
Rabbit 2000™ Microprocessor
User’s Manual

Revision A

Rabbit 2000 Microprocessor User’s Manual

Part Number 019-0069 • Revision A
Last revised on November 16, 1999 • Printed in U.S.A.

Copyright

© 1999 Rabbit Semiconductor • All rights reserved.

Rabbit Semiconductor reserves the right to make changes and improvements to its prod-
ucts without providing notice.

Trademarks

• Dynamic C® is a registered trademark of Z-World

• Z80/Z180™ is a trademark of Zilog, Inc.

Notice to Users

Rabbit Semiconductor products are not authorized for use as critical components in life-
support devices or systems unless a specific written agreement regarding such intended
use is entered into between the customer and Rabbit Semiconductor prior to use. Life-
support devices or systems are devices or systems intended for surgical impantation into
the body or to sustain life, and whose failure to perform, when properly used in accor-
dance with instructions for use provided in the labeling and user’s manual, can be reason-
ably expected to result in significant injury.

No complex software or hardware system is perfect. Bugs are always present in a system
of any size. In order to prevent danger to life or property, it is there responsibility of the
system designer to incorporate redundant protective mechanisms appropriate to the risk
involved.

Company Address

Rabbit Semiconductor
2932 Spafford Street
Davis, California 95616-6800
USA

Telephone: (530) 757-8400

Facsimile: (530) 757-8402

Web site: http://www.rabbitsemiconductor.com
Rabbit 2000 Microprocessor

Table of Contents

1. Introduction..7
1.1 Features and Specifications ...7

1.2 Summary of Rabbit Advantages ..11

2. Rabbit Design Features ..13
2.1 The Rabbit 8-bit Processor vs. 16-bit and 32-bit Processors ...13

2.2 Overview of On-Chip Peripherals ...14
2.2.1 Serial Ports ..14
2.2.2 System Clock...14
2.2.3 Time/Date Oscillator ...15
2.2.4 Parallel I/O...15
2.2.5 Slave Port ..15
2.2.6 Timers ..16

2.3 Design Standards ...18
2.3.1 Programming Port ...18
2.3.2 Standard BIOS...18

2.4 Dynamic C Software Support for the Rabbit...18

3. Details on Rabbit Microprocessor Features...19
3.1 Processor Registers ..19

3.2 Memory Mapping ..20
3.2.1 Extended Code Space ..24
3.2.2 Practical Memory Considerations ...25

3.3 Instruction Set Outline ...26
3.3.1 Instructions to Load Immediate Data To a Register ..27
3.3.2 Instructions to Load or Store Data from or to a Constant Address27
3.3.3 Instructions to Load or Store Data Using an Index Register...............................28
3.3.4 Register to Register Move Instructions ...29
3.3.5 Register Exchanges ...29
3.3.6 Push and Pop Instructions ...30
3.3.7 16-bit Arithmetic and Logical Operations...30
3.3.8 Input/Output Instructions ..33

3.4 How to Do It in Assembly Language—Tips and Tricks..33
3.4.1 Zero HL in 4 Clocks ..33
3.4.2 Exchanges Not Directly Implemented...34
3.4.3 Manipulation of Boolean Variables ...34
3.4.4 Comparisions of Integers...35
3.4.5 Atomic Moves from Memory to I/O Space...37

3.5 Interrupt Structure..38
3.5.1 Interrupt Priority..38
3.5.2 Multiple External Interrupting Devices...40
3.5.3 Privileged Instructions, Critical Sections and Semaphores.................................40
3.5.4 Critical Sections ..41
3.5.5 Semaphores Using Bit B,(HL) ..41
3.5.6 Computed Long Calls and Jumps..42
User’s Manual

4. Rabbit Capabilities...43
4.1 Precisely Timed Output Pulses.. 43

4.1.1 Pulse Width Modulation to Reduce Relay Power... 44

4.2 Open-Drain Outputs Used for Key Scan... 46

4.3 Cold Boot .. 46

4.4 The Slave Port ... 47
4.4.1 Slave Rabbit As A Protocol UART .. 48

5. Pin Assignments and Functions ...49
5.1 Package Schematic and Pin Names... 49

5.2 Package Mechanical Dimensions.. 50

5.3 Rabbit Pin Descriptions... 52

5.4 Bus Timing .. 58

5.5 Description of Pins with Alternate Functions ... 59

5.6 Register and Interrupt Vector Summary.. 61

6. Rabbit Internal I/O Registers ...63

7. Miscellaneous I/O Functions ...67
7.1 Rabbit Oscillators and Clocks ... 67

7.2 Clock Doubler ... 69

7.3 Controlling Power Consumption... 70

7.4 Output Pins CLK, STATUS, /WDTOUT, /IOBEN ... 71

7.5 Time/Date Clock (Real-Time Clock) .. 71

7.6 Watchdog Timer .. 73

7.7 System Reset ... 74

7.8 Rabbit Interrupt Structure.. 75
7.8.1 External Interrupts .. 77

7.9 Bootstrap Operation .. 79

8. Rabbit Memory Mapping and Interface...81
8.1 Memory-Mapping Unit ... 81

8.2 Memory Interface Unit.. 83

8.3 Memory Bank Control Register Functions ... 83
8.3.1 Optional A16, A19 Inversions by Segment (/CS1 Enable) 84

8.4 Allocation of Extended Code and Data... 84

8.5 How the Compiler Compiles to Memory.. 85

9. Parallel Ports ..87
9.1 Parallel Port A ... 87

9.2 Parallel Port B ... 88

9.3 Parallel Port C ... 88

9.4 Parallel Port D ... 89

9.5 Parallel Port E.. 92

10. I/O Bank Control Registers..95
Rabbit 2000 Microprocessor

11. Timers ..97
11.1 Timer A ..98

11.1.1 Timer A I/O Registers ..99
11.1.2 Practical Use of Timer A ...100

11.2 Timer B ..101
11.2.1 Using Timer B ...102

12. Rabbit Serial Ports ...105
12.1 Register Layout Serial Port..105

12.2 Serial Port Interrupt ...108

12.3 Transmit Serial Data Timing..109

12.4 Receive Serial Data Timing ...110

12.5 Clocked Serial Ports...110

12.6 Serial Port Software Suggestions...112
12.6.1 Controlling an RS-485 Driver and Receiver ...114
12.6.2 Transmitting Dummy Characters ..114
12.6.3 Transmitting and Detecting a Break..114
12.6.4 Using A Serial Port to Generate a Periodic Interrupt ..115
12.6.5 Working With Two Stop Bits or a Parity Bit ...115
12.6.6 Data Framing/Modbus...115

13. Rabbit Slave Port ...117
13.1 Hardware Design of Slave Port Interconnection ...120

13.2 Slave Port Registers ...121

13.3 Applications and Communications Protocols for Slaves...123
13.3.1 Slave Applications...123
13.3.2 Master-Slave Messaging Protocol ...123

14. Rabbit Hardware Design and Development ..127
14.1 RS-485 Communication Interface ...127

14.2 RS-232 Communication Interface ...127

14.3 Analog-to-Digital Converters ..127

14.4 Digital-to-Analog Converters ..127

14.5 High-Voltage Drivers ...127

14.6 Clocks ..127

14.7 Low-Power Design ..128

14.8 Basic Memory Design ...129
14.8.1 Memory Access Time..129
14.8.2 Precautions for Unprogrammed Flash Memory ..129

14.9 PC Board Layout and Memory Line Permutation ...131

15. AC Timing Specifications..133
15.1 Current Consumption...137

16. Rabbit Software ...139
16.1 Reading and Writing I/O Registers and Shadow Registers ...139

16.2 Shadow Registers...140

16.3 Timer and Clock Usage ...141

16.4 WatchDog Support Software ...142
16.4.1 The Watchdog Hardware ...143
16.4.2 The Virtual Watchdog System...143
User’s Manual

17. Rabbit Standard BIOS..145
17.1 The BIOS—More Details.. 145

17.2 BIOS Assumptions.. 146

17.3 Periodic Interrupt and Real-Time Clock BIOS Services... 146
17.3.1 Real-Time Clock Support ... 147
17.3.2 Watchdog Timer Support .. 147
17.3.3 Power Management Support... 147
17.3.4 Flash Memory Write Support ... 148

18. Rabbit Instructions ...149
18.1 Load Immediate Data .. 149

18.2 Load and Store to an Immediate Address ... 150

18.3 8-bit Indexed Load and Store .. 150

18.4 16-bit Indexed Loads and Stores ... 150

18.5 16-bit Load and Store 20-bit Address ... 150

18.6 Register to Register Moves ... 151

18.7 Exchange Instructions ... 151

18.8 Stack Manipulation Instructions.. 152

18.9 16-bit Arithmetic and Logical Operations .. 152

18.10 8-bit Arithmetic and Logical Operations .. 153

18.11 8-bit Bit Set, Reset and Test Instructions .. 154

18.12 8-bit Increment and Decrement... 154

18.13 8-bit Fast A register Operations .. 154

18.14 8-bit Shifts and Rotates ... 155

18.15 Instruction Prefixes ... 156

18.16 Block Move Instructions ... 156

18.17 Control Instructions - Jumps and Calls ... 156

18.18 Miscellaneous Instructions.. 157

18.19 Privileged Instructions... 157

19. Differences Rabbit vs. Z80/Z180 Instructions...159

20. Instructions in Alphabetical Order With Binary Encoding..................................161

Appendix A..167
A.1 Rabbit Programming Port.. 167

A.1.1 Use of the Programming Port as a Diagnostic/Setup Port 167
A.1.2 Alternate Programming Port ... 168

A.2 Suggested Rabbit Crystal Frequencies.. 169

Legal Notice...171
Rabbit 2000 Microprocessor

1. Introduction

Rabbit Semiconductor was formed expressly to design a a better microprocessor for use in
small and medium-scale controllers. The first product is the Rabbit 2000 microprocessor.
The Rabbit 2000 designers have had years of experience using Z80, Z180 and HD64180
microprocessors in small controllers. The Rabbit shares a similar architecture and a high
degree of compatibility with these microprocessors, but it is a vast improvement.

The Rabbit has been designed in close cooperation with Z-World, Inc., a long-time manu-
facturer of low-cost single-board computers. Z-World’s products are supported by an in-
novative C-language development system (Dynamic C). Z-World is providing the
software development tools for the Rabbit.

The Rabbit is easy to use. Hardware and software interfaces are as uncluttered and are as
foolproof as possible. The Rabbit has outstanding computation speed for a microproces-
sor with an 8-bit bus. This is because the Z80-derived instruction set is very compact and
the design of the memory interface allows maximum utilization of the memory bandwidth.
The Rabbit races through instructions.

Traditional microprocessor hardware and software development is simplified for Rabbit
users. In-circuit emulators are not needed and will not be missed by the Rabbit developer.
Software development is accomplished by connecting a simple interface cable from a PC
serial port to the Rabbit-based target system.

1.1 Features and Specifications

• 100-pin PQFP package. Operating voltage 2.7 V to 5 V. Clock speed to 30 MHz. All
specifications are given for both industrial and commercial temperature and voltage
ranges. Rabbit microprocessors cost under $10 in moderate quantities.

Industrial specifications are for a voltage variation of 10% and a temperature range
from –40°C to +85°C. Commercial specifications are for a voltage variation of 5% and
a temperature range from 0°C to 70°C.

• 1-megabyte code space allows C programs with up to 50,000+ lines of code. The
extended Z80-style instruction set is C-friendly, with short and fast instructions for
most common C operations.

• Four levels of interrupt priority make a fast interrupt response practical for critical
applications. The maximum time to the first instruction of an interrupt routine is about
1 µs at a clock speed of 25 MHz.

• Access to I/O devices is accomplished by using memory access instructions with an I/O
prefix. Access to I/O devices is thus faster and easier compared to processors with a
restricted I/O instruction set.
User’s Manual 7

• The hardware design rules are simple. Up to six static memory chips (such as RAM
and flash EPROM) connect directly to the microprocessor with no glue logic. Even
larger amounts of memory can be handled by using parallel I/O lines as high-order
address lines. The Rabbit runs with no wait states at 24 MHz with a memory having an
access time of 70 ns. There are two clocks per memory access. Most I/O devices may
be connected without glue logic.

The memory cycle is two clocks long. A clean memory and I/O cycle completely avoid
the possibility of tri-state fights. Peripheral I/O devices can usually be interfaced in a
glueless fashion using pins programmable as I/O chip selects, I/O read strobes or I/O
write strobe pins. A built-in clock doubler allows ½-frequency crystals to be used to
reduce radiated emissions.

• The Rabbit may be cold-booted via a serial port or the parallel access slave port. This
means that flash program memory may be soldered in unprogrammed, and can be
reprogrammed at any time without any assumption of an existing program or bios. A
Rabbit that is slaved to a master processor can operate entirely with volatile RAM,
depending on the master for a cold program boot.

• There are 40 parallel I/O lines (shared with serial ports). Some I/O lines are timer syn-
chronized, which permits precisely timed edges and pulses to be generated under com-
bined hardware and software control.

• There are four serial ports. All four serial ports can operate asynchronously in a variety
of customary operating modes; two of the ports can also be operated synchronously to
interface with serial I/O devices. The baud rates can be very high—1/32 the clock
speed for asynchronous operation and 1/8 the clock speed in synchronous mode. In
asynchronous mode, the Rabbit, like the Z180, supports sending flagged bytes to mark
the start of a message frame. The flagged bytes have 9 data bits rather than 8 data bits;
the extra bit is located after the first 8 bits, where the stop bit is normally located, and
marks the start of a message frame.

• A slave port allows the Rabbit to be used as an intelligent peripheral device slaved to a
master processor. The 8-bit slave port has six 8-bit registers, 3 for each direction of
communication. Independent strobes and interrupts are used to control the slave port in
both directions. Only a Rabbit and a RAM chip are needed to construct a complete
slave system if the clock and reset are shared with the master processor

• The built-in battery-backable time/date clock uses an external 32.768 kHz crystal. The
time/date clock can also be used to provide periodic interrupts every 488 µs. Typical
battery current consumption is 25 µA with the suggested battery circuit. An alternative
circuit provides means for substantially reducing this current.

• Numerous timers and counters (six all together) can be used to generate interrupts,
baud rate clocks, and timing for pulse generation.
8 Rabbit 2000 Microprocessor

• The built-in main clock oscillator uses an external crystal or more usually a ceramic
resonator. Typical resonator frequencies are in the rang eof 1.8 MHz to 29.5 MHz.
Since precision timing is available from the separate 32.768 kHz oscillator, a low-cost
ceramic resonator with ½ percent error is generally satisfactory. The clock can be dou-
bled or divided by 8 to modify speed and power dynamically. The I/O clock, which
clocks the serial ports, is dividedseparately so as not to affect baud rates and timers
when the processor clock is divided or multiplied. For ultra low power operation, the
processor clock can be driven from the separate 32.768 kHz oscillator and the main
oscillator can be powered down. This allows the processor to operate at approximately
100 µA and still execute instructions at the rate of approximately 10,000 instructions
per second. This is a powerful alternative to sleep modes of operation used by other
processors. The current is approximately 65 mA at 25 MHz and 5 V. The current is
proportional to voltage and clock speed—at 3.3 V and 7.68 MHz the current would be
13 mA, and at 1 MHz the current is reduced to less than 2 mA. Flash memory with
automatic power down (from AMD) should be used for operation at the lowest power.

• The excellent floating-point performance is due to a tightly coded library and powerful
processing capability. For example, a 25 MHz clock takes 14 µs for a floating add,
13 µs for a multiply, and 40 µs for a square root. In comparison, a 386EX processor
running with an 8-bit bus at 25 MHz and using Borland C is about 10 times slower.

• There is a built-in watchdog timer.

• The standard 10-pin programming port eliminates the need for in-circuit emulators. A
very simple 10 pin connector can be used to download and debug software using
Z-World’s Dynamic C and a simple connection to a PC serial port. The incremental
cost of the programming port is extremely small.
User’s Manual 9

Figure 1 shows a block diagram of the Rabbit.

Figure 1. Block Diagram of the Rabbit Microprocessor

���

��������	
��������
���
������

������
�����������
�������

�������
������

������	����

��������

��������
����	�

��������
����	�

��������
����	�

��������
����	

������
�������

����
 ���������

��������
����	�

!����	�

!����	�

"�����	����	�
������
"�����

"����
"�����

������
���������

"����
���������

#���$!���
����%

"�����	����	�
������������

"�����

"����������
"�����

&'()*+	%,-
 ���������

.�������
!����

������������
"�����

"�����	����	���������

���������

������������
"�����

"�����	����	
��������	
�
����	
��������

"��/�	����
"��/�	
��������

��������

���������

��
�

�
�

�

�	

�

�

�	

�

�

�

�

�
�

�

�
�

�

�
�

�
�

�

�
�

�
��

�
�

�

��
�

�

�

�

�
�

�

�
�

��
�

�
�

0+
	�
���
1

�����

������

����
�

����
�

������

������

	��	�

	������	����
	���
��	���

����������������
�
�����
��
����������

�������

�
���
�

�������

�������

�������

�����������
��������������

���
�����
�
��
����
�����

��������

��������

��������
��������
�����������������
����������

��������
��
02*	����1

���������	
��������
10 Rabbit 2000 Microprocessor

1.2 Summary of Rabbit Advantages

• The glueless architecture makes it is easy to design the hardware system.

• There are a lot of serial ports and they can communicate very fast.

• Precision pulse and edge generation is a standard feature.

• Interrupts can have multiple priorities.

• Processor speed and power consumption are under program control.

• The ultra low power mode can perform computations and execute logical tests since the
processor continues to execute, albeit at 32 kHz.

• The Rabbit may be used to create an intelligent peripheral or a slave processor. For
example, protocol stacks can be off loaded to a Rabbit slave. The master can be any
processor.

• The Rabbit can be cold booted so unprogrammed flash memory can be soldered in
place.

• You can write serious software, be it 1,000 or 50,000 lines of C code. The tools are
there and they are low in cost.

• If you know the Z80 or Z180, you know most of the Rabbit.

• A simple 10-pin programming interface replaces in-circuit emulators and PROM pro-
grammers.

• The battery backable time/date clock is included.

• The standard Rabbit chip is made to industrial temperature and voltage specifications.
User’s Manual 11

12 Rabbit 2000 Microprocessor

2. Rabbit Design Features

The Rabbit is an evolutionary design. The instruction set and the register layout is that of
the Z80 and Z180. The instruction set has been augmented by a substantial number of
new instructions. Some obsolete or redundant Z180 instructions have been dropped to
make available efficient 1-byte opcodes for important new instructions. (see “Differences
Rabbit vs. Z80/Z180 Instructions” on page 159.) The advantage of this evolutionary ap-
proach is that users familiar with the Z80 or Z180 can immediately understand the Rabbit.
Existing source code can be assembled or compiled for the Rabbit with minimal changes.

Changing technology has made some features of the Z80/Z180 family obsolete, and these
have been dropped. For example, the Rabbit has no special support for dynamic RAM but
it has extensive support for static memory. This is because the price of static memory has
decreased to the point that it has become the preferred choice for medium-scale embedded
systems. The Rabbit has no support for DMA (direct memory access) because most of the
uses for which DMA is traditionally used do not apply to embedded systems, or they can
be accomplished better in other ways, such as fast interrupt routines, external state ma-
chines or slave processors.

Our experience in writing C compilers has revealed the shortcomings of the Z80 instruc-
tion set for executing the C language. The main problem is the lack of instructions for
handling 16-bit words and for accessing data at a computed address, especially when the
stack contains that data. New instructions correct these problems.

Another problem with many 8-bit processors is their slow execution and a lack of number-
crunching ability. Good floating-point arithmetic is an important productivity feature in
smaller systems. It is easy to solve many programming problems if an adequate floating-
point capability is available. The Rabbit’s improved instruction set provides fast floating-
point and fast integer math capabilities.

The Rabbit supports four levels of interrupt priorities. This is an important feature that al-
lows the effective use of super fast interrupt routines for real-time tasks.

2.1 The Rabbit 8-bit Processor vs. 16-bit and 32-bit Processors

The Rabbit is a 16-bit processor with an 8-bit data bus. Because it make the most of its
8-bit bus and because it has a compact instructions set, its performance is as good as many
16-bit processors.

We hesitate to compare the Rabbit to 32-bit processors, but there are undoubtedly occa-
sions where the user can use a Rabbit instead of a 32-bit processor and save a vast amount
of money. Many Rabbit instructions are 1 byte long. In contrast, the minimum instruction
length on most 32-bit RISC processors is 32 bits.
User’s Manual 13

2.2 Overview of On-Chip Peripherals

The on-chip peripherals were chosen based on our experience as to what types of periph-
eral devices are most useful in small embedded systems. The major on-chip peripherals
are the serial ports, system clock, time/date oscillator, parallel I/O, slave port, and timers.
These are described below.

2.2.1 Serial Ports

There are four serial ports designated ports A, B, C, and D. All four serial ports can oper-
ate in an asynchronous mode up to a baud rate of the system clock divided by 32. The
asynchronous ports can handle 7 or 8 data bits. A 9th bit address scheme, where an addi-
tional bit is sent to mark the first byte of a message, is also supported. The software can
tell when the last byte of a message has finished transmitting from the output shift register
- correcting an important defect of the Z180. This is important for RS-485 communication
because the line driver cannot have the direction of transmission reversed until the last bit
has been sent. In many UART’s, including those on the Z180, it is difficult to generate an
interrupt after the last bit is sent. Parity bits and multiple stop bits are not supported di-
rectly by the Rabbit, but can be accomplished with appropriate driving software.

Serial ports A and B can be operated alternately in the clocked serial mode. In this mode,
a clock line synchronously clocks the data in or out. Either device of the 2 devices com-
municating can supply the clock. When the Rabbit provides the clock, the baud rate can
be as fast as 1/8th of the system clock frequency, or more than 3,000,000 bits per second.

Serial port A has special features. It can be used to cold boot the system after reset. Serial
port A is the normal port that is used for software development under Dynamic C.

2.2.2 System Clock

The main oscillator uses an external crystal with a frequency typically in the range from
1.8 MHz to 29.5 MHz. The processor clock is derived from the oscillator output by either
doubling the frequency, using the frequency directly, or dividing the frequency by 8. The
processor clock can also be driven by the 32.768 kHz oscillator for very low power opera-
tion, in which case the main oscillator can be shut down under software control.

Table 1 provides preliminary estimates of the operating power for selected clock speeds.

Table 1. Preliminary Operating Power Estimates at Selected Clock Speeds

Clock Speed
(MHz)

Voltage
(V)

Current
(mA)

Power
(mW)

Clock Speed
(MHz)

Voltage
(V)

Current
(mA)

Power
(mW)

25.0 5.0 80 400 6.0 2.5 10 25

12.5 5.0 40 200 3.0 2.5 5 12

12.5 3.3 26 87 1.5 2.5 2.5 6

6.0 3.3 13 42 0.032 2.5 0.054 0.135
14 Rabbit 2000 Microprocessor

2.2.3 Time/Date Oscillator

The 32.768 kHz oscillator drives an external 32.768 kHz quartz crystal. The 32.768 kHz
clock is used to drive a battery-backable (there is a separate power pin) internal 48-bit
counter that serves as a real-time clock (RTC). The counter can be set and read by soft-
ware and is intended for keeping the date and time. There are enought bits to keep the date
for more than 100 years. The 32.768 kHz oscillator is also used to drive the watchdog
timer and to generate the baud clock for serial port A during the cold boot sequence.

2.2.4 Parallel I/O

There are 40 parallel input/output lines divided among five 8-bit ports designated A
through E. Most of the port lines have alternate functions, such as serial data or chip se-
lect strobes. Parallel ports D and E have the capability of timer-synchronized outputs.
The output registers are cascaded.

Figure 2. Cascaded Output Registers for Parallel Ports D and E

Stores to the port are loaded in the first-level register. That register in turn is transferred to
the output register on a selected timer signal. The timer signal can also cause an interrupt
that can be used to set up the next bit to be output on the next timer pulse. This feature can
be used to generate precisely controlled pulses whose edges are positioned with high accu-
racy in time. Applications include communications signaling, pulse width modulation and
driving stepper motors.

2.2.5 Slave Port

The slave port is designed to allow the Rabbit to be a slave to another processor, which
could be another Rabbit. The port is shared with parallel port A and is a bidirectional data
port. The master can read any of three registers selected via two select lines that form the
register address and a read strobe that causes the register contents to be output by the port.
These same registers can be written as I/O registers by the Rabbit slave. Three additional
registers transmit data in the opposite direction. They are written by the master by means
of the two select lines and a write strobe.

Timer Clock

Load Clock

Load Data

Port Output
User’s Manual 15

Figure 3 shows the data paths in the slave port.

Figure 3. Slave Port Data Paths

The slave Rabbit can read the same registers as I/O registers. When incoming data bits are
written into one of the registers, status bits indicate which registers have been written, and
an optional interrupt can be programmed to take place when the write occurs. When the
slave writes to one of the registers carrying data bits outward, an attention line is enabled
so that the master can detect the data change and be interrupted if desired. One line tells
the master that the slave has read all the incoming data. Another line tells the master that
new outgoing data bits are available and have not yet been read by the master. The slave
port can be used to direct the master to perform tasks using a variety of communication
protocols over the slave port.

2.2.6 Timers

The Rabbit has several timer systems. The periodic interrupt is driven by the 32.768 kHz
oscillator divided by 16, giving an interrupt every 488 µs if enabled. This is intended to be
used as a general-purpose clock interrupt. Timer A consists of five 8-bit countdown and
reload registers that can be cascaded up to two levels deep. Each countdown register can
be set to divide by any number between 1 and 256. The output of four of the timers is
used to provide baud clocks for the serial ports. Any of these registers can also cause in-
terrupts and clock the timer-synchronized parallel output ports. Timer B consists of a 10-
bit counter that can be read but not written. There are two 10-bit match registers and com-
parators. If the match register matches the counter, a pulse is output. Thus the timer can
be programmed to output a pulse at a predetermined count in the future. This pulse can be
used to clock the timer-synchronized parallel-port output registers as well as cause an in-
terrupt. Timer B is convenient for creating an event at a precise time in the future under
program control.

CPU
Master
Processor

Slave Interface Registers

Input Register

Output Registers

Control

Rabbit
16 Rabbit 2000 Microprocessor

Figure 4 illustrates the Rabbit timers.

Figure 4. Rabbit Timers

A1

perclk/2
A4

A5

A6

A7

Timer A System

10-bit counter

match reg

match reg

compare

Timer B System

next match

next match

10 bits

Timer_B1

Timer_B2

f/8
User’s Manual 17

2.3 Design Standards

The same functionality can be accomplished in many ways using the Rabbit. By publish-
ing design standards, or standard ways to accomplish common objectives, software and
hardware support become easier.

2.3.1 Programming Port

Rabbit Semiconductor publishes a specification for a standard programming port (see:
“Rabbit Programming Port” on page 167) and provides a converter cable that may be used
to connect a PC serial port to the standard programming interface. The interface is imple-
mented using a 10-pin connector with two rows of pins on 2 mm. centers. The port is con-
nected to Rabbit serial port A, to the startup mode pins on the Rabbit, to the Rabbit reset
pin, and to a programmable output pin that is used to signal the PC that attention is
needed. With proper precautions in design and software, it is possible to use serial port A
as both a programming port and as a user-defined serial port, although this will not be nec-
essary in most cases.

Rabbit Semiconductor supports the use of the standard programming port and the standard
programming cable as a diagnostic and setup port to diagnosis problems or set up systems
in the field.

2.3.2 Standard BIOS

Rabbit Semiconductor provides a standard BIOS for the Rabbit. The BIOS is a software
program that manages startup and shutdown, and provides basic services for software run-
ning on the Rabbit.

2.4 Dynamic C Software Support for the Rabbit

Dynamic C is Z-World’s interactive C language development system. Dynamic C runs on
a PC under Windows 95/98 or Windows NT. It provides a combined compiler, editor and
debugger. The usual method for debugging a target system based on the Rabbit is to im-
plement the 10-pin programming connector that connects to the PC serial port via a stan-
dard converter cable. Dynamic C libraries contain highly perfected software to control the
Rabbit. These includes drivers, utility and math routines and the debugging BIOS for Dy-
namic C.

 In addition, the internationally known real-time operating system uC/OS-II is being
ported to the Rabbit and will be available with some versions of Dynamic C.
18 Rabbit 2000 Microprocessor

3. Details on Rabbit Microprocessor Features

3.1 Processor Registers

The Rabbit’s registers are nearly identical to those of the Z180 or the Z80. Figure 5 shows
the register layout. The XPC and IP registers are new. The EIR register is the same as the
Z80 I register, and is used to point to a table of interrupt vectors for the externally gener-
ated interrupts. The IIR register occupies the same logical position in the instruction set as
the Z80 R register, but its function is to point to an interrupt vector table for internally gen-
erated interrupts.

Figure 5. Rabbit Registers

The Rabbit (and the Z80/Z180) processor has two accumulators—the A register serves as
an 8-bit accumulator for 8-bit operations such as add or and. The 16-bit register HL regis-
ter serves as an accumulator for 16-bit operations such as add hl,de, which adds the 16-bit
register DE to the 16-bit accumulator HL. For many operations IX or IY can substitute for
hl as accumulators.

The register marked F is the flags register or status register, and it holds a number of flags
that provide information about the last operation performed. The flag register cannot be
accessed directly except by using the pop af and push af instructions. Normally the flags
are tested by conditional jump instructions. The flags are set to mark the results of arith-
metic and logic operations according to rules that are specified for each instruction. There
are four unused read/write bits in the flag register that are available to the user via the push

A F
H L

D E

B C

IX

IY

SP

PC

A’ F’
H’ L’

D’ E’

B’ C’

Alternate Registers

A- 8-bit accumulator
F - flags register
HL- 16-bit accumulator
IX, IY - Index registers/alt accum’s
SP - stack pointer
PC- program counter
XPC - extension of program counter
IIR - internal interrupt register
EIR-external interrupt register
IP - interrupt priority register

IP

XPC

IIR

EIR

F - flag register layout

S Z V C

S-sign, Z-zero, V-overflow, C-carry

x x x x

Bits marked "x" are read/write.

8 / 16 bit
registers
User’s Manual 19

af and pop af instructions. These bits should be used with caution since new-generation
Rabbit processors could use these bits for new purposes.

The registers IX, IY and HL can also serve as index registers. They point to memory ad-
dresses from which data bits are fetched or stored. Although the Rabbit can address a
megabyte or more of memory, the index registers can only directly address 64K of mem-
ory (except for certain extended addressing "ldp" instructions). The addressing range is
expanded by means of the memory mapping hardware (see “Memory Mapping” on
page 20) and by special instructions. For most embedded applications, 64K of data mem-
ory (as opposed to code memory) is sufficient. The Rabbit can handle a megabyte of code
space in an efficient manner.

The register SP points to the stack that is used for subroutine and interrupt linkage as well
as general-purpose storage.

A feature of the Rabbit (and the Z80/Z180) is the alternate register set. Two special in-
structions swap the alternate registers with the regular registers. The instruction ex af,af’
exchanges the contents of AF with AF’. The instruction exx exchanges HL, DE, and BC
with HL’, DE’, and BC’. Communication between the regular and alternate register set in
the original Z80 architecture was difficult because the exchange instructions provided the
only means of communication between the regular and alternate register sets. The Rabbit
has new instructions that greatly improve communication between the regular and alter-
nate register set. This effectively doubles the number of registers that are easily available
for the programmer’s use. It is not intended that the alternate register set be used to pro-
vide a separate set of registers for an interrupt routine, and Dynamic C does not support
this usage because it uses both registers sets freely.

The IP register is the interrupt priority register. It contains four 2-bit fields that hold a his-
tory of the processor’s interrupt priority. The Rabbit supports four levels of processor pri-
ority, something that exists only in a very restricted form in the Z80 or Z180.

3.2 Memory Mapping

Except for a handful of special instructions (see “16-bit Load and Store 20-bit Address” on
page 150), the Rabbit instructions directly address a 64K data memory space. This means
that the address fields in the instructions are 16 bits long and that the registers that may be
used as pointers to memory addresses (index registers (ix, iy), program counter and stack
pointer (sp)) are also 16 bits long.

Because Rabbit instructions use 16-bit addresses, the instructions are shorter and can exe-
cute much faster than, for example, 32-bit addresses. The executable code is also very
compact. Even though these 16-bit addresses are a valuable asset, they do create some
complications because a memory-mapping unit is needed in order to access a reasonable
amount of memory for modern C programs.
20 Rabbit 2000 Microprocessor

The Rabbit memory-mapping unit is similar to, but more powerful than, the Z180 mem-
ory-mapping unit. Figure 6 illustrates the relationship among the major components re-
lated to addressing memory.

Figure 6. Addressing Memory Components

The memory-mapping unit receives 16-bit addresses as input and outputs 20-bit addresses.
The processor (except for certain ldp instructions) sees only a 16-bit address space. That
is, it sees 65536 distinctly addressable bytes that its instructions can manipulate. Three
segment registers are used to map this 16-bit space into a 1-megabyte space. The 16-bit
space is divided into four separate zones. Each zone, except the first or root zone, has a
segment register that is added to the 16-bit address within the zone to create a 20-bit ad-
dress. The segment register has eight bits and those eight bits are added to the upper four
bits of the 16-bit address, creating a 20-bit address. Thus, each separate zone in the 16-bit
memory becomes a window to a segment of memory in the 20-bit address space. The rel-
ative size of the four segments in the 16-bit space is controlled by the SEGSIZE register.
This is an 8-bit register that contains two 4-bit registers. This controls the boundary be-
tween the first and the second segment and the boundary between the second and the third
segment. The location of the two movable segment boundaries is determined by a 4-bit
value that specifies the upper four bits of the address where the boundary is located.
These relationships are illustrated in Figure 7.

The names given to the segments in the figure are evocative of the common uses for each
segment. The root segment is mapped to the base of flash memory and contains the star-
tup code as well as other code that may happen to be stored there. The data segment usage
varies depending on the overall strategy for setting up memory. It may be an extension of
the root segment or it may contain data variables. The stack segment is normally 4K long
and it holds the system stack. The XPC segment is normally used to execute code that is
not stored in the root segment or the data segment. Special instructions support executing
code that is visible in the XPC segment.

Memory
Chips

Processor
Memory
Mapping
Unit

Memory
Interface
Unit16

bits
20
bits 20 bits plus control
User’s Manual 21

Figure 7. Example of Memory Mapping Operation

10000

E000

D000

7000

0000

16-bit
address space

XPC
segment

stack segment

data segment

root segment

7D

20-bit
address space

00000

07000

07000
79
80000

0D000
80
8D000

0E000
85
93000

SEGSIZE
register

85

80

79

XPC register

STACKSEG register

DATASEG register

10000
22 Rabbit 2000 Microprocessor

The memory interface unit receives the 20-bit addresses generated by the memory-map-
ping unit. The memory interface unit conditionally modifies address lines A16, A18 and
A19. The other address lines of the 20-bit address are passed unconditionally. The mem-
ory interface unit provides control signals for external memory chips. These interface sig-
nals are chip selects (/CS0, /CS1, /CS2), output enables (/OE0, /OE1), and write enables
(/WE0, /WE1). These signals correspond to the normal control lines found on static mem-
ory chips (chip select or /CS, output enable or /OE, and write enable or /WE). In order to
generate these memory control signals, the 20-bit address space is divided into four quad-
rants of 256K each. A bank control register for each quadrant determines which of the
chip selects and which pair of output enables, and write enables (if any) is enabled when a
memory read or write to that quadrant takes place. For example, if a 512K x 8 flash mem-
ory is to be accessed in the first 512K of the 20-bit address space, then /CS0, /WE0, /OE0
could be enabled in both quadrants.

Figure 8 shows a memory interface unit.

Figure 8. Memory Interface Unit

/CS0

/CS1

/CS2

/OE0

/WE0

/OE1

/WE1

A19in

A18in

A18

A19

A18in

A19in

A16

A19in’

Optional A16 inversion

Optional A19 inversion

Address lines output

memory
control

memory
control
lines

A18, A19 invertable
by quadrant

Read/Write
Synchronization

A16in

A19 subject to I & D inversion

Axxin -from processor
Axx -out from memory
 control unit
Address lines not shown
passed directly.

(not presently supported by Dynamic C)
User’s Manual 23

3.2.1 Extended Code Space

A crucial element of the Rabbit memory mapping scheme is the ability to execute pro-
grams containing up to a megabyte of code in an efficient manner. This ability is absent in
a pure 16-bit address processor, and it is poorly supported by the Z180 through its memory
mapping unit. On paged processors, such as the 8086, this capability is provided by pag-
ing the code space so that the code is stored in many separate pages. On the 8086 the page
size is 64K, so all the code within a given page is accessible using 16-bit addressing for
jumps, calls and returns. When paging is used, a separate register (CS on the 8086) is used
to determine where the active page currently resides in the total memory space. Special
instructions make it possible to jump, call or return from one page to another. These spe-
cial instructions are called long calls, long jumps and long returns to distinguish them
from the same operations that only operate on 16-bit variables.

The Rabbit also uses a paging scheme to expand the code space beyond the reach of a 16-
bit address. The Rabbit paging scheme uses the concept of a sliding page, which is 8K
long. This is the XPC segment. The 8-bit XPC register serves as a page register to specify
the part of memory where the window points. When a program is executed in the XPC
segment, normal 16-bit jumps, calls and returns are used for most jumps within the win-
dow. Normal 16-bit jumps, calls and returns may also be used to access code in the other
three segments in the 16-bit address space. If a transfer of control to code outside the win-
dow is required, then a long jump, long call or long return is used. These instructions
modify both the program counter (PC) and the XPC register, causing the XPC window to
point to a different part of memory where the target of the long jump, call or return is lo-
cated. The XPC segment is always 8K long. The granularity with which the XPC seg-
ment can be positioned in memory is 4K. Because the window can be slid by one-half of
its size, it is possible to compile continuously without unused gaps in memory.

As the compiler generates code resident in the XPC window, the window is slid down by
4K when the code goes beyond F000. This is accomplished by a long jump that reposi-
tions the window 4K lower. This is illustrated by Figure 9 on page 25. The compiler is
not presented with a sharp boundray at the end of the page because the window does not
run out of space when code passes F000 unless 4K more of code is added before the win-
dow is slid down. All code compiled for the XPC window has a 24-bit address consisting
of the 8-bit XPC and the 16-bit address. Short jumps and calls can be used, provided that
the source and target insructions both have the same XPC address. Generally this means
that each instruction belongs to a window that is approximately 4K long and has a 16-bit
address between E000+n and F000+m, where n and m are on the order of a few dozen
bytes, but can be up to 4096 bytes in length. Since the window is limited to no more than
8K, the compiler is unable to compile a single expression that requires more than 8K or so
of code space. This is not a practical consideration since expressions longer than a few
hundred bytes are in the nature of stunts rather than practical programs.

Program code can reside in the root segment or the XPC segment. Program code may also
be resident in the data segment. Code can be executed in the stack segment, but this is
usually restricted to special situations. Code in the root, meaning any of the segments
other than the XPC segment, can call other code in the root using short jumps and calls.
24 Rabbit 2000 Microprocessor

Code in the XPC segment can also call code in the root using short jumps and calls. How-
ever, a long call must be used when code in the XPC segment is called. Functions located
in the root have an efficiency advantage because a long call and a long return require 32
clocks to execute, but a short call and a short return require only 20 clocks to execute. The
difference is small, but significent for short subroutines.

Figure 9. Use of XPC Segment

3.2.2 Practical Memory Considerations

The simplest Rabbit configurations have one flash memory chip interfaced using /CS0 and
one RAM memory chip interfaced using /CS1. The smallest practical amount of flash is
128K and the smallest practical amount of RAM is 32K. Smaller chips could be sup-
ported, but such small static memories are obsolete parts, so no support is offered.

Although the Rabbit can support code size approaching a megabyte, it is anticipated that
the great majority of applications will use less then 250K of code, equivalent to approxi-
mately 10,000–20,000 C statements. This reflects both the compact nature of Rabbit code
and the typical size of embedded applications.

Directly accessible C variables are limited to approximately 44K of memory, split be-
tween data stored in flash and RAM. This will be more than adequate for many embedded
applications. Some applications may require large data arrays or tables that will require
additional data memory. For this purpose Dynamic C supports a type of extended data
memory that allows the use of additional data memory, even extending far beyond a mega-
byte.

10000

E000

D000
Stack segment

Data segment

Root segment

short
calls
returns

XPC=N
PC=F000+K

XPC=N+1
PC=E000+K+4

Illustration of sliding XPC window

 E000

 F000

Compiler notices that
code has passed F000.

Compiler inserts
long jump in code.

XPC segment
User’s Manual 25

Requirements for stack memory depend on the type of application and particularly
whether preemptive multitasking is used. If preemptive multitasking is used, then each
task requires its own stack. Since the stack has its own segment in 16-bit address space, it
is easy to use available RAM memory to support a large number of stacks. When a pre-
emptive change of context takes place, the STACKSEG register can be changed to map
the stack segment to the portion of RAM memory that contains the stack associated with
the new task that is to be run. Normally the stack segment is 4K, which is typically large
enough to provide space for several (typically four) stacks. It is possible to enlarge the
stack segment if stacks larger than 4K are needed. If only one stack is needed, then it is
possible to eliminate the stack segment entirely and place the single stack in the data seg-
ment. This option is attractive for systems with only 32K of RAM that don’t need multi-
ple stacks.

3.3 Instruction Set Outline

“Instructions to Load Immediate Data To a Register” on page 27
“Instructions to Load or Store Data from or to a Constant Address” on page 27
“Instructions to Load or Store Data Using an Index Register” on page 28
“Register to Register Move Instructions” on page 29
“Register Exchanges” on page 29
“Push and Pop Instructions” on page 30
“16-bit Arithmetic and Logical Operations” on page 30
“Input/Output Instructions” on page 33

In the discussion that follows, we give a few example instructions in each general category
and contrast the Z80/ Z180 with the Rabbit. For a detailed description of every instruc-
tion, See “Rabbit Instructions” on page 149.

The Rabbit executes instructions in fewer clocks then the Z80 or Z180. The Z180 usually
requires a minimum of four clocks for 1-byte opcodes or three clocks for each byte for
mult-byte op codes. In addition, three clocks are required for each data byte read or writ-
ten. Many instructions in the Z180 require a substantial number of additional clocks. The
Rabbit usually requires two clocks for each byte of the op code and for each data byte
read. Three clocks are needed for each data byte written. One additional clock is required
if a memory address needs to be computed or an index register is used for addressing.
Only a few instructions don’t follow this pattern. An example is mul, a 16 x 16 bit signed
two’s complement multiply. mul is a 1-byte op code, but requires 12 clocks to execute.
Compared to the Z180, not only does the Rabbit require fewer clocks, but in a typical situ-
ation it has a higher clock speed and its instructions are more powerful.

The most important instruction set improvements in the Rabbit over the Z180 are in the
following areas.

• Fetching and storing data, especially 16-bit words, relative to the stack pointer or the
index registers IX, IY, and HL.

• 16-bit arithmetic and logical operations, including 16-bit and’s, or’s, shifts and 16-bit
multiply.
26 Rabbit 2000 Microprocessor

• Communication between the regular and alternate registers and between the index reg-
isters and the regular registers is greately facilitated by new instructions. In the Z180
the alternate register set is difficult to use, while in the Rabbit it is well integrated with
the regular register set.

• Long calls, long returns and long jumps facilitate the use of 1M of code space. This
removes the need in the Z180 to utilize inefficient memory banking schemes for larger
programs that exceed 64K of code.

• Input/output instructions are now accomplished by normal memory access instructions
prefixed by an op code byte to indicate access to an I/O space. There are two I/O
spaces, internal peripherals and external I/O devices.

Some Z80 and Z180 instructions have been deleted and are not supported by the Rabbit
(see Section 19, “Differences Rabbit vs. Z80/Z180 Instructions,” on page 159). Most of
the deleted instructions are obsolete or are little-used instructions that can be emulated by
several Rabbit instructions. It was necessary to remove some instructions to free up
1-byte op codes needed to implement new instructions efficiently. The instructions were
not re-implemented as 2-byte op codes so as not to waste on-chip resources on unimpor-
tant instructions. Except for the instruction ex (sp),hl, the original Z180 binary encod-
ing of op codes is retained for all Z180 instructions that are retained.

3.3.1 Instructions to Load Immediate Data To a Register

A constant that follows the op code in the instruction stream can generally be loaded to
any register, except PC, AF, IP and F. (Load to the PC is a jump instruction.) This in-
cludes the alternate registers on the Rabbit, but not on the Z180. Some example instruc-
tions appear below.

ld a,3
ld hl,456
ld bc’,3567 ; not possible on Z180
ld h’,4Ah ; not possible on Z180
ld ix,1234
ld c,54

Byte loads require four clocks, word loads require six clocks. Loads to IX, IY or the alter-
nate registers generally require two extra clocks because the op code has a 1-byte prefix.

3.3.2 Instructions to Load or Store Data from or to a Constant Address

ld a,(mn) ; loads 8 bits from address mn
ld a’,(mn) ; not possible on Z180
ld (mn),a
ld hl,(mn);load 16 bits from the address specified by mn
ld hl’,(mn) ; to alternate register, not possible Z180
ld (mn),hl

Similar 16-bit loads and stores exist for DE, BC, SP, IX and IY.
User’s Manual 27

It is possible to load data to the alternate registers, but it is not possible to store and alter-
nate register directly to memory.

ld a’,(mn) ; allowed
** ld (mn),a’ ; **** not a legal instruction!
** ld (mn),de’ ;**** not a legal instruction!

3.3.3 Instructions to Load or Store Data Using an Index Register

An index register is a 16-bit register, usually IX, IY, SP or HL, that is used for the address
of a byte or word to be fetched from or stored to memory. Sometimes an 8-bit offset is
added to the address either as a signed or unsigned number. The 8-bit offset is a byte in
the instruction word. BC and DE can serve as index registers only for the special cases be-
low.

ld a,(bc)
ld a’,(bc)
ld (bc),a
ld a,(de)
ld a’,(de)
ld (de),a

Other 8-bit loads and stores are the following.

ld r,(hl) ; r is any of 7 registers A, B, C, D, E, H, L
ld r’,(hl) ; same but alternate register destination
ld (hl),r ; r is any of the 7 registers above
 ;or an immediate data byte
** ld (hl),r’ ;**** not a legal instruction!
ld r,(ix+d) ; r is any of 7 registers, d is -128 to +127 offset
ld r’,(ix+d) ; same but alternate destination
ld (ix+d),r ; r is any of 7 registers or an immediate data byte
ld (iy+d),r ; ix or iy can have offset d

The following are 16-bit indexed loads and stores. None of these instructions exists on the
Z180 or Z80. The only source for a store is hl. The only destination for a load is hl or hl’.

ld hl,(sp+d) ; d is an offset from 0 to 255.
 ; 16-bits are fetched to hl or hl’
ld (sp+d),hl ; corresponding store
ld hl,(hl+d) ; d is an offset from -128 to +127,
 ; uses original hl value for addressing
 ; l=(hl+d), h=(hl+d+1)
ld hl’,(hl+d)
ld (hl+d),hl
ld (ix+d),hl ; store hl at address pointed to
 ; by ix plus -128 to +127 offset
ld hl,(ix+d)
ld hl’,(ix+d)
ld (iy+d),hl ; store hl at address pointed to
 ; by iy plus -128 to +127 offset
ld hl,(iy+d)
ld hl’,(iy+d)
28 Rabbit 2000 Microprocessor

3.3.4 Register to Register Move Instructions

Any of the 8-bit registers, A, B, C, D, E, H, and L, can be moved to any other 8-bit regis-
ter, for example:

ld a,c
ld d,b
ld e,l

The alternate 8-bit registers can be a destination, for example:

ld a’,c
ld d’,b

These instructions are unique to the Rabbit and require 2 bytes and four clocks because of
the required prefix byte. Instructions such as ld a,d’ or ld d’,e’ are not allowed.

Several 16-bit register-to-register move instructions are available. Except as noted, these
instructions all require 2 bytes and four clocks. The instructions are listed below.

ld dd’,bc ; where dd’ is any of hl’, de’, bc’ (2 bytes, 4 clocks)
ld dd’,de
ld ix,hl
ld iy,hl
ld hl,iy
ld hl,ix
ld sp,hl ; 1-byte, 2 clocks
ld sp,ix
ld sp,iy

Other 16-bit register moves can be constructed by using 2-byte moves.

3.3.5 Register Exchanges

Exchange instructions are very powerful because two (or more) moves are accomplished
with one instruction. The following register exchange instructions are implemented.

ex af,af’ ; exchange af with af’
exx ; exchange hl, de, bc with hl’, de’, bc’
ex de,hl ; exchange de and hl

The following instructions are unique to the Rabbit.

ex de’,hl ; 1 byte, 2 clocks
ex de, hl’ ; 2 bytes, 4 clocks
ex de’, hl’ ; 2 bytes, 4 clocks
User’s Manual 29

The following special instructions (Rabbit and Z180/Z80) exchange the 16-bit word on
the top of the stack with the HL register. These three instructions are each 2 bytes and 15
clocks.

ex (sp),hl
ex (sp),ix
ex (sp),iy

3.3.6 Push and Pop Instructions

There are instructions to push and pop the 16-bit registers AF, HL, DC, BC, IX, and IY.
The registers AF’, HL’, DE’, and BC’ can be popped. Popping the alternate registers is
exclusive to the Rabbit, and is not allowed on the Z80 / Z180.

Examples

pop hl
push bc
push ix
push af
pop de
pop de’
pop hl’

3.3.7 16-bit Arithmetic and Logical Operations

The HL register is the primary 16-bit accumulator. IX and IY can serve as alternate accu-
mulators for many 16-bit operations. The Z180/Z80 has a weak set of 16-bit operations,
and as a practical matter the programmer has to resort to combinations of 8-bit operations
in order to perform many 16-bit operations. The Rabbit has many new op codes for 16-bit
operations, removing some of this weakness.

The basic Z80/Z180 16-bit arithmetic instructions are

add hl,ww ; where ww is HL, DE, BC, SP
adc hl,ww ; add and add carry
sbc hl,ww ; sub and sub carry
inc ww ; increment the register (without affecting flags)

In the above op codes, IX or IY can be substituted for HL. The add and adc instructions
can be used to left-shift HL with the carry. An alternate destination prefix (altd) may be
used on the above instructions. This causes the result and its flags to be stored in the cor-
responding alternate register. If the altd flag is used when IX or IY is the destination reg-
ister, then only the flags are stored in the alternate flag register.
30 Rabbit 2000 Microprocessor

The following new instructions have been added for the Rabbit.

;Shifts
rr hl ; rotate hl right with carry, 1 byte, 2 clocks
; note use adc hl,hl for left rotate, or add hl,hl if
; no carry in is needed.
rr de ; 1 byte, 2 clocks
rl de ; rotate de left with carry, 1-byte, 2 clocks
rr ix ; rotate ix right with carry, 2 bytes, 4 clocks
rr iy ; rotate iy right with carry

;Logical Operations
and hl,de ; 1 byte, 2 clocks
and ix,de ; 2 bytes, 4 clocks
and iy,de
or hl,de ; 1 byte, 2 clocks
or ix,de ; 2 bytes, 4 clocks
or iy,de

The bool instruction is a special instruction designed to help test the HL register. bool sets
HL to the value 1 if HL is non zero, otherwise, if HL is zero its value is not changed. The
flags are set according to the result. bool can also operate on IX and IY.

bool hl ; set hl to 1 if non- zero, set flags to match hl
bool ix
bool iy
altd bool hl ; set hl’ an f’ according to hl
altd bool iy ; modify iy and set f’ with flags of result

The sbc instruction can be used in conjunction with the bool instruction for performing
comparisions. The sbc instruction subtracts one register from another and also subtracts
the carry bit. The carry out is inverted compared to the carry that would be expected if the
number subtracted was negated and added. The following examples illustrate the use of
the sbc and bool instructions.

; Test if hl>=de - hl and de unsigned numbers 0-65535
or a ; clear carry
sbc hl,de ; if C==0 then hl>=de else if C==1 then hl<de

; convert the carry bit into a boolean variable in hl
;
sbc hl,hl ; sets hl==0 if C==0, sets hl==0ffffh if C==1
bool hl ; hl==1 if C was set, otherwise hl==0
;
; convert not carry bit into boolean variable in hl
sbc hl,hl ; hl==0 if C==0 else hl==ffff if C=1
inc hl ; hl==1 if C==0 else hl==0 if C==1
; note carry flag set, but zero / sign flags reversed

In order to compare signed numbers using the sbc instruction, the programmer can map
the numbers into an equivalent set of unsigned numbers by inverting the sign bit of each
number before performing the comparision. This maps the most negative number 08000h
to the smallest unsigned number 0000h, and the most positive signed number 07FFFh to
the largest unsigned numbeer 0FFFFh. Once the numbers have been converted, the com-
User’s Manual 31

parision can be done as for unsigned numbers. This procedure is faster than using a jump
tree that requires testing the sign and overflow bits.

; example - test for hl>=de where hl and de are signed numbers
; invert sign bits on both
add hl,hl ; shift left
ccf ; invert carry
rr hl ; rotate right
rl de
ccf
rr de ; invert de sign
sbc hl,de ; no carry if hl>=de
; generate boolean variable true if hl>=de
sbc hl,hl ; zero if no carry else -1
inc hl ; 1 if no carry, else zero
bool ; use this instruction to set flags if needed

The sbc instruction can also be used to perform a sign extension.

; extend sign of l to hl
ld a,l
rla ; sign to carry
sbc a,a ; a is all 1’s if sign negative
ld h,a ; sign extended

The multiply instruction performs a signed multiply that generates a 32-bit signed result.

mul ; signed multiply of bc and de,
 ;result in hl:bc - 1 byte, 12 clocks

If a 16-bit by 16-bit multiply with a 16-bit result is performed, then only the low part of
the 32-bit result (bc) is used. This (counter intuitively) is the correct answer whether the
terms are signed or unsigned integers. The following method can be used to perform a 16
x 16 bit multiply of two unsigned integers and get an unsigned 32-bit result. This uses the
fact that if a negtive number is multiplied the sign causes the other multiplier to be sub-
tracted from the product. The method shown below adds double the number subtracted so
that the effect is reversed and the sign bit is treated as a positive bit that causes an addi-
tion.

ld bc,n1
ld hl’,bc ; save bc in hl’
ld de,n2
ld a,b ; save sign of bc
mul ; form product in hl:bc
or a ; test sign of bc multiplier
jr p,x1 ; if plus continue
add hl,de ; adjust for negative sign in bc
x1:
rl de ; test sign of de
jr nc,x2 ; if not negative
; subtract other multipler from hl
ex de,hl’
add hl,de
x2:
; final unsigned 32 bit result in hl:bc
32 Rabbit 2000 Microprocessor

This method can be modified to multiply a signed number by an unsigned number. In that
case only the unsigned number has to be tested to see if the sign is o,n and in that case the
signed number is added to the upper part of the product.

The multiply instruction can also be used to perform left or right shifts. A left shift of n
positions can be accomplished by multiplying by the unsigned number 2^^n. This works
for n # 15, and it doesn’t matter if the numbers are signed or unsigned. In order to do a
right shift by n (0 < n < 16), the number should be multiplied by the unsigned number
2^^(16 – n), and the upper part of the product taken. If the number is signed, then a signed
by unsigned multiply must be performed. If the number is unsigned or is to be treated as
unsigned for a logical right shift, then an unsigned by unsigned multiply must be per-
formed. The problem can be simplified by excluding the case where the multiplier is
2^^15.

3.3.8 Input/Output Instructions

The Rabbit uses an entirely different scheme for accessing input/output devices. Any
memory access instruction may be prefixed by one of two prefixes, one for internal I/O
space and one for external I/O space. When so prefixed, the memory instruction is turned
into an I/O instruction that accesses that I/O space at the I/O address specified by the 16-
bit memory address used. For example

ioi ld a,(85h) ; loads A register with contents
 ; of internal I/O register at location 85h.

ld iy,4000h
ioe ld hl,(iy+5) ; get word from external I/O location 4005h

By using the prefix approach, all the 16-bit memory access instructions are available for
reading and writing I/O locations. The memory mapping is bypassed when I/O operations
are executed.

I/O writes to the internal I/O registers require only two clocks, rather than the minimum of
three clocks required for writes to memory or external I/O devices.

3.4 How to Do It in Assembly Language—Tips and Tricks

3.4.1 Zero HL in 4 Clocks

bool hl ; 2 clocks, clears carry, hl is 1 or 0
rr hl ; 2 clocks, 4 total - get rid of possible 1

This sequence requires four clocks compared to six clocks for ld hl,0.
User’s Manual 33

3.4.2 Exchanges Not Directly Implemented

HL<->HL’ - eight clocks

ex de’,hl ; 2 clocks
ex de’,hl’ ; 4 clocks
ex de’,hl ; 2 clocks, 8 total

DE<->DE’ - six clocks

ex de’,hl ; 2 clocks
ex de,hl ; 2 clocks
ex de’,hl ; 2 clocks, 6 total

BC<->BC’ - 12 clocks

ex de’,hl ; 2 clocks
ex de,hl’ ; 4
ex de,hl ; 2
exx ; 2
ex de,hl ; 2

Move between IX, IY and DE, DE’

IX/IY->DE / DE->IX/IY

;ix, ix --> de
ex de,hl
ld hl,ix/iy / ld ix/iy,hl
ex de,hl ; 8 clocks total

; de --> ix/ iy
ex de,hl
ld ix/iy,hl
ex de,hl ; 8 clocks total

3.4.3 Manipulation of Boolean Variables

Logical operations involving HL when HL is a logical variable with a value of 1 or 0—
this is important for the C language where the least bit of a 16-bit integer is used to repre-
sent a logical result

Logical not operator—invert bit 0 of HL in four clocks (also works for IX, IY in eight
clocks)

dec hl ; 1 goes to zero, zero goes to -1
bool hl ; -1 to 1, zero to zero. 4 clocks total

Logical xor operator—xor hl,de when HL/DE are 1 or 0.

add hl,de
res 1,l ; 6 clocks total, clear bit 1 result of if 1+1=2
34 Rabbit 2000 Microprocessor

3.4.4 Comparisions of Integers

Unsigned integers may be compared by testing the zero and carry flags after a subtract op-
eration. The zero flag is set if the numbers are equal. With the SBC instruction the carry
cleared is set if the number subtracted is less than or equal to the number it is subtracted
from. 8-bit unsigned integers span the range 0–255. 16-bit unsigned integers span the
range 0–65535.

or a ; clear carry
sbc hl,de ; hl=A and de=B

A>=B !C
A<B C
A==B Z
A>B C & !Z
A<=B C v Z

If A is in hl and B is in de these operations can be performed as follows assuming that the
object is to set hl to 1 or 0 depending on whether the compare is true or false.

; compute hl<de
; unsigned integers
; ex de,hl ; uncomment for de<hl
or a ; clear carry
sbc hl,de ; C set if hl<de
sbc hl,hl ; hl-hl-C -- -1 if carry set
bool hl ; set to 1 if carry, else zero
 ; else result == 0
;unsigned integers
; compute hl>=de or de>=hl - check for !C
; ex de,hl ; uncomment for de<=hl
or a ; clear carry
sbc hl,de ; !C if HL>=DE
sbc hl,hl ; hl-hl-C - zero if no carry, -1 if C
inc hl ; 14 / 16 clocks total -if C after first sbc result 1,
 ; else 0
; 0 if C , 1 if !C
;
: compute hl==de
or a ; clear carry
sbc hl,de ; zero is equal
bool hl ; force to zero, 1
dec hl ; invert logic
bool hl ; 12 clocks total -logical not, 1 for inputs equal
;

User’s Manual 35

Some simplifications are possible if one of the unsigned numbers being compared is a
constant. Note that the carry has a reverse sense from sbc.

;test for hl>B B is constant
ld de,(65535-B)
add hl,de ; carry set if hl>B
sbc hl,hl ; hl-hl-C - result -1 if carry set, else zero
bool hl ; 14 total clocks - true if hl>B

; hl>=B B is constant not zero
ld de,(65536-B)
add hl,de
sbc hl,hl
bool hl ; 14 clocks

; hl>=B and B is zero
ld hl,1 ; 6 clocks

; hl<B B is a constant, not zero (if B==0 always false)
ld de,(65536-B)
add hl,de ; not carry if hl<B
sbc hl,hl ; -1 if carry, else 0
inc hl ; 14 clocks --0 if carry, else 1 if no carry
;
; hl <= B B is constant not zero
ld de,(65535-B)
add hl,de ; ~C if hl<=B
ccf ; C if true
sbc hl,hl ; if C -1 else 0
inc hl ; 16 clocks -- 1 if true, else 0
;
; hl <= B B is zero - true if hl==0
bool hl ; result in hl
;
; hl==B and B is a constant not zero
ld de,(65536-B)
add hl,de ; zero if equal
bool hl
inc hl
res 1,l ; 16 clocks

; hl==B and B==0
bool hl
inc hl
res 1,l ; 8 clocks

For signed integers the conventional method to look at the zero flag, the minus flag and
the overflow flag. Signed 8-bit integers span the range –128 to +127 (80h to 7Fh). Signed
16-bit integers span the range –32768 to + 32767 (8000h to 7FFFh). The sign and zero
flag tell which is the larger number after the subtraction unless the overflow is set, in
which case the sign flag needs to be inverted in the logic, that is, it is wrong.
36 Rabbit 2000 Microprocessor

A>B (!S & !V & !Z) v (S & V)
A<B (S & !V) v (!S & V & !Z)
A==B
A>=B
A<=B

Another method of doing signed compare is to first map the signed integers onto unsigned
integers by inverting bit 15. This is shown in Figure 10 on page 37. Once the mapping
has been performed by inverting bit 15 on both numbers, the comparisions can be done as
if the numbers were unsigned integers. This avoids having to construct a jump tree to test
the overflow and sign flags. An example is shown below.

; test hl>5 for signed integers
ld de,65535-(5+08000h) ; 5 mapped to unsigned integers
ld bc,08000h
add hl,bc ; invert high bit
add hl,de ; 16 clocks to here
; carry now set if hl>5 - opportunity to jump on carry
subc hl,hl ; hl-hl-C ; if C on result is -1, else zero
bool hl ; 22 clocks total - true if hl>5 else false

Figure 10. Mapping Signed Integers to Unsigned Integers by Inverting Bit 15

3.4.5 Atomic Moves from Memory to I/O Space

To avoid disabling interrupts while copying a shadow register to its target register, it is de-
sirable to have an atomic move from memory to I/O space. This can be done using LDD
or LDI instructions.

ld hl,sh_PDDDR ; point to shadow register
ld de,PDDDR ; set de to point to I/O reg
set 5,(hl) ; set bit 5 of shadow register
; use ldd instruction for atomic transfer
ioi ldd ; (io de)<-(hl) hl--, de--

When the LDD instruction is prefixed with an I/O prefix, the destination becomes the I/O
address specifed by DE. The decrementing of HL and DE is a side effect. If the repeating
instructions LDIR and LDDR are used, interrupts can take place between successive itera-
tions. Word stores to I/O space can be used to set two I/O registers at adjacent addresses
with a single noninterruptable instruction.

0111...

000...
111...

100...

1111...

100...
011...

000...
User’s Manual 37

3.5 Interrupt Structure

When an interrupt occurs on the Rabbit, the return address is pushed on the stack, and con-
trol is transferred to the address of the interrupt service routine. The address of the inter-
rupt service routine has two parts: the upper byte of the address comes from a special
register and the lower byte is fixed by hardware for each interrupt. There are separate reg-
isters for internal interrupts (IIR) and external interrupts (EIR) to specify the high byte of
the interrupt service routine address. These registers are accessed by special instructions.

ld a,iir
ld iir,a
ld a,eir
ld eir,a

Interrupts are initiated by hardware devices or by certain 1-byte instructions called reset
instructions.

rst 10
rst 18
rst 20
rst 28
rst 38

The RST instructions are similar to those on the Z80 and Z180, but certain ones have been
removed from the instruction set (00, 08, 30). The RST interrupts are not inhibited regard-
less of the processor priority. The user is advised to exercise caution when using these in-
structions as they are mostly reserved for the use of Dynamic C for debugging. Unlike the
Z80 or Z180, the IIR register contributes the upper byte of the service routine address for
RST interrupts.

Since interrupt routines do not affect the XPC, interrupt routines must be located in the
root code space. However, they can jump to the extended code space after saving the XPC
on the stack.

3.5.1 Interrupt Priority

The Z80 and Z180 have two levels of interrupt priority: maskable and nonmaskable. The
nonmaskable interrupt cannot be disabled and has a fixed interrupt service routine address
of 66h. The Rabbit, in contrast, has three levels of interrupt priority and four priority lev-
els at which the processor can operate. If an interrupt is requested, and the priority of the
interrupt is higher than that of the processor, the interrupt will take place after the execu-
tion of the current instruction is complete (except for privileged instructions)

Multiple interrupt priorities have been established to make it feasible for the embedded
systems programmer to have extremely fast interrupts available. Interrupt latency refers
to the time required for an interrupt to take place after it has been requested. Generally, in-
terrupts of the same priority are disabled when an interrupt service routine is entered.
Sometimes interrupts must stay disabled until the interrupt service routine is completed,
other times the interrupts can be re-enabled once the interrupt service routine has at least
38 Rabbit 2000 Microprocessor

disabled its own cause of interrupt. In any case, if several interrupt routines are operating
at the same priority, this introduces interrupt latency while the next routine is waiting for
the previous routine to allow more interrupts to take place. If a number of devices have in-
terrupt service routines, and all interrupts are of the same priority, then pending interrupts
can not take place until at least the interrupt service routine in progress is finished, or at
least until it changes the interrupt priority. As a rule of thumb, Z-World usually suggests
that 100 µs be allowed for interrupt latency on Z180-based controllers. This can result if,
for example, there are five active interrupt routines, and each turns off the interrupts for at
most 20 µs.

The intention in the Rabbit is that most interrupting devices will use priority 1 level inter-
rupts. Devices that need extremely fast response to interrupts will use priority level 2 or 3
interrupts. Since code that runs at priority level 0 or 1 never disables level 2 and level 3
interrupts, these interrupts will take place within about 20 clocks, the length of the longest
instruction or longest sensible sequence of privileged instructions followed by an unprivi-
leged instruction. It is important that the user be careful not to overdisable interrupts in
critical code sections. The processor priority should not be raised above level 1 except in
carefully considered situations.

The effect of the processor priority on interrupts is shown in Table 2. The priority of the
interrupt is usually established by bits in an I/O control register associated with the hard-
ware that creates the interrupt. The 8-bit interrupt register (IR) holds the processor priority
in the least significant 2 bits. When an interrupt takes place the IR register is shifted left 2
positions and the lower 2 bits are set to equal the priority of the interrupt that just took
place. This means that an interrupt service can only be interrupted by an interrupt service
routine for an interrupt of higher priority (unless the priority is explicitly set lower by the
programmer). The IR register serves as a 4-word stack to save and restore interrupt prior-
ity. It can be shifted right, restoring the previous priority by a special instruction (ipres).
Since only the current processor priority and 3 previous priorities can be saved in IP in-
structions are also provided to push and pop IP from using the regular stack. A new prior-
ity can be pushed into the IP register with special instructions (IP 0, IP 1, IP 2, IP 3).

Table 2. Effect of Processor Priorities on Interrupts

Processor
Priority

Effect on interrupts

 0
All interrupts, priority 1,2 and 3 take place after
execution of current non privileged instruction.

 1 Only interrupts of priority 2 and 3 take place.

 2 Only interrupts of priority 3 take place.

 3
All interrupt are suppressed (except RST
instruction).
User’s Manual 39

3.5.2 Multiple External Interrupting Devices

The Rabbit has two distinct external interrupt request lines. If there are more than two ex-
ternal causes of interrupts, then these lines must be shared between multiple devices. The
interrupt line is edge sensitive, meaning that it requests an interrupt only when a rising or
falling edge, whichever is specified in the setup registers, takes place. The state of the in-
terrupt line(s) can always be read by reading parallel port E since they share pins with par-
allel port E.

If several lines are to share interrupts with the same port, the individual interrupt requests
would normally be or’ed together so that any device can cause an interrupt. If several de-
vices are requesting an interrupt at the same time, only one interrupt results because there
will be only one transition of the interrupt request line. To resolve the situation and make
sure that the separate interrupt routines for the different devices are called, a good method
is to have a interrupt dispatcher in software that is aided by providing separate attention
request lines for each device. The attention request lines are basically the interrupt request
lines for the separate devices before they are or’ed together. The interrupt dispatcher calls
the interrupt routines for all devices requesting interrupts in priority order so that all inter-
rupts are serviced.

3.5.3 Privileged Instructions, Critical Sections and Semaphores

Normally an interrupt happens at the end of the instruction currently executing. However,
if the instruction executing is privileged, the interrupt cannot take place at the end of the
instruction and is deferred until a nonprivileged instruction is executed, usually the next
instruction. Privileged instructions are provided as a handy way of making a certain oper-
ation atomic because there would be a software problem if an interrupt took place after the
instruction. Turning off the interrupts explicitly may be too time consuming or not possi-
ble because the purpose of the privileged instruction is to manipulate the interrupt con-
trols. For additional information on privileged instructions, see Section 18.19, “Privileged
Instructions,” on page 157.

The privileged instructions to load the stack are listed below.

ld sp,hl
ld sp,iy
ld sp,ix

The following instructions to load SP are privileged because they are frequently followed
by an instruction to change the stack segment register. If an interrupt occurs between
these two instructions and the following instruction, the stack will be ill-defined.

ld sp,hl
ioi ld sseg,a
40 Rabbit 2000 Microprocessor

The privileged instructions to manipulate the IP register are listed below.

ip 0 ; shift ip left and set priority 00 in bits 1,0
ip 1
ip 2
ip 3
ipres ; rotate ip right 2 bits, restoring previous priority
reti ; pops IP from stack and then pops return address
pop ip ; pop IP register from stack

3.5.4 Critical Sections

Certain library routines may need to disable interrupts during a critical section of code.
Generally these routines are only legal to call if the processor priority is either 0 or 1. A
priority higher than this implies custom hand-coded assembly routines that do not call
general-purpose libraries. The following code can be used to disable priority 1 interrupts.

ip 1 ; save previous priority and set priority to 1

....critical section...

ipres ; restore previous priority

This code is safe if it is known that the code in the critical section does not have an embed-
ded critical section. If this code is nested, there is the danger of overflowing the IP regis-
ter. A different version that can be nested is the following.

push ip
ip 1 ; save previous priority and set priority to 1

....critical section...

pop ip ; restore previous priority

The following instructions are also privileged.

ld a,xpc
ld xpc,a
bit b,(hl)

3.5.5 Semaphores Using Bit B,(HL)

The bit B,(HL) instruction is privileged to allow the construction of a semaphore by the
following code.

bit b,(hl) ; test a bit in the byte at (hl)
set b,(hl) ; make sure bit set, does not affect flag
; if zero flag set the semaphore belongs to us;
; otherwise someone else has it
User’s Manual 41

A semaphore is used to gain control of a resource that can only belong to one task or pro-
gram at a time. This is done by testing a bit to see if it is on, in which case someone else is
using the resource, otherwise setting the bit to indicate ownership of the resource. No in-
terrupt can be allowed between the test of the bit and the setting of the bit as this might al-
low two different program to both think they own the resource.

3.5.6 Computed Long Calls and Jumps

The instruction to set the XPC is privileged to so that a computed long call or jump can be
made. This would be done by the following sequence.

ld xpc,a
jp (hl)

In this case, A has the new XPC, and HL has the new PC. This code should normally be
executed in the root segment so as not to pull the memory out from under the JP (HL) in-
struction.

A call to a computed address can be performed by the following code.

; A=xpc, IY=address
;
 ld a,newxpc
 ld iy,newaddress
 lcall docall ; call utility routine in the root
;
; The docall routine
docall:
 ld xpc,a ;set xpc
 jp (iy) ; go to the routine
42 Rabbit 2000 Microprocessor

4. Rabbit Capabilities

This section describes the various capabilities of the Rabbit that may not be obvious from
the technical description.

4.1 Precisely Timed Output Pulses

The Rabbit can output precise pulses under software control. The effect of interrupt la-
tency is avoided because the interrupt always prepares a future pulse edge that is clocked
into the output registers on the next clock. This is shown in Figure 11.

Figure 11. Timed Output Pulses

The timer output in Figure 11 is periodic. As long as the interrupt routine can be com-
pleted during one timer period, an arbitrary pattern of synchronous pulses can be output
from the parallel port.

The interrupt latency depends on the priority of the interrupt and the amount of time that
other interrupt routines of the same or higher priority inhibit interrupts. The first instruc-
tion of the interrupt routine will start executing within 30 clocks of the interrupt request
for the highest priority interrupt routine. This includes 19 clocks for the longest instruction
to complete execution and 10 clocks for the interrupt to execute. Pushing registers re-
quires 10–12 clocks per 16-bit register. Popping registers requires 7–9 clocks. Return
from interrupt requires 7 clocks. If three registers are saved and restored, and 20 instruc-
tions averaging 5 clocks are executed, an entire interrupt routine will require about 200
clocks, or 10 µs with a 20 MHz clock. Given this timing, the following capabilities be-
come possible.

Pulse width modulated output—The minimum pulse width is 10 µs. If the repetition rate
is 10 ms, then a new pulse with 1000 different widths can be generated at the rate of 100
times per second.

A B

Latency
Interrupt
routine sets
up B edge.

C

Timer Output

Parallel Port Output

Timer Output

Parallel Port Output

Setup Register
User’s Manual 43

Asynchronous communications serial output—Asynchronous output data can be gener-
ated with a new pulse every 10 µs. This corresponds to a baud rate of 100,000 bps.

Asynchronous communications serial input—To capture asynchronous serial input, the in-
put must be polled faster than the baud rate, a minimum of three times faster, with five
times being better. If five times polling is used, then asynchronous input at 20,000 bps
could be received.

Generating pulses with precise timing relationships—The relationship between two events
can be controlled to within 10 µs to 20 µs.

Using a timer to generate a periodic clock allows events to be controlled to a precision of
approximately 10 µs. However, if Timer B is used to control the output registers, a preci-
sion approximately 100 times better can be achieved. This is because Timer B has a
match register that can be programmed to generate a pulse at a specified future time. The
match register has two cascaded registers, the match register and the next match register.
The match register is loaded with the contents of the next match register when a pulse is
generated. This allows events to be very close together, one count of Timer B. Timer B
can be clocked by sysclk/2 divided by a number in the range of 1–256. Timer B can
count as fast as 10 MHz with a 20 MHz system clock, allowing events to be separated by
as little as 100 ns. Timer B and the match registers have 10 bits.

Using Timer B, output pulses can be positioned to an accuracy of clk/2. Timer B can also
be used to capture the time at which an external event takes place in conjunction with the
external interrupt line. The interrupt line can be programmed to interrupt on either rising,
falling or both edges. To capture the time of the edge, the interrupt routine can read the
Timer B counter. The execution time of the interrupt routine up to the point where the
timer is read can be subtracted from the timer value. If no other interrupt is of the same or
higher priority, then the uncertainty in the position of the edge is reduced to the variable
time of the interrupt latency, or about one-half the execution time of the longest instruc-
tion. This uncertainty is approximately 10 clocks, or 0.5 µs for a 20 MHz clock. This en-
ables pulse width measurements for pulses of any length, with a precision of about 1 µs. If
multiple pulses need to be measured simultaneously, then the precision will be reduced,
but this reduction can be minimized by careful programming.

4.1.1 Pulse Width Modulation to Reduce Relay Power

Typically relays need far less current to hold them closed than is needed to initially close
them. For example, if the driver is switched to a 75% duty cycle using pulse width modu-
lation after the initial period when the relay armature is picked, the holding current will be
approximately 75% of the full duty-cycle current and the power consumption will be
about 56% as great.

The pulse width modulation rate may be from 5 kHz to 20 kHz. If a periodic interrupt is
established that interrupts every 50 µs, then a 50% duty cycle could be set up for a 100 µs
period. A 25%, 50% or 75% duty cycle could operate on a 200 µs period. A 250 µs pe-
44 Rabbit 2000 Microprocessor

riod would allow duty cycles of 20%, 40%, 60% or 80%. The code for such an interrupt
routine might appear as follows.

push af ; 10
push hl
push de
ld hl,(ptr) ; 11 get pointer to location in array
ld a,(maskand) ; 9 get mask
and a,(hl) ; 5 get current output
ld e,a ; 2
ld a,(maskor) ; 9
or a,e ; 2
ioi ld (port),a ; 13 store in port
inc hl ; 2 point to next
ld a,(hl) ; 5 check for end of array
or a,a ; 2
jr nz,step2 ; 2
ld hl,(beginptr) ; 11 reset hl to start of array
step2:
ld (ptr),hl ; 13 save hl
pop de ;7
pop hl
pop af
reti ; 7 return from interrupt

; 153 clocks total worst case - 7.5 us at 20 MHz

This routine would take approximately 15% of the processor’s compute time assuming
50 µs between interrupts. This routine could be speeded up, but at the expense becoming
more complicated. Instead of "and" and "or" masks, a higher level routine could modify
the array directly, and the end of the array could be detected by testing a bit pattern in HL.
The higher level routine would have to suppress the interrupt while changing the bit pat-
tern in the array, or otherwise prevent erratic outputs while the array is being changed. If
the relay emits a whistle at the period of the modulation, the acoustic energy can be spread
out over the spectrum by periodically missing an "off" pulse, creating a phase shift of
180°. A faster routine that executes in two-thirds the time is shown below.

push af ;10
push hl
ld hl,(ptr) ;11
ld a,(hl) ;5
ioi ld (port),a ; 13 output data
inc hl
ld a,0fh ;4
and l ; see if hl at end of cycle
jr z,step2
ld (ptr),hl
pop hl
pop af
reti
step2:
ld a,(beginptr)
ld l,a
User’s Manual 45

ld (ptr),hl ;13
pop hl ;7
pop af
reti
; 103 clocks total

4.2 Open-Drain Outputs Used for Key Scan

The parallel port D outputs can be individually programmed to be open drain. This is use-
ful for scanning a switch matrix, as shown in Figure 12. A row is driven low, then the col-
umns are scanned for a low input line, which indicates a key is closed. This is repeated for
each row. The advantage of using open-drain outputs is that if two keys in the same col-
umn are depressed, there will not be a fight between a driver driving the line high and an-
other driver driving it low.

Figure 12. Using Open-Drain Outputs for Key Scan

4.3 Cold Boot

Most microprocessors start executing at a fixed address, often address zero, after a reset or
power-on condition. The Rabbit has two mode pins (SMODE0, SMODE1—see Figure 13
on page 49). The logic state of these two pins determines the startup proceedure after a re-
set. If both pins are grounded, then the Rabbit starts executing instructions at address
zero. On reset, address zero is defined to be the start of the memory connected to the
memory control lines /CS0, and /OE0. However, three other startup modes are available.
These alternate methods all involve accepting a data stream via a communications port
that is used to store a boot program in a RAM memory, which in turn can be used to start
any further seconary boot process, such as downloading a program over the same commu-
nications port. (For a detailed description, see Section 7.9 on page 79.)

Three communication channels may be used for the bootstrap, either serial port A in asyn-
chronous mode at 2400 bps, serial port A in synchronous mode with an external clock, or
the (parallel) slave port.

o.d.

o.d.

+

+

+ ++
+

+

46 Rabbit 2000 Microprocessor

The cold-boot protocol accepts groups of three bytes that define an address and a data
byte. Each triplet causes a write of the data byte to either memory or to internal I/O space.
The high bit of the address is set to specify the I/O space, and thus writes are limited to the
first 32K of either space. The cold boot is terminated by a store to an address in I/O space,
which causes execution to begin at address zero. Since any memory chip can be remapped
to address zero by storing in the I/O space, RAM can be temporarily be mapped to zero to
avoid having to deal with the more complicated write protocol of flash memory, which is
the usual default memory located at address zero.

The following are the advantages of the cold-boot capability.

• Flash memory can be soldered to the microprocessor board and programmed via a
serial port or a parallel port. This avoids having to socket the part or program it with a
BIOS or boot program before soldering.

• Complete reprogramming of the flash memory can be accomplished in the field. This
is particularly useful during software development when the development platform can
perform a complete reload of software regardless of the state of the existing software in
the processor. The standard programming cable for Dynamic C allows the develop-
ment platform to reset and cold boot the target, a Rabbit-based microprocessor board.

• If the Rabbit is used as a slave processor, the master processor can cold boot it over via
the slave port. This means the slave can operate without any nonvolatile memory.
Only RAM is required.

4.4 The Slave Port

The slave port allows a Rabbit to act as a slave to another processor, which can also be a
Rabbit. The slave has to have only a processor chip, a RAM chip, and clock and reset sig-
nals that can be supplied by the master. The master can cold boot and download a pro-
gram to the slave. The master does not have to be a Rabbit processor, but can be any type
of processor capable of reading and writing standard registers.

For a detailed description, See “Rabbit Slave Port” on page 117.

The slave processor’s slave port is connected to the master processor’s data bus. Commu-
nication between the master and the slave takes place via three registers, implemented in
the Rabbit, for each direction of communication, for a total of six data registers. In addi-
tion, there is a slave port status register that can be read by either the master or the slave
(see Figure 33 on page 117). Two slave address lines are used by the master to select the
register to be read or written. The registers that carry data from the master to the slave ap-
pear as write registers to the master and as read registers to the slave. The registers that
operate in the opposite direction appear as read registers to the master and as write regis-
ters to the slave. These registers appear as read-write registers on both sides, but are not
true read-write registers since different data may be read from what is written. The master
provides the clock or strobe to store data in the three write registers under its control. The
master also can do a write to the status register, which is used as a signaling device and
does not actually write to the status register. The three registers that the master can write
User’s Manual 47

appear as read registers to the slave Rabbit. The master provides an enable strobe to read
the three read data registers and the status register. These registers are write registers to
the Rabbit.

The first register or the three pairs of registers is special in that writing can interrupt the
other processor in the master-slave communications link. An output line from the slave is
asserted when the slave writes to slave register zero. This line can be used to interrupt the
master. Internal circuits in the slave can be setup up to interrupt the slave when the master
writes to slave register zero.

The status register that is available to both sides keeps score on all the registers and reports
if a potential interrupt is requested by either side. The status register keeps track of the
"full-empty" status of each register. A register is considered full when one side of the link
writes to it. It becomes empty if the other side reads it. In this way either side can test if
the other side has modified a register or whether either side has even stored the same in-
formation to a register.

The master-slave communication link makes possible "set and forget" communication
protocols. Either side can issue a command or request by storing data in some register and
then go about its business while the other side takes care of the request according to its
own time schedule. The other side can be alerted by an interrupt that takes place when a
store is made to register zero, or it can alert itself by a periodic poll of the status register.

Of the three registers seen by each side for each direction of communication, the first reg-
ister, slave register zero, has a special function because an interrupt can only be generated
by a write to this register, which then causes an interrupt to take place on the other side of
the link if the interrupt is enabled. One type of protocol is to store data first in registers 1
and 2, and then as the last step store to register 0. Then 24 bits of data will be available to
the interrupt routine on the other side of the link.

Bulk data transfers accross the link can take place by an interrupt for each byte transferred,
similiar to a typical serial port or UART. In this case, a full-duplex transfer can take place,
similar to what can be done with a UART. The overhead for such an interrupt-driven
transfer will beon the order of 100 clocks per byte transfered, assumming a 20-instruction
interrupt routine. (In order to keep the interrupt routine to 20 instructions, the interrupt
routine needs to be very focused as opposed to general purpose.) Several methods are
available to cater to a faster transfer with less computing overhead. There are enough reg-
isters to transfer two bytes on each interrupt, thus nearly halving the overhead. If a ren-
dezvous is arranged between the processors, data can be transferred at approximately 25
clocks per byte. Each side polls the status register waiting for the other side to read/write
a data register, which is then written/read again by the other side.

4.4.1 Slave Rabbit As A Protocol UART

A prime application for the Rabbit used as a slave is to create a 4-port UART that can also
handle the details of a communication protocol. The master sends and receives messages
over the slave port. Error correction, retransmission, etc., can be handled by the slave.
48 Rabbit 2000 Microprocessor

5. Pin Assignments and Functions

5.1 Package Schematic and Pin Names

Figure 13. Package Outline and Pin Assignments

P
B

6

P
B

7,
 /S

L
A

V
E

A
T

T
N

PA
0,

 S
D

0

P
B

5,
 S

A
1

P
B

4,
 S

A
0

P
B

3,
 /S

R
D

P
B

2,
 /S

W
R

PA
1,

 S
D

1

P
B

1,
 C

L
K

A

P
B

0,
 C

L
K

B

V
D

D

PA
2,

 S
D

2

X
TA

L
B

2

X
TA

L
B

1

V
S

S

PA
7,

 S
D

7

PA
6,

 S
D

6

PA
5,

 S
D

5

PA
4,

 S
D

4

PA
3,

 S
D

3

/WE1

A19

VDD

VSS

/OE1

A11

A9

A8

A13

A14

A17

/WE0

A18

A16

A15

A12

A7

A6

A5

A4

PC0, TXD

PC1, RXD

PC2, TXC

PC3, RXC

PC4, TXB

PC5, RXB

PC6, TXA

VDD

VSS

PC7, RXA

CLK

VSS

VDD

/CS2

/CS1

/OE0

A10

/CS0

D7

D6

D5

D4

D3

D2

D1

D0

A0

A1

A2

A3

/SCS, I7, PE7

I6, PE6

INT1B, I5, PE5

INT0B, I4, PE4
I3, PE3

I2, PE2

VSS

VDD

INT1A, I1, PE1
INT0A, I0, PE0

 /
IO

R
D

 /
IO

W
R

 P
D

0

/B

U
F

E
N

 /W

D
T

O
U

T

S

M
O

D
E

1

S

M
O

D
E

0

 P
D

1

/R

E
S

E
T

S

TA
T

U
S

 V
S

S

 P
D

2

X

TA
L

A
1

X

TA
L

A
2

V
B

A
T

 A

R
X

A
, P

D
7

 A

R
X

B
, P

D
5

 A

T
X

B
, P

D
4

 P
D

3

 A

T
X

A
, P

D
6

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24
25

26

27

28

29
30

3231 5033 34 35 36 4937 38 39 4840 41 42 43 45 46 4744

80

79

78

77

76

75

74

73

72

71

70

69

68

67

66

65

64

63

62

61

60

59

58

57

56

55

54

53

52

51

99

10
0 8198 97 96 95 8294 93 92 8391 90 89 88 87 86 85 84
User’s Manual 49

5.2 Package Mechanical Dimensions

Figure 14 shows the mechanical dimensions of the Rabbit PQFP package.

Figure 14. Mechanical Dimensions Rabbit PQFP Package

1 30

100

81

80 51

0.65 mm
0.30 mm

23.9 mm

17.9 mm

50

31

1.95 mm

0.80 mm

100-pin PQFP Physical Dimensions (Top View)

2 mm dia
clearance

14.625

10.725
drill 1.62 mm

Holes are optional to aid in attaching substitute connector
for processor.
50 Rabbit 2000 Microprocessor

Figure 15 shows the PC board footprint for the Rabbit 100-pin PQFP.

Figure 15. PC Board Footprint for Rabbit 100-pin PQFP

1.93 mm

0.36 mm

0.65 mm

1.99 mm

1.75 mm

pin 1

pin 30 pin 51

31 50

81
pin 100

80

16.33 mm

22.35 mm
User’s Manual 51

5.3 Rabbit Pin Descriptions

Table 3 lists all the pins on the device, along with their direction, function, and pin number
on the package.

Table 3. Rabbit Pin Assignments

Pin Group Pin Name Direction Function Pin Numbers

Hardware CLK Output

Processor clock output. This signal is
derrived from the main system oscillator
and may be divided by 8, or doubled, or
both, by internal programmable circuitry.
This signal is enabled after reset. Under
program control this pin can output the full
internal clock frequency, or 1/2 the internal
frequency, or it can be used as a general-
purpose output pin under software control.
See Table 9, “Global Output Control
Register (GOCR = 0Eh),” on page 71.

1

/RESET Input Master reset. 37

XTALA1 Input

Quartz crystal for 32 kHz clock oscillator.
Lines to the crystal should be short and
shielded from crosstalk. If an external
clock is used, this pin should be driven by
the external clock.

40

XTALA2 Output
Quartz crystal for 32 kHz crystal oscillator.
Do not connect if an exernal clock is used.

41

XTALB1 Input

Quartz crystal for main system oscillator.
Lines to the crystal should be short and
shielded from crosstalk. If an external
clock is used this pin should be driven by
the external clock.

90

XTALB2 Output
Quartz crystal for main system oscillator.
Do not connect if an exernal clock is used.

91

CPU Buses A0–A19 Output Address bus.
7, 17–20, 61–
68, 70–75, 79

D0–D7 Bidirectinal Data bus. 9—16

Status/Cont
rol

/WDTOUT Output
WDT timeout—outputs a pulse when the
internal watchdog times out. May also be
used to output a 30 µs pulse.

34

Status STATUS Output

Programable for functions:
 1. driven low on first opcode fetch cycle
 2. driven low during interrupt acknowledge
cycle
 3. to serve as a general-purpose output. See
Table 9, “Global Output Control Register
(GOCR = 0Eh),” on page 71.

38
52 Rabbit 2000 Microprocessor

SMODE1
SMODE0

Input

Startup mode select (SMODE1 = pin 35,
SMODE0 = pin 36) to detemine bootstrap
procedure.
(SMODE1 = 0, SMODE0 = 0) start
executing at address zero.
(0,1) cold boot from slave port.
(1,0) clold boot from clocked serial port A.
(1,1) cold boot from asynchronous serial
port A at 2400 bps.
The smode pins can be used as general
input pins once the cold boot is complete.

35–36 (1:0)

Chip
Selects

/CS0 Output

Memory Chip Select 0—connects directly
to static memory chip chip select pin.
Normally this pin is used to select base
flash memory that holds the program.

8

/CS1 Output

Memory Chip Select 1—normally this pin
is connected directly to static RAM chip
select. /CS1 can be optionally forced
continuously low under software control, a
feature that aids in the use of battery-
backed RAM when the chip select must
pass through a controller that may have a
slow propagation time.

5

/CS2 Output
Memory Chip Select 2—connect to static
memory chip. Use this chip select last.

4

Output
Enables

/OE0 Output
Memory Output Enable 0—connect
directly to static memory chip.

6

/OE1 Output
Memory Output Enable 1—alternate
memory output enable allows chip selects
to be shared between two memory chips.

76

Write
Enables

/WE0 Output

Memory Write Enable 0—connect directly
to static memory chip. This pin may be
disabled under software control to write
protect the chip.

69

/WE1 Output

Memory Write Enable 1—connect directly
to static memory chip. This pin may be
disabled under software control to write
protect the chip.

80

I/O Control /BUFEN Output

I/O Buffer Enable—this signal is driven
low during an external I/O cycle and may
be used to control 3-state enable on the bus
buffer. The purpose is to save power by not
driving the I/O address or data lines on
every bus cycle.

33

Table 3. Rabbit Pin Assignments
User’s Manual 53

I/O Read
Strobe

/IORD Output

I/O read strobe. Driven low on an external
I/O bus cycle. May be used to drive glue
logic concerned with I/O expansion, such
as the direction pin on a bidirectional bus
buffer. See also programmable strobes in
port E.

32

I/O Write
Strobe

/IOWR Output
I/O write strobe. Driven low as a write
strobe during external I/O read cycles. See
also programmable strobes in port E.

31

I/O Port A PA0–PA7
Input/Outp
ut

These 8 bits serve as general-purpose input
output or they serve as the data port for the
slave port. On reset these pins are set to
inputs and they float.

81–88

I/O Port B PB0–PB7
4 In/2 Out/
2 I/O

I/O Port B. When used as parallel I/O, PB7
and PB6 are outputs only. PB0–PB5 are
inputs only. PB0 and PB1 can be outputs
when set up as the clock for the clocked
serial ports. On reset, outputs are set to
zero. If the slave port is enabled, the
following alternate assignments apply:
PB7—/SLAVEATTN: slave requests
attention.
PB5, PB4—address lines (SA1, SA0) for
slave registers.
PB3—slave negative write strobe from
master.
PB2—slave negative read strobe from
master.
If serial port A is enabled in clocked mode,
then PB1 is the bidirectional clock line. If
serial port B is enabled in clocked mode,
then PB0 is the bidirectional clock line.

93–100

I/O port C PC0–PC7 4 In/4 Out

I/O Port C. When used as a parallel port
Bits 1, 3, 5, 7 are inputs and bits 0, 2, 4, 6
are outputs. Bits 0, 2, 4, 6 can alternately be
selectivey enabled to serve as the serial
data output for serial ports D, C, B, A
respectively. Bits 1, 3, 5, 7 serve as the
serial data inputs for serial ports D, C, B,
A. These inputs can also be read from the
parallel port register when they are being
used by the serial port UART.

51, 52, 54–60

Table 3. Rabbit Pin Assignments
54 Rabbit 2000 Microprocessor

I/O Port D PD0–PD7
Input/Outp
ut/output
open drain

I/O Port D. Each bit may be individually
selected to be an input or output. Each out-
put may be selected to be high-low drive or
open drain. Outputs are buffered by timer-
synchronizable registers for precision edge
control. PD6 can be programmed to be an
optional serial output for serial port A.
PD4 can be programmed to be an optional
serial output for serial port B. PD7 and
PD5 can be used as alternate serial inputs
by serial ports A and B, in which case these
pins should be programmed as inputs.

43–50

I/O Port E PE7–PE0
Input/Outp
ut

I/O Port E. Each bit may be individually
selected to be an input or output. Outputs are
buffered by timer-synchronizable registers
for precision edge control. Each of the port
lines can be individually selected to be an I/O
control signal instead of a parallel I/O line.
Each of the 8 possible I/O control signals is a
strobe energized on an external I/O cycle to
1/8th of the 64K external I/O space. Each
strobe can be programmed to be a chip select,
a write strobe, a read strobe or a combined
read and write strobe. Any port bit used as
an I/O control strobe must be programmed as
an output bit. If the slave port is enabled,
PE7 is used as the slave register chip select
signal (negative active). PE7 should be pro-
grammed as an input for the slave register
chip select function to work. If PE7 is pro-
grammed as an output and set low, then the
slave register chip select will always be acti-
vated. PE0 and PE4 serve as alternate inputs
for external interrupt 0. PE1 and PE5 serve
as alternate inputs for external interrup 1. If
PE0 is enabled, then PE1 must also be
enabled and similarly for PE4 and PE5. The
interrupt is triggered programmably on fall,
rising or both edges. If both interrupts are
enabled, they are or’ed together after edge
detection has been performed on each input
individually. The port bits must be set up as
inputs for the to use them as interrupt request
inputs.

21–30

Power
VDD

VBAT

+3.3 V or +5.0 V

+3.0 V (battery backup), +3.3 V or +5.0 V
3, 28, 42, 53,
78, 92

VSS Ground
2, 27, 39, 52,
77, 89

Table 3. Rabbit Pin Assignments
User’s Manual 55

Serial Ports CLKA
Input/Outp
ut

Clock for serial port A when operating in
synchronous mode. Alternate assignment
for PB1.

94

Serial Ports CLKB
Input/Outp
ut

Clock for serial port A when operating in
synchronous mode. Alternate assignment
for PB0.

93

Serial Ports

RXA, TXA,
RXB, TXB,
RXC, TXC,
RXD, TXD

RX—input

TX—
output

Serial inputs and output for serial ports A–
D. These are alternate pin assignments for
parallel port C.

51, 54–60

Serial Ports
ARXA, ATXA,
ARXB, ATXB

RX—input

TX—
output

Alternate serial inputs and output for serial
ports A and B. These are alternate pin
assignments for parallel port D, PD4–PD7.

43–46

Slave Port SD0-SD7 Bidirectional
Slave port data bus. An alternate
assignment for parallel port A.

81–88

Slave Port /SLAVEATTN Output
/SLAVEATTN—Slave is requesting atten-
tion from the master. An alternate pin
assignment for parallel port B, bit 7.

100

Slave Port /SRD Input
Strobe used to read one of the slave
registers. An alternate pin assigmeent for
parallel port B, bit 3.

96

Slave Port /SWR Input
Strobe used to write a slave register. An
alternate pin assignment for parallel port B,
bit 2.

95

Slave Port SA0, SA1 Input
Address lines to address slave registers.
An alternate pin assigment for parallel port
B, bits 4 and 5.

97,98

Slave Port /SCS Input
Chip select for slave port, active low. An
alternate pin assignment for parallel port E,
bit 7.

21

I/O Strobes

/I0,/I1,

/I2, /I3,

/I4, /I5,

/I6, /I7

Outputs

I/O strobes. Each strobe uses 1/8th of the I/O
space or 8K addresses. Each strobe can be
programmed as: chip select, read, write,
combined read or write. These are alternate
pin assignment for parallel port E, bits 0–7.
Each pin may be individually re-assigned
from parallel port to strobe functionality.

21–26, 29, 30

Table 3. Rabbit Pin Assignments
56 Rabbit 2000 Microprocessor

External
Interrupt 0

INT0A, INT1A Inputs

These pins are sampled and an interrupt
request for external interrupt number 0 is
latched on a specified transition (pos, neg,
either). There is a separate latch for each
pin. May be enabled when this pin is set up
as input for parallel port E. The value of
the pin may also be read via the parallel
port. Uses bits 0, 1 of the parallel port. If
parallel port is set up as output, the parallel
port output may be used to cause the
interrupt.

29, 30

External
Interrupt 1

INT0B, INT1B Inputs

These pins are sampled and an interrupt
request for external interrupt number 0 is
latched on a specified transition (pos, neg,
either). There is a separate latch for each
pin. May be enabled when this pin is set up
as input for parallel port E. The value of
the pin may also be read via the parallel
port. Uses bits 4, 5 of the parallel port. If
parallel port is set up as output, the parallel
port output may be used to cause the
interrupt.

23, 24

Table 3. Rabbit Pin Assignments
User’s Manual 57

5.4 Bus Timing

The external bus has essentially the same timing for memory cycles or I/O cycles. A
memory cycle begins with the chip select and the address lines. One clock later, the out-
put enable is asserted for a read. The output data and the write enable are asserted for a
write.

Figure 16. Bus Timing Read and Write

Address (20 for memory, 16 for I/O)

T1 Tw T2

/IOCSn or /CSn

Data for read

valid

/OEn or /IORD and /BUFEN (/BUFEN rd or wr)

Data for write 3-s drive starts at end of T1

/WEn or /IOWR

Notes:
Read may have no wait states.
Write cycles and I/O read cycles have at least 1 wait state. Clock
may be asymmetric if clock doubler used. I/O chip select avail-
able on port E as option.
58 Rabbit 2000 Microprocessor

5.5 Description of Pins with Alternate Functions

Table 4. Pins With Alternate Functions

Pin Name Output Function Input Function Other Function

STATUS (38)

1. Low on first op code
fetch.
2. Low on interrupt
acknowledge

Programmable output
port high/low

SMODE1 (35)
(SMODE1, SMODE2)

Startup boot mode
control.

1-bit input after boot
complete.

SMODE2 (36)
(SMODE1, SMODE2)

Startup boot mode
control.

1-bit input after boot
complete.

CLK (1)
1. Peripheral clock.

2. Peripheral clock/2.
Programmable output
port high/low

/WDTOUT (34)
Outputs 30.5 µs pulse on
watchdog timeout (pro-
cessor is also reset).

Outputs a pulse between
30.5 and 61 µs under
program control.

PA7 (88) SD7 SD7

PA6 (87) SD6 SD6

PA5 (86) SD5 SD5

PA4 (85) SD4 SD4

PA3 (84) SD3 SD3

PA2 (83) SD2 SD2

PA1 (82) SD1 SD1

PA0 (81) SD0 SD0

PB7 (100)
/SLAVEATTN (master
needs attention from
slave).

PB5 (98) SA1 (slave address).

PB4 (97) SA0

PB3 (96)
/SRD (strobe for master
to read a slave register).

PB2 (95)
/SWR (strobe for master
to write slave register).
User’s Manual 59

PB1 (94)
CLKA (serial port A
clocked mode clock,
bidirectional).

CLKA

PB0 (93) CLKB (bidirectional). CLKB

PC7 (51) RXA

PC6 (54) TXA

PC5 (55) RXB

PC4 (56) TXB

PC3 (57) RXC

PC2 (58) TXC

PC1 (59) RXD

PC0 (60) TXD

PD7 (43) ARXA

PD6 (44) ATXA

PD5 (45) ARXB

PD4 (46) ATXB

PD3 (47)

PD2 (48)

PD1 (49)

PD0 (50)

PE7 (21)
/I7—programmable I/O
strobe.

/SCS (slave chip select).

PE6 (22) /I6

PE5 (23) /I5 INT0 (input).

PE4 (24) /I4 INT1 (input).

PE3 (25) /I3

PE2 (27) /I2

PE1 (39) /I1 INT0 (input).

PE0 (30) /I0 INT1 (input).

Table 4. Pins With Alternate Functions
60 Rabbit 2000 Microprocessor

5.6 Register and Interrupt Vector Summary

Table 5. Register and Interrupt Vector Summary

On-chip peripheral I/O address range ISR starting address

System Management 0000xxxx (0x) RR00

Memory Management 0001xxxx (1x) No interrupts

Slave Port 0010xxxx (2x) RR80

Parallel Port A 0011xxxx (3x) No interrupts

Parallel Port B 0100xxxx (4x) No interrupts

Parallel Port C 0101xxxx (5x) No interrupts

Parallel Port D 0110xxxx (6x) No interrupts

Parallel Port E 0111xxxx (7x) No interrupts

External I/O Control 1000xxxx (8x) No interrupts

External Interrupts 1001xxxx (9x)
II00 (int 0)

II10 (int 1)

Timer A 1010xxxx (Ax) RRA0

Timer B 1011xxxx (Bx) RRB0

Serial Port A 1100xxxx (Cx) RRC0

Serial Port B 1101xxxx (Dx) RRD0

Serial Port C 1110xxxx (Ex) RRE0

Serial Port D 1111xxxx (Fx) RRF0

RST 10 instruction n/a RR20

RST 18 instruction n/a RR30

RST 20 instruction n/a RR40

RST 28 instruction n/a RR50

RST 38 instruction n/a RR70
User’s Manual 61

62 Rabbit 2000 Microprocessor

6. Rabbit Internal I/O Registers

Table 6. Rabbit Internal I/O Registers

Address Reset Value Functionality

GCSR=00h 11000000 Global Control Status Register. Control of clocks, periodic interrupts,
and monitoring of watchdog. See Table 7 on page 68.

RTCCR=01h 00000000 Real-Time Clock Control Register. See Section 7.5 on page 71

RTC0R=02h xxxxxxxx Real-Time Clock Byte 0 Register.

RTC1R=03h xxxxxxxx Real-Time Clock Byte 1 Register.

RTC2R=04h xxxxxxxx Real-Time Clock Byte 2 Register.

RTC3R=05h xxxxxxxx Real-Time Clock Byte 3 Register.

RTC4R=06h xxxxxxxx Real-Time Clock Byte 4 Register.

RTC5R=07h xxxxxxxx Real-Time Clock Byte 5 Register.

WDTCR=08h 00000000 Watchdog Timer Control Register. See Section 7.6 on page 73

WDTTR=09h 00000000 Watchdog Timer Test Register.

GOCR=0Eh 00000x00 Global Output Control Register. See Section 7.4 on page 71.

GCDR=0Fh xxxxx000 Global Clock Doubler Register.

MMIDR=10h xxx00000 Memory Management I and D Space Register. Controls I & D space
enable and battery switchover support for /CS1.

XPC 00000000 Not an I/O register, but initialized to zero by reset.

STACKSEG=11h
(Z180 CBR)

00000000 Stack segment memory pointer. Locates stack segment in physical
memory.

DATASEG=12h
(Z180 BBR)

00000000 Data segment memory pointer. Locates data segment in physical mem-
ory.

SEGSIZE=13h
(Z180 CBAR)

11111111 Specifies start of data segment and start of stack segment in 64K mem-
ory space.

MB0CR=14h 00000000 Memory Bank 0 Control Register. Controls mapping of first memory
quadrant 256K to physical memory chips.

MB1CR=15h xxxxxxxx Memory Bank 1 Control Register. Controls mapping of second mem-
ory quadrant to physical memory chips.

MB2CR=16h xxxxxxxx Memory Bank 2 Control Register. Controls mapping of third memory
quadrant to physical memory chips.

MB3CR=17h xxxxxxxx Memory Bank 3 Control Register. Controls mapping of fourth mem-
ory quadrant to physical memory chips.

SPD0R=20h xxxxxxxx Slave Port Register 0. Separate registers for read and write used for
slave port communication.

SPD1R=21h xxxxxxxx Slave port register 1.
User’s Manual 63

SPD2R=22h xxxxxxxx Slave port register 2.

SPSR=023h 00000000 Slave port status register.

SPCR=24h 000x0000 Slave port control register.

PADR=30h xxxxxxxx Parallel port A data register. R/W.

PBDR=40h 00xxxxxx Parallel port B data register. R/W.

PCDR=50h x0x0x0x0 Parallel port C data register.

PCFR=55h x0x0x0x0 Port C function register.

PDDR=60h xxxxxxxx Parallel port D data register. R/W.

PDCR=64h xx00xx00 Port D control register

PDFR=65h xxxxxxxx Port D function register.

PDDCR=66h xxxxxxxx Port D drive control register.

PDDDR=67h 00000000 Port D data direction register.

PDB0R=68h xxxxxxxx Port D bit 0 register. W

PDB1R=69h xxxxxxxx Bit 1.

PDB2R=6Ah xxxxxxxx Bit 2.

PDB3R=6Bh xxxxxxxx Bit 3.

PDB4R=6Ch xxxxxxxx Bit 4.

PDB5R=6Dh xxxxxxxx Bit 5.

PDB6R=6Eh xxxxxxxx Bit 6.

PDB7R=6Fh xxxxxxxx Bit 7.

PEDR=70h xxxxxxxx Parallel port E data register. R/W.

PECR=74h xx00xx00 Port E control register.

PEFR=75h xxxxxxx Port E function register.

PEDDR=77h 0000000 Port E data direction register.

PEB0R=78h xxxxxxx Port E bit 0 register. W

PEB1R=79h xxxxxxx Bit 1.

PEB2R=7Ah xxxxxxx Bit 2.

PEB3R=7Bh xxxxxxx Bit 3.

PEB4R=7Ch xxxxxxx Bit 4.

PEB5R=7Dh xxxxxxx Bit 5.

PEB6R=7Eh xxxxxxx Bit 6.

Table 6. Rabbit Internal I/O Registers

Address Reset Value Functionality
64 Rabbit 2000 Microprocessor

PEB7R=7FH xxxxxxx Bit 7

IB0CR=80h 00000xxx External I/O control bank 0

IB1CR=81h 00000xxx External I/O control bank 1

IB2CR=82h 00000xxx External I/O control bank 2

IB3CR=83h 00000xxx External I/O control bank 3

IB4CR=84h 00000xxx External I/O control bank 4

IB5CR=85h 00000xxx External I/O control bank 5

IB6CR=86h 00000xxx External I/O control bank 6

IB7CR=87h 00000xxx External I/O control bank 7

I0CR=98h xx000000 External interrupt 0 control register.

I1CR=99h xx000000 External interrupt 1 control register.

TACSR=0A0h 0000xx00 Timer A Control/Status Register

TACR=0A2h xxxxxxxx Timer A Control Register

TAT1R=0A3h 0000xx00 Timer A1 Time Constant 1 Register

TAT4R=0A9h xxxxxxxx Timer A4 Time Constant 4 Register

TAT5R=0ABh xxxxxxxx Timer A5 Time Constant 5 Register

TAT6R=0ADh xxxxxxxx Timer A6 Time Constant 6 Register

TAT7R=0AFh xxxxxxxx Timer A7 Time Constant 7 Register

TBCSR=0B0h xxxxx000 Timer B Control/Status Register

TBCR=0B1h xxxx0000 Timer B Control Register

TBM1R=0B2h xxxxxxxx Timer B MSB 1 Reg

TBL1R=0B3h xxxxxxxx Timer B LSB 1 Reg

TBM2R=0B4h xxxxxxxx Timer B MSB 2 Reg

TBL2R=0B5h xxxxxxxx Timer B LSB 2 Reg

TBCMR=0BEh xxxxxxxx Timer B Count MSB Reg

TBCLR=0BFh xxxxxxxx Timer B Count LSB Reg

Table 6. Rabbit Internal I/O Registers

Address Reset Value Functionality
User’s Manual 65

SADR=0C0h xxxxxxxx Serial port A data register receive/send.

SAAR=0C1h xxxxxxxx Serial port A alternate data register (transmit 9th bit)

SASR=0C3h 0xx00000 Serial port A status register.

SACR=0C4h xx000000 Serial port A control register.

SBDR=0D0h xxxxxxxx Serial port B data register receive/send.

SBAR=0D1h xxxxxxxx Serial port B alternate data register (transmit 9th bit)

SBSR=0D2h 0xx00000 Serial port B status register.

SBCR=0D3h xx000000 Serial port B control register.

SCDR=0E0h xxxxxxxx Serial port C data register receive/send.

SCAR=0E1h xxxxxxxx Serial port C alternate data register (transmit 9th bit)

SCSR=0E2h 0xx00000 Serial port C status register.

SCCR=0E3h xx00x000 Serial port C control register.

SDDR=0F0h xxxxxxxx Serial port D data register receive/send.

SDAR=0F1h xxxxxxxx Serial port D alternate data register (transmit 9th bit)

SDSR=0F2h 0xx00000 Serial port D status register.

SDCR=0F3h xx00x000 Serial port D control register.

Table 6. Rabbit Internal I/O Registers

Address Reset Value Functionality
66 Rabbit 2000 Microprocessor

7. Miscellaneous I/O Functions

7.1 Rabbit Oscillators and Clocks

There are two crystal oscillators built into the Rabbit. The main oscillator accepts crystals
up to a frequency of 29.4912 MHz (first overtone crystals only). The clock oscillator re-
quires a 32.768 kHz crystal, and can be battery backed.

An external oscillator or clock can be substituted for either crystal by connecting the ex-
ternal clock to XTALA1 or XTALB1 and leaving the other crystal pin (XTALA2 or
XTALB2) unconnected. If an external oscillator is used for the main clock the output pin
CLK (pin 1) should be used if the clock is needed externally. This signal is synchronized
with the internal clock. In comparision, the internal clock is delayed by approximately 10
nanoseconds compared to the external oscillator input XTALB1.

The main oscillator is normally used to derive the clock for the processor and peripherals.
The 32.768 kHz oscillator is normally used to clock the watchdog timer, the battery back-
able time/date clock, and the periodic interrupt. The main oscillator can be shut down in a
special low-power mode of operation, and the 32.768 kHz oscillator is then used to clock
all the things normally clocked by the main oscillator. This results in slower execution at
low power (~200 µA).

The on-chip routing of the clocks is shown in Figure 17. The main oscillator can be dou-
bled in frequency and/or divided by 8. If both doubling and dividing are enabled, then
there will be a net division by 4. The CPU clock can optionally by divided by 2 and then
optionally drive the external pin CLK. In many cases the clock is not needed externally,
and in that case CLK can be used as a general-purpose output pin. The divide by 2 option
is available to minimize electromagnetic radiation if the is clock is driven off chip.

Figure 17. Clock Distribution

Main Osc

32 kHz
Osc

CPU

Peripheral
Devices

Clock
Doubler

f/8

To Watchdog Timer and
Time/Date Clock Note: Peripherals cannot be clocked

slower than CPU.

disable f/2
ext pin
CLK

f or f/2
User’s Manual 67

Table 7. Global Control/Status Register (I/O adr = 00h)

Bit(s) Value Description

7:6 00 No reset or watchdog timer timeout since the last read.

(read only) 01
The watchdog timer timed out. These bits are cleared by a read of this
register.

10 This bit combination is not possible.

11 Reset occurred. These bits are cleared by a read of this register.

5 (write only) 0
Read this register to clear periodic interrupt request. This bit always read
as zero.

1 Force a periodic interrupt.

4:2 (write only) 000
Processor clock from the main oscillator, divided by eight.

Peripheral clock from the main oscillator, divided by eight.

001
Processor clock from the main oscillator, divided by eight.

Peripheral clock from the main oscillator, without divider.

01x
Processor clock from the main oscillator, without divider.

Peripheral clock from the main oscillator, without divider.

1x0
Processor clock from the 32 kHz oscillator, without divider.

Peripheral clock from the 32KHz oscillator, without divider.

1x1

Processor clock from the 32 kHz oscillator, without divider.

Peripheral clock from the 32 kHz oscillator, without divider.

The main oscillator is turned off.

1:0 (write only) 00 Periodic interrupts are disabled.

01 Periodic interrupts use Interrupt Priority 1.

10 Periodic interrupts use Interrupt Priority 2.

11 Periodic interrupts use Interrupt Priority 3.
68 Rabbit 2000 Microprocessor

7.2 Clock Doubler

The clock doubler is provided to allow a lower frequency crystal to be used for the main
oscillator and to provide an added range of clock frequency adjustability. The clock dou-
bler uses an on-chip delay circuit that must be programmed by the user at startup if there is
a need to double the clock as shown in Table 8.

When the clock doubler is used and there is no subsequent division of the clock, the output
clock will be asymmetric, as shown in Figure 18 on page 70. The doubled-clock low time
is subject to wide (50%) variation since it depends on process parameters, temperature,
and voltage. The times given above are for a supply voltage of 4 V and a temperature of
25°C. These delay values decrease by about 15% when the voltage decreases by 5 V, and
increase about 25% when the voltage increases by 3.3 V. The values increase or decrease
by 1% for each 5°C increase or decrease in temperature. The doubled clock is created by
xor’ing the delayed and inverted clock with itself. If the original clock does not have a
50-50 duty cycle, then alternate clocks will have a slightly different length. Since the duty
cycle of the built-in oscillator can be as asymmetric as 55-45, the clock generated by the
clock doubler will exhibit up to a 10% variation in period on alternate clocks. This does
not affect the no-wait states memory access time since two adjacent clocks are always
used. However, the maximum allowed clock speed must be reduced by 10% if the clock is
supplied via the clock doubler. The only signals clocked on the falling edge of the clock
are the memory and I/O write pulses, and these have noncritical timing. Thus the length
of the clock low time is noncritical as long as it is not so long as to shorten the clock high
time excessively, which could make the write pulse too short for the memory used. This is
unlikely to happen with practical clock speeds and typical static RAM memories.

Table 8. Global Clock Double Register (GCDR, adr = 0fh)

Bit(s) Value Description

7:3 xxxxx These bits are ignored.

2:0 000 The clock double circuit is disabled.

001 8 ns nominal low time (best for 30 MHz oscillator).

010 10 ns nominal low time (best for 25 MHz oscillator).

011 12 ns nominal low time (best for 20 MHz oscillator).

100 14 ns nominal low time (best for 18 MHz oscillator).

101 16 ns nominal low time (best for 16 MHz oscillator).

110 18 ns nominal low time (best for 14 MHz oscillator).

111 20 ns nominal low time. (best for 12 MHz or slower oscillator).
User’s Manual 69

Figure 18. Effect of Clock Doubler

The power consumption is proportional to the clock frequency, and for this reason power
can be reduced by slowing the clock when less computing activity is taking place. The
clock doubler provides a convenient method of temporarily speeding up or slowing down
the clock as part of a power management scheme.

7.3 Controlling Power Consumption

The processor power consumption can be traded against speed by slowing the system
clock, adding wait states, using low-power-consumption instructions, and for maximum
power savings disabling the main system oscillator and using the real-time clock oscillator
to provide the clock. The following power saving features can be enabled.

• Add memory wait states for instruction fetching. Total wait states are programmable as
0, 1, 2 or 4. Generally two wait states should use half the power of zero wait states.

• If the clock doubler is not already in use, divide both the processor and the peripheral
clock by 4. This is permissible if nothing, particularly timers and serial ports, depends
on the peripheral clock.

• If the clock doubler is in use, turn it off, dividing both processor and peripheral by 2.

• Divide the processor and/or peripheral clock by 8.

• Run code in RAM rather than flash memory.

• Switch the processor and peripheral clock to the 32.768 kHz oscillator and, if desired,
disable the main oscillator.

Oscillator

Oscillator delayed
and inverted

Doubled clock

Delay
time

45% 55%

P

0.45P 0.55P 0.45P 0.55P

Address

Data out

Write pulse

Example
Write
Cycle
70 Rabbit 2000 Microprocessor

• Execute a low-power instruction loop consisting mostly of instructions that don’t use
much power. The best choice is successive mul instructions that multiply 0 x 0. No
intervening instructions are needed to load the terms to be multiplied after the first mul
since all registers involved stay at zero.

It is anticipated that these measures would reduce current consumption to as low as 25 µA
plus some leakage that would be significant at high operating temperatures.

7.4 Output Pins CLK, STATUS, /WDTOUT, /IOBEN

Certain output pins can have alternate assignments as specified in Table 9.

7.5 Time/Date Clock (Real-Time Clock)

The time/date clock (RTC) is a 48-bit (ripple) counter that is driven by the 32.768 kHz os-
cillator. The RTC is a modified ripple counter composed of six separate 8-bit counters.
The carries are fed into all six 8-bit counters at the same time and then ripple for 8 bits.
The time for this ripple to take place is a few nanoseconds per bit and certainly should not
should not exceed 200 ns for all 8 bits, even when operating at low voltage.

Table 9. Global Output Control Register (GOCR = 0Eh)

Bit(s) Value Description

7:6 00 CLK pin is driven with processor clock.

01 CLK pin is driven with processor clock divided by 2.

10 CLK pin is low.

11 CLK pin is high.

5:4 00 STATUS pin is active (low) during a first opcode byte fetch.

01 STATUS pin is active (low) during an interrupt acknowledge.

10 STATUS pin is low.

11 STATUS pin is high.

3 1 WDTOUTB pin is low (1 cycle minimum, 2 cycles maximum, of 32 kHz).

0 WDTOUTB pin follows watchdog function.

2 x This bit is ignored.

1:0 00 IOBENB pin is active (low) during external I/O cycles.

01 IOBENB pin is active (low) during data memory accesses.

10 IOBENB pin is low.

11 IOBENB pin is high.
User’s Manual 71

The 48 bits are enough bits to count up 272 years at the 32 kHz clock frequency. By con-
vention, 12 AM on January 1, 1980, is taken as time zero. Z-World software ignores the
highest order bit, giving the counter a capacity of 136 years from January 1, 1980. To read
the counter value, the value is first transferred to a 6-byte holding register. Then the indi-
vidual bytes may be read from the holding registers. To perform the transfer, any data bits
are written to RTC0R, the first holding register. The counter may then be read as six 8-bit
bytes at RTC0R through RTC5R. The counter and the 32 kHz oscillator are powered from
a separate power pin that can be provided with power while the remainder of the chip is
powered down. This design makes battery backup possible. Since the processor operates
on a different clock than the RTC, there is the possibility of performing a transfer to the
holding registers while a carry is taking place, resulting in incorrect information. In order
to prevent this, the processor should do the clock read twice and make sure that the value
is the same in both reads.

If the processor is itself operating at 32 kHz, the read-clock procedure must be modified
since a number of clock counts would take place in the time needed by the slow-clocked
processor to read the clock. An appropriate modification would be to ignore the lower
bytes and only read the upper 5 bytes, which are counted once every 256 clocks or every
1/128th of a second. If the read cannot be performed in this time, further low-order bits
can be ignored.

The RTC registers cannot be set by a write operation, but they can be cleared and counted
individually, or by subset. In this manner any register or the entire 48-bit counter can be
set to any value with no more than 256 steps. If the 32 kHz crystal is not installed and the
input pin is grounded, no counting will take place and the six registers can be used as a
small battery-backed memory. Normally this would not be very productive since the cir-
cuitry needed to provide the power switchover could also be used to battery-back a regular
low-power static RAM.

Table 10. Real-Time Clock Read Registers

Real-Time Clock x Holding Register (RTC0R) R/W (Address = 00000010)

(RTC1R) (Address = 00000011)

(RTC2R) (Address = 00000100)

(RTC3R) (Address = 00000101)

(RTC4R) (Address = 00000110)

(RTC5R) (Address = 00000111)

Table 11. Real-Time Clock RTCxR Data Registers

Bit(s) Value Description

7:0 Read The current value of the 48-bit RTC holding register is returned.

Write
Writing to the RTC0R transfers the current count of the RTC to six holding
registers while the RTC continues counting.
72 Rabbit 2000 Microprocessor

7.6 Watchdog Timer

The watchdog timer is a 17-bit counter. In normal operation it is driven by the 32 kHz
clock. When the watchdog timer reaches any of several values corresponding to a delay of
from 0.25 to 2 seconds, it "times out." When it times out, it emits a 1-clock pulse from the
watchdog output pin and it resets the processor via an internal circuit. To prevent this
timeout, the program must "hit" the watchdog timer before it times out. The hit is accom-
plished by storing a code in WDTCR.

The watchdog timer may be disabled by storing a special code in the WDTTR register.
Normally this should not be done unless an external watchdog device is used. The pur-
pose of the watchdog is to unhang the processor from an endless loop caused by a soft-
ware crash or a hardware upset.

It is important to use extreme care in writing software to hit the watchdog timer (or to turn
off the watchdog timer). The programmer should not sprinkle instructions to hit the
watchdog timer throughout his program because such instructions can become part of an
endless loop if the program crashes and thus disable the recovery ability given by having a
watchdog.

Table 12. Real-Time Clock Control Register (RTCCR adr = 01h)

Bit(s) Value Description

7:0 x0xxxxxx Cancel byte increment mode, disarm reset (except code 80h)

40h
Arm RTC for a reset with code 80h or reset and byte increment
mode with code 0c0h.

80h Resets all six byte counters if proceeded by arm command 40h.

0c0h
Reset all six byte counters and enters byte increment mode—
precede this command with 40h arm command.

010xxxxx

Increment clock(s) register corresponding to bit(s) set to "1".
Example: 01001101 increments registers: 0, 2,3. The byte
increment mode must be enabled. Storing 00h cancels the byte
increment mode.

6 0
Disable the byte increment function by any store with bit 6 set to
zero. (Use code 00h.)

Table 13. Watchdog Timer Control Register (WDTCR adr = 08h)

Bit(s) Value Description

7:0 5Ah Restart (hit) the watchdog timer, with a 2-second timeout period.

57h Restart (hit) the watchdog timer, with a 1-second timeout period.

59h Restart (hit) the watchdog timer, with a 500 ms timeout period.

53h Restart (hit) the watchdog timer, with a 250 ms timeout period.

other No effect on watchdog timer.
User’s Manual 73

The following is a suggested method for hitting the watchdog. An array of bytes is set up
in RAM. Each of these bytes is a virtual watchdog. To hit a virtual watchdog, a number is
stored in a byte. Every virtual watchdog is counted down by an interrupt routine driven by
a periodic interrupt. This can happen every 10 ms. If none of the virtual watchdogs has
counted down to zero, the interrupt routine hits the hardware watchdog. If any have
counted down to zero, the interrupt routine disables interrupts, and then enters an endless
loop waiting for the reset. Hits of the virtual watchdogs are placed in the user’s program
at “must exercise” locations.

The code to do this may also hit the watchdog with a 0.25-second period to speed up the
reset. Such watchdog code must be written so that it is highly unlikely that a crash will in-
corporate the code and continue to hit the watchdog in an endless loop. The following
suggestions will help.

1. Place a jump to self before the entry point of the watchdog hitting routines. This pre-
vents entry other than by a direct call or jump to the routine.

2. Before calling the routine, set a data byte to a special value and then check it in the
routine to make sure the call came from the right caller. If not, go into an endless loop
with interrupts disabled.

3. Maintain data corruption flags and/or checksums. If these go wrong, go into an end-
less loop with interrupts off.

7.7 System Reset

The Rabbit has a master reset input (/RESET), which initializes everything in the device
except for the RTC. This reset is delayed until the completion of any write cycles in
progress to prevent any potential corruption of memory. If no write cycles are in progress,
the reset takes effect immediately.

Table 14. Watchdog Timer Test Register (WDTTR adr = 09h)

Bit(s) Value Description

7:0 51h
Clock the least significant byte of the WDT timer from the peripheral
clock. (Intended for chip test and code 54h below only.)

52h
Clock the most significant byte of the WDT timer from the peripheral
clock. (Intended for chip test and code 54h below only.)

53h
Clock both bytes of the WDT timer, in parallel, from the peripheral clock.
(Intended for chip test and code 54h below only.)

54h

Disable the WDT timer. This value, by itself, does not disable the WDT
timer. Only a sequence of two writes, where the first write is 51h, 52h or
53h, followed by a write of 54h, actually disables the WDT timer. The
WDT timer will be re-enabled by any other write to this register.

other
Normal clocking (32 kHz oscillator) for the WDT timer. This is the
condition after reset.
74 Rabbit 2000 Microprocessor

The purpose of inhibiting the completion of reset until write cycles in progress are com-
pleted is to protect variables in battery-backed memory from corruption when a reset takes
place. However, if the power controller responsible for battery switchover blocks the chip
select signal to the RAM, the writes in progress with be aborted in any case. This is not
necessarily serious as software schemes can be used to protect critical variables in battery-
backed memory.

The reset sequence requires a minimum of 128 cycles of the fast oscillator to complete,
even if no write cycles were in progress at the start of the reset. Reset forces both the pro-
cessor clock and the peripheral clock in the divide-by-eight mode. Note that if the proces-
sor is being clocked from the 32 kHz oscillator, the 128 cycles of the fast oscillator will
probably not be sufficient to allow any writes in progress to be completed before the reset
sequence completes and the clocks switch to divide-by-eight mode.

During reset, all of the memory control signals are held inactive. After the /RESET signal
is inactive (high), the processor begins fetching instructions and the memory control sig-
nals begin normal operation. Note that the default values in the Memory Bank Control
registers select four wait states per access, so the initial program fetch memory reads are
48 clock cycles long (8 x (2 + 4)). Software can immediately adjust the processor timing
to whatever the system requires.

The default selection for the memory control signals consists of /CS0, /OE0 and /WE0,
and writes are enabled. This selection can also be immediately programmed to match the
hardware configuration. A typical sequence would be to speed up the clock to full speed,
then select the appropriate number of wait states and the chip select signals, output enable
signals and write enable signals. At this point software would usually check the system
status to determine what type of reset just occurred and begin normal operation.

7.8 Rabbit Interrupt Structure

An interrupt causes a call to be executed, pushing the PC on the stack and starting to exe-
cute code at the interrupt vector address. The interrupt vector addresses have a fixed
lower byte value for all interrupts. The upper byte is adjustable by setting the registers
EIR and IIR for external and internal interrupts respectively. There are only two external
interrupts generated by transitions on certain pins in parallel port E.

The interrupt vectors are shown in Table 15.

The interrupts differ from most Z80 or Z180 interrupts in that the 256-byte tables pointed
to EIR and IIR contain the actual instructions beginning the interrupt routines rather than a
16-bit pointer to the routine. The interrupt vectors are spaced 16 bytes apart so that the en-
tire code will fit in the table for very small interrupt routines.
User’s Manual 75

Table 15. Peripheral Device Address and Interrupt Vectors

On-Chip Peripheral I/O Address Range ISR Starting Address

System Management (periodic interrupt) 0000xxxx {IIR, 00000000}

Memory Management 0001xxxx No interrupts

Slave Port 0010xxxx {IIR, 10000000}

Parallel Port A 0011xxxx No interrupts

Parallel Port B 0100xxxx No interrupts

Parallel Port C 0101xxxx No interrupts

Parallel Port D 0110xxxx No interrupts

Parallel Port E 0111xxxx No interrupts

External I/O Control 1000xxxx No interrupts

External Interrupts 1001xxxx
{EIR, 0, int, 0000}

int0- I,0000000
int1 - I,0001000

Timer A 1010xxxx {IIR, 10100000}

Timer B 1011xxxx {IIR, 10110000}

Serial Port A 1100xxxx {IIR, 11000000}

Serial Port B 1101xxxx {IIR, 11010000}

Serial Port C 1110xxxx {IIR, 11100000}

Serial Port D 1111xxxx {IIR, 11110000}{IIR,0F0h}

RST 10 instruction n/a {IIR, 00100000}{IIR,20h}

RST 18 instruction n/a {IIR, 00110000}{IIR,30h}

RST 20 instruction n/a {IIR, 01000000}{IIR,40h}

RST 28 instruction n/a {IIR, 01010000}{IIR,50h}

RST 38 instruction n/a {IIR, 01110000}{IIR,70h}
76 Rabbit 2000 Microprocessor

Interrupts have priority 1, 2 or 3. The processor operates at priority 0, 1, 2 or 3. If an in-
terrupt is being requested, and its priority is higher than the priority of the processor, the
interrupt will take place after then next instruction. The interrupt automatically raises the
processor’s priority to its own priority. The old processor priority is pushed into the 4-po-
sition stack of priorities contained in the IP register. Multiple devices can be requesting
interrupts at the same time. In each case there is a latch set in the device that requests the
interrupt. If that latch is cleared before the interrupt is latched by the central interrupt
logic, then the interrupt request is lost and no interrupt takes place. This is shown in
Table 16. The priorities shown in this table apply only for interrupts of the same priority
level and are only meaningful if two interrupts are requested at the same time. Most of the
devices can be programmed to interrupt at priority level 1, 2 or 3.

In the case of the external interrupts the only action that will clear the interrupt request is
for the interrupt to take place, which automatically clears the request. A special action
must be taken in the interrupt service routine for the other interrupts.

7.8.1 External Interrupts

There are two external interrupts. The external interrupts take place on a transition of the
input, programmable for rising, falling or both edges. There are two interrupt pins in port
E that can be enabled for each interrupt. Each of the interrupt pins has its own catcher de-
vice to catch the edge transition and request the interrupt.

Table 16. Interrupts—Priority and Action to Clear Requests

Priority Interrupt Source Action Required to Clear the Interrupt

Highest External 1 Automatically by interrupt acknowledge.

External 0 Automatically by interrupt acknowledge.

Periodic (2KHz) Read the GCSR.

Timer B Read the TBSR.

Timer A Read the TASR.

Slave Port Write SLSTAT.

Serial Port A
Rx: Read the SADR or SAAR.

Tx: Write the SADR, SAAR or SASR

Serial Port B
Rx: Read the SBDR or SBAR.

Tx: Write the SBDR, SBAR or SBSR

Serial Port C
Rx: Read the SCDR or SCAR.

Tx: Write the SCDR, SCAR or SCSR

Lowest Serial Port D
Rx: Read the SDDR or SDAR.

Tx: Write the SDDR, SDAR or SDSR
User’s Manual 77

Figure 19. External Interrupt Line Logic

When the interrupt takes place, both catcher devices associated with that interrupt are au-
tomatically reset. If both edges are detected before the corresponding interrupt takes
place, because the triggering edges occur nearly simultaneously or because the interrupts
are inhibited by the processor priority, then there will be only one interrupt for the two
edges detected. The interrupt service routine can read the interrupt pins via parallel port E
and determine which lines experienced a transition, provided that the transitions are not
too fast. Interrupts can also be generated by setting up the matching port E bit as an output
and toggling the bit.

Interrupt vectors: INT0 - EIR,00h / INT1 - EIR,08h

When it is desired to expand the number of interrupts for additional peripheral devices, the
user should use the interrupt routine to dispatch interrupts to other virtual interrupt rou-
tines. Each additional interrupting device will have to signal the processor that it is re-
questing an interrupt. A separate signal line is needed for each device so that the
processor can determine which devices are requesting an interrupt.

Table 17. Control Registers for External Interrupts

Reg Name Reg Address Bits 7,6 Bits 5,4 Bits 3,2 Bits 1,0

I0CR 10011000 xx INT0 PE4 INT0 PE0 Enb INT0

I1CR 10011001 xx INT1 PE5 INT1 PE1 Enb INT1

edge triggered

00-disabled

10-rising

01-falling

11-both

edge triggered

00-disabled

10-rising

01-falling

11-both

interrupt

00-disable

01-pri 1

10-pri 2

11-pri 3

INT0A

INT0B

interupt ack0

interrupt req0

pulse catcher

interupt ack1

interrupt req1

pulse catcher
INT1A

INT1B
78 Rabbit 2000 Microprocessor

7.9 Bootstrap Operation

The device provides the option of bootstrap from any of three sources: from the Slave
Port, from Serial Port A in clocked serial mode, or from Serial Port A in asynchronous
mode. This is controlled by the state of the SMODE pins after reset. Bootstrap operation
is disabled if (SMODE1, SMODE0) = (0, 0).

Bootstrap operation inhibits the normal fetch of code from memory, and instead substi-
tutes the output of a small internal boot ROM for program fetches. This bootstrap pro-
gram reads groups of three bytes from the selected peripheral device. The first byte is the
most significant byte of a 16-bit address, followed by the least-significant byte of a 16-bit
address, followed by a byte of data. The bootstrap program then writes the byte of data to
the downloaded address and jumps back to the start of the bootstrap program. The most
significant bit of the address is used to determine the destination for the byte of data. If
this bit is zero, the byte is written to the memory location addressed by the downloaded
address. If this bit is one, the byte is written to the internal peripheral addressed by the
downloaded address. Note that all of the memory control signals continue to operate nor-
mally during bootstrap.

Execution of the bootstrap program automatically waits for data to become available from
the selected peripheral, and each byte transferred automatically resets the watchdog timer.
However, the watchdog timer still operates, and bytes must be transferred often enough to
prevent the watchdog timer from timing out.

Bootstrap operation is terminated when the SMODE pins are set to zero. The SMODE
pins are sampled just prior to fetching the first instruction of the bootstrap program. If the
SMODE pins are zero, instructions are fetched from normal memory starting at address
0000h. The Slave Port Control register allows the bootstrap operation to be terminated re-
motely. Writing a one to bit 7 of this register causes the bootstrap operation to terminate
immediately. So the sequence 80h, 24h and 80h will terminate bootstrap operation.

Bootstrap operation is not restricted to the time immediately after reset, because the boot
ROM is addressed by only the four least significant bits of the address. So any time that
the address ends in four zeros, if the SMODE pins are non-zero and bit 7 of the SPCR is
zero, the bootstrap program will begin execution. This allows in-line downloading from
the selected bootstrap port. Upon completion of the bootstrap operation, either by return-
ing the SMODE pins to zero or setting the bit in the SPCR, execution will continue from
where it was interrupted for the bootstrap operation.

The Slave Port is selected for bootstrap operation when (SMODE1, SMODE0) = (0, 1). In
this case the pins of Parallel Port A are used for a byte-wide data bus, and selected pins of
Parallel Ports B and E are used for the Slave Port control signals. Only Slave Port Data
Register 0 is used for bootstrap operation, and any writes to the other data registers will be
ignored by the processor, and can actually interfere with the bootstrap operation by mask-
ing the Write Empty signal.

See Section 14.8.2 on page 129 for an example of using the bootstrap mode.�
User’s Manual 79

Serial Port A is selected for bootstrap operation as a clocked serial port when SMODE =
10. In this case bit 7 of Parallel Port C is used for the serial data and bit 1 of Parallel Port
B is used for the serial clock. Note that the serial clock must be externally supplied for
bootstrap operation. This precludes the use of a serial EEPROM for bootstrap operation.

Serial Port A is selected for bootstrap operation as an asynchronous serial port when
SMODE = 11. In this case bit 7 of Parallel Port C is used for the serial data and the
32 kHz oscillator is used to provide the serial clock. A dedicated divide circuit allows the
use of the 32 kHz signal to provide the timing reference for the 2400 bps asynchronous
transfer. Only 2400 bps is supported for bootstrap operation, and the serial data must be
eight bits for proper operation.

When a bootstrap is performed using Serial Port A, the TXA signal is not needed since the
bootstrap is a one-way communication. After the reset ends and the bootstrap mode be-
gins, TXA will be low, reflecting its function as a parallel port output bit that is cleared by
the reset. This may be interpreted as a break signal by some serial communication de-
vices. TXA can be forced high by sending the triplet 80h, 50h, 40h, which stores 40h in
parallel port C. An alternate approach is to send the triplet 80h, 55h, 40h, which will en-
able the TXA output from bit 6 of parallel port C by writing to the parallel port C function
register (55h).

The transfer rate in any bootstrap operation must not be too fast for the processor to exe-
cute the instruction stream. The Write Empty signal acts as an interlock when using the
Slave Port for bootstrap operation, because the next byte should not be written to the Slave
Port until the Write Empty signal is active. No such interlock exists for the clocked serial
and asynchronous bootstrap operation. In these cases, remember that the processor clock
starts out in divide-by-eight mode with four wait states, and limit the transfer rate accord-
ingly. In asynchronous mode at 2400 bps it takes about 4 ms to send each character, so no
problem is likely unless the system clock is extremely slow.
80 Rabbit 2000 Microprocessor

8. Rabbit Memory Mapping and Interface

See Section 3.2 on page 20 for a tutorial discussion of the Rabbit memory mapping.

Figure 20 shows an overview of the Rabbit memory mapping. The task of the memory
mapping unit is to accept 16-bit addresses and translate them to 20-bit addresses. The
memory interface unit accepts the 20-bit addresses and generates control signals applied
directly to the memory chips.

Figure 20. Overview of Rabbit Memory Mapping

8.1 Memory-Mapping Unit

The 64K 16-bit address space accessed by processor instructions is divided into segments.
Each segment has a length that is a multiple of 4K. Except for the extended code segment,
the segments have adjustable sizes and some segments can be reduced to zero size and
thus vanish from the memory map.

The four segments are shown in the example in Figure 21. The segment size register
(SEGSIZE) determines the boundaries marked in the diagram. The extended code seg-
ment always occupies the addresses 0E000h–0FFFFh. The stack segment stretches from
the address specified by the upper 4 bits of the SEGSIZE register to 0DFFFh. For exam-
ple, if the upper 4 bits of SEGSIZE are 0Dh, then the stack segment will occupy 0D000h–
0DFFFh, or 4K. If the upper 4 bits of SEGSIZE are greater than or equal to 0Eh, the stack
segment vanishes. If these bits are set to zero, the two segments below the stack segment
will vanish.

The lower 4 bits of SEGSIZE determine the lower boundary shown in the figure. If this
boundary is equal to the upper boundary or greater than 0Eh, the data segment will vanish.
If this segment is placed at zero the code segment will vanish.

Memory
Chips

Processor Memory
Mapping
Unit

Memory
|Interface
Unit
User’s Manual 81

Figure 21. Memory Segments

The memory management unit accepts a 16-bit address from the processor and translates
it into a 20-bit address. The procedure to do this works as follows.

1. It is determined which segment the 16-bit address belongs to by inspecting the upper 4
bits of the address. Every address must belong to one of the possible 4 segments.

2. Each segment has an 8-bit segment register. The 8-bit segment register is added to the
upper 4 bits of the 16-bit address to create a 20-bit address. Wraparound occurs if the
addition would result in an address that does not fit in 20 bits.

Table 18. Segment Registers

Segment Register Function

XPC
Locates extended code segment in physical memory. Read and written
by processor instructions: ld a,xpc, ld xpc,a, lcall, lret, ljp

STACKSEG = 11h Locates stack segment in physical memory.

DATASEG = 12h Locates data segment in physical memory.

Table 19. Segment Size Register

Bits 7..4 Bits 3..0

SEGSIZE = 13h Boundary address stack segment. Boundary address data segment.

Extended code
XPC segment (8K)

Stack segment
(4K typ)

Root segment

Data segment

64K

0K

Boundary SEGSIZE[4..7]

Boundary SEGSIZE[0..3]

XPC

STACKSEG

DATASEG
00

+ 16-bit address

20-bit address
82 Rabbit 2000 Microprocessor

8.2 Memory Interface Unit

The 20-bit memory addresses generated by the memory-mapping unit feed into the mem-
ory interface unit. The memory interface unit has a separate control register (see Table 20
on page 83) for each 256K quadrant of the 1M physical memory. This control register
specifies how memory access requests to that quadrant are to be dispatched to the memory
chips connected to the Rabbit. There are three separate chip select output lines (/CS0,
/CS1, and /CS2) that can be used to select one of three different memory chips. A field in
the control register determines which chip select (or none) is selected for memory accesses
to the quadrant. The same chip select line may be accessed in more than one quadrant. For
example, if a 512K RAM is installed and is selected by /CS1, it would be appropriate to use
/CS1 for accesses to the 3rd and 4th quadrants, thus mapping the RAM chip to addresses
80000h to 0FFFFFh.

8.3 Memory Bank Control Register Functions

Table 20 describes the operation of the four memory bank control registers. Each register
controls one quadrant in the 1M address space.

• Bits 7,6—The number of wait states used in access to this quadrant. Without wait
states, read requires 2 clocks and write requires 3 clocks. The wait state adds to these
numbers.

• Bits 5, 4—These bits allow the upper address lines to be inverted. This inversion
occurs after the logic that selects the bank register, so setting these lines has no effect
on which bank register is used. The inversion may be used to install a 1M memory chip
in the space normally allocated to a 256K chip. The larger memory can then be
accessed as 4 pages of 256K each. There is no effect outside the quadrant that the
memory bank control register is controlling.

• Bit 3—Inhibits the write pulse to memory accessed in this quadrant. Useful for protect-
ing flash memory from an inadvertent write pulse, which will not actually write to the
flash because it is protected by lock codes, but will temporarily disable the flash mem-
ory and crash the system if the memory is used for code.

• Bit 2—Selects which set of the two lines /OEx and /WEx will be driven for memory
accesses in this quadrant.

• Bits 1,0—Determines which of the three chip select lines will be driven for memory
accesses to this quadrant.

• All bits of the control register are initialized to zero on reset.

Table 20. Memory Bank Control Register x (MBxCR=14h+x)

Bits 7,6 Bit 5 Bit 4 Bit 3 Bit 2 Bits 1,0

00—4 wait states
01—2 wait states
10—1 wait states
11—0 wait states

1—Invert
address
A19

1—Invert
address
A18

1—Write-pro-
tect memory
this quadrant

0—use /OE0, /WE0
1—use /OE1, /WE1

00—use /CS0
01—use /CS1
1x—use /CS2
User’s Manual 83

8.3.1 Optional A16, A19 Inversions by Segment (/CS1 Enable)

The inversion of A19 or A16 controlled by the MMIDR register is used to redirect map-
ping of the root segment and the data segment by inverting certain bits when these seg-
ments are accessed. Currently this functionality has no planned usage.

The optional enable of /CS1 is valuable for systems that are pushing the access time of
battery-backed RAM. By enabling /CS1, the delay time of the switch that forces /CS1
high when power is off can be bypassed. This feature increases power consumption since
the RAM is always enabled and its access is controlled normally by /OE1.

8.4 Allocation of Extended Code and Data

The Dynamic C compiler compiles code to root code space or to extended code space.
Root code starts in low memory and compiles upward.

Figure 22. Typical Memory Mapping and Memory Usage

Table 21. MMU Instruction/Data Register (MMIDR = 010h)

Bits 7,6,5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

000

1—force /CS1
always
enabled

1—invert A19 for
accesses in data
segment before
quadrant selec-
tion

1—invert A16 for
accesses in
data segment

1—invert A19 for
accesses in root
segment before
quadrant selec-
tion

1—invert A16
for accesses
in root seg-
ment

Stack

xcode
window

64K

52K

56K

Root
code

Variablesug

Variables

Stacks

Root code and consta

Extended code

512K

0K

Available RAM
84 Rabbit 2000 Microprocessor

Allocation of extended code starts above the root code and data. Allocation normally con-
tinues to the end of the flash memory.

Data variables are allocated to RAM working backwards in memory. Allocation normally
starts at 52K in the 64K D space and continues. The 52K space must be shared with the
root code and data, and is allocated upward from zero.

Dynamic C also supports extended data constants. These are mixed in with the extended
code in flash.

8.5 How the Compiler Compiles to Memory

The compiler actually generates code for root code and constants and extended code and
extended constants. It allocates space for data variables, but does not generate data bits to
be stored in memory.

In any but the smallest programs, most of the code is compiled to extended memory. This
code executes in the 8K window from E000 to FFFF. This 8K window uses paged access.
Instructions that use 16-bit addressing can jump within the page and also outside of the
page to the remainder of the 64K space. Special instructions, particularly long call, long
jump and long return, are used to access code outside of the 8K window. When one of
these transfer of control instructions is executed, both the address and the view through the
8K window or page are changed. This allows transfer to any instruction in the 1M mem-
ory space. The 8-bit XPC register controls which of the 256 4K pages the 8K window
aligns with. The 16-bit PC controls the address of the instruction, usually in the region
E000 to FFFF. The advantage of paged access is that most instructions continue to use 16-
bit addressing. Only when an out-of-range transfer of control is made does a 20-bit trans-
fer of control need to be made. The beauty of having a 4K minimum step in page align-
ment while the size of the page is 8K is that code can be compiled continuously without
gaps caused by change of page. When the page is moved by 4K, the previous end of code
is still visible in the window, provided that the midpoint of the page was crossed before
moving the page alignment.

As the compiler compiles code in the extended code window, it checks at oportune times
to see if the code has passed the midpoint of the window or F000. When the code passes
F000, the compiler slides the window down by 4K so that the code at F000+x becomes
resident at E000+x. This results in the code being divided into segments that are typically
4K long, but which can very short or as long as 8K. Transfer of control can be accom-
plished within each segment by 16-bit addressing; 20-bit addressing is required between
segments.
User’s Manual 85

Figure 23. Compilaton of Code Segments in Extended Memory

Memory View in 8K window each segment

E000

FFFF

E000

FFFF

4K pages
86 Rabbit 2000 Microprocessor

9. Parallel Ports

The Rabbit has five 8-bit parallel ports designated A, B, C, D and E. The pins used for the
parallel ports are also shared with numerous other functions as shown in Table 4 on
page 59. The important properties of the ports are summarized below.

• Port A—Shared with the slave port data interface.

• Port B—Shared with control lines for slave port and clock I/O for clocked serial mode
option for serial ports A and B.

• Port C—Shared with serial port serial data I/O.

• Port D—4 bits shared with alternate I/O pins for serial ports A and B. 4 bits not shared.
Port D has the ability to configure its outputs as open drain outputs. Port D has output
preload registers that can be clocked into the output registers under timer control for
pulse generation. Port D has higher current drive capability.

• Port E—All bits of Port E can be configured as I/O strobes. 4 bits of port E can be used
as external interrupt inputs. One bit of port E is shared with the slave port chip select.
Port E has output preload registers that can be clocked into the output registers under
timer control for pulse generation. Port E has higher current drive capability.

9.1 Parallel Port A

Parallel Port A has a single read/write register, shown in Table 22.

If the slave port is enabled, this register should not be used. The slave port control register
is used to control whether this port is an output or input. To make the port input, store
080h in the SPCR slave port control register. To make the port output, store 084h in
SPCR. Upon reset, port A is set up as an input port.

When the port is read, the value read reflects the voltages on the pins, "1" for high and "0"
for low. This could be different than the value stored in the output register if the pin is
forced to a different state by an external voltage.

Table 22. Parallel Port A Data Register (adr = 030h)

R/W 8-bit Data Value
User’s Manual 87

9.2 Parallel Port B

Parallel Port B, shown in Table 23, has six inputs and two outputs when used exclusively
as a parallel port.

When the slave port is enabled, parallel port lines PB2–PB7 are assigned to various slave
port functions. However, it is still possible to read PB0–PB5 using the Port B data register
even when lines PB2–PB7 are used for the slave port. It is also possible to read the signal
driving PB6 and PB7 (this signal is on the signaling lines from the slave port logic).

Regardless of whether the slave port is enabled, PB0 reflects the input of the pin unless se-
rial port B has its internal clock enabled, which causes this line to be driven by the serial
port clock. PB1 reflects the input of the pin unless serial port A has its internal clock en-
abled.

On reset the output bits 6 and 7 are reset and the value output on pins PB6 and PB7 (pack-
age pins 99, 100) will also be low.

9.3 Parallel Port C

Parallel port C, shown in Table 24, has four inputs and four outputs. The even-numbered
ports, PC0, PC2, PC4, and PC6, are outputs. The odd-numbered ports, PC1, PC3, PC5,
and PC7, are inputs. When the data register is read, bits 1,3,5,7 return the value of the
voltage on the pin. Bits 0,2,4,6 return the value of the signal driving the output buffers.
The signal driving the output buffers and the value of the output pin are normally the
same. Either the Port C data register is driving these pins or one of the serial port transmit
lines is driving the pin. The bits set in the PCFR Parallel Port C Function Register identify
whether the data register or the serial port transmit lines were driving the pins.

Table 23. Parallel Port B Data Register PBDR (adr = 040h)

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Read
Echo
drive

Echo
drive

PB5 in PB4 in PB3 in PB2 in PB1 in PB0 in

Write PB7 PB6 x x x x x x

Table 24. Parallel Port C Data Register and Function Register

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

PCDR (r)

adr = 050h
PC7 in

Echo
drive

PC5 in
Echo
drive

PC3 in
Echo
drive

PC1 in
Echo
drive

PCDR (w)

adr = 050h
x PC6 x PC4 x PC2 x PC0

PCFR (w)

adr = 055h
x

Drive
TXA

x
Drive
TXB

x
Drive

TXC
x

Drive
TXD
88 Rabbit 2000 Microprocessor

Parallel port C shares its pins with the four serial ports. The parallel port input pins may
also serve as serial port inputs. (Serial ports A and B can alternately use pins in Port D as
inputs, and the source of the serial port inputs for these serial ports depends on the setup of
the corresponding serial port control register.) When serving as serial inputs, the data
lines can still be read from the parallel port C data register. The parallel port outputs can
be selected to be serial port outputs by storing bits in the corresponding positions of the
Port C Function register (PCFR). When a parallel port output pin is selected to be a serial
port output, the value stored in the data register is ignored. On reset the active (even-num-
bered) function register bits and data register bits are zeroed. This causes the port to out-
put zeros on the four output bits.

9.4 Parallel Port D

Parallel port D, shown in Figure 24 on page 90, has eight pins that can programmed indi-
vidually to be inputs and outputs. When programmed as outputs, the pins can be individu-
ally selected to be open-drain outputs or standard outputs. Port D pins can be addressed
by bit if desired. The output registers are cascaded and timer-controlled, making it possi-
ble to generate precise timing pulses. In addition, port D (and E) outputs have a higher
drive capability. Port D outputs 4 and 5 can be used as alternate pins for serial port B, and
outputs 6 and 7 can be used as alternate pins for serial port A. Alternate serial port outputs
make it possible for the same serial port to connect to different communications lines that
are not operating at the same time.

On reset, the data direction register is zeroed, making all pins inputs. In addition bits in
the control register are zeroed (bits 0,1,4,5) to ensure that data is clocked into the output
registers when loaded. All other registers associated with port D are not initialized on re-
set.

The following registers are described in Table 25 and in Table 26.

• PDDR—Parallel port D data register. Read/Write.

• PDDDR—Parallel port D data direction register. A "1" makes the corresponding pin
an output. Write only.

• PDDCR—Parallel port D drive control register. A "1" makes the corresponding pin an
open-drain output if that pin is set up for output. This register is zeroed by reset. Write
only.

• PCFR—Parallel port D function control register. This port may be used to make port
positions 4 and 6 be serial port outputs. Write only.

• PDBxR—These eight registers may be used to set outputs on individual port positions.

• PDCR—Parallel port D control register. This register is used to control the clocking of
the upper and lower nibble of the final output register of the port. On reset, bits 0, 1, 4,
and 5 are reset to zero.
User’s Manual 89

Figure 24. Parallel Port D Block Diagram

PD7

PD4

I/O Data perclk/2

Timer A1

Timer B1

Timer B2

perclk/2

Timer A1

Timer B1

Timer B2

PD3

PD0

ATXA

ATXB

ARXA

ARXB
PD5

PD6

inputs

Driver—optional open drain
90 Rabbit 2000 Microprocessor

Table 25. Parallel Port D Registers

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

PDDR (R/W)
adr = 060h

PE7 PD6 PD5 PD4 PD3 PD2 PD1 PD0

PDDCR (W)
adr = 066h

out =
open
drain

out =
open
drain

out =
open
drain

out =
open
drain

out =
open
drain

out =
open
drain

out =
open
drain

out =
open
drain

PDFR (W)
adr = 065h

x alt TXA x alt TXB x x x x

PDDDR (W)
adr = 067h

dir =
out

dir =
out

dir =
out

dir =
out

dir =
out

dir =
out

dir =
out

dir =
out

PDB0R (W)

adr = 068h
x x x x x x x PD0

PDB1R (W)

adr = 069h
x x x x x x PD1 x

PDB2R (W)

adr = 06Ah
x x x x x PD2 x x

PDB3R (W)

adr = 06Bh
x x x x PD3 x x x

PDB4R (W)

adr = 06Ch
x x x PD4 x x x x

PDB5R (W)

adr = 06Dh
x x PD5 x x x x x

PDB6R (W)

adr = 06Eh
x PD6 x x x x x x

PDB7R (W)

adr = 06Fh
PD7 x x x x x x x

Table 26. Parallel Port D Control Register (adr = 064h)

Bits 7, 6 Bits 5, 4 Bits 3, 2 Bits 1, 0

x 00—clock upper nibble on pclk/2

01—clock on timer A1

10—clock on timer B1

11—clock on timer B2

x 00—clock lower nibble on pclk/2

01—clock on timer A1

10—clock on timer B1

11—clock on timer B2
User’s Manual 91

9.5 Parallel Port E

Parallel port E, shown in Figure 25, has eight I/O pins that can be individually programmed
as inputs or outputs. Port E has a higher drive than most of the other ports. PE7 is used as
the slave port chip select when the slave port is enabled. Each of the port E outputs can be
configured as an I/O strobe. In addition, four of the port E lines can be used as interrupt re-
quest inputs. The output registers are cascaded and timer-controlled, making it possible to
generate precise timing pulses.

Figure 25. Parallel Port E Block Diagram

PE7

PE4

I/O Data perclk/2

Timer A1

Timer B1

Timer B2

perclk/2

Timer A1

Timer B1

Timer B2

PE3

PE0

I6

/scs

Inputs
I4

I7

I5

I2

I0

I3

I1

INT1

INT0

INT1

INT0
92 Rabbit 2000 Microprocessor

The following registers are described in Table 27 and in Table 28.

• PEDR—Port E data register. Reads value at pins. Writes to port E preload register.

• PEDDR—Port E data direction register. Set to "1" to make corresponding pin an out-
put. This register is zeroed on reset.

• PEFR—Port E function register. Set bit to "1" to make corresponding output an I/O
strobe. The nature of the I/O strobe is controlled by the I/O bank control registers
(IBxCR). The data direction must be set to output for the I/O strobe to work.

• PEBxR—These are individual registers to set individual output bits on or off.

• PECR—Parallel port E control register. This register is used to control the clocking of
the upper and lower nibble of the final output register of the port. On reset, bits 0, 1, 4,
and 5 are reset to zero.

Table 27. Parallel Port E Registers

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

PEDR (R/W)

adr = 070h
PE7 PE6 PE5 PE4 PE3 PE2 PE1 PE0

PEFR (W)

adr = 075h
alt /I7 alt /I6 alt /I5 alt /I4 alt /I3 alt /I2 alt /I1 alt /I0

PEDDR (W)
adr = 077h

dir =
out

dir =
out

dir =
out

dir =
out

dir =
out

dir =
out

dir =
out

dir =
out

PEB0R (W)

adr = 078h
x x x x x x x PE0

PEB1R (W)

adr = 079h
x x x x x x PE1 x

PEB2R (W)

adr = 07Ah
x x x x x PE2 x x

PEB3R (W)

adr = 07Bh
x x x x PE3 x x x

PEB4R (W)

adr = 07Ch
x x x PE4 x x x x

PEB5R (W)

adr = 07Dh
x x PE5 x x x x x

PEB6R (W)

adr = 07Eh
x PE6 x x x x x x

PEB7R (W)

adr = 07Fh
PE7 x x x x x x x
User’s Manual 93

Table 28. Parallel Port E Control Register (adr = 074h)

Bits 7, 6 Bits 5, 4 Bits 3, 2 Bits 1, 0

x 00—clock upper nibble on pclk/2

01—clock on timer A1

10—clock on timer B1

11—clock on timer B2

x 00—clock lower nibble on pclk/2

01—clock on timer A1

10—clock on timer B1

11—clock on timer B2
94 Rabbit 2000 Microprocessor

10. I/O Bank Control Registers

The pins of port E can be individually set to be I/O strobes. Each of the eight possible I/O
strobes has a control register that controls the nature of the strobe and the number of wait
states that will be inserted in the I/O bus cycle. Writes can also be suppressed for any of
the strobes. The types of strobes are shown in Figure 26. Each of the eight I/O strobes is
active for addresses occupying 1/8th of the 64K external I/O address space.

Figure 26. External I/O Bus Cycles

Table 29 shows how the eight I/O bank control registers are organized.

The I/O strobes greatly simplify the interfacing of external devices. On reset the upper 5
bits of each register is cleared. Parallel port E will not output these signals unless the data
direction register bits are set for the desired output positions. In addition, the parallel port
E function register must be set to "1" for each position.

Table 29. I/O Bank Control Reg (adr IBxCR = 08xh)

Bits 7,6 Bits 5,4 Bit 3 Bits 2–0

Wait state code

11-1

10-3

10-7

00-15

/IX strobe type

00—chip select

01—read strobe

10—write strobe

11—or of read and
write strobe

1—permit write

0—inhibit write

Ignored

ADDR

T1 Tw T2

write data

write strobe

read data

read strobe

chip select strobe

valid

valid

valid

External I/O Timing (with 1 wait state)
User’s Manual 95

96 Rabbit 2000 Microprocessor

11. Timers

There are two timers—Timer A and Timer B. Timer A is intended mainly for generating
the baud clock for the serial ports, a periodic clock for clocking parallel ports D and E, or
for generating periodic interrupts. Timer B can be used for the same functions, but it is
more flexible because the program can read the time from a continuously running counter
and events can be programmed to occur at a specified future time.

Figure 27 shows a block diagram of Timers A and B.

Figure 27. Block Diagram of Timers A and B

A1

perclk/2
A4

A5

A6

A7

Timer A System

10-bit counter

match reg

match reg

compare

Timer B System

next match

next match

10 bits

Timer_B1

Timer_B2

f/8
User’s Manual 97

11.1 Timer A

Timer A consists of five separate countdown timers—A1 and A4–A7—as shown in Figure 27.

Timers A1 and A4–A7 are 8-bit countdown registers as shown in Figure 28. The reload
register can contain any number in the range from 0 to 255. The counter divides by (n+1).
For example, if the reload register contains 127, then 128 pulses enter on the left before a
pulse exits on the right. If the reload register contains zero, then each pulse on the left re-
sults in a pulse on the right, that is, there is division by one.

Figure 28. Reload Register Operation

The timer systems are driven by the peripheral clock divided by two. This clock is always
the same as the processor clock, or it is faster than the processor clock by a factor of eight.
The output pulses are always one clock long. Clocking of the counters takes place on the
negative edge of this pulse. When the counter reaches zero, the reload register is loaded
on the next input pulse instead of a count being performed. The reload registers may be
reloaded at any time since the peripheral clock is synchronous with the processor clock.

Timers A4, A5, A6 and A7 always provide the baud clock for serial ports A, B, C and D
respectively. Except for very low baud rates, clock A1 does not need to be used to pres-
cale the input clock for timers A4–A7. For example, if the system clock is 22.184 MHz,
and if the timer A4 divides by 240, a baud rate of 2400 bps can be achieved in one step.
The clock input to the serial port must be 16 times the baud rate for asynchronous mode
and 8 times the baud rate for synchronous mode. The maximum asynchronous baud rate
with a 22.1184 MHz clock would be (22,118,400/(2*16) = 691,200.

Each of the five countdown registers in timer A can cause an interrupt. There is one inter-
rupt vector for timer A and a common interrupt priority. A common status register
(TACSR) has a bit for each timer that indicates if the output pulse for that timer has taken

8-bit down counter

8-bit reload register

Clock in

pulse on zero count out

load

Reload Register Diagram

Input clock
Count value 2 1 0 N N-11 02

Output pulse
98 Rabbit 2000 Microprocessor

place since the last read of the status register. When the status register is read, these bits
are cleared. No bit will be lost. Either it will be read by the status register read or it will
be set after the status register read is complete. If a bit is on and the corresponding inter-
rupt is enabled, an interrupt will occur when priorities allow. However, a separate inter-
rupt is not guaranteed for each bit with an enabled interrupt. If the bit is read in the status
register, it is cleared and no further interrupt corresponding to that bit will be requested. It
is possible that one bit will cause an interrupt and then one or more additional bits will be
set before the status register is read. After these bits are cleared, they cannot cause an in-
terrupt. If any bits are on, and the corresponding interrupt is enabled, then the interrupt
will take place as soon as priorities allow. However, if the bit is cleared before the inter-
rupt is latched, the bit will not cause an interrupt. The proper rule to follow is for the inter-
rupt routine to handle all bits that it sees set.

11.1.1 Timer A I/O Registers

The I/O registers for Timer A are listed in Table 30.

The control/status register for Timer A (TACSR) is laid out as shown in Table 31.

Bits 1, 4–7—Read only, terminal count reached on timers A1 and A4–A7. Reading
this status register clears any bits (bits 1 and 4–7) that are on.

Bit 0—Write, set to a "1" to enable the clock (perclk/2) for Timer A, set to "zero" to
disable the clock (perclk/2 in Figure 27 on page 97). Bits 1 and 4–7 are written
(write only) to enable the interrupt for the corresponding timer.

Table 30. Timer A I/O Registers

Register Name Register Mnemonic I/O address (hex) R/W

Timer A Control/Status Register TACSR A0 R/W

Timer A Control Register TACR A4 W

Timer A1 Time Constant 1 Register TAT1R A3 W

Timer A4 Time Constant 4 Register TAT4R A9 W

Timer A5 Time Constant 5 Register TAT5R AB W

Timer A6 Time Constant 6 Register TAT6R AD W

Timer A7 Time Constant 7 Register TAT7R AF W

Table 31. Timer A Control and Status Register (adr = 0A0h)

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Read
A7 count
done

A6 count
done

A5 count
done

A4 count
done

0 0
A1 count
done

???

Write
A7 interrupt
enable

A6 interrupt
enable

A5 interrupt
enableb

A4 interrupt
enable

x x
A1 interrupt
enable

1—enable
Timer A
User’s Manual 99

The control register (TACR) is laid out as shown in .

The time constant register for each timer is simply an 8-bit data register holding a number
between 0 and 255. The time constant registers are write only.

11.1.2 Practical Use of Timer A

Timer A is disabled (bit 0 in control and status register) on power-up. Timer A is normally
set up while the clock is disabled, but the timer setup can be changed while the timer is
running when there is a need to do so. Timers that are not used should be driven from the
output of A1 and the reload register should be set to 0. This will cause counting to be as
slow as possible and consume minimum power.

Timer A has five separate subtimer units, A1 and A4–A5, that are also referred to as tim-
ers.

Most likely, if a serial port is going to be used and a timer is needed to provide the baud
clock, that timer will be set up to be driven directly from the clock, and the interrupt asso-
ciated with that timer will be disabled. (Serial port interrupts are generated by the serial
port logic.) This will isolate the serial port countdown register from the other countdown
registers.

The value in the reload register can be changed while the timer is running to change the
period of the next timer cycle. When the reload register is initialized, the contents of the
countdown counter may be unknown, for example, during power-up initialization. If in-
terrupts are enabled, then the first interrupt may take place at an unknown time. Similarly,
if the timer output is being used to drive the clock for a parallel port or serial port, the first
clock may come at a random time. If a periodic clock is desired, it is probably not impor-
tant when the first clock takes place unless a phase relationship is desired relative to a dif-
ferent timers.

A phase relationship between two timers can be obtained in several ways. One way is to
set both reload registers to zero and to wait long enough for both timers to reload (maxi-
mum 256 clocks). Then both timers’ reload registers can be set to new values before or af-
ter both are clocked.

Table 32. Timer A Control Register (adr = 0A4h)

Bit 7
A7

Bit 6
A6

Bit 5
A5

Bit 4
A4

Bits 3, 2 Bits 1, 0

Source A7

0-pclk/2

1-A1

Source A6

0-pclk/2

1-A1

Source A5

0-pclk/2

1-A1

Source A4

0-pclk/2

1-A1

not used

ignored

00—Interrupt disabled

01—Enable priority 1 interrupt

10—Enable priority 2 interrupt

11—Enable priority 3 interrupt
100 Rabbit 2000 Microprocessor

11.2 Timer B

Figure 27 on page 97 shows a block diagram of Timer B. The Timer B counter can be
driven directly by perclk/2, by that clock divided by 8, or by the output of timer A1.
Timer B has a continuously running 10-bit counter. The counter is compared against two
match registers, the B1 match register and the B2 match register. When the counter counts
and transitions to a value equal to a match register, a 1-peripheral clock long pulse is out-
put. The match pulses can be used to cause interrupts and/or clock the output registers in
parallel ports D and E. The match register is loaded from a preload register that can be
written by an I/O instruction. The data bits are advanced from the preload register to the
match register when the match pulse is output.

The I/O registers for Timer B are listed in Table 33.

The control/status register for Timer B (TBCSR) is laid out as shown in Table 34.

Table 33. Timer B Registers

Register Name Register Mnemonic
I/O Address

(hex)
R/W

On Reset
To

Timer B Control/Status Register TBCSR B0 R/W xxxxx000

Timer B Control Register TBCR B1 W xxxxxx00

Timer B MSB 1 Reg TBM1R B2 x

Timer B LSB 1 Reg TBL1R B3 W x

Timer B MSB 2 Reg TBM2R B4 W x

Timer B LSB 2 Reg TBL2R B5 W x

Timer B Count MSB Reg TBCMR BE R x

Timer B Count LSB Reg TBCLR BF R x

Table 34. Timer B Control and Status Register (TBCSR) (adr = 0B0h)

Bits 7:3 Bit 2 Bit 1 Bit 0

Not used 1—A match with match
register 2 was detected.
This bit is cleared by a
read of this register; a
write to this register
enables the interrupt.

1—A match with match
register 1 was detected.
This bit is cleared by a
read of this register; a
write to this register
enables the interrupt.

1—Enable the main clock
for this timer.
User’s Manual 101

The control register for Timer B (TBCR) is laid out as shown in Table 35.

The MSB x registers for Timer B (TBM1R/TBM2R) are laid out as shown in Table 36.

11.2.1 Using Timer B

Normally the prescaler is set to divide perclk/2 by a number that provides a counting rate
appropriate to the problem. For example, if the clock is 22.1184 MHz, then perclk/2 is
11.0592 MHz. If the prescaler is loaded with 127, it will divide the input clock by 128,
and the counting rate will be 86.4 kHz, which will cause a complete cycle of the 10-bit
clock in 11.85 ms. Each count will take 11.57 µs.

Normally an interrupt will occur when either of the comparators in Timer B generates a
pulse. The interrupt routine must detect which comparator is responsible for the interrupt
and dispatch the interrupt to a service routine. The service routine sets up the next match
value, which will become the match value after the next interrupt. If the clocked parallel
ports are being used, then a value will normally be loaded into some bits of the parallel
port register. These bits will become the output bits on the next match pulse. (It is neces-
sary to keep a shadow register for the parallel port unless the bit-addressable feature of
ports D and E is used.)

If it is desired to read the time from the Timer B counter, either during an interrupt caused
by the match pulse or in some other interrupt routine asynchronous to the match pulse, a
special procedure needs to be used to read the counter because the upper 2 bits are in a dif-
ferent register than the lower 8 bits. The following method is suggested.

1. Read the lower 8 bits.

2. Read the upper 2 bits

3. Read the lower 8 bits again

4. If bit 7 changed from 1 to 0 between the first and second read of the lower 8 bits there
has been a carry to the upper 2 bits. In this case read the upper 2 bits again and decre-
ment those 2 bits to get the correct upper 2 bits. Use the first read of the lower 8 bits.

Table 35. Timer B Control Register (TBCR)

Bits 7:4 Bits 3:2 Bits 1:0

Not used 00—Counter clocked by perclk/2

01—Counter clocked by output of timer A1

1x—Timer clocked by perclk/2 divided by 8

00—Interrupt disabled

xx—Interrupt priority xx enabled.

Table 36. Timer B MSB x Register (TBM1R/TBM2R = 0B2h/0B4h)

Bits 7:6 Bits 5:0

Two most significant bits of timer
match preload register.

Not used.
102 Rabbit 2000 Microprocessor

This procedure assumes that the time between reads can be guaranteed to be less than 256
counts. This can be guaranteed in most systems by disabling the priority 1 interrupts,
which will normally be disabled in any case in an interrupt routine.

It is inadvisable to disable the high-priority interrupts (levels 2 and 3) as that defeats their
purpose.

If speed is critical, the three reads of the registers can be performed without testing for the
carry. The three register values can be saved and the carry test can be performed by a
lower priority analysis routine. Since the upper 2 bits are in the register TBCMR at ad-
dress 0BEh, and the lower 8 bits are in TBCLR at address 0BFh, both registers can be read
with a single 16-bit I/O instruction. The following sequence illustrates how the registers
could be captured.

; enter from external interrupt on pulse input transition
; 19 clocks latency plus 10 clocks interrupt execution
push af ; 7
push hl
ioi ld a,(TBCLR) ; 11 get lower 8 bits of counter
ioi ld hl,(TBCMR) ;13 get l=upper, h=lower

Timer B can be used for various purposes. The 10-bit counter can be read to record the
time at which an event takes place. If the event creates an interrupt, the timer can be read
in the interrupt routine. The known time of execution of the interrupt routine can be sub-
tracted. The variable interrupt latency is then the uncertainty in the event time. This can
be as little 19 clocks if the interrupt is the highest priority interrupt. If the system clock is
20 MHz, the counter can count as fast as 10 MHz. The uncertainty in a pulse width mea-
surement can be nearly as low as 38 clocks (2 x 19), or about 2 µs for a 20 MHz system
clock.

Timer B can be used to change a parallel port output register at a particular specified time
in the future. A pulse train with edges at arbitrary times can be generated with the restric-
tion that two adjacent edges cannot be too close to each other since an interrupt must be
serviced after each edge to set up the time for the next edge. This restriction limits the
minimum pulse width to about 5 µs, depending on the clock speed and interrupt priorities.
User’s Manual 103

104 Rabbit 2000 Microprocessor

12. Rabbit Serial Ports

The Rabbit has four on-chip serial ports designated A, B, C and D. All the ports can per-
form asynchronous serial communications at high baud rates. Ports A and B have the ad-
ditional capabilities of being able to operate as clocked ports and of being switchable to
alternate I/O pins. Port A has the special capability of being usable to perform a cold boot
of the microprocessor system.

Figure 29 shows a block diagram of the serial ports.

Figure 29. Block Diagram of Rabbit Serial Ports

The individual serial ports are capable of operating at baud rates in excess of 500,000 bps
for asynchronous mode and 8 times faster than that for synchronous mode. In asynchro-
nous mode either 7 or 8 data bits may be transmitted and received. The so called "9th" bit
or address bit mode of operation is also supported. Parity and multiple stop bits are not di-
rectly supported by the hardware, but may be accomplished by suitable programming
techniques.

12.1 Register Layout Serial Port

Figure 30 shows a functional block diagram of a serial port. Each serial port has a data
register, a control register and a status register. Writing to the data register starts transmis-
sion. If the write is performed to an alternate data register address, the extra address bit or
9th bit is sent. When data bits have been received, they are read from the data register.
The control register is used to set the transmit and receive parameters. The status register
may be tested to check various information about the operation of the serial port.

Serial ATimer A4

Serial BTimer A5

Serial C

Serial D

Timer A6

Timer A7

TX
RX

TX
RX

TX
RX

TX
RX

ACLK

BCLK

Input to timers
perclk/2 or
perclk/2
prescaled

Alternate I/O

Alternate I/O
User’s Manual 105

Figure 30. Functional Block Diagram of a Serial Port

The clock input to the serial port unit must be 16 times the baud rate in asynchronous
mode and 2 times the baud rate for the clocked serial mode when the internal clock is
used. Timers A4–A7 supply the input clock for serial ports A–F. These timers can divide
the frequency by any number from 1 to 256 (see Chapter 11). The input frequency to the
timers can be selected in different ways described in the documentation for the timers.
One choice is the peripheral clock divided by 2—with that choice and a well-chosen crys-
tal frequency for the main oscillator, most commonly used baud rates can be obtained
down to approximately 2400 bps at the highest Rabbit clock frequencies (see Section A.2
in Appendix A).

Table 37 lists the serial port registers.

RX serial data in
TX serial data out

Read Data Write Data

Input Shift Reg Output Shift Reg

Data In Reg Data Out Reg

Start Bit

Bit 0 1 2 3 4 5 6 7 stp

0 1 1 0 1 0 1 1

Transmitting 0D6h

Stop Bit

TX

Start Bit

Bit 0 1 2 3 4 5 6 7 A stp

0 1 1 0 1 0 1 1

Transmitting 0D6h

Stop Bit

TX

9th bit

with 9th address bit

Signals Shown At Microprocessor TX pin

Alt Data Out
(for 9th bit)
106 Rabbit 2000 Microprocessor

The serial port interrupt vectors are shown Table 15 in Chapter 7.

Table 38 describes the serial port status registers.

Writing to the status register clears the transmit interrupt request FF but has no other ef-
fect.

Bit 7—receiver ready. This bit is set when a byte is transferred from the receiver shift regis-
ter to the receiver data register. The bit is cleared when the receiver data register is
read. The transition from "0" to "1" sets the receiver interrupt request flip-flop.

Bit 6—address bit or 9th (8th) bit. This bit is set if the character in the receiver data
register has a 9th (8th) bit. This bit is cleared should be checked before reading
data register since when the data register is read a new data value may be immedi-
ately loaded with a new address bit.

Bit 5—this bit is set if the receiver is overrun. This happens if the shift register and the
data register are full and a start bit is detected. This bit is cleared when the receiver
data register is read.

Bit 3—transmitter data buffer empty. This bit is set when a bit is transferred from the
transmitter data buffer to the transmitter shift register. It is cleared when a byte is
stored in the transmitter data buffer or a write operation is performed to the serial
port status register. This bit will request an interrupt on the transition from 0 to 1 if
interrupts are enabled.

Bit 2—transmitter busy bit. This bit is set if the transmitter shift register is busy send-
ing data. It is set on the falling edge of the start bit, which is also the clock edge
that transfers data from the transmitter data register to the transmitter shift register.
The transmitter busy bit is cleared at the end of the stop bit of the character sent.
This bit will cause an interrupt to be latched when it goes from busy to not busy
status after the last character has been sent (there are no more data in the transmit-
ter data register).

Bits 0,1,4—Always read as zero.

Table 37. Serial Port Registers

Register
Address xx = 00, 01, 10, 11

for A, B, C, D
Mnemonic x = A, B, C, D

Data Register 11xx0000 SxDR

Alternate Data Register to
Send 9th (8th) Address Bit.

11xx0001 SxAR

Status Register (read, write
to clear transmit IRQ)

11xx0011 SxSR

Control Register (write only) 11xx0100 SxCR

Table 38. Serial Port Status Registers (adr = 11xx0011, xx = A,B,C,D)

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1,0

Receiver
ready

9th (8th) bit
received

Overrun 0
Transmitter data
buffer empty

Transmitte
r busy

0,0
User’s Manual 107

Table 39 describes the serial port control registers.

Bits 7,6—In asynchronous mode, always store zero in these bits. For ports A and B, if
the clocked serial mode is enabled, store the code here to start an operation, either
receive or send. If the clock is internal, a burst of 8 clocks will drive the clock line.
In external mode the receiver or transmitter waits for an externally supplied burst
of 8 clocks.

Bits 5,4—This enables the standard or alternate I/O pins for the ports. Alternate I/O
applies only to ports A and B. The parallel port output function for the specified
TX pin becomes disabled when the port is enabled.

Bits 3,2—This sets the mode of operation. Modes 10 and 11 apply only to ports A and B.

Bits 1,0—These bits enable interrupts and set the interrupt priority.

12.2 Serial Port Interrupt

A common interrupt vector is used for the receive and transmit interrupts. There is a sep-
arate interrupt request flip-flop for the receiver and transmitter. If either of these flip-flops
is set, a serial port interrupt is requested. The flip-flops are set by a rising edge only. The
flip-flops are cleared by a pulse generated by an I/O read or write operation as shown in
Figure 31. When an interrupt is requested, it will take place immediately when priorities
allow and an instruction execution is complete. The interrupt is lost if the request flip-flop
is cleared before the interrupt takes place. If the flip-flop is not cleared in the interrupt,
another interrupt will take place when priorities are lowered.

The receive interrupt request flip-flop is set after the stop bit is sampled on receive, nomi-
nally 1/2 of the way through the stop bit. data bits are transferred on this same clock from
the receive shift register to the receive data register.

The transmit interrupt request flip-flop is set on the trailing edge of the stop bit. This edge
is the same whether the source of the interrupt is transmitter data register empty or trans-
mitter shift register idle (not busy). Unless the data register is empty on this edge the trans-
mitter does not become idle. The transmitter become idle only if the data register is empty
at the trailing edge of the stop bit.

Table 39. Serial Port Control Registers (adr = 11xx0100, xx = A,B,C,D)

Bit 7,6 Bit 5,4 Bit 3,2 Bit 1,0

00—no op

01—receive 1 byte
clocked mode (A,B)

10—send one byte
clocked mode (A,B)

11—reserved for future
use

00—use port C for serial
I/O

01—use port D for serial
I/O (A, B)

1x—disable receiver
input

00—async mode, 8 bits

01—async mode 7 bits

10—clocked mode
external clock (A,B)

11—clocked mode
internal clock (A,B)

00—no interrupt

01— priority 1 interrupt

10—priority 2

11—priority 3
108 Rabbit 2000 Microprocessor

Figure 31. Generation of Serial Port Interrupts

The serial port interrupt vectors are shown Table 15 in Chapter 7.

12.3 Transmit Serial Data Timing

On transmit, if the interrupts are enabled, an interrupt is requested when the transmit regis-
ter becomes empty and, in addition, an interrupt occurs when the shift register and trans-
mit register both become empty, that is, when the transmitter becomes idle. When the
transmit data register contains data and the shift register finishes sending data, the data bits
are clocked from the transmit register to the shift register, and the shift register is never
idle. The interrupt request is cleared either by writing to the data register or by writing to
the status register (which does not affect the status register). The data register normally is
clocked into the shift register each time the shift register finishes sending data, leaving the
data register empty. This causes an interrupt request. The interrupt routine normally an-
swers the interrupt before the shift register runs dry (9 to 11 baud clocks, depending on the
mode of operation). The interrupt routine stores the next data item in the data register,
clearing the interrupt request and supplying the next data bits to be sent. When all the
characters have been sent, the interrupt service routine answers the interrupt once the data
register becomes empty. Since it has no more data, it clears the interrupt request by stor-
ing to the status register. At this point the routine should check if the shift register is
empty; normally it won’t be. If it is, because the interrupt was answered late, the interrupt
routine should do any final cleanup and store to the status register again in case the shift
register became empty after the pending interrupt is cleared. Normally, though, the inter-
rupt service routine will return and there will be a final interrupt to give the routine a
chance to disable the output buffers, as in the case for RS-485 transmission.

Transmitter IRQ

Request Interrupt

Receiver IRQ

Transmitter Data
Buffer Empty or
Transmitter not Busy

Receiver Data
Buffer Full

Read Receiver Data
Register

Write Transmitter
Data Register or
Write Status Register
User’s Manual 109

12.4 Receive Serial Data Timing

When the receiver is ready to receive data, a falling edge indicates that a start bit must be
detected. The falling edge is detected as a different Rx input between two different clocks,
the clock being 16x the baud rate. Once the start bit has been detected, data bits are sam-
pled at the middle of each data bit and are shifted into the receive shift register. After 7 or
8 data bits have been received, the next bit will be either a 9th (8th) address bit, or a stop
bit will be sampled. If the RX line is low, it is an address bit and the address bit received
bit in the status register will be enabled. If an address bit is detected, the receiver will at-
tempt to sample the stop bit. If the line is high when sampled, it is a stop bit a new scan
for a new start bit will begin after the sample point. At the same time, the data bits are
transferred into the receive data register and an interrupt, if enabled, is requested.

On receive an interrupt is requested when the receiver data register has data. This happens
when data bits are transferred from the receive shift register to the data register. This also
sets bit 7 of the status register. The interrupt request and bit 7 are cleared when the data
register is read.

An interrupt is requested if bit 7 is high. The interrupt is requested on the edge of the
transmitter data register becoming empty or the transmitter shift register becoming empty.
The transmitter interrupt is cleared by writing to the status register or to the data register.

On receive, the scan for the next start bit starts immediately after the stop bit is detected.
The stop bit is normally detected at a sample clock that nominally occurs in the center of
the stop bit. If there is a 9th (8th) address bit, the stop bit follows that bit.

12.5 Clocked Serial Ports

Ports A and B can operate in clocked mode. The data line and clock line are driven as
shown in Figure 32. The data and clock are provided as 8-bit bursts. The transmit shift
register advances on the falling edge of the clock. The receiver samples the data on the
rising edge of the clock. Clocked serial communication is half-duplex. A clocked serial
port can transmit or receive, but not both at the same time. The serial port can generate the
clock or the clock can be provided externally.

To enable the clocked serial mode, a code must be in bits (3,2) of the control register, en-
abling the clocked serial mode with either an internal clock or an external clock. The tran-
sition between the external and the internal clock should be performed with care.
Normally a pullup resistor is needed on the clock line to prevent spurious clocks while
neither party is driving the clock.

In clocked serial mode the shift register and the data register work in the same fashion as
for asynchronous communications. However, to initiate sending or receiving, a code must
be stored in bits (7,6) of the control register for each byte sent or received. One code spec-
ifies sending a byte, a different code specifies receiving a byte. The effect of these codes
is different, depending on whether the mode is internal clock or external clock.
110 Rabbit 2000 Microprocessor

Figure 32. Serial Port Synchronization

To transmit in internal clock mode the user must first load the data register (which must be
empty) and then store the send code. When the shift register is finished sending the cur-
rent character, if any, the data register will be loaded into the shift register and transmitted
by an 8-clock burst. One character can be in the process of transmitting while another
character is waiting in the data register tagged with the send code. The send code is effec-
tively double-buffered.

To receive a character in internal clock mode, the receive shift register should be idle. The
user then stores the receive code in the control register. A burst of 8 clocks will be gener-
ated and the sender must detect the clocks and shift output data to the data line on the fall-
ing edge of each clock. The receiver will sample the data on the rising edge of each clock.
The receive mode cannot double-buffer characters when using the internal clock. The
shift register must be idle before another character receive can be initiated. However, the
interrupt request and character ready takes place on the rising edge of the last clock pulse.
If the next receive code is stored before the natural location of the next falling edge, an-
other receive will be initiated without pausing the clock. To do this, the interrupt has to be
serviced within 1/2 clock.

start bit

8 clocks

stop bit

Receiver Data
Ready Bit

sampling
point

Serial Port
Input Clock

Asynchronous Receive

Asynchronous Transmit

Transmitter Data Reg Full

Bit 0 Bit 7

SCLK

Synchronous Receive/Transmit

(Transmit clock is input clock/2)
User’s Manual 111

To transmit each byte in external clock mode, the user must load the data register and then
store the send code. When the shift register is idle and the receiver provides a clock burst,
the data bits are transferred to the shift register and are shifted out. Once the transfer is
made to the shift register, a new byte can be loaded into the transmit register and a new
send code can be stored.

To receive a byte in external clock mode, the user must set the receive code for the first
byte and then store the receive code for the next byte after each byte is removed from the
data register. Since the receive code must be stored before the transmitter sends the next
byte, the receiver must service the interrupt within 1/2 baud clock to maintain full-speed
transmission. This is usually not practical unless a flow control arrangement is made or
the transmitter inserts gaps between the clock bursts.

In order to carry on high-speed communication, the best arrangement will usually be for
the receiver to provide the clock. When the receiver provides the clock, the transmitter
should always be able to keep up because it is double-buffered and has a full character
time to answer the transmitter data register empty interrupt. The receiver will answer in-
terrupts that are generated on the last clock rising edge. If the interrupt can be serviced
within 1/2 clock, there will be no pause in the data rate. If it takes the receiver longer to
answer, then there will be a gap between bytes, the length of which depends on the inter-
rupt latency. For example, if the baud rate is 400,000 bps, then up to 50,000 bytes per sec-
ond could be transmitted, or a byte every 20 µs. No data will be lost if the transmitter can
answer its interrupts within 20 µs. There will be no slow down if the receiver can answer
its interrupt within 1/2 clock or 1.25 µs. If it can answer within 1.5 clocks, or 2.75 µs, the
data rate will slow to 44,444 bytes per second. If it can answer in 2.5 clocks or 6.25 µs,
the data rate slows to 40,000 bytes per second. If it can answer in 3.5 clocks or 8.75 µs,
the data rate will slow to 36,363 bytes per second, and so forth.

If two-way half-duplex communication is desired, the clock can be turned around so that
the receiver always provides the clock. This is slightly more complicated since the re-
ceiver cannot initiate a message. If the receiver attempts to receive a character and the
transmitter is not transmitting, the last bit sent will be received for all eight bits.

12.6 Serial Port Software Suggestions

The receiver and transmitter share the same interrupt vector, but it is possible to make the
receive and transmitt interrupt service routines (ISRs) separate by dispatching the inter-
rupt to either of two different routines. This is desirable to make the ISR less complex and
to reduce the interrupt off time. No interrupts will be lost since distinct interrupt flip-flops
exist for receive and transmit. The dispatcher can test the receiver data register full bit to
dispatch. If this bit is on, the interrupt is dispatched for receive, otherwise for transmit.
The receiver receives first consideration because it must be serviced attentively or data
could be lost.
112 Rabbit 2000 Microprocessor

The dispatcher might look as follows.

interrupt:

push af ; 10
ioe ld a,(SCSR) ; 7 get status register serial port C
or a,a ; 2 test sign bit
jp m,receive ; 7 go service the receive interrupt
jp transmit ; 7 (41 clocks to here)go service transmit interrupt

The individual interrupts would assume that register AF has been saved and the status reg-
ister loaded into register A.

The interrupt service routines can, as a matter of good practice and obtaining optimum
performance, remove the cause of the interrupt and re-enable the interrupts as soon as pos-
sible. This keeps the interrupt latency down and allows the fastest transmission speed on
all serial ports. Serial ports normally will all generate priority level 1 interrupts. The ex-
ception would be if a port must operate at extremely high speed. At 115,200 bps, the high-
est speed of PC serial ports, the interrupts must be serviced in 10 baud times or 86 µs in
order to not lose received characters. If all four serial ports were operating at this receive
speed, it would be necessary to service the interrupt in less than 21.5 µs to assure no lost
characters. In addition, the time taken by other interrupts of equal or higher priority would
have to be considered. A receiver service routine might appear as follows below. The
byte at bufptr is used to address the buffer where data bits are stored. It is necessary to
save and increment this byte because characters could be handled out of order if two re-
ceiver interrupts take place in quick secession.

receive:

push hl ; 10 save hl
push de ; 10 save de
ld hl,struct ; 6
ld a,(hl) ; 5 getin-pointer
ld e,a ; 2 save in pointer in e
inc hl ; 2 point to out-pointer
cmp a,(hl) ; 5 see if in-pointer=out-pointer (buffer full)
jr z,roverrun ; 5 go fix up receiver over run
inc a ; 2 incement the in pointer
and a,mask ; 4 mask such as 11110000 if 16 buffer locs
dec hl ; 2
ld (hl),a ; 6 update the in pointer
ioe ld a,(SCDR) ; 11 get data register port C, clears interrupt
request
ipres ; 4 restore the interrupt priority

; 68 clocks to here
; to level before interrupt took place
; more interrupts could now take place,
; but receiver data is in registers
; now handle the rest of the receiver interrupt routine
ld hl,bufbase ; 6
ld d,0 ; 6
add hl,de ; 2 location to store data
ld (hl),a ; 6 put away the data byte
pop de ;7
pop hl ; 7
pop af ; 7
ret ; 8 from interrupt

; 117 clocks to here
User’s Manual 113

This routine gets the interrupts turned on in about 68 clocks or 3.5 µs at a clock speed of
20 MHz. Although two characters may be handled out of order, this will be invisible to a
higher level routine checking the status of the input buffer because all the interrupts will
be completed before the higher level routine can perform a check on the buffer status.

A typical way to organize the buffers is to have an in-pointer and an out-pointer that incre-
ment through the addresses in the data buffer in a circular manner. The interrupt routine
manipulates the in-pointer and the higher level routine manipulates the out-pointer. If the
in-pointer equals the out-pointer, the buffer is considered full. If the out-pointer plus 1
equals the in-pointer, the buffer is empty. All increments are done in a circular fashion,
most easily accomplished by making the buffer a power of two in length and and’ing a
mask after the increment. The actual memory address is the pointer plus a buffer base ad-
dress.

12.6.1 Controlling an RS-485 Driver and Receiver

RS-485 uses a half-duplex method of communication. One station enables its driver and
sends a message. After the message is complete, the station disables the driver and listens
to the line for a reply. The driver must be enabled before the start bit is sent and not dis-
abled until the stop bit has been sent. The transmitter idle interrupt is normally used to
disable the RS-485 driver and possibly enable the receiver.

12.6.2 Transmitting Dummy Characters

It may be desired to operate the serial transmitter without actually sending any data. The
output of the transmitter may be disconnected from the transmitter by manipulating the
control registers for parallel port C or D, which are used as output pins. For example, if
serial port B is to be temporarily disconnected from its output pin, which is bit 4 of parallel
port C, this can be done as follows.

1. Store a "1" in bit 4 of the parallel port data output register to provide the quiescent state
of the drive line.

2. Clear bit 4 of the parallel port C function register so that the output no longer comes
from the serial port. Of course, this should not be done until the transmitter is idle.

12.6.3 Transmitting and Detecting a Break

A break is created when the output of the transmitter is driven low for an extended period.
If a break is received, it will appear as a series of characters filled with zeros and with the
9th bit enabled. A break can be transmitted by transmitting a byte of zeros at a very slow
baud rate. Another method is to disconnect the transmitter and use the parallel port bit to
set the line low while sending dummy characters to time out the break.
114 Rabbit 2000 Microprocessor

12.6.4 Using A Serial Port to Generate a Periodic Interrupt

A serial port may be used to generate a periodic interrupt by continuously transmitting
characters. Since the TX output via parallel port C or D can be disabled, the transmitted
characters are transmitted to nowhere. Because the character output path is double-buff-
ered, there will be no gaps in the character transmission, and the interrupts will be exactly
periodic. The interrupts can happen every 9, 10 or 11 baud times, depending on whether 7
or 8 bits are transmitted and on whether the 9th (8th) bit is sent.

12.6.5 Working With Two Stop Bits or a Parity Bit

In the 8-bit data mode, the serial ports do not directly support transmitting more than one
stop bit. If it is desired to send more than one stop bit, it is necessary to delay the trans-
mission of the next character for at least 1 baud time. If only 7 data bits are being sent, the
problem is easily solved by sending 8 bits and always setting bit 7 of the byte to a "1" if an
extra stop bit is desired, or setting it to the parity value if a parity bit is desired. No special
precautions are needed if two stop bits are to be received. If parity is received with 7 data
bits, receive the data as 8 bits, and the parity will be in the high bit of the byte.

The scenario is more complicated when 8 data bits are used. If a parity bit is to be re-
ceived, it will appear as an address or 9th bit if a zero is transmitted for the parity bit. Oth-
erwise the parity bit appears as an additional stop bit and the 9th bit is not detected.
Transmitting a parity bit is the same as sending a 9th bit if the parity bit is zero; otherwise
it is the same as sending an additional stop bit.

The only difficult thing to do is to send an additional stop bit when transmitting 8 data bits.
This requires leaving the transmitter idle for one baud time, or longer, before the next
character is sent. One way to do this is to use another serial port as a timer. Disable the in-
terrupts on the port being used to transmit and, at the same time the data register is loaded,
load a dummy character and a 9th bit in the other serial port. The interrupt in the auxiliary
port will occur after 11 baud times rather than 10 baud times, thus guaranteeing the stop
bit its full time. Another way is to send a full dummy character to create a very long stop
bit. To avoid the long stop bit, the baud timer can be speeded up while the dummy charac-
ter is sent to reduce the length of the extra stop bit. This method will work as long as the
baud rate is low enough that it can be speeded up by a factor of 10 to send the dummy
character. The synchronous nature of timers A4–A7 allows the divide ratio to be in-
creased or decreased at will without generating irregular clock pulses. Yet another method
is to use a timer to generate the extra 1-baud delay between characters.

12.6.6 Data Framing/Modbus

Some protocols, for example, Modbus, depend on a gap in the data frame to detect the be-
ginning of the next frame. The 9th bit protocol is another way to detect the start of a data
frame.

The Modbus protocol requires that data frames begin with a minimum 3.5-character quiet
time. The receiver uses this 3.5-character gap to detect the start of a frame. In order for
User’s Manual 115

the receiving ISR to detect this gap, it is suggested that dummy characters be transmitted
to aid in detecting the gap. This can be done in the following manner. The transmitter
starts transmitting dummy characters when the first character interrupt is received. Each
time there is an interrupt, either receiver data register full or transmitter data register
empty, a dummy character is transmitted if the transmitter data register is empty. Al-
though the transmitter and receiver operate at approximately the same baud rate, there can
be a difference of up to about 5% between their baud rates. Thus the receiver full and
transmitter empty interrupts will become out of phase with each other, assuming that the
remote station transmits without gaps between characters. A counter is zeroed each time a
character is received, and the counter is incremented each time a character is transmitted.
If this counter holds (n), this indicates that a gap has been detected in the frame; the length
of the gap is (n-1) to (n) characters. The start of frame could be marked by (n) reaching 3,
indicating that the existence of a gap at least two characters long.
116 Rabbit 2000 Microprocessor

13. Rabbit Slave Port

When a Rabbit microprocessor is configured as a slave, parallel port A and certain other
data lines are used as communication lines between the slave and the master. The slave
unit is a Rabbit configured as a slave. The master can be another Rabbit or any other type
of processor. Rabbits configured as slaves can themselves have slaves.

The master and slave communicate with each other via the slave port. The slave port is a
physical device that includes data registers, a data bus and various handshaking lines. The
slave port is a part of the slave Rabbit, but logically it is an independent device that is used
to communicate between the two processors. A diagram of the slave port is shown in
Figure 33.

Figure 33. Rabbit Slave Port

The slave port has three data registers for each direction of communication. Three regis-
ters, named SPD0R, SPD1R, and SPD2R, can be written by the master and read by the
slave. Three different registers, also named SPD0R, SPD1R, and SPD2R, can be written
by the master and read by the slave. The same names are used for different registers since
it is usually clear from the context which register is meant. If it is necessary to distinguish
between registers, we will refer to the registers as SPD0R writable by the slave or SPD0R
readable by the master, different descriptions for the same register.

A status register can be read by either the slave or the master. The status register has full/
empty bits for each of the six registers. A data register is considered full when it is written
to by whichever side is capable of writing to it. If the same register is then read by either
side it is considered to be empty. The flag for that register is thus set to a "1" when the reg-
ister is written to, and the flag is set to a "0" when the register is read.

SD0-SD7

SA0

SA1

/SWR

/SRD

/SCS

/SLAVEATTN

CPU

SPD0R

SPD1R

SPD2R

SPSR

100

81-88

98

97

95

96

21
User’s Manual 117

The registers appear to be internal I/O registers to the slave. To the master, at least for a
Rabbit master, the registers appear to be external I/O registers. Figure 34 shows the se-
quence of events when the master reads/writes the slave port registers.

Figure 34. Slave Port R/W Sequencing

The two SPD0R registers have special functionality not shared by the other data registers.
If the master writes to SPD0R, an inbound interrupt flip-flop is set. If slave port interrupts
are enabled, the slave processor will take a slave port interrupt. If the slave writes to the
other SPD0R register, the slave attention line (/SLAVEATTN, pin 100) is asserted (driven
low) by the slave processor. This line can be used to create an interrupt in the master. Ei-
ther side that is interrupted can clear the signal that is causing an interrupt request by writ-
ing to the slave port status register. The data bits are ignored, but the flip-flop that is the
source of the interrupt request is cleared. Figure 35 shows a logical schematic of this
functionality.

Figure 36 shows a sample connection of two slave Rabbits to a master Rabbit. The master
drives the slave reset line for both slaves and provides the main processor clock from its
own clock. There is no requirement that the master and slave share a clock, but doing so
makes it unnecessary to connect a crystal to the slaves. Each Rabbit in Figure 36 has to
have RAM memory. The master must also have flash memory. However, the slaves do
not need nonvolatile memory since the master can cold boot them over the slave port and
download their program. In order for this to happen, the SMODE0 and SMODE1 pins
must be properly configured as shown in Figure 36 to begin a cold boot process at the end
of the slave reset.

/SCS, SA1, SA0

SD7. SD0

/SWR

Write to Slave Register

/SCS, SA1, SA0

SD7. SD0

/SRD

valid Read from Slave Register

/SLAVEATTN
On write to status register
transitions to high
118 Rabbit 2000 Microprocessor

Figure 35. Slave Port Handshaking and Interrupts

Figure 36. Typical Connection Slave Rabbit to Master Rabbit

Master writes SPD0R

Slave writes status register

Slave inbound interrupt requested

Visible in status register

Slave writes SPD0R

Master writes status register

/SLAVEATTN (PB7)

Visible in status register

Master Rabbit
First Slave Rabbit

D0–D7 SD0–SD7

Second Slave Rabbit

/IORD
/IOWR

A0
A1

/SRD
/SWR
/SA0
/SA1

/SLAVEATTNINT0A
/RESET

/SCS/I7

/XTALB1CLK

/I6

/SCS
/SLAVEATTN

INT1A

portout

SMODE0

SMODE1

+

SMODE0

SMODE1

+

Reset
Pulldown
User’s Manual 119

The slave port lines are shown in Figure 33. The function of these lines is described below.

• SD0–SD7—These are bidirectional data lines, and are generally connected to the data
bus of the master processor. Multiple slaves can be connected to the data bus. The
slave drives the data lines only when /SCS and /SRD are both pulled low.

• SA1, SA0—These are address lines used to select one of the four data registers of the
slave interface. Normally these lines are connected to the low-order address lines of
the master. The master always drives these lines which are always inputs to the slave.

• /SCS—Input. Slave chip select. The slave ignores read or write requests unless the
chip select is low. If a Rabbit is used as a master, this line can be connected to one of
the master’s programmable chip select lines /I0–/I7.

• /SRD—Input. If /SCS is also low, this line pulled low causes the contents of the regis-
ter selected by the address lines to be driven on the data bus. If a Rabbit is used as a
master, this line is normally connected to the global I/O read strobe /IORD.

• /SWR—Input. If /SCS is also low, this line causes the data bits on the data bus to be
clocked into the register selected by the address lines on the rising edge of /SWR or /SCS,
whichever rises first. If a Rabbit is used as a master, this line is normally connected to the
global I/O write strobe /IOWR.

• /SLAVEATTN—This line is set low (asserted) if the slave writes to the SPD0R register.
This line is set high if the master writes anything to the slave status register. This line is
usually connected to cause the master to be interrupted when it goes low.

The data lines of the slave port are shared with parallel port A that uses the same package
pins. The slave port can be enabled, and parallel port A be disabled, by storing an appropri-
ate code in the slave port control register (SCR). After the processor is reset, all the pins be-
longing to the slave interface are configured as parallel-port inputs unless (SMODE1,
SMODE0) are set to (0,1), in which case the slave port is enabled after reset and the slave
starts the cold-boot sequence using the slave port.

13.1 Hardware Design of Slave Port Interconnection

Figure 36 shows a typical circuit diagram for connecting two slave Rabbits to a master
Rabbit. The designer has the option of cold-booting the slave and downloading the pro-
gram to RAM on each cold start. Another option is to configure the slave with both RAM
and flash memory. In this case, the slave will only have the program downloaded for
maintenance or upgrades. Usually, the flash would not be written to on every startup be-
cause of the limited number of lifetime writes to flash memory. The slaves’ reset in
Figure 36 is under the program control of the master. If the master is reset, the slave will
also be reset because the master’s drive of the reset line will be lost on reset and the pull-
down resistor will pull the slaves’ resets low. This may be undesirable because it forces
the slave to crash if the master crashes and has a watchdog timeout.
120 Rabbit 2000 Microprocessor

13.2 Slave Port Registers

The slave port registers are listed in Table 40. These registers, each of which is actually two
separate registers, one for read and one for write, are accessible to the slave at the I/O ad-
dresses shown in the table and they are accessible to the master at the external address
shown which specifies the value of the slave address (SA0, SA1) input to the slave when the
master reads or writes the registers. The register that can be written by the slave can only be
read by the master and vice versa. If one side were to attempt to read a register at the same
time that the other side attempted to write the register the result of the read could be scram-
bled. However, the protocols and handshaking bits used in communication are normally
such that this never happens.

If the user for some reason wants to depart from the suggested protocols and poll a register
while waiting for the other side to write something to the register, the user should be aware
that all the bits might not change at the exact same time when the result changes, and a
transitional value could be read from the register where some bits have changed to the new
value and others have not. To avoid being confused by a transitional value, the user can
read the register twice and make sure both values are the same before accepting the value,
or the user can test only one bit for a change. The transitional value can only exist for one
read of the register, and each bit will have its old value change to the new value at some
point without wavering back and forth. The existence of a transitional value could be very
rare and has the potential to create a bug that happens often enough to be serious, but so in-
frequently as to be difficult to diagnose. Thus, the user is cautioned to avoid this situation.

Table 41 describes the slave port control register.

Table 40. Slave Port Registers

Register Mnemonic
Internal
Address

External
Address

Slave Port Data x Register

SPD0R 20h 0

SPD1R 21h 1

SPD2R 22h 2

Slave Port Status Register SPSR 23h 3

Slave Port Control Register SPCR 24h N.A.

Table 41. Slave Port Control Register (SPCR) (adr = 024h)

Bit 7 w/o Bits 6,5 R/O Bit 4 Bit 3,2 w/o Bits 1,0 w/o

0—obey SMODE
pins

1—ignore SMODE
pins

Reads SMODE pins
smode1,smode0

x 00—disable slave port,
port A is a byte wide
input port

01—disable slave port,
port A is a byte wide
output port

1x—enable the slave port

00—no slave
interrupt

pp—enable slave
port interrupt
priority 1–3.
User’s Manual 121

The functionality of the bits is as follows.

Bit 7—If set to "0," the cold-boot feature will be enabled. Normally this bit is set to a
"1" after the cold boot is complete. The cold boot for the slave port is enabled au-
tomatically if (SMODE1, SMODE0) lines are set to (0,1) after the reset ends. This
features disables the normal operation of the processor and causes commands to be
accepted via the slave port register SPD0R. These commands cause data to be
stored in memory or I/O space. When the master that is managing the cold boot
has finished setting up memory and I/O space, the (SMODE1, SMODE0) pins are
changed to code (0,0), which causes execution to start at address zero. Typically
this will start execution of a secondary boot program. At some point, bit 7 will be
set to a "1" so that the SMODEx pins can be used as normal input pins.

Bits 6,5—May be used to read the input pins SMODE , SMODE0.

Bits 3,2—Bit 3 if set to a "1" enables the slave port, disabling parallel port A and vari-
ous other port lines. Bit 3 is automatically set to a "1" (?????) if a cold boot is done
via the slave port. If bit 3 is "0," then bit 2 controls whether parallel port A is input
(bit 2=0) or output (bit 2=1).

Bits 1,0—This 2-bit field sets the priority of the slave port interrupt. The interrupt is
disabled by (0,0).

Table 42 describes the slave port status register. The status register has 6 bits that are set if
the particular register is full. That means that the register has been written by the proces-
sor that can write to it but it has not been read by the processor that can read it. The bits
for SPD0R are used to control the slave interrupt and the handshaking lines as shown in
Figure 35.

Table 42. Slave Port Status Register (SPSR) (adr = 023h)

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

1—set by
master
write to
SPD0R.
Cleared
by slave
write to
SPSR.

1—set by
master
write to
SPD2R.
Cleared
when
slave
reads
register.

1—set by
master
write to
SPD1R.
Cleared
when
slave
reads
register.

1—set by
master
write to
SPD0R.
Cleared
when
slave
reads
register.

1—set by
slave
write to
SPD0R.
Cleared
by
master
write to
SPSR.

1—set by
slave
write to
SPD2R.
Cleared
when
master
reads
register.

1—set by
slave
write to
SPD1R.
Cleared
when
master
reads
register.

1—set by
master
write to
SPD0R.
Cleared
when
slave
reads
register.
122 Rabbit 2000 Microprocessor

13.3 Applications and Communications Protocols for Slaves

The communications protocol used with the slave port depends on the application. A
slave processor may be used for various reasons. Some possible applications are listed be-
low.

Keep in mind that the Rabbit can also be operated as a slave processor via a serial port and
some of the protocols will work well via a serial communications connection. If a serial
connection is used, the protocol becomes more complicated if errors in transmission need
to be taken into account. If the physical link can be controlled so that transmission errors
do not occur, a realistic possibility if the interconnection environment is controlled, the se-
rial protocol is simpler and faster than if error correction needs to be taken into account.

13.3.1 Slave Applications

• Motion Controller—Many types of motion control require fast action, may be com-
pute-intensive or both. Traditional servo system solutions may be overly expensive or
not work very well because of system nonlinearities. The basic communications model
for a motion controller is for the master to send short messages—positioning com-
mands—to the slave. The slave acknowledges execution of the commands and reports
exception conditions.

• Communications Protocol Processor—Communications protocols may be very com-
plex, may require fast responses, or may be compute-intensive.

• Graphics Controller—The Rabbit can be used to perform operations such as drawing
geometric figures and generating characters.

• Digital Signal Processing—Although the Rabbit is not a speciality digital signal pro-
cessor, it has enough compute speed to handle some types of jobs that might otherwise
require a speciality processor. The slave processor can process data to perform pattern
recognition or to extract a specific parameter from a data stream.

13.3.2 Master-Slave Messaging Protocol

In this protocol the master sends messages to the slave and receives an acknowledgement
message. The protocol can be polled or interrupt driven. Generally, the master sends a
message that has a message type code, perhaps a byte count, and the text of the message.
The slave responds with a similar message as an acknowledgement. Nothing happens un-
less the master sends a message. The slave is not allowed to initiate a message, but the
slave could signal the master by using a parallel port line other than /SLAVEATN or by
placing data in one of the registers the master can read without interfering with the mes-
sage protocol.

The master sends a message byte by storing it in SPD0R. The slave notices that SPD0R is
full and reads the byte. When the master notices that SPD0R is empty because the slave
read it, the master stores the next byte in SPD0R. Either side can tell if any register is
empty or full by reading the status register. When the slave acknowledges the message
with a reply message, the process is reversed. To perform the protocol with interrupts, a
User’s Manual 123

slave interrupt can be generated each time the slave receives a character. The slave can ac-
knowledge the master by reading SPD0R if the master is polling for the slave response to
each character. If the master is to be interrupted to acknowledge each character, the slave
can create an interrupt in the master by storing a dummy character in SPD0R to create a
master interrupt, assuming that the /SLAVEATTN line is wired to interrupt the master.
The acknowledgement message works in a similar manner, except that the master writes a
dummy character to interrupt the slave to say that it has the character.

Several problems can arise if there are dual interrupts for each character transmitted. One
problem is that the message transmission rate will free run at a speed limited by the inter-
rupt latency and compute speed of each processor. This could consume a high percentage
of the compute resources of one or both processors, starving other processes and espe-
cially interrupt routines, for compute time. If this is a problem, then a timed interrupt can
be used to drive the process on one side, thus limiting the data transmission rate.

Another solution, which may be better than limiting the transmission rate, is to use inter-
rupts only for the first byte of the message on the slave side, and then lower the interrupt
priority and conduct the rest of the transaction as a polled transaction. On the master side
the entire transaction can be a polled transaction. In this case, the entire transaction takes
place in the interrupt routine on the slave, but other interrupts are not inhibited since the
priority has been lowered.

A typical slave system consists of a Rabbit microprocessor and a RAM memory con-
nected to it. The clock can be provided either by connecting a crystal, or crystals to the
slave or by providing an external clock, which could be the master’s clock. The reset line
of the slave would normally be driven by the master. At system startup time the master re-
sets the slave and cold boots it via the slave port. (The SMODE pins must be configured
for this.) Once the software is loaded into the slave, the slave can begin to perform its
function.

As a simple example, suppose that the slave is to be used as a four-port UART. It has the
capability to send or receive characters on any of its four serial ports. Leaving aside the
question of setup for paramters such as thebaud rate, we could define a protocol as fol-
lows.

SPD0R readable by master is a status register with bits indicating which of the four
receivers and four transmitters is ready, that is, has a character received or is ready to
send a character.

SPD0R writable by the master is a control register used to send commands to the slave.

SPD1R is used to send or receive data characters or control bytes.

The line /SDATAVL is wired to the external interrupt request of the master so that the
master is interrupted when the slave writes to SPD0R. Typically the slave will write to
SPD0R when there is a change of status on one of the serial ports.

The line /SDATRDY is wired to a port input line on the master so that the master can
tell if the slave has accepted the command written to SPD0R.
124 Rabbit 2000 Microprocessor

The slave can interrupt the master at any time by storing to SPD0R. It will do this every
time an enabled transmitter is ready to accept a character or every time an enabled receiver
receives a character. When it stores to SPD0R, it will store a code indicating the reason
for the interrupt, that is, receive or transmit and channel number. If the cause is receive,
the received character will also be placed in SPD1R writable by the slave. When the mas-
ter is interrupted for any reason, the master will sneak a peek at SPD0R by reading SPSR.
If the interrupt is caused by a receive character, it will remove the character from SPD1R
and read SPD0R to handshake with the slave.

If the master is interrupted for transmitter ready, as determined by the sneak peek, it will
place the outgoing character in SPD1R and write a code to SPD0R indicating transmit and
channel number. This will cause the slave to be interrupted, and the slave will take the
character and handshake by reading SPD0R. This handshake does not interrupt the mas-
ter.
User’s Manual 125

126 Rabbit 2000 Microprocessor

14. Rabbit Hardware Design and Development

Core designs and printed-circuit board layouts are available on the Rabbit web site. A
core design includes memory, the microprocessor, oscillator crystals, the Rabbit standard
programming port, and in some cases a power controller and power supply. Although
modern designs usually use at least four-layer printed circuit boards, two-sided boards are
a viable option with the Rabbit, especially if the clock speed is not high and the design is
intended to operate at 2.5 V or 3.3 V—actors which reduce edge speed and electromag-
netic radiation.

14.1 RS-485 Communication Interface

To be added in the future.

14.2 RS-232 Communication Interface

To be added in the future.

14.3 Analog-to-Digital Converters

To be added in the future.

14.4 Digital-to-Analog Converters

To be added in the future.

14.5 High-Voltage Drivers

To be added in the future.

14.6 Clocks

The Rabbit has two built in oscillators. The 32.768 kHz clock oscillator is needed for the
battery-backable clock, the watchdog timer, and the cold boot function. The main oscilla-
tor provides the run time clock for the microprocessor.

The 32.768 kHz oscillator is slow to start oscillating after power-on. For this reason a
wait loop in the BIOS waits until this oscillator is oscillating regularly before continuing
the startup procedure. If the clock is battery-backed, there will be no startup delay since
the oscillator is already oscillating. The startup delay may be as much as 5 seconds. Crys-
tals with low series resistance (R < 35 kΩ) will start faster. The required oscillator circuit
is shown in Figure 37. If current consumption by the real-time clock is important, the reg-
ulator circuit shown in the figure below will reduce the current consumption by a substan-
tial amount when a 3 V lithium battery is used. Using this circuit the battery backed clock
User’s Manual 127

will require less than 25 µA. If the full 3 V is used the current consumption will be ap-
proximately 70 µA.

Figure 37. Oscillator Circuits

14.7 Low-Power Design

The power consumption is proportional to the clock frequency and to the square of the op-
erating voltage. Thus, operating at 3.3 V instead of 5 V will reduce the power consump-
tion by a factor of 10.9/25 or 43% of the power required at 5 V. The clock speed is
reduced proportionally to the voltage at the lower operating voltage. Thus the clock speed
at 3.3 V will be about 2/3 of the clock speed at 5 V. The operating current is reduced in
proportion to operating voltage.

The Rabbit does not have a "standby" mode that some microprocessors have. Instead, the
Rabbit has the ability to switch its clock to the 32.768 kHz oscillator. This is called the
sleepy mode. When this is done, the power consumption is dramatically decreased. The
current consumption is often reduced to the region of 100 µA at this clock speed. The
Rabbit executes about 6 instructions per millisecond at this low clock speed. Generally,
when the speed is reduced to this extent, the Rabbit will be in a tight polling loop looking
for an event that will wake it up. The clock speed is increased to wake up the Rabbit.

R1

32.768 kHz Circuit
Main Oscillator

XTALA1

XTALA2 XTALB2

XTALB1

R1

R2

C1

C2

C1

C2

32.768 kHz

BAT 3.0 V

2.3 V

Battery Regulator

0.1 µF

R2 390 kΩ

15 pF

15 pF

10 MΩ
1 MΩ

33 pF

33 pF

2 MΩ

220 kΩ

1 kΩ

4.3 MΩ

battery backup power

Safety resistor required by
regulatory agencies.
128 Rabbit 2000 Microprocessor

14.8 Basic Memory Design

Normally /CS0 and /OE0 and /WE0 should be connected to a flash memory that holds the
startup code that executes at address zero. When the processor exits reset with (SMODE1,
SMODE0) set to (0,0), it will attempt to start executing instructions at the start of the
memory connected to /CS0, /OE0, and /WE0.

By convention, the basic RAM memory should be connected to /CS1, /OE1, and /WE1.
/CS1 has a special property that makes it the preferred chip select for battery-backed
RAM. A bit may be set in the MMIDR register to force /CS1 to stay enabled (low) (see
Table 21 in Section 8.3.1). This capability can be used to counter a problem encountered
when the chip select line is passed through a device that is used to place the chip in
standby by raising /CS1 when the power is switched over to battery backup. The battery
switchover device typically has a propagation delay that may be 20 ns or more. This is
enough to require the insertion of wait states for RAM access in some cases. By forcing
/CS1 low, the propagation delay is not a factor because the RAM will be always selected
and will be controlled by /OE1 and /WE1. If this is done, the RAM will consume more
power while not battery-backed than it would if it were run with dynamic chip select and a
wait state. If this special feature is used to speed up access time for battery backed RAM
then no other memory chips should be connected to OE1 and WE1.

14.8.1 Memory Access Time

The memory access time required depends on the clock speed and the capacitive loading
of the address and data lines. Wait states can be specified by programming to accomodate
slow memories for a given clock speed. Wait states should be avoided with memory that
holds programs because there is a significent slowing of the execution speed. Wait states
are far more important in the instruction memory than in the data memory since the great
majority of accesses are instruction fetches. Going from 0 to 1 wait states is about the
same as reducing the clock speed by 30%. Going from 0 to 2 wait states is worth approx-
imately a 45% reduction in clock speed. A table of memory access times required for var-
ious clock speeds is given in Table 44 in Chapter 15.

14.8.2 Precautions for Unprogrammed Flash Memory

If a Rabbit-based system is powered up and released from reset when not in one of the
cold-boot modes, the processor attempts to begin execution by reading from address zero
of the memory attached to /CS0, /OE0, and /WE0. If this memory is an unprogrammed or
improperly programmed flash memory, there is a danger that the memory could be de-
stroyed if the write security feature of the flash memory is disabled. Flash memories have
a write security feature that inhibits starting write cycles unless a special code is first
stored to the memory. For example, Atmel flash memories use the bytes AAh, 55h, and
A0h stored to addresses AAAAh or 5555h in a particular sequence. Any write executed
that is not prefixed by this sequence will be ignored. If the memory has write protection
disabled, and execution starts, it is possible that an endless loop that includes a write to
memory will establish itself. Since the flash memory wears out after a few hundred thou-
sand writes, the memory could be damaged in a short period of time by such a loop. Un-
User’s Manual 129

fortunately, flash memory is shipped from the factory with the protection feature disabled
to accomodate obsolete memory programmers.

The solution to this problem is to order the memory with the write protection enabled, or
to enable it with a flash programming system. Then the memory will be safe if it is sol-
dered into the Rabbit system. If an unsafe memory is soldered into a system, then the
memory can be powered up with the programming cable connected, and a sequence can be
sent using the cold-boot procedure to enable the write protection. Compiling any Dy-
namic C program to the flash will make the memory safe. If this is not convenient, tester
software can make the memory safe by sending a byte sequence over the programming
connection serial link.

The following example shows a program that can be downloaded via the cold-boot proto-
col to make a Atmel AT29C010A 128K x 8 flash memory safe. In this case, the RAM
connected to /CS1 is used to hold a program starting at address zero. The flash memory is
mapped into the data segment starting at address 1000h for access to the start of the flash
memory.

; before storing this program the RAM is mapped to the
; first quadrant
; the program that resides at address zero in RAM
; note: this program has not been tested
ld a,0e1h ; 3e e1 segsize reg
ioi ld (13h),a ; d3 32 13 00 data seg starts at 1000h
ld a,3fh ; 3e 3f dataseg reg
ioi ld(12h),a ; d3 32 12 00 set data seg base of flash to 1000h
ld a,0 ; 3e 00 for MB1CR memory bank reg for flash on cs0
ld (15h),a ; 32 15 00 bank 1 reads flash starting at 256k
ld a,0aah ; 3e aa
ld (5555h+1000h),a ; 32 55 65 first byte of unlock code
ld a,55h ; 3e 55
ld (2AAAh+1000h),a ; 32 aa 3a 2nd byte of unlock code
ld a,0a0h ; 3e a0
ld (5555h+1000h),a ; 32 55 65 3rd byte of unlock code
ld hl,1000h ;21 00 10 point to start of flash memory
ld (hl),0c3h ; 36 c3 jump op code
inc hl ; 23
ld (hl),00h ; 36 00 zero
inc hl ; 23
ld (hl),00h ; 36 00 zero
jr * ; 18 fe end with endless loop

This code can be sent by means of a sequence of triplets via the serial port.

80 14 01 ; I/O write 01 to 0000 MB0CR select cs1- map RAM to Q1
00 00 3e ; write to memory address 0
00 01 e1
00 02 d3
00 03 32
00 04 12
00 05 00
; continue code above here
00 2b 18 ; last instruction
130 Rabbit 2000 Microprocessor

00 2c ef ; last byte
80 24 80 ; start execution of program at zero

The program will execute within about 10 ms.

14.9 PC Board Layout and Memory Line Permutation

In order to use the PC board real estate efficiently, it is recommended that the address and
data lines to memory be permuted to minimize the use of PC board resources. By permut-
ing the lines, the need to have lines cross over each other on the PC board is reduced, sav-
ing feed-through’s and space.

For static RAM, address and data lines can be permuted freely, meaning that the address
lines from the processor can be connected in any order to the address lines of the RAM,
and the same applies for the data lines. For example, if the RAM has 15 address lines and
8 data lines, it makes no difference if A15 from the processor connects to A8 on the RAM
and vice versa. Similarly D8 on the processor could connect to D3 on the RAM. The only
restriction is that all 8 processor data lines must connect to the 8 RAM data lines. If sev-
eral different types of RAM can be accommodated in the same PC board footprint, then
the upper address lines that are unused if a smaller RAM is installed must be kept in order.
For example, if the same footprint can accept either a 128K x 8 RAM with 17 address
lines or a 512K x 8 RAM with 19 address lines, then address lines A18 and A19 can be in-
terchanged with each other, but not exchanged with A0–A17.

Permuting lines does make a difference with flash memory. If the memory is socketed and
it is intended to program the memory off the board, then it is probably best to keep the ad-
dress and data lines in their natural order. However, since the flash can be programmed in
the circuit using the Rabbit programming port, it is expected that most designers will sol-
der the flash memory directly to the board in an unprogrammed state. In this case, the per-
meation of data and address lines must still be taken into account because flash memory
requires the use of a special unlock code that removes write protection. The unlock oper-
ation involves a special sequence of reads and writes accessing special addresses and writ-
ing the unlock codes.

Another consideration is that the flash memory may be divided into sectors. In order to
modify the memory, an entire sector must be written. In the small-sector memories the
memory is divided into 1024 sectors. If the largest flash memory that is usable in a partic-
ular design is 512K, the largest sector size is 512 bytes. If the smallest memory used is
128K, then the smallest sector is 128 bytes. In order that the sector can be contiguous for
all possible types of memory, the lower 7 address lines (A0…A6) should be permuted as a
group. Address lines A7 and A8 should not be permuted at all if it is desirable to keep the
larger sectors contiguous. The upper 10 address lines can be permuted as a separate
group. The special memory chip addresses 05555h and 0AAAAh must be accessed as
part of the unlock sequence. These addresses use only the first 16 address lines and have
the odd and even numbered bits the same. The unlock codes use the numbers 55h, AAh or
A0h.
User’s Manual 131

Permuting data or address lines with flash memory should probably be avoided in practi-
cal systems.
132 Rabbit 2000 Microprocessor

15. AC Timing Specifications

The Rabbit processor may be operated at voltages between 2.5 V and 6.0 V, and at temper-
atures from –40°C to +85°C. Most users will operate the Rabbit at either 5.0 V or 3.3 V.
The most computation per watt is obtained at approximately 3.3 V. The highest practical
speed is usually obtained at 5 V (or more).

The Rabbit is available in two versions: the R-25, which has a maximum clock speed of
26.0 MHz, and the R-30, which has a maximum clock speed of 29.5 MHz. The R-30 has
a maximum clock speed at 3.3 V ±10% of 18.9 MHz, and the R-25 has a maximum clock
speed of 16.25 MHz at 3.3 V. The maximum clock speed at 2.5 V is 8.25 MHz for either
the R-25 or R-30.

If a half-speed crystal is used with the clock doubler to achieve the desired clock speed,
the maximum clock speed must be reduced by 10% to allow for an up to 10% asymmetry
(55/45) in the waveform generated by the oscillator. This is because the clock doubler
uses the intermediate edge to generate the double frequency.

A voltage between 3 V and 3.5 V should be used to minimize power consumption, and the
clock speed should be adjusted downward as far as feasible. This will give the maximum
computation per watt.

The values in Table 43 may be improved by 6% for commercial ratings. The industrial
rating is the specified voltage plus or minus 10% and a maximum temperature 85°C. The
commercial rating is plus or minus 5% voltage and amaximum temperature of 70°C. The
effect of temperature alone is approximately 1% worse speed for each 5°C temperature in-
crease.

Table 43. Rabbit Basic Worst-Case Timings (Preliminary 6/24/99)

2.50 V min.
-40°C–+85°C

3.3 V ±10%
-40°C–+85°C

R-25/R-30

5.0 V ±10%
-40°C–+85°C

R-25/R-30

Maximum clock speed 8.25 MHz
16.25 MHz/
18.9 MHz

26 MHz/
29.5 MHz

Maximum clock speed generated
using clock doubler

7.42 MHz
14.8 MHz/
17.0 MHz

22.5 MHz/
26.5 MHz

Tadr clock to address out delay
with 20 pf address line load

18 ns 10 ns 6 ns

Minimum clock period 121 ns 61.5 ns/53 ns 39 ns/34 ns

Tadr clock to address out delay
with 20 pf address bus load

24 ns 13 ns 8 ns

Tadr clock to address out delay
with 70 pf address line load

39 ns 20 ns 13 ns

Tsetup data setup prior to clock 12 ns 7 ns 4 ns
User’s Manual 133

The memory access time required for a directly interfaced memory is given by:

access time = (clock period)*(2+ waitstates) - Tsetup - Tadr (1)

This formula remains true if the clock doubler is used, except that, if there are an odd
number of wait states, the access time must be reduced by 10% of one clock period. See
the diagrams below for the definition of Tsetup and Tadr.

If serial communication is to be used at standard baud rates, then certain clock speeds
must be used. These clock speeds are usually multiples of 1.8432 MHz to ensure that
baud rates of 57,600 bps, 19,200 bps, and less will be available. Multiples of 3.6862 MHz
ensure that baud rates of 115,200 bps, 38,400 bps, and less will be available. Multiples of
1.2288 MHz ensure that baud rates of 38,400 bps and less will be available. The standard
Rabbit BIOS will accept any clock speed that is a multiple of .6144 MHz.

Table 44. Memory Access Time Requirements (V±10%, T -40°C to +85°C)

Clock
Speed
(MHz)

Period
(ns)

Wait
States

Memory
Access Time

 @5 V 20 pF Load
(ns)

Memory
Access Time

@5 V 70 pF Load
(ns)

Maximum PC-
Compatible
Baud Rate

(bps)

29.4912 34 0 56 51 921,600

27.6480 36.2 0 60 55 57,600

25.8048 38.7 0 65 59 115,200

25.8048 38.7 1 104 99 115,200

25.8048 38.7 2 142 137 115,200

24.576 40.7 0 70 65 38,400

23.9616 41.7 0 71 66 57,600

22.1184 45.2 0 78 73 230,400

22.1184 45.2 1 124 119 230,400

22.1184 45.2 2 169 164 230,400

20.2752 49.3 0 88.6 82.6 57,600

18.432 54.2 0 96.5 91.5 115,200

14.7456 67.8 0
124 @ 5 V/
119 @ 3.3 V

119 @ 5 V/
109 @ 3.3 V

460,800

14.7456 67.8 1
192 @ 5 V/
187 @ 3.3 V

187 @ 5 V/
177 @ 3.3 V

460,800

11.0592 90.5 0
169 @ 5 V/
164 @ 3.3 V

164 @ 5 V/
154 @ 3.3 V

115,200

7.3728 135.6 0
259 @ 5 V/
254 @ 3.3 V
235 @ 2.5 V

254 @ 5 V/
244 @ 3.3 V/
220 @2.5 V

230,400
134 Rabbit 2000 Microprocessor

The die suffers significant self-heating at higher clock speeds. The thermal impedance,
die to ambient, with zero air flow is 44°C/W. At 5 V with 65 mA current consumption this
would result in about 15°C of self-heating, and would reduce the maximum clock speed
by approximately 3%. This reduction is included in the tables above.

Figure 38, Figure 39, and Figure 40 illustrate the memory read and write cycles.

Figure 38. Memory Read and Write Cycles

Tadr is the time required for the address output to reach 0.8 V. This time depends on the
bus loading. A0 has a stronger driver and can handle larger capacitive loads than the other
address lines. Tsetup is the data setup time relative to the clock. Tsetup is specified from
the 30%/70% of the VDD voltage level. Most 5 V memories have TTL compatible inputs
that switch at 0.8 V and 2.0 V. Approximately 2 ns must be added for a 20 pF bus loading
in order to pull a low level of 0.8 V instead of 2.5 V.

D0–D7

Memory Read

Tadr

Tsetup = 4 ns measured from
30% / 70% level.

A0–A19, /CS

/OE

A0–A19, /CS

Memory Write

D0–D7

/WE

Tadr

3-state

T1 T2 T3

Tcl

0.8 V

Tadr = 8 ns @ 20 pF
Tsetup = 4 ns
User’s Manual 135

Figure 39. Memory Read and Write with Wait States

Generally, the maximum operating speed is proportional to the power supply voltage. The
operating current is proportional to the voltage, and so the operating power is proportional
to the square of the voltage. The operating power is also proportional to the clock speed.
Higher temperatures reduce the maximum operating speed by approximately 1% for each
5°C. In addition, higher operating speeds increase the die temperature because of the heat
generated and therefore slightly compound the adverse effects of higher temperature. The
Rabbit operates at 2 clocks per bus cycle plus any wait states that might be specified. I/O
bus cycles have an automatic wait state and thus require 3 clocks plus any wait states spec-
ified as shown in Figure 40.

D0–D7

Memory Read

Tsetup

Tadr

Tadr = 8 ns @ 20 pF

Tsetup = 4 ns measured from
30% / 70% level.

A0–A19, /CS

/OE

A0–A19, /CS

Memory Write

D0–D7

/WE

Tadr

3-state

T2 T3T1 Twait1

Tcl
136 Rabbit 2000 Microprocessor

Figure 40. I/O Read and Write Cycles No Extra Wait States

15.1 Current Consumption

Typical current is proportional to both clock frequency and voltage. The main oscillator
requires approximately 6 mA at 5V and 2 mA at 3 volts independent of frequency. The ba-
sic current consumption for the processor exclusive of the oscillator at 5 V and 15 MHz is
approximately 42 mA. The following formula can be used to compute the current con-
sumption:

I=(0.7)*(freq MHz)*(voltage) + (1.27)*(voltage-2.7)+1.3

The first term represents the power consumed by the processor. The second term is the
current consumed by the main oscillator. If the main oscillator is disabled then this termis
zero. Some checkpoints for current consumption are below.

D0–D7

Memory Read

Tsetup

Tadr

Tadr = 8 ns @ 20 pF

Tsetup = 4 ns measured from
30%/70% level.

A0–A15, /IOCS

/ORD, /BUFEN

A0–A15, /IOCS

Memory Write

D0–D7

/IOWR

Tadr

3-state

T2 T3T1 Twait1

/BUFEN (is default program for this pin)

Tcl
User’s Manual 137

Figure 41. Current Versus Frequency and Voltage

To these figures must be added current consumed by memory and other devices included
in the system. The 32.768 clock oscillator consumes approximately 70 uA at 3 volts. (At
2.4 volts, when backed by a battery the consumption is approximately 25 uA.) Current
consumed by RAM or flash memory will be substantial and very significent at lower fre-
quencies if auto power down flash is not used. At this time accurate estimates for current
consumption when the main clock is provided by the 32.768 kHz oscillator are not avail-
able. However, in principle at 3.3 volts the current should consist of 90 uA for the oscilla-
tor and 75 uA for the processor, or a total of 165 uA.

Frequency MHz Voltage Current mA

29.4912 5 107

22.0592 5 82

14.7456 5 56

14.7456 3.3 36

7.3728 3.3 19

3.6864 3.3 11

1.8432 3.3 6

.9216 3.3 4
138 Rabbit 2000 Microprocessor

16. Rabbit Software

This chapter outlines basic low-level software constructs that are recommended for use
with the Rabbit microprocessor. By following these suggestions, the user will find it
much easier to use the software and to avoid various pitfalls. More details can be found by
consulting the Dynamic C manual or the source code in the Dynamic C libraries.

16.1 Reading and Writing I/O Registers and Shadow Registers

The Rabbit has two I/O spaces: internal I/O registers and external I/O registers. Access is
the same as for accessing data memory except that the instruction is preceeded by a prefix
(ioi or ioe) to indicate the internal or external I/O space.

The fastest way to read and write I/O registers in Dynamic C is to use a short segment of
assembly language inserted in the C program. For example.

// compute value and write to port A data register
value=x+y
#asm
ld a,(value) ; value to write
ioi ld (PADR),a ; write value to PADR
#endasm

In the example above the ioi prefix changes a store to memory to a store to an internal I/O
port. The prefix ioe is used for writes to external I/O ports.

A series of C callable functions are available to read and write I/O registers.

// Internal I/O Register Calls
int RdPortI(int PORT); // returns port, high byte zero
int BitRdPortI(int PORT, int bitcode) ; // bit code 0-7
// writes 8 bits to port and shadow
// no shadow write if a null pointer is used for shadow
void WrPortI(int PORT, char *PORTShadow, int value);
// write to a port bit (bits are numbered 7, 6, ... 1, 0.
void BitWrPortI(
 int PORT, char *PORTShadow, int value, int bitcode);

// Same external I/O registers
int RdPortE(int adr); // returns contents of port, high byte zero
int BitRdPortE(int PORT, int bitcode) ; // bit code 0-7
int WrPortE(int PORT, char *PORTShadow, int value);
int BitWrPortE(
 int PORT, char *PORTShadow, int value, int bitcode);

In order to read a port the following code could be used:

k=RdPortI(PDDR); // returns port D data register

If the port is a write only port then the shadow register can be used to find out what the
contents of the port are. For example the global control status register has a number of
User’s Manual 139

write-only bits. These can be read by consulting the shadow, provided that the shadow
register is always updated when writing to the register.

k=GCSRShadow;

In order to write a write only register and update the shadow register the following rou-
tines can be used:

WrPortI(GCSR,&GCSRShadow,value); // update register and shadow
BitWrPortI(GCSR,&GCSRShadow,1,5); // set 1 to bit 5 of GCSR

In the WrPortI routine a zero can be substituted for the pointer to the shadow register if no
shadow register is to be used. The pointer to the shadow register is manditory for BitWr-
PortI.

16.2 Shadow Registers

Many of the registers of the Rabbit’s internal I/O devices are write-only. Write-only regis-
ters save gates on the chip, making possible greater capability at lower cost. Typical de-
signs that implement external I/O registers also have write-only registers due to the cost
saving of not having the additional hardware to make it possible to read back the register’s
contents. Write-only registers are easier to use if a memory location, called a shadow reg-
ister, is associated with each write-only register. In order to make the names of the shad-
ows easy to remember they are compounded from the internal register names used in this
manual. For example the regiser PADR (port A data register) has the shadow
PADRShadow. Some shadow registers are defined in the bios files as shown below.

// the internal I/O registers -the shadows
// parallel ports
char PADRShadow,PBDRShadow, PCDRShadow, PCFRShadow;
char PDDRShadow, PDCRShadow, PDFRShadow, PDDCRShadow, PDDDRShadow;
char PEDRShadow, PECRShadow, PEFRShadow, PEDDRShadow;

char GCSRShadow; // global control status register
char GOCRShadow; // global control
char GCDRShadow; // clock doubler

When manipulating I/O registers and shadow registers, the programmer must keep in
mind that an interrupt can take place in the middle of the sequence of operations, and then
the interrupt routine may manipulate the same registers. If this possibility exists, then a
solution must be crafted for the particular situation. Usually it is not necessary to disable
the interrupts while manipulating registers and their associated shadow registers.

As an example, consider the parallel port D data direction register (PDDDR). This regis-
ter is write only, and it contains 8 bits corresponding to the 8 I/O pins of parallel port D.
If a bit in this register is a "1," the corresponding port pin is an output, otherwise it is an in-
put. It is easy to imagine a situation where different parts of the application, such as an in-
terrupt routine and a background routine, need to be in charge of different bits in the
PDDDR register. The following code sets a bit in the shadow and then sets the I/O regis-
140 Rabbit 2000 Microprocessor

ter. If an interrupt takes place between the set and the ldd, and changes the shadow regis-
ter and PDDDR, the correct value will still be set in PDDDR.

ld hl,PDDDRShadow ; point to shadow register
ld de,PDDDR ; set de to point to I/O reg
set 5,(hl) ; set bit 5 of shadow register
; use ldd instruction for atomic transfer
ioi ldd ; (io de)<-(hl) side effect: hl--, de--

In this case, the ldd instruction when used with an I/O prefix provides a convenient data
move from a memory location to an I/O location. Importantly, the ldd instruction is an
atomic operation so there is no danger that an interrupt routine could change the shadow
register during the move to the PDDDR register. If two instructions such as the following
were used instead of the ldd instruction,

ld a,(hl)
ld (PDDDR),a ; output to PDDDR

then there is the possibility that an interrupt would take place after the first instruction,
change the shadow register and the PDDDR register, and then after a return from the inter-
rupt, the second instruction would execute and store an obsolete copy of the shadow regis-
ter in the PDDDR, setting it to a wrong value.

There is no reason to have a shadow register for many of the registers that can be written
to. In some cases, writing to registers is used as a handy way of changing a peripheral’s
state, and the data bits written are ignored. For example, a write to the status register in
the Rabbit serial ports is used to clear the transmitter interrupt request, but the data bits are
ignored, and the status register is actually a read-only register except for the special func-
tionality attached to the act of writing the register. An illustration of a write-only register
for which a shadow is unnecessary is the transmitter data register in the Rabbit serial port.
The transmitter data register is a write-only register, but there is little reason to have a
shadow register since any data bits stored are transmitted promptly on the serial port.

16.3 Timer and Clock Usage

The real time clock or battery backable clock is a 48 bit counter that counts at 32768
counts per second. The counting frequency comes from the 32.768 kHz oscillator which is
separate from the main oscillator. Two other important devices are also powered from the
32.768 kHz oscillator: the periodic interrupt and the watchdog timer. It is assumed that all
measurements of time will derrive from this clock and not the main processor clock which
operates at a much higher frequency (e.g. 22.1184 MHz). This allows the main processor
oscillator to use less expensive ceramic resonators rather than quartz crystals. Ceramic
resontors typically have an error of 5 parts in 1000, while crystals are much more accurate,
to a few seconds per day.

It is not intended that the real time clock be read and written frequently. The procedure to
read it is lengthy and has an uncertain execution time. The procedure for writing the clock
is even more complicated. Rather, Dynamic C software maintains a long variable
User’s Manual 141

SEC_TIMER in memory. SEC_TIMER is updated every second by the periodic interrupt
and may be read or written directly by the user’s programs. Since SEC_TIMER is driven by
the same oscillator as the real time clock there is no relative gain or loss of time between
the two. As part of the standard startup code SEC_TIMER has bits 15-46 of the real time
clock copied to it. SEC_TIMER holds the number of seconds since 12 AM of 1-January-
1980. SEC_TIMER can accomodate 136 years from 1980 or to the year 2116. Another long
timer MS_TIMER counts milliseconds and can be used in a similar manner. MS_TIMER
wraps around from max count to zero approximately every 6 weeks. The software that
uses the counters measures intervals correctly even if the counter used wraps arround.

unsigned long int read_rtc(void); // read bits 15-46 rtc
void write_rtc(unsigned long int time); // write bits 15-46
// note: bits 0-14 and bit 47 are zeroed

Two utility routines are provided that can be used to convert times between the traditional
format (10-Jan-2000 17:34:12) and the seconds since 1-Jan-1980 format.

// converts time structure to seconds
unsigned long mktime(struct tm *timeptr);

// seconds to structure
unsigned int mktm(struct tm *timeptr, unsigned long time);

The format of the structure used is the following

struct tm {
char tm_sec; // seconds 0-59
char tm_min; // 0-59
char tm_hour; // 0-59
char tm_mday; // 1-31
char tm_mon; // 1-12
char tm_year; // 00-150 (1900-2050)
char tm_wday; // 0-6 0==sunday
};

The day of the week is not used to compute the long seconds, but it is generated when
computing from long seconds to the structure. A utility routine setclock.c is available to
set the date and time in the real time clock from the Dynamic C console.

16.4 WatchDog Support Software

A microprocessor system can crash for a variety of reasons. A software bug or an electri-
cal upset are common reasons. When the system crashes the program will typically settle
into an endless loop because parameters that govern looping behavior have been cor-
rupted. Typically the stack becomes corrupted and returns are made to random addresses.

The usual corrective action taken in response to a crash is to reset the microprocessor and
reboot the system. The crash can be detected either because an anomaly is detected by pro-
gram consistency checking or because a part of the program that should be executing peri-
odically is not executing and the watchdog times out.
142 Rabbit 2000 Microprocessor

Direct detection of crashes is supported in Dynamic C by certain checksumming opera-
tions and other causes of error that are classed as fatal errors.

The virtual watchdog system allows establishing multiple virtual watchdogs for different
parts of the program which must be executed periodically. If any of the virtual watchdogs
times out, then hits are withheld from the hardware watchdog and it times out, resulting in
a hardware reset. The virtual watchdogs are implemented by an array of memory counters.
The counters are counted down 16 times per second by the periodic interrupt routine. Hit-
ting a virtual watchdog is performed by calling a routine that stores a count between 1 and
255 in the memory counter. Virtual watchdogs may be allocated, disallocated, enabled and
disabled. One virtual watchdog is implemented by default and it is hit in the periodic inter-
rupt routine. If the periodic interrupt stops working, then the watchdog will time out. The
advantage of the virtual watchdogs is that if any of them fail and error is detected. Directly
hitting the hardware watchdog will cause an error only if every place where the watchdog
is hit fails to be included in the crash loop.

16.4.1 The Watchdog Hardware

The Rabbit microprocessor has a hardware watchdog timer. The watchdog is hit by calling
a bios routine hitwd() which hits it for 2 seconds or by storing a special code in the
WDTCR register, the code determining the time delay. The watchdog is a 17 bit counter
that counts toward zero at 32768 Hz provided by the 32.768 kHz oscillator. A hit stores a
number in the counter, postponing the time when it will reach zero. If hits are not frequent
enought the counter will reach zero and perform a microprocessor reset.

Best practice requires that extreme care be taken before the program hits the watchdog. If
hits of the watchdog are scattered in a reckless manner througout the user’s program then
there is a good chance that the watchdog will become effectively useless, because when a
crash takes place the program will enter an endless loop that includes a hit of the watch-
dog.

16.4.2 The Virtual Watchdog System

By default 10 virtual watchdogs are available. This can be changed by a #define:

#define N_WATCHDOG 15 // default is 10 watchdogs

To allocate a watchdog make the call:

N= VdGetFreeWd(char count); // establish watdog with
 // timeout count/16 seconds

To hit that watchdog use the call:

VdHitWd(int N); // hit that watchdog

To remove that watchdog from the table use the call:

VdReleaseWd(int N); // release (deestablish) watchdog N
User’s Manual 143

144 Rabbit 2000 Microprocessor

17. Rabbit Standard BIOS

(Note: The information in this chapter is provided for conceptual purposes only. An up-
date in the form of a software manual will clarify these issues.)

The Rabbit standard BIOS is a package of software that handles startup, shutdown and
various basic features of the Rabbit. By providing standard software to perform basic
functions, the user is relieved of the necessity of re-inventing this software for his own
needs. Further, by using Z-World’s tested software, the user greatly reduces the possibility
of errors and bugs. Z-World provides the full source code for the BIOS so the user has the
possibility of modifying it and so that the user has a ready reference to examine details of
the operation of the BIOS that are not apparent from the documentation.

In general, the BIOS is customized for each different controller board. The BIOS has dec-
larations at the start of the code that define the hardware configuration and use options.

A general-purpose BIOS is available that will work with most systems based on the Rab-
bit. The general-purpose BIOS is useful for bringing up new designs.

17.1 The BIOS—More Details

The BIOS is compiled separately from the user’s application. It occupies space at the bot-
tom of the root code segment. When execution of the user’s program starts at address
zero, it starts in the BIOS. There is no limit to the amount of code that can be included in
the BIOS. If the user compiles libraries as a part of the BIOS, time can be saved since the
BIOS is not recompiled except for specific reasons.

Normally routines that are frequently called on or that are needed for essential functions
are in the BIOS. When Dynamic C cold-boots the target and downloads the binary image,
the symbol table is retained to make it possible for the user program to call entry points in
the BIOS.

The BIOS supports the following services.

• System startup, including setup of memory, wait states and clock speed.

• Reading and programming the real-time clock.

• Operation and management of the periodic interrupt.

• Maintenance of memory counters that count ticks, milliseconds and seconds since Jan-
uary 1, 1980.

• Operation of the watchdog timer and maintenance of a system of virtual watchdog tim-
ers.

• Routines to speed up and slow down the system clock for power management. The
execution speed can be controlled over a wide range.

• Routines to set up the mode of operation of the parallel ports and to input and output
data to them.
User’s Manual 145

• Routines to initialize the timers and manipulate them.

• Routines to write flash memory with built-in protection of the system identification
area.

• Routines to maintain an error log or operation log and to handle fatal errors and watch-
dog timeouts

• Basic services for multitasking

• Routines that support a general-purpose parameter setup via the programming port.
This system can be used in the field for such items as setting a network address or cali-
bration constants and setting the real-time clock.

• A download manager (to be available with future releases of the BIOS).

• Modbus slave.

17.2 BIOS Assumptions

The BIOS makes certain assumptions concerning the physical configuration of the proces-
sor. Processors are expected to have RAM connected to /CS1, /WE1, and /OE1. Flash
memory, if present, is expected to be connected to /CS0, /WE0, and /OE0. The crystal fre-
quency is expected to be n*.6144*3 MHz, or else 4*.6144 MHz.

17.3 Periodic Interrupt and Real-Time Clock BIOS Services

The real-time clock is driven by the 32.768 kHz oscillator, which may be battery backed.
The periodic interrupt, when enabled, occurs every 16 clocks or every 488 µs. If the
32.768 kHz oscillator is absent, it is possible to substitute a different periodic interrupt, but
this alternative is not supported by Z-World since it the cost of connecting a crystal is very
small.

The periodic interrupt is used to count several memory counters that are used for general
software use. These counters count ticks, milliseconds and seconds. These counters have
an exact relationship with the real-time clock and the 32.768 kHz oscillator. A seconds
counter is generated by adding 65536/2048=32 to a 16-bit word on every tick. The carry
out counts the seconds counter. A millisecond counter is obtained by adding 32000 to a
16-bit word on every tick The carry out occurs on an average of once per millisecond and
drives the millisecond counter. T he tick counter is counted 2048 times per second.

In addition, the periodic interrupt provides support for function slicing and a real-time ker-
nel by providing periodic calls to clock routines. The periodic interrupt keeps the inter-
rupts turned off (that is, the processor priority is raised to 1 from zero) for a minimum time
of about 35 clocks. In this way, the periodic interrupt makes little contribution to interrupt
latency.
146 Rabbit 2000 Microprocessor

17.3.1 Real-Time Clock Support

If the real-time clock is battery-backed, which is an option in the BIOS, the BIOS reads
the real-time clock on startup and sets up the seconds since 1980 counter synchronized
with the clock. If the clock is not battery-backed, the seconds since 1980 counter is set to
zero, thus measuring time since startup. A log of startup times and conditions is kept as a
debugging aid. The time of exiting reset is recorded as well as the reason for the reset is
kept in what may or may not be battery-backed memory.

17.3.2 Watchdog Timer Support

In a well-organized system, the periodic interrupt should be the only place where instruc-
tions to hit the watchdog timer are located. This is accomplished by setting up a number
of virtual watchdog timers. Each virtual watchdog is an 8-bit counter that is counted down
16 times per second, or every 128 ticks of the real-time clock. If any counter reaches zero,
the program turns off interrupts and freezes until the hardware watchdog times out and re-
sets the processor. The user program must hit each virtual watchdog periodically by call-
ing a routine with the number of the watchdog and count value to be stored. The number
of virtual watchdogs is itself a parameter that can be increased by a call to get the virtual
watchdog routine, which adds another watchdog to the list (not a linked list) up to the
maximum number in the array. Initially there is one virtual watchdog that is hit by the pe-
riodic interrupt itself. The virtual watchdogs can be distributed across interrupts to reduce
the interrupt execution time if all possible virtual watchdogs must be counted in one inter-
rupt. Precautions are taken to make sure that a crash will not result in accidently hitting
the watchdog.

17.3.3 Power Management Support

The power consumption and speed of operation can be throttled up and down with rough
synchronism. This is done by changing the clock speed, clock doubler, and memory wait
states. The range of control is quite wide, 16-1 or more. In addition, the main clock can
be switched to the 32.768 kHz clock. In this case, the slowdown is very dramatic, perhaps
500-1. Each clock takes about 30 µs, and a typical instruction takes 150 µs to execute. At
this slow speed, the periodic interrupt cannot still operate because the interrupt routine
would execute too slowly to keep up with an interrupt every 16 clocks. Only about 3 in-
structions could be executed between ticks.

A different set of rules applies in the ultra slow mode. The user will set up an endless loop
to determine when to exit the ultra slow mode. The user should include a call in this loop
to a polling routine that is a part of the BIOS. The polling routine will update the memory
counters and the watchdog each time it is called. It will do this by directly reading the
real-time clock and by catching up the memory counters. If the user’s routine cannot get
around the loop in the maximum watchdog timer timeout time, the user should put several
calls to the polling routine in the loop. The user should avoid indiscriminate direct access
to the watchdog timer and real-time clock. The least bits of the real-time clock cannot be
read in ultra slow mode because they count fast compared to the instruction execution
time.
User’s Manual 147

17.3.4 Flash Memory Write Support

A flash memory write routine is provided. This routine works differently or there are dif-
ferent routines for the cases when the memory to be written is in the primary code memory
or is in a separate special memory. Writes to the primary code memory require freezing
the system for 10 ms or so. Other writes just require that the user wait for the write to be
done before doing the next write.

To protect the system identification block, the program tests the absolute memory address
relative to the start of the flash memory connected to /CS0, /WE0, and /OE0, which is
used to store the system identification block. The program has to check the contents of the
memory bank control registers to make this check. A routine that can actually write this
block is not included in the BIOS to make it hard to accidently write this block.
148 Rabbit 2000 Microprocessor

18. Rabbit Instructions

Summary:

“Load Immediate Data” on page 149
“8-bit Indexed Load and Store” on page 150
“16-bit Indexed Loads and Stores” on page 150
“16-bit Load and Store 20-bit Address” on page 150
“Register to Register Moves” on page 151
“Exchange Instructions” on page 151
“Stack Manipulation Instructions” on page 152
“16-bit Arithmetic and Logical Operations” on page 152
“8-bit Arithmetic and Logical Operations” on page 153
“8-bit Bit Set, Reset and Test Instructions” on page 154
“8-bit Increment and Decrement” on page 154
“8-bit Fast A register Operations” on page 154
“8-bit Shifts and Rotates” on page 155
“Instruction Prefixes” on page 156
“Block Move Instructions” on page 156
“Control Instructions - Jumps and Calls” on page 156
“Miscellaneous Instructions” on page 157
“Privileged Instructions” on page 157

Key

n-8-bit data item
d-8 bit offset
f - alternate destination prefix permitted, and the flags stored in F’
r - in "A" column - alternate destination prefix stores to alternate
s - in "I" column - I/O prefixes are allowed (IOE, IOI) I/O is source
d - in "I" column - I/O prefixes are allowed (IOE, IOI) I/O is dest
V - overflow flag set on overflow
L - overflow flag set if upper 4 bits of data word are zero
- - flag not affected
* - flag is set by operation
Flag labels: S- sign, Z- zero, V- overflow, C- carry

18.1 Load Immediate Data

Instruction clk A I S Z V C Operation
LD IX,mn 8 - - - - IX = mn
LD IY,mn 8 - - - - IY = mn
LD dd,mn 6 r - - - - dd = mn
LD r,n 4 r - - - - r = n
User’s Manual 149

18.2 Load and Store to an Immediate Address

Instruction clk A I S Z V C Operation
LD (mn),A 10 d - - - - (mn) = A
LD A,(mn) 9 r s - - - - A = (mn)
LD (mn),HL 13 d - - - - (mn) = L; (mn+1) = H
LD (mn),IX 15 d - - - - (mn) = IXL; (mn+1) = IXH
LD (mn),IY 15 d - - - - (mn) = IYL; (mn+1) = IYH
LD (mn),ss 15 d - - - - (mn) = ssl; (mn+1) = ssh
LD HL,(mn) 11 r s - - - - L = (mn); H = (mn+1)
LD IX,(mn) 13 s - - - - IXL = (mn); IXH = (mn+1)
LD IY,(mn) 13 s - - - - IYL = (mn); IYH = (mn+1)
LD dd,(mn) 13 r s - - - - ddl = (mn); ddh = (mn+1)

18.3 8-bit Indexed Load and Store

Instruction clk A I S Z V C Operation
LD A,(BC) 6 r s - - - - A = (BC)
LD A,(DE) 6 r s - - - - A = (DE)
LD (BC),A 7 d - - - - (BC) = A
LD (DE),A 7 d - - - - (DE) = A
LD (HL),n 7 d - - - - (HL) = n
LD (HL),r 6 d - - - - (HL) = r = B, C, D, E, H, L, A
LD r,(HL) 5 r s - - - - r = (HL)
LD (IX+d),n 11 d - - - - (IX+d) = n
LD (IX+d),r 10 d - - - - (IX+d) = r
LD r,(IX+d) 9 r s - - - - r = (IX+d)
LD (IY+d),n 11 d - - - - (IY+d) = n
LD (IY+d),r 10 d - - - - (Iy+d) = r
LD r,(IY+d) 9 r s - - - - r = (IY+d)

18.4 16-bit Indexed Loads and Stores

Instruction clk A I S Z V C Operation
LD (HL+d),HL 13 d - - - - (HL+d) = L; (HL+d+1) = H
LD HL,(HL+d) 11 r s - - - - L = (HL+d); H = (HL+d+1)
LD (SP+n),HL 11 - - - - (SP+n) = L; (SP+n+1) = H
LD (SP+n),IX 13 - - - - (SP+n) = IXL; (SP+n+1) = IXH
LD (SP+n),IY 13 - - - - (SP+n) = IYL; (SP+n+1) = IYH
LD HL,(SP+n) 9 r - - - - L = (SP+n); H = (SP+n+1)
LD IX,(SP+n) 11 - - - - IXL = (SP+n); IXH = (SP+n+1)
LD IY,(SP+n) 11 - - - - IYL = (SP+n); IYH = (SP+n+1)
LD (IX+d),HL 11 d - - - - (IX+d) = L; (IX+d+1) = H
LD HL,(IX+d) 9 r s - - - - L = (IX+d); H = (IX+d+1)
LD (IY+d),HL 13 d - - - - (IY+d) = L; (IY+d+1) = H
LD HL,(IY+d) 11 r s - - - - L = (IY+d); H = (IY+d+1)

18.5 16-bit Load and Store 20-bit Address

Instruction clk A I S Z V C Operation
LDP (HL),HL 12 - - - - (HL) = L; (HL+1) = H.
 (Adr[19:16] = A[3:0])
150 Rabbit 2000 Microprocessor

LDP (IX),HL 12 - - - - (IX) = L; (IX+1) = H.
 (Adr[19:16] = A[3:0])
LDP (IY),HL 12 - - - - (IY) = L; (IY+1) = H.
 (Adr[19:16] = A[3:0])
LDP HL,(HL) 10 - - - - L = (HL); H = (HL+1).
 (Adr[19:16] = A[3:0])
LDP HL,(IX) 10 - - - - L = (IX); H = (IX+1).
 (Adr[19:16] = A[3:0])
LDP HL,(IY) 10 - - - - L = (IY); H = (IY+1).
 (Adr[19:16] = A[3:0])
LDP (mn),HL 15 - - - - (mn) = L; (mn+1) = H.
 (Adr[19:16] = A[3:0])
LDP (mn),IX 15 - - - - (mn) = IXL; (mn+1) = IXH.
 (Adr[19:16] = A[3:0])
LDP (mn),IY 15 - - - - (mn) = IYL; (mn+1) = IYH.
 (Adr[19:16] = A[3:0])
LDP HL,(mn) 13 - - - - L = (mn); H = (mn+1).
 (Adr[19:16] = A[3:0])
LDP IX,(mn) 13 - - - - IXL = (mn); IXH = (mn+1).
 (Adr[19:16] = A[3:0])
LDP IY,(mn) 13 - - - - IYL = (mn); IYH = (mn+1).
 (Adr[19:16] = A[3:0])

18.6 Register to Register Moves

Instruction clk A I S Z V C Operation
LD r,g 2 r - - - - r = g- r,g any of B,
 C, D, E, H, L, A
LD A,EIR 4 fr * * - - A = EIR
LD A,IIR 4 fr * * - - A = IIR
LD A,XPC 4 r - - - - A = MMU
LD EIR,A 4 - - - - EIR = A
LD IIR,A 4 - - - - IIR = A
LD XPC,A 4 - - - - XPC = A
LD HL,IX 4 r - - - - HL = IX
LD HL,IY 4 r - - - - HL = IY
LD IX,HL 4 - - - - IX = HL
LD IY,HL 4 - - - - IY = HL
LD SP,HL 2 - - - - SP = HL
LD SP,IX 4 - - - - SP = IX
LD SP,IY 4 - - - - SP = IY
LD dd’,BC 4 - - - - dd’ = BC (dd’: 00-BC’,
 01-DE’, 10-HL’)
LD dd’,DE 4 - - - - dd’ = DE (dd’: 00-BC’,
 01-DE’, 10-HL’)

18.7 Exchange Instructions

Instruction clk A I S Z V C Operation
EX (SP),HL 15 r - - - - H <-> (SP+1); L <-> (SP)
EX (SP),IX 15 - - - - IXH <-> (SP+1); IXL <-> (SP)
EX (SP),IY 15 - - - - IYH <-> (SP+1); IYL <-> (SP)
User’s Manual 151

EX AF,AF’ 2 - - - - AF <-> AF’
EX DE’,HL 2 s - - - - if (!ALTD) then DE’ <-> HL
 else DE’ <-> HL’
EX DE’,HL’ 4 s - - - - DE’ <-> HL’
EX DE,HL 2 s - - - - if (!ALTD) then DE <-> HL
 else DE <-> HL’
EX DE,HL’ 4 s - - - - DE <-> HL’
EXX 2 - - - - BC <-> BC’; DE <-> DE’;
 HL <-> HL’

18.8 Stack Manipulation Instructions

Instruction clk A I S Z V C Operation
ADD SP,d 4 f - - - * SP = SP + d -- d=0 to 255
POP IP 7 - - - - IP = (SP); SP = SP+1
POP IX 9 - - - - IXL = (SP); IXH = (SP+1);
 SP = SP+2
POP IY 9 - - - - IYL = (SP); IYH = (SP+1);
 SP = SP+2
POP zz 7 r - - - - zzl = (SP); zzh = (SP+1);
 SP=SP+2 -- zz= BC,DE,HL,AF
PUSH IP 9 - - - - (SP-1) = IP; SP = SP-1
PUSH IX 12 - - - - (SP-1) = IXH; (SP-2) = IXL;
 SP = SP-2
PUSH IY 12 - - - - (SP-1) = IYH; (SP-2) = IYL;
 SP = SP-2
PUSH zz 10 - - - - (SP-1) = zzh; (SP-2) = zzl;
 SP=SP-2 --zz= BC,DE,HL,AF

18.9 16-bit Arithmetic and Logical Operations

Instruction clk A I S Z V C Operation
ADC HL,ss 4 fr * * V * HL = HL + ss + CF -- ss=BC,
 DE, HL, SP
ADD HL,ss 2 fr - - - * HL = HL + ss
ADD IX,xx 4 f - - - * IX = IX + xx -- xx=BC,
 DE, IY, SP
ADD IY,yy 4 f - - - * IY = IY + yy -- yy=BC,
 DE, IX, SP
ADD SP,d 4 f - - - * SP = SP + d -- d=0 to 255

A F

A’ F’

H

H’

D

D’

L

L’

E

E’

B

B’

C

C’

ex af,af’
ex de’,hlex de,hl’

ex de’,hl’

ex de,hl

exx - exchange hl,hl’, de,de’,bc,bc’
152 Rabbit 2000 Microprocessor

AND HL,DE 2 fr * * L 0 HL = HL & DE
AND IX,DE 4 f * * L 0 IX = IX & DE
AND IY,DE 4 f * * L 0 IY = IY & DE
BOOL HL 2 fr * * 0 0 if (HL != 0) HL = 1,
 set flags to match HL
BOOL IX 4 f * * 0 0 if (IX != 0) IX = 1
BOOL IY 4 f * * 0 0 if (IY != 0) IY = 1
DEC IX 4 - - - - IX = IX - 1
DEC IY 4 - - - - IY = IY - 1
DEC ss 2 r - - - - ss = ss - 1 -- ss= BC,
 DE, HL, SP
INC IX 4 - - - - IX = IX + 1
INC IY 4 - - - - IY = IY + 1
INC ss 2 r - - - - ss = ss + 1 -- ss= BC,
 DE, HL, SP
MUL 12 - - - - HL:BC = BC * DE, signed
 32 bit result. DE unchanged
OR HL,DE 2 fr * * L 0 HL = HL | DE -- bitwise or
OR IX,DE 4 f * * L 0 IX = IX | DE
OR IY,DE 4 f * * L 0 IY = IY | DE
RL DE 2 fr * * L * {CY,DE} = {DE,CY} --
 left shift with CF
RR DE 2 fr * * L * {DE,CY} = {CY,DE}
RR HL 2 fr * * L * {HL,CY} = {CY,HL}
RR IX 4 f * * L * {IX,CY} = {CY,IX}
RR IY 4 f * * L * {IY,CY} = {CY,IY}
SBC HL,ss 4 fr * * V * HL=HL-ss-CY
 (cout if (ss-CY)>hl)

18.10 8-bit Arithmetic and Logical Operations

Instruction clk A I S Z V C Operation
ADC A,(HL) 5 fr s * * V * A = A + (HL) + CF
ADC A,(IX+d) 9 fr s * * V * A = A + (IX+d) + CF
ADC A,(IY+d) 9 fr s * * V * A = A + (IY+d) + CF
ADC A,n 4 fr * * V * A = A + n + CF
ADC A,r 2 fr * * V * A = A + r + CF
ADD A,(HL) 5 fr s * * V * A = A + (HL)
ADD A,(IX+d) 9 fr s * * V * A = A + (IX+d)
ADD A,(IY+d) 9 fr s * * V * A = A + (IY+d)
ADD A,n 4 fr * * V * A = A + n
ADD A,r 2 fr * * V * A = A + r
AND (HL) 5 fr s * * L 0 A = A & (HL)
AND (IX+d) 9 fr s * * L 0 A = A & (IX+d)
AND (IY+d) 9 fr s * * L 0 A = A & (IY+d)
AND n 4 fr * * L 0 A = A & n
AND r 2 fr * * L 0 A = A & r
CP (HL) 5 f s * * V * A - (HL)
CP (IX+d) 9 f s * * V * A - (IX+d)
CP (IY+d) 9 f s * * V * A - (IY+d)
CP n 4 f * * V * A - n
CP r 2 f * * V * A - r
OR (HL) 5 fr s * * L 0 A = A | (HL)
OR (IX+d) 9 fr s * * L 0 A = A | (IX+d)
User’s Manual 153

OR (IY+d) 9 fr s * * L 0 A = A | (IY+d)
OR n 4 fr * * L 0 A = A | n
OR r 2 fr * * L 0 A = A | r
SBC (IX+d) 9 fr s * * V * A = A - (IX+d) - CY
SBC (IY+d) 9 fr s * * V * A = A - (IY+d) - CY
SBC A,(HL) 5 fr s * * V * A = A - (HL) - CY
SBC A,n 4 fr * * V * A = A-n-CY (cout if (r-CY)>A)
SBC A,r 2 fr * * V * A = A-r-CY (cout if (r-CY)>A)
SUB (HL) 5 fr s * * V * A = A - (HL)
SUB (IX+d) 9 fr s * * V * A = A - (IX+d)
SUB (IY+d) 9 fr s * * V * A = A - (IY+d)
SUB n 4 fr * * V * A = A - n
SUB r 2 fr * * V * A = A - r
XOR (HL) 5 fr s * * L 0 A = [A & ~(HL)] | [~A & (HL)]
XOR (IX+d) 9 fr s * * L 0 A = [A & ~(IX+d)] | [~A & (IX+d)]
XOR (IY+d) 9 fr s * * L 0 A = [A & ~(IY+d)] | [~A & (IY+d)]
XOR n 4 fr * * L 0 A = [A & ~n] | [~A & n]
XOR r 2 fr * * L 0 A = [A & ~r] | [~A & r]

18.11 8-bit Bit Set, Reset and Test Instructions

Instruction clk A I S Z V C Operation
BIT b,(HL) 7 f s - * - - (HL) & bit
BIT b,(IX+d)) 10 f s - * - - (IX+d) & bit
BIT b,(IY+d)) 10 f s - * - - (IY+d) & bit
BIT b,r 4 f - * - - r & bit
RES b,(HL) 10 d - - - - (HL) = (HL) & ~bit
RES b,(IX+d) 13 d - - - - (IX+d) = (IX+d) & ~bit
RES b,(IY+d) 13 d - - - - (IY+d) = (IY+d) & ~bit
RES b,r 4 r - - - - r = r & ~bit
SET b,(HL) 10 b - - - - (HL) = (HL) | bit
SET b,(IX+d) 13 b - - - - (IX+d) = (IX+d) | bit
SET b,(IY+d) 13 b - - - - (IY+d) = (IY+d) | bit
SET b,r 4 r - - - - r = r | bit

18.12 8-bit Increment and Decrement

Instruction clk A I S Z V C Operation
DEC (HL) 8 f b * * V - (HL) = (HL) - 1
DEC (IX+d) 12 f b * * V - (IX+d) = (IX+d) -1
DEC (IY+d) 12 f b * * V - (IY+d) = (IY+d) -1
DEC r 2 fr * * V - r = r - 1
INC (HL) 8 f b * * V - (HL) = (HL) + 1
INC (IX+d) 12 f b * * V - (IX+d) = (IX+d) + 1
INC (IY+d) 12 f b * * V - (IY+d) = (IY+d) + 1
INC r 2 fr * * V - r = r + 1

18.13 8-bit Fast A register Operations

Instruction clk A I S Z V C Operation
CPL 2 r - - - - A = ~A
NEG 4 fr * * V * A = 0 - A
154 Rabbit 2000 Microprocessor

RLA 2 fr - - - * {CY,A} = {A,CY}
RLCA 2 fr - - - * A = {A[6,0],A[7]}; CY = A[7]
RRA 2 fr - - - * {A,CY} = {CY,A}
RRCA 2 fr - - - * A = {A[0],A[7,1]}; CY = A[0]

18.14 8-bit Shifts and Rotates

Instruction clk A I S Z V C Operation
RL (HL) 10 f b * * L * {CY,(HL)} = {(HL),CY}
RL (IX+d) 13 f b * * L * {CY,(IX+d)} = {(IX+d),CY}
RL (IY+d) 13 f b * * L * {CY,(IY+d)} = {(IY+d),CY}
RL r 4 fr * * L * {CY,r} = {r,CY}
RLC (HL) 10 f b * * L * (HL) = {(HL)[6,0],(HL)[7]};
 CY = (HL)[7]
RLC (IX+d) 13 f b * * L * (IX+d) = {(IX+d)[6,0],
 (IX+d)[7]}; CY = (IX+d)[7]
RLC (IY+d) 13 f b * * L * (IY+d) = {(IY+d)[6,0],
 (IY+d)[7]}; CY = (IY+d)[7]
RLC r 4 fr * * L * r = {r[6,0],r[7]}; CY = r[7]
RR (HL) 10 f b * * L * {(HL),CY} = {CY,(HL)}
RR (IX+d) 13 f b * * L * {(IX+d),CY} = {CY,(IX+d)}
RR (IY+d) 13 f b * * L * {(IY+d),CY} = {CY,(IY+d)}
RR r 4 fr * * L * {r,CY} = {CY,r}
RRC (HL) 10 f b * * L * (HL) = {(HL)[0],(HL)[7,1]};
 CY = (HL)[0]
RRC (IX+d) 13 f b * * L * (IX+d) = {(IX+d)[0],
 (IX+d)[7,1]}; CY = (IX+d)[0]
RRC (IY+d) 13 f b * * L * (IY+d) = {(IY+d)[0],(
 IY+d)[7,1]}; CY = (IY+d)[0]
RRC r 4 fr * * L * r = {r[0],r[7,1]}; CY = r[0]
SLA (HL) 10 f b * * L * (HL) = {(HL)[6,0],0}; CY =
 (HL)[7]
SLA (IX+d) 13 f b * * L * (IX+d) = {(IX+d)[6,0],0};
 CY = (IX+d)[7]
SLA (IY+d) 13 f b * * L * (IY+d) = {(IY+d)[6,0],0};
 CY = (IY+d)[7]
SLA r 4 fr * * L * r = {r[6,0],0}; CY = r[7]
SRA (HL) 10 f b * * L * (HL) = {(HL)[7],(HL)[7,1]};
 CY = (HL)[0]

CRL, RLA

CRLC, RLCA

RR, RRA C

CRRC, RRCA

SLA 0C

SRA

SRL 0 C

C

User’s Manual 155

SRA (IX+d) 13 f b * * L * (IX+d) = {(IX+d)[7],
 (IX+d)[7,1]}; CY = (IX+d)[0]
SRA (IY+d) 13 f b * * L * (IY+d) = {(IY+d)[7],
 (IY+d)[7,1]}; CY = (IY+d)[0]
SRA r 4 fr * * L * r = {r[7],r[7,1]}; CY = r[0]
SRL (HL) 10 f b * * L * (HL) = {0,(HL)[7,1]};
 CY = (HL)[0]
SRL (IX+d) 13 f b * * L * (IX+d) = {0,(IX+d)[7,1]};
 CY = (IX+d)[0]
SRL (IY+d) 13 f b * * L * (IY+d) = {0,(IY+d)[7,1]};
 CY = (IY+d)[0]
SRL r 4 fr * * L * r = {0,r[7,1]};
 CY = r[0]

18.15 Instruction Prefixes

Instruction clk A I S Z V C Operation
ALTD 2 - - - - alternate register destinatIn
 for next Instruction
IOE 2 - - - - I/O external prefix
IOI 2 - - - - I/O internal prefix

18.16 Block Move Instructions

Instruction clk A I S Z V C Operation
LDD 10 d - - * - (DE) = (HL); BC = BC-1;
 DE = DE-1; HL = HL-1
LDDR 6+7i d - - * - if {BC != 0} repeat:
LDI 10 d - - * - (DE) = (HL); BC = BC-1;
 DE = DE+1; HL = HL+1
LDIR 6+7i d - - * - if {BC != 0} repeat:

If any of the block move instructions are prefixed by an I/O prefix, the destination
will be in the specified I/O space. Add 1 clock for each iteration for the prefix if
the prefix is IOI (internal I/O). If the prefix is IOE, add 2 clocks plus the number
of I/O wait states enabled. The V flag is set when BC transitions from 1 to 0. If
the V flag is not set another step is performed for the repeating versions of the
instructions. Interrupts can occurr between different repeats, but not within an iter-
ation equivalent to LDD or LDI. Return from the interrupt is to the first byte of the
instruction which is the I/O prefix byte if there is one.

18.17 Control Instructions - Jumps and Calls

Instruction clk A I S Z V C Operation
CALL mn 12 - - - - (SP-1) = PCH; (SP-2) = PCL;
 PC = mn; SP = SP-2
DJNZ j 5 r - - - - B = B-1; if {B != 0} PC = PC + j
JP (HL) 4 - - - - PC = HL
JP (IX) 6 - - - - PC = IX
JP (IY) 6 - - - - PC = IY
JP f,mn 7 - - - - if {f} PC = mn
JP mn 7 - - - - PC = mn
156 Rabbit 2000 Microprocessor

JR cc,e 5 - - - - if {cc} PC = PC + e
JR e 5 - - - - PC = PC + e (if e==0 next
 seq inst is executed)
LCALL xpc,mn 19 - - - - (SP-1) = XPC; (SP-2) = PCH;
 (SP-3) = PCL; XPC=xpc;
LJP xpc,mn 10 - - - - XPC=xpc; PC = mn
LRET 13 - - - - PCL = (SP); PCH = (SP+1);
 XPC = (SP+2); SP = SP+3
RET 8 - - - - PCL = (SP); PCH = (SP+1);
 SP = SP+2
RET f 8/2 - - - - if {f} PCL = (SP); PCH =
 (SP+1); SP = SP+2
RETI 12 - - - - IP = (SP); PCL = (SP+1);
 PCH = (SP+2); SP = SP+3
RST v 8 - - - - (SP-1) = PCH; (SP-2) = PCL;
 SP = SP - 2; PC = {R,v)
 v=10,18,20,28,38 only

18.18 Miscellaneous Instructions

Instruction clk A I S Z V C Operation
CCF 2 f - - - * CF = ~CF
IP 0 4 - - - - IP = {IP[5:0], 00}
IP 1 4 - - - - IP = {IP[5:0], 01}
IP 2 4 - - - - IP = {IP[5:0], 10}
IP 3 4 - - - - IP = {IP[5:0], 11}
IPRES 4 - - - - IP = {IP[1:0], IP[7:2]}
LD A,EIR 4 fr * * - - A = EIR
LD A,IIR 4 fr * * - - A = IIR
LD A,XPC 4 r - - - - A = MMU
LD EIR,A 4 - - - - EIR = A
LD IIR,A 4 - - - - IIR = A
LD XPC,A 4 - - - - XPC = A
NOP 2 - - - - No Operation
POP IP 7 - - - - IP = (SP); SP = SP+1
PUSH IP 9 - - - - (SP-1) = IP; SP = SP-1
SCF 2 f - - - 1 CF = 1
ZINTACK 10 - - - - (SP-1) = PCH; (SP-2) = PCL;
 SP = SP-2; IP = {IP[6:

18.19 Privileged Instructions

The privileged instructions are described in this section. Privilege means that an interrupt
cannot take place between the privileged instruction and the following instruction.

The three instructions below are privileged.

ld sp,hl ; load the stack pointer
ld sp,iy
ld sp,ix
User’s Manual 157

The instructions to load the stack are privileged so that they can be followed by an instruc-
tion to load the stack segment (SSEG) register without the danger of an interrupt taking
place with and incorrect association between the stack pointer and the stack segment reg-
ister. For example,

ld sp,hl
ioi ld (STACKSEG),a

The following instructions are privileged.

ip 0 ; shift ip left and set priority 00 in bits 1,0
ip 1
ip 2
ip 3
ipres ; rotate ip right 2 bits, restoring previous priority
pop ip ; pop IP register from stack

The instructions to modify the IP register are privileged so that they can be followed by a
return instructions that is guaranteed to execute before another interrupt takes place. This
avoids the possibility of an ever-growing stack.

reti ; pops IP from stack and then pops return address

The instruction reti can be used to set both the return address and the ip in a single in-
struction. If preceded by a ld xpc, a complete jump or call to a computed address can be
done with no possible interrupt.

ld a,xpc ; get and set the xpc
ld xpc,a

The instruction ld xpc,a is privileged so that it can be followed by other code setting in-
terrupt priority or program counter without an intervening interrupt.

bit b,(hl) ; test a bit in memory

The instruction bit b,(hl) is privileged to make it possible to implement a semaphore
without disabling interrupts. The following sequence is used. A bit is a semaphore, and
the first task to set the bit owns the semaphore and has a right to manipulate the resources
associated with the semaphore.

bit b,(hl)
set b,(hl)
jp z,ihaveit
; here I don’t have it

The set instruction has no effect on the flags. Since no interrupt takes place after the bit
instruction, if the flag is zero that means that the semaphore was not set when tested by the
bit instruction and that the set instruction has set the semaphore. If an interrupt was al-
lowed between the bit and set instructions, another routine could set the semaphore and
two routines could think that they both owned the semaphore.
158 Rabbit 2000 Microprocessor

19. Differences Rabbit vs. Z80/Z180 Instructions

The Rabbit is highly code compatible with the Z80 and Z180, and it is easy to port non I/O
dependent code. The main areas of incompatibility are instructions that are concerned
with I/O or particular hardware implementations. The more important instructions that
were dropped from the Z80/Z180 are automatically simulated by an instruction sequence
in the Dynamic C assembler. A few fairly useless instructions have been dropped and can-
not be easily simulated. Code using these instructions should be rewritten.

The following Z80/Z180 instructions have been dropped and there is no exact substitute.

DAA, HALT, DI, EI, IM 0, IM 1, IM 2, OUT, IN, OUT0, IN0, SLP, OUTI, IND, OUTD,
INIR, OTIR, INDR, OTDR, TESTIO, MLT SP, RRD, RLD, CPI, CPIR, CPD, CPDR

Most of these op codes deal with I/O devices and thus do not represent transportable code.
The only opcodes that are not processor I/O related are MLT SP, DAA, RRD, RLD, CPI,
CPIR, CPD, and CPDR. MLT SP is not a practical op code. The codes that are concerned
with decimal arithmetic, DAA, RRD, and RLD, could be simulated, but the simulation is
very inefficient. (The bit in the status register used for half carry is available and can be
set and cleared using the push and pop af instructions to gain access.) Usually code that
uses these instructions should be rewritten. The instructions CPI, CPIR, CPD, and CPDR
are repeating compare instructions. These instructions are not very useful because the
scan stops when equal compare is detected. Unequal compare would be more useful.
They are difficult to simulate efficiently, so it is suggested that code using these instruc-
tions be rewritten, which in most cases should be quite easy.

The following op codes are dropped.

RST 0, RST 8, RST 30h

The remaining RST instructions are kept, but the interrupt vector is relocated to a variable
location the base of which is established by the EIR register. RST can be simulated by a
call instruction, but this is not done automatically by the assembler since most of these in-
structions are used for debugging by Dynamic C.

The following instruction has had its op code changed.

ex (sp),hl - old opcode 0E3h, new opcode - 0EDh-054h

The following instructions use different register names.

ld a,eir
ld eir,a ; was R register
ld iir,a
ld a,iir ; was I register
User’s Manual 159

The following Z80/Z180 instructions have been dropped, but the code shown will be sub-
stituted automatically by the assembler (planned feature).

call cc,adr jr (jp) ncc,xxx ; reverse condition
 call adr
 xxx:

tst r ((hl),n) push de
 push af
 and r ((hl), n)
 pop de ; get a in h
 ld a,d
 pop de

mlt hl call .mlthl ; simulates z180 mlt hl

mlt de call .mltde

mlt bc call .mltbc
160 Rabbit 2000 Microprocessor

20. Instructions in Alphabetical Order With Binary Encoding

Key

n-8-bit data item
d-8 bit offset
ss - 00-BC, 01-DE, 10-HL, 11-SP
r - 000-b, 001-C, 010-D, 011-E, 100-H, 101-L, 110- (hl), 111-A
f - alternate destination prefix permitted, only flags stored in F’
r - in "A" column - alternate destination prefix stores to alternate
s - in "I" column - I/O prefixes are allowed (IOE, IOI) I/O is source
d - in "I" column - I/O prefixes are allowed (IOE, IOI) I/O is dest
V - overflow flag set on overflow
L - overflow flag set if upper 4 bits of data word are zero
- - flag not affected
* - flag is set by operation
Flag labels: S- sign, Z- zero, V- overflow, C- carry

Instruction Byte 1 Byte 2 Byte 3 Byte 4 clk A I S Z V C
ADC A,(HL) 10001110 5 fr s * * V *
ADC A,(IX+d) 11011101 10001110 ----d--- 9 fr s * * V *
ADC A,(IY+d) 11111101 10001110 ----d--- 9 fr s * * V *
ADC A,n 11001110 ----n--- 4 fr * * V *
ADC A,r 10001-r- 2 fr * * V *
ADC HL,ss 11101101 01ss1010 4 fr * * V *
ADD A,(HL) 10000110 5 fr s * * V *
ADD A,(IX+d) 11011101 10000110 ----d--- 9 fr s * * V *
ADD A,(IY+d) 11111101 10000110 ----d--- 9 fr s * * V *
ADD A,n 11000110 ----n--- 4 fr * * V *
ADD A,r 10000-r- 2 fr * * V *
ADD HL,ss 00ss1001 2 fr - - - *
ADD IX,xx 11011101 00xx1001 4 f - - - *
ADD IY,yy 11111101 00yy1001 4 f - - - *
ADD SP,d 00100111 ----d--- 4 f - - - *
ALTD 01110110 2 - - - -
AND (HL) 10100110 5 fr s * * L 0
AND (IX+d) 11011101 10100110 ----d--- 9 fr s * * L 0
AND (IY+d) 11111101 10100110 ----d--- 9 fr s * * L 0
AND HL,DE 11011100 2 fr * * L 0
AND IX,DE 11011101 11011100 4 f * * L 0
AND IY,DE 11111101 11011100 4 f * * L 0
AND n 11100110 ----n--- 4 fr * * L 0
AND r 10100-r- 2 fr * * L 0
BIT b,(HL) 11001011 01-b-110 7 f s - * - -
BIT b,(IX+d)) 11011101 11001011 ----d--- 01-b-110 10 f s - * - -
BIT b,(IY+d)) 11111101 11001011 ----d--- 01-b-110 10 f s - * - -
BIT b,r 11001011 01-b--r- 4 f - * - -
BOOL HL 11001100 2 fr * * 0 0
BOOL IX 11011101 11001100 4 f * * 0 0
BOOL IY 11111101 11001100 4 f * * 0 0
CALL mn 11001101 ----n--- ----m--- 12 - - - -
CCF 00111111 2 f - - - *
CP (HL) 10111110 5 f s * * V *
User’s Manual 161

CP (IX+d) 11011101 10111110 ----d--- 9 f s * * V *
CP (IY+d) 11111101 10111110 ----d--- 9 f s * * V *
CP n 11111110 ----n--- 4 f * * V *
CP r 10111-r- 2 f * * V *
CPL 00101111 2 r - - - -
DEC (HL) 00110101 8 f b * * V -
DEC (IX+d) 11011101 00110101 ----d--- 12 f b * * V -
DEC (IY+d) 11111101 00110101 ----d--- 12 f b * * V -
DEC IX 11011101 00101011 4 - - - -
DEC IY 11111101 00101011 4 - - - -
DEC r 00-r-101 2 fr * * V -
DEC ss 00ss1011 2 r - - - -
 ss= 00-BC, 01-DE, 10-HL, 11-SP
DJNZ j 00010000 --(j-2)- 5 r - - - -
EX (SP),HL 11101101 01010100 15 r - - - -
EX (SP),IX 11011101 11100011 15 - - - -
EX (SP),IY 11111101 11100011 15 - - - -
EX AF,AF’ 00001000 2 - - - -
EX DE,HL 11101011 2 s - - - -
EX DE’,HL 11100011 2 s - - - -
EX DE,HL’ 01110110 11100011 4 s - - - -
EX DE’,HL’ 01110110 11100011 4 s - - - -
EXX 11011001 2 - - - -
INC (HL) 00110100 8 f b * * V -
INC (IX+d) 11011101 00110100 ----d--- 12 f b * * V -
INC (IY+d) 11111101 00110100 ----d--- 12 f b * * V -
INC IX 11011101 00100011 4 - - - -
INC IY 11111101 00100011 4 - - - -
INC r 00-r-100 2 fr * * V -
INC ss 00ss0011 2 r - - - -
 ss= 00-BC, 01-DE, 10-HL, 11-SP
IOE 11011011 2 - - - -
IOI 11010011 2 - - - -
IP 0 11101101 01000110 4 - - - -
IP 1 11101101 01010110 4 - - - -
IP 2 11101101 01001110 4 - - - -
IP 3 11101101 01011110 4 - - - -
IPRES 11101101 01011101 4 - - - -
JP (HL) 11101001 4 - - - -
JP (IX) 11011101 11101001 6 - - - -
JP (IY) 11111101 11101001 6 - - - -
JP f,mn 11-f-010 ----n--- ----m--- 7 - - - -
JP mn 11000011 ----n--- ----m--- 7 - - - -
JR cc,e 001cc000 --(e-2)- 5 - - - -
JR e 00011000 --(e-2)- 5 - - - -
 Note: If byte following op code is zero next sequential instruction
 is executed. If byte is -2 (11111110) jr is to itself.
LCALL nbr,mn 11001111 ---n--- ---m--- xpc--- 19 - - - -
LD (BC),A 00000010 7 d - - - -
LD (DE),A 00010010 7 d - - - -
LD (HL),n 00110110 ----n--- 7 d - - - -
LD (HL),r 01110-r- 6 d - - - -
LD (HL+d),HL 11011101 11110100 ----d--- 13 d - - - -
LD (IX+d),HL 11110100 ----d--- 11 d - - - -
162 Rabbit 2000 Microprocessor

LD (IX+d),n 11011101 00110110 ----d--- ----n--- 11 d - - - -
LD (IX+d),r 11011101 01110-r- ----d--- 10 d - - - -
LD (IY+d),HL 11111101 11110100 ----d--- 13 d - - - -
LD (IY+d),n 11111101 00110110 ----d--- ----n--- 11 d - - - -
LD (IY+d),r 11111101 01110-r- ----d--- 10 d - - - -
LD (mn),A 00110010 ----n--- ----m--- 10 d - - - -
LD (mn),HL 00100010 ----n--- ----m--- 13 d - - - -
LD (mn),IX 11011101 00100010 ----n--- ----m--- 15 d - - - -
LD (mn),IY 11111101 00100010 ----n--- ----m--- 15 d - - - -
LD (mn),ss 11101101 01ss0011 ----n--- ----m--- 15 d - - - -
LD (SP+n),HL 11010100 ----n--- 11 - - - -
LD (SP+n),IX 11011101 11010100 ----n--- 13 - - - -
LD (SP+n),IY 11111101 11010100 ----n--- 13 - - - -
LD A,(BC) 00001010 6 r s - - - -
LD A,(DE) 00011010 6 r s - - - -
LD A,(mn) 00111010 ----n--- ----m--- 9 r s - - - -
LD A,EIR 11101101 01010111 4 fr * * - -
LD A,IIR 11101101 01011111 4 fr * * - -
LD A,XPC 11101101 01110111 4 r - - - -
LD dd,(mn) 11101101 01dd1011 ----n--- ----m--- 13 r s - - - -
LD dd’,BC 11101101 01dd1001 4 - - - -
LD dd’,DE 11101101 01dd0001 4 - - - -
LD dd,mn 00dd0001 ----n--- ----m--- 6 r - - - -
 ld bc,mn 00000001 ...
 ld de,mn 00010001 ...
 ld hl,mn 00100001 ...
 ld sp,mn 00110001 ...
LD EIR,A 11101101 01000111 4 - - - -
LD HL,(HL+d) 11011101 11100100 ----d--- 11 r s - - - -
LD HL,(IX+d) 11100100 ----d--- 9 r s - - - -
LD HL,(IY+d) 11111101 11100100 ----d--- 11 r s - - - -
LD HL,(mn) 00101010 ----n--- ----m--- 11 r s - - - -
LD HL,(SP+n) 11000100 ----n--- 9 r - - - -
LD HL,IX 11011101 01111100 4 r - - - -
LD HL,IY 11111101 01111100 4 r - - - -
LD IIR,A 11101101 01001111 4 - - - -
LD IIR,A 11101101 01001111 4 - - - -
LD IX,(mn) 11011101 00101010 ----n--- ----m--- 13 s - - - -
LD IX,(SP+n) 11011101 11000100 ----n--- 11 - - - -
LD IX,HL 11011101 01111101 4 - - - -
LD IX,mn 11011101 00100001 ----n--- ----m--- 8 - - - -
LD IY,(mn) 11111101 00101010 ----n--- ----m--- 13 s - - - -
LD IY,(SP+n) 11111101 11000100 ----n--- 11 - - - -
LD IY,HL 11111101 01111101 4 - - - -
LD IY,mn 11111101 00100001 ----n--- ----m--- 8 - - - -
LD r,(HL) 01-r-110 5 r s - - - -
LD r,(IX+d) 11011101 01-r-110 ----d--- 9 r s - - - -
LD r,(IY+d) 11111101 01-r-110 ----d--- 9 r s - - - -
LD r,g 01-r--r’ 2 r - - - -
LD r,n 00-r-110 ----n--- 4 r - - - -
LD SP,HL 11111001 2 - - - -
LD SP,IX 11011101 11111001 4 - - - -
LD SP,IY 11111101 11111001 4 - - - -
LD XPC,A 11101101 01100111 4 - - - -
User’s Manual 163

LDD 11101101 10101000 10 d - - * -
LDDR 11101101 10111000 6+7i d - - * -
LDI 11101101 10100000 10 d - - * -
LDIR 11101101 10110000 6+7i d - - * -
LDP (HL),HL 11101101 01100100 12 - - - -
LDP (IX),HL 11011101 01100100 12 - - - -
LDP (IY),HL 11111101 01100100 12 - - - -
LDP (mn),HL 11101101 01100101 ----n--- ----m--- 15 - - - -
LDP (mn),IX 11011101 01100101 ----n--- ----m--- 15 - - - -
LDP (mn),IY 11111101 01100101 ----n--- ----m--- 15 - - - -
LDP HL,(HL) 11101101 01101100 10 - - - -
LDP HL,(IX) 11011101 01101100 10 - - - -
LDP HL,(IY) 11111101 01101100 10 - - - -
LDP HL,(mn) 11101101 01101101 ----n--- ----m--- 13 - - - -
LDP IX,(mn) 11011101 01101101 ----n--- ----m--- 13 - - - -
LDP IY,(mn) 11111101 01101101 ----n--- ----m--- 13 - - - -
LJP nbr,mn 11000111 ----n--- ----m--- --nbr--- 10 - - - -
LRET 11101101 01000101 13 - - - -
MUL 11110111 12 - - - -
NEG 11101101 01000100 4 fr * * V *
NOP 00000000 2 - - - -
OR (HL) 10110110 5 fr s * * L 0
OR (IX+d) 11011101 10110110 ----d--- 9 fr s * * L 0
OR (IY+d) 11111101 10110110 ----d--- 9 fr s * * L 0
OR HL,DE 11101100 2 fr * * L 0
OR IX,DE 11011101 11101100 4 f * * L 0
OR IY,DE 11111101 11101100 4 f * * L 0
OR n 11110110 ----n--- 4 fr * * L 0
OR r 10110-r- 2 fr * * L 0
POP IP 11101101 01111110 7 - - - -
POP IX 11011101 11100001 9 - - - -
POP IY 11111101 11100001 9 - - - -
POP zz 11zz0001 7 r - - - -
PUSH IP 11101101 01110110 9 - - - -
PUSH IX 11011101 11100101 12 - - - -
PUSH IY 11111101 11100101 12 - - - -
PUSH zz 11zz0101 10 - - - -
RES b,(HL) 11001011 10-b-110 10 d - - - -
RES b,(IX+d) 11011101 11001011 ----d--- 10-b-110 13 d - - - -
RES b,(IY+d) 11111101 11001011 ----d--- 10-b-110 13 d - - - -
RES b,r 11001011 10-b--r- 4 r - - - -
RET 11001001 8 - - - -
RET f 11-f-000 8/2 - - - -
RETI 11101101 01001101 12 - - - -
RL (HL) 11001011 00010110 10 f b * * L *
RL (IX+d) 11011101 11001011 ----d--- 00010110 13 f b * * L *
RL (IY+d) 11111101 11001011 ----d--- 00010110 13 f b * * L *
RL DE 11110011 2 fr * * L *
RL r 11001011 00010-r- 4 fr * * L *
RLA 00010111 2 fr - - - *
RLC (HL) 11001011 00000110 10 f b * * L *
RLC (IX+d) 11011101 11001011 ----d--- 00000110 13 f b * * L *
RLC (IY+d) 11111101 11001011 ----d--- 00000110 13 f b * * L *
RLC r 11001011 00000-r- 4 fr * * L *
164 Rabbit 2000 Microprocessor

RLCA 00000111 2 fr - - - *
RR (HL) 11001011 00011110 10 f b * * L *
RR (IX+d) 11011101 11001011 ----d--- 00011110 13 f b * * L *
RR (IY+d) 11111101 11001011 ----d--- 00011110 13 f b * * L *
RR DE 11111011 2 fr * * L *
RR HL 11111100 2 fr * * L *
RR IX 11011101 11111100 4 f * * L *
RR IY 11111101 11111100 4 f * * L *
RR r 11001011 00011-r- 4 fr * * L *
RRA 00011111 2 fr - - - *
RRC (HL) 11001011 00001110 10 f b * * L *
RRC (IX+d) 11011101 11001011 ----d--- 00001110 13 f b * * L *
RRC (IY+d) 11111101 11001011 ----d--- 00001110 13 f b * * L *
RRC r 11001011 00001-r- 4 fr * * L *
RRCA 00001111 2 fr - - - *
RST v 11-v-111 [v=2,3,4,5,7 only] 8 - - - -
SBC (IX+d) 11011101 10011110 ----d--- 9 fr s * * V *
SBC (IY+d) 11111101 10011110 ----d--- 9 fr s * * V *
SBC A,(HL) 10011110 5 fr s * * V *
SBC A,n 11011110 ----n--- 4 fr * * V *
SBC A,r 10011-r- 2 fr * * V *
SBC HL,ss 11101101 01ss0010 4 fr * * V *
SCF 00110111 2 f - - - 1
SET b,(HL) 11001011 11-b-110 10 b - - - -
SET b,(IX+d) 11011101 11001011 ----d--- 11-b-110 13 b - - - -
SET b,(IY+d) 11111101 11001011 ----d--- 11-b-110 13 b - - - -
SET b,r 11001011 11-b--r- 4 r - - - -
SLA (HL) 11001011 00100110 10 f b * * L *
SLA (IX+d) 11011101 11001011 ----d--- 00100110 13 f b * * L *
SLA (IY+d) 11111101 11001011 ----d--- 00100110 13 f b * * L *
SLA r 11001011 00100-r- 4 fr * * L *
SRA (HL) 11001011 00101110 10 f b * * L *
SRA (IX+d) 11011101 11001011 ----d--- 00101110 13 f b * * L *
SRA (IY+d) 11111101 11001011 ----d--- 00101110 13 f b * * L *
SRA r 11001011 00101-r- 4 fr * * L *
SRL (HL) 11001011 00111110 10 f b * * L *
SRL (IX+d) 11011101 11001011 ----d--- 00111110 13 f b * * L *
SRL (IY+d) 11111101 11001011 ----d--- 00111110 13 f b * * L *
SRL r 11001011 00111-r- 4 fr * * L *
SUB (HL) 10010110 5 fr s * * V *
SUB (IX+d) 11011101 10010110 ----d--- 9 fr s * * V *
SUB (IY+d) 11111101 10010110 ----d--- 9 fr s * * V *
SUB n 11010110 ----n--- 4 fr * * V *
SUB r 10010-r- 2 fr * * V *
XOR (HL) 10101110 5 fr s * * L 0
XOR (IX+d) 11011101 10101110 ----d--- 9 fr s * * L 0
XOR (IY+d) 11111101 10101110 ----d--- 9 fr s * * L 0
XOR n 11101110 ----n--- 4 fr * * L 0
XOR r 10101-r- 2 fr * * L 0
ZINTACK (interrupt) 10 - - - -
User’s Manual 165

166 Rabbit 2000 Microprocessor

Appendix A

A.1 Rabbit Programming Port

The programming port provides a standard physical and electrical interface between a
Rabbit-based system and the Dynamic C programming platform. A special interface cable
and converter connects a PC serial port to the programming port. The programming port is
implemented by means of a 10-pin standard 2 mm connector. (Of course the user can
change the physical implementation of the connector if he so desires.) With this setup the
PC can communicate with the target, reset it and reboot it. The DTR line on the PC serial
interface is used to drive the target reset line, which should be drivable by an external
CMOS driver. The STATUS pin is used to by the Rabbit-based target to request attention
when a breakpoint is encountered in the target under test. The SMODE pins are pulled up
by a +5/+3 volt level from the interface. They should be pulled down on the board when
the interface is not in use by approximately 5k resistors to ground. The target under test
provides the +5 V or +3 V to the interface cable which is used to power the RS-232 driver
and receiver.

Figure 42. Rabbit Programming Port

A.1.1 Use of the Programming Port as a Diagnostic/Setup Port

The programming port, which is already in place, can serve as a convenient communica-
tions port for field setup, diagnosis or other occasional communication need (for example,
diagnostic port). There are several ways that the port can be automatically integrated into
the user’s software scheme. If the purpose of the port is simply to perform a setup func-
tion, that is, write setup information to flash memory, then the controller can be reset
through the programming port and a cold boot performed to start execution of a special
program dedicated to this functionality.

The standard programming cable adapter connects the programming interface to a PC pro-
gramming port. The /RESET line can be asserted by manipulating DTR on the PC serial
port and the STATUS line can be read by the PC as DSR on the serial port. The PC can re-

1 2

9 10

Pin Numbering
Top (Circuit) side

1- RXA (51)
2- GND
3- CLKA (94)
4- +5/ +3 V
5- /RESET (37)
6- TXA (54)
7- n.c.
8- STATUS (output) (38)

2 mm

9- SMODE0 (36)
10- SMODE1 (35)

Programming Port Pin Assignments
Rabbit PQFP pins shown in ()

+
~50 kΩ

GND

GND

~50 kΩ

+

+

~5 kΩ
User’s Manual 167

start the target by pulsing reset and then, after a short delay, sending a special character
string at 2400 bps. To simply restart the BIOS, the string 24h, 80h, 80h can be sent. When
the BIOS is started, it can tell if the programming cable is connected because the
SMODE1, SMODE0 pins are sensed as high. This will cause the BIOS to think that it
should enter programming mode. The Dynamic C programming mode then can have an
escape message that will enable the diagnostic serial port function.

Another approach to enabling the diagnostic port is to poll the serial port periodically to
see if communication needs to begin or to enable the port and wait for interrupts. The
SMODEx pins can be used for signaling and can be detected by a poll. However, recall
that the SMODEx pins have a special function after reset and will inhibit normal reset be-
havior if not held low. The pull-up resistors on RXA and CLKA prevent spurious data re-
ception that might take place if the pins floated.

If the clocked serial mode is used, the serial port can be driven by having two toggling
lines that can be driven and one line that can be sensed. This allows a conversation with a
device that does not have an asynchronous serial port but that has two output signal lines
and one input signal line.

The line TXA (also called PC6) is zero after reset if cold boot mode is not enabled. A
possible way to detect the presence of a cable on the programming port is for the cable to
connect TXA to one of the SMODE pins and then test for the connection by raising PC6
and reading the SMODE pin after the cold boot mode has been disabled.

A.1.2 Alternate Programming Port

The programming port uses serial port A. If the user needs to use serial port A in his ap-
plication, an alternate method of programming is possible using the same 10-pin program-
ming port. For his own application the user should use the alternate I/O pins for port A
that share pins with parallel port D. The TXA and RXA pins on the 10-pin programming
port are then a parallel port output and parallel port input using pins 6 and 7 on parallel
port C. Using these two ports plus the STATUS pin as an output clock the user can create
a synchronous clocked communication port using instructions to toggle the clock and data.
Another Rabbit-based board can be used to translate the clocked serial signal to an asyn-
chronous signal suitable for the PC. Since the target controls the clock for both send and
receive, the data transmission proceeds at a rate controlled by the target board under de-
velopment.

This scheme does not allow for an interrupt, and it is not desirable to use up an external in-
terrupt for this purpose. The serial port may be used, if desired, During program load be-
cause there is no conflict with the user’s program at compile load time. However, the
user’s program will conflict during debugging. The nature of the transmissions during de-
bugging is such that the user program starts at a break point or otherwise wants to get the
attention of the PC. The other type of message is when the PC wants to read or write tar-
get memory while the target is running.
168 Rabbit 2000 Microprocessor

The target toggling the clock can simply send a clocked serial message to get the attention
of the PC. The intermediate communications board can accept these unsolicited messages
using its clocked serial port. To prevent overrunning the receiver, the target can wait for a
handshake signal on one of the SMODE lines or there can be suitable pre-arranged delays.

If the PC wants attention from the target it can set a line to request attention (SMODEx).
The target will detect this line in the periodic interrupt routine and handle the complete
message in the periodic interrupt routine. This may slow down target execution, but the in-
terrupts will be enabled on the target while the message is read. The intermediate board
could split long messages into a series of shorter messages if this is a problem.

A.2 Suggested Rabbit Crystal Frequencies

Table 44 on page 134 provides a list of suggested Rabbit operating frequencies. The crys-
tal can be half the operating frequency if the clock doubler is used up to approximately 25
MHz. B eyond this operating clock speed, it is necessary to use an X1 crystal or an exter-
nal oscillator because asymetery in the waveform generated by the oscillator becomes a
variation in the clock speed if the clock speed is doubled.
User’s Manual 169

170 Rabbit 2000 Microprocessor

User’s Manual 171

Legal Notice

Rabbit Semiconductor products are not authorized for use as critical components in life-
support devices or systems unless a specific written agreement regarding such intended
use is entered into between the customer and Rabbit Semiconductor prior to use. Life-
support devices or systems are devices or systems intended for surgical impantation into
the body or to sustain life, and whose failure to perform, when properly used in accor-
dance with instructions for use provided in the labeling and user’s manual, can be reason-
ably expected to result in significant injury.

No complex software or hardware system is perfect. Bugs are always present in a system
of any size. In order to prevent danger to life or property, it is there responsibility of the
system designer to incorporate redundant protective mechanisms appropriate to the risk
involved.

	Rabbit 2000™ Microprocessor User’s Manual
	Revision A
	Table of Contents
	1. Introduction
	1.1 Features and Specifications
	Figure 1. Block Diagram of the Rabbit Microprocessor

	1.2 Summary of Rabbit Advantages

	2. Rabbit Design Features
	2.1 The Rabbit 8-bit Processor vs. 16-bit and 32-bit Processors
	2.2 Overview of On-Chip Peripherals
	2.2.1 Serial Ports
	2.2.2 System Clock
	Table 1. Preliminary Operating Power Estimates at Selected Clock Speeds

	2.2.3 Time/Date Oscillator
	2.2.4 Parallel I/O
	Figure 2. Cascaded Output Registers for Parallel Ports D and E

	2.2.5 Slave Port
	Figure 3. Slave Port Data Paths

	2.2.6 Timers
	Figure 4. Rabbit Timers

	2.3 Design Standards
	2.3.1 Programming Port
	2.3.2 Standard BIOS

	2.4 Dynamic C Software Support for the Rabbit

	3. Details on Rabbit Microprocessor Features
	3.1 Processor Registers
	Figure 5. Rabbit Registers

	3.2 Memory Mapping
	Figure 6. Addressing Memory Components
	Figure 7. Example of Memory Mapping Operation
	Figure 8. Memory Interface Unit
	3.2.1 Extended Code Space
	Figure 9. Use of XPC Segment

	3.2.2 Practical Memory Considerations

	3.3 Instruction Set Outline
	3.3.1 Instructions to Load Immediate Data To a Register
	3.3.2 Instructions to Load or Store Data from or to a Constant Address
	3.3.3 Instructions to Load or Store Data Using an Index Register
	3.3.4 Register to Register Move Instructions
	3.3.5 Register Exchanges
	3.3.6 Push and Pop Instructions
	3.3.7 16-bit Arithmetic and Logical Operations
	3.3.8 Input/Output Instructions

	3.4 How to Do It in Assembly Language—Tips and Tricks
	3.4.1 Zero HL in 4 Clocks
	3.4.2 Exchanges Not Directly Implemented
	3.4.3 Manipulation of Boolean Variables
	3.4.4 Comparisions of Integers
	Figure 10. Mapping Signed Integers to Unsigned Integers by Inverting Bit 15

	3.4.5 Atomic Moves from Memory to I/O Space

	3.5 Interrupt Structure
	3.5.1 Interrupt Priority
	Table 2. Effect of Processor Priorities on Interrupts

	3.5.2 Multiple External Interrupting Devices
	3.5.3 Privileged Instructions, Critical Sections and Semaphores
	3.5.4 Critical Sections
	3.5.5 Semaphores Using Bit B,(HL)
	3.5.6 Computed Long Calls and Jumps

	4. Rabbit Capabilities
	4.1 Precisely Timed Output Pulses
	Figure 11. Timed Output Pulses
	4.1.1 Pulse Width Modulation to Reduce Relay Power

	4.2 Open-Drain Outputs Used for Key Scan
	Figure 12. Using Open-Drain Outputs for Key Scan

	4.3 Cold Boot
	4.4 The Slave Port
	4.4.1 Slave Rabbit As A Protocol UART

	5. Pin Assignments and Functions
	5.1 Package Schematic and Pin Names
	Figure 13. Package Outline and Pin Assignments

	5.2 Package Mechanical Dimensions
	Figure 14. Mechanical Dimensions Rabbit PQFP Package
	Figure 15. PC Board Footprint for Rabbit 100-pin PQFP

	5.3 Rabbit Pin Descriptions
	Table 3. Rabbit Pin Assignments

	5.4 Bus Timing
	Figure 16. Bus Timing Read and Write

	5.5 Description of Pins with Alternate Functions
	Table 4. Pins With Alternate Functions

	5.6 Register and Interrupt Vector Summary
	Table 5. Register and Interrupt Vector Summary

	6. Rabbit Internal I/O Registers
	Table 6. Rabbit Internal I/O Registers

	7. Miscellaneous I/O Functions
	7.1 Rabbit Oscillators and Clocks
	Figure 17. Clock Distribution
	Table 7. Global Control/Status Register (I/O adr = 00h)

	7.2 Clock Doubler
	Table 8. Global Clock Double Register (GCDR, adr = 0fh)
	Figure 18. Effect of Clock Doubler

	7.3 Controlling Power Consumption
	7.4 Output Pins CLK, STATUS, /WDTOUT, /IOBEN
	Table 9. Global Output Control Register (GOCR = 0Eh)

	7.5 Time/Date Clock (Real-Time Clock)
	Table 10. Real-Time Clock Read Registers
	Table 11. Real-Time Clock RTCxR Data Registers
	Table 12. Real-Time Clock Control Register (RTCCR adr = 01h)

	7.6 Watchdog Timer
	Table 13. Watchdog Timer Control Register (WDTCR adr = 08h)
	Table 14. Watchdog Timer Test Register (WDTTR adr = 09h)

	7.7 System Reset
	7.8 Rabbit Interrupt Structure
	Table 15. Peripheral Device Address and Interrupt Vectors
	Table 16. Interrupts—Priority and Action to Clear Requests
	7.8.1 External Interrupts
	Figure 19. External Interrupt Line Logic
	Table 17. Control Registers for External Interrupts

	7.9 Bootstrap Operation

	8. Rabbit Memory Mapping and Interface
	Figure 20. Overview of Rabbit Memory Mapping
	8.1 Memory-Mapping Unit
	Figure 21. Memory Segments
	Table 18. Segment Registers
	Table 19. Segment Size Register

	8.2 Memory Interface Unit
	Table 20. Memory Bank Control Register x (MBxCR=14h+x)

	8.3 Memory Bank Control Register Functions
	8.3.1 Optional A16, A19 Inversions by Segment (/CS1 Enable)
	Table 21. MMU Instruction/Data Register (MMIDR = 010h)

	8.4 Allocation of Extended Code and Data
	Figure 22. Typical Memory Mapping and Memory Usage

	8.5 How the Compiler Compiles to Memory
	Figure 23. Compilaton of Code Segments in Extended Memory

	9. Parallel Ports
	9.1 Parallel Port A
	Table 22. Parallel Port A Data Register (adr = 030h)

	9.2 Parallel Port B
	Table 23. Parallel Port B Data Register PBDR (adr = 040h)

	9.3 Parallel Port C
	Table 24. Parallel Port C Data Register and Function Register

	9.4 Parallel Port D
	Figure 24. Parallel Port D Block Diagram
	Table 25. Parallel Port D Registers
	Table 26. Parallel Port D Control Register (adr = 064h)

	9.5 Parallel Port E
	Figure 25. Parallel Port E Block Diagram
	Table 27. Parallel Port E Registers
	Table 28. Parallel Port E Control Register (adr = 074h)

	10. I/O Bank Control Registers
	Figure 26. External I/O Bus Cycles
	Table 29. I/O Bank Control Reg (adr IBxCR = 08xh)

	11. Timers
	Figure 27. Block Diagram of Timers A and B
	11.1 Timer A
	Figure 28. Reload Register Operation
	11.1.1 Timer A I/O Registers
	Table 30. Timer A I/O Registers
	Table 31. Timer A Control and Status Register (adr = 0A0h)
	Table 32. Timer A Control Register (adr = 0A4h)

	11.1.2 Practical Use of Timer A

	11.2 Timer B
	Table 33. Timer B Registers
	Table 34. Timer B Control and Status Register (TBCSR) (adr = 0B0h)
	Table 35. Timer B Control Register (TBCR)
	Table 36. Timer B MSB x Register (TBM1R/TBM2R = 0B2h/0B4h)
	11.2.1 Using Timer B
	1. Read the lower 8 bits.
	2. Read the upper 2 bits
	3. Read the lower 8 bits again
	4. If bit 7 changed from 1 to 0 between the first and second read of the lower 8 bits there has b...

	12. Rabbit Serial Ports
	Figure 29. Block Diagram of Rabbit Serial Ports
	12.1 Register Layout Serial Port
	Figure 30. Functional Block Diagram of a Serial Port
	Table 37. Serial Port Registers
	Table 38. Serial Port Status Registers (adr = 11xx0011, xx = A,B,C,D)
	Table 39. Serial Port Control Registers (adr = 11xx0100, xx = A,B,C,D)

	12.2 Serial Port Interrupt
	Figure 31. Generation of Serial Port Interrupts

	12.3 Transmit Serial Data Timing
	12.4 Receive Serial Data Timing
	12.5 Clocked Serial Ports
	Figure 32. Serial Port Synchronization

	12.6 Serial Port Software Suggestions
	12.6.1 Controlling an RS-485 Driver and Receiver
	12.6.2 Transmitting Dummy Characters
	1. Store a "1" in bit 4 of the parallel port data output register to provide the quiescent state ...
	2. Clear bit 4 of the parallel port C function register so that the output no longer comes from t...

	12.6.3 Transmitting and Detecting a Break
	12.6.4 Using A Serial Port to Generate a Periodic Interrupt
	12.6.5 Working With Two Stop Bits or a Parity Bit
	12.6.6 Data Framing/Modbus

	13. Rabbit Slave Port
	Figure 33. Rabbit Slave Port
	Figure 34. Slave Port R/W Sequencing
	Figure 35. Slave Port Handshaking and Interrupts
	Figure 36. Typical Connection Slave Rabbit to Master Rabbit
	13.1 Hardware Design of Slave Port Interconnection
	13.2 Slave Port Registers
	Table 40. Slave Port Registers
	Table 41. Slave Port Control Register (SPCR) (adr = 024h)
	Table 42. Slave Port Status Register (SPSR) (adr = 023h)

	13.3 Applications and Communications Protocols for Slaves
	13.3.1 Slave Applications
	13.3.2 Master-Slave Messaging Protocol

	14. Rabbit Hardware Design and Development
	14.1 RS-485 Communication Interface
	14.2 RS-232 Communication Interface
	14.3 Analog-to-Digital Converters
	14.4 Digital-to-Analog Converters
	14.5 High-Voltage Drivers
	14.6 Clocks
	Figure 37. Oscillator Circuits

	14.7 Low-Power Design
	14.8 Basic Memory Design
	14.8.1 Memory Access Time
	14.8.2 Precautions for Unprogrammed Flash Memory

	14.9 PC Board Layout and Memory Line Permutation

	15. AC Timing Specifications
	Table 43. Rabbit Basic Worst-Case Timings (Preliminary 6/24/99)
	access time = (clock period)*(2+ waitstates) - Tsetup - Tadr (1)
	Table 44. Memory Access Time Requirements (V±10%, T -40˚C to +85˚C)

	Figure 38. Memory Read and Write Cycles
	Figure 39. Memory Read and Write with Wait States
	Figure 40. I/O Read and Write Cycles No Extra Wait States
	15.1 Current Consumption
	Figure 41. Current Versus Frequency and Voltage

	16. Rabbit Software
	16.1 Reading and Writing I/O Registers and Shadow Registers
	16.2 Shadow Registers
	16.3 Timer and Clock Usage
	16.4 WatchDog Support Software
	16.4.1 The Watchdog Hardware
	16.4.2 The Virtual Watchdog System

	17. Rabbit Standard BIOS
	17.1 The BIOS—More Details
	17.2 BIOS Assumptions
	17.3 Periodic Interrupt and Real-Time Clock BIOS Services
	17.3.1 Real-Time Clock Support
	17.3.2 Watchdog Timer Support
	17.3.3 Power Management Support
	17.3.4 Flash Memory Write Support

	18. Rabbit Instructions
	18.1 Load Immediate Data
	18.2 Load and Store to an Immediate Address
	18.3 8-bit Indexed Load and Store
	18.4 16-bit Indexed Loads and Stores
	18.5 16-bit Load and Store 20-bit Address
	18.6 Register to Register Moves
	18.7 Exchange Instructions
	18.8 Stack Manipulation Instructions
	18.9 16-bit Arithmetic and Logical Operations
	18.10 8-bit Arithmetic and Logical Operations
	18.11 8-bit Bit Set, Reset and Test Instructions
	18.12 8-bit Increment and Decrement
	18.13 8-bit Fast A register Operations
	18.14 8-bit Shifts and Rotates
	18.15 Instruction Prefixes
	18.16 Block Move Instructions
	18.17 Control Instructions - Jumps and Calls
	18.18 Miscellaneous Instructions
	18.19 Privileged Instructions

	19. Differences Rabbit vs. Z80/Z180 Instructions
	20. Instructions in Alphabetical Order With Binary Encoding
	Appendix A
	A.1 Rabbit Programming Port
	Figure 42. Rabbit Programming Port
	A.1.1 Use of the Programming Port as a Diagnostic/Setup Port
	A.1.2 Alternate Programming Port

	A.2 Suggested Rabbit Crystal Frequencies

	Legal Notice

