LXL Series Hydraulic Slide Gate Operators

INSTALLATION MANUAL

Model No.:_____ Serial No.: _____

B&B ARMR

Corporate Office & Tech Support:

2009 Chenault Drive Suite 114 Carrollton, TX 75006 Phone: (800) 367-0387 Fax: (972) 385-9887 E-mail: info@bb-armr.com techsupport@bb-armr.com MADE IN THE USA

Your safety is extremely important to us. If you have any questions or are in doubt about any aspect of the equipment, please contact us.

Introduction

Welcome!

Congratulations on your purchase of a B&B ARMR gate operator. In addition to providing detailed operating instructions, this manual describes how to install, maintain, and troubleshoot your operator. If you require additional assistance with any aspect of installation or operation, please contact us.

Safety

SYMBOL MEANING:

The lightning flash with arrowhead symbol, within an equilateral triangle, is intended to alert the user to the presence of non insulated "dangerous voltage" within the product's enclosure that may be of sufficient magnitude to constitute a risk of electric shock to persons.

The exclamation point within an equilateral triangle is intended to alert the user to the presence of important operating and maintenance (servicing) instruction in the literature accompanying the product.

Important Safety Information

TO REDUCE THE RISK OF SERIOUS INJURY OR DEATH, READ AND FOLLOW ALL INSTRUCTIONS PROVIDED IN THIS MANUAL.

- 1. Hydraulic slide gate operators are intended for vehicular use only. Pedestrians should use a separate walkthrough entrance designed for on-foot traffic.
- 2. Keep children away from gate movement area and off the gate operator. Never let children operate or play with gate controls.
- 3. Install all warning signs provided with the gate operator so that they are clearly visible from both sides of the gate.
- 4. It is the responsibility of the specifier, designer, purchaser, installer and enduser to ensure the gate system is properly configured for its intended application.
- 5. Use the emergency manual release only when the gate is not in motion.
- 6. Test gate operator and all related safety devices monthly. The gate must reverse or stop when a safety device is tripped. The gate must stop upon sensing a second sequential safety violation before reaching a limit switch. If the gate utilizes a transmitting device on a safety edge, check the battery on a regular basis to ensure proper operation. Failure to adjust and re-test the gate operator properly can increase the risk of injury.
- 7. This gate operator utilizes a pumping system which contains hydraulic fluid. Consult local EPA (Environmental Protection Agency) regulations for damming requirements (if any) around the base of the gate operator.
- 8. Service and maintenance of the gate operator should be performed on a routine basis by a qualified technician. Attempts to service the gate equipment by non-qualified personnel could result in serious injury and will void all applicable warranties.

SAVE THESE INSTRUCTIONS.

THIS MANUAL SHOULD BE LEFT WITH A RESPONSIBLE INDIVIDUAL AT THE INSTALLATION SITE AND KEPT IN A DESIGNATED LOCATION FOR MAINTENANCE OR TROUBLESHOOTING OPERATIONS

How to Contact Us

If you have any questions or experience any problems with your vehicle barrier—or if we can help you with any other facility security issues—please contact us directly at:

Corporate/Tech Support: B&B ARMR 2009 Chenault Drive Suite 114 Carrollton, TX 75006 USA Telephone: (972) 385-7899 Toll Free: (800) 367-0387 Fax: (972) 385-9887 E-mail: info@bb-armr.com techsupport@bb-armr.com

System Installation Record

To assist in documenting the products installed in your system, please take a minute to record the following reference information. This information can be located on the blue B&B ARMR model number plate located on the product.

Additional columns are added for your convenience in documenting other components in the system.

Site:		
Job #:		
Date:		
Serial Number:		
Model Number:		
Voltage:		
Phase:		

Table of Contents

Intro	duction	2
Safet	у	2
How	to Contact Us	
Syste	em Installation Record	
1. 1	UL 325 And Gate Operators	7
1.1	What Is UL?	7
1.2	Development Of UL-325	7
1.3	Overview Of UL-325 And Gates	7
1.4	Gate Operator Classifications	8
2. 1	Effect On Installation	10
2.1	Factors Related To Gate Construction And Installation	
2.2	Device-Specific Installation Instructions	
2.3	Statements In Manufacturer's Instructions Concerning Installation	
2.4	Gate And Fence Dealer Documentation Suggestions	
3. 1	LXL Operator Models And Features	12
3.1	General Description	
3.2	LXL Operator Features	
3.3	Models Available	
4.]	Installing and Programming the LXL Operator	14
4.1	Prepare Concrete Pad	14
4.2	Anchor Gate Operator To Pad	14
4.3	Mount Drive Rail	
4.4	Install Limit Switch Trip Plates	
4.5	Connect Primary Power	
4.6	Install Limit Switches	
4.7	Connect Primary / Battery Power D/C Units Only	
4.8	Connect Converter To Operator	
4.9	Install Vent Cap	
4.10	0 Set Operator Handing (Inside Looking Out) 4.10.1 HCMSGOFF Parameter	
4.11	1 Setting The Date And Time (optional, not required)	
4.12	2 Setting The Max Run Timer	

4.1.	3 Turning ON / OFF The Timer To Close	
4.14	4 Setting The Timer To Close	
4.13	5 Setting The Inherent Safety	
2	6Setting the Gate Locking Device4.16.1Self Latching Lock Parameter4.16.2Maglock Parameter4.16.3Maglock Delay Parameter	21
4.12	7 Maintain Input Parameters 4.17.1 MAINOPEN Parameter	
6. '	The LXL Interface Board	24
7. 9	Secondary Safety Devices	25
8. 1	Master Slave Connections	26
9.	Other Device Connections	27
10.	Appendix	28
2.1	General Parts Breakdown	
2.2	Battery Backup Schematic	
11. 7	Troubleshooting	
2.3	Alarm Definitions	
2.4	PLC Input/Output Definitions	
2.5	Equipment Maintenance Log Form	
12.	Warranty Information	43

1. UL 325 And Gate Operators

1.1 What Is UL?

Underwriters Laboratories, Inc., a non-profit organization established in 1894, is selfdescribed as "the leading third-party certification organization in the United States and the largest in North America." UL's primary stated mission is "to evaluate products in the interest of public safety." Note that while UL declares it is the "leading" third-party certification, it is not the only one. There are other testing laboratories and certification organizations in the United States.

1.2 Development Of UL-325

The first edition of UL-325 was released in 1973. That edition was primarily focused on the electric operation of garage doors and did not contain provisions for gates. After federal laws were enacted in the early 1990's, citing the provisions of UL-325 as applicable to garage door operation, DASMA members of the gate operator industry initiated the inclusion of electric gate operator provisions in UL-325. Some government agencies and other interested groups have monitored the standard's progress and have provided input on the final format of the provisions of the standard that relate to gate operators.

1.3 Overview Of UL-325 And Gates

Highlights of UL-325 include the following:

- A glossary which defines each type of operator
- Different "classes" of gate operators
- Entrapment¹ protection criteria for each "class" of operator
- Entrapment alarm criteria
- Requirements for gate construction and installation
- · Instructional requirements placing increased responsibility on installers

A key part of the UL-325 standard is a table that summarizes the entrapment device options for different classes of operators of the various types of gates included in the standard. The table, labeled "Table 31.1", is reproduced here from the 5th edition of the *Standard for Safety for Door, Drapery, Gate, Louver, and Window Operators and Systems, UL-325.* It is reprinted with the permission of Underwriters Laboratories, Inc. Refer to the table as you read about the provisions that are described in the following sections.

1. In this document, "entrapment" is defined as "the condition when an object is caught or held in a position that increases the risk of injury."

PROTECTION AG	AINST ENTRAPM	IENT			
VEHICULAR USAGE		GATE OP	ERATOR CATEGORY	Y	
CLASS	Horiz	ontal Slide	SWING	G GATE	
	VERTI	CAL LIFT	VERTICAL BA	ARRIER (ARM)	
	VERTI	CAL PIVOT		-	
	PRIMARY	SECONDARY	PRIMARY TYPE	SECONDARY TYPE	
	TYPE	TYPE			
Class I & II	Α	B1,B2 or D	A or C	A,B1,B2,C or D	
Class III	A,B1 or B2	A,B1,B2,D or E	A,B1,B2 or C	A,B1,B2,C,D or E	
Class IV	A,B1,B2 or D	A,B1,B2,D or E	A,B1,B2,C or D	A,B1,B2.C,D or E	
NOTE: The same type of de	vice shall not be util	ized for both the primary	and secondary entrapme	nt protection means. Use	
of a single device to cover be	oth the openings and	closing directions is in a	ccordance with this requi	irement; however, a	
single device is not required					
the other direction is the equ			lying with the requireme	ents of either the primary	
or secondary entrapment pro					
Type A - Inherent entrapment					
TypeB1 - Provision for conn	ection of, or supplie	d with, a non-contact sen	sor (photoelectric sensor	or the equivalent). See	
31.1.6-31.1.9.					
Type B2 - Provision for con	nection of, or suppli	ed with, a contact sensor	(edge device or equivale	nt). See 31.1.7 and	
31.1.10 - 31.1.12. Type C - Inherent adjustable clutch or pressure relief device. See 31.1.13					
Type C - Inherent adjustable clutch or pressure relief device. See 31.1.13.					
Type D - Provision for conne			e requiring continuous p	ressure to maintain	
opening or closing motion of					
Type E - An inherent audio					
This table is re-crea	ated from the 5th edi	tion of the Standard for S	afety for door, drapery, g	gate, louver, and Window	

This table is re-created from the 5th edition of the Standard for Safety for door, drapery, gate, louver, and Window Operators and Systems, UL-325, and is reprinted with permission of Underwriters Laboratories, Inc.

1.4 Gate Operator Classifications

Four distinct types of classifications have been established:

- Class I: Residential usage, covering one to four single-family dwellings.
- Class II: Commercial usage where general public access is expected; a common
- application would be a public parking lot or gated community.
- Class III: Industrial usage where limited access is expected; one example is a ware-house property entrance not intended to serve the general public.

• Class IV: Restricted access; this includes applications such as a prison entrance that is monitored either in person or via closed circuit television.

Gate speed shall be no greater than 1 foot per second in Class I and II applications.

Figure 2 Contact Sensor Detail

2. Effect On Installation

These provisions will have several effects on gate and fence dealers:

• Gate and fence dealers should look for an indication of the Class of each operator, which will be specified by the gate operator manufacturer.

• Fence dealer sales personnel must match the site application with the Class of operator. The gate operator manufacturer should be contacted if there is any question about the site application.

• Both primary and secondary safety devices must be provided and matched to both the operator and site conditions. Although the gate operator manufacturer may provide or specify these devices, the gate/fence dealer should insure that they are installed and correctly matched. Any questions again should be directed to the gate operator manufacturer.

• Warning signs must be permanently affixed to the gate panel. UL-325 includes specific requirements on the format, content, and placement of these signs.

2.1 Factors Related To Gate Construction And Installation

• Vehicular gate operators should ONLY be used on vehicular gates and never pedestrian gates.

• A sliding gate should work smoothly with easy rolling/movement in both directions, with all exposed pinch points eliminated or guarded, prior to the installation of the operator.

• Controls should be as far away from the gate as possible to prevent "reach-through" occurrences.

• All openings of the horizontal slide gate must be guarded and screened from the bottom of the gate to a minimum of 4' above the ground to prevent a 2 1/4" diameter sphere from passing through the openings anywhere in the gate, and in that portion of the adjacent fence that the gate covers in the open position.

• A minimum of 2 warning signs and placards must be installed and be visible in the area of the gate.

• All high and low voltage wire runs must comply with local electrical codes.

2.2 Device-Specific Installation Instructions

There are also specific installation requirements for certain types of entrapment protection devices. These specific requirements emphasize the care and attention that each device must be given prior to and during installation.

For gate operators utilizing non-contact sensor devices (Type B1), instructions should be consulted for placement for each application, care should be exercised to reduce the risk of nuisance tripping, and one or more of these devices must be installed where the risk of entrapment or obstruction exists.

For gate operators utilizing contact sensor devices (Type B2), several requirements are spelled out in UL-325. One or more contact sensors shall be located:

B&B ARMR

- at the leading edge, the trailing edge, and also post-mounted both inside and outside of, a vehicular horizontal slide gate;
- at the bottom edge of a vehicular vertical slide gate; and
- at the entrapment point of a vehicular vertical pivot gate.

A wired contact sensor shall be located, and its wiring arranged, so that communication between sensor and gate operator is not subjected to mechanical damage. A wireless contact sensor shall be located where the transmission of the signals is not obstructed or impeded by building structures, natural landscaping, or similar obstructions, and shall function under the intended end use conditions.

For operators utilizing continuous pressure activating device (type D), controls must be placed so that the user has full view of the gate area when the gate is moving. A placard must be placed adjacent to the controls and no other activation devices shall be connected. Most importantly, an automatic closing device shall not be employed.

2.3 Statements In Manufacturer's Instructions Concerning Installation

Gate and fence dealers can expect to see in gate operator instructions the following statements:

- 1. The operator must be appropriate for the construction of the gate and the usage class of the gate. The appropriate primary and secondary safety devices to be used are a major consideration to support this requirement.
- 2. All openings of a horizontal slide gate, and the portion of the fence where the slide gate passes, must be guarded or screened. These specific requirements in UL-325 that govern this provision were developed to address "reach-through" occurrences. For example, slide gates must have a protective cover 48 inches in height extending from the bottom of the gate/fence panel.
- 3. All exposed entrapment points must be eliminated or guarded. It is up to the individual gate and fence dealers to identify these points on a product-by-product basis, or on a job-by-job basis.
- 4. Guarding must be supplied for exposed rollers. Exposed rollers are regarded as potential pinch points.

2.4 Gate And Fence Dealer Documentation Suggestions

In dealing with the effects of the new provisions, here are some suggestions gate and fence dealers may consider to expand their documentation of gate projects. One possibility is to visually document, either via photography or videotape, the complete gate installation including applicable signs and labels, and the owner receiving the instruction manual from the installer. Other options could include the development and use of an installation checklist, a consumer sign-off form, and a service/preventative maintenance contract.

3. LXL Operator Models And Features

3.1 General Description

B&B ARMR's model LXL hydraulic sliding gate operator is designed to reliably operate many styles of sliding gates, including overhead track, ground track, and cantilever style gates. Our LXL series of operators are designed to operate in all four UL-325 classes of operators. The operator is unobtrusive in appearance, yet durable under heavy use. The design of the LXL Series incorporates numerous features intended to improve safety, maintain security, increase reliability and reduce maintenance.

The operator actuates the gate by two rotating wheels (the LXLR uses an idler wheel and pinion gear). A drive rail bolted to the gate is drawn between the two drive wheels. The wheels are spring loaded against the drive rail to produce a positive friction feed in both directions. Spring loading the wheels also serves to correct for wheel wear. The drive wheels are rotated by series-connected hydraulic motors to minimize uneven rotation between the wheels.

Rotation direction is determined by the hydraulic valve system, not by the rotational direction of the electric motor. Independence from the electric motor rotation has the advantage that the direction of gate travel can be instantly reversed without the use of brakes. Also, the hydraulic valve, when not energized, rests in the neutral position. This effectively locks the hydraulic system, drive wheels, and the gate in the stopped position. Controls operate on safe and reliable 24VDC regulated voltage.

3.2 LXL Operator Features

The LXL hydraulic slide gate operator incorporates the following features and options:

- Designed to meet UL-325 Class I-IV.
- Inherent entrapment sensing on all units
- Simple user interface utilizes a 12x4 character LCD display
- User-Programmable right-hand to left-hand conversion; no hose swapping required
- Delay on reverse standard
- 24VAC and 24VDC auxiliary control power
- Low maintenance No sprockets, chains, or pulleys to adjust
- Built-in, fully adjustable maximum run and auto close timers
- Soft start / soft stop (option)
- Plug-in loop detectors (option)
- Hand-operated, quick release drive system for manual operation
- Master/slave capability
- Interlocking capability
- Proximity limit switches eliminate false tripping due to misaligned drive rail

3.3 Models Available

NOTE: To order any of the LXL models, substitute the required input voltage for the "v" and the required input phase for "p".

Typical Available Models	Travel Speed	Gate Size	Pull Force	UL Class
LXL-15vp-SS Standard Speed	1.0 ft/s	2,000 lbs	400 lbs	I-IV
LXL-15vp-HS High Speed	2.0 ft/s	1,000 lbs	300 lbs	III & IV
LXL-20vp-HD Heavy Duty	1.0 ft/s	3,000 lbs	600 lbs	I-IV
LXLR-15vp-SS Rack & Pinion	1.0 ft/s	3,000 lbs	350 lbs	I-IV
LXLR-20vp-HD Rack & Pinion	1.0 ft/s	4,700 lbs	450 lbs	I-IV
LXLB-13vp-SS Battery Back-up	1.0 ft/s	2,000 lbs	350 lbs	I-IV
LXLB-13vp-HS Battery Back-up High Speed	1.0 ft/s	1,000 lbs	350 lbs	III & IV
LXLD-20vp-SS Extra Heavy Duty	0.8 ft/s	20,000 lbs	1,700 lbs	I-IV
LXLT-30vp-SS Extreme Heavy Duty	0.8ft/s	25,000 lbs	1,800 lbs	III-IV

a. Travel speed on all operators limited to 1 foot per second in Class I and II applications.

Other models for extra heavy-duty operation are available for extremely long and heavy gates. Contact your local distributor or the factory for more information.

4. Installing and Programming the LXL Operator

Installation and programming of the LXL series gate operators can be accomplished in a few easy steps. The following illustrations will guide you through the process of mounting the operator and drive rail, connecting power and programming the LXL controller functions.

NOTE: Installation of the gate operator requires connection of high voltage power, which should only be performed by a licensed electrician.

4.1 Prepare Concrete Pad

4.2 Anchor Gate Operator To Pad

4.3 Mount Drive Rail

4.4 Install Limit Switch Trip Plates

4.5 Connect Primary Power

Connecting the Primary Power should be performed by a license electrician. The primary power must have a circuit breaker in-line from power source in accordance to NEC.

4.6 Install Limit Switches

1. Insert the limit wired into the A limit on the board into the whole marked LIMIT A. 2. Adjust the limit SO that it is approximately ¹/₄" away from the trip plate and leave a little room to adjust. 3. Disengage the drive wheels. Turn on the operator and move the gate trip plate in front of the limit and adjust the limit I IMIT B in or out until the limit senses the trip plate. 4. Tighten the limit in place. 5. Repeat for the B limit. 6. CONTINUE TO STEP 4.9 **Note:** on the supplied limits, a red light will light up on the back of the limit when it

senses the trip plate.

4.7 Connect Primary / Battery Power D/C Units Only

4.8 Connect Converter To Operator

4.9 Install Vent Cap

4.10 Set Operator Handing (Inside Looking Out)

4.10.1 HCMSGOFF Parameter

Setting The Date And Time (optional, not required)

4.11 Setting The Max Run Timer

4.12 Turning ON / OFF The Timer To Close

4.13 Setting The Timer To Close

4.14 Setting The Inherent Safety

4.15 Setting the Gate Locking Device

4.15.1 Self Latching Lock Parameter

main menu.

4.15.2 Maglock Parameter

4.15.3 Maglock Delay Parameter

4.16 Maintain Input Parameters

The inputs that cause the gate to open or close has a feature where you can enable or disable a maintain command. These inputs are Open, Close, Open/Close, and Int Open. Meaning that you can change the command from a pulsed input to a hold until complete command or set a time which has to be maintain before input is recognized as a valid input.

4.16.1 MAINOPEN Parameter

6. The LXL Interface Board

- 1 24VAC/24VDC auxiliary power
- 2 Processor/Controller
- 3 Built-in 3 button station
- 4 Position indication and power loss relays
- 5 Secondary safety device connections
- 6 Control inputs (open devices, safety loops, etc.)
- 7 Input power for control board
- 8 Contactor output

- 9 1 amp fuse (processor protection)
- 10 Factory connections

7. Secondary Safety Devices

Connecting safety devices to the secondary safety connectors will stop the gate on the detection of the safety and proceed in the event of clearing the safety. To reverse the gate on the event of a safety, you must connect the safety device to the loopsafe terminal on connector 3.

IMPORTANT NOTE:

UL 325 approved secondary safety devices MUST be used for the gate installation to comply with the requirements of UL 325.

Refer to the UL approved manufacturer's documentation for proper installation of secondary safety devices.

SAFETY EDGES

*Note: The ROAD and BACK connections are normally open connections

UL Approved Secondary Safety Devices:

Miller Edge - manufacturer of contact sensors for all types of gates (800-220-EDGE). website: http://www.milleredge.com

EMX Industries - manufacturer of non-contact sensors for gates (800-426-9912). website: http:// www.emxinc.com

8. Master Slave Connections

- 10 conductors required for master / slave connection between operators (16-18 gauge wire), plus 4 for safety devices
- Each operator must be programmed separately
- □ Secondary safety devices must be connected to their respective operators for proper operation, and to ensure UL 325 compliance

9. Other Device Connections

10. Appendix

** Note: There are some changes in the drawing below. Standard speed setup is shown. For high speed and rack and pinion users please note that these item numbers are different:

Number 31 will be XHYD-103-1572 for standard and high speed units Number 31 will be 0050-RS-1001010 for rack and pinion units Number 9 will be XHYD-M406-0103 for high speed units

*Also, note for electrical components such as transformers or motors your voltage and phase may change the part number required

LXL electrical cubical

2.1 General Parts Breakdown

Typical Installation

2.2 Battery Backup Schematic

NDTES: 1. DNLY BATT B (-) TERMINAL IS TIED TO EARTH GROUND (NOT BATT A) 2. JUMPER BETWEEN 2-12V BATTERIES IS ON BATTERIES

	ITEN	A QTY	B&B AF	RMR #		DE	SCRIPTION
	1	1	XTRAN-41	6-1181		ЗК	VA TRANSFORMER
	2	1	XSOL-124-	-114111			4∨DC
	3	1	XCHGR-C	CT500-3		230V	OLENOID 3a battery
	4	1	XBRKR-	QOU260		CHARGE 60A	er Circuit breaker
	5	1	XBRKR- XBRKR-			20A CIRC 40A CIRCI	JIT BREAKER (F⊡R 240∨) JIT BREAKER (F⊡R 120∨)
	6	1	XCAP-3	4000/40		340	DOUF CAPACITER
	7	1	YR838-N	150100SB		1	DOA RECTIFIER
	8	1	XLUG-L	AM2A1/0		(GROUND LUG
	9	1	XRLY-	2W929		, (24vac RELAY
IR A	AWING:	DRWN:	M. Heuer	Sept. 19 2006		B&I	BARMR
: 1	0.5	ENGR:					
15		PART:	0054-2	2019			Y BACKUP UNIT , PXLB, NXLB
	(CCOPYRIGH ALL	T 06-Jun-06 B&J . RIGHTS RESERV	B ARMR ED		LALD,	, FALD, NALD
		CONTAINS S OR PART WI	IENT AND THE IN HALL NOT BE CO ITHOUT THE EXPR INSENT OF B&B A	PIED IN WHOLE ESSED	SIZ E		DWG ND: XLBBU-CT-MAN DO NDT SCALE PRINT SHEET 1 OF 1
					l sr	ALE:	DO NOT SCHELLINING SHEET T OF T

Battery backup Parts List

HP Vallage Wile Vallage Wile Vallage Mms Operation Dependion HP Vallage Mms Solid 150 75 0.4 246 A/ms 3 7.8 A/Mc 12 3.300 150 150 75 0.4 2.46 A/ms 3 7.8 A/MS 12 3.300 150 750 0.4 2.46 A/MS 3 7.4 A/MS 12 3.300 190 90 0.7 2.30 A/MS 1.3 2.30 A/MS			3 ? P	ower V	3 ? Power Wiring (Continued)	(pan			Bat	ttery Baci	Battery Backup Input (1 ?)	5)
3 7.8 AAC 12 3.300 150 7.4 AAC 12 3.300 150 5.261 300 5.261		dН	Voltage Amps	Wire Gage		Single Operator	-	₽	Voltage Amps			Single
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			208 V	12		150	L		115 V	12		120
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		c	7.8 A.AC	10	5.261	240	120		4.6 A.AC		5.261	200
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		0		80	8.366	390	195	4.0	22.04 A.DC		8.366	320
3 74 AAC 12 5.309 1800 255 260 V 12 3.309 12 3.309 12 3.309 12 3.309 12 3.309 12 3.309 12 3.309 12 3.309 13 3.7 AAC 12 3.309 13 7 AAC 12 3.309 13 2.304 12 3.309 13 2.304 12 3.309 13 2.304 13 3.305 2.301 13 3.305 2.301 13 3.305 2.301 13 3.306 12 3.306 13 3.305 2.301 13 3.305 2.301 13 3.305 2.301 13 3.305 2.301 13 3.306 12 3.306 13 3.305 3.305 13 3.305 3.305 3.305 3.305 3.305 3.305 3.305 3.306 13 3.305 3.305 3.305 3.305 3.305 3.305 3.305 3.305 3.305				9	13.302	620	310			9	13.302	520
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			230 V	12	3.309	180	90		208 V	~	3.309	430
1 1		ი	UNA 4.1	2 «	107.0	450	225	0.4	71 67 A DC		992.8	1000
3 440 V 12 3304 720 360 1300 230 V 132 300 1300 2300 1300 2300 1300 2300 1300 2300 1300 2300 1300 2300 1300 2300 1300 2300 1400 700 500 1400 700 500 150 700 500 150 700 500 1300 200 110 500 100 500 1300 100 500 1300 100 500 1300 100 500 1300 100 500 1300 100 500 1300 100 500 1300 100 500 1300 100 500 100 500 100 500 100 500 100 500 100 500 100 500 100 500 100 500 100 500 100 500 100 500 100 500 100 500 500 <t< td=""><td></td><td></td><td></td><td>9 9</td><td>13.302</td><td>730</td><td>365</td><td></td><td>X7-V 10-17</td><td></td><td>13.302</td><td>1730</td></t<>				9 9	13.302	730	365		X7-V 10-17		13.302	1730
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			460 V	12	3.309	720	360		230 V	12	3.309	510
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		c	3.7 A.AC	10	5.261	1150	575		2.3 A.AC		5.261	820
5 13.302 29.00 1460 6 13.302 23.00 155 15.801 16 13.302 23.00 155 15.801 175 15.801 13.302 23.00 100 55.801 13.302 23.00 100 55.801 13.302 23.00 110 53.801 100 55.801 13.302 23.00 112 33.06 100 55.801 13.302 113.302 113.302 113.302 113.302 113.302 113.302 113.302 113.302 113.302 1		n		80	8.366	1830	915	0.4	22.04 A.DC		8.366	1310
5 13 AAC 12 3306 10 70 3306 ADC 12 3306 ADC 13 3306 ADC 12 3306 ADC 13 3306 ADC 13 3206 ADC 12 3306 ADC 13 3306 ADC <td></td> <td></td> <td></td> <td>9</td> <td>13.302</td> <td>2920</td> <td>1460</td> <td></td> <td></td> <td></td> <td>13.302</td> <td>2090</td>				9	13.302	2920	1460				13.302	2090
5 15 AAC 10 5261 140 70 9306 ADC 10 5361 10 550 3306 ADC 10 560 13302 3306 ADC 10 550 3306 ADC 10 560 13302 11 5306 ADC 10 5201 V 12 3306 ADC 6 13302 13302 ADC 11 550 3306 ADC 6 13302 ADC 11 550 3306 ADC 6 13302 ADC 12 3306 ADC 6 13302 ADC 12 3306 ADC 6 13302 ADC 13 2301 ADC 12 3306 ADC 6 13302 ADC 13 300 ADC 12 33306 ADC 6 13302 ADC 13 300 ADC 12 3300 ADC 13 300 ADC 13 300 ADC 12 3300 ADC 13 300 ADC 13 300 ADC 13 300 ADC 12 3300 ADC 13 300 ADC 12 <			208 V	12	3.309	06	45		115 V	12	3.309	66
0 13 0.15 3.306 100 6 1.3302 1306 13302 1306 13302 1300 110 3306 100 6 13302 110 3306 100 6 13302 110 3306 110 3306 110 3306 110 3306 110 3306 110 3306 110 3306 110 3306 110 3306 110 3306 110 3306 110 3306 110 3306 111 110 </td <td></td> <td>ť</td> <td>15 A.AC</td> <td>10</td> <td>5.261</td> <td>140</td> <td>20</td> <td>0.75</td> <td>6.9 A.AC</td> <td></td> <td>5.261</td> <td>140</td>		ť	15 A.AC	10	5.261	140	20	0.75	6.9 A.AC		5.261	140
5 230 / 13 33		>		80	8.366	230	115	0.00	33.06 A.DC		8.366	230
5 132 AAC 12 330 110 55 320 V 12 330 V 13 360 V 12 330 V 13 360 V 12 330 V 13 360 V				9	13.302	370	185			9	13.302	360
5 132 AAC 10 5.261 130 10 5.38 AC 10 5.36 ADC 10 10			230 V	12	3.309	110	55		208 V		3.309	290
0 10 230 10 230 10 230 10 230 10 230 10 230 10 230 10 230 10 230 10 230 11 10 230 10 230 10 230 11 10 230 11 10 230 230 </td <td></td> <td>Ľ</td> <td>13.2 A.AC</td> <td>10</td> <td>5.261</td> <td>180</td> <td>06</td> <td>0.75</td> <td>3.8 A.AC</td> <td></td> <td>5.261</td> <td>470</td>		Ľ	13.2 A.AC	10	5.261	180	06	0.75	3.8 A.AC		5.261	470
5 6 13.302 450 75 320 450 75 323 460 15 323 460 15 323 460 15 323 460 15 326 155 15 323 470 15 323 470 10 3236 13 320 115		>		80	8.366	280	140	2.2	32.93 A.DC		8.366	750
5 460 V. 6 12 5.300 3.0 150 115 V 75 3.2.8 ADC 12 5.300 3.00 115 V 12 5.300 3.00 135 V 12 5.300 3.00 13 2.00 12 3.300 3.00 13 2.00 12 3.300 2.00 13 2.01 13 2.01 12 3.300 2.00 13 2.01 13 2.01 13 2.01 13 2.01 13 2.01 13 2.01 13 2.01 13 2.01 13 2.01 13 2.01 13 2.01 13 2.01 13 2.01 13 2.01 13 2.01 <t< td=""><td></td><td></td><td></td><td>9</td><td>13.302</td><td>460</td><td>230</td><td></td><td></td><td>9</td><td>13.302</td><td>1200</td></t<>				9	13.302	460	230			9	13.302	1200
5 6.6 AAC 10 5.261 230 115 0.75 3.2.4 AC 10 5.261 13.302 13.4 AC 10 5.261 13.302 3.366 13.302 13.4 AC 10 5.261 13.302 3.366 13.302 3.366 13.302 3.366 13.302 3.366 13.302 3.366 13.302 3.366 13.302 3.366 13.302 3.366 13.302 3.366 13.302 3.366 <t< td=""><td></td><td></td><td>460 V</td><td>12</td><td>3.309</td><td>150</td><td>75</td><td></td><td>230 V</td><td></td><td>3.309</td><td>370</td></t<>			460 V	12	3.309	150	75		230 V		3.309	370
C 8 8.366 370 185 970 32.8 A DC 8 8.566 1 Control Wring Control Wring Max Voltage W/ 8 8.566 1 3.309 1 15 V 12 3.309 1 3.306 </td <td></td> <td>v</td> <td>6.6 A.AC</td> <td>10</td> <td>5.261</td> <td>230</td> <td>115</td> <td>0.75</td> <td>3.4 A.AC</td> <td>00000</td> <td>5.261</td> <td>580</td>		v	6.6 A.AC	10	5.261	230	115	0.75	3.4 A.AC	00000	5.261	580
Notitage I 13.02 I 13.02 I 13.V I 10.V I 10.V I 10.V I 10.V I 1		>		8	8.366	370	185	0.00	32.58 A.DC	1935	8.366	930
1.3 1.5 × C 1.2 3.309 1.3 52.29 ADC 6 8 3.369 1.3 52.29 ADC 6 8 3.369 1.3 52.40 ADC 6 8 3.369 1.3 52.40 ADC 8 8.366 8 3.369 1.3 52.40 ADC 8 8.366 8 3.369 1.3 57.4 ADC 10 5.361 3.309 9 200 V 12 3.309 13.302 9 3.309 9 1.3 6.7 AAC 10 5.361 9 3.309 9 3.309 9 3.309 9 3.309 9 3.309 9 3.309 9 3.309 9 3.309 9 3.309 9 3.309 9 3.309 9 3.309 9 3.306 9 9 3.306 9 9 3.306 9 9 3.306 9 9 3.306 9 3.306 <td></td> <td>_</td> <td></td> <td>9</td> <td>13.302</td> <td>600</td> <td>300</td> <td></td> <td></td> <td>9</td> <td>13.302</td> <td>1490</td>		_		9	13.302	600	300			9	13.302	1490
Control Wing Control Wing Max Voltage 13 8.2.9 A.M. 0 0.001									115 V	1.00	3.309	20
Notitage Weithing Max Voltage month Max Voltage month e.c. month 24 V 28 0.129 710 67 12 3.309 3.309 24 V 28 0.129 1140 0.00 6 1.3.302 3.309 24 V 28 0.023 1400 67 12 3.309 24 V 18 0.823 4600 6V 12 3.309 Annum fatimete 0.823 4600 6V 12 3.309 Annum fatimete 0.823 4600 6V 12 3.309 Annum fatimete 0.823 0.814 12 3.302 13.302 Annum			100	INT I AV	din et	ſ		1.3	13 A.AC		107.0	00
Voltage Windlage Windlage Minute Mi			f	AN IO D		Victoria			NU.N 82.20		000.0	000
24 V 230 0.081 11.3 2.08 V 12 3.309 24 V 26 0.091 710 67.0 2.61 3.309 24 V 26 0.013 710 6V 12 3.309 24 V 26 0.013 700 6V 12 3.309 24 V 26 0.516 6V 13 6.7 AAC 10 5.61 Amount 64 10.823 4600 6V 12 3.309 13.302 Mainturn distance is measured from Power Source to Dearted Mainturn distance for contract utility company for a service foreation 13 64.21 ADC 8 3.66 Mainturn distance for contract utility company for a service foreation Mainturn distance for contract utility company for a service foreation 13 64.21 ADC 8 3.66 Mainturn distance for contract utility company for a service foreation Mainturn distance for contract utility company for a service foreation 13 64.21 ADC 8 3.66 Mainturn distance for contract utility company for a service foreati Mainturn distance foreation 13<		Voltage			_	_				0		2007
24 V 26 0.081 740 bit V 26 0.020 bit V 52 AAC 10 5.261 bit V 52 Bit V 56 B		0.000	1		-				208 V	_		160
24 V 26 0.129 710 6V 24 V 20 0.518 2800 6V 6 8.366 24 V 20 0.518 2800 6V 6 8.366 24 V 20 0.518 2800 6V 12 3.300 24 V 20 0.518 2800 6V 12 3.300 Amount distance for count of the count of	-	24 V		0.081		6V		1.3	7.2 A.AC			260
24 V 29 I 0.205 1140 6 V 13.302 24 V 16 0.823 4600 6V 13.302 24 V 16 0.823 4600 6V 13.302 Mainimu differer is measured from Power Source to Deretfor 1.3 64.21 ADC 8 3.306 Mainimu differer is measured from Power Source to Deretfor 0.823 4000 6 13.302 Mainimu differer is measured from Power Source to Deretfor 0.814 14.16 6.14 13.302 Mainimu differer for controls is measured from Operator to Purabutiton or Other device. 1.4105 0.814 14.16 6.14 Other device. 114 diamone to Famole Control device is greater than 20001 use a range 2.81 0.032 0.938 10.66 4.16 Foreir fabries are based on stranded copter wires and allows up to 2% othege 2.81 0.238 0.744 16.46 6.21 6.21 6.21 6.21 6.21 6.21 6.21 6.21 6.21 6.21 6.21 6.21 6.21 6.21 6.21 6.21 6.21		24 V		0.129		6V			62.40 A.DC	1.02		420
24 V 20 0.518 2800 EV 57 AAC 10 3.531 24 V 16 0.083 4600 EV 67 AAC 10 5.301 Maximum distance in measured from Power Source to Operator Maximum distance in measured from Operator to Detendent 8 3.366 Maximum distance for controls is measured from Operator to Detendent Maximum distance for controls is measured from Operator to Purbution or future plane unit or control is measured from Dover Source is greater than value shown use a higher voltage or three plane unit or control is measured from Dover source beder 1.3 64.21 ADC 8 3.366 3.301 Maximum distance for controls is measured from Operator to Purbution or three plane unit or control is measured from Dover source beder AWG Stranded Wire Resistance 8 3.366 3.302 Maximum distance to Power Source is greater than value shown use a range of the plane unit or control work and allows up to 2% voltage 28.0001 1401 66.14 Foreit Tables and on standed coper wires and allows up to 2% voltage 20 0.326 0.328 10.366 Commer Power per local codes 10 320 0.311 1401 4.06 Commer Power per local codes 1401 1.301 1.401 1.62 6.52 Commer Power per local codes<		24 V		0.205		9				9		670
24 V 18 0.02/31 400 V 13 64.71 ADC 8 3.36 Maintum distance for control is measured from Power Sources to Parabution or Adminimum distance for control is measured from Operator 1.3 64.21 ADC 8 3.36 Maintum distance for control is measured from Operator Maintum distance for control is measured from Operator 1.3 64.21 ADC 8 3.36 Maintum distance for control is measured from Operator Maintum distance for control and a trown use a higher voltage of the maintum distance for control and a trown use a higher voltage of the maintum distance for control and the real and a trown use a trange 2.00 0.01 1.41.6 66.14 1.5.302 Power Takets are based on stranded copter wires and allows up to 2% voltage of the power Source copter wires and allows up to 2% voltage of the power Source copter wires and allows up to 2% connect the power factor control relates are based on stranded copter wires and allows up to 2% connect the power factor control relates are based on stranded copter wires and allows up to 2% connect the power factor control relates are based on stranded copter wires and allows up to 2% connect the power factor control relates are based on stranded copter wires and allows up to 2% connect the power factor control relates are based on stranded copter wires and allows up to 2% connect the power factor control relates are based on stranded copter wires and allows up to 2% connect the power factor control relates are based on stranded copterer wires and allows up to 2% connect the power fact		24 V		0.518		6V			230 V		3.309	190
Momentum difference in measured from Power Sources to Deterator. Pert 21 ALD 6 0.000 Maximum distance is measured from Power Sources to Deterator. Maximum distance is measured from Power Sources to Deterator. 6 13.302 Meanimum distance is measured from Dower Sources to Deterator. Other Annotation of the Annotation of Annotation of the Annotation of the Annotation of Annotation of the Annotation of the Annotation of Annotation of the Annotation of Annotation of Annotation of the Annotation of Annotatio		24 V		0.825		90		1.3	01.01 A.A.		107.0	310
Mainturn distance is measured from Power Source to Dentator. AWG Strandad Wire Resistance Mainturn distance is measured from Operator. AWG Strandad Wire Resistance Mainturn distance for controls is measured from Operator. AWG Strandad Wire Resistance Other denics Size If distance to power Source is greater than value shown use a higher voltage or three phase unit or control is in measured from Operator. AWG Strandad Wire Resistance If distance to power Source is greater than 2000t use a struge strated edvice. Size AWG If distance to Ramobe Centrol device is greater than 2000t use a range strated edvice. 28 0.021 0.466 41.16 Control Table are based on strandad coper wires and allows up to 2% voltage drop 20 0.203 0.324 10.36 Control Table are based on strandad coper wires and allows up to 2%, Connect drop 0.518 0.203 1.491 2.68 Connect Power per local codes 10.0201 0.323 1.491 2.68 3.26 Connect Power per local codes Mireo entry of an of allow up current may be higher 10 2.69 2.69 1.02	1			Not	sa				NU.A 1 2.40		13 302	008
Materimum distance for controls is measured from Operator to Pushbuttom or Materimum distance for controls is measured from Operator to Pushbuttom or If distance to Powe Seurce is greater than value shown use a higher voltage or three phase unit or contact utility company for a service feedor ANG Stranded Wire Resis If distance to Powe Seurce is greater than value shown use a higher voltage or three phase unit or contact utility company for a service feedor ANG Stranded Wire Resis If distance to Remote Control device is greater than 2000t use a mange strander device. 28 0.031 H.4.6 Mm Power fabries are based on stranded copper wires and allows up to 25%. Comed drop 20.129 0.438 1.032 0.333 1.192 0.744 0.744 Commer Power per locate Auron Table is based on stranded copper wires and allows up to 25%. Comed drop 14 2.081 1.188 1.82 Commer Power per locate Auron Table is based on stranded copper wires and allows up to 25%. Comed drop 1.82 1.82 1.82 Commer Power per locate Auron Table is based on stranded copper wires and allows up to 25%. Comed drop 1.8 1.83 1.82 Commer Power per locate Auron Table is based on stranded copper wires and allows up to 25%. Comed drop 1.8 1.83 1.82 Commer Power per locates Total area based on stranded copper wires and allows up to 25%. Comed drop 2.328 2.321 1.82	-	Maximum distar	nce is measur	ed from	Power Source	to Operator						
Amount of device Amount of standard VMer device If distance to forwe Surror is greater than value shown use a higher voltage or three phase unit or contact utility company for a service feeder Amount of the standard VMer Rest Distribution of the standard VMer Rest mm If distance to Remote Control device is greater than 2000ft use a range standard down. 28.00 14.6 Power Tables are based on stranded coper wires and allows up to 25% Connect drop. 20.129 0.358 0.744 Power par location devices 20.0129 0.518 0.358 0.744 Connect Table is based on stranded coper wires and allows up to 25% Connect drop. 20.0129 0.518 0.358 Power par location devices Connect Power par location devices 1.82 1.82 1.82 Connect Power par location Connect Power par location devices 1.83 1.82 1.82 Connect Power par location Connect Power par location devices 1.83 1.83 1.82 Amount part location Connect Power part location devices 1.83 1.83 1.83 Amount part location Connect Power part location devices 1.83 1.83 1.83 Amount part location Connect Power	N	Maximum distar	nce for contro	Is is me	asured from Op	erator to Pus	shbutton or					
If distance to power Scarce is greater than vulue shown use a higher voltage or If distance to power Scarce is greater than volta et an own use a higher voltage or at distance to Remote Control device is greater than 2000t use a range at distance to Remote Control device is greater than 2000t use a range at distance to Remote Control device is greater than 2000t use a range at distance to Remote Control device is greater than 2000t use a range at distance to Remote Control device is greater than 2000t use a range at distance to Remote Control device is greater than 2000t use a range at distance to Remote Control device is greater than 2000t use a range at distance to Remote Control device is greater than 2000t use a range at distance to Remote Control device is greater than 2000t use a range at distance to Remote Control device is greater than 2000t use a range Control Table is based on stranded copter wires and allows up to 25% Connect Connect Power per focal codes At the range at the range of the range of the range at the range at the range of the ran		Other device							AWG Strar	nded Wire	Resistance	
Three phase unit or contact unity company for a service freacet AWG mm If distance to Remote Control device is greater than 2000t use a range 28 0.081 4.6 Power device. 24 0.250 0.59 0.46 Power device. 24 0.250 0.59 0.46 Power device. 24 0.250 0.59 0.46 Power device. 22 0.226 0.39 0.46 Power device. 22 0.256 0.744 0.93 Power par location at stranded copper wires and allows up to 25% Correct 16 1.309 1.481 Connect Table is based on stranded copper vires and allows up to 25% Correct 16 1.309 1.82 Connect Power per locate 14 2.081 1.88 1.82 Connect Power per locates 14 2.081 1.88 1.82 Ampower per locate 1309 2.371 1.82 3.81 Ampower per locate 1.82 2.831 1.82 3.81	3	If distance to po	ower Source it	s greater	r than value sho	wn use a hig	her voltage or		P	iameter	R (0)	77°F
If distance to Remote Control device is greater than 2000t use a range 26 0.11 4.6 4.6 externed redvice. 26 0.129 0.468 externed redvice. 26 0.129 0.468 externed redvice. 20 0.318 0.348 externed redvice. 20 0.318 0.348 externed redvice than 2000t use up to 25% connect 74 16 0.329 1.162 Connect Power per local codes and allows up to 25% connect Power per local codes Connect Power and Control wing separately. 20 0.138 1.122		mree pnase uni	It of contact u	unty con	ipany ior a servi	Japaal ao		- 8	mm	mm	Ohms	/1000'
If dialactonic Remote Control device is greater than 2000t use a range 26 0.129 0.468 24 0.205 0.395 0.448 Power Tabelis are based on stranded corper wires and allows up to 27% voltage 22 0.326 0.744 doi: 0.74	- 1							28	0.081	14.6	.99	4
Amount on strands Constrained	4	If distance to R	temote Contro	ol device	is greater than	2000ft use a	range	26	0.129).468 \ ≂0	41.	94
Power Tabels are based on strandad copper wires and allows up to 25% voltage 220 0.34 Control Tabels is based on strandad copper wires and allows up to 25% Connect 16 0.883 132 Power par local codes 16 3.309 142 142 Connect Power par local codes 16 2.301 142 142 Ran Power par local codes 16 1.309 1.42 142 161 1309 1421 Ran Power par local codes 16 1.309 1.42 1.63 1.42 1.61 1.63 1.61 1.64	1							1 00	0.200		-07	0 :
Control Table is based on stranded copper wires and allows up to 25% Connect 18 0.823 1.162 Power per local codes Comment of the strands of t	o	drop	If the parsed on a	stranded	copper wires a	dn swoine pu	to 2% voltage	2 2	0.326	0.744 0.038	16.4	94
Power per local codes 16 1.309 1.491 Connect Power per local codes 14 2.081 1.88 Man Power and Control wing seperately 12 3.09 3.311 Ampere and Control wing seperately 12 3.309 2.371	6	Control Table is	s based on str	anded c	opper wires and	d allows up to	25% Connect	16	0.823	1.182	6.5	
Connect Power per local codes Connect Power and Control wing seperately. The Power Powe		Power per local	I codes					16	1.309	1.491	4.08	~
Run Power and Control wining seperately 12 3:309 2:371 Ampere rating is motor full load; Startup up current may be higher 10 5:261 2:989	~	Connect Power	r per local cod	es				14	2.081	1.88	2.58	~
Ampere rating is motor full load; Startup up current may be higher 10 5.261 2.989		Run Power and	Control wirin	g sepera	ately			11	3.309	2.371	1.6.	2
	6	Ampere rating i:	s motor full lo	ad; Star	tup up current n	nay be higher		¥	5.261	2.989	1.02	0

1	Voltage	Wire		Single	Dual
Ŧ	Amps	Gage	mm ²	Operator	Operators
	208 V	12	3.309	510	255
410	2 AAC	10	5.261	820	410
7		80	8.366	1310	655
		9		2080	1040
	>		3.309	580	290
1/2	2 A.AC	9	5.261	920	460
		00		1470	735
		9	13.302	2340	1170
	> .	2	3.309	2330	1165
1/2	1 A.AC	2	107.0	3/00	0681
		00 0	8.366	5900	2950
	1 000	0	200.01	0606	000+
	> .	12		320	160
-	3.5 A.AC	2	107.0	010	007
		000	xi o	810	405
		9	13.302	1290	645
	>	12		390	195
-	3.2 A.AC	10		620	310
8		ø		980	490
		9	13.302	1570	785
	460 V	12	3.309	1560	780
•	1.6 A.AC	10	5.261	2480	1240
-		œ		3950	1975
		9	13.302	6290	3145
	208 V	12	3.309	190	96
	6.2 A.AC	10	5.261	300	150
7/1		80	8.366	480	240
		9	13.302	770	385
	230 V	12	3.309	230	115
1110	5.6 A.AC	10	5.261	370	185
		80	8.366	590	295
		9	13.302	940	470
	>	12	3.309	940	470
1110	2.8 A.AC	10	5.261	1490	745
		ø		2380	1190
		9	13.302	3790	1895
	208 V	12	3.309	06	45
ç	6.2 A.AC	10	5.261	140	20
4		ø	8.366	230	115
		9	13.302	370	185
	230 V	12	3.309	110	55
0	5.6 A.AC	10	5.261	180	90
		80		280	140
		9	13.302	460	230
	>	12	3.309	150	22
0	2.8 A.AC	10	5.261	230	115
6		ø	8.366	370	185

		1 ? Power	ver Wiring		
9	Voltage	Wire		Single	Dual
-	Amps	Gage	mm ²	Operator	Operators
	115 V	12	3.309	80	40
112	7.5 A.AC	6	5.261	130	65
1		ø	8.366	210	105
		9	13.302	340	170
		12	3.309	290	145
1/2	3.9 A.AC	0L 0	5.261	460	230
1		00 U		11 80	370
	1000	¢	2000 6	0011	170
		10		540	270
1/2		- 00		860	430
		9	13.302	1380	690
ľ	115 V	12	3.309	50	25
•	12 A.AC	9	5.261	80	40
ŝ		ø	8.366	130	
		9	13.302	220	110
		6	3.309	180	06
~	R	2 0	102.0	067	140
		9 00	13.302	750	375
	230 V	12	3.309	220	110
	6 A.AC	10	5.261	350	175
2		∞		550	275
		9	13.302	880	440
		12	3.309	40	20
1 1/2	15 A.AC	9	5.261	02	35
		20 (8.366	110	000
Ī		2		00	00
	> .	21	3.309	140	2
1 1/2	8.3 A.AC	2	20200	230	115
		x a	8.366	370	185
T	230 V	10	3 300	170	85
		10	5.261	280	140
2/1 1		00	8.366	450	225
		9	13.302	720	360
		12	3.309	06	45
2	13.2 A.AC	9	5.261	140	02
		0 (0.300	370	185
	230 V	12	3.309	110	55
c	12 A.AC	10	5.261	180	06
v		80	8.366	280	140
		9	13.302	460	230
	208 V	12	3.309	60	30
ო	10.1 A.AU	<u></u> α	107.0	8 9	200
		0 0	13.302	260	130
		12	3.309	80	40
ю	17 A.AC	9	5.261	120	09
(00 (J	8.366	200	100
1		>	70001	040	201

	AWG S	AWG Stranded Wire Resistance	tesistance
Size	1000	Diameter	R @ 77°F
AWG	mm ²	mm	Ohms /1000'
28	0.081	14.6	66.14
26	0.129	0.468	41.76
24	0.205	0.59	26.18
22	0.326	0.744	16.46
20	0.518	0.938	10.36
18	0.823	1.182	6.52
16	1.309	1.491	4.08
14	2.081	1.88	2.58
12	3.309	2.371	1.62
10	5.261	2.989	1.02
80	8.366	3.77	0.64
9	13.3	4.753	0.402

WITH MAGLOCK - USE -FIGURE

11. Troubleshooting

The table below provides a general guidance on identifying and correcting any problems with your LXL Series gate operator. If you encounter problems that you cannot fix, contact B&B ARMR and we will gladly work with you to correct them.

2.3 Alarm Definitions –

Continuous solid beep – Gate is moving or a Stop command is active 5sec On, 1sec Off – MaxRun Time Error 1sec On, 1sec Off – Forward and/or Reverse Safety 0.25sec On, 0.5sec Off – Inherent Safety Error

2.4 PLC Input/Output Definitions –

💽 Con	nector Names			×
Input 1	Ferminals:	Outpu	t Terminals:	
11	OPEN	Q1	VALVE 1	
12	CLOSE	Q2	VALVE 2	0000
13	LIMITA	Q3	MOTOR	
14	LIMIT B	Q4	ALARM	3333
15	RDWY IR	Q5	UNLOCK (NEG LK)	3333
16	BACKIR	Q6	LOCK (POS LK)	<u></u>
17	STP/RST	Q7		
18	INHERENT SAFETY	Q8	HANDING CHANGED	
19	OPEN/CLS	Q9		
110	INT OPEN/LOCKPIN UF	Q10		
111	EMERGENCY OPEN	Q11		
112	LOOP SAFE	Q12		
113		Q13		
4 888		Q14		-
		0	K Cancel He	lp

Symptom	Actions
	1. Check CONN 9 for power when command is given.
	2. Check overload protector
Gate operator does	3. Check PLC output.
not respond when	4. Check that safeties are clear, and that IR Beams are aligned.
commanded.	5. Check PLC input.
	6. Check the $+24$ VDC at CONN3 pins 8 and 10
	1. Refer to step 4.10 of Installing and Programming the LXL
Gate operator drives	Operator for setting the handing.
the gate in the	2. Refer to step 4.5 of Installing and Programming the LXL
incorrect direction.	Operator to check for correct installation of the Limit
	Switch Plates.
	1. Check for any binding of the gate.
Oneneten drives este	2. Check for slippage of the drive wheels.
Operator drives gate	3. Check the fluid level in the reservoir.
too slowly.	4. Check the quality of the hydraulic fluid. Old fluid will
	become sludgy and clogging of internal filter is possible.
	1. Check for any binding of the gate.
	2. Check for slippage of the drive wheels.
MAX Runtime Error	3. Check the fluid level in the reservoir.
MAA Kullullie Elloi	4. Check the MAX RUN TIME setting in Parameters to insure
	sufficient time is set for the gate size.
	5. REMEMBER – Gate only may only move 1 ft/sec
	1. Refer to step 4.11 of Installing and Programming the LXL
Date and time flash	Operator for setting the date and time. (Optional, not
on the PLC.	required to be set)
	1. Refer to step 4.15 of Installing and Programming the LXL
	Operator for setting the Inherent Safety.
Gate does not stop	2. Check for system pressure on Inherent Safety screen of the
automatically when	PLC, if no reading is evident while gate is running suspect a
encountering an	faulty pressure transducer.
obstacle.	3. Check the functionality of the safety devices.
	4. Check safety device wiring, refer to sections 6 and/or 8
Operator drive	1. Check for binding by disengaging the drive wheels, and
wheels slip on gate	ensuring that the gate rides smoothly manually.
and gate does not	2. Check the tension of the drive wheels, adjust as needed.
move.	3. Check for any water or precipitation on the drive rail.
	1. Check for incorrect incoming power to the LXL board.
Fuses are blowing.	2. Ensure all external devices are sending the correct voltage
	to the LXL board, and that there are no shorts.
	1. If using an external push button, ensure that the stop button
DI C covo Stop/Docot	is a normally closed contact.
PLC says Stop/Reset	2. If not using an external push button, ensure there is a
activated.	jumper wire between stop/reset and +24 stp/rst on CONN 3.
	3. Check the connection of the wire between the J1Pin 9

Symptom	Actions				
	connector and I7 of the PLC.				
	Verify shunt is present on JP1 between pins 1 and 2.				
	5. Check F3.				
Electric Motor turns	1. Check the fluid level in the reservoir.				
but gate does not	2. Check PLC outputs to see if Q1 turns on for an OPEN				
move.	and/or Q2 turns on for a CLOSE.				
	3. Disengage drive wheels and check to see if they move.				
	4. If drive wheels move, check for binding in the gate.				
	5. If drive wheels do not move, check for loose coupling				
	between the electric motor and pump assembly.				
	6. Check for voltage between COM and HYD VAL 1 and 2 on				
	CONN 1 of LXL board, and ensure wires connections are				
	tight.				
	7. If voltage is correct, manually shift the detent in the center				
	of the solenoid on either side of the hydraulic valve, if				
	wheels move suspect hydraulic valve.				
	8. If wheels do not move after manually shifting the detent,				
	suspect pump assembly.				
	9. If unit is a 3 phase unit and a new installation, reverse two				
	of the incoming power leads.				

2.5 Equipment Maintenance Log Form

Product Type:_____ Location:_____

	Date	Performed By	Checklist Complete	Anomalies	Notes
Jan			Yes No		
Feb			Yes No		
Mar			Yes No		
Apr			Yes No		
May			Yes No		
Jun			Yes No		
Jul			Yes No		
Aug			Yes No		
Sep			Yes No		
Oct			Yes No		
Nov			Yes No		
Year			Yes No		

	Date	Performed By	Checklist Complete	Anomalies	Notes
Jan			Yes No		
Feb			Yes No		
Mar			Yes No		
Apr			Yes No		
May			Yes No		
Jun			Yes No		
Jul			Yes No		
Aug			Yes No		
Sep			Yes No		
Oct			Yes No		
Nov			Yes No		
Year			Yes No		

12. Warranty Information

B&B-ARMR CORPORATION warranties for a period of five (5) years, after delivery F.O.B. plant, unless otherwise specified by Supplier, from failure of operation in ordinary use and against defects due to faulty material or workmanship. Any defective equipment in the Barrier shall be returned to the factory, at Supplier's option, for repair or replacement, and Supplier assumes no responsibility for service at any consumer site. Supplier is in no event responsible for any labor costs under the warranty. Subject to the above limitation, all service, parts, and replacements necessary to maintain the equipment as warranted shall be furnished by the end user. Supplier shall not have any liability under these specifications, other than for repair or replacement as described above for equipment malfunction or equipment failure of any kind, caused for any reason, including, but not limited to unauthorized repairs, improper installation, installation not performed by Supplier personnel, nor by Supplier authorized personnel, failure to perform manufacturer's suggested routine maintenance, modifications, misuse, accident, catastrophe, neglect, natural disaster, act of God or if at any time the power supplied to any part of the Security Barrier falls short or exceeds the rate of tolerance for the equipment.

Replacement parts shipped from B&B ARMR, are warranted for 90 days after shipment. Replacement parts are subject to the same warranty terms as stated above.

Drive wheels are considered normal wear parts and are not covered under this warranty except in cases of manufacturer defects.

The exclusive remedy for breach of any warranty by Supplier shall be the repair or replacement at supplier's option, of any defects in the equipment. IN NO EVENT SHALL THE SUPPLIER OF SECURITY BARRIER BE LIABLE FOR CONSEQUENTIAL OR SPECIAL DAMAGES OR ANY KIND OF DAMAGES TO ANYONE. Except as provided herein, Supplier makes no warranties or representations to consumer or to anyone else and consumer hereby waives all liability against Supplier as well as any other person for the design, manufacture, sale, installation, and/or servicing of the Security Barrier.

THE FOREGOING WARRANTIES ARE IN LIEU OF ALL OTHER WARRANTIES EXPRESS OR IMPLIED, INCLUDING THE IMPLIED WARRANTY OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NO OTHER WARRANTIES EXIST.

Any modification or alteration by anyone other than B&B-ARMR will render the warranty herein as null and void.