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Preface

Welcome to B-Prolog, a versatile and efficient constraint logic programming (CLP)
system. B-Prolog is being brought to you by Afany Software.

The birth of CLP is a milestone in the history of programming languages.
CLP combines two declarative programming paradigms: logic programming and
constraint solving. The declarative nature has proven appealing in numerous ap-
plications including computer-aided design and verification, database, software
engineering, optimization, configuration, graphical user interface, and language
processing. It greatly enhances the productivity of software development and soft-
ware maintainability. In addition, because of the availability of efficient constraint-
solving, memory management, and compilation techniques, CLP programs can be
more efficient than their counterparts written in procedural languages.

B-Prolog is a Prolog system with extensions for programming concurrency,
constraints, and interactive graphics. The system is based on a significantly re-
fined WAM [?], called TOAM Jr. [?] (a successor of TOAM [?]), which facilitates
software emulation. In addition to a TOAM emulator with a garbage collector
written in C, the system consists of a compiler and an interpreter written in Pro-
log, and a library of built-in predicates written in C and Prolog. B-Prolog accepts
not only standard form Prolog programs but also matching clauses in which the de-
terminacy and input/output unifications are denoted explicitly. Matching clauses
are compiled into more compact and faster code than standard-form clauses. The
compiler and most of the libraries are written in matching clauses.

B-Prolog follows the standard of Prolog but also enjoys several features that
are not available in traditional Prolog systems. B-Prolog provides an interac-
tive environment through which users can consult, list, compile, load, debug and
run programs. The command editor in the environment facilitates recalling and
editing old commands. B-Prolog provides a bi-directional interface with C and
Java. This interface makes it possible to integrate Prolog with C, C++, and
Java. B-Prolog offers you a language, called AR (action rules), which is useful for
programming concurrency, implementing constraint propagators, and developing
interactive user interfaces. AR has been successfully used to implement constraint
solvers over trees, Boolean, finite-domains, and sets. B-Prolog provides a state-of-
the-art implementation of tabling, which is useful for certain applications such as
parsing, problem solving, theorem proving, model checking, deductive databases,
and data mining. B-Prolog also provides a high-level and constraint-based graphics
library, called CGLIB.1 The library includes primitives for creating and manipu-
lating graphical objects and a set of constraints that facilitates the specification
of layouts of objects. AR is used to program interactions.

This document explains how to use the B-Prolog system. It consists of the
following two parts.

Part-I: Prolog Programming

1CGLIB, a research prototype, is currently supported only in the Windows version. The
CGLIB user’s manual is provided as a separate volume.
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This part covers the B-Prolog programming environment and all the built-ins
available in B-Prolog. Considerable efforts have been made to make B-Prolog
compliant with the standard. All possible discrepancies are explicitly described in
this manual. In addition to the built-ins in the standard, B-Prolog also supports
the built-ins in Dec-10 Prolog and some new ones such as those on arrays and
hashtables.

This part is kept as compact as possible. The reader is referred to The Prolog
Standard 2 for the details about the built-ins in the standard, and to textbooks
[?, ?, ?, ?] and/or Web pages3 for the basics of constraint logic programming.

Part-II: Agent and Constraint Programming
Prolog adopts a static computation rule that selects subgoals strictly from left to
right. No subgoals can be delayed and no subgoals can be responsive to events.
Prolog-II provides a predicate called freeze [?]. The subgoal freeze(X,p(X)) is
logically equivalent to p(X) but the execution of p(X) is delayed until X is instan-
tiated. B-Prolog provides a more powerful language, called AR, for programming
agents. An agent is a subgoal that can be delayed and can be later activated by
events. Each time an agent is activated, some actions may be executed. Agents
are a more general notion than freeze in Prolog-II and processes in concurrent logic
programming in the sense that agents can be responsive to various kinds of events
including user-defined ones.

A constraint is a relation among variables over some domains. B-Prolog sup-
ports constraints over trees, finite-domains, Boolean, and finite sets. In B-Prolog,
constraint propagation is used to solve constraints. Each constraint is compiled
into one or more agents, called constraint propagators, that are responsible for
maintaining the consistency of the constraint. A constraint propagator is acti-
vated when the domain of any variable in the constraint is updated.

AR a powerful and efficient language for programming constraint propagators,
concurrent agents, event handlers, and interactive user interfaces. AR is unique
to B-Prolog and are thus described in detail in the manual.

B-Prolog provides a declarative interface to linear programming (LP) and
mixed programming (MIP) packages through which LP/MIP problems can be
described in a CLP fashion.
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Chapter 1

Getting Started with B-Prolog

1.1 How to install B-Prolog

1.1.1 Windows

An installer is provided for installing B-Prolog on Windows (9x,Me,2000,NT,XP,and
Vista) automatically. The following instructions guide you to install B-Prolog
manually:

1. Download the file bp71_win.zip and store it in C:\.

2. Extract the files by using winzip or jar in JSDK.

3. Add the path C:\BProlog to the environment variable path. In this way
you can start B-Prolog from any working directory.

Notice that if B-Prolog is installed in a directory other than C:\, you should change
the script file bp.bat in the BProlog directory and the environment variable path

accordingly.

1.1.2 Linux

To install B-Prolog on a Linux machine, follow the following steps:

1. Download the file bp71_linux.tar.gz and store it in your home directory.

2. Uncompress bp71_linux.tar.gz and extract the files by typing

gunzip bp71_linux.tar.gz | tar xfv -

3. Add the following line to the file .cshrc or .bshrc in your home directory:

set path = ($path $HOME/BProlog)

such that you can start B-Prolog from any working directory.

Notice that if B-Prolog is installed in a directory other than your home direc-
tory, you should change the script file bp in the BProlog directory and the path
accordingly.

1



1.1.3 Mac

Follow the installation instructions for Linux.

1.2 How to enter and quit B-Prolog

Just like most Prolog systems, B-Prolog offers you an interactive programming
environment for compiling, loading, debugging and running programs. To enter
the system, open a command window 1 and type the command:

bp

After the system is started, it responds with the prompt |?- and is ready to accept
Prolog queries. The command help shows part of the commands that the system
accepts.

help

To quit the system, use the query:

halt

or simply enter ^D (control-D) when the cursor is located at the beginning of an
empty line.

1.3 Command line arguments

The command bp can be followed by a sequence of arguments:

bp {File |-Name Value}*

An argument can be the name of a binary file to be loaded into the system or a
parameter name followed by a value. The following parameters are supported:

• -s xxx: xxx is the initial amount of words allocated to the stack and the
heap.

• -b xxx: xxx is the initial amount of words allocated to the trail stack.

• -t xxx: xxx is the initial amount of words allocated to the table area.

• -p xxx: xxx is the initial amount of words allocated to the program area.

• -g Goal: Goal is the initial goal to be executed immediately after the system
is started. Example:

bp -g ‘‘writeln(hello)’’

If the goal is made up of several subgoals, then it must be enclosed in a pair
of double quotation marks. Example:

bp -g ‘‘set_prolog_flag(singleton,off),cl(myFile),go’’

1On Windows, select Start->Run and type cmd or select
Start->Programs->accessories->command prompt.
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1.4 The command line editor

The command line editor resides at the top-level of the system accepting queries
from you. A query is a Prolog goal ended with a new line. It is a tradition that
a period is used to terminate a query. In B-Prolog, as no query can expand over
more than one line, the terminating period can be omitted.

The command line editor accepts the following editing commands:
^F Move the cursor one position forward.
^B Move the cursor one position backward.
^A Move the cursor to the beginning of the line.
^E Move the cursor to the end of the line.
^D Delete the character under the cursor.
^H Delete the character to the left of the cursor.
^K Delete the characters to the right of the cursor.
^U Delete the whole line.
^P Load the previous query in the buffer.
^N Load the next query in the buffer.

Notice that as mentioned above the command ^D will halt the system if the line
is empty and the cursor is located in the beginning of the line.

1.5 How to run programs

A program consists of a set of predicates. A predicate is made up of a sequence (not
necessarily consecutive) of clauses whose heads have the same predicate symbol
and the same arity. Each predicate is defined in one module stored in a file unless
it is declared to be dynamic.

The name of a source file or a binary file is an atom. For example, a1, ’A1’, and
’124’ are correct file names. A file name can start with an environment variable
$V or %V% which will be replaced by its value before the file is actually opened. The
file name separator ’/’ should be used. Since ’\’ is used as the escape character
in quoted strings and atoms, two consecutive backslashes constitute a separator
as in ’c:\\work\\myfile.pl’.

Compiling and loading

A program needs be first compiled before being loaded into the system for execu-
tion. To compile a program in a file named fileName, type

compile(fileName).

If the file name has the extension pl, then the extension can be omitted. The
compiled byte-code will be stored in a new file with the same primary name and
the extension out. To have the byte-code stored in a designated file, use

compile(fileName,byteFileName).
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As an extension, compile/1 accepts a list of file names.
To load a compiled byte-code program, type

load(fileName).

To compile and load a program in one step, use

cl(fileName).

As an extension, both load/1 and cl/1 accept a list of file names.
Sometimes, you want to compile a program generated by another program.

You can save the program into a file and then use compile or cl to compile it.
As file input and output take time, the following predicate is provided to compile
a program without saving it into a file:

compile_clauses(L).

where L must be a list of clauses to be compiled.

Consulting

Another way to run a program is to load it directly into the program area without
compilation (called consulting). It is possible to trace the execution of consulted
programs but not compiled ones. To consult a program in a file into the program
area, type

consult(fileName)

or simply

[fileName].

As an extension, both consult/1 and []/1 accept a list of file names.
To see the consulted or dynamically asserted clauses in the program area, use

listing

and to see the clauses defining a predicate Atom/Arity, use

listing(Atom/Arity)

Running programs

After a program is loaded, you can query the program. For each query, the system
executes the program and reports yes when the query succeeds or no when the
query fails. When a query that contains variables succeeds, the system also reports
the bindings for the variables. You can ask the system to find the next solution
by typing ’;’ after a solution. You can terminate the execution by typing ctl-c.

4



Example:

?- member(X,[1,2,3]).

X=1;

X=2;

X=3;

no

The call abort stops the current execution and restores the system to the
top-level.

5



Chapter 2

Programs

This chapter describes the syntax of Prolog. Both programs and data are composed
from terms in Prolog.

2.1 Terms

A term is either a constant, a variable, or a compound term. There are two kinds
of constants: atoms and numbers.

Atoms

Atoms are strings of letters, digits, and underscore marks _ that begin with a
lower-case letter, or strings of any characters enclosed in single quotation marks.
No atom can contain more than 1000 characters. The backslash character ’\’

is used as an escape character. So, the atom ’a\’b’ contains three characters,
namely a, ’, and b.

Numbers

A number is either an integer or a floating-point number. A decimal integer is a
sequence of decimal digits with an optional sign preceding it. The range of integers
is from −227 + 1 = −268435455 to 227 − 1 = 268435455, inclusive.

An integer can be in the radix notation with a base other than 10. In general,
an integer in the radix notation takes the form base’digits where base is a decimal
integer and digits is a sequence of digits. If the base is zero, then the notation
represents the code of the character following the single quotation mark. The
notation “0b” begins a binary integer; “0o” begins an octal integer; and “0x”
begins a decimal integer.

Examples:

• 2’100 : 4 in binary notation.
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• 0b100 : 4 in binary notation.

• 8’73 : 59 in octal notation.

• 0o73 : 59 in octal notation.

• 16’f7: 247 in hexadecimal notation.

• 0xf7: 247 in hexadecimal notation.

• 0’a: the code of ’a’, which is 97.

A floating-point number consists of an integer (optional), then a decimal point
and then another integer followed optionally by an exponent. For example, 23.2,
0.23, 23.0e-10 are valid floating-point numbers.

Variables

Variables look like atoms, except they have names beginning with a capital letter
or an underscore mark. A single underscore mark denotes an anonymous variable.

Compound terms

A compound term is a structure that takes the form of f(t1, . . . , tn) where n is
called the arity, and f called the functor, or function symbol, and t1, . . . , tn are
terms. In B-Prolog, the arity must be greater than 0 and less than 32768. The
terms enclosed in the parentheses are called components of the compound term.

Lists are special structures whose functors are ’.’. The special atom ’[]’

denotes an empty list. The list [H|T] denotes the structure ’.’(H,T).
By detaul, a string is represented as a list of codes of the characters in the

string. For example, the string "abc" is the same as the list [97,98,99]. The
backslash character ’\’ is used as the escape character for strings. So, the string
"a\"c" is the same as [97,34,98] where 34 is the code for the double quotation
mark. The representation of a string is dependent on the flag double quotes (see
5.9).

Arrays and hashtables are also represented as structures. All built-ins on struc-
tures can be also applied to arrays and hashtables. It is suggested, however, that
only primitives on arrays and hashtables be used to manipulate them.

2.2 Programs

A program is a sequence of logical statements, called Horn clauses, of three types:
facts, rules, and directives.
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Facts

A fact is an atomic formula of the form p(t1, t2, . . . , tn) where p is an n-ary predicate
symbol and t1, t2, . . . , tn are terms which are called the arguments of the atomic
formula.

Rules

A rule takes the form of

H :- B1,B2,...,Bn. (n>0)

where H, B1, ..., Bn are atomic formulas. H is called the head and the right
hand side of :- is called the body of the rule. A fact can be considered a special
kind of rule whose body is true.

A predicate is an ordered sequence of clauses whose heads have the same pred-
icate symbol and the same arity.

Directives

A directive gives a query that is to be executed when the program is loaded or
tells the system some pragmatic information about the predicates in the program.
A directive takes the form of

:- B1,B2,...,Bn.

where B1, ..., Bn are atomic formulas.

2.3 Control constructs

In Prolog, backtracking is employed to explore the search space for a query and a
program. Goals in the query are executed from left to right, and the clauses in each
predicate are tried sequentially from the top. A query may succeed, may fail, or
may be terminated because of exceptions. When a query succeeds, the variables in
it may be bound to some terms. The call true always succeeds, and the call fail
always fails. There are several control constructs for controlling backtracking, for
specifying conjunction, negation, disjunction, and if-then-else, and for finding all
solutions.

Cut

Prolog provides an operator, called cut, for controlling backtracking. A cut is
written as ! in programs. A cut in the body of a clause has the effect of removing
the choice points, or alternative clauses, of the goals to the left of it.
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Example:

The query p(X) for the following program only gives one solution p(1). The cut
removes the choice points for p(X) and q(X), and thus no further solution will be
returned when you force backtracking by typing ’;’. Without the cut, the query
p(X) would have three solutions.

p(X):-q(X),!.

p(3).

q(1).

q(2).

When a failure occurs, the execution will backtrack to the latest choice point,
i.e., the latest subgoal that has alternative clauses. There are two non-standard
built-ins, called savecp/1 and cutto/1, which can make the system backtrack to
a choice point deep in the search tree. The call savecp(Cp) binds Cp to the latest
choice point frame, where Cp must be a variable. The call cutto(Cp) discards
all the choice points created after Cp. In other words, the call lets Cp be the
latest choice point. Notice that Cp must be a reference to a choice point set by
savecp(Cp).

Conjunction, disjunction, negation, and if-then-else

The construct (P,Q) denotes conjunction. It succeeds if both P and Q succeed.
The construct (not P) and \+ P denote negation. It succeeds if and only if P

fails. No negation is transparent to cuts. In other words, the cuts in a negation
are effective only in the negation. No cut in a negation can remove choice points
created for the goals to the left of the negation.

The construct (P;Q) denotes disjunction. It succeeds if either P or Q succeeds.
Q is executed only after P fails. Disjunction is transparent to cuts. A cut in P or Q
will remove not only the choice points created for the goals to the left of the cut in
P or Q but also the choice points created for the goals to the left of the disjunction.

The control construct (If->Then;Else) succeeds if (1) If and Then succeed,
or (2) If fails and Else succeeds. If is not transparent to cuts, but Then and
Else are transparent to cuts. The control construct (If->Then) is equivalent to
(If->Then;fail).

repeat/0

The predicate repeat, which is defined as follows, is a built-in predicate that is
often used to express iterations.

repeat.

repeat:-repeat.
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For example, the query

repeat,write(a),fail

repeatedly outputs ’a’s until you type control-c to stop it.

call/1 and once/1

The call(Goal) treats Goal as a subgoal. It is equivalent to Goal. The call
once(Goal) is equivalent to Goal but can only succeed at most once. It is imple-
mented as follows:

once(Goal):-call(Goal),!.

call/2−n (not in ISO)

The call(Goal,A1,...,An) creates a new goal by appending the arguments A1,
. . .,An to the end of the arguments of Goal. For example, call(Goal,A1,A2,A3)
is equivalent to the following:

Goal=..[F|Args],

append(Args,[A1,A2,A3],NewArgs),

NewCall=..[F|NewArgs],

call(NewCall)

When compiled, n can be any positive number less than 216, when interpreted,
however, n cannot be larger than 10.

forall/2 (not in ISO)

The call forall(Generate,Test) succeeds if for every solution of Generate the
condition Test succeeds. This predicate is defined as follows:

forall(Generate, Test) :- \+ (call(Generate), \+ call(Test)).

For example, forall(member(X,[1,2,3]),p(X)).

call cleanup/2 (not in ISO)

The call call cleanup(Call,Cleanup) is equivalent to call(Call) except that
Cleanup is called when Call succeeds determinately (i.e., with no left choice point),
fails, or raises an exception.

time out/3 (not in ISO)

The call time out(Goal, Time, Result) is logically equivalent to once(Goal)

but it imposes a time limit in milliseconds on the evaluation. If Goal is not
finished when Time expires, the evaluation will be aborted and Result will be
unified with the atom time out. If Goal succeeds within the time limit, Result
will be unified with the atom success.
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All solutions

• findall(Term,Goal,List): Succeeds if List is the list of instances of Term
such that Goal succeeds. Example:

?-findall(X,member(X,[(1,a),(2,b),(3,c)]),Xs)

Xs=[(1,a),(2,b),(3,c)]

• bagof(Term,Goal,List): The same as findall(Term,Goal,List) except
for its treatment of free variables that occur in Goal but not in Term. It
will first pick the first tuple of values for the free variables and then use this
tuple to find the list of solutions List of Goal. It enumerates all the tuples
for the free variables. Example:

?-bagof(Y,member((X,Y),[(1,a),(2,b),(3,c)]),Xs)

X=1

Y=[a];

X=2

Y=[b];

X=3

Y=[c];

no

• setof(Term,Goal,List): Like bagof(Term,Goal,List) but the elements
of List are sorted into alphabetical order.

Aggregates

• minof(Goal,Exp) : Find an instance of Goal such that Exp is minimal,
where Exp must be an integer expression.

?-minof(member((X,Y),[(1,3),(3,2),(3,0)]),X+Y)

X=3

Y=0

• maxof(Goal,Exp): Find an instance of Goal such that Exp is maximal, where
Exp must be an integer expression.

?-maxof(member((X,Y),[(1,3),(3,2),(3,0)]),X+Y)

X=3

Y=2
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Chapter 3

Data Types and Built-ins

A data type is a set of values and a set of predicates on the values. The following
depicts the containing relationship of the types available in B-Prolog.

• term

– atom

– number

∗ integer

∗ floating-point number

– variable

– compound term

∗ structure

∗ list

∗ array

∗ hashtable

The B-Prolog system provides a set of built-in predicates for each of the types.
Built-ins cannot be redefined unless the Prolog flag redefine builtin is set to be
on.

3.1 Terms

The built-ins described in this section can be applied to any type of terms.

3.1.1 Type checking

• atom(X): The term X is an atom.

• atomic(X): The term X is an atom or a number.

• float(X): The term X is a floating-point number.
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• real(X): The same as float(X).

• integer(X): The term X is an integer.

• number(X): The term X is a number.

• nonvar(X): The term X is not a variable.

• var(X): The term X is a free variable.

• compound(X): The term X is a compound term. It is true if X is either a
structure or a list.

• ground(X): The term X is ground.

• callable(X): The term X is a callable term, i.e., an atom or a compound
term. No type error will occur in a meta call such as call(X) if X is callable.
Notice that a callable term does not mean that the predicate is defined.

3.1.2 Unification

• X = Y: The terms X and Y are unified.

• X \= Y: The terms X and Y are not unifiable.

• X?=Y: The terms X and Y are unifiable. It is logically equivalent to: not(not(X=Y)).

3.1.3 Term comparison and manipulation

• Term1 == Term2: The terms Term1 and Term2 are strictly identical.

• Term1 \== Term2: The terms Term1 and Term2 are not strictly identical.

• Term1 @=< Term2: The term Term1 precedes or is identical to the term Term2

in the standard order.

• Term1 @> Term2: The term Term1 follows the term Term2 in the standard
order.

• Term1 @>= Term2: The term Term1 follows or is identical to the term Term2

in the standard order.

• Term1 @< Term2: The term Term1 precedes the term Term2 in the standard
order.

• compare(Op,Term1,Term2): Op is the result of comparing the terms Term1

and Term2.

• copy term(Term,CopyOfTerm): CopyOfTerm is an independent copy of Term.

• copy term nat(Term,CopyOfTerm): Same as copy term(Term,CopyOfTerm)

but no attribute is copied for attribued variables.
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• number vars(Term,N0,N):

• numbervars(Term,N0,N): Number the variables in Term by using the in-
tegers starting from N0. N is the next integer available after the term is
numbered. Let N0, N1, ..., N-1 be the sequence of integers. The first variable
is bound to the term $var(N0), the second is bound to $var(N1), and so
on. Different variables receive different numberings and the occurrences of
the same variable all receive the same numbering. (not in ISO).

• unnumber vars(Term1,Term2): Term2 is a copy of Term1 with all numbered
variables $var(N) being replaced by Prolog variables. Different numbered
variables are replaced by different Prolog variables.

Number the variables in Term by using the integers starting from N0. N is the
next integer available after the term is numbered. Let N0, N1, ..., N-1 be the
sequence of integers. The first variable is bound to the term $var(N0), the
second is bound to $var(N1), and so on. Different variables receive different
numberings and the occurrences of the same variable all receive the same
numbering. (not in ISO).

• term variables(Term,Vars):

• vars set(Term,Vars): Vars is a list of variables that occur in Term.

• term variables(Term,Vars,Tail): Difference list version of term variables/2,
i.e. Tail is the tail of the incomplete list Vars.

3.2 Numbers

An arithmetic expression is a term built from numbers, variables, and the arith-
metic functions. An expression must be ground when it is evaluated.

• Exp1 is Exp2: The term Exp2 must be a ground expression and Exp1 must
be either a variable or a ground expression. If Exp1 is a variable, then the call
binds the variable to the result of Exp2. If Exp1 is a non-variable expression,
then the call is equivalent to Exp1 =:= Exp2.

• X =:= Y: The expression X is numerically equal to Y.

• X =\= Y: The expression X is not numerically equal to Y.

• X < Y: The expression X is less than Y.

• X =< Y: The expression X is less than or equal to Y.

• X > Y: The expression X is greater than Y.

• X >= Y: The expression X is greater than or equal to Y.

The following functions are provided:
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• X + Y: addition.

• X - Y: subtraction.

• X * Y: multiplication.

• X / Y: division.

• X // Y: integer division.

• X mod Y: modulo (X-integer(floor(X/Y))*Y).

• X rem Y: remainder (X-(X//Y)*Y).

• X /> Y : integer division (ceiling(X/Y)).

• X /< Y : integer division (floor(X/Y)).

• X ** Y : power.

• -X : sign reversal.

• X >> Y : bit shift right.

• X << Y : bit shift left.

• X /\ Y : bit wise and.

• X \/ Y : bit wise or.

• \ X : bit wise complement.

• abs(X) : absolution value.

• atan(X) : arctangent(argument in radians).

• ceiling(X) : smallest integer not smaller than X.

• cos(X) : cosine (argument is radians).

• exp(X) : natural antilogarithm, eX .

• integer(X) : convert X to integer.

• float(X) : convert X to float.

• float fractional part(X) : float fractional part.

• float integer part(X) : float integer part.

• floor(X) : largest integer not greater than X.

• log(X) : natural logarithm, logeX.
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• log(B,X) : logarithm in the base B, logBX.

• max(X,Y) : the maximum of X and Y (not in ISO).

• max(L) : the maximum of the list of elements L (not in ISO).

• min(X,Y) : the minimum of X and Y (not in ISO).

• min(L) : the minimum of the list of elements L (not in ISO).

• pi : the constant pi (not in ISO).

• random : a random number (not in ISO).

• random(Seed) : a random number generated by using Seed (not in ISO).

• round(X) : integer nearest to X.

• sign(X) : sign (-1 for negative, 0 for zero, and 1 for positive).

• sin(X) : sine (argument in radians).

• sqrt(X) : square root.

• sum(L) : the sum of the list of elements L (not in ISO).

• truncate(X) : integer part of X.

3.3 Lists and structures

• Term =.. List: The functor and arguments of Term comprise the list List.

• append(L1,L2,L): True when L is the concatenation of L1 and L2. (not in
ISO).

• append(L1,L2,L3,L): True when L is the concatenation of L1, L2, and L3.
(not in ISO).

• arg(ArgNo,Term,Arg): The ArgNoth argument of the term Term is Arg.

• functor(Term,Name,Arity): The principal functor of the term Term has
the name Name and arity Arity.

• length(List,Length): The length of list List is Length. (not in ISO).

• membchk(X,L) (not in ISO): True when X is included in the list L. ’==/2’
is used to test whether two terms are the same. (not in ISO).

• member(X,L): True when X is a member of the list L. Instantiates X to dif-
ferent elements in L upon backtracking. (not in ISO).
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• reverse(L1,L2): True when L2 is the reverse of L1. (not in ISO).

• setarg(ArgNo,CompoundTerm,NewArg) (not in ISO): Replaces destructively
the ArgNoth argument of CompoundTerm with NewArg. The update is undone
on backtracking. (not in ISO).

• sort(List1,List2): List2 is a sorted list of List1 in ascending order and
without duplicates. (not in ISO).

• sort(Order,List1,List2): List2 is a sorted list of List1 in the spec-
ified order, where Order is ’¡’,’¿’,’=¡’, or ’¿=’. Duplicates are not elimi-
nated if the specified order is ’=¡’ or ’¿=’. sort(List1,List2) is same as
sort(’<’,List1,List2). (not in ISO).

• keysort(List1,List2): List1 must be a list of pairs each of which takes
the form Key-Value. List2 is a copy of List1 sorted in ascending order by
the key. No duplicates are removed. (not in ISO).

• nextto(X, Y, List) (not in ISO): True if Y follows X in List.

• delete(List1, Elem, List2) (not in ISO): True when Lis1 with all oc-
curences of Elem deleted results in List2.

• select(Elem, List, Rest) (not in ISO): True when List1 with Elem re-
moved results in List2.

• nth0(Index, List, Elem) (not in ISO): True when Elem is the Index’th
element of List, counting starts at 0.

• nth(Index, List, Elem) (not in ISO): nth1(Index, List, Elem) True when
Elem is the Index’th element of List, counting starts at 1.

• last(List, Elem) (not in ISO): True if Last unifies with the last element
of List.

• permutation(List1, List2) (not in ISO): True when Xs is a permutation
of Ys. This can solve for Ys given Xs or Xs given Ys, or even enumerate Xs

and Ys together.

• flatten(List1, List2) (not in ISO): True when Lis2 is a non nested
version of List1.

• sumlist(List, Sum) (not in ISO): Sum is the result of adding all numbers
in List.

• numlist(Low, High, List) (not in ISO): List is a list [Low, Low+1, ...

High].

• and to list(Tuple,List) (not in ISO): Let Tuple be (e1, e2, ..., en). List
is [[e1, e2, ..., en].
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• list to and(List,Tuple) (not in ISO): Let List be [[e1, e2, ..., en]. Tuple

is (e1, e2, ..., en). List must be a complete list.

3.4 Set manipulation (not in ISO)

• is set(Set): True if Set is a proper list without duplicates.

• eliminate duplicate(List, Set): True when Set has the same element
as List in the same order. The left-most copy of the duplicate is retained.

• intersection(Set1, Set2, Set3): True if Set3 unifies with the intersec-
tion of Set1 and Set2.

• union(Set1, Set2, Set3): True if Set3 unifies with the union of Set1 and
Set2.

• subset(SubSet, Set): True if all elements of SubSet belong to Set as well.

• subtract(Set, Delete, Result): Delete all elements from Set that occur
in Delete (a set) and unify the result with Result’

3.5 Arrays (not in ISO)

An array is a collection of elements. As array elements can be arrays, arrays can be
multi-dimensional. Arrays are created by the built-in predicate new array(X,Ranges)

where X must be an uninstantiated variable and Ranges must be a list of positive
integers. Let Ranges be [N1,...,Nn]. Then, N1 is the size of the first dimen-
sion, N2 is the size of the second dimension, and so on. For example, the call
new array(X,[10,20]) binds X to a two dimensional array where the first dimen-
sion has 10 elements and the second dimension has 20 elements. The 200 array
elements are free variables when the array is created.

The operator @= is provided for initializing and accessing arrays. The call
A^[I] @= Elm unifies the Ith element of A with Elm. The index I must be an
expression whose value is from 1 to the size of the array. A type exception will be
raised if A is not an array. This notation extends to multi-dimensional arrays. In
general, the call A^[I1,...,In] @= Elm is equivalent to:

A^[I1] @= T, T^[I2,...,In] @= Elm

The operator @= can also be used to initialize arrays. For example,

new_array(X,[3]), X @= [1,2,3]

creates a one-dimensional array with three integers 1, 2, and 3, and the following

new_array(X,[2,2]), X @= [[1,2],[3,4]]

creates a two-dimensional array with four integers. Notice that lists or lists of lists
are not treated as arrays in other contexts.
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• new array(X,Ranges): X is an array whose dimension sizes are specified by
Ranges.

• X^length @= Length: The length of the array X is Length. If X is a multi-
dimensional array, then Length is the size of the first dimension.

• X^dimension @= Dim: Dim is the dimension of X.

• X^rows @= Rows: Rows is a list of rows in the array X. The dimension of X
must be no less than 2.

• X^columns @= Cols: Cols is a list of columns in the array X. The dimension
of X must be no less than 2.

• X^diagonal1 @= Diag: Diag is a list of elements in the left-up-diagonal
(elements Xn1,...,X1n) of array X, where the dimension of X must be 2 and
the number of rows and the number of columns must be equal.

• X^diagonal2 @= Diag: Diag is a list of elements in the left-down-diagonal
(elements X11,...,Xnn) of array X, where the dimension of X must be 2 and
the number of rows and the number of columns must be equal.

• is array(A): Succeeds if A is an array.

• X^Indexes @= Elm: The element at Indexes of the array X is Elm. Indexes
must be a list of integers [I1,I2,...,In] where Ii must be an integer in
the range from 1 to the size of the corresponding dimension. Notice that
indexes start from 1, which is different from in many other languages.

• X^Indexes @:= Elm: Destructively replace the element at Indexes of the
array X by Elm. The update is undone upon backtracking.

• array to list(X,List): The term List is a list of all elements in array
X. Suppose X is an n dimensional array and the sizes of the dimensions are
N1, N2, ..., and Nn. Then List contains the elements with indexes from
[1,...,1], [1,...,2], to [N1,N2,...,Nn].

3.6 Hashtables (not in ISO)

• new hashtable(T): Create a hashtable T with 7 bucket slots.

• new hashtable(T,N): Create a hashtable T with N bucket slots. N must be
a positive integer.

• is hashtable(T): T is a hashtable.

• hashtable get(T,Key,Value): Get Value that has the key Key from hashtable
T. Fail if no such a value exists.
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• hashtable register(T,Key,Value): Get Value with Key from hashtable
T. Put the value under Key into the table if not found.

• hashtable size(T,Size): The size of hashtable T, i.e., the number of bucket
slots, is Size.

• hash code(Term,Code): The hash code of Term is Code.

• hashtable to list(T,List): List is the list of key and value pairs in
hashtable T.

• hashtable keys to list(T,List): List is the list of keys of the elements
in hashtable T.

• hashtable values to list(T,List): List is the list of values of the ele-
ments in hashtable T.

3.7 Character-string operations

• atom chars(Atom,Chars): Chars is the list of characters of Atom.

• atom codes(Atom,Codes): Codes is the list of numeric codes of the charac-
ters of Atom.

• atom concat(Atom1,Atom2,Atom3): The concatenation of Atom1 and Atom2

is equal to Atom3. Either both Atom1 and Atom2 are atoms or Atom3 is an
atom.

• atom length(Atom,Length): Length (in characters) of Atom is Length.

• char code(Char,Code): The numeric code of the character Char is Code.

• number chars(Num,Chars): Chars is the list of digits (including ’.’) of the
number Num.

• number codes(Num,Codes): Codes is the list of numeric codes of digits of
the number Num.

• sub atom(Atom,PreLen,Len,PostLen,Sub): The atom Atom is divided into
three parts, Pre, Sub, and Post with respective lengths of PreLen, Len, and
PostLen.

• name(Const,CharList) (not in ISO): The name of atom or number Const
is the string CharList. (not in ISO).

• parse atom(Atom,Term,Vars) (not in ISO): Convert Atom to Term where
Vars is a list of elements in the form (VarName=Var). It fails if Atom is not
syntactically correct. Examples:
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| ?- parse_atom(’X is 1+1’,Term,Vars)

Vars = [X=_8c019c]

Term = _8c019c is 1+1?

| ?- parse_atom(’p(X,Y),q(Y,Z)’,Term,Vars)

Vars = [Z=_8c01d8,Y=_8c01d4,X=_8c01d0]

Term = p(_8c01d0,_8c01d4),q(_8c01d4,_8c01d8)?

| ?- parse_atom(’ a b c’,Term,Vars)

*** syntax error ***

a <<here>> b c

no

(not in ISO).

• parse atom(Atom,Term) (not in ISO): Equivalent to parse atom(Atom,Term, )

• parse string(String,Term,Vars) (not in ISO): Similar to parse atom but
the first argument is a list of codes. Example:

| ?- name(’X is 1+1’,String),parse_string(String,Term,Vars)

Vars = [X=_8c0294]

Term = _8c0294 is 1+1

String = [88,32,105,115,32,49,43,49]?

(not in ISO).

• parse string(String,Term) (not in ISO): Equivalent to parse string(String,Term, ).

• term2atom(Term,Atom) (not in ISO): Atom is an atom that encodes Term.
Example:

| ?- term2atom(f(X,Y,X),S),writeq(S),nl.

’f(_9250158,_9250188,_9250158)’

S=f(_9250158,_9250188,_9250158)

(not in ISO).

• term2string(Term,String) (not in ISO): Equivalent to:

term2atom(Term,Atom),atom_codes(Atom,String)

(not in ISO).

• write string(String) (not in ISO): Write the list of codes String as a
readable string. For example, write string([97,98,99]) outputs "abc".
(not in ISO).
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Chapter 4

Exception Handling

4.1 Exceptions

In addition to success and failure, a program may give an exception that is thrown
explicitly by a call of throw/2 or raised by a built-in or caused by your typing of
control-c. An exception raised by a built-in is an one-argument structure where
the functor tells the type and the argument tells the source of the exception.1

The following lists some of the exceptions:

• divide by zero(Goal): Goal divides a number by zero.

• file not found(Goal): Goal tries to open a file that does not exist.

• illegal arguments(Goal): Goal has an illegal argument.

• number expected(Goal): Goal evaluates an invalid expression.

• out of range(Goal): Goal tries to access an element of a structure or an
array using an index that is out of range.

The exception caused by the typing of control-c is an atom named interrupt.
An exception that is not caught by your program will be handled by the system.

The system reports the type and the source of the exception, and aborts execution
of the query. For example, for the query a=:=1, the system will report:

*** error(type_error(evaluable,a/0),=:=/2)

where evaluable is the type and =:=/2 is the source.

4.2 throw/1

A user’s program can throw exceptions too. The call throw(E) raises an exception
E to be caught and handled by some ancestor catcher or handler. If there is no
catcher available in the chain of ancestor calls, the system will handle it.

1In version 6.9 and later, exceptions raised by ISO built-ins comply with the standard. An
exception is a term in the form error(Type,Source) where Type is an error type and Source is
the source predicate of the error.
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4.3 catch/3

All exceptions including those raised by built-ins and interruptions can be caught
by catchers. A catcher is a call in the form:

catch(Goal,ExceptionPattern,Recovergoal)

which is equivalent to Goal except when an exception is raised during the ex-
ecution of Goal that unifies ExceptionPattern. When such an exception is
raised, all the bindings that have been performed on variables in Goal will be
undone and Recovergoal will be executed to handle the exception. Notice that
ExceptionPattern is unified with a renamed copy of the exception before Recovergoal
is executed. Notice also that only exceptions that are raised by a descendant call
of Goal can be caught.

Examples:

• q(X), which is defined in the following, is equivalent to p(X) but all inter-
ruptions are ignored.

q(X):-catch(p(X),interrupt,q(X)).

• The query catch(p(X),undefined predicate( ),fail) fails p(X) if an un-
defined predicate is called during its execution.

• The query catch(q,C,write(hello q)), where q is defined in the following,
succeeds with the unifier C=c and the message hello q.

q :- r(c).

r(X) :- throw(X).

• The query catch(p(X),E,p(X)==E) for the following program fails because
E is unified with a renamed copy of p(X) rather than p(X) itself.

p(X):-throw(p(X)).
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Chapter 5

Directives and Prolog Flags

Directives inform the compiler or interpreter of some information about the pred-
icates in a program1.

5.1 Mode declaration

For Edinburgh style programs, you can provide the compiler with modes to help
it generate efficient code. The mode of a predicate p indicates how the arguments
of any call to p are instantiated just before the call is evaluated. The mode of a
predicate p of n arguments is declared as

:-mode p(M1,...,Mn).

where Mi is c (or +), f (or -), nv, d (or ?), or a structured mode. The mode c means
a closed term that cannot be changed by the predicate; f means a free variable; nv
means a non-variable term; and d means a don’t-know term. The structured mode
l(M1,M2) means a list whose head and tail have modes M1 and M2 respectively;
the structured mode s(M1,..., Mn) means a compound term whose arguments
have modes M1, ..., and Mn respectively.

You must declare correct modes. Wrong mode declarations can be a source
of vague bugs., e.g., causing interpreted and compiled programs to give different
results.

5.2 include/1

The directive

:-include(File).

1The directives discontiguous/1 and char conversion/2 in ISO-Prolog are not supported
currently. A clause in the form :-Goal, where Goal is none of the directives described here,
specifies a query to be executed after the program is loaded or consulted. For example, the clause
:-op(Priority,Specifier,Atom) will invoke the built-in predicate op/3 and change the atom
Atom into an operator with properties as specified by Specifier and Priority.
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will be replaced by the directives and clauses in File which must be a valid Prolog
text file. The extension name can be omitted if it is pl.

5.3 Initialization

The directive

:-initialization(Goal).

is equivalent to:

:-Goal.

unless Goal is a directive. It specifies that as soon as the program is loaded or
consulted, the goal Goal is to be executed.

5.4 Dynamic declaration

A predicate is either static or dynamic. Static predicates cannot be updated during
execution. Dynamic predicates are stored in consulted form, and can be updated
during execution. Predicates are assumed to be static unless they are explicitly
declared to be dynamic. To declare predicates to be dynamic, use the following
declaration:

:-dynamic Atom/Arity,...,Atom/Arity.

5.5 multifile/1

To inform the system that the definition of a predicate F/N can occur in multiple
files, use the following declaration:

:-multifile F/N.

Such a declaration must occur before any clause that defines the predicate F/N in
every file. Notice that if a predicate is declared multifile, it will be treated as
dynamic and its definition is never initialized when a file is loaded.

5.6 Tabled predicate declaration

A tabled predicate is a predicate for which answers will be memorized in a table
and variant calls of the predicate will be resolved by using the answers. The
declaration,

:-table P1/N1, ..., Pk/Nk.

declares that the predicates Pi/Ni (i=1,...,k) are tabled predicates.
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5.7 Table mode declaration

The declaration,

:-table p(M1,...,Mn):N.

declares that up to N answers to p/n are selectively tabled based on the mode, where
Mi can be min, max, + (input), or - (output). Only input arguments participate
in variant testing and only one argument can be minimized or maximized. An
optimized argument is not required to be numeral.

5.8 Table strategy declaration

The declaration

:-eager_consume P/N.

changes the strategy to eager for P/N and the declaration

:-eager_consume.

changes the strategy to eager for all the predicates in the program. See Chapter
14 for the details.

5.9 Prolog flags

A flag is an atom with an associated value. The following flags are supported
currently:

• debug: Turn on or off the debugger.

• double quotes: Possible values are chars, codes, and atom, and the default
is codes. If the value is codes, then a string is represented as a list of codes;
if chars, then a string is represented as a list of characters; and if atom, then
a string is represented as an atom.

• gc: Turn on or off the garbage collector (see Garbage collection).

• gc threshold: Set a new threshold constant (see Garbage collection).

• macro expansion: Possible values are on and off, and the default value
is on. Macroes (predicates defined with single clauses) in a program are
expanded when compiled if this flag is on.

• max arity: The maximum arity of structures (65535).

• max integer: The maximum integer (268435455).

• min integer: The minimum integer (-268435456).
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• redefine builtin: The flag value can either on or off. If it is on, then
built-in predicates can be redefined; otherwise, cannot. The default value is
off.

• singleton: This flag governs whether or not warning messages about single-
ton variables will be emitted. The value is either on or off, and the default
value is on.

• unknown: The value is either fail, meaning that calls to undefined predicates
will be treated as failure, or error, meaning that an exception will be raised.
The default value for the flag is error.

You can change the value of a flag to affect the behavior of the system and
access the current value of a flag.

• set prolog flag(Flag,Value): Set value of Flag to be Value.

• current prolog flag(Flag,Value): Value is the current value of Flag.
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Chapter 6

Debugging

6.1 Execution modes

There are two execution modes: usual mode and debugging mode. The query

trace

switches the execution mode to the debugging mode, and the query

notrace

switches the execution mode back to the usual mode. In debugging mode, the
execution of asserted and consulted clauses can be traced. To trace part of the
execution of a program, use spy to set spy points.

spy(Atom/Arity).

The spy points can be removed by

nospy

To remove only one spy point, use

nospy(Atom/Arity)

6.2 Debugging commands

In debugging mode, the system displays a message when a predicate is entered
(Call), exited (Exit), reentered (Redo) or has failed (Fail). After a predicate is
entered or reentered, the system waits for a command from you. A command is
a single letter followed by a carriage-return, or may simply be a carriage-return.
The following commands are available:

• RET - This command causes the system to display a message at each step.

• c(reep) - the same as a carriage-return RET.

28



• l(eap) - causes the system to run in usual mode until a spy-point is reached.

• s(kip) - causes the system to run in usual mode until the predicate is finished
(Exit or Fail).

• r(epeat creep) - causes the system to creep without asking for further com-
mands from you.

• a(bort) - causes the system to abort execution.

• h(elp) or ? - causes the system to display available commands and their
meaning.
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Chapter 7

Input and Output

There are two groups of file manipulation predicates in B-Prolog. One group
includes all input/output predicates described in the ISO draft for Prolog and the
other group is inherited from DEC-10 Prolog. The latter is implemented by using
the predicates in the former group.

7.1 Stream

A stream is a connection to a file. Your terminal is treated as a special file. A
stream can be referred to by a stream identifier or its aliases. By default, the
streams user input and user output are already open, referring to the standard
input (keyboard) and the standard output (screen) respectively.

• open(FileName,Mode,Stream,Options):

• open(FileName,Mode,Stream): Opens a file for input or output as in-
dicated by I/O mode Mode and the list of stream-options Options. If it
succeeds in opening the file, it unifies Stream with the stream identifier of
the associated stream. If FileName is already opened, this predicate unifies
Stream with the stream identifier already associated with the opened stream,
but does not affect the contents of the file.

An I/O mode is one of the following atoms:

– read - Input. FileName must be the name of a file that already exists.

– write - Output. If the file identified by FileName already exists, then
the file is emptied; otherwise, a file with the name FileName is created.

– append - Output. Similar to write except that the contents of a file
will not be lost if it already exists.

The list of stream-options is optional and can be empty or a list that includes1:

1The option reposition(true) in ISO-Prolog is not supported currently.
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– type(text) or type(binary). The default is type(text). This option
does not have any effect on file manipulations.

– alias(Atom). Gives the stream the name Atom. A stream-alias can
appear anywhere a stream can occur. A stream can be given multiple
names, but an atom cannot be used as the name of more than one
stream.

– eof action(Atom). Specifies what to do upon repeated attempts to
read past the end of the file. Atom can be2:

∗ error - raises an error condition.

∗ eof code (the default)- makes each attempt return the same code
that the first one did (-1 or end of file).

• close(Stream,Options):

• close(Stream): Closes a stream identified by Stream, a stream identifier
or a stream alias. The Options can include:

– force(false) - raises an error condition if an error occurs while closing
the stream.

– force(true) - succeeds in any case.

• stream property(Stream,Property): It is true if the stream identified by
the stream identifier or stream alias Stream has a stream property Property.
Property may be one of the following3:

– file name(Name) - the file name.

– mode(M) - input or output.

– alias(A) - A is the stream’s alias if any.

– end of stream(E) - where E is at, past or no, indicating whether read-
ing has just reached the end of file, has gone past it or has not reached
it.

– eof action(A) - action taken upon reading past the end of file.

– type(T) - T is the type of the file.

• current input(Stream): It is true if the stream identifier or stream alias
Stream identifies the current input stream.

• current output(Stream): It is true if the stream identifier or stream alias
Stream identifies the current output stream.

• set input(Stream): Sets the stream identified by Stream to be the current
input stream.

2the option eof action(reset) in ISO-Prolog is not supported currently.
3position(P) and reposition(B) in ISO-Prolog are not supported currently.
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• set output(Stream): Sets the stream identified by Stream to be the current
output stream.

• flush output: Sends any output which is buffered for the current output
stream to that stream.

• flush output(Stream): Sends any output which is buffered for the stream
identified by Stream to the stream.

• at end of stream: It is true if reading the current input stream has reached
the end of file or is past the end of file.

• at end of stream(Stream): It is true if reading the input stream Stream

has reached the end of file or is past the end of file.

7.2 Character input/output

• get char(Stream,Char): Inputs a character (if Stream is a text stream) or
a byte (if Stream is a binary stream) from the stream Stream and unifies it
with Char. After reaching the end of file, it unifies Char with end of file.

• get char(Char): The same as the previous one except that the current input
stream is used.

• peek char(Stream,Char): The current character in Stream is Char. The
position pointer of Stream remains the same after this operation.

• peek char(Char): The same as peek char(Stream,Char) except that the
current input stream is used.

• put char(Stream,Char): Outputs the character Char to the stream Stream.

• put char(Char): Outputs the character Char to the current output stream.

• nl(Stream): Outputs the new line character to the stream Stream.

• nl: Outputs the new line character to the current output stream.

• readLine(X): The call readLine(X) reads a line from the current input
stream as character codes. Normally, the last character code is the end-of-
line code (i.e., 10). After the end of the stream has been reached, X will be
bound to []. (not in ISO).

• readFile(Name,Content): Reads a text file and binds Content to the list
of character codes in the file. (not in ISO).
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7.3 Character code input/output

• get code(Stream,Code): Inputs a byte from Stream and unifies Code with
the byte. After reaching the end of file, it unifies Code with -1.

• get code(Code): The same as the previous one except that the current input
stream is used.

• peek code(Stream,Code): The current code in Stream is Code. The postion
pointer of Stream remains the same after this operation.

• peek code(Code): The same as

• peek code(Stream,Code) except that the current input stream is used.

• put code(Stream,Code): Outputs a byte Code to the stream Stream.

• put code(Code): Outputs a byte Code to the current output stream.

7.4 Byte input/output

• get byte(Stream,Byte): Inputs a byte from Stream and unifies Byte with
the byte. After reaching the end of file, it unifies Byte with -1.

• get byte(Byte): The same as the previous one except that the current input
stream is used.

• peek byte(Stream,Byte): The current byte in Stream is Byte. The postion
pointer of Stream remains the same after this operation.

• peek byte(Byte): The same as

• peek byte(Stream,Byte) except that the current input stream is used.

• put byte(Stream,Byte): Outputs a byte Byte to the stream Stream.

• put byte(Byte): Outputs a byte Byte to the current output stream.

7.5 Term input/output

These predicates4 enable a Prolog term to be input from, or to be output to a
stream. A term to be input must be followed by a period and then by white space.

• read term(Stream,Term,Options): Inputs a term Term from the stream
Stream using options Options. After reaching the end of file, it unifies Term
with end of file. The Options is a list of options that can include:

4The predicates char conversion/2 and current char conversion/2 in ISO-Prolog are not
provided currently.
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– variables(V list) After reading a term, V list will be unified with
the list of variables that occur in the term.

– variable names(VN list) After reading a term, VN list will be uni-
fied with a list of elements in the form of N = V where V is a variable
occurring in the term and N is the name of V.

– singletons(VS list) After reading a term, VS list will be unified
with a list of elements in the form N = V where V is a singleton variable
in Term and N is its name.

• read term(Term,Options): The same as the previous one except that the
current input stream is used.

• read(Stream,Term): Equivalent to: read term(Stream,Term),[]).

• read(Term): Equivalent to: read term(Term,[]).

• write term(Stream,Term,Options): Outputs a term Term into a stream
Stream using the option list Options. The list of options Options can
include5:

– quoted(Bool) - When Bool is true each atom and functor is quoted
such that the term can be read by read/1.

– ignore ops(Bool) - When Bool is true each compound term is output
in functional notation, i.e., in the form of f(A1,...,An) where f is the
functor and Ai (i=1,...,n) are arguments.

• write term(Term,Options): The same as the previous one except that the
current output stream is used.

• write(Stream,Term): Equivalent to: write term(Stream,Term,[]).

• write(Term): Equivalent to:

current_output(Stream),write(Stream,Term).

• write canonical(Stream,Term): Equivalent to:

write_term(Stream,Term,[quoted(true),ignore_ops(true)]).

• write canonical(Term): Equivalent to:

current_output(Stream),write_canonical(Stream,Term).

• writeq(Stream,Term): Equivalent to:

write_term(Stream,Term,[quoted(true)]).

5The option numbervars(Bool) in ISO-Prolog is not supported currently.
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• writeq(Term): Equivalent to:

current_output(Stream),writeq(Stream,Term).

• portray clause(Clause):

• portray clause(Stream,Clause): Write Clause after the variables in it
are numbered and with the body indented, same as in listing.

• op(Priority,Specifier,Name): Makes atom Name an operator of type
Specifier and priority Priority6. Specifier specifies the class (prefix,
infix or postfix) and the associativity, which can be:

– fx - prefix, non-associative.

– fy - prefix, right-associative.

– xfx - infix, non-associative.

– xfy - infix, right-associative.

– yfx - infix, left-associative.

– xf - postfix, non-associative.

– yf - postfix, left-associative.

The priority of an operator is an integer greater than 0 and less than 1201.
The lower the priority, the stronger the operator binds its operands.

• current op(Priority,Specifier,Operator): It is true if Operator is an
operator with properties defined by a specifier Specifier and precedence
Priority.

7.6 Input/output of DEC-10 Prolog (not in ISO)

This section describes the built-in predicates for file manipulation inherited from
DEC-10 Prolog. These predicates refer to streams by file names. The atom user

is a reference to both the standard input and standard output streams.

• see(FileName): Makes the file FileName the current input stream. It is
equivalent to:

open(FileName,read,Stream),set_input(Stream).

• seeing(File): The current input stream is named FileName. It is equiva-
lent to:

current_input(Stream),stream_property(Stream,file_name(FileName)).

6The predefined operator ’,’ can not be altered.
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• seen: Closes the current input stream. It is equivalent to:

current_input(Stream),close(Stream).

• tell(FileName): Makes the file FileName the current output stream. It is
equivalent to:

open(FileName,write,Stream),set_output(Stream).

• telling(FileName): The current output stream is named FileName. It is
equivalent to:

current_output(Stream),

stream_property(Stream,file_name(FileName).

• told: Closes the current output stream. It is equivalent to:

current_output(Stream),close(Stream).

• get(Code): Code is the next printable byte code in the current input stream.

• get0(Code): Code is the next byte code in the current input stream.

• put(Code): Output the character to the current output stream, whose code
is Code.

• tab(N): Outputs N spaces to the current output stream.

• exists(F): Succeeds if the file F exists.

7.7 Formatted output of terms (not in ISO)

The predicate format(Format,L), which mimics the printf function in C, prints
the elements in the list L under the control of Format, a string of characters. There
are two kinds of characters in Format: normal characters are output verbatim, and
control characters formats the elements in L. Control characters all start with ~.
For example,

format("~thello~t world~t~a~t~4c~t~4d~t~7f",[atom,0’x,123,12.3])

give the following output:

hello world atom xxxx 123 12.300000

The control characters ~a, ~4c,~4d, and ~7f control the output of the atom atom,
character 0’x, integer 123, and float 12.3, respectively. The control characters ~t
put the data into different columns.
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• format(Format,L): Output the arguments in the list L under the control of
Format.

• format(Stream,Format,L): The same as format(Format,L) but it sends
output to Stream.

The following control characters are supported:

• ~~: Print ~.

• ~N|: Specifies a new position for the next argument.

• ~N+: The same as ~N|.

• ~a: print the atom without quoting. Exception is raised if the argument is
not an atom.

• ~Nc: The argument must be a character code. Output the argument N times.
Output the argument once if N is missing.

• ~Nf,~Ne, ~Ng: The argument must be a number. The C function printf is
called to print the argument with the format "%.Nf", "%.Ne", and "%.Ng",
respectively. ".N’’ does not occur in the format for the C function if N is
not specified in the Prolog format.

• ~Nd: The argument must be a number. N specifies the width of the argument.
If the argument occupies more than N spaces, then enough spaces are filled
to the left of the number.

• ~Ns: The argument must be a list of character codes. Exactly N characters
will be printed. Spaces are filled to the right of the string if the length of the
string is less than N.

• ~k: Pass the argument to write canonical/1.

• ~p: Pass the argument to print/1.

• ~q: Pass the argument to writeq/1.

• ~w: Pass the argument to write/1.

• ~Nn: Print N new lines.

• ~t: Move the position to the next column. Each column is assumed to be 8
characters long.

• ~@: Interpret the next argument as a goal and execute it.
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Chapter 8

Dynamic Clauses and Global
Variables

This chapter describes predicates for manipulating dynamic clauses.

8.1 Predicates of ISO-Prolog

• asserta(Clause): Asserts Clause as the first clause in its predicate.

• assertz(Clause): Asserts Clause as the last clause in its predicate.

• assert(Clause): The same as assertz(Clause)

• retract(Clause): Removes from the predicate a clause that unifies Clause.
Upon backtracking, removes the next unifiable clause.

• retractall(Clause): Removes from the predicate all clauses that unify
Clause.

• abolish(Functor/Arity): Completely removes the dynamic predicate iden-
tified by Functor/Arity from the program area.

• clause(Head,Body): It is true if Head and Body unify with the head and
the body of a dynamically asserted (or consulted) clause. The body of a fact
is true. Gives multiple solutions upon backtracking.

8.2 Predicates of DEC-10 Prolog (not in ISO)

• abolish: Removes all the dynamic predicates from the program area.

• recorda(Key,Term,Ref): Makes the term Term the first record under the
key Key with a unique identifier Ref.

• recorded(Key,Term,Ref): The term Term is currently recorded under the
key Key with a unique identifier Ref.
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• recordz(Key,Term,Ref): Makes the term Term the last record under the
key Key with a unique identifier Ref.

• erase(Ref): Erases the record whose unique identifier is Ref.

8.3 Global variables (not in ISO)

A global variable has a name F/N and a value associated with it. A name cannot
be used at the same time as both a global variable name and a predicate name.

• global set(F,N,Value): Set the value of the global variable F/N to Value.
After this call, the name F/N becomes a global variable. If the name F/N was
used as a predicate name, then all the information about the predicate will
be erased.

• global set(F,Value): Equivalent to global set(F,0,Value).

• global get(F,N,Value): The value associated with the global variable F/N

is Value. If F/N is not a global variable, then the call fails.

• global get(F,Value): Equivalent to global get(F,0,Value).

• is global(F,N): Test if F/N is a global variable.

• is global(F): Equivalent to is global(F,0).

8.4 Properties

• predefined(F,N) (not in ISO): The predicate F/N is a built-in.

• predicate property(Head, Property): The predicate referred to by Head

has the property Property, which is dynamic, compiled, defined in c, or
interpreted. A predicate has the property static if it is not dynamic. A
predicate has the property built in if it is predefined.

• current predicate(Functor/Arity): It is true if Functor/Arity identifies
a defined predicate, whether static or dynamic, in the program area. Gives
multiple solutions upon backtracking.

8.5 Global heap variables (not in ISO)

A global heap variable has a name (a non-variable term) and a value associated
with it. Unlike a normal global variable, a global heap variable is stored on the
heap, not in the code area, and updates on global heap variables are undone
automatically upon backtracking and a global heap variable itself is gone once
execution backtracks over the point where it was created.
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• global heap set(Name,Value): Set the value of the global heap variable
Name to Value. This action is undone upon backtracking.

• global heap get(Name,Value): The value associated with the global heap
variable Name is Value. If Name is not a global heap variable, then a global
heap variable with the name Name is created with the initial value Value.

• is global heap(Name): Test if Name is a global heap variable.
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Chapter 9

Memory Management and
Garbage Collection

In the ATOAM, there are five data areas: program area, heap, control stack, trail
stack, and table area. The program area contains, besides programs, a symbol
table that stores information about the atoms, functions and predicate symbols in
the programs. The heap stores terms created during execution. The control stack
stores activation frames associated with predicate calls. The trail stack stores
updates of those words that must be unbound upon backtracking. The tail area is
used to store tabled subgoals and their answers.

9.1 Memory allocation

The shell file bp specifies the sizes (number of words) for the data areas. Initially,
the following values are given:

set PAREA=2000000

set STACK=2000000

set TRAIL=1000000

set TABLE=20000

The PAREA is the size for the program area, STACK is the total size for the control
stack and the heap, TRAIL is the size for the trail stack, and TABLE is the size for
the table area. You can freely update these values. You can check the current
memory consumption by using statistics/0 or statistics/2.

You can modify the shell script file to increase or decrease the amounts. You
can also specify the amount of space allocated to a stack when starting the system.
For example,

bp -s 4000000

allocates 4M words, i.e., 16M bytes, to the control stack. You can use the parame-
ter ’-b’ to specify the amount allocated to the trail stack, ’-p’ to the program area,
and ’-t’ to the table area. The stacks and data areas expand automatically.
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9.2 Garbage collection

B-Prolog incorporates an incremental garbage collector for the control stack and
the heap. The garbage collector is active by default. You can disenable it by
setting the Prolog flag gc to off:

set_prolog_flag(gc,off)

The garbage collector is invoked automatically to reclaim the space taken by
garbage in the top-most segment when the top of the heap or the top of the
stack hits the current water mark. The water mark is updated each time a non-
determinate predicate is called, and you have control over where the water mark
is set by changing the Prolog flag gc threshold. Let H be the current top of the
heap, Havail be the amount of available space on the heap, and C be the current
threshold. The water mark is set to:

water mark = H +
Havail

C

In general, the bigger the threshold C is, the more frequently garbage collection
is performed. The threshold constant C is set to be 1000 by default.

You can start the garbage collector explicitly by calling the following built-in
predicate:

garbage_collect

and can check the number of garbage collections that have been performed since
the system was started by using statistics/0 or statistics/2.
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Chapter 10

Matching Clauses

Matching clauses form a language for writing determinate Prolog programs. A
matching clause takes the following form:

H, G => B

or alternatively

H :- G : B

where H is an atomic formula, G and B are two sequences of atomic formulas. H is
called the head, G the guard, and B the body of the clause. No call in G can bind
variables in H and all calls in G must be in-line tests. In other words, the guard
must be flat. The following types of predicates can occur in G:

• Type checking

– integer(X), real(X), float(X), number(X), var(X), nonvar(X), atom(X),
atomic(X): X must be a variable that occurs before in either the head
or some other call in the guard.

• Matching

– X=Y: One of the arguments must be a non-variable term and the other
must be a variable that occurs before. The non-variable term serves as
a pattern and the variable refers to an object to be matched against the
pattern. This call succeeds when the pattern and the object become
identical after a substitution is applied to the pattern. For instance, the
call f(X)=Y in a guard succeeds when Y is a structure whose functor is
f/1.

• Term inspection

– functor(T,F,N): T must be a variable that occurs before. The call
succeeds if the T’s functor is F/N. F can be either an atom or a variable.
If F is not a first-occurrence variable, then the call is equivalent to
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functor(T,F1,N),F1==F. Similarly, N can be either an integer or a
variable. If N is not a first-occurrence variable, then the call is equivalent
to functor(T,F,N1),N1==N.

– arg(N,T,A): T must be a variable that occurs before and N must be
an integer that is in the range of 1 and the arity of T, inclusive. If
A is a first-occurrence variable, the call succeeds and binds A to the
Nth argument of T. If A is a variable that occurs before, the call is
equivalent to arg(N,T,A1),A1==A. If A is a non-variable term, then the
call is equivalent to arg(N,T,A1),A1=A where A is a pattern and A1 is
an object to be matched against A.

– T1 == T2: T1 and T2 are identical terms.

– T1 \== T2: T1 and T2 are not identical terms.

• Arithmetic comparisons

– E1 =:= E2,E1 =\= E2, E1 > E2, E1 >= E2, E1 < E2, E1 =< E2: E1

and E2 must be ground expressions.

For a call C, matching rather than unification is used to select a matching clause
in its predicate. The matching clause ’H, G => B’ is applicable to C if C matches H
(i.e., C and H become identical after a substitution is applied to H) and G succeeds.
When applying the matching clause to C, the system rewrites C into B.

Example:

membchk(X,[X|_]) => true.

membchk(X,[_|Ys]) => membchk(X,Ys).

This predicate checks whether or not an element given as the first argument
occurs in a list given as the second argument. The head of the first clause
membchk(X,[X| ]) matches any call whose first argument is identical to the first el-
ement of the list. For instances, the calls membchk(a,[a]) and membchk(X,[X,Y])

succeed, and the calls membchk(a,Xs), membchk(a,[X]) and membchk(X,[a]) fail.

Example:

append([],Ys,Zs) => Zs=Xs.

append([X|Xs],Ys,Zs) => Zs=[X|Zs1],append(Xs,Ys,Zs1).

This predicate concatenates two lists given as the first two arguments and re-
turns the concatenated list through the third argument. Notice that all output
unifications that bind variables in heads must be moved to the right hand sides
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of clauses. In comparison with the counterpart in standard Prolog clauses, this
predicate cannot be used to split a list given as the third argument. In fact,
the call append(Xs,Ys,[a,b]) fails since it matches neither head of the clauses.

Matching clauses are determinate and employ one-directional matching rather
than unification in the execution. The compiler takes advantage of these facts to
generate more compact and faster code for matching clauses. While the compiler
generates indexing code for Prolog clauses on at most one argument, it generates
indexing code on as many arguments as possible for matching clauses. A program
in matching clauses can be significantly faster than its counterpart in standard
clauses if multi-level indexing is effective.

When consulted into the program code area, matching clauses are transformed
into Prolog clauses that preserve the semantics of the original clauses. For example,
after being consulted the membchk predicate becomes:

membchk(X,Ys):- $internal_match([Y|_],Ys),X==Y,!.

membchk(X,Ys):-$internal_match([_|Ys1],Ys),membchk(X,Ys1).

Where the predicate $internal match(P,O) matches the object O against the
pattern P.
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Chapter 11

Action Rules and Events

The AR (Action Rules) language is designed to facilitate the specification of event-
driven functionality needed by applications such as constraint propagators and
graphical user interfaces where interactions of multiple entities are essential [?].
An action rule specifies a pattern for agents, an action that the agents can carry
out, and an event pattern for events that can activate the agents. An agent is a
call or subgoal that can be suspended and later activated by events. Agents are
a more general notion than freeze in Prolog-II and processes in concurrent logic
programming in the sense that agents can be responsive to various kinds of events
including user-defined ones. This chapter describes the syntax and semantics of
action rules. Examples will be given in later chapters on the use of action rules to
program constraint propagators and interactive user interfaces. A compiler which
translates CHR (Constraint Handling Rules) into AR is presented in [?].

11.1 Syntax

An action rule takes the following form:

Agent,Condition, {Event} => Action

where Agent is an atomic formula that represents a pattern for agents, Condi-
tion is a conjunction of in-line conditions on the agents, Event is a non-empty
disjunction of patterns for events that can activate the agents, and Action is a
sequence of subgoals which can be built-ins, calls of predicates defined in Prolog
clauses, matching clauses, or action rules. Condition and the following comma can
be omitted if the condition is empty. Action cannot be empty. The subgoal true
represents an empty action that always succeeds. An action rule degenerates into
a matching clause if Event together with the enclosing braces are missing.

A general event pattern takes the form of event(X,T), where X is a variable,
called a channel, and T is a variable that will reference the event object transmitted
to the agent from the event poster. If the event object is not used, then the
argument T can be omitted and the pattern can be written as event(X). The
agent Agent will be attached to the channel X for each event event(X,T) specified
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in the action rule. In general, an action rule may specify several event patterns.
However, co-existing patterns of event/2 must all have the same variable as the
second argument so the variable always references the event object when the rule
is triggered by an event of any of the patterns.

A channel expression, which takes one of the following forms, specifies agents
attached to channels:

• X: A channel variable indicates the agents attached to the channel.

• X1/\X2/\ . . . /\Xn: A conjunction of channel variables indicates the set of
agents attached to all the channels.

• X1\/X2\/ . . . \/Xn: A disjunction of channel variables indicates the set of
agents attached to at least one of the channels.

The following primitives are provided for posting general-form events:

• post event(C,T): Post a general-form event to the agents attached to the
channels specified by the channel expression C. The activated agents are first
connectd to the chain of active agents and are then executed one at a time.
Therefore, agents are activated in a breadth-first fasion.

• post event df(C,T): Same as post event(C,T) but agents are activated in
a depth-first fasion. The activated agents are added to the active chain one
at a time.

The event pattern ins(X) indicates that the agent will be activated when any
variable in X is instantiated. Notice that X can be any term. If X is a ground term,
then the event pattern has no effect. Events of ins(X) are normally posted by
built-ins. The user can use the built-in post ins(X) to post ins events for testing
purposes.

• post ins(X): Post an ins(X) event where X must be a channel variable.1

A predicate consists of a sequence of action rules defining agents of the same
predicate symbol. In a program, predicates defined by action rules can be inter-
mingled with predicates defined by Prolog clauses.

11.2 Operational semantics

An action rule ’H,G,{E} => B’ is said to be applicable to an agent α if α matches
H and the guard G succeeds. For an agent, the system searches for an applicable
rule in its definition sequentially from the top. If no applicable rule is found, the
agent fails; if a matching clause is found, then the agent is rewritten to the body of
the clause as described before; if an action rule is found, then the agent is attached
to the channels of E and is then suspended waiting until an event of a pattern in E

1Notice X here is not allowed to a disjunction or conjunction of channel variables.

47



is posted. When an event is posted, the conditions in the guard are tested again.
If they are satisfied, then the body B is executed. No action can succeed more
than once. The system enforces this by converting B into once(B). When B fails,
the original agent fails as well. After B is executed, the agent does not vanish but
instead turns to sleep until next event is posted.

Agents behave in an event-driven fashion. At the entry and exit points of ev-
ery predicate, the system checks to see whether there is an event that has been
posted. If so, the current predicate is interrupted and control is moved to the acti-
vated agents of the event. After the agents finish their execution, the interrupted
predicate will resume. So, for the following query:

echo_agent(X), {event(X,Message)} => write(Message).

?-echo_agent(X),post_event(X,ping),write(pong)

the output message will be ping followed by pong. The execution of write(pong)
is interrupted after the event event(X,ping) is posted. The execution of agents
can be further interrupted by other postings of events.

There may be multiple events pending at an execution point (e.g., events posted
by non-interruptible built-ins). If this is the case, then a watching agent has to be
activated once for each of the events.

When an event is posted, all the sleeping agents watching the event in the
system will be activated and the event is erased after that so that no agent gen-
erated later will be responsive to this event. The activated agents attached to a
channel are added to the chain of active agents in the first-generated-first-added
order unless the event was posted using the built-in post event df. As there may
exist multiple events on different channels at a time and an agent can post events
in its action, the ordering of agents is normally unpredictable.

There is no primitive for killing agents explicitly. As described above, an agent
never disappears as long as action rules are applied to it. An agent vanishes only
when a matching clause is applied to it. Consider the following example.

echo_agent(X,Flag), var(Flag), {event(X,Message)} =>

write(Message),Falg=1.

echo_agent(X,Flag) => true.

An echo agent defined here can only handle one event posting. After it handles
an event, it binds the variable Flag. So, when a second event is posted, the action
rule is no longer applicable and hence the matching clause after it will be selected.
Notice that the matching clause is necessary here. Without it, an agent would fail
after a second event is posted.

One question arises here: what happens if there will never be another event on
X? In this case, the agent will stay forever. If we want to kill the agent immediately
after it is activated once, we have to define it as follows:

echo_agent(X,Flag), var(Flag), {event(X,Message),ins(Flag)} =>

write(Message),Falg=1.

echo_agent(X,Flag) => true.
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In this way, the agent will be activated again after Flag is bound to 1, and be
killed after the failure of the test var(Flag).

11.3 Another example

Consider the following action rule:

p(X,Y), {event(X,O),event(Y,O)} => write(O).

An agent, which is attached to both X and Y, echoes the event object when activated
by an event. The following gives several sample queries and their expected outputs:

# Query Output

1 p(X,Y),post_event(X,a) a

2 p(X,Y),post_event(Y,b) b

3 p(X,Y),post_event(X,a),post_event(Y,b) ab

4 p(X,Y),post_event(X\/Y,c) c

5 p(X,Y),post_event(X/\Y,c) c

6 p(X,Y),p(U,V),post_event(X\/U,c) cc

7 p(X,Y),p(U,V),post_event(X/\U,c)

8 p(X,Y),p(U,V),X=U,post_event(X/\U,c) cc

Query number 7 gives no output since no agent is attached to both the channels X
and U. When two channels are unified, the younger variable is set to reference the
older one,2 and all the agents attached to the younger variable are copied to the
older one. So in query number 8, after X=U, X and U become one variable and the
two agents p(X,Y) and p(U,V) become attached to the variable. Therefore, after
post_event(X/\U,c) both agents are activated. In the examples, the queries will
give the same outputs if post event df is used instead of post event. This is not
the case in general if an action rule also posts events.

11.4 Timers and time events

In some applications, agents are activated regularly at a predefined rate. For
example, a clock animator is activated every second and the scheduler in a time-
sharing system switches control to the next process after a certain time quota
elapses. To facilitate the description of time-related behavior of agents, B-Prolog
provides timers. To create a timer, use the predicate

timer(T,Interval)

where T is a variable and Interval is an integer that specifies the rate of the
timer. A timer runs as a separate thread. The call timer(T,Interval) binds T

to a Prolog term that represents the thread. A timer starts ticking immediately
after being created. It posts an event time(T) in every Interval milliseconds. A

2For two variables on the heap, the variable that resides closer to the top of the heap is said
to be younger than the variable that resides deeper on the heap. Because of garbage collection,
it is normally impossible to order variables by ages.
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timer stops posting events after the call timer stop(T). A stopped timer can be
started again. A timer is destroyed after the call timer kill(T) is executed.

• timer(T,Interval): T is a timer with the rate being set to Interval.

• timer(T): Equivalent to timer(T,200).

• timer start(T): Start the timer T. After a timer is created, it starts ticking
immediately. Therefore, it is unnecessary to start a timer with timer start(T).

• timer stop(T): Stop the timer.

• timer kill(T): Kill the timer.

• timer set interval(T,Interval): Set the interval of the timer T to Interval.
The update is destructive and the old value is not restored upon backtrack-
ing.

• timer get interval(T,Interval): Get the interval of the timer T.

Example:

The following example shows two agents that behave in accordance with two
timers.

go:-

timer(T1,100),

timer(T2,1000),

ping(T1),

pong(T2),

repeat,fail.

ping(T),{time(T)} => write(ping),nl.

pong(T),{time(T)} => write(pong),nl.

Notice that the two calls ’repeat,fail’ are needed after the two agents are created.
Without them, the query go would succeed before any time event is posted and
thus neither of the agent could get a chance to be activated.

11.5 Suspension and attributed variables

A suspension variable, or an attributed variable, is a variable to which there are
suspended agents and attribute values attached. Agents are registered onto sus-
pension variables by action rules. Each attribute has a name, which must be
ground, and a value. The built-in put attr(Var,Attr,Value) is used to register

50



attribute values and the built-in get attr(Var,Attr,Value) is used to retrieve
attribute values.

The unification procedure needs be revisited now that we have attributed vari-
ables. When a normal Prolog variable is unified with an attributed variable, the
normal Prolog variable will be bound to the attributed variable. When two at-
tributed variables Y and O are unified, suppose Y is younger than O, the following
operations will be performed:

• All the agents attached to Y are copied to O.

• An event ins(Y) is posted.

• The variable Y is set to reference the variable O.

Notice that because no attribute is copied the younder variable will lose all of its
attributes after unification. Notice also that because of garbage collection, the age
ordering of variables is normally unpredicatable.

• attvar(Term): True if Term is an attributed variable.

• put attr(Var, Attr, Value): Set the value for the attribute named Attr

to Value. If an attribute with the same name already exists on Var, the
old value is replaced. The setting is undone upon backtracking, same as
setarg/3. This primitive also attaches an agent to Var which invokes
attr unify hook/3 when and ins(Var) is posted.

• put attr no hook(Var, Attr, Value): The same as put attr(Var, Attr,

Value) but it does not attach any agent to Var to call attr unify hook/3

when ins(Var) is posted.

• get attr(Var, Attr, Value) Retreive the current value for the attribute
named Attr. If Var is not an attributed variable or no attribute named Attr

exists on Var, this predicate fails silently.

• del attr(Var, Attr): Delete the attribute named Attr. This update is
undone upon backtracking.

• frozen(L): The list of all suspended agents is L.

• frozen(V,L): The list of suspended agents on the suspension variable V is
L.

• constraints number(X,N): N is the number of agents attached to the sus-
pension variable X.
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Example:

The following example shows how to attach a finite-domain to a variable:

create_fd_variable(X,D):-

put_attr(X,fd,D),

check_value(X,D).

check_value(X,D),var(X),{ins(X)} => true.

check_value(X,D) => member(X,D).

The agent check value(X,D) is activated to check whether the value is in the
domain when X is instantiated. This predicate can be defined equivalently as
follows:

create_fd_variable(X,D):-

put_attr_with_hook(X,fd,D).

attr_unify_hook(X,fd,D):-member(X,D).
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Chapter 12

Constraints

B-Prolog supports constraints over four different types of domains: finite-domains,
Boolean, trees, and finite sets. The symbol #= is used to represent equality and
#\= is used to represent inequality for all the four types of domains. The system
decides what solver to call at run-time based on the types of the arguments. In
addition to the four types of domains, B-Prolog provides a declarative interface to
linear programming (LP) and mixed programming (MIP) packages through which
LP/MIP problems can be described in a CLP fashion. Currently, the GLPK1

and CPLEX2 packages are supported.3 This chapter describes the four types
of constraint domains as well as the linear programming interface. There are a
number of books devoted to constraint solving and constraint programming (e.g.,
[?, ?, ?, ?]).

12.1 CLP(Tree)

• freeze(X,Goal): Equivalent to once(Goal) but the evaluation is delayed
until X becomes a non-variable term. The predicate is defined as follows:

freeze(X,Goal),var(X),{ins(X)} => true.

freeze(X,Goal) => call(Goal).

If X is a variable, the agent freeze(X,Goal) is delayed. When X is bound, an
event ins(X) is posted automatically, which will in turn activate the agent
freeze(X,Goal). If X is not a variable, then the second rule will rewrite
freeze(X,Goal) into call(Goal). Notice that since agents can never suc-
ceed more than once, Goal in freeze(X,Goal) cannot return multiple solu-
tions. This is a big difference from the freeze predicate in Prolog-II.

• dif(T1,T2): The two terms T1 and T2 are different. If T1 and T2 are not
arithmetic expressions, the constraint can be written as T1 #\= T2.

1www.gnu.org/software/glpk/glpk.html
2www.cplex.com
3The GLPK package is included by default, and the CPLEX interface is available to only

CPLEX liscensees.
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12.2 CLP(FD)

CLP(FD) is an extension of Prolog that supports built-ins for specifying domain
variables, constraints, and strategies for instantiating variables. In general, a
CLP(FD) program is made of three parts: the first part, called variable gen-
eration, generates variables and specifies their domains; the second part, called
constraint generation, specifies constraints over the variables; and the final part,
called labeling, instantiates the variables by doing enumeration.

Consider the well-known SEND MORE MONEY puzzle. Given eight letters
S, E, N, D, M, O, R and Y, one is required to assign a digit between 1 and 9 to
each letter such that different letters are assigned unique different digits and the
equation SEND + MORE = MONEY holds. The following program specifies the
problem.

sendmory(Vars):-

Vars=[S,E,N,D,M,O,R,Y], % variable generation

Vars :: 0..9,

alldifferent(Vars), % constraint generation

S #\= 0,

M #\= 0,

1000*S+100*E+10*N+D

+ 1000*M+100*O+10*R+E

#= 10000*M+1000*O+100*N+10*E+Y,

labeling(Vars). % labeling

The call alldifferent(Vars) ensures that variables in the list Vars take different
values, and labeling(Vars) instantiates the list of variables Vars in the given
order from left to right.

12.2.1 Finite-domain variables

A finite domain is a list of different ground terms in the form: [e1,e2,...,en]. The
special notation L..U denotes a set of integers between L and U, inclusive.

A Prolog variable Var becomes a finite-domain variable after its domain is
declared by:

Var :: D

or

Var in D

where D is a finite-domain. For example, the call

X :: 1..3

says that X is an integer between 1 and 3 and the call

X :: [a,b,c]
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says that X can be a, b, or c.
Let Vars be a list of variables that share the same domain D. The domain of

the variables can be declared as follows:

Vars :: D

If the domain is the set of integers between L and U, then the domain can also
be declared as

domain(Var,L,U)

for one variable Var and as

domain(Vars,L,U)

for a list of variables Vars.
The following primitives restrict the domains of variables.

• domain(Var,L,U): The domain of the variable Var is the set of integers
between L and U. L and U must be integers. If Var is an integer, the call is
equivalent to

Var>=L,Var=<U

If Var is neither a variable nor an integer, this call raises the illegal argument

exception.

• domain([V1,...,Vn],L,U): Equivalent to:

domain(V1,L,U),...,domain(Vn,L,U)

• Var :: D: The domain of the variable Var is D, where D is either an integer
interval L..U or a list of ground terms. If D is a list that contains non-integer
terms, then the call is equivalent to member(Var,D).

• [V1,...,Vn] :: D: Equivalent to:

V1 :: D,...,Vn :: D

• Var notin D: Var does not reside in D.

• [V1,...,Vn] notin D: Equivalent to:

V1 noin D,...,Vn noin D

The following primitives are available on integer domain variables. As domain
variables are also suspension variables, primitives on suspension variables such as
frozen/1 can be applied to domain variables as well.
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• fd var(V): V is a domain variable.

• fd new var(V): Create a new domain variable V whose domain is -268435455..268435455.

• fd max(V,N): The maximum element in the domain of V is N. V must be an
integer domain variable or an integer.

• fd min(V,N): The minimum element in the domain of V is N. V must be an
integer domain variable or an integer.

• fd min max(V,Min,Max): The minimum and maximum elements in the do-
main of V are Min and Max, respectively. V must be an integer domain variable
or an integer.

• fd size(V,N): The size of the domain of V is N.

• fd dom(V,L): L is the list of elements in the domain of V.

• fd true(V,E): E is an element in the domain of V.

• fd set false(V,E): Exclude the element E from the domain of V. If this
operation results in a hole in the domain of V , then the domain changes
from an interval representation into a bit-vector representation however big
it is.

• fd next(V,E,NextE): NextE is the next element following E in V’s domain.

• fd prev(V,E,PrevE): PrevE is the element preceding E in V’s domain.

• fd include(V1,V2): Succeeds if V1’s domain includes V2’s domain as a set.

• fd disjoint(V1,V2): Succeeds if V1’s domain and V2’s domain are disjoint.

• fd vector min max(Min,Max): Specifies the range of bit vectors. Domain
variables, when being created, are usually represented internally by using
intervals. An interval turns to a bit vector when a hole occurs in it. The
default values for Min and Max are -3200 and 3200, respectively.

12.2.2 Arithmetic constraints

• E1 R E2: This is the basic form of an arithmetic constraint, where E1 and
E2 are two arithmetic expressions and R is one of the following constraint
symbols #=, #\=, #>=, #>, #=<, and #<. An arithmetic expression is made of
integers, variables, domain variables, and the following arithmetic functions:
+ (addition), - (subtraction), * (multiplication), / (division),// (integer di-
vision), mod, ** (power), abs, min, max, and sum. The ** operator has the
highest priority, followed by *, /, //, and mod, then followed by unary minus
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sign -, and finally followed + and -. Let E, E1, E2 be an expression, and L be
a list of expressions [E1,E2,...,En]. The following are valid expressions as
well.

– min(L) The minimum element of L.

– max(L) The maximum element of L.

– min(E1,E2) The minimum of E1 and E2.

– max(E1,E2) The maximum of E1 and E2.

– sum(L) The sum of the elements of L.

• sum(Xs,R E): equivalent to sum(X) R E, where Xs must be a list of expres-
sions. .

• scalar product(Coeffs, Xs, R, E): Let Coeffs be a list of integers [C1,...,Cn]
and Xs be a list of expressions [E1,...,En]. The constraint is equivalent to
C1*E1+...+Cn*En R E.

12.2.3 Global constraints

• alldifferent(Vars):

• all different(Vars): The elements in Vars are mutually different, where
Vars is a list of terms.

• alldistinct(Vars):

• all distinct(Vars): This is equivalent to alldifferent(Vars), but it
uses a stronger consistency checking algorithm to exclude inconsistent values
from domains of variables [?].

• assignment(Xs,Ys): Let Xs=[X1,...,Xn] and Ys=[Y1,...,Yn]. Then the
following are true:

Xs in 1..n,

Ys in 1..n,

for each i,j in 1..n, Xi#=j #<=> Yi#=i

The variables in Ys are called dual variables.

• assignment0(Xs,Ys): Let Xs=[X0,...,Xn] and Ys=[Y0,...,Yn]. Then
the following are true:

Xs in 0..n,

Ys in 0..n,

for each i,j in 0..n, Xi#=j #<=> Yi#=i

The variables in Ys are called dual variables.
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• fd element(I,L,V):

• element(I,L,V): Succeeds if the Ith element of L is V, where I must be an
integer or an integer domain variable, V a term, and L a list of terms.

• fd atmost(N,L,V):

• atmost(N,L,V): Succeeds if there are at most N elements in L that are equal
to V, where N must be an integer or an integer domain variable, V a term,
and L a list of terms.

• fd atleast(N,L,V):

• atleast(N,L,V): Succeeds if there are at least N elements in L that are
equal to V, where N must be an integer or an integer domain variable, V a
term, and L a list of terms.

• fd exactly(N,L,V):

• exactly(N,L,V): Succeeds if there are exactly N elements in L that are equal
to V, where N must be an integer or an integer domain variable, V a term,
and L a list of terms.

• global cardinality(L,Vals): Let L be a list of integers or domain vari-
ables [X1,...,Xd] and Vals be a list of pairs [K1-V1,...,Kn-Vn] where
each key Ki is a unique integer and Vi is a domain variable or an integer.
The constraint is true if every element of L is equal to some key and for each
pair Ki-Vi, exactly Vi elements of L are equal to Ki. This constraint is a
generalization of the fd exactly constraint.

• cumulative(Starts,Durations,Resources,Limit): This constraint is use-
ful for describing and solving scheduling problems. The arguments Starts,
Durations, and Resources are lists of integer domain variables of the same
length and Limit is an integer domain variable. Let Starts be [S1,S2,...,Sn],
Durations be [D1,D2,...,Dn] and Resources be [R1,R2,...,Rn]. For
each job i, Si represents the start time, Di the duration, and Ri the units
of resources needed. Limit is the units of resources available at any time.

• serialized(Starts,Durations): This constraint describes a set of non-
overlapping tasks, where Starts and Durations must be lists of integer do-
main variables of the same length. Let Ones be a list of 1’s of the same length
as Starts. This constraint is equivalent to cumulative(Starts,Durations,Ones,1).

• diffn(L): This constraint ensures that no two rectangles in L overlap with
each other. A rectangle in an n-dimensional space is represented by a list
of 2 × n elements [X1,X2,...,Xn,S1,S2,...,Sn] where Xi is the starting
coordinate of the edge in the ith dimension and Si is the size of the edge.
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• count(Val,List,RelOp,N): Let Count be the number of elements in List

that are equal to Val. Then the constraint is equivalent to Count RelOp N.
RelOp can be any arithmetic constraint symbol.

• circuit(L): Let L be a list of variables [X1,X2,...,Xn] where each Xi has
the domain 1..n. A valuation satisfies the constraint if 1->X1,2->X2,...,n->Xn
forms a Hamilton cycle. To be more specific, each variable has a different
value and no sub-cycles can be formed. For example, for the constraint cir-
cuit([X1,X2,X3,X4]), [3,4,2,1] is a solution, but [2,1,4,3] is not because it
contains sub-cycles.

12.2.4 Labeling and variable ordering

Several predicates are provided for choosing variables and assigning values to vari-
ables.

• indomain(V): V is instantiated to a value in the domain. On backtracking,
the domain variable is instantiated to the next value in the domain.

• deleteff(V,Vars,Rest): Chooses first a domain variable V from Vars with
the minimum domain. Rest is a list of domain variables without V.

• deleteffc(V,Vars,Rest): Chooses first a variable that has the smallest
domain and that participates in the largest number of constraints.

• labeling(Vars):

• fd labeling(Vars): Label the variables in Vars one by one.

• labeling ff(Vars):

• labelingff(Vars):

• fd labeling ff(Vars): Label the variables in Vars by selecting first a vari-
able with the smallest domain. If there are multiple variables with the same
smallest domain, then the left-most one is chosen.

• labeling ff min(Vars): The same as labeling ff(Vars) but ties are bro-
ken by selecting a variable with the smallest lower bound.

• labeling ff max(Vars): The same as labeling ff(Vars) but ties are bro-
ken by selecting a variable with the largest upper bound.

• labeling ffc(Vars):

• labelingffc(Vars):

• fd labeling ffc(Vars): Label the variables in Vars by using deleteffc/3

to choose variables.
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• labeling min(Vars): Label the variables in Vars by selecting first a variable
with the smallest lower bound, breaking ties by selecting a variable with the
smallest domain.

• labeling max(Vars): Label the variables in Vars by selecting first a variable
with the largest upper bound, breaking ties by selecting a variable with the
smallest domain.

• labeling(Options,Vars): Label the variables Vars under control by the
list of search options, where Options may contain the following:

– leftmost: The same as labeling(Vars).

– forward: The same as labeling(Vars).

– backward: The list of variables is reversed first before calling labeling.

– inout: The variables are reordered in an inside-out fashion before call-
ing labeling. For example, the variable list [X1,X2,X3,X4,X5] is re-
arranged into the list [X3,X2,X4,X1,X5].

– min: Select first a variable whose domain has the smallest lower bound,
breaking ties by selecting a variable with the smallest domain.

– max: Select first a variable whose domain has the largest upper bound,
breaking ties by selecting a variable with the smallest domain.

– ff: The first-fail principle is used: the leftmost variable with the small-
est domain is selected.

– ff forward: The same as ff.

– ff backward: The variables are reversed first before applying ff.

– ff inout: The variables are reordered in an inside-out fashion before
applying ff.

– ff min: Same as ff but ties are broken by selecting a variable with the
smallest lower bound.

– ff max: Same as ff but ties are broken by selecting a variable with the
largest upper bound.

– ffc: The most constrained heuristic is used: a variable with the smallest
domain is selected, breaking ties selecting the variable that has the most
propagators suspended on it.

– ffc backward: The variables are first reversed before applying ffc.

– ffc inout: The variables are reordered in an inside-out fashion before
before applying ffc.

– minimize(Exp):

– maximize(Exp): Uses a branch-and-bound algorithm to find an assign-
ment that minimizes (maximizes) the expression Exp. Exp must become
ground after the variables are labeled.
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– time out(Time)

– time out(Time,Result): This option imposes a time limit on label-
ing the variables. With this option, the labeling(Options,Vars)

is equivalent to time out(labeling(Options1,Vars),Time,Result)

where Options1 is the same as Options but with no time out option.

• labeling mix(Vars,Time,Strategies,Result): Label the variables Vars

under the time limit Time using the given list of strategies Strategies where
each strategy is one of the following:

– forward: The same as labeling(Vars).

– backward: The same as labeling([backward],Vars).

– inout: The same as labeling([inout],Vars).

– ff forward: The same as labeling ff(Vars).

– ff backward: Reverse Vars before calling labeling ff.

– ff inout: Reorder Vars in an inside-out fashion before calling labeling ff.

– ffc forward: The same as labeling ff(Vars).

– ffc backward: Reverse Vars before calling labeling ff.

– ffc inout: Reorder Vars in an inside-out fashion before calling labeling ffc.

– min: The same as labeling min(Vars).

– max: The same as labeling max(Vars).

– ff min: The same as labeling ff min(Vars).

– ff max: The same as labeling ff max(Vars).

Result is bound to the successful strategy if a solution is found or time out

if no solution is found within the time limit. The given time is allocated
to different strategies as follows: For the list of untried strategies, the first
strategy gets half of the time and the rest gets the other half of the time. So
for the list of strategies [s1,s2,s3], s1 gets half of the time, and s2 and s3

each gets a quarter of the time.

• labeling mix(Vars,Time,Result): Defined as follows:

labeling_mix(Vars,Time,Result):-

labeling_strategies(Strategies),

labeling_mix(Vars,Time,Strategies,Result).

where labeling strategies(Strategies) binds Strategies to

[forward,backward,inout,ff_forward,ff_backward,ff_inout,

ffc_forward,ffc_backward,ffc_inout,min,max,ff_min,ff_max]

• labeling mix(Vars,Time): Same as labeling mix(Vars,Time, ).
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12.2.5 Optimization

• fd minimize(Goal,Exp):

• minof(Goal,Exp): This primitive finds a satisfiable instance of Goal such
that Exp has the minimum value. Here, Goal is used as a generator (e.g.,
labeling(L)), and Exp is an expression. All satisfiable instances of Goal
must be ground, and for every such instance, Exp must be an integer expres-
sion.

• fd maximize(Goal,Exp):

• maxof(Goal,Exp): This primitive finds a satisfiable instance of Goal such
that Exp has the maximum optimal value. It is equivalent to fd minimize(Goal,-Exp).

12.3 CLP(Boolean)

CLP(Boolean) can be considered as a special case of CLP(FD) where each variable
has a domain of two values: 0 denotes false, and 1 denotes true. A Boolean expres-
sion is made from constants (0 or 1), Boolean domain variables, basic relational
constraints, and operators as follows:

<BooleanExpression> ::=

0 | /* false */

1 | /* true */

variable |

<Expression> #= <Expression> |

<Expression> #\= <Expression> |

<Expression> #> <Expression> |

<Expression> #>= <Expression> |

<Expression> #< <Expression> |

<Expression> #=< <Expression> |

#\ <BooleanExpression> | /* not */

<BooleanExpression> #/\ <BooleanExpression> | /* and */

<BooleanExpression> #\/ <BooleanExpression> | /* or */

<BooleanExpression> #=> <BooleanExpression> | /* imply */

<BooleanExpression> #<=> <BooleanExpression> | /* equivalent */

<BooleanExpression> #\ <BooleanExpression> /* xor */

A Boolean constraint is made of a constraint symbol and one or two Boolean
expressions.

• E1 #= E2: True if E1 and E2 are equivalent. For example, (X #= 3) #= (Y #= 5)

means that the finite-domain constraints (X #= 3) and (Y #= 5) have the
same satisfibility. In other words, they are either both true or both false.

62



• E1 #\= E2: True if E1 and E2 are different. For example, (X #= 3) #\= (Y #= 5)

means that the finite-domain constraints (X #= 3) and (Y #= 5) are mutu-
ally exclusive. In other words, if (X #= 3) is satisfied then (Y #= 5) cannot
be satisfied, and similarly if (X #= 3) is not satisfied then (Y #= 5) must
be satisfied.

• #\ E: Equivalent to E#=0.

• E1 #/\ E2: Both E1 and E2 are 1.

• E1 #\/ E2: Either E1 or E2 is 1.

• E1 #=> E2: If E1 is 1, then E2 must be also 1.

• E1 #<=> E2: E1 and E2 are equivalent.

• E1 #\ E2: Exactly one of E1 and E2 is 1.

The following constraints restrict the values of Boolean variables.

• fd at least one(L):

• at least one(L): Succeeds if at least one element in L is equal to 1, where
L is a list of Boolean variables or constants.

• fd at most one(L):

• at most one(L): Succeeds if at most one element in L is equal to 1, where
L is a list of Boolean variables or constants.

• fd only one(L):

• only one(L): Succeeds if exactly one element in L is equal to 1, where L is
a list of Boolean variables or constants.

12.4 CLP(Set)

CLP(Set) is a member in the CLP family where each variable can have a set as
its value. Although a number of languages are named CLP(Set), they are quite
different. Some languages allow intentional and infinite sets, and some languages
allows user-defined function symbols in set constraints. The CLP(Set) language
in B-Prolog allows finite sets of ground terms only. A set constant is either the
empty set {} or {T1,T2,...,Tn} where each Ti (i=1,2,...,n) is a ground term.

We reuse some of the operators in Prolog and CLP(FD) (e.g., /\, \/, \, #=, and
#\=) and introduce several new operators to the language to denote set operations
and set constraints. Since most of the operators are generic and their interpretation
depends on the types of constraint expressions, you have to provide necessary
information for the system to infer the types of expressions.

The type of a variable can be known from its domain declaration or can be
inferred from its context. The domain of a set variable is declared by a call as
follows:
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V :: L..U

where V is a variable, and L and U are two set constants indicating respectively
the lower and upper bounds of the domain. The lower bound contains all definite
elements that are known to be in V and the upper bound contains all possible
elements that may be in V. All definite elements must be possible. In other words,
L must be a subset of U. If this is not the case, then the declaration fails. The
special set constant {I1..I2} represents the set of integers in the range from I1

to I2, inclusive. For example:

• V :: {}..{a,b,c} : V is subset of {a,b,c} including the empty set.

• V :: {1}..{1..3} : V is one of the sets of {1},{1,2}, {1,3}, and {1,2,3}.
The set {2,3} is not a candidate value for V.

• V :: {1}..{2,3} : Fails since {1} is not a subset of {2,3}.

We extend the notation such that V can be a list of variables. So the call

[X,Y,Z] :: {}..{1..3}

declares three set variables.
The following primitives are provided to test and access set variables:

• clpset var(V): V is a set variable.

• clpset low(V,Low): The current lower bound of V is Low.

• clpset up(V,Up): The current upper bound of V is Up.

• clpset added(E,V): E is a definite element, i.e., an element included in the
lower bound.

• clpset excluded(E,V): E has been forbidden for V. In other words, E has
been excluded from the upper bound of V.

The followint two predicates are provided for converting sets into and from
lists:

• set to list(S,L) : Convert the set S into a list. For example,

• list to set(L,S) : Convert the list L into a set.

A set expression is defined recursively as follows: (1) a constant set; (2) a
variable; (3) a composite expression in the form of S1 \/ S2, S1 /\ S2, S1 \ S2,
or \ S1, where S1 and S2 are set expressions. The operators \/ and /\ represent
union and intersection, respectively. The binary operator \ represents difference
and the unary operator \ represents complement. The complement of a set \ S1

is equivalent to U \ S1 where U is the universal set. Since the universal set of a
constant is unknown, S1 in the expression \ S1 must be a variable whose universal
set has been declared.
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We extend the syntax for finite-domain constraint expressions to allow the
expression #S which denotes the cardinality of the set represented by the set ex-
pression S.

Let S, S1 and S2 be set expressions, and E be a term. A set constraint takes
one of the following forms:

• S1 #= S2: S1 and S2 are two equivalent sets (S1=S2).

• S1 #\= S2: S1 and S2 are two different sets (S1 6=S2).

• subset(S1,S2):

• clpset_subset(S1,S2): S1 is a subset of S2 (S1⊆S2). The proper subset
relation S1 ⊂ S2 can be represented as S1 subset S2 and #S1 #< #S2 where
#< represents the less-than constraint on integers.

• clpset_disjoint(S1,S2):

• S1 #<> S2: S1 and S2 are disjoint (S1∩S2=∅).

• clpset_in(E,S):

• E #<- S: E is a member of S (E∈S).

• clpset_notin(E,S):

• E #<\- S: E is a not member of S (E/∈S).

Boolean constraint expressions are extended to allow set constraints. For ex-
ample, the constraint

(E #<- S1) #=> (E #<- S2)

says that if E is a member of S1 then E must also be a member of S2.
Just as for finite and Boolean constraints, constraint propagation is used to

maintain the consistency of constraints. Constraint propagation alone, however,
is inadequate for finding solutions for many problems. We need to use the divide-
and-conquer or relaxation method to find solutions to a system of constraints. The
call

• indomain(V):

finds a value for V either by enumerating the values in V’s domain or by splitting the
domain. Instantiating variables usually triggers related constraint propagators.
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12.5 A declarative interface to LP/MIP packages

B-Prolog provides a declarative and easy-to-use interface to LP/MIP packages
through which LP/MIP problems can be described declaratively. The following
gives an example program that uses the interface.

go:-

Vars=[X1,X2,X3],

lp_domain(X1,0,40), % 0 =< X1 =< 40

-X1+X2+X3 $=< 20, % constraints

X1-3*X2+X3 $=< 30,

Profit=X1+2*X2+3*X3, % objective function

lp_solve(Vars,max(Profit)), % call the LP solver

format("sol(~w,~f)~n",[Vars,Profit]).

Three new operators are introduced: $=, $>=, and $=< for expressing equality
and disequality constraints.4 The call lp solve(Vars,max(Profit)) calls the LP
solver to find a valuation for Vars that maximizes Profit and satisfies all the
constraints on the variables. A MIP problem is similar to a LP problem except
that some variables are required to be integers. The built-in lp integers(Vars)

is provided to declare integer variables. For MIP problems, the same built-in
lp solve/2 is used to call the MIP solver. The interface decides which solver to
call based on whether or not there are integer variables. More examples can be
found in the directory examples/lp.

The following built-ins are provided to communicate with LP/MIP packages:

• lp domain(Xs,L,U): The variables in the list Xs are in the range of L..U,
where L and U are either integers or floats. If the domain of a variable is not
declared, it is assumed to be in the range of 0..∞.

• Exp1 R Exp2 where R is $=, $>=, or $=<: An equality or disequality con-
straint, where Exp1 and Exp2 are two arithmetic expressions made up of inte-
gers, floats, variables, and the following arithmetic functions: + (addition),
- (subtraction), * (multiplication), / (division), and sum. The expression
sum(List) denotes the sum of the elements in List.

• lp integers(Xs): The variables in the list Xs are required to have integer
values. A problem becomes a MIP one if at least one of the variables is an
integer variable.

• lp solve(Xs,Obj) where Obj is either min(Exp) or max(Exp): Call the
LP/MIP solver to find a valuation for the variables Xs such that the ob-
jective function is optimal and the accumulated constraints are all satisfied.
This call fails or succeeds with some error message if the solver fails to solve
the problem.

4No proper disequality constraint is allowed in LP/MIP so the operators $> and $< are not
needed.
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• lp solve(Xs): Solve the problem as constraint satisfaction problem with no
objective function. It is equivalent to lp solve(Xs,min(0)).
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Chapter 13

Programming Constraint
Propagators

AR is a powerful implementation language for programming constraint propaga-
tors [?]. We will show in this chapter how to program constraint propagators for
various constraints.

The following set of event patterns are provided for programming constraint
propagators:

• generated: when an agent is generated.

• ins(X): When any variable in X is instantiated.

• bound(X): The lower or upper bound of any variable in X is updated. There
is no distinction between lower and upper bounds changes.

• dom(X): Some inner element has been excluded from the domain of X.

• dom(X,E): An inner element E has been excluded from the domain of X.

• dom any(X): Some arbitrary element has been excluded from the domain of
X.

• dom any(X,E): An arbitrary element E has been excluded from the domain
of X.

Note that when a variable is instantiated, no bound or dom event is posted.
Consider the following example:

p(X),{dom(X,E)} => write(dom(E)).

q(X),{dom any(X,E)} => write(dom any(E)).

r(X),{bound(X)} => write(bound).

go:-X :: 1..4, p(X), q(X), r(X), X #\= 2, X #\= 4, X #\= 1.

The query go gives the following outputs: dom(2), dom any(2), dom any(4) and
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bound.1 The outputs dom(2) and dom any(2) are caused by X #\= 2, and the out-
puts dom any(4) and bound are caused by X #\= 4. After the constraint X #\= 1

is posted, X is instantiated to 3, which posts an ins(X) event but not a bound or
dom event.

Note also that the dom any(X,E) event pattern should be used only on small-
sized domains. If used on large domains, constraint propagators could be over-
flooded with a huge number of dom any events. For instance, for the propagator
q(X) defined in the previous example, the query

X :: 1..1002, q(X), X #>1000

posts 1000 dom any events. For this reason, in B-Prolog propagators for handling
dom any(X,E) events are generated only after constraints are preprocessed and
the domains of variables in them become small.

Except for dom(X,E) and dom any(X,E) that have two arguments, all the events
do not have extra information to be transmitted to their handlers. An action rule
can handle multiple single-parameter events. For example, for the following rule,

p(X),{generated,ins(X),bound(X)} => q(X).

p(X) is activated when p(X) is generated, when X is instantiated, or when either
bound of X’s domain is updated.

We also introduce the following two types of conditions that can be used in the
guards of rules:

• dvar(X): X is an integer domain variable.

• n vars gt(M,N): The number of variables in the last M arguments of the
agent is greater than N, where both M and N must be integer constants.
Notice that the condition does not take the arguments whose variables are
to be counted. The system can always fetch that information from its parent
call. This built-in should be used only in guards of action rules or matching
clauses. The behavior is unpredictable if this built-in is used elsewhere.

13.1 A constraint interpreter

It is very easy to write a constraint interpreter by using action rules. The following
shows such an interpreter:

interp_constr(Constr), n_vars_gt(1,0),

{generated,ins(Constr),bound(Constr)}

=>

reduce_domains(Constr).

interp_constr(Constr) => test_constr(Constr).

1In the implementation of AR in B-Prolog, when more than one agent is activated the one
that was generated first is executed first. This explains why dom(2) occurs before dom any(2)

and also why dom any(4) occurs before bound.
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For a constraint Constr, if there is at least one variable in it, the interpreter delays
the constraint and invokes the procedure reduce domains(Constr) to exclude
no-good values from the variables in Constr. The two kinds of events, namely
ins(Constr) and bound(Constr) ensure that the constraint will be reconsidered
whenever either a bound of a variable in Constr is updated or a variable is bound
to any value.

13.2 Indexicals

Indexicals, which are adopted by many CLP(FD) compilers for compiling con-
straints, can be implemented easily by using action rules. Consider the indexical

X in min(Y)+min(Z)..max(Y)+max(Z).

which ensures that the constraint X #= Y+Z is interval-consistent on X. The index-
ical is activated whenever a bound of Y or Z is updated. The following shows the
implementation in action rules:

’V in V+V’(X,Y,Z),{generated,ins(Y),bound(Y),ins(Z),bound(Z)} =>

reduce_domain(X,Y,Z).

reduce_domain(X,Y,Z) =>

fd_min_max(Y,MinY,MaxY),

fd_min_max(Z,MinZ,MaxZ),

L is MinY+MinZ, U is MaxY+MaxZ,

X in L..U.

The action reduce domain(X,Y,Z) is executed whenever a variable is instantiated
or a bound of a variable is updated. The original indexical is equivalent to the
following call:

’V in V+V’(X,Y,Z)

Because of the existence of generated in the action rule, interval-consistency is
also enforced on X when the constraint is generated.

13.3 Reification

One well used technique in finite-domain constraint programming is called reifi-
cation, which uses a new Boolean variable B to indicate the satisfiability of a
constraint C. C must be satisfied if and only if B is equal to 1. This relationship is
denoted as:

C #<=> (B #= 1)

It is possible to use Boolean constraints to represent the relationship, but it is
more efficient to implement specialized propagators to maintain the relationship.
Consider, as an example, the reification:
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(X #= Y) #<=> (B #= 1)

where X and Y are domain variables, and B is a Boolean variable. The following
describes a propagator that maintains the relationship:

reification(X,Y,B),dvar(B),dvar(X),X\==Y,

{ins(X),ins(Y),ins(B)} => true.

reification(X,Y,B),dvar(B),dvar(Y),X\==Y,

{ins(Y),ins(B)} => true.

reification(X,Y,B),dvar(B),X==Y => B=1.

reification(X,Y,B),dvar(B) => B=0.

reification(X,Y,B) => (B==0 -> X #\= Y; X #= Y).

Curious readers might have noticed that ins(Y) is in the event sequence of the
first rule but ins(X) is not specified in the second one. The reason for this is that
X can never be a variable after the condition of the first rule fails and that of the
second rule succeeds.

13.4 Propagators for binary constraints

There are different levels of consistency for constraints. A unary constraint p(X) is
said to be domain-consistency if for any element x in the domain of X the constraint
p(x) is satisfied. The propagation rule that maintains domain-consistency is called
forward checking. A constraint is said to be interval-consistent if for any bound of
the domain of any variable there are supporting elements in the domains of the all
other variables such that the constraint is satisfied. Propagators for maintaining
interval consistency are activated whenever a bound of a variable is updated or
whenever a variable is instantiated. A constraint is said to be arc-consistent if for
any element in the domain of any variable there are supporting elements in the
domains of all the other variables such that the constraint is satisfied. Propagators
for maintaining domain consistency are triggered when whatever changes occur to
the domain of a variable. We consider how to implement various propagators for
the binary constraint A*X #= B*Y+C, where X and Y are domain variables, A and
B are positive integers, and C is an integer of any kind.

Forward checking

The following shows a propagator that performs forward checking for the binary
constraint.

’aX=bY+c’(A,X,B,Y,C) =>

’aX=bY+c_forward’(A,X,B,Y,C).

’aX=bY+c_forward’(A,X,B,Y,C),var(X),var(Y),{ins(X),ins(Y)} => true.

’aX=bY+c_forward’(A,X,B,Y,C),var(X) =>

T is B*Y+C, Ex is T//A, (A*Ex=:=T->X = Ex; true).
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’aX=bY+c_forward’(A,X,B,Y,C) =>

T is A*X-C, Ey is T//B, (B*Ey=:=T->Y is Ey;true).

When both X and Y are variables, the propagator is suspended. When either
variable is instantiated, the propagator computes the value for the other variable.

Interval-consistency

The following propagator, which extends the forward-checking propagator, main-
tains interval-consistency for the constraint.

’aX=bY+c’(A,X,B,Y,C) =>

’aX=bY+c_forward’(A,X,B,Y,C),

’aX=bY+c_interval’(A,X,B,Y,C).

The call ’aX=bY+c interval’(A,X,B,Y,C) maintains interval-consistency for
the constraint.

’aX=bY+c_interval’(A,X,B,Y,C) =>

’aX in bY+c_interval’(A,X,B,Y,C), % reduce X when Y changes

MC is -C,

’aX in bY+c_interval’(B,Y,A,X,MC). % reduce Y when X changes

’aX in bY+c_interval’(A,X,B,Y,C),var(X),var(Y),{generated,bound(Y)} =>

’aX in bY+c_reduce_domain’(A,X,B,Y,C).

’aX in bY+c_interval’(A,X,B,Y,C) => true.

Notice that the action ’aX in bY+c reduce domain’(A,X,B,Y,C) is executed only
when both variables are free. If either one turns to be instantiated, then the
forward-checking rule will take care of that situation.

’aX in bY+c_reduce_domain’(A,X,B,Y,C) =>

L is (B*min(Y)+C) /> A,

U is (B*max(Y)+C) /< A,

X in L..U.

The operation op1 /> op2 returns the lowest integer that is greater than or equal
to the quotient of op1 by op2 and the operation op1 /< op2 returns the greatest
integer that is less than or equal to the quotient. The arithmetic operations must
be sound to make sure that no solution is lost. For example, the minimum times
any positive integer remains the minimum.

Arc-consistency

The following propagator, which extends the one shown above, maintains arc-
consistency for the constraint.
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’aX=bY+c’(A,X,B,Y,C) =>

’aX=bY+c_reduce_domain’(A,X,B,Y,C),

’aX=bY+c_forward’(A,X,B,Y,C),

’aX=bY+c_interval’(A,X,B,Y,C),

’aX=bY+c_arc’(A,X,B,Y,C).

’aX=bY+c_arc’(A,X,B,Y,C) =>

’aX in bY+c_arc’(A,X,B,Y,C), % reduce X when Y changes

MC is -C,

’aX in bY+c_arc’(B,Y,A,X,MC). % reduce Y when X changes

’aX in bY+c_arc’(A,X,B,Y,C),var(X),var(Y),{dom(Y,Ey)} =>

T is B*Ey+C,

Ex is T//A,

(A*Ex=:=T -> fd_set_false(X,Ex);true).

’aX in bY+c_arc’(A,X,B,Y,C) => true.

Whenever an element Ey is excluded from the domain of Y, the propagator ’aX in

bY+c arc’(A,X,B,Y,C) is activated. If both X and Y are variables, the propagator
will exclude Ex, the counterpart of Ey, from the domain of X. Again, if either X

or Y becomes an integer, the propagator does nothing. The forward checking rule
will take care of that situation.

13.5 all different(L)

The constraint all different(L) holds if the variables in L are pair-wisely dif-
ferent. One naive implementation method for this constraint is to generate binary
disequality constraints between all pairs of variables in L. This section gives an
implementation of the naive method that uses a liner number of propagators.
Stronger filtering algorithms have been proposed for the global constraint [?] and
the algorithm adopted for all distinct in B-Prolog is presented in [?].

The naive method that splits all different into binary disequality constraints
has two problems: First, the space required to store the constraints is quadratic in
the number of variables in L; Second, splitting the constraint into small granularity
ones may lose possible propagation opportunities.

To solve the space problem, we define all different(L) in the following way:

all_different(L) => all_different(L,[]).

all_different([],Left) => true.

all_different([X|Right],Left) =>

outof(X,Left,Right),

all_different(Right,[X|Left]).

outof(X,Left,Right), var(X), {ins(X)} => true.
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outof(X,Left,Right) =>

exclude_list(X,Left),exclude_list(X,Right).

For each variable X, let Left be the list of variables to the left of X and Right be the
list of variables to the right of X. The call outof(X,Left,Right) holds if X appears
in neither Left nor Right. Instead of generating disequality constraints between
X and all the variables in Left and Right, the call outof(X,Left,Right) suspends
until X is instantiated. After X becomes an integer, the calls exclude list(X,Left)

and exclude list(X,Right) to exclude X from the domains of the variables in
Left and Right, respectively.

There is a propagator outof(X,Left,Right) for each element X in the list,
which takes constant space. Therefore, all different(L) takes linear space in
the size of L. Notice that the two lists Left and Right are not merged into one
bigger list. Or, the constraint still takes quadratic space.
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Chapter 14

Tabling

The need to extend Prolog to narrow the gap between declarative and procedural
readings of programs has been urged long before. Tabling in Prolog is a technique
that can get rid of infinite loops for bounded-term-size programs and possible re-
dundant computations in the execution of Prolog programs [?, ?]. With tabling,
Prolog becomes more friendly to beginners and professional programmers alike.
Tabling can alleviate their burden to cure infinite loops and redundant computa-
tions. Consider the following example:

reach(X,Y):-edge(X,Y).

reach(X,Y):-reach(X,Z),edge(Z,Y).

where the predicate edge defines a relation and reach defines the transitive closure
of the relation. Without tabling, a query like reach(X,Y)would fall into an infinite
loop. Consider another example:

fib(0, 1).

fib(1, 1).

fib(N,F):-N>1,

N1 is N-1,

N2 is N-2,

fib(N1,F1),

fib(N2,F2),

F is F1+F2.

A query fib(N,X), where N is an integer, will not fall into an infinite loop, but
will spawn 2N calls, many of which are variants.

The main idea of tabling is to memorize the answers to some calls, called tabled
calls, and use the answers to resolve subsequent variant calls. In B-Prolog, tabled
predicates are declared explicitly by declarations in the following form:

:-table P1/N1,...,Pk/Nk

where each Pi (i=1,...,k) is a predicate symbol and Ni is an integer that denotes
the arity of Pi. To declare all the predicates in a Program as tabled, add the
following line to the beginning of the program:
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:-table_all.

By default, all the arguments of a tabled subgoal are used in variant checking
and all answers are tabled for a tabled predicate. A table mode declaration allows
the system to use only input arguments in variant checking and table answers
selectively. The declaration

:-table p(M1,...,Mn):N.

instructs the system how to do tabling on p/n, where N, called a cardinality limit,
is an integer which limits the number of answers to be tabled, and Mi is a mode
which can be min, max, + (input), or - (output). An argument with the mode min
or max is assumed to be output. The system uses only input arguments in variant
checking. If the cardinality limit N is 1, the declaration can be simply written as

:-table p(M1,...,Mn).

For each predicate, only one declaration can be given.
An argument with the mode min or max is called an optimized or aggregate

argument. In a tabled predicate, only one argument can be optimized, and the
built-in @</2 is used to select answers with minimal or maximal values.

Examples

The following program encodes the Dijkstra’s algorithm for finding a path with
the smallest cost between a pair of nodes.

:-table sp(+,+,-,min).

sp(X,Y,[(X,Y)],C) :-

edge(X,Y,C).

sp(X,Y,[(X,Z)|Path],C) :-

edge(X,Z,C1),

sp(Z,Y,Path,C2),

C is C1+C2.

The predicate edge(X,Y,C) defines a given weighted directed graph, where C is the
weight of the edge from node X to node Y. The predicate sp(X,Y,Path,C) states
that Path is a path from X to Y with the smallest cost C. Notice that whenever the
predicate sp/4 is called, the first two arguments are always instantiated. So for
each pair, only one answer is tabled.

Notice that if table modes are not respected or there is no bound for an op-
timized argument, a program may give unexpected answers. For example, if the
costs of some edges are negative, there will be no lower bound for the optimized
argument and hence the program will never stop.

Let’s consider a variant of the problem which finds a path for each pair with the
fewest nodes among those with the smallest cost. The following gives a program:
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:-table sp(+,+,-,min).

sp(X,Y,[(X,Y)],(C,1)) :-

edge(X,Y,C).

sp(X,Y,[(X,Z)|Path],(C,Len)) :-

edge(X,Z,C1),

sp(Z,Y,Path,(C2,Len1)),

Len is Len1+1,

C is C1+C2.

Since only one argument can be optimized, we use a compound term (C,Len) to
denote the optimized valule where C is the cost and Len is the length of a path.
Notice that the order is important. If the term were (Len,C), the program would
find a path with the shortest length, breaking tie by selecting one with the smallest
cost.

The cardinality limit of a tabled predicate can be dynamically changed using
the built-in table cardinality limit.

• table cardinality limit(p/n,N): If N is a variable, it is bound to the
current cardinality limit for p/n. If N is a positive integer, the cardinal-
ity limit for p/n is changed to N. Notice that if there are more than N

answers tabled already for p/n at the time of the change, an exception
invalid cardinality limit will be raised.

• table cardinality limit(p,n,N): The same as above except that the func-
tor and arity are given as two separte arguments.

14.1 Linear tabling and the strategies

B-Prolog employs a tabling mechanism, called linear tabling [?], which relies on it-
erative computation rather than suspension to compute fixpoints. In linear tabling,
a cluster of inter-dependent subgoals as represented by a top-most looping subgoal
is iteratively evaluated until no subgoal in it can produce any new answers.

B-Prolog supports two answer consumption strategies: lazy and eager. The lazy
strategy allows a cluster of subgoals to return answers only after the fixpoint has
been reached, and the eager strategy consumes answers while they are produced.

The lazy consumption strategy is suited for finding all answers because of the
locality of search. So, for example, when the subgoal p(Y) is encountered in the
goal “p(X),p(Y)”, the subtree for p(X) must have been explored completely. For
certain applications such as planning it is unreasonable to find all answers either
because the set is infinite or because only one answer is needed. For example, for
the goal “p(X),!,q(X)” the lazy strategy produces all the answers for p(X) even
though only one is needed.

The lazy strategy is adopted by default, but you can change the strategy to
eager for a predicate or for all the predicates in a program. The declaration

:-eager_consume P/N.
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changes the strategy to eager for P/N and the declaration

:-eager_consume.

changes the strategy to eager for all the predicates in the program.

Example:

:-eager_consume plan/3.

:-table plan(+,-,min).

plan(State,Plan,Len):-

is_final_state(State),!,

Plan=[],Len=0.

plan(State,[Move|Plan],Len):-

select_move(State,Move),

update(State,Move,State1),

plan(State1,Plan,Len1),

Len is Len1+1.

This program implements the depth-first search algorithm for state-transition
problems. It terminates once a final state has been reached. For a state, only a plan
of the shortest length is tabled. When applied to a graph, this program behaves like
the Dijkstra’s algorithm for finding shortest paths. Without the eager consume

declaration, the program would explore the state space in a breadth-first fashion.

14.2 Primitives on tables

A data area, called table area, is used to store tabled calls and their answers.
The following predicate initializes the table area.

initialize_table

Tabled subgoals and answers are accumulated in the table area until the table area
is initialized explicitly.

Tabled calls are stored in a hashtable, called subgoal table, and for each
tabled call and its variants, a hashtable, called answer table, is used to store the
answers for the call. The bucket size for the subgoal table is initialized to 9001.
To change or access this size, use the following built-in predicate:

subgoal_table_size(SubgoalTableSize)

which sets the size if SubgoalTableSize is an integer and gets the current size if
SubgoalTableSize is a variable.

The following two built-ins are used to clean up table entries:

• table remove0: remove complete tabled subgoals that have no solution.
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• table remove(Subgoal): remove complete subgoals that match the given
pattern Subgoal.

The following two built-ins are provided for fetching answers from the table.

• table find one(Call): If there is a subgoal in the subgoal table that is
a variant of Call and that has answers, then Call is unified with the first
answer. The built-in fails if there is no variant subgoal in the table or there
is no answer available.

• table find all(Call,Answers): Answers is a list of answers of the subgoals
that are subsumed by Call. For example, the table find one( ,Answers)

fetches all the answers in the table since any subgoal is subsumed by the
anonymous variable.
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Chapter 15

External Language Interface
with C

B-Prolog has a bi-directional interface with C through which Prolog programs
can call functions written in C and C programs can call Prolog as well. C pro-
grams that use this interface must include the file "bprolog.h" in the directory
$BPDIR/Emulator.

The functions are renamed in Version 6.0 such that all function names start
with ‘‘bp ’’. Old functions except for build LIST and build STRUCTURE are still
supported but they are not documented here. You are encouraged to use the new
functions.

15.1 Calling C from Prolog

15.1.1 Term representation

A term is represented by a word containing a value and a tag. The tag distinguishes
the type of the term. Floating-point numbers are represented as special structures
in the form of $float(I1,I2,I3) where I1, I2 and I3 are integers.

The value of a term is an address except when the term is an integer (in this
case, the value represents the integer itself). The address points to a different
location depending on the type of the term. The address in a reference points
to the referenced term. An unbound variable is represented by a self-referencing
pointer. The address in an atom points to the record for the atom symbol in the
symbol table. The address in a structure f(t1, . . . , tn) points to a block of n + 1
consecutive words where the first word points to the record for the functor f/n in
the symbol table and the remaining n words store the components of the structure.
The address in a list [H—T] points to a block of two consecutive words where the
first word stores the car H and the second word stores the cdr T.
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15.1.2 Fetching arguments of Prolog calls

Every C function that defines a Prolog predicate should not take any argument.
The function bp get call arg(i,arity) is used to get the arguments in the cur-
rent Prolog call:

• TERM bp get call arg(int i, int arity): Fetch the ith argument, where
arity is the arity of the predicate, and i must be an integer between 1
and arity. The validness of the arguments are not checked and an invalid
argument may cause fatal errors.

15.1.3 Testing Prolog terms

The following functions are provided for testing Prolog terms. They return BP TRUE

when succeed and BP FALSE when fail.

• int bp is atom(TERM t): Term t is an atom.

• int bp is integer(TERM t): Term t is an integer.

• int bp is float(TERM t): Term t is a floating-point number.

• int bp is nil(TERM t): Term t is a nil.

• int bp is list(TERM t): Term t is a list.

• int bp is structure(TERM t): Term t is a structure (but not a list).

• int bp is compound(TERM t): True if either bp is list(t) or bp is structure(t)

is true.

• int bp is unifiable(TERM t1, TERM t2): t1 and t2 are unifiable. This
is equivalent to the Prolog call not(not(t1=t2)).

• int bp is identical(TERM t1, TERM t2): t1 and t2 are identical. This
function is equivalent to the Prolog call t1==t2.

15.1.4 Converting Prolog terms into C

The following functions convert Prolog terms to C. If a Prolog term is not of the
expected type, then the global C variable exception is set. A C program that
uses these functions must check whether exception is set to see whether data are
converted correctly. The converted data are correct only when exception is NULL.

• int bp get integer(TERM t): Convert the Prolog integer t into C. bp is integer(t)

must be true; otherwise 0 is returned before exception is set to integer expected.

• double bp get float(TERM t): Convert the Prolog float t into C. bp is float(t)

must be true; otherwise exception is set to number expected and 0.0 is re-
turned. This function must be declared before any use.
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• (char *) bp get name(TERM t): Return a pointer to the string that is the
name of term t. Either bp is atom(t) or bp is structure(t)must be true;
otherwise, exception is set to illegal arguments and NULL is returned.
This function must be declared before any use.

• int bp get arity(TERM t): Return the arity of term t. Either bp is atom(t)

or bp is structure(t)must be true; otherwise, 0 is returned with exception

being set to illegal arguments.

15.1.5 Manipulating and writing Prolog terms

• int bp unify(TERM t1,TERM t2): Unify two Prolog terms t1 and t2. The
result is BP TRUE if the unification succeeds and BP FALSE if fails.

• TERM bp get arg(int i,TERM t): Return the ith argument of term t. The
condition bp is compound(t) must be true and i must be an integer that is
greater than 0 and no greater than t’s arity; otherwise, exception is set to
illegal arguments and the Prolog integer 0 is returned.

• TERM bp get car(TERM t): Return the car of the list t. bp is list(t)

must be true; or exception is set to list expected and the Prolog integer
0 is returned.

• TERM get cdr(TERM t): Return the cdr of the list t. bp is list(t) must
be true; or exception is set to list expected and the Prolog integer 0 is
returned.

• void bp write(TERM t): Send term t to the current output stream.

15.1.6 Building Prolog terms

• TERM bp build var(): Return an free Prolog variable.

• TERM bp build integer(int i): Return a Prolog integer whose value is i.

• TERM bp build float(double f): Return a Prolog float whose value is f.

• TERM bp build atom(char *name): Return a Prolog atom whose name is
name.

• TERM bp build nil(): Return a Prolog empty list.

• TERM bp build list(): Return a Prolog list whose car and cdr are free
variables.

• TERM bp build structure(char *name, int arity): Return a Prolog struc-
ture whose functor is name, arity is arity, and the arguments are all free
variables.
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15.1.7 Registering predicates defined in C

The following function registers a predicate defined by a C function.

insert_cpred(char *name, int arity, int (*func)())

The first argument is the predicate name, the second is the arity, and the third is
the name of the function that defines the predicate. The function cannot take any
argument. As described before, the function bp get call arg(i,arity) is used
to fetch arguments from the Prolog call.

For example, the following registers a predicate whose name is "p" and whose
arity is 2.

extern int p();

insert_cpred("p", 2, p)

the C function’s name does not need to be the same as the predicate name.
Predicates defined in C should be registered after the Prolog engine is initialized

and before any call is executed. One good place for registering predicates is the
Cboot() function in the file cpreds.c, which registers all the built-ins of B-Prolog.

Example:

Consider the Prolog predicate:

:-mode p(+,?).

p(a,f(1)).

p(b,[1]).

p(c,1.2).

where the first argument is given and the second is unknown. The following steps
show how to define this predicate in C and make it callable from Prolog.

Step 1 . Write a C function to implement the predicate. The following shows a
sample:

#include "bprolog.h"

p(){

TERM a1,a2,a,b,c,f1,l1,f12;

char *name_ptr;

/* prepare Prolog terms */

a1 = bp_get_call_arg(1,2); /* first argument */

a2 = bp_get_call_arg(2,2); /* second argument */

a = bp_build_atom("a");

b = bp_build_atom("b");
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c = bp_build_atom("c");

f1 = bp_build_structure("f",1); /* f(1) */

bp_unify(bp_get_arg(1,f1),bp_build_integer(1));

l1 = bp_build_list(); /* [1] */

bp_unify(bp_get_car(l1),bp_build_integer(1));

bp_unify(bp_get_cdr(l1),bp_build_nil());

f12 = bp_build_float(1.2); /* 1.2 */

/* code for the clauses */

if (!bp_is_atom(a1)) return BP_FALSE;

name_ptr = bp_get_name(a1);

switch (*name_ptr){

case ’a’:

return (bp_unify(a1,a) ? bp_unify(a2,f1) : BP_FALSE);

case ’b’:

return (bp_unify(a1,b) ? bp_unify(a2,l1) : BP_FALSE);

case ’c’:

return (bp_unify(a1,c) ? bp_unify(a2,f12) : BP_FALSE);

default: return BP_FALSE;

}

}

Step 2 Insert the folloiwng two lines into Cboot() in cpreds.c:

extern int p();

insert_cpred("p",2,p);

Step 3 Recompile the system. Now, p/2 is in the group of built-ins in B-Prolog.

15.2 Calling Prolog from C

To make Prolog predicates callable from C, one has to replace the main.c file in
the emulator with a new file that starts his/her own application. The following
function must be executed before any call to Prolog predicates is executed:

initialize_bprolog(int argc, char *argv[])

In addition, the environment variable BPDIR must be set correctly to the home
directory where B-Prolog was installed. The function initialize bprolog() al-
locates all the stacks used in B-Prolog, initializes them, and loads the byte code
file bp.out into the program area. BP ERROR is returned if the system cannot be
initialized.

A query can be a string or a Prolog term, and a query can return one solution
and multiple solutions as well.
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• int bp call string(char *goal): This function executes the Prolog call
as represented by the string goal. The return value is BP TRUE if the call
succeeds, BP FALSE if the call fails, and BP ERROR if an exception occurs.
Examples:

bp_call_string("load(myprog)")

bp_call_string("X is 1+1")

bp_call_string("p(X,Y),q(Y,Z)")

• bp call term(TERM goal): This function is similar to the previous one, but
executes the Prolog call as represented by the term goal. While bp call string

cannot return any bindings for variables, this function can return results
through the Prolog variables in goal. Example:

TERM call = bp_build_structure("p",2);

bp_call_term(call);

• bp mount query string(char *goal): Mount goal as the next Prolog goal
to be executed.

• bp mount query string(TERM goal): Mount goal as the next Prolog goal
to be executed.

• bp next solution(): Retrieve the next solution of the current goal. If no
goal is mounted before this function, then the exception illegal predicate

will be raised and BP ERROR will be returned as the result. If no further
solution is available, the function returns BP FALSE. Otherwise, the next
solution is found.

Example:

This example program retrieves all the solutions of the query member(X,[1,2,3]).

#include "bprolog.h"

main(argc,argv)

int argc;

char *argv[];

{

TERM query;

TERM list0,list;

int res;

initialize_bprolog(argc,argv);

/* build the list [1,2,3] */

list = list0 = bp_build_list();
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bp_unify(bp_get_car(list),bp_build_integer(1));

bp_unify(bp_get_cdr(list),bp_build_list());

list = bp_get_cdr(list);

bp_unify(bp_get_car(list),bp_build_integer(2));

bp_unify(bp_get_cdr(list),bp_build_list());

list = bp_get_cdr(list);

bp_unify(bp_get_car(list),bp_build_integer(3));

bp_unify(bp_get_cdr(list),bp_build_nil());

/* build the call member(X,list) */

query = bp_build_structure("member",2);

bp_unify(bp_get_arg(2,query),list0);

/* invoke member/2 */

bp_mount_query_term(query);

res = bp_next_solution();

while (res==BP_TRUE){

bp_write(query); printf("\n");

res = bp_next_solution();

}

}

To run the program, we need to first replace the content of the file main.c in
$BPDIR/Emulator with this program and recompile the system. The newly com-
piled system will give the following outputs when started.

member(1,[1,2,3])

member(2,[1,2,3])

member(3,[1,2,3])
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Chapter 16

External Language Interface
with Java

As the popularity of Java grows, an interface that bridges Prolog and Java becomes
more and more important. On the one hand, Prolog applications can have access
to resources in Java, such as the Abstract Window Toolkit(AWT) and networking.
On the other hand, Java programs can have access to the functionality such as
constraint solving available in Prolog. B-Prolog has a bi-directional interface with
Java, which is based on JIPL developed by Nobukuni Kino.

An application that uses the Java interface usually works as follows: The Java
part invokes a Prolog predicate and passes it a Java object together with other
arguments; the Prolog predicate performs necessary computation and invokes the
methods or directly manipulates the fields of the Java object. The examples in the
directory at $BPDIR/Examples/java interface shows how to use Java’s resources
through the JIPL interface, including AWT and JDBC (MySQL). One should have
no difficulty to use other Java resources through the interface such as URL, Sockets,
and Servelets.

16.1 Installation

To use the Java interface, one has to ensure that the environment variables BPDIR,
CLASSPATH, and PATH (Windows) or LD LIBRARY PATH (Solaris) are set correctly.
For a Windows PC, add the following settings to autoexec.bat:

set BPDIR=c:\BProlog

set PATH=%BPDIR%;%PATH%

set classpath=.;%BPDIR%\plc.jar

and for a Solaris or Linux machine, add the following settings to .cshrc.

set BPDIR=$HOME/BProlog

set LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$BPDIR

set CLASSPATH=.:$BPDIR/plc.jar
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The environment variables must be properly set. The archive file plc.jar in the
directory $BPDIR (or %BPDIR%) stores the byte code for the class bprolog.plc.Plc
that implements the Java interface, and the file libbp.so (bp.dll) in the same
directory is a dynamic link file for B-Prolog’s emulator.

16.2 Data conversion between Java and B-Prolog

The following table converts data from Java to Prolog:

Java Prolog

Integer integer

Double real

Long integer

BigInteger integer

Boolean integer

Character string (list of codes)

String string (list of integers)

Object array list

Object $addr(I1,I2)

Notice that no primitive data type can be converted into Prolog. Data conversion
from Prolog to Java follows the same protocol but a string is converted to an array
of Integers rather than a String, and a Prolog atom is converted to a Java String.

Prolog Java

integer Integer

real Double

atom String

string Object array

list Object array

structure Object

The conversion between arrays and lists needs further explanation. A Java
array of some type is converted into a list of elements of the corresponding con-
verted type. For instance, an Integer array is converted into a list of integers.
In contrast, a Prolog list, whatever type whose elements is, is converted into an
array of Object type. When an array element is used as a specific type, it must
be casted to that type.

16.3 Calling Prolog from Java

A Prolog call is an instance of the class bprolog.plc.Plc. It is convenient to import
the class first:

import bprolog.plc.Plc;
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The class Plc contains the following constructor and methods:

• public Plc(String functor, Object args[]): It constructs a prolog call
where functor is the predicate name, and args is the sequence of arguments
of the call. If a call does not carry any argument, then just give the second
argument an empty array new Object[] .

• public static void startPlc(String args[]): Initialize the B-Prolog
emulator, where args are parameter-value pairs given to B-Prolog. Possible
parameter-value pairs include:

"-b" TRAIL words allocated to the trail stack
"-s" STACK words allocated to the local and the heap
"-p" PAREA words allocated to the program code area
"-t" TABLE words allocated to the table area

where TRAIL, STACK, PAREA and TABLE must all be strings of integers. After
the B-Prolog emulator is initialized, it will be waiting for calls from Java.
Initialization needs to be done only once. Further calls to startPlc have no
effect at all.

• public static native boolean exec(String command): Execute a Pro-
log call as represented by the string command. This method is static, and
thus can be executed without creating any Plc object. To call a predicate
in a file, say xxx.pl, it is necessary to first have the Prolog program loaded
into the system. To do so, just execute the method exec("load(xxx)") or
exec("consult(xxx)").

• public boolean call(): Execute the Prolog call as represented by the Plc
object that owns this method. The return value is true if the Prolog call
succeeds or false if the call fails.

16.4 Calling Java from Prolog

The following built-ins are available for calling Java methods or setting fields of a
Java object. The exception java exception(Goal) is raised if the Java method
or field does not exist, or if the Java method throws any exception.

• javaMethod(ClassOrInstance, Method, Return): Invoke a Java method,
where

– ClassOrInstance: is either an atom that represents a Java class’s
name, or a term $addr(I1,I2) that represents a Java object. Java
objects are passed to Prolog from Java . It is meaningless to construct
an object term by any other means.

– Method: is an atom or a structure in the form f(t1,...,tn) where f

is the method name, and t1,...,tn are arguments.
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– Return: is a variable that will be bound to the returned object by the
method.

This method throws an exception named java exception if the Java method
is terminated by an exception.

• javaMethod(ClassOrInstance, Method): The same as javeMethod/3 but
does not require a return value.

• javaGetField(ClassOrInstance, Field, Value): Get the value of Field
of ClassOrInstance and bind it to Value. A field must be an atom.

• javaSetField(ClassOrInstance, Field, Value): Set Field of ClassOrIn-
stance to be Value.
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Chapter 17

Interface with Operating
Systems

17.1 Building standalone applications

A standalone application is a program that can be executed without the need to
start the B-Prolog interpreter first. You do not have to use the external language
interface to build standalone applications. The default initial predicate that the B-
Prolog interpreter executes is called main/0. In version 6.9 and later, an initial goal
can be given as a command line argument -g Goal. For example, the following
command

bp myprog.out -g ‘‘mymain(Output),writeln(Output)’’

loads the binary file myprog.out and executes the goal

mymain(Output),writeln(Output)

instead of the default initial goal main.
You can also build a Prolog program as a standalone application by re-defining

the main/0 predicate. The following definition is recommended:

main:-

get_main_args(L),

call_your_program(L).

where get main args(L) fetches the command line arguments as a list of atoms,
and call your program(L) starts your program. If the program does not need
the command line arguments, then the call get main args(L) can be omitted.

The second thing you need to do is to compile the program and let your main/0
predicate overwrite the existing one in the system. Assume the compiled program
is named myprog.out. To let the system execute main/0 in myprog.out instead of
the one in the system, you need to either add myprog.out into the command line
in the shell script bp (bp.bat for Windows) or start the system with myprog.out

as an argument of the command line as in the following:
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bp myprog.out

For example, assume call your program(L) only prints out L, then the com-
mand

bp myprog.out a b c

gives the following output:

[a,b,c]

17.2 Commands

• system(Command): Send Command to the OS.

• system(Command,Status): Send Command to the OS and bind Status to the
status returned from the OS.

• chdir(Atom):

• cd(Atom): Change the current working directory to Atom.

• get cwd(Dir):

• getcwd(Dir): Bind Dir to the current working directory.

• date(Y,M,D): The current date is Y year, M month, and D day.

• date(Date): Assume the current date is Y year, M month, and D day. Then
Date is unified with the term date(Y,M,D).

• time(H,M,S): The current time is H hour, M minute, and S second.

• time(Time): Assume the current time is H hour, M minute, and S second.
Then Time is unified with the term time(H,M,S).

• get environment(EVar,EValue):

• environ(EVar,EValue): The environment variable EVar has the value EValue.

• expand environment(Name,FullName): FullName is a copy of Name with
environment variables replaced with their definitions. FullFile is a copy of
Name with environment variables replaced with their definitions.

• copy file(Name,NameCp): Make a copy of a file.

• delete directory(Name): Delete the directory named Name if it exists.

• delete file(Name): Delete a file.

• directory exists(Name): Test if a directory with the Name exists.
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• directory files(Name,List): List is the list of all files in some undefined
order in the directory named Name.

• file base name(Name,Base): Base is the base name of the file named Name.

• file directory name(Name,Dir): Dir is the directory of a file named Name.

• file exists(Name): Test if a file with the Name exists.

• file property(Name,Property): The file or directory with the Name has
the Property, where Property is one of the following:

– type(Value) where Value is one of the following: regular,directory,
symbolic link, fifo, and socket.

– access time(Value): Value is the latest access time.

– modification time(Value): Value is the latest modification time.

– status change time(Value): Value is the time of the last file status
change.

– size(Value): Value is the size of the file in bytes.

– permission(Value): Value is one of the following: read, write, and
execute.

• file stat(Name,Property): This predicate calls the C function stat and
unifies Property with a structure of the following form:

stat(St_dev,St_ino,St_mode,St_nlink,St_uid,St_gid,

St_rdev,St_size,St_atime,St_mtime,St_ctime)

The reader is referred to the C language manual for the meanings of these
arguments.

• make directory(Name): Create a new directory named Name.

• rename file(OldName,NewName): Rename the file named OldName into NewName.

• working directory(Name): Same as get cwd(Name).
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Chapter 18

Profiling

18.1 Statistics

The predicates statistics/0 and statistics/2 are useful for obtaining statistics
of the system, e.g., how much space or time has been consumed and how much
space is left.

• statistics: This predicate displays the number of bytes allocated to each
data area and the number of bytes already in use. The output looks like:

Control stack + Heap: 4000000 bytes

Control stack in use: 32 bytes

Heap stack in use: 200 bytes

Program area: 4000000 bytes

Program area in use: 482984 bytes

Trail stack: 2000000 bytes

Trail stack in use: 92 bytes

Table area: 2000000 bytes

Table area in use: 1324 bytes

Number of GC calls: 0

Numbers of expansions:

Stack + Heap: 0

Program area: 0

Trail: 0

Table: 0

Number of symbols: 4740

FD backtracks: 0
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• statistics(Key,Value): The statistics concerning Key are Value. This
predicate gives multiple solutions on backtracking. The following shows the
output the system displays after receiving the query statistics(Key,Value).

| ?- statistics(Key,Value).

Key = runtime

Value = [633,633]?;

Key = program

Value = [483064,3516936]?;

Key = heap

Value = [364,3999604]?;

Key = control

Value = [32,3999604]?;

Key = trail

Value = [108,1999892]?;

Key = table

Value = [1324,1998676]?;

key = gc

Value = 0?;

Key = backtracks

V = 0 ?;

no

The values for all keys are lists of two elements. For runtime, the first
element denotes the amount of time in milliseconds elapsed since the start of
Prolog and the second element denotes the amount of time elapsed since the
previous call to statistics/2 was executed. For the key gc, the number
indicates the number of times the garbage collector has been invoked ; and for
the key backtracks, the number indicates the number of backtracks done in
labeling of finite domain variables since B-Prolog was started. For all other
keys, the first element denotes the size of memory in use and the second
element denotes the size of memory still available in the corresponding data
area.

• cputime(T): The current cpu time is T. It is implemented as follows:

cputime(T):-statistics(runtime,[T|_]).
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18.2 Profile programs

The source program profiler analyzes source Prolog programs and reports the
following information about the programs:

• What predicates are defined?

• What predicates are used but not defined?

• What predicates are defined but not used?

• What kinds of built-ins are used?

To use the profiler, type

profile_src(F)

or

profile_src([F1,...,Fn])

where F and F1,...,Fn are file names of the source programs.

18.3 Profile program executions

The execution profiler counts the number of times each predicate is called in exe-
cution. This profiler is helpful for identifying which portion of predicates are most
frequently executed.

To gauge the execution of a program, follow the following steps:

1. profile consult(File) or profile compile(File),load(File). The
program will be loaded into the system with gauging calls and predicates
inserted.

2. init profile. Initialize the counters.

3. Execute a goal.

4. profile. Report the results.

18.4 More statistics

Sometimes we want to know how much memory space is consumed at the peak
time. To obtain this kind of information, one needs to recompile the emulator
with the definition of variable ToamProfile in toam.h. There is a counter for each
stack and the emulator updates the counters each time an instruction is executed.
To print the counters, use the predicate

print_counters

and to initialize the counters use the predicate

start_click
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Chapter 19

Frequently Asked Questions

How can I get rid of the warnings on singleton variables?

Typos are in most cases singleton variables. The compiler reports singleton vari-
ables to help you detect typos. You can set the Prolog flag singleton to off to
get rid of the warnings.

set_prolog_flag(singleton,off)

A better way to get rid of the warnings is to rename singleton variables such that
they all start with the underscore .

How can I deal with stack overflows?

Although the system automatically expands the stack before it overflows, there are
certain cases in which the stack does overflow (e.g., too many agents are activated
at a time). You can specify the amount of space allocated to a stack when you
start the system. For example,

bp -s 4000000

allocates 4 mega words, i.e., 16 mega bytes, to the control stack. You can use
the parameter ’-b’ to specify the amount allocated to the trail stack, ’-p’ to the
program area, and ’-t’ to the table area. See 9.1 for the details.

Is it possible to set break points in the debugger?

Yes. Break points are also called spy points. You can use spy(F/N) to set a spy
point and nospy(F/N) to remove a spy point. You can control the debugger and
let it display only calls of spy points. See 6 for the details.

Is it possible to debug compiled code?

No, debugging of compiled code is not supported. In order to trace the execution
of a program, you have to consult the program. Consulted programs are much
slower and consume much more space than their compiled code. If your program
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is big, you may have to split your program into several files and consult only the
ones you want to debug.

I have a predicate defined in two different files. Why is the defini-
tion in the first file still used even after the second file is loaded?

When a program in a file is compiled, calls of the predicates that are defined in the
same file are translated into jump instructions for the sake of efficiency. Therefore,
even if new definitions are loaded, the predicates in the first file will continue to
use the old definitions unless the predicates themselves are also overwritten.

How can I build standalone applications?

You can use the external language interface with C or Java to make your program
standalone. You can also make your program standalone without using the inter-
face. You only need to redefine the main/0 predicate, which is the first predicate
executed by the B-Prolog interpreter. See Section 17.1 for the details.

How can I disable the garbage collector?

Set the Prolog flag gc to off as follows: set prolog flag(gc,off).

Why do I get the error message when I compile a Java program
that imports bprolog.plc.Plc?

You have to make sure the environment variable classpath is set correctly. Add
the following setting to autoexec.bat on Windows,

set classpath=.;%BPDIR%\plc.jar

and add the following line to .cshrc on Unix,

set classpath=.:$BPDIR\plc.jar

In this way, classpath will be set automatically every time when your computer
starts.

Can I have a Prolog variable passed to a Java method and let the
Java method instantiate the variable?

No, no Prolog variable can be passed to a Java method. You should have the Java
method return a value and have your Prolog program instantiate the variable. If
you want a Java method to return multiple values, you should let the Java method
store the values in the member variables of the enclosing object and let Prolog to
use javaGetField to get the values.
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Is it possible for one language to know about exceptions raised by
a different language?

A call to a C function raises an exception if the function returns BP ERROR. The
global C variable exception tells the type of the exception. The exception can be
caught by an ancestor catcher just like any exceptions raised by built-ins. The call
java method throws java exception(Goal) if the Java method is not defined or
the Java method throws some exception. The exception java exception(Goal)

can also be caught by an ancestor catcher in Prolog.
The C function initialize bprolog returns BP ERROR if the B-Prolog system

cannot be initialized, e.g., the environment variable BPDIR is not set. The C
functions bp call string, bp call term, and bp next solution return BP ERROR

if any exception is raised by the Prolog program.
In the current version of JIPL, the methods Plc.exec and Plc.call returns

boolean and thus cannot tell whether or not an exception has occurred in the
Prolog execution. Your program must take the responsibility to inform Java of
any exceptions raised in Prolog. To do so, the Prolog program should catch all
exceptions and set appropriate member variables of the Java object that started
the Prolog program. After Plc.exec or Plc.call returns, the Java program can
check the member variables to see whether exceptions have occurred.

Is it possible to write CGI scripts in B-Prolog

Because of the availability of the interfaces with C and Java, everything that can
be done in C, C++ or Java can be done in B-Prolog. So the answer to the question
is yes. B-Prolog, however, does not provide special primitives for retrieving forms
and sending html documents to browsers. The interface of your CGI scripts with
the browser must be written in C or Java.
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Chapter 20

Predefined Operators

op(1200,xfx,[:-, -->]).

op(1200,fx,[?-, :-]).

op(1198,xfx,::-).

op(1150,xfy,[?, :]).

op(1150,fy,[public,mode,dynamic,table,eager_consume]).

op(1100,xfy,;).

op(1050,xfy,->).

op(1000,xfy,’,’).

op(900,fy,[spy, not, nospy, \+]).

op(760,yfx,[#<=>]).

op(750,yfx,[#=>]).

op(740,yfx,[#\/]).

op(730,yfx,[#\]).

op(720,yfx,[#/\]).

op(710,fy,[#\]).

op(700,xfx,[is, in, \==, \=, @=, @:=, @>=, @>, @=<, @<, ?=, >=, >, =\=, ==,

=<, =:=, =.., =, <, #>=, #>, #=<, #=, #:=, #<,#\=]).

op(661,xfy,.).

op(500,yfx,[..]).

op(500,yfx,[\/, /\, -, +, .., \]).

op(500,fx,[-, +]).

op(400,yfx,[>>, <<, //, /, />, /<, *]).

op(400,xfx,mod).

op(300,xfx,**).

op(200,yfx,^).
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Chapter 21

Useful Links

21.1 CGLIB: http://www.probp.com/cglib/

CGLIB is a constraint-based high-level graphics library developed for B-Prolog.
It supports over twenty types of basic graphical objects and provides a set of con-
straints including non-overlap, grid, table, and tree constraints that facilitates the
specification of layouts of objects. The constraint solver of B-Prolog serves as a
general-purpose and efficient layout manager, which is significantly more flexible
than the special-purpose layout managers used in Java. The library adopts ac-
tion rules available in B-Prolog for creating agents and programming interactions
among agents or between agents and users. CGLIB is supported in the Windows
version only.1

21.2 CHR Compilers: http://www.probp.com/chr/

CHR (Constraint Handling Rules) is a popular high-level rule-based language. It
was originally designed for implementing constraint solvers but it has found its
way into applications far beyond constraint solving. Two compilers for CHR run
on B-Prolog: the Leuven compiler and a compiler, called chr2ar, which translates
CHR into action rules. The former has been around for some time; and the later
compiler is a preliminary one. Some results have obtained showing that action rules
can serve as an efficient alternative intermediate language for compiling CHR.

21.3 JIPL: http://www.kprolog.com/jipl/index e.html

The JIPL package was designed and implemented by Nobukuni Kino, originally
for his K-Prolog system (kprolog.com). It has been ported to several other Prolog
systems such as B-Prolog and SWI-Prolog. This bi-directional interface makes it
possible for Java applications to use Prolog features such as search and constraint
solving, and for Prolog applications to use Java resources such as networking,

1The system should be started using the script bpp rather than bp to enable CGLIB.
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GUI, and concurrent programming. The API of JIPL for B-Prolog is available at
http://www.probp.com/doc/index.html.

21.4 Logtalk: http://www.logtalk.org/

Logtalk is an extension of Prolog that supports object-oriented programming. It
runs on several Prolog systems. Recently, thanks to Paulo Moura’s effort Logtalk
has been made to run on B-Prolog seamlessly. Logtalk can be used as a module
system on top of B-Prolog.

21.5 PRISM: http://sato-www.cs.titech.ac.jp/prism/

PRISM (PRogramming In Statistical Modeling) is a logic-based language that in-
tegrates logic programming, probabilistic reasoning, and EM learning. It allows for
the description of independent probabilistic choices and their consequences in gen-
eral logic programs. PRISM supports parameter learning. For a given set of pos-
sibly incomplete observed data, PRISM can estimate the probability distributions
to best explain the data. This power is suitable for applications such as learning
parameters of stochastic grammars, training stochastic models for gene sequence
analysis, game record analysis, user modeling, and obtaining probabilistic infor-
mation for tuning systems performance. PRISM offers incomparable flexibility
compared with specific statistical tools such as Hidden Markov Models (HMMs),
Probabilistic Context Free Grammars (PCFGs) and discrete Bayesian networks.
Thanks to the good efficiency of the linear tabling system in B-Prolog and the
EM learner adopted in PRISM, PRISM is comparable in performance to specific
statistical tools on relatively large amounts of data. PRISM is a product of the
PRISM team at Tokyo Institute of Technology led by Taisuke Sato.

21.6 Constraint Solvers: http://www.probp.com/solvers/

Solvers developed in B-Prolog submitted to the annual CP solver competitions
are available here. The competition is an interesting platform for various solvers
to compete and to learn from each other as well. In the first two competitions,
B-Prolog was the only participating solver based on CLP(FD). In the second com-
petition held in 2006-2007, the B-Prolog solver was ranked top in two categories.

21.7 XML: http://www.probp.com/publib/xml.html

The XML parser, a product from Binding Time Limited, is available here. The
main predicate is xml parse(XMLCodes,PlDocument) where one of the arguments
is input and the other is output. Two predicates are added to facilitate develop-
ment of standalone applications: the predicate xml2pl(XMLFile,PLFile) converts
a document in XML format into Prolog format, and the predicate pl2xmll(PLFile,XMLFile)
converts a document in Prolog format into XML format.
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Built-ins
#\=/2,57

#,64
#/\ / 2,62
#<-/2,64
#<=> /2 ,62
#<>/2,64
#<\-/2,65
#=/2,64
#=> / 2,62
#\ / 1,62
#\ / 2,62
#\/ / 2,62
#\=/2,64
$=/2,66
$=</2,66
$>=/2,66
**,16
**,57
*,16
*,57
-,16
-,57
/,16
/,57
//,16
//,57
/\,16
::/2,54
<<,16
=:=/2,14
=\=/2,14
>>,16
@:=/2,19
@=/2,19
@=/2,19
@=/2,19
\,16
\/,16
\=/2,13
\==/2,13
+,16
+,57
\+/1,9
!/0,8

’,’/2,9
’->’/2,9
;/2,9
</2,14
=../2,16
=/2,13
=</2,14
==/2,13
>/2,14
>=/2,14
?=/2,13
@</2,13
@=</2,13
@>/2,13
@>=/2,13
[]/1,4
#</2,57
#=/2,57
#=</2,57
#>/2,57
#>=/2,57
abolish/0,38
abolish/2,38
abort/0,5
abs,16
abs,57
all different/1,57
all distinct/1,57
alldifferent/1,57
alldistinct/1,57
append/3,16
append/4,16
arg/3,16
array to list/2,19
assert/1,38
asserta/1,38
assertz/1,38
at end of stream/0,32
at end of stream/1,32
at least one/1,62
at most one/1,63
atan,16
atleast/2,57
atmost/2,57
atom/1,12
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atom chars/2,20
atom codes/2,20
atom concat/2,20
atom length/2,20
atomic/1,12
attr unify hook/3,51
attvar/1,51
bagof/3,11
bp build atom,79
bp build float,79
bp build integer,79
bp build list,79
bp build nil,79
bp build structure,79
bp build var,79
bp call string,82
bp call term,82
bp get arg,79
bp get arity,79
bp get call arg,78
bp get car,79
bp get cdr,79
bp get float,78
bp get integer,78
bp get name,79
bp is atom,78
bp is compound,78
bp is float,78
bp is identical,78
bp is integer,78
bp is list,78
bp is nil,78
bp is structure,78
bp is unifiable,78
bp unify,79
bp write,79
call/1,10
call/2−n,10
call cleanup/2,10
callable/1,13
catch/3,23
cd/1,89
ceiling,16
char code/2,20
chdir/1,89

circuit/1,58
cl/1,4
clause/2,38
close/1,31
close/2,31
clpset added/2,64
clpset disjoint/2,64
clpset excluded/2,64
clpset in/2,64
clpset low/2,64
clpset notin/2,65
clpset subset/2,64
clpset up/2,64
clpset var/1,64
compare/3,13
compile/1,3
compile clauses/1,4
compound/1,13
constraints number/2,51
consult/1,4
copy file/2,89
copy term/2,13
copy term nat/2,13
cos,16
count/3,58
cputime/1,92
cumulative/4,58
current input/1,31
current op/3,35
current output/1,31
current predicate/1,39
current prolog flag/2,27
cutto/1,9
date/1,89
date/3,89
del attr/2,51
delete/3,17
delete directory/1,89
delete file/1,89
deleteff/3,58
deleteffc/3,58
dif/2,53
diffn/1,58
directory exists/1,89
directory files/2,90
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domain/3,55
dvar/1,68
dynamic/1,25
element/3,57
eliminate duplicate/2,18
environ/2,89
erase/1,39
exactly/2,58
exists/1,36
expand environment/2,89
exp,16
fail/0,8
fd atleast/2,57
fd atmost/2,57
fd disjoint/2,56
fd dom/2,56
fd exactly/2,58
fd include/2,56
fd labeling ff/1,59
fd labeling ffc/1,59
fd max/2,56
fd maximize/2,61
fd min/2,56
fd min max/3,56
fd minimize/2,61
fd new var/1,56
fd next/3,56
fd prev/3,56
fd set false/2,56
fd size/2,56
fd true/2,56
fd var/1,56
fd vector min max/3,56
file base name/2,90
file directory name/2,90
file exists/1,90
file property/2,90
file stat/2,90
findall/3,11
flatten/2,17
float/1,12
float fractional part,16
float integer part,16
float,16
floor,16

flush output/0,32
flush output/1,32
forall/2,10
format/2,37
format/3,37
freeze/2,53
frozen/1,51
frozen/2,51
functor/3,16
get/1,36
get0/1,36
get attr/3,51
get byte/1,33
get byte/2,33
get char/1,32
get char/2,32
get code/1,33
get code/2,33
get cwd/1,89
get environment/2,89
get main args/1,88
getcwd/1,89
global cardinality/2,58
global get/2,39
global get/3,39
global heap get/2,40
global heap set/2,40
global set/2,39
global set/3,39
ground/1,13
halt/0,2
hashtable get/3,19
hashtable keys to list/2,20
hashtable register/3,19
hashtable size/2,20
hashtable to list/2,20
hashtable values to list/2,20
help/0,2
in/2,55
include/1,25
indomain/1,58
init profile/0,93
initialize bprolog,81
initialize table/1,76
integer/1,13
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interrupt,22
intersection/3,18
is/2,14
is global/1,39
is global/2,39
is global heap/1,40
is hashtable/1,19
is set/1,18
javaGetField/3,87
javaMethod/2,87
javaMethod/3,86
javaSetField/3,87
java exception,87
keysort/2,17
labeling/1,59
labeling/2,59
labeling ff/1,59
labeling ff max/1,59
labeling ff min/1,59
labeling ffc/1,59
labeling max/1,59
labeling min/1,59
labeling mix/2,61
labeling mix/3,61
labeling mix/4,60
labeling strategies/1,61
last/2,17
length/2,16
list to set/2,64
listing/0,4
listing/1,4
load/1,4
log,16
lp domain/3,66
lp integers/1,66
lp solve/1,66
lp solve/2,66
make directory/1,90
maxof/2,11
max,16
max,57
membchk/2,16
member/2,16
minof/2,11
min,16

min,57
mod,57
multifile/1,24
multifile/1,25
n vars gt/2,68
name/2,20
new array/2,18
new hashtable/1,19
new hashtable/2,19
nextto/3,17
nl/0,32
nl/1,32
nonvar/1,13
nospy/0,28
nospy/1,28
not/1,9
notin/2,55
notrace/0,28
nth/3,17
nth0/3,17
nth1/3,17
number/1,13
number chars/2,20
number codes/2,20
number vars/3,14
numbervars/3,14
numlist/3,17
once/1,10
only one/1,63
op/3,35
open/3,30
open/4,30
parse atom/2,21
parse atom/3,20
parse string/2,21
parse string/3,21
peek byte/1,33
peek byte/2,33
peek char/1,32
peek char/2,32
peek code/1,33
peek code/2,33
permutation/2,17
pi,16
portray clause/1,35
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portray clause/2,35
post event/2,47
post event df/2,47
post ins/1,47
predicate property/2,39
profile/0,93
profile compile/1,93
profile consult/1,93
profile src/1,93
put/1,36
put attr/3,51
put attr no hook/3,51
put byte/1,33
put byte/2,33
put char/1,32
put char/2,32
put code/1,33
put code/2,33
random,16
read/1,34
read/2,34
readFile/2,32
readLine/1,32
read term/2,34
read term/3,33
real/1,13
recorda/3,38
recorded/3,38
recordz/3,39
rename file/2,90
repeat/0,10
retract/1,38
retractall/1,38
reverse/2,17
round,16
savecp/1,9
scalar product/4,57
see/1,35
seeing/1,35
seen/0,36
select/3,17
set input/1,31
set output/1,32
set prolog flag/2,27
set to list/2,64

setarg/3,17
setof/3,11
sign,16
sin,16
sort/2,17
sort/3,17
spy/1,28
sqrt,16
statistics/0,91
statistics/2,92
stream property/2,31
sub atom/5,20
subgoal table size/1,76
subset/2,18
subset/2,64
subtract/3,18
sum/3,57
sumlist/3,17
sum,16
sum,57
system/1,89
system/2,89
tab/1,36
table/1,75
table all/0,75
table find all/2,76
table find one/1,76
table remove0/0,76
table remove1/1,76
tell/1,36
telling/1,36
term2atom/2,21
term2string/2,21
term variables/2,14
term variables/3,14
throw/1,22
time/1,89
time/3,89
time out/3,10
time out,60
timer/1,50
timer/2,50
timer get interval/2,50
timer kill/1,50
timer set interval/2,50
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timer start/1,50
timer stop/1,50
told/0,36
trace/0,28
true/0,8
truncate,16
union/3,18
unnumber vars/2,14
var/1,13
vars set/2,14
working directory/1,90
write/1,34
write/2,34
write canonical/1,34
write canonical/2,34
write string/1,21
write term/2,34
write term/3,34
writeq/1,35
writeq/2,34
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