Null,Null,Null,Null,Null,1,3,Null);(Null,Null,Null,Null,Null,Null,Null,Null,Null,Null,Null,Null,Null,Null,1);(Null,Null,Null,Null,Null,Null,Null,Null,Null,Null,Null,Null,Null,Null,Null);(Null,Null,Null,Null,Null,Null,Null,Null,Null,Null,Null,Null,Null,Null,2);(Null,Null,Null,Null,Null,Null,Null,Null,Null,Null,Null,Null,Null,2,Null)}

Graph_Weight= {(Null,1,2,Null,Null,Null,Null,Null,Null,Null,Null,Null,Null,Null,Null);(1,Null,2,Null,Null,Null,Null,Null,Null,Null,Null,Null,Null,Null,Null);(Null,Null,Null,3,Null,Null,Null,Null,Null,Null,Null,Null,Null,Null,Null);(Null,Null,Null,Null,2,Null,1,Null,3,Null,Null,Null,Null,Null,Null);(Null,Null,Null,Null,Null,3,Null,4,Null,Null,Null,Null,Null,Null,Null);(Null,Null,Null,Null,Null,Null,Null,3,Null,Null,Null,Null,Null,Null,Null);(Null,Null,Null,Null,Null,Null,Null,Null,2,1,Null,Null,Null,Null,Null);(Null,Null,Null,Null,Null,Null,Null,Null,Null,Null,2,Null,Null,Null,Null);(Null,Null,Null,Null,Null,Null,2,3,Null,1,Null,2,Null,4,5);(Null,Null,Null,Null,Null,Null,Null,Null,1,Null,Null,2,Null,Null,Null);(Null,Null,Null,Null,Null,Null,Null,Null,Null,Null,Null,Null,1,3,Null);(Null,Null,Null,Null,Null,Null,Null,Null,Null,Null,Null,Null,Null,Null,1);(Null,Null,Null,Null,Null,Null,Null,Null,Null,Null,Null,Null,Null,Null,Null);(Null,Null,Null,Null,Null,Null,Null,Null,Null,Null,Null,Null,Null,Null,2);(Null,Null,Null,Null,Null,Null,Null,Null,Null,Null,Null,Null,Null,2,Null)}
Graph_Nodes =(Node0, Node1, Node2 , Node3, Node4,Node5, Node6, Node7
, Node8, Node9,Node10, Node11, Node12 , Node13, Node14)

13

