
H. Huang Transparency No.1-1

The 68HC12 Microcontroller

Chapter 1

Introduction to 68HC12

Assembly Notation :
Intel Motorola

binary 10010011b %10010011

decimal 1478 1478

hexadecimal 5678h $5678

H. Huang Transparency No.1-2

The 68HC12 Microcontroller

SYSC-2001 Review : Computer Hardware Organization

Control Unit

Datapath

Arithmetic
Logic Unit

Registers

Processor

Common Bus (address, data, & control)

Memory
Program &
Data Storage

Output
Units

Input
Units

Figure 1.1 Computer Organization

H. Huang Transparency No.1-3

The 68HC12 Microcontroller

CPU: Microprocessor versus Microcontroller

• Microprocessor: processor on a single integrated chip
– Intel 80x86, Motorola 680x0 families...

• Microprocessors evolved in two general directions:
– Performance: processing power, data storage
– Integration: amount of circuits on one chip

• Microcomputer: computer using microprocessor as CPU
– Combines microprocessor/peripheral chips -> computer system
– i.e.: PC => Intel 80x86 + memory + timer + keyboard +

modem (etc.) chips

• Microcontroller: computer system on a chip
– Microprocessor AND peripheral functions implemented on one chip
– Built-in memory and interface circuits (I/O units)

H. Huang Transparency No.1-4

The 68HC12 Microcontroller

MicroComputer versus MicroController System

Memory

I/O Components

Power

Clock

Micro
Processor
CPU

Memory

I/O Components

Power

Clock
Extended
Memory

Other I/O
Peripheral

Micro
Processor
CPU

H. Huang Transparency No.1-5

The 68HC12 Microcontroller

Features of the 68HC12 Microcontroller

- 16-bit CPU
- 64 Kb memory space
- 768 bytes to 4 Kb of EEPROM
- 1 Kb to 12 Kb of on-chip SRAM
- 32 Kb to 128 Kb flash memory
- Sophisticated timer functions including: input capture, output

compare, pulse accumulators, real-time interrupt, COP timer
- Serial communication interfaces: SCI, SPI, CAN, BDLC
- Background debug mode (BDM)
- 8-bit or 10-bit A/D converter
- Instructions for supporting fuzzy logic function

H. Huang Transparency No.1-6

The 68HC12 Microcontroller

Block Diagram of MC68HC12

EEPROM

RAM

FLASH

CPU12

A/D Converter

Timer &
Pulse Accumulator

SCI
I/O
SPI

PWM

I/O

PAD0

PT0

PS0

PP0

Port AD

Port T

Port S

Port P

Port A* Port B* * Multiplex : Simple I/O or Extended Address/Data

H. Huang Transparency No.1-7

The 68HC12 Microcontroller

The 68HC12 Family
• 68HC12 Family Members

– Different memory and number/type of on-chip peripheral
functions

– Vary in fabrication methods (different power requirements,
environmental tolerances, cost)

Huang Text : CME-12BC32

• Made from socket parts
• One SCI channel
• 1 A/D Converter

Our lab : CML-9S12DP256

• Made from surface-mount parts
• Two SCI Channels
• 2 A/D Converters

Concepts : Use Text
Specifics : Use Hardware Reference Manuals (posted on website)

H. Huang Transparency No.1-8

The 68HC12 Microcontroller

7 007A B
15 0D

8-bit accumulator A and B
or
16-bit double accumulator D

15 0X

15 0Y

Index register X

Index register Y

15 0SP Stack pointer

15 0PC Program counter

Figure 1.3 MC68HC12 CPU registers.

HC12 Programmer’s Model

H. Huang Transparency No.1-9

The 68HC12 Microcontroller

Condition Code Register

S X I

7 6 5 4 3 2 1 0

Figure 2.8 Condition code register

H N Z V C

C : Carry Flag
Set if carry generated as a result of an operation

V : Overflow Flag
Sets if result of 2’s complement arithmetic operation is out of range

Z : Zero Flag
Set if result of an operation is zero

N : Negative Flag
Set if MSB of the result of an operation = 1

H : Half-carry Flag
Set if carry from lower four bits to upper four bits as a result

of an operation

H. Huang Transparency No.1-10

The 68HC12 Microcontroller

Instruction Set
- 68HC12 instructions: one/two bytes -> opcode; zero-five bytes

-> operand (addressing information).

- Opcode: operation to be performed. First byte of two-byte opcode always $18.

- Instruction (opcodes) classified into three groups
1. Data Transfer
2. Data Manipulation (Arithmetic and Logic)
3. Control Flow

Opcode

$18 Opcode

Operands

H. Huang Transparency No.1-11

The 68HC12 Microcontroller

line

1:

2:

3:

4:

6:

addr.

1000

1003

1006

1009

machine code

= 00001000

B6 0800

BB 0801

BB 0802

7A 0900

(Assembly) source code

org $1000

ldaa $800

adda $801

adda $802

staa $900

end

Source Code

- Program written in assembly or high-level language

Object Code

- Output of an assembler or compiler

- Executable program in binary format (machine instructions)

H. Huang Transparency No.1-12

The 68HC12 Microcontroller

Memory Format of the 68HC12 family

• HC12: 16-bit processor. It can read 16-bit words
organized as 8-bit bytes.

– On Motorola’s, words accessed with Big Endian format

5E
73
A2
95
0A

$1200
$1201
$1202
$1203
$1204

Address Data

1202

Memory
Address

Data is 8 bits

%1010 0010

Byte at Address 1202 = $A2
Word at Address 1202 = $A295

Big Endian

H. Huang Transparency No.1-13

The 68HC12 Microcontroller

MC68HC12 Memory Map

• Different members of the HC12 family: different amounts of on-chip
SRAM, EEPROM and flash memory

• Education boards: external SRAM and EEPROM to facilitate
program downloading/debugging

• HC12 can only access 64Kbytes of memory (16-bit processor).
Larger memory spaces: special “bank-switching” techniques

• Memory mapped to allocate different kinds of data and instructions
(single-chip; expanded mode)

• More information about memory mapping: board’s user manual.

H. Huang Transparency No.1-16

The 68HC12 Microcontroller

MC68HC12 Memory Map for DP256

Vector Address
EEPROM and Flash

16kbytes External RAM

12Kbytes Internal RAM

4kbytes Internal EEPROM

Peripheral Area

HC12 Internal Registers0000

FFFF
FF00

4000
3FFF

1000
0FFF

400
3FF

200
1FF

8000
7FFF

External EEPROM

16kbytes External RAM

8 kbytes Internal EEPROM

1 Kbytes Internal RAM

Peripheral Area

HC12 Internal Registers0000

FFFF

4000
3FFF

3FF

200
1FF

8000
7FFF

Lab Simulator

800

1000

1FFF

BFF

Code

Data

H. Huang Transparency No.1-17

The 68HC12 Microcontroller

HC12 Simulator

• Microcontroller simulator: tool (program) that replicates
the operation of a microcontroller

– Learn about/ develop code without having the hardware

• HC12 simulator mimics operation of HC12 microcontroller
– Displays and changes “registers”
– Displays and changes “memory”
– “Executes” code, changing contents of simulated memory/ registers

according to the semantics of instructions executed

H. Huang Transparency No.1-18

The 68HC12 Microcontroller

HC12 Simulator

We will use a freeware simulator available at
http://www.electronikladen.de/hc12

This simulator is a Java program, so you will need to have a JDK on your
machine
www.sun.org

Instructions for running the simulator are provided in a note on the course
webpage.

H. Huang Transparency No.1-19

The 68HC12 Microcontroller

Simulator Demo

H. Huang Transparency No.1-20

The 68HC12 Microcontroller

Address
Decoder

Micro
processor

Data Bus

Interface
chip 1

Interface
chip 1

Figure 7.1 Interface chip, I/O devices, and microprocessor

CE CE

I/O Ports and I/O Addresses

Enable exchange of data between chip and external I/O devices
- A port for a particular device identified by I/O Address

H. Huang Transparency No.1-21

The 68HC12 Microcontroller

I/O Addressing Schemes: Isolated I/O

- Based on a separate address space for I/O devices.
- Programming: use dedicated instructions for I/O operations.

Processor

Memory

I/O Device

Memory Map

0000

FFFF

Control (RD/WR)

Address

Data

I/O Control (IOR/IOW)

I/O Map

0000

0xFF

H. Huang Transparency No.1-22

The 68HC12 Microcontroller

I/O Addressing Scheme : Memory Mapped I/O

• Both I/O and memory shared same memory space.
• Programmer’s: same instructions for both memory and I/O

Processor

Memory

I/O Device

Memory Map

I/O Map

0000

FFFF
Control (RD/WR)

Address

Data

H. Huang Transparency No.1-23

The 68HC12 Microcontroller

Programming MicroControllers

Using a High-level Language
• Syntax: closer to human languages
• Translator (Compiler): convert program in high-level language into machine language
• Allow the users to work on the program logic at higher level.

Machine Language (executable code)
• Sequence of binary digits that can be executed by the processor

Assembly Language (mnemonic code)
• Assembly instruction: representation of a machine instruction

(1 assembly instruction = 1 machine instruction)
• Hard to understand, program, and debug for humans

Real-Time Embedded Systems programming
• High level languages not adequate: performance issues
• Memory space (Java exe >> C exe >> Assembly exe = machine exe)

H. Huang Transparency No.1-24

The 68HC12 Microcontroller

68HC12 Instruction Examples: Load and Store
- LOAD: copies contents of operand into CPU register.

- STORE: save contents of CPU register into memory location.

- Execution affects certain flags

- N and Z flags of the CCR automatically updated; V flag cleared.

Learning HC12 Instructions : (1) Built-in Operands

STAA
STAB
STD
STS
STX
STY

Mnemonic Function Operation
Store A
Store B
Store D
Store SP
Store X
Store Y

(A) ⇒M
(B) ⇒M
(A) ⇒M, (B) ⇒M+1
(SP) ⇒ M, M+1
(X) ⇒M:M+1
(Y) ⇒M:M+1

H. Huang Transparency No.1-25

The 68HC12 Microcontroller

Mnemonic
LDAA
LDAB
LDD
LDS
LDX
LDY
LEAS
LEAX
LEAY

Function
Load A
Load B
Load D
Load SP
Load index register X
Load index register Y
Load effective address into SP
Load effective address into X
Load effective address into Y

Operation
(M) ⇒ A
(M) ⇒B
(M:M+1) ⇒(A:B)
(M:M+1) ⇒SP
(M:M+1) ⇒ X
(M:M+1) ⇒ X
Effective address ⇒SP
Effective address ⇒X
Effective address ⇒Y

Learning New HC12 Instructions (1) : Built-in Operands

H. Huang Transparency No.1-26

The 68HC12 Microcontroller

Learning New HC12 Instructions (2) : Addressing Modes

A6 xb ee ff[IDX2]LDAA
[oprx16,xysp]

A6 xb[D,IDX]LDAA [D, xysp]
A6 xb ee ffIDX2LDAA oprx16,xysp
A6 xb ffIDX1LDAA oprx9, xysp
A6 xbIDXLDAA oprx0_xysp
B6 hh llEXTLDAA opr16a

96 iiDIRLoad Accumulator ALDAA opr8a
----xx0-86 iiIMM(M)=>ALDAA #opr8i
FlagsCodingModeOperationSource

Flags = SXHINZVC

H. Huang Transparency No.1-27

The 68HC12 Microcontroller

Addressing Modes

Inherent Addressing Mode

- Instructions do not use extra bytes for operands: instructions
either do not need operands or all operands are

CPU registers.

- Operands are implied by the opcode.

- Examples:

NOP

INX

DECA

H. Huang Transparency No.1-28

The 68HC12 Microcontroller

Immediate Addressing Mode
- Operands included in the instruction.

- CPU does not access memory for operands.

- Examples:

LDAA #$55

LDX #$800

Operand Compatibility :
- What if we now have LDX #$55 ?

Instruction encoding :
• LDAA #$55 86 55

• LDX #$55 CE 00 55

- What’s wrong with this ? LDAA #$1234

H. Huang Transparency No.1-29

The 68HC12 Microcontroller

Direct Addressing Mode
- Can only specify memory locations in the range of 0– 255.

- Uses only one byte to specify the operand address.

- Examples:

LDAA $20

LDAB $40

Extended Addressing Mode
- Full 16-bit address provided in the instruction.

- Examples:

LDAA $4000

LDX $FE60

H. Huang Transparency No.1-30

The 68HC12 Microcontroller

Indexed Addressing Mode(s)

• Operand tells how to calculate effective address of the data

• Many forms calculate address as sum of parts

• Parts = registers and/or constants.

• Effective address = Sum of index register (X, Y, PC, or SP) and
offset to specify address of an operand.

• Offset can be 5-bit, 9-bit, and 16-bit signed value or value in
accumulator A, B, or D

Hence, the many different forms …

H. Huang Transparency No.1-31

The 68HC12 Microcontroller

The Various Forms of Indexed Addressing

1. 5-bit Constant Offset (Indexed Addressing)

Examples : ldaa 0,X stab -8,X

2. 9-bit Constant Offset

Examples : ldaa $FF,X ldab -20,Y

3. 16-bit Constant Offset

Examples: ldaa 2000,X staa 4000,Y

4. Accumulator Offset

Examples: ldaa B,X stab B,Y

The range of the offset : -16 to +15.

The range of the offset : -256 to +255

Allows access any location in the 64-KB range

The offset is contained in either A, B or the 16-bit accumulator D.

H. Huang Transparency No.1-32

The 68HC12 Microcontroller

16-bit Constant Indirect Indexed Addressing Mode

- 16-bit offset added to index register to form address of memory
location containing a pointer to memory location affected by

the instruction.

- Square brackets distinguish this addressing mode from 16-bit
constant offset indexing. For example,

LDAA [10,X]

STAA [20,Y]

Compare : LDAA 10, X

LDAA [10,X]

H. Huang Transparency No.1-33

The 68HC12 Microcontroller

1000

…

100A 10

100B 22

…

1020 2f

1021 10

1022 ff

LDAA 10, X ; Suppose X=1000

; A <- m(000A+1000) = 10

LDAA [10, X] ; A <- m[m(000A+1000)] = m(1022) = ff

16-bit Constant Indirect Indexed Addressing (example)

H. Huang Transparency No.1-34

The 68HC12 Microcontroller

Transfer and Exchange Instructions

- Copy the contents of a CPU register or accumulator into
another CPU register or accumulator.

1. Universal Transfer Instruction: TFR abcdxys, abcdxys

TFR A, B Transfers contents of A to B

• TFR does not affect any flags.

2. Specific Transfer Instructions

TAB Transfers contents of A to B

TBA Transfer contents of B to A

• Both affect the N, Z, and V condition code bits.

H. Huang Transparency No.1-35

The 68HC12 Microcontroller

Transfer and Exchange Instructions

3. Exchange contents of a pair of registers or accumulators.

EXG A, B Swap contents of A and B

4. Sign-extend 8-bit two’s complement number into a 16- bit
number

SEX A,X Move contents of A into LSB of X,
and sign extend

• Purpose: To use an 8-bit value in 16-bit signed operations.

H. Huang Transparency No.1-36

The 68HC12 Microcontroller

Move Instructions
- Move data bytes or words from a source to a destination in memory.

- Six combinations of immediate, extended, and index addressing modes
allowed to specify source/destination addresses:

IMM ⇒ EXT, IMM ⇒ IDX, EXT ⇒ EXT,

EXT ⇒ IDX, IDX ⇒ EXT, IDX ⇒ IDX

- Examples:

MOVB $100,$800

MOVW 0,X, 0,Y

H. Huang Transparency No.1-37

The 68HC12 Microcontroller

Add and Subtract Instructions
• Destinations of these instructions are always a CPU register or accumulator.

AB xb ee
ff

[IDX2]ADDA
[oprx16,xysp]

AB xb[D,IDX]ADDA [D, xysp]

AB xb ee
ff

IDX2ADDA
oprx16,xysp

AB xb ffIDX1ADDA oprx9, xysp
AB xbIDXADDA oprx0_xysp
BB hh llEXTADDA opr16a
9B iiDIRAdd w/o Carry to AADDA opr8a

- - x – x x x x8B iiIMM(A)+(M)=>AADDA #opr8i

FlagsCodingModeOperationSource

Flags = SXHINZVC

H. Huang Transparency No.1-38

The 68HC12 Microcontroller

Variations of the Same Theme

Adding TO OTHER registers

adda $800 ; A ⇐ [A] + [$800]

addb $800 ; B ⇐ [B] + [$800]

addd $800 ; D ⇐ [D] + [$800]

Adding TWO registers

aba ; A ⇐ [A] + [B]

abx ; X ⇐ [B] + [X]

aby ; Y ⇐ [B] + [Y]

WORD!

Notice : Order
of operands

H. Huang Transparency No.1-39

The 68HC12 Microcontroller

Addition Overflow

Problem: Fixed width registers have limited range.
Overflow: result of an operation outside the range that

can be represented

8-bit Unsigned Integer Example:
25510 = 1111 11112

+ 110 = 0000 0001
256 ?? 010 = (1) 0000 00002

In this (unsigned) case, with fixed 8-bits: OVERFLOW OCCURRED!
• A carry @ msb is important in the INTERPRETATION of the result.

Need 9 bits to
represent result

H. Huang Transparency No.1-40

The 68HC12 Microcontroller

Addition Overflow

Is that the only interpretation of the example?
1111 11112

+ 0000 00012

(1) 0000 00002

Result is correct if the values are interpreted as 2’s
complement signed integers! (– 1 + 1 = 0)

• In that case, no overflow, and carry at MSB
not important!

H. Huang Transparency No.1-41

The 68HC12 Microcontroller

Addition Overflow

OVERFLOW DEPENDS ON THE INTERPRETATION OF
VALUES!

Another example:
unsigned signed

0111 11112 127 127
+ 0000 00012 + 1 + 1

1000 00002 128 – 128
SIGNED OVERFLOW did occur!
(even though there is no carry
outside of fixed width!)
• The V flag is set.

UNSIGNED OVERFLOW
Did NOT occur

• The C flag is cleared.

H. Huang Transparency No.1-42

The 68HC12 Microcontroller

Example: Suppose that A contains $73

Execute: ADDA #$40

$73 + $40 = ? Overflow ?

Results: A := $B3 (= %1011 0011)

Z := 0 result ≠ 0

N := 1 result is negative (signed)

C := 0 (no carry out of msbit)

V := 1 +ve + +ve = −ve

