The 68HC12 Microcontroller

Chapter 1
Introduction to 68HC12

Assembly Notation :

Intel Motorola
binary 10010011b %10010011
decimal 1478 1478
hexadecimal 5678h $5678

H. Huang Transparency No.1-1

The 68HC12 Microcontroller

SYSC-2001 Review : Computer Hardware Organization

Processor
_ < Common Bus (address, data. & control) >
Control Unit
Datapath
Arithmetic = ~~
Logic Unit Memory

Figure 1.1 Computer Organization

H. Huang Transparency No.1-2

The 68HC12 Microcontroller

CPU: Microprocessor versus Microcontroller

. processor on a single integrated chip
— Intel 80x86, Motorola 680x0 families...

Microprocessors evolved in two general directions:
— Performance: processing power, data storage
— Integration: amount of circuits on one chip

. computer using microprocessor as CPU
— Combines microprocessor/peripheral chips -> computer system

— l1.e.. PC =>Intel 80x86 + memory + timer + keyboard +
modem (etc.) chips

computer system on a chip

— Microprocessor AND peripheral functions implemented on one chip
— Built-in memory and interface circuits (1/0 units)

H. Huang Transparency No.1-3

The 68HC12 Microcontroller

MicroComputer Versus MicroController System
Micro - Power
«<—! Processor | | Power Micro
CPU “—*| Processor
CPU Clock
e Memory Clock
«—*| Memory) | Extended
) | Memory
1/0 Components l‘i
T i I «—| 1/O Components | | .| Other 1/0
Peripheral

H. Huang Transparency No.1-4

The 68HC12 Microcontroller

Features of the 68HC12 Microcontroller

16-bit CPU

64 Kb memory space

768 bytes to 4 Kb of EEPROM

1 Kb to 12 Kb of on-chip SRAM

32 Kb to 128 Kb flash memory

Sophisticated timer functions including: input capture, output
compare, pulse accumulators, real-time interrupt, COP timer

Serial communication interfaces: SCI, SPI, CAN, BDLC

Background debug mode (BDM)

8-bit or 10-bit A/D converter

Instructions for supporting fuzzy logic function

H. Huang Transparency No.1-5

The 68HC12 Microcontroller

Block Diagram of MC68HC12

L <«— PADO

RAM —

: —3 PTO
FLASH Timer & >

Pulse Accumulator —> Port T
CPU12 —>

<~ PSO

SCI «—>
/o I —> Port S

SPI «—

PWM = PO
DI Port P

/0O |« «—>

. T

il

Port A* Port B* * Multiplex : Simple 1/0 or Extended Address/Data

A
A 4

v

A
v

H. Huang Transparency No.1-6

The 68HC12 Microcontroller

The 68HC12 Family

e 68HC12 Family Members

— Different memory and number/type of on-chip peripheral
functions

— Vary in fabrication methods (different power requirements,
environmental tolerances, cost)

Huang Text : CME-12BC32 || Our lab : CML-9S12DP256

« Made from socket parts e Made from surface-mount parts
* One SCI channel Two SCI Channels
» 1 A/D Converter » 2 A/D Converters

Concepts : Use Text
Specifics : Use Hardware Reference Manuals (posted on website)

H. Huang Transparency No.1-7

The 68HC12 Microcontroller

HC12 Programmer’s Model

8-bit accumulator A and B

or
15 D 0] 16-bit double accumulator D

\l
>
=
\l
o
o

15 X O| Index register X
15 Y 0| Index register Y
15 SP 0| Stack pointer

15 PC 0[Program counter

Figure 1.3 MC68HC12 CPU registers.

H. Huang Transparency No.1-8

The 68HC12 Microcontroller

Condition Code Register

I 6 S 4 0

3 2 L

Figure 2.8 Condition code register

C : Carry Flag
Set If carry generated as a result of an operation
V : Overflow Flag
Sets if result of 2’s complement arithmetic operation is out of range
Z : Zero Flag
Set if result of an operation is zero
N : Negative Flag
Set if MSB of the result of an operation = 1
H : Half-carry Flag
Set if carry from lower four bits to upper four bits as a result
of an operation

H. Huang Transparency No.1-9

The 68HC12 Microcontroller

Instruction Set

- 68HC12 instructions: one/two bytes -> opcode; zero-five bytes
-> operand (addressing information).

Opcode

$18 | |Opcode

Operands

- Opcode: operation to be performed. First byte of two-byte opcode always $18.

- Instruction (opcodes) classified into three groups
1. Data Transfer
2. Data Manipulation (Arithmetic and Logic)
3. Control Flow

H. Huang Transparency No.1-10

The 68HC12 Microcontroller

Source Code

- Program written in assembly or high-level language
Object Code

- Output of an assembler or compiler

- Executable program in binary format (machine instructions)

line addr. machine code (Assembly) source code
1: = 00001000 org $1000
2: 1000 B6 0800 Idaa $800
3: 1003 BB 0801 adda $801
4: 1006 BB 0802 adda $802
6: 1009 7A 0900 staa $900
end

H. Huang Transparency No.1-11

The 68HC12 Microcontroller

Memory Format of the 68HC12 family

o« HC12: 16-bit processor. It can read 16-bit words
organized as 8-bit bytes.

— On Motorola’s, words accessed with Big Endian format

Address Data

Memory Byte at Address 1202 = $A2
Address $1200 - Word at Address 1202 = $A295
10 T $1201 |73 | o Big Endian
$1202 A2 —— %1010 0010

$1203 95
$1204 | 0A

\ Data is 8 bits

H. Huang Transparency No.1-12

The 68HC12 Microcontroller

MC68HC12 Memory Map

Different members of the HC12 family: different amounts of on-chip
SRAM, EEPROM and flash memory

Education boards: external SRAM and EEPROM to facilitate
program downloading/debugging

HC12 can only access 64Kbytes of memory (16-bit processor).
Larger memory spaces: special “bank-switching” technigues

Memory mapped to allocate different kinds of data and instructions
(single-chip; expanded mode)

More information about memory mapping: board’s user manual.

H. Huang Transparency No.1-13

The 68HC12 Microcontroller

MC68HC12 Memory Map for DP256

FFFF
FFOO

8000
TFFF

4000
3FFF

1000
OFFF

400

Lab

Vector Address

EEPROM and Flash

16kbytes External RAM

Jid

12Kbytes Internal RAM

<

4kbytes Internal EEPROM

1000
BFF

3FF
200

Peripheral Area

1FF
0000

HC12 Internal Registers

Simulator

FFFF

8000

External EEPROM

7FFF

N
400

16kbytes External RAM

3FFF

1FFF

8 kbytes Internal EEPROM

800

1 Kbytes Internal RAM

3FF

200

Peripheral Area

1FF
0000

HC12 Internal Registers

H. Huang Transparency No.1-16

The 68HC12 Microcontroller

HC12 Simulator

« Microcontroller simulator: tool (program) that replicates
the operation of a microcontroller
— Learn about/ develop code without having the hardware

e HC12 simulator mimics operation of HC12 microcontroller
— Displays and changes “registers”
— Displays and changes “memory”

— “Executes” code, changing contents of simulated memory/ registers
according to the semantics of instructions executed

H. Huang Transparency No.1-17

The 68HC12 Microcontroller

HC12 Simulator

We will use a freeware simulator available at
http://www.electronikladen.de/hc12

This simulator is a Java program, so you will need to have a JDK on your
machine

WWW.Sun.org

Instructions for running the simulator are provided in a note on the course
webpage.

H. Huang Transparency No.1-18

The 68HC12 Microcontroller

Simulator Demo

H. Huang Transparency No.1-19

The 68HC12 Microcontroller

/0O Ports and I/O Addresses

Enable exchange of data between chip and external 1/0 devices
- A port for a particular device identified by I/0O Address

Address|o———
Decoder
ﬁ CE CE
Interface Interfaceo e o
chip 1 chip 1

Micro
pI’OCGSSOI’ jE jE
Data Bus >

Figure 7.1 Interface chip, 1/0O devices, and microprocessor

H. Huang Transparency No.1-20

The 68HC12 Microcontroller

1/O Addressing Schemes: Isolated 1/0

- Based on a separate address space for 1/O devices.
- Programming: use dedicated instructions for I/O operations.

(Control (RD/WR) Memory Map
N Processor
FFFF
/0 Map
Address OxFF
— Memory
0000
1/O Device 0000

1/0 Control (IOR/IOW)

H. Huang Transparency No.1-21

The 68HC12 Microcontroller

I/O Addressing Scheme : Memory Mapped 1/O

Both 1/0 and memory shared same memory space.
Programmer’s: same instructions for both memory and 1/O

Control (RD/WR)

Processor

Address

Memory

/O Device

FFFF

0000

Memory Map

1/0O Map

H. Huang Transparency No.1-22

The 68HC12 Microcontroller
Programming MicroControllers

Using a High-level Language

» Syntax: closer to human languages

e Translator (Compiler): convert program in high-level language into machine language
» Allow the users to work on the program logic at higher level.

Machine Language (executable code)
» Sequence of binary digits that can be executed by the processor

Assembly Language (mnemonic code)

« Assembly instruction: representation of a machine instruction
(1 assembly instruction = 1 machine instruction)

» Hard to understand, program, and debug for humans

Real-Time Embedded Systems programming
» High level languages not adequate: performance issues
« Memory space (Java exe >> C exe >> Assembly exe = machine exe)

H. Huang Transparency No.1-23

The 68HC12 Microcontroller

68HC12 Instruction Examples: Load and Store

- copies contents of operand into CPU register.

- save contents of CPU register into memory location.

- Execution affects certain flags
- N and Z flags of the CCR automatically updated; V flag cleared.

Learning HC12 Instructions : (1) Built-in Operands

Mnemonic Function Operation
STAA Store A A) =M

STAB Store B B) =M

STD Store D A)=M, (B) =>M+1
STS Store SP SP)=M, M+1

STX Store X X) =>M:M+1

STY Store Y (Y)=>M:M+1

H. Huang Transparency No.1-24

The 68HC12 Microcontroller

Learning New HC12 Instructions (1) : Built-in Operands

Mnemonic Function Qperation
LDAA |Load A M) = A
LDAB |Load B M) =B
LDD Load D M:M+1 :>gA:B)
LDS Load SP M:M+1) =SP
LDX Load index register X M:M+1) = X
LDY Load index register Y M:M+1) = X
LEAS | Load effective address into SP | Effective address=SP
LEAX |Load effective address into X | Effective address=X
LEAY |Load effective address into Y | Effective address=Y

H. Huang Transparency No.1-25

The 68HC12 Microcontroller

Flags = SXHINZVC

Learning New HC12 Instructions (2) : Addressing Modes

Source Operation Mode Coding Flags
LDAA #opr8i (M)=>A IMM 86 il ----XX0-
LDAA opr8a Load Accumulator A | DIR 96 ii

LDAA oprl6a EXT B6 hh

LDAA oprx0_xysp IDX A6 xb

LDAA oprx9, xysp IDX1 A6 xb ff

LDAA oprx16,xysp IDX2 A6 Xxb ee ff

LDAA [D, xysp] [D,IDX] | A6 xb

LDAA [IDX2] | A6 xbee ff
[oprx16,xysp]

H. Huang Transparency No.1-26

The 68HC12 Microcontroller

Addressing Modes

Inherent Addressing Mode

- Instructions do not use extra bytes for operands: instructions
either do not need operands or all operands are
CPU registers.

- Operands are implied by the opcode.

- Examples:
NOP
INX

DECA
H. Huang Transparency No.1-27

The 68HC12 Microcontroller

Immediate Addressing Mode
- Operands included in the instruction.

- CPU does not access memory for operands.

- Examples:
LDAA #$55
LDX #$800

Operand Compatibility
- What if we now have LDX #$55 ?

Instruction encoding :
e LDAA #3$55 86 55

e LDX #$55 CE 00 55

- What’s wrong with this ? LDAA #$1234

H. Huang Transparency No.1-28

The 68HC12 Microcontroller

Direct Addressing Mode
- Can only specify memory locations in the range of 0— 255.

- Uses only one byte to specify the operand address.

- Examples:
LDAA $20
LDAB $40

Extended Addressing Mode

- Full 16-bit address provided in the instruction.

- Examples:
LDAA $4000
LDX $FE60

H. Huang Transparency No.1-29

The 68HC12 Microcontroller

Indexed Addressing Mode(s)

 Operand tells how to calculate effective address of the data

e Many forms calculate address as sum of parts

o Parts = registers and/or constants.

o Effective address = Sum of index register (X, Y, PC, or SP) and
offset to specify address of an operand.

 Offset can be 5-bit, 9-bit, and 16-bit signed value or value in
accumulator A, B, or D

Hence, the many different forms ...

H. Huang Transparency No.1-30

The 68HC12 Microcontroller
The Various Forms of Indexed Addressing

1. 5-bit Constant Offset (Indexed Addressing)

Examples: 0ldaa 0,X stab -8,X
The range of the offset : -16 to +15.

2. 9-bit Constant Offset
Examples: ldaa $FF,X Idab -20,Y

The range of the offset : -256 to +255

3. 16-bit Constant Offset
Examples: 0Bdaa 2000,X staa 4000,Y

Allows access any location in the 64-KB range

4. Accumulator Offset
Examples: ldaa B,X stab B,Y

The offset is contained in either A, B or the 16-bit accumulator D.

H. Huang Transparency No.1-31

The 68HC12 Microcontroller

16-bit Constant Indirect Indexed Addressing Mode

- 16-bit offset added to index register to form address of memory
location containing a pointer to memory location affected by
the instruction.

- Square brackets distinguish this addressing mode from 16-bit
constant offset indexing. For example,

LDAA [10,X]
STAA [20,Y]

Compare : LDAA 10, X
LDAA [10,X]

H. Huang Transparency No.1-32

The 68HC12 Microcontroller

16-bit Constant Indirect Indexed Addressing (example)

1000

100A
100B

1020
1021

1022

LDAA 10, X

LDAA [10, X]

10
22

2F
10
r

; Suppose X=1000
. A <- m(0O00A+1000) =

; A <- m[m(000A+1000)]

10

= m(1022) = ff

H. Huang Transparency No.1-33

The 68HC12 Microcontroller

Transfer and Exchange Instructions

- Copy the contents of a CPU register or accumulator into
another CPU register or accumulator.

1. Universal Transfer Instruction: TFR abcdxys, abcdxys
TFR A, B Transfers contents of Ato B

 TFR does not affect any flags.

2. Specific Transfer Instructions
TAB Transfers contents of Ato B

TBA Transfer contents of B to A
 Both affect the N, Z, and V condition code bits.

H. Huang Transparency No.1-34

The 68HC12 Microcontroller

Transfer and Exchange Instructions

3. Exchange contents of a pair of registers or accumulators.
EXG A, B Swap contents of A and B

4. Sign-extend 8-bit two’s complement number into a 16- bit
number

SEX A, X Move contents of A into LSB of X,
and sign extend

e Purpose: To use an 8-bit value in 16-bit signed operations.

H. Huang Transparency No.1-35

The 68HC12 Microcontroller

Move Instructions

- Move data bytes or words from a source to a destination in memory.

- Six combinations of immediate, extended, and index addressing modes
allowed to specify source/destination addresses:

IMM = EXT, IMM = IDX, EXT = EXT,
EXT = IDX, IDX = EXT, IDX = IDX

- Examples:
MOVB $100,%$800

MOVW 0,X, 0,Y

H. Huang Transparency No.1-36

Add and Subtract Instructions

The 68HC12 Microcontroller

Flags = SXHINZVC

» Destinations of these instructions are always a CPU register or accumulator.

Source Operation Mode Coding Flags
ADDA #opr8i (A)+(M)=>A IMM 8B il - - X = XXXX
ADDA opr8a Add w/o Carry to A | DIR 9B il

ADDA oprl6a EXT BB hh ll

ADDA oprx0_xysp IDX AB xb

ADDA oprx9, xysp IDX1 AB xb ff

ADDA IDX2 AB xb ee
oprx16,xysp ff

ADDA [D, xysp] [D,IDX] | AB xb

ADDA [IDX2] | AB xbee
[oprx16,xysp] ff

H. Huang Transparency No.1-37

The 68HC12 Microcontroller

Variations of the Same Theme
Adding TO OTHER registers
adda $800 ; A < [A] + [$800]
addb $800 , B [B] + [$800]
addd $800 ; D <« [D] + [$800] WORD!

fl

Adding TWO registers

aba ; A < [A] + [B]
abx < [B] + [X]

Notice : Order
aby . Y < [B] + [Y]

of operands

H. Huang Transparency No.1-38

The 68HC12 Microcontroller

Addition Overflow

Problem: Fixed width registers have limited range.

Overflow: result of an operation outside the range that
can be represented

8-bit Unsigned Integer Example:
255, = 11111111,
+ 1, = 00000001
256 ?? 0,, = (1) 0000 0000,

Need 9 bits to
represent result

In this (unsigned) case, with fixed 8-bits: OVERFLOW OCCURRED!
o Acarry @ msb is important in the INTERPRETATION of the result.

H. Huang Transparency No.1-39

The 68HC12 Microcontroller

Addition Overflow

Is that the only interpretation of the example?

1111 1111,
+ 00000001,
(1) 0000 0000,

Result is correct if the values are interpreted as 2’s
complement signed integers! (-1 + 1 =0)

e |n that case, no overflow, and carry at MSB
not important!

H. Huang Transparency No.1-40

The 68HC12 Microcontroller

Addition Overflow

OVERFLOW DEPENDS ON THE INTERPRETATION OF
VALUES!

Another example:

unsigned signed
0111 1111, 127 127
+ 0000 0001, + 1 + 1
1000 0000, 128 — 128
UNSIGNED OVERFLOW SIGNED OVERFLOW did occur!
Did NOT occur (even though there is no carry
outside of fixed width!)
« The C flag is cleared. * The V flag Is set.

H. Huang Transparency No.1-41

The 68HC12 Microcontroller

Example: Suppose that A contains $73
Execute: ADDA #3$40
$73 +%40 = ? Overflow ?
Results: A = $B3 (=%10110011)
Z:=0 result=0
N :=1 resultis negative (signed)
C =0 (no carry out of mshit)

V=1 +ve + +ve = —ve

H. Huang Transparency No.1-42

