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OTTER 3.0 Reference Manual and Guide

by

William W. McCune
mccune@mcs.anl.gov

Abstract

Otter (Organized Techniques for Theorem-proving and Effective Re-
search) is a resolution-style theorem-proving program for first-order logic
with equality. Otter includes the inference rules binary resolution, hy-
perresolution, UR-resolution, and binary paramodulation. Some of its
other abilities and features are conversion from first-order formulas to
clauses, forward and back subsumption, factoring, weighting, answer
literals, term ordering, forward and back demodulation, evaluable func-
tions and predicates, and Knuth-Bendix completion. Otter is coded in
C, is free, and is portable to many different kinds of computer.

1 Introduction

Otter (Organized Techniques for Theorem-proving and Effective Research) is a
resolution-style theorem prover, similar in scope and purpose to the aura [22] and
lma/itp [15] theorem provers, which are also associated with Argonne. Otter
applies to statements written in first-order logic with equality. The primary design
considerations have been performance, portability, and extensibility. The program-
ming language C is used.

Otter features the inference rules binary resolution, hyperresolution, UR-
resolution, and binary paramodulation. These inference rules take a small set of
clauses and infer a clause; if the inferred clause is new, interesting, and useful, it is
stored and may become available for subsequent inferences.

Other features of Otter are the following:
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• Statements of the problem may be input either with first-order formulas or
with clauses (a clause is a disjunction with implicit universal quantifiers and
no existential quantifiers). If first-order formulas are input, Otter translates
them to clauses.

• Forward demodulation rewrites and simplifies newly inferred clauses with a
set of equalities, and back demodulation uses a newly inferred equality (which
has been added to the set of demodulators) to rewrite all existing clauses.

• Forward subsumption deletes an inferred clause if it is subsumed by any ex-
isting clause, and back subsumption deletes all clauses that are subsumed by
an inferred clause.

• A variant of the Knuth-Bendix method can search for a complete set of reduc-
tions and help with proof searches.

• Weight functions and lexical ordering decide the “goodness” of clauses and
terms.

• Answer literals can give information about the proofs that are found.

• Evaluable functions and predicates build in integer arithmetic, Boolean op-
erations, and lexical comparisons and enable users to “program” aspects of
deduction processes.

Although Otter has an autonomous mode, most work with Otter involves in-
teraction with the user. After the user has encoded a problem into first-order logic
or into clauses, he or she usually chooses inference rules, sets options to control the
processing of inferred clauses, and decides which input formulas or clauses are to
be in the initial set of support and which (if any) equalities are to be demodula-
tors. If Otter fails to find a proof, the user may wish to try again with different
initial conditions. In the autonomous mode, the user inputs a set of clauses and/or
formulas, and Otter does a simple syntactic analysis and decides inference rules
and strategies. The autonomous mode is frequently useful for the first attempt at a
proof.

1.1 What Otter Isn’t

Some of the first applications that come to mind when one hears “automated the-
orem proving” are number theory, calculus, and plane geometry, because these are
some of the first areas in which math students try to prove theorems. Unfortunately,
Otter cannot do much in these areas: interesting number theory problems usually
require induction, interesting calculus and analysis problems usually require higher-
order functions, and the first-order axiomatizations of geometry are not practical.
(Nonetheless, Art Quaife has proved many interesting theorems in number theory
and geometry using Otter [20, 19].) For practical theorem proving in inductive
theories, see the work of Boyer and Moore [2, 3].

Otter is also not targeted toward synthesizing or verifying formal hardware or
software systems. See [7, 6] for work in those areas.
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Summaries of other theorem-proving systems can be found in proceedings of the
recent Conferences on Automated Deduction (CADE) [23, 9].

1.2 History, New Features, and Changes

There have been several previous releases of Otter—version 0.9 was distributed
at CADE-9 in May 1988, version 1.0 was released in January 1989, version 2.0 in
March 1990, and version 2.2 July 1991. There was also a minor release, version
2.2ax, in January 1992.

Summary of New Features

• In the autonomous mode (Sec. 17.1), the user simply inputs clauses and/or
formulas, and Otter decides on inference rules and strategies.

• The hot list (Sec. 17.2) can be used to give emphasis to some of the input
clauses. (Suggested by Larry Wos.)

• The user can declare function symbols to be infix with associativity and prece-
dence so that expressions can be written in a natural way (Sec. 4.6).

• Clauses can be written in sequent notation (Sec. 17.11). (Suggested by Art
Quaife.)

• The new evaluable functions include bit string operations (Sec. 9) and floating-
point operations (Sec. 17.9).

• The inference rule gL builds in a generalization principle for cubic curves (Sec.
17.12). (Suggested by R. Padmanabhan.)

• The user can write in C his or her own evaluable operations (Sec. 17.10).

• Given clauses can be selected interactively (Sec. 6.1.1). (Suggested by Bob
Veroff.)

• Ordered hyperresolution (Sec. 6.1.9) has been implemented (suggested by Mark
Stickel) and is the default.

• Some optimizations have been implemented for propositional problems (Sec.
6.1.9).

• The justification lists for binary resolvents and paramodulants now tell which
literals or terms were unified to produce the clause (Sec 15).

Summary of Changes

• Term ordering has been simplified (Sec. 8).

• Factoring is now applied also as a simplification rule (Sec. 6.1.4); for example,
the clause p(x)|p(a) simplifies to p(a).
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• Conditional demodulators (Sec. 17.4) are written in a more natural way.

• Some of the options cause other options to be changed automatically. The
automatically changed options can now be overridden.

• Setting the flag binary_res causes the flags factor and unit_deletion to
be automatically set.

• The flag knuth_bendix causes a different set of options to be changed (Secs.
6.1.5 and 8.3).

• Multipliers in weight templates are written differently (Sec. 10).

• The parameter value that indicates “no limit” or “no action” has been changed
from 0 to −1 for the parameters max_seconds, max_mem, max_given, max_gen,
max_kept, max_literals, max_proofs, demod_limit, and report.

Bugs in Otter 2.2. The following bugs in Otter 2.2 have been fixed.

• Calculation of the level of a proof would sometimes cause Otter 2.2 to hang
just after printing the --- PROOF --- message.

• In some cases, Otter 2.2 would crash when doing complicated demodulation
during evaluation of a negative evaluable literal during hyperresolution.

• Unit deletion with a unit clause containing an answer literal with variables
not in the ordinary literal was not handled correctly.

• When a multiliteral clause merged into an equality unit and the flag
dynamic_demod was set, the equality would never become a demodulator.

1.3 Useful Background

This manual does not contain an introduction to first-order logic or to automated
deduction. We assume that the reader knows the basic terminology including term
(variable, constant, complex term), atom, literal, clause, propositional variable, func-
tion symbol, predicate symbol, Skolem constant, Skolem function, formula, and con-
junctive normal form (CNF), resolution, hyperresolution, and paramodulation. See
[25], [4], or [14] for an introduction to automated theorem proving, see [26] for an
overview of the field, see [21] and [1] for collections of important papers, and see
[24] for a list of outstanding general problems in the field.

2 Outline of Otter’s Inference Process

Once Otter gets going with its real work—making inferences and searching for
proofs—it operates on clauses and on clauses only. If the user inputs nonclausal
first-order formulas, Otter immediately generates clauses from them.
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As with its predecessors aura and lma/itp, Otter’s basic inference mechanism
is the given-clause algorithm, which can be viewed as a simple implementation of
the set of support strategy [25]. Otter maintains four lists of clauses:

usable. This list contains clauses that are available to make inferences.

sos. Clauses in list sos (set of support) are not available to make inferences; they
are waiting to participate in the search.

passive. These clauses do not directly participate in the search; they are used only
for forward subsumption and unit conflict. The passive list is fixed at input
and does not change during the search. See Sec. 12.

demodulators. These are equalities that are used as rules to rewrite newly inferred
clauses.

The main loop for inferring and processing clauses and searching for a refutation
operates mainly on the lists usable and sos:

While (sos is not empty and no refutation has been found)
1. Let given_clause be the ‘lightest’ clause in sos;
2. Move given_clause from sos to usable;
3. Infer and process new clauses using the inference rules in

effect; each new clause must have the given_clause as
one of its parents and members of usable as its other
parents; new clauses that pass the retention tests
are appended to sos;

End of while loop.

The set of support strategy requires the user to partition the input clauses into
two sets: those with support and those without. For each inference, at least one
of the parents must have support. Retained inferences receive support. In other
words, no inferences are made in which all parents are nonsupported input clauses.
At input time, Otter’s list sos is the set of supported clauses, and usable is the
nonsupported clauses. (Once the main loop has started, usable no longer corre-
sponds to nonsupported clauses, because sos clauses have moved there.) Otter’s
main loop implements the set of support strategy, because no inferences are made
in which all of the parents are from the initial usable list.

The following paragraph tries to answer the frequently asked question “At a cer-
tain point, Otter has all of the clauses available to make the inference I want, and
one of the potential parents is selected as the given clause—why doesn’t the program
make the inference?”

Otter’s main loop eliminates an important kind of redundancy. Suppose one
can infer clause C from clauses A and B, and suppose both A and B are in list
sos. If A is selected as the given clause, it will be moved to usable and inferences
will be made; but A will not mate with B to infer C, because B is still in sos.
We must wait until B has also been selected as given clause. Otherwise, we would
infer C twice. (The redundancy would be much worse with inference rules such
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as hyperresolution and UR-resolution that can use many parents.) In general, all
parents that participate in an inference must either have been in the initial usable
list or have been selected as given clauses. (This is not true when demodulators are
considered as parents.)

The procedure for processing a newly inferred clause new_cl follows; steps marked
with * are optional.

1. Renumber variables.
* 2. Output new_cl.
3. Demodulate new_cl (including $ evaluation).

* 4. Orient equalities.
* 5. Apply unit deletion.
6. Merge identical literals (leftmost copy is kept).

* 7. Apply factor-simplification.
* 8. Discard new_cl and exit if new_cl has too many literals or variables.
9. Discard new_cl and exit if new_cl is a tautology.

* 10. Discard new_cl and exit if new_cl is too ‘heavy’.
* 11. Sort literals.
* 12. Discard new_cl and exit if new_cl is subsumed by any clause

in usable, sos, or passive (forward subsumption).
13. Integrate new_cl and append it to sos.

* 14. Output kept clause.
15. If new_cl has 0 literals, a refutation has been found.
16. If new_cl has 1 literal, then search usable, sos, and

passive for unit conflict (refutation) with new_cl.
* 17. Print the proof if a refutation has been found.
* 18. Try to make new_cl into a demodulator.
-------------

* 19. Back demodulate if Step 18 made new_cl into a demodulator.
* 20. Discard each clause in usable or sos that is subsumed by

new_cl (back subsumption).
* 21. Factor new_cl and process factors.

Steps 19–21 are delayed until steps 1–18 have been applied to all clauses inferred
from the active given clause.

3 Starting Otter

Although Otter has a primitive interactive feature (Sec. 14), it is essentially a
noninteractive program. On unix-like systems it reads from the standard input and
writes to the standard output:

otter < input-file > output-file

No command-line options are accepted; all options are given in the input file.
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4 Syntax

Otter recognizes two basic types of statement: clauses and formulas. Clauses are
simple disjunctions whose variables are implicitly universally quantified. Otter’s
searches for proofs operate on clauses. Formulas are first-order statements without
free variables—all variables are explicitly quantified. When formulas are input,
Otter immediately translates them to clauses.

Function symbols and predicate symbols are sometimes referred to as functors
when the distinction is not important.

4.1 Comments

Comments can be placed in the input file by using the symbol %. All characters
from the first % on a line to the end of the line are ignored. Comments can occur
within terms. Comments are not echoed to the output file.

4.2 Names for Variables, Constants, Functions, and Predicates

Three kinds of character string, collectively referred to as names, can be used for
variables, constants, function symbols, and predicate symbols:

• An ordinary name is a string of alphanumerics, $, and _.

• A special name is a string of characters in the set *+-/\^<>=‘~:?@&!;# (and
sometimes |).

• A quoted name is any string enclosed in two quotation marks of the same type,
either " or ’. We have no trick for including a quotation mark of the same
type in a quoted name.

(The reason for separating ordinary and special names has to do with infix, prefix,
and postfix operators; see Sec. 4.6.) Although out of place here, for completeness
we list the meanings of the remaining printable characters.

• . (period) — terminates input expressions.

• % — starts a comment (which ends with the end of the line).

• ,()[]{} (and sometimes |) — are punctuation and grouping symbols.

Variables. Determining whether a simple term is a constant or a variable depends
on the context of the term. If it occurs in a clause, the symbol determines the type:
the default rule is that a simple term is a variable if it starts with u, v, w, x, y, or
z. If the flag prolog_style_variables is set, a simple term is a variable if and
only if it starts with an upper-case letter or with _. (Therefore, variables in clauses
must be ordinary names.) A simple term in a formula is a variable if and only if it
is bound by a quantifier.
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Reserved and Built-in Names. Names that start with $ are reserved for special
purposes, including evaluable functions and predicates (Sec. 9), answer literals and
terms (Sec. 11), and some internal system names. The name = and any name that
starts with eq, EQ, or Eq, when used as a binary predicate symbol, is recognized as an
equality predicate by the demodulation and paramodulation processes. And some
names, when they occur in clauses or formulas, are recognized as logic symbols.

Overloaded Symbols. The user can use a name for more than one purpose, for
example as a constant and as a 5-ary predicate symbol. When the flag check_arity
is set (the default), the user is warned about such uses. Some built-in names are
also overloaded; for example, | is used both for disjunction and as Prolog-style list
punctuation, and although - is built in as logical negation, it is generally used for
both unary and binary minus as well.

4.3 Terms and Atoms

Recall that, when interpreted, terms are evaluated as objects in some domain, and
atoms are evaluated as truth values. Constants and variables are terms. An n-
ary function symbol applied to n terms is also a term. An n-ary predicate symbol
applied to n terms is an atom. A nullary predicate symbol (also referred to as a
propositional variable) is also an atom.

The pure way of writing complex terms and atoms is with standard applica-
tion: the function or predicate symbol, opening parenthesis, arguments separated
by commas, then closing parenthesis, for example, f(a,b,c) and =(f(x,e),x). If
all subterms of a term are written with standard application, the term is in pure
prefix form. Whitespace (spaces, tabs, newlines, and comments) can appear in stan-
dard application terms anywhere except between a function or predicate symbol and
its opening parenthesis. If the flag display_terms is set, Otter will output terms
in pure prefix form.

Infix Equality. Some binary functors can be written in infix form; the most
important is =. In addition, a negated equality, -(a=b) can be abbreviated a!=b.

List Notation. Prolog-style list notation can be used to write terms that represent
lists. Table 1 gives some example terms in list notation and the corresponding pure
prefix form. Of course, lists can contain complex terms, including other lists.

Table 1: List Notation
[] $nil
[x|y] $cons(x,y)
[x,y] $cons(x,$cons(y,$nil))
[a,b,c,d] $cons(a,$cons(b,$cons(c,$cons(d,$nil))))
[a,b,c|x] $cons(a,$cons(b,$cons(c,x)))
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4.4 Literals and Clauses

A literal is either an atom or the negation of an atom. A clause is a disjunction of
literals. The built-in symbols for negation and disjunction are - and |, respectively.
Although clauses can be written in pure prefix form, with - as a unary symbol and
| as a binary symbol, they are rarely written that way. Instead, they are almost
always written in infix form, without parentheses. For example, the following is a
clause in both forms.

Pure prefix: |(-(a),|(=(b1,b2),-(=(c1,c2))))
Infix (abbreviated): -a | b1=b2 | c1!=c2

Otter accepts both forms. (Clauses are parsed by the general term-parsing mecha-
nism presented in Sec. 4.6).

4.5 Formulas

Table 2 lists the built-in logic symbols for constructing formulas.

Table 2: Logic Symbols
negation -
disjunction |
conjunction &
implication ->
equivalence <->
existential quantification exists
universal quantification all

Formulas in Pure Prefix Form. Although the practice is rarely done, formulas
can be written in pure prefix form. Quantification is the only tricky part: there is a
special variable-arity functor, $Quantified, for quantified formulas. For example,
∀xy∃z(P (x, y, z)|Q(x, z)) is represented by

$Quantified(all,x,y,exists,z,|(P(x,y,z),Q(x,z))).

If the flag display_terms is set, the formulas (and everything else) will be displayed
in pure prefix form.

Abbreviated Formulas. Formulas are usually abbreviated in a natural way. The
associativity and precedence rules for abbreviating formulas and the mechanism for
parsing formulas are presented in Sec. 4.6. Here are some examples.

standard usage Otter syntax (abbreviated)
∀xP (x) all x P(x)
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∀xy∃z(P (x, y, z) ∨ Q(x, z)) all x y exists z (P(x,y,z) | Q(x,z))
∀x(P (x) ∧Q(x) ∧R(x) → S(x)) all x (P(x) & Q(x) & R(x) -> S(x))

Note that if a formula has a string of identical quantifiers, all but the first
can be dropped. For example, all x all y all z p(x,y,z) can be shortened
to all x y z p(x,y,z). In expressions involving the associative operations &
and |, extra parentheses can be dropped. Moreover, a default precedence on
the logic symbols allows us to drop more parentheses: <-> has the same prece-
dence as ->, and the rest in decreasing order are ->, |, &, -. Greater prece-
dence means closer to the root of the term (i.e., larger scope). For example,
p | -q & r -> -s | t represents (p | (-(q) & r)) -> (-(s) | t), or in pure
prefix form, ->(|(p,&(-(q),r)),|(-(s),t)).

When in doubt about how a particular string will be parsed, one can simply
add additional parentheses and/or test the string by having Otter read it and
then display it in pure prefix form. The following input file can be used to test the
preceding example.

assign(stats_level, 0).
set(display_terms).
formula_list(usable).
p| -q&r-> -s|t. % This formula has minimum whitespace.
end_of_list.

In general, whitespace is required around all and exists and to the left of -;
otherwise, whitespace around the logic symbols can be removed. See Sec. 4.6 for
the rules.

4.6 Infix, Prefix, and Postfix Expressions

Many Prolog systems (for example Quintus and Sicstus) have a feature that allows
users to declare that particular function or predicate symbols are infix, prefix, or
postfix and to specify a precedence and associativity so that parentheses can some-
times be dropped. Otter has a similar feature. In fact, the clause and formula
parsing routines use the feature. Users who use only the predeclared logic operators
for clauses and formulas and the predeclared infix equality = can skip the rest of
this section.

Prolog users who are familiar with the declaration mechanism should note the
following differences between the Quintus/Sicstus mechanism and Otter’s.

• The predeclared operators are different. See Table 3.

• Otter does not treat comma as an operator; in particular, a,b,c cannot be
a term, as in a,b,c -> d,e,f.

• Otter treats the quantifiers all and exists as special cases, because they
don’t seem to fit neatly into the standard Prolog mechanism.
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• Otter requires whitespace in some cases where the Prologs do not.

Functors to be treated in this special way are given a type and a precedence.
Either Otter predeclares the functor’s properties, or the user gives Otter a com-
mand of one of the forms

op(precedence, type, functor).
op(precedence, type, list-of-functors).

The precedence is an integer i, 0 < i < 1000, and type is one of the following: xfx,
xfy, yfx (infix), fx, fy (prefix), xf, yf (postfix). See Table 3 for the commands
corresponding to the predeclared functors.

Table 3: Predeclared Functors
op(800, xfx, ->). op(700, xfx, @<).
op(800, xfx, <->). op(700, xfx, @>).
op(790, xfy, |). op(700, xfx, @<=).
op(780, xfy, &). op(700, xfx, @>=).

op(700, xfx, =). op(500, xfy, +).
op(700, xfx, !=). op(500, xfx, -).

op(700, xfx, <). op(500, fx, +).
op(700, xfx, >). op(500, fx, -).
op(700, xfx, <=).
op(700, xfx, >=). op(400, xfy, *).
op(700, xfx, ==). op(400, xfx, /).
op(700, xfx, =/=). op(300, xfx, mod).

Given an expression that looks like it might be associated in a number of ways,
the relative precedence of the operators determines, in part, how it is associated. A
functor with higher precedence is more dominant (closer to the root of the term),
and one with lower precedence binds more tightly. For example, the functors ->, |,
&, and - have decreasing precedence; therefore the expression p & - q | r -> s is
understood as ((p & (-q)) | r) -> s.

In each of the types, f represents the functor, and x and y, which represent the
expressions to which the functor applies, specify how terms are associated. Given
an expression involving functors of the same precedence, the types of the functors
determines, in part, the association. See Table 4. The following are examples of
associativity:

• If + has type xfy, then a+b+c+d is understood as a+(b+(c+d)).

• If -> has type xfx, then a->b->c is not well formed.

• If - has type fy, then - - -p is understood as -(-(-(p))). (The spaces are
necessary; otherwise, --- will be parsed as single name.)
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Table 4: Functor Types
xfx infix (binary) don’t associate
xfy infix (binary) associate right
yfx infix (binary) associate left
fx prefix (unary) don’t associate
fy prefix (unary) associate
xf postfix (unary) don’t associate
yx postfix (unary) associate

• If - has type fx, then - - -p is not well formed.

Caution: The associativity specifications in the infix functor declarations say noth-
ing about the logical associativity of the operation, e.g., whether (a+b)+c is the
same object as as a+(b+c). The specifications are only about parsing ambiguous
expressions. In most cases, when an operator is xfy or yfx, it is also logically
associative, but the logical associativity is handled separately; it is built-in in the
case of the logic symbols | and & in Otter clauses and formulas, and it must be
axiomatized in other cases.

Details of the Functor Declarations. (This paragraph can be skipped by most
users.) The precedence of functors extends to the precedence of expressions in the
following way. The precedence of an atomic, parenthesized, or standard application
expression is 0. Respective examples are p, (x+y), and p(a+b,c,d). The prece-
dence of a (well-formed) nonparenthesized nonatomic expression is the same as the
precedence of the root functor. For example, a&b has the precedence of &, and a&b|c
has the precedence of the greater functor. In the type specifications, x represents an
expression of lower precedence than the functor, and y represents an expression with
precedence less than or equal to the functor. Consider a+b+c, where + has type xfy;
if association is to the left, then the second occurrence of + does not fit the type,
because a+b, which corresponds to x, does not have a lower precedence than +; if
association is to the right, then all is well. If we extend the example, under the dec-
larations op(700, xfx, =) and op(500, xfy, +), the expression a+b+c=d+e must
be understood as (a+ (b+c))= (d+e).

4.7 Whitespace in Expressions

The reason for separating ordinary names from special names (Sec. 4.2) is so that
some whitespace (spaces, tabs, newline, and comments) can be removed. We can
write a+b+c (instead of having to write a + b + c), because “a+b+c” cannot be a
name, that is, it must be parsed into five names.

Caution. There is a deficiency in Otter’s parser having to do with whitespace
between a name and opening parenthesis. The rule to use is: Insert some white
space if and only if it is not a standard application. For example, the two pieces
of white space in (a+ (b+c))= (d+e) are required, and no white space is allowed
after f or g in f(x,g(x)).
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4.8 Bugs, etc., in Input and Output of Expressions

• The symbol | is either Prolog-style list punctuation or part of a special name.
With the built-in declaration of | as infix, the term [a|b] is ambiguous,
with possible interpretations t1 =$cons(a,b) and t2 =$cons(|(a,b),$nil).
Otter recognizes [a|b] as t1. The term t2 can be written [(a|b)]. The bug
is that t2 will be output without the parentheses. This is the only case I know
in which Otter cannot correctly read a term it has written.

• A term consisting of a unary + or - applied to a nonnegative integer is always
translated to a constant.

• Parsing large terms without parentheses, say a1+a2+a3+...+a1000, can be
very slow if the operator is left associative (yfx). If you intend to parse such
terms, make the operator right associative (xyf).

• Quoted strings cannot contain a quotation mark of the same type.

• The flag check_arity sometimes issues warnings when it should not.

• Braces ({}) can be used to group input expressions, but Otter always uses
ordinary parentheses on output.

4.9 Examples of Operator Declarations

Group Theory. Suppose we like to see group theory expressions in the form
(ab−1c−1−1)−1, in which right association is assumed. We can approximate this
for Otter with (a*b^ *c^ ^)^. (We have to make the group operator explicit;
-1 is not a legal Otter name; the whitespace shown is required.) The declara-
tions op(400, xfy, *) and op(350, yf, ^) suffice. Other examples of expres-
sions (with minimum whitespace) using these declarations are (x*y)*z=x*y*z and
(y*x)^ =x^ *y^.

Otter Options. Options are normally input (Sec. 5.1) as in the following exam-
ples.

set(prolog_style_variables).
clear(print_kept).
assign(max_given, 300).

If, however, we make the declarations (the precedences are irrelevant)

op(100, fx, set).
op(100, fx, clear).
op(100, xfx, assign).

then we may write
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set prolog_style_variables.
clear print_kept.
max_given assign 300.

5 Commands and the Input File

Input to Otter consists of a small set of commands, some of which indicate that
a list of objects (clauses, formulas, or weight templates) follows the command. All
lists of objects are terminated with end_of_list. The commands are given in Table
5. There are a few other commands for fringe features (Sec. 17).

Table 5: Commands
include(file name). % read input from another file
op(precedence, type, name(s)). % declare operator(s)
make evaluable(sym, eval-sym). % make a symbol evaluable
set(flag name). % set a flag
clear(flag name). % clear a flag
assign(parameter name,integer). % assign an integer to a parameter
list(list name). % read a list of clauses
formula list(list name). % read a list formulas
weight list(weight list name). % read weight templates
lex(symbol list). % assign an ordering on symbols
skolem(symbol list). % identify skolem functions
lrpo multiset status(symbol list). % status for LRPO

5.1 Input of Options

Otter recognizes two kinds of option: flags and parameters. Flags are Boolean-
valued options; they are changed with the set and the clear commands, which take
the name of the flag as the argument. Parameters are integer-valued options; they
are changed with the assign command, which takes the name of the parameter as
the first argument and an integer as the second. Examples are

set(binary_res). % enable binary resolution
clear(back_sub). % do not use back subsumption
assign(max_seconds, 300). % stop after about 300 CPU seconds

The options are described and their default values are given in Sec. 6.

5.2 Input of Lists of Clauses

A list of clauses is specified with one of the following and is terminated with
end_of_list. Each clause is terminated with a period.
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list(usable).
list(sos).
list(demodulators).
list(passive).

Example:

list(usable).
x = x. % reflexivity
f(e,x) = x. % left identity
f(g(x),x) = e. % left inverse
f(f(x,y),z) = f(x,f(y,z)). % associativity
f(z,x) != f(z,y) | x = y. % left cancellation
f(x,z) != f(y,z) | x = y. % right cancellation

end_of_list.

If the input contains more than one clause list of the same type, the lists will
simply be concatenated.

5.3 Input of Lists of Formulas

A list of formulas is specified with one of the following and is terminated with
end_of_list. Each formula is terminated with a period. (Note that demodulators
cannot be input as formulas.)

formula_list(usable).
formula_list(sos).
formula_list(passive).

Example (analogous to above):

formula_list(usable).
all a (a = a). % reflexivity
all a (f(e,a) = a). % left identity
all a (f(g(a),a) = e). % left inverse
all a b c (f(f(a,b),c) = f(a,f(b,c))). % associativity
all a b c (f(c,a) = f(c,b) -> a = b). % left cancellation
all a b c (f(a,c) = f(b,c) -> a = b). % right cancellation

end_of_list.

If the input contains more than one formula list of the same type, the lists will
simply be concatenated.

5.4 Input of Lists of Weight Templates

A list of weight templates is specified with one of the following and is terminated
with end_of_list. Each weight template is terminated with a period.
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weight_list(pick_given). % for selecting given clauses
weight_list(purge_gen). % for discarding generated clauses
weight_list(pick_and_purge). % for both picking and purging
weight_list(terms). % for ordering terms

Example:

weight_list(pick_and_purge).
weight(a, 0). % weight of constant a is 0
weight(g($(2)), -50). % twice weight of argument - 50
weight(P($(1),$(1)), 100). % sum of weights of args + 100
weight(x, 5). % all variables have weight 5
weight(f(g($(3)),$(4)), -300). % see Sec. ‘‘Weighting’’

end_of_list.

See Sec. 10 for the syntax and use of weight templates.

5.5 The Commands lex, skolem, and lrpo multiset status

Each of the commands lex, skolem, and lrpo_multiset_status takes a list of
terms as an argument. The lex command specifies an ordering on symbols, and the
others give properties to symbols. An example is

lex( [a, b, f(_,_), d, g(_), c] ).

The arguments of f and g serve as place-holders only; they identify f and g as
function or predicate symbols and specify the arity.

lex([...]). The lex command specifies an ordering (smallest-first) on function
and constant symbols. Lexical ordering on terms is used in four contexts:
orienting equality literals (Secs. 8.1.2 and 8.2.2), deciding whether an equal-
ity will be used as a demodulator (Secs. 8.1.3 and 8.2.3), deciding whether
to apply a lex-dependent demodulator (Secs. 8.1.4 and 8.2.4), and evaluat-
ing functions/predicates that perform lexical comparisons (Sec. 9). If a lex
command is not present, then Otter uses a default ordering (Sec. 8).

skolem([...]). The skolem command identifies constant and function symbols as
Skolem symbols. (If the user inputs quantified formulas and otter Skolem-
izes, this command is not necessary.) The Skolem property is used by the op-
tions para_skip_skolem (Sec. 6.1.3) and delete_identical_nested_skolem
(Sec. 6.1.4).

lrpo multiset status([...]). This command specifies multiset status for the lex-
icographic recursive path ordering (flag lrpo). See Sec. 8.2.
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5.6 Other Commands

The command op(precedence, type, name(s)), example op(400,xfy,+), declares
one or more symbols to have special properties with respect to input and output.
See Sec. 4.6.

The command make evaluable(symbol, evaluable-symbol), for example
make_evaluable(_+_, $SUM(_,_), copies evaluation properties from an evaluable
symbol to another symbol, so that one can write x+3 instead of $SUM(x,3). See
Sec. 9.1.

The command include(file name) causes input to be read from another input
file. When the included file has been read, Otter resumes reading commands after
the include command. The file name must be recognized as an Otter name, so
if it contains characters such as period, slash, or hyphen, it must be enclosed in
(single or double) quotes. Included files can include still other files. A list of objects
(clauses, formulas, or weight templates) cannot be split among different input files.
One can, however, read clauses into a list from more than one file, as in the following
example.

standard input file f1.in file f2.in
include("f1.in"). list(usable). list(usable).
include("f2.in"). p(a). p(b).

end_of_list. end_of_list.

6 Options

Flags are Boolean-valued options, and parameters are integer-valued options. When
the user changes an option, Otter sometimes automatically changes other options.
The user is informed in the output file when such a change occurs.

Several additional flags and parameters are described in Sec. 17.

6.1 Flags

6.1.1 Main Loop Flags

A given clause is taken from sos at the beginning of each iteration of the
main loop. The default is to take the lightest clause with respect to either
weight_list(pick_given) or weight_list(pick_and_purge). If neither weight
list is present, the weight of a clause is its number of symbols.

sos_queue — default clear. If this flag is set, the first clause in sos becomes the
given clause (the set of support list operates as a queue). This causes a breadth-first
search, also called level saturation. Some information about search levels is printed
(see Sec. 15) when this flag is set.

sos_stack — default clear. If this flag is set, the last clause in sos becomes the
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given clause (the set of support list operates as a stack). This causes a depth-first
search (which is almost never useful with Otter).

input_sos_first — default clear. If this flag is set, the input clauses in sos are
given a very low pick_given weight so that they are the first clauses selected as
given clauses.

interactive_given — default clear. If this flag is set, then when it’s time to select
a new given clause, the user is prompted for his or her choice. This flag has priority
over all other flags that govern selection of the given clause.

print_given — default set. If this flag is set, clauses are output when they become
given clauses.

print_lists_at_end — default clear. If this flag is set, then usable, sos, and
demodulators are printed at the end of the search.

6.1.2 Inference Rules

binary_res — default clear. If this flag is set, the inference rule binary resolution
(along with any other inference rules that are set) is used to generate new clauses.
Setting this flag causes the flags factor and unit_deletion to be automatically
set.

hyper_res — default clear. If this flag is set, the inference rule (positive) hyperres-
olution (along with any other inference rules that are set) is used to generate new
clauses.

neg_hyper_res — default clear. If this flag is set, the inference rule negative hy-
perresolution (along with any other inference rules that are set) is used to generate
new clauses.

ur_res — default clear. If this flag is set, the inference rule UR-resolution (unit-
resulting resolution) (along with any other inference rules that are set) is used to
generate new clauses.

para_into — default clear. If this flag is set, the inference rule “paramodulation
into the given clause” (along with any other inference rules that are set) is used to
generate new clauses. When using paramodulation, one should include the appro-
priate clause for reflexivity of equality, for example, x=x.

para_from — default clear. If this flag is set, the inference rule “paramodulation
from the given clause” (along with any other inference rules that are set) is used to
generate new clauses. When using paramodulation, one should include the appro-
priate clause for reflexivity of equality, for example, x=x.

demod_inf — default clear. If this flag is set, demodulation is applied, as if it were
an inference rule, to the given clause. This is useful when term rewriting is the main
objective. When this flag is set, the given clause is copied, then processed just like
any newly generated clause.
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6.1.3 Paramodulation Flags

para_from_left — default set. If this flag is set, paramodulation is allowed from the
left sides of equality literals. (Applies to both para_into and para_from inference
rules.)

para_from_right — default set. If this flag is set, paramodulation is allowed from
the right sides of equality literals. (Applies to both para_into and para_from
inference rules.)

para_into_left — default set. If this flag is set, paramodulation is allowed into left
sides of positive and negative equalities. (Applies to both para_into and para_from
inference rules.)

para_into_right — default set. If this flag is set, paramodulation is allowed into
right sides of positive and negative equalities. (Applies to both para_into and
para_from inference rules.)

para_from_vars — default clear. If this flag is set, paramodulation from variables
is allowed. Warning: setting this option may produce too many paramodulants.
(Applies to both para_into and para_from inference rules.)

para_into_vars — default clear. If this flag is set, paramodulation into variables
is allowed. Warning: setting this option may produce too many paramodulants.
(Applies to both para_into and para_from inference rules.)

para_from_units_only — default clear. If this flag is set, paramodulation is al-
lowed only if the from clause is a unit (equality). (Applies to both para_into and
para_from inference rules.)

para_into_units_only — default clear. If this flag is set, paramodulation is al-
lowed only if the into clause is a unit. (Applies to both para_into and para_from
inference rules.)

para_skip_skolem — default clear. If this flag is set, paramodulation is never
allowed into subterms of Skolem expressions [16]. (Applies to both para_into and
para_from inference rules.)

para_ones_rule — default clear. If this flag is set, paramodulation obeys the 1’s
rule. (The 1’s rule is a special-purpose strategy for problems in combinatory logic;
its usefulness has not been demonstrated elsewhere.) (Applies to both para_into
and para_from inference rules.)

para_all — default clear. If this flag is set, all occurrences of the into term are
replaced with the replacement term. (Applies to both para_into and para_from
inference rules.)

6.1.4 Flags for Handling Generated Clauses

(Sec. 6.1.5 describes equality-related flags for handling generated clauses.)

detailed_history — default set. This flag affects the parent lists in clauses that
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are derived by binary_res, para_from, or para_into. If the flag is set, the positions
of the unified literals or terms are given along with the IDs of the parents. See Sec.
15 for examples.

order_history — default clear. This flag affects the order of parent lists in clauses
that are derived by hyperresolution, negative hyperresolution, or UR-resolution. If
the flag is set, then the nucleus is listed first, and the satellites are listed in the order
in which the corresponding literals appear in the nucleus. If the flag is clear (or if
the clause was derived by some other inference rule), the given clause is listed first.

unit_deletion — default clear. If this flag is set, unit deletion is applied to newly
generated clauses. Unit deletion removes a literal from a newly generated clause if
the literal is the negation of an instance of a unit clause that occurs in usable or
sos. For example, the second literal of p(a,x) | q(a,x) is removed by the unit
-q(u,v); but it is not removed by the unit -q(u,b), because that unification causes
the instantiation of x. All such literals are removed from the newly generated clause,
even if the result is the empty clause. (Unit deletion is not useful if all generated
clauses are units.)

delete_identical_nested_skolem — default clear. If this flag is set, clauses with
the nested Skolem property are deleted. A clause has the nested Skolem property
if it contains a a Skolem expression that (properly) contains an occurrence of its
leading Skolem symbol. For example, if f is a Skolem function, a clause containing
a term f(f(x)) or a term f(g(f(x))) is deleted.

sort_literals — default clear. If this flag is set, literals of newly generated clauses
are sorted—negative literals, then positive literals, then answer literals. The main
purpose of this flag is to make clauses more readable. In some cases, this flag can
speed up subsumption on non-unit clauses.

for_sub — default set. If this flag is set, forward subsumption is applied during
the processing of newly generated clauses. (Delete the new clause if it is subsumed
by any clause in usable or sos.)

back_sub — default set. If this flag is set, back subsumption is applied during
the processing of newly kept clauses. (Delete all clauses in usable or sos that are
subsumed by the newly kept clause.)

factor — default clear. If this flag is set, factoring is applied in two ways. First,
factoring is applied as a simplification rule to newly generated clauses. If a generated
clause C has factors that subsume C, it is replaced with its smallest subsuming
factor. Second, it is applied as an inference rule to newly kept clauses. Note that
unlike other inference rules, factoring is not applied to the given clause; it is applied
to a new clause as soon as it is kept. All factors are generated in an iterative manner.
Factoring is attempted on answer literals. If factor is set, a clause with n literals
will not cause a clause with fewer than n literals to be deleted by subsumption.

6.1.5 Demodulation and Ordering Flags

demod_history — default set. If this flag is set, then when a clause is demodulated,
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the ID numbers of the demodulators are included in the derivation history of the
clause.

order_eq — default clear. If this flag is set, equalities are flipped if the right side
is heavier than the left. See Secs. 8.1.2 and 8.2.2 for the meaning of “heavier”.

eq_units_both_ways — default clear. If this flag is set, unit equality clauses (both
positive and negative) are sometimes stored in both orientations; the action taken
depends on the flag order_eq. If order_eq is clear, then whenever a unit, say
α = β, is processed, β = α is automatically generated and processed. If order_eq
is set, then the reversed equality is generated only if the equality cannot be oriented
(see Secs. 8.1.2 and 8.2.2).

demod_linear — default clear. If this flag is set, demodulation indexing is disabled,
and a linear search of demodulators are used when rewriting terms. With indexing
disabled, if more than one demodulator can be applied to rewrite a term, then the
one whose clause number is lowest is applied; this flag is useful when demodulation is
used to do “procedural” things. With indexing enabled (the default), demodulation
is much faster, but the order in which demodulators is applied is not under the
control of the user.

demod_out_in — default clear. If this flag is set, terms are demodulated outside-
in, left-to-right. In other words, the program attempts to rewrite a term before
rewriting (left-to-right) its subterms. The algorithm is “repeat {rewrite the left-
most outer-most rewritable term} until no more rewriting can be done or the limit
is reached”. (The effect is like a standard reduction in lambda-calculus or in com-
binatory logic.) If this flag is clear, terms are demodulated inside-out (all subterms
are fully demodulated before attempting to rewrite a term). (The evaluable con-
ditional term $IF(condition,then-value,else-value) is an exception when inside-out
demodulation is in effect. See Sec. 9.)

dynamic_demod — default clear. If this flag is set, some newly kept equalities are
made into demodulators (Secs. 8.1.3 and 8.2.3). Setting this flag automatically sets
the flag order_eq.

dynamic_demod_all — default clear. If this flag is set, Otter attempts to make all
newly kept equalities into demodulators (Sec. 8.1.3). Setting this flag automatically
sets the flags dynamic_demod and order_eq.

dynamic_demod_lex_dep — default clear. If this flag is set, dynamic demodulators
may be lex-dependent or lrpo-dependent. See Secs. 8.1.3 and 8.2.3.

back_demod — default clear. If this flag is set, back demodulation is applied to
demodulators, usable, and sos whenever a new demodulator is added. Back de-
modulation is delayed until the inference rules are finished generating clauses from
the current given clause (delayed until post_process). Setting the back_demod flag
automatically sets the flags order_eq and dynamic_demod.

knuth_bendix — default clear. If this flag is set, Otter’s search will behave
like a Knuth-Bendix completion procedure. This flag is really a metaflag; its
only effect is to alter other flags as follows: set(para_from), set(para_into),
set(para_from_left), clear(para_from_right), set(para_into_left),
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clear(para_into_right), set(para_from_vars), set(eq_units_both_ways),
set(dynamic_demod_all), set(back_demod), set(process_input), and
set(lrpo). See Sec. 8.3 for more details.

lrpo — default clear. If this flag is set, then the lexicographic recursive path
ordering (also called rpo with status) is used to compare terms. If this flag is clear,
weight templates and lexicographic order are used (Secs. 8.2 and 8.3).

lex_order_vars — default clear. This flag affects lex-dependent demodulation and
the evaluable functions and predicates that perform lexical comparisons. If this flag
is set, then lexical ordering is a total order on terms; variables are lowest in the term
order, with x ≺ y ≺ z ≺ u ≺ v ≺ w ≺ v6 ≺ v7 ≺ v8 ≺ · · ·. If this flag is clear, then
a variable is comparable only to another occurrence of the same variable; it is not
comparable to other variables or to nonvariables. For example, $LLT(f(x),f(y))
evaluates to $T if and only if lex_order_vars is set. If lrpo is set, lex_order_vars
has no effect on demodulation (Sec. 8.1.1).

symbol_elim — default clear. If this flag is set, then new demodulators are ori-
ented, if possible, so that function symbols (excluding constants) are eliminated. A
demodulator can eliminate all occurrences of a function symbol if the arguments
on the left side are all different variables and if the function symbol of the left side
does not occur in the right side. For example, the demodulators g(x) = f(x,x)
and h(x,y) = f(x,f(y,f(g(x),g(y)))) eliminate all occurrences of g and h, re-
spectively.

6.1.6 Input

check_arity — default set. If this flag is set, a warning is given if symbols have
variable arities (different numbers of arguments in different places in the input).
For example, the term f(a,a(b)) would be flagged. (Constants have arity 0.) If
this flag is clear, then variable arities are permitted; in the preceding term, the two
occurrences of a would be treated as different symbols.

prolog_style_variables — default clear. If this flag is set, a name with no argu-
ments in a clause is a variable if and only if it starts with A through Z (upper case)
or with _.

echo_included_files — default set. If this flag is set, input files included with
the include(filename) command are echoed in the same way as ordinary input.

simplify_fol — default set. If this flag is set, then some propositional simplifi-
cation is attempted when converting input first-order formulas into clauses. The
simplification occurs after Skolemization, during the CNF translation. If simplifi-
cation detects a refutation, it will always produce the empty clause $F, but Otter
will not recognize the proof (i.e., give the proof message and stop) unless the flag
process_input is set.

process_input — default clear. If this flag is set, input usable and sos clauses
(including clauses from formula input) are processed as if they had been generated
by an inference rule. (See the procedure for processing newly inferred clauses in Sec.
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2.) The exceptions are (1) the following clause-processing options are not applied
to input clauses: max_literals, max_weight, delete_identical_nested_skolem,
and max_distinct_vars, (2) clauses input on list usable remain there if retained,
and (3) some output appears even if the output flags (Sec. 6.1.7) are clear.

6.1.7 Output Flags

very_verbose — default clear. If this flag is set, a tremendous amount of informa-
tion about the processing of generated clauses is output.

print_kept — default set. If this flag is set, new clauses are output if they are
retained (if they pass all retention tests).

print_proofs — default set. If this flag is set, all proofs that are found are printed
to the output file. If this flag is clear, no proofs are printed.

print_new_demod — default set. If this flag is set, demodulators that are ad-
joined during the search (dynamic_demod) are printed. New demodulators are al-
ways printed during input processing.

print_back_demod — default set. If this flag is set, clauses are printed as they
are back demodulated. Back-demodulated clauses are always printed during input
processing.

print_back_sub — default set. If this flag is set, clauses are printed if they are
back subsumed. Back-subsumed clauses are always printed during input processing.

display_terms — default clear. If this flag is set, all clauses and terms are printed
in pure prefix form (Sec. 4.3). This feature can be useful for debugging the input.

pretty_print — default clear. If this flag is set, clauses are output in an indented
form that is sometimes easier to read. The parameter pretty_print_indent (de-
fault 4) specifies the number of spaces for each indent level.

bird_print — default clear. If this flag is set, terms constructed with the bi-
nary function a are output in combinatory logic notation (without the function
symbol a, and left associated unless otherwise indicated). For example, the clause
a(a(a(S,x),y),z) = a(a(x,z),a(y,z)) is output as S x y z = x z (y z).
Terms cannot be input in combinatory logic notation.

6.1.8 Indexing Flags

index_for_back_demod — default set. If this flag is set, all nonvariable terms in
all clauses are indexed so that the appropriate ones can be quickly retrieved when
applying a dynamic demodulator to the clause space (back demodulation). This
type of indexing can use a lot of memory. If the flag is clear, back demodulation
still works, but it is much slower.

for_sub_fpa — default clear. If this flag is set, fpa indexing is used for forward
subsumption. If this flag is clear, discrimination tree indexing is used. Setting
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this flag can decrease the amount of memory required by Otter. Discrimination
tree indexing can require a lot of memory, but it is usually much faster than fpa
indexing.

no_fapl — default clear. If this flag is set, positive literals are not indexed for unit
conflict or back subsumption. This option should be used only when no negative
units will be generated (as with hyperresolution), back subsumption is disabled, and
discrimination tree indexing is being used for forward subsumption. This option can
save a little time and memory.

no_fanl — default clear. If this flag is set, negative literals are not indexed for unit
conflict or back subsumption. This option should be used only when no positive
units will be generated (as with negative hyperresolution), back subsumption is
disabled, and discrimination tree indexing is being used for forward subsumption.
This option can save a little time and memory.

6.1.9 Miscellaneous Flags

control_memory — default clear. If this flag is set, then the automatic memory-
control feature is enabled (Sec. 16).

order_hyper — default set. If this flag is set, then the inference rules hyper_res
and neg_hyper_res are constrained by an ordering strategy. A literal in a satellite
is allowed to resolve only if it is maximal in the satellite. (A literal is maximal in
a clause if and only if there is no larger literal.) The ordering uses only the lexical
value (as in the lex command or the default, Sec. 5.5) of the predicate symbol.
(This flag is irrelevant for positive hyperresolution with a Horn set.)

propositional — default clear. If this flag is set, Otter assumes that all clauses
are propositional, and it makes some optimizations. The user should set this flag only
when all clauses are propositional; otherwise Otter may make unsound inferences
and/or crash.

really_delete_clauses — default clear. If this flag is clear, clauses that are
deleted by back subsumption or back demodulation are not really removed from
memory; they are retained in a special place so that they can be printed if they
occur in a proof. If the job involves much back subsumption or back demodulation
and if memory conservation is important, these “deleted” clauses can be removed
from memory by setting this flag (and any proof containing such a clause will not
be printed in full).

atom_wt_max_args — default clear. If this flag is set, the default weight of an atom
(the weight if no template matches the atom) is 1 plus the maximum of the weights
of the arguments. If this flag is clear, the default weight of an atom is 1 plus the
sum of the weights of the arguments.

term_wt_max_args — default clear. If this flag is set, the default weight of a term
(the weight if no template matches the atom) is 1 plus the maximum of the weights
of the arguments. If this flag is clear, the default weight of a term is 1 plus the sum
of the weights of the arguments.
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free_all_mem — default clear. If this flag is set, then at the end of the search,
most dynamically allocated memory is returned to the memory managers. This flag
is used mainly for debugging, in particular, to help find memory leaks. Setting this
flag will not cause Otter to use less memory.

6.2 Parameters

Parameters are integer-valued options. In the descriptions that follow, n is the
value of the parameter, and max int is a large integer, usually the size of the
largest normal integer on the user’s computer.

6.2.1 Monitoring Progress

report — default −1, range [−1..max int]. If n > 0, then statistics are output
approximately every n cpu seconds. The time is not exact, because statistics will
be output only after the current given clause is finished. This feature can be used
in conjunction with unix programs such as grep and awk to conveniently monitor
Otter jobs.

6.2.2 Placing Limits on the Search

max_seconds — default −1, range [−1..max int]. If n 6= −1, the search is termi-
nated after about n cpu seconds. The time is not exact, because Otter will wait
until the current given clause is finished before stopping.

max_gen — default −1, range [−1..max int]. If n 6= −1, the search is terminated
after about n clauses have been generated. The number is not exact, because Otter
will wait until it is finished with the current given clause before stopping.

max_kept — default −1, range [−1..max int]. If n 6= −1, the search is terminated
after about n clauses have been kept. The number is not exact, because Otter will
wait until it is finished with the current given clause before stopping.

max_given — default −1, range [−1..max int]. If n 6= −1, the search is terminated
after n given clauses have been used.

max_mem — default −1, range [−1..max int]. If n 6= −1, Otter will terminate the
search before more than n kilobytes have been dynamically allocated (malloc).

6.2.3 Limits on Properties of Generated Clauses

max_literals — default −1, range [−1..max int]. If n 6= −1, new clauses are
discarded if they contain more than n literals.

max_weight — default max int, range [−max int..max int]. New clauses are
discarded if their weight is more than n. The weight list purge_gen or the weight
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list pick_and_purge is used to weigh clauses (both lists may not be present; see
Sec. 10).

max_distinct_vars — default −1, range [−1..max int]. If n 6= −1, new clauses
are discarded if they contain more than n distinct variables.

6.2.4 Indexing Parameters

fpa_literals — default 8, range [0..100]. n is the fpa indexing depth for literals.
(fpa literal indexing is used for resolution inference rules, back subsumption, and
unit conflict. It is also used for forward subsumption if the flag for_sub_fpa is
set.) If n = 0, indexing is by predicate symbol only; if n = 1, indexing looks at the
predicate symbol and the leading symbols of the arguments of the literal, and so on.
Greater indexing depth requires more memory, but it can be faster. Changing this
parameter will not change the clauses that are generated or kept.

fpa_terms — default 8, range [0..100]. n is the fpa indexing depth for terms. (fpa
term indexing is used for paramodulation inference rules and back demodulation.)
If n = 0, indexing is by function symbol only; if n = 1, indexing looks at the
function symbol and the leading symbols of the arguments of the term, and so on.
Greater indexing depth requires more memory, but it can be faster. Changing this
parameter will not change the clauses that are generated or kept.

6.2.5 Miscellaneous Parameters

pick_given_ratio — default −1, range [−1..max int]. This parameter causes
some given clauses to be selected by weight and others in a breadth-first manner.
If n 6= −1, n given clauses are are selected by (smallest pick_given) weight, then
the first clause in sos is selected as given clause, then n given clauses are selected
by weight, etc. This method allows heavy clauses to enter into the search while
focusing mainly on light clauses. It combines breadth-first search (flag sos_queue)
and best-first search (default selection by weight). If n is −1, then the clause with
smallest pick_given weight is always selected.

interrupt_given — default −1, range [−1..max int]. If n > 0, then after n given
clauses have been used, Otter goes into its interactive mode (Sec. 14).

demod_limit — default 1000, range [−1..max int]. If n 6= −1, n is the maximum
number of rewrites that will be applied when demodulating a clause. The count
includes $ symbol evaluation. If n is −1, there is no limit. A warning message is
printed if Otter attempts to exceed the limit.

max_proofs — default 1, range [−1..max int]. If n = 1, Otter will stop if it finds
a proof. If n > 1, then otter will not stop when it has found the first proof; instead,
it will try to keep searching until it has found n proofs. (Some of the proofs may
in fact be identical.) (Because forward subsumption occurs before unit conflict, a
clause representing a truly different proof may be discarded by forward subsumption
before unit conflict detects the proof.) If n = −1, Otter will find as many proofs
as it can (within other constraints).
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min_bit_width — default bits-per-long, range [0..bits-per-long]. When the evaluable
bit operations (Sec. 9) produce a new bit string, leading zeros are suppressed under
the constraint that n is the minimum string length.

neg_weight — default 0, range [−max int..max int]. n is the additional weight
(positive or negative) that is given to negated literals. Weight templates cannot be
used for this purpose, because the negation sign on a literal cannot occur in weight
templates. (Atoms, not literals, are weighed with weight templates; see Sec. 10.)

pretty_print_indent — default 4, range [0..16]. See flag pretty_print, Sec.
6.1.7.

stats_level — default 2, range [0..4]. This indicates the level of detail of statistics
printed in reports and at the end of the search. If n = 0, no statistics are output;
if n = 1, a few important search and time statistics are output; if n = 2, all search
and time statistics are output; if n = 3, search, time, and memory statistics are
output; and if n = 4, search, time, and memory statistics and option values are
output. This parameter does not affect the speed of Otter, because all statistics
are always kept.

7 Demodulation

Basic demodulation is straightforward, but there are many variations and enhance-
ments whose descriptions are scattered throughout this manual. This section (which
is mostly redundant) lists some overall comments on demodulation and points the
reader to the appropriate sections on variations and enhancements.

The Equality Symbol. The binary symbol = (which can be used as an infix
functor) and any name that starts with eq, EQ, or Eq, when used as a binary predicate
symbol, is recognized as an equality predicate by demodulation.

When and How It Is Applied. Demodulation is applied, using equalities in
the list demodulators, to every clause that is generated by an inference rule. Also,
when the flag demod_inf (Sec. 6.1.2) is set, demodulation is, in effect, treated as
an inference rule.

Demodulation of Atomic Formulas. Atomic formulas (literals with any nega-
tion sign removed) can be demodulated. Useful examples are

(x*y = x*z) = (y = z). % one form of cancellation
D(x,y) = D(y,x). % lex-dependent atom demodulator
P(junk) = $T. % trick to get rid of a literal

The appropriate clause simplification occurs if the right side of an atom demodulator
is one of the Boolean constants $T or $F. Negated literals cannot be demodulated,
but the atom of a negative literal can be demodulated.
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Inside-out or Outside-in. The user has the option of having terms rewritten
inside-out or outside-in. (See the description of the flag demod_out_in in Sec. 6.1.5.)
Although the choice makes little difference for many applications, I nearly always
recommend inside-out. Outside-in can be much faster in cases where the left side of
the demodulator has a variable not in the right side.

Order of Demodulators. By default, demodulation uses an indexing mechanism
to find demodulators that can rewrite a given term; if more than one demodulator
can apply, the user has no control over which one is used. If the user wishes to order
the set of demodulators for application, he or she can set the flag demod_linear
(Sec. 6.1.5).

Dynamic Demodulation and Back Demodulation. Positive equality units
derived during the search can be made into demodulators (Secs. 6.1.5, 8.1.3, and
8.2.3). Demodulators adjoined during the search can be used to rewrite previously
derived clauses (Sec. 6.1.5).

Termination. With the default ad hoc ordering, demodulation is not guaranteed
to terminate by itself. Therefore, a parameter (demod_limit) specifies the maximum
number of rewrite steps that will be applied to a clause. With the lexicographic
recursive path ordering (flag lrpo), demodulation will always terminate by itself.
(Even with lrpo, the parameter demod_limit has effect, because demodulation
sequences can have an unreasonable number of steps.)

Introduction of New Variables. A demodulator introduces new variables if it
has variables on the right side that do not occur on the left. The lrpo does not
allow demodulators to introduce new variables. The default ordering allows variable
introductions only for input demodulators.

Lex- and lrpo-dependent Demodulation. Ordinary demodulators are used
unconditionally; they usually simplify or canonicalize regardless of the context in
which they are applied. But some equalities that are not normally thought of as
rewrite rules can be used as such and are applied only if the application produces a
“better” term. These are called lex- or lrpo-dependent demodulators (depending
on whether the flag lrpo is set). For example, commutativity of an operation, say
x + y = y + x, can be used to rewrite b + a to a + b if a + b ≺ b + a. See Secs.
6.1.5, 8.1.4, and 8.2.4. Do not confuse this type of demodulation with conditional
demodulation.

Demodulation of Evaluable Terms. Otter has many built-in function and
predicate symbols for doing arithmetic, logic operations, bit operations, and other
operations. The evaluation of terms containing these built-in symbols is done as a
part of demodulation (Sec. 9).
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Conditional Demodulation. Demodulators can be written with conditions as

condition -> α = β.

The demodulator is applied only if the condition, instantiated with the matching
substitution, demodulates to $T (meaning true). This is a “fringe feature”, and it
has not been heavily used (Sec. 17.4).

Demodulation as Equational Programming. Otter’s demodulation, espe-
cially with the evaluable symbols, can be used as a general-purpose (although not
particularly efficient or convenient) equational programming system (Sec. 9). I
have not seen cases where this is useful in the context of a traditional refutation
search, but I have found it to be very useful for various symbolic programming tasks,
particularly with hyperresolution.

Demodulation to Delete Clauses. Demodulation can be used as a trick to
overcome one of the deficiencies of the weighting mechanism (Sec. 10) to discard
undesired clauses. Weighting does not implement a true match (one-way unifica-
tion) operation. If the user wishes to discard every clause that contains an instance
of a particular term, say f(x,x), a demodulator, say f(x,x) = junk, can be in-
put along with a weight template that gives junk a purge_gen weight higher than
max_weight. (When using this and similar tricks, the user must make sure that
the clauses containing junk are really discarded by weighting or another means; on
occasion we have found proofs that are incorrect because they depend on junk.)

8 Ordering and Dynamic Demodulation

This section contains a more complete explanation of the options lex_order_vars,
order_eq, symbol_elim, dynamic_demod, dynamic_demod_all, lrpo, and
dynamic_demod_lex_dep. It gives all the rules—built in and optional—for ori-
enting equality literals and deciding which equalities will be dynamic demodulators.
Otter uses two kinds of term ordering.

ad hoc ordering. This is a collection of ordering methods that we have accumulated
through many years of experimentation. The methods do not have a substan-
tial theoretical foundation, but they are useful in many cases. This is the
default ordering; it is presented in Sec. 8.1.

lrpo. This is the lexicographic recursive path ordering (also called rpo with status).
It has nice theoretical properties and is easier to use than the ad hoc ordering,
but it is more computationally expensive. The lrpo ordering is enabled with
the flag lrpo; it is described in Sec. 8.2.

Both kinds of term ordering use an ordering on constant and function symbols.
The lex command (Sec. 5.5) is used to assign an ordering on symbols. For example,
the command
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lex( [a, b, c, d, or(_,_)] ).

specifies a ≺ b ≺ c ≺ d ≺ or (or is a binary function symbol). If a lex com-
mand is given, all constant and function symbols in terms that will be compared
must be included. If a lex command is not given, Otter uses the following default
ordering.

[constants, high-arity, · · ·, binary, unary]

Within arity, the lexicographic ascii ordering (i.e., the C library routine strcomp())
is used.

The methods for orienting equalities and for determining dynamic and lex-
dependent demodulators apply to all inferred clauses; if the flag process_input
is set, they also apply to input usable and sos clauses.

In this section, α and β always refer to the left and right arguments, respectively,
of the equality literal under consideration; wt(γ) refers to the weight of γ using
weight_list_terms; vars(γ) is the set of variables in γ. The symbols � and ≺ are
used for several orderings; the one referred to should be clear from the context.

Table 6 is a quick reference guide to the ordering mechanisms presented in Secs.
8.1 and 8.2.

Table 6: Quick Reference to Ordering
Situation Ad Hoc LRPO

Input demods flip? no if α ≺ β
lex-dependent? if ident-x-vars if neither is greater

Orienting eqs (order eq set) flip if sym-elim,
occurs-in, or wt-lex-ord flip if α ≺ β

d_d_all clear
if oriented, var-subset,
and wt(β) ≤ 1 if α � β

Dynamic demod? d_d_all set if oriented and var-subset if α � β

lex-dependent?
if ident-x-vars and
dynamic demod all set

if neither is greater,
and var-subset

Apply lex-dependent demod? lex-order(ασ, βσ) ασ � βσ
Lex $ evaluation lex-order lex-order

8.1 Ad Hoc Ordering

8.1.1 Term Ordering (Ad Hoc)

Two types of ad hoc term ordering are used: lex-order and weight-lex-order. The
user does not have a choice between these two; the one that is applied depends on
the context, as described in the following subsections.

lex-order. This is a basic lexicographic extension of the symbol order. To com-
pare two terms, read them left to right, and stop at the first symbols where
they differ; the relationship of those symbols determines the term order. The
treatment of variables depends on the flag lex_order_vars:
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lex order vars is set. Variables are the lowest in the symbol ordering, with
x ≺ y ≺ z ≺ u ≺ v ≺ w ≺ v6 ≺ v7 ≺ v8 ≺ · · ·. Since the order on symbols
is total (any two symbols are comparable), the lexical order on terms is
total (any two terms are comparable). Note that applying a substitution
to a pair of terms may change their relative order.

lex order vars is clear (the default). A variable is comparable only to it-
self and to a term that contains the variable. The order on terms is
partial. Note that if t1 ≺ t2, and if σ is any substitution, then t1σ ≺ t2σ.

weight-lex-order. In comparing two terms, they are first weighed with
weight_list_terms. If one term is heavier, it is greater in the order. If
the terms have equal weight, they are compared with respect to the lex-order
as if lex_order_vars is clear.

8.1.2 Orienting Equalities (Ad Hoc)

If the flag order_eq is set and lrpo is clear, then equality literals (both positive
and negative) in inferred clauses are processed as follows.

1. If the symbol_elim flag is set and if the equality is a symbol-eliminating type
(Sec. 6.1.5), the equality is oriented in the appropriate direction.

2. If one argument is a proper subterm of the other argument, the equality is
oriented so that the subterm is the right-hand argument.

3. If one argument is greater in the weight-lex-order, say γ � δ, the equality is
oriented with γ as the left side.

The preceding steps do not apply to equalities input on the list demodulators.

8.1.3 Determining Dynamic Demodulators (Ad Hoc)

A dynamic demodulator is a demodulator that is inferred rather than input. If
either of the flags dynamic_demod or dynamic_demod_all is set, the flag order_eq
will also be set, and Otter will attempt to make some or all inferred positive
equality units into demodulators. If the flag process_input is set, the procedure
applies to input usable and sos equalities. The procedure assumes that equalities
have already been oriented.

1. If the flag symbol_elim is set and if α = β is symbol-eliminating, the equality
becomes a demodulator.

2. If β is a proper subterm of α, the equality becomes a demodulator.

3. If α � β in the weight-lex-order, and if vars(α) ⊇ vars(β),

(a) if dynamic_demod_all is set, the equality becomes a demodulator;
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(b) if dynamic_demod_all is clear and if wt(β) ≤ 1, the equality becomes a
demodulator.

4. If dynamic_demod_lex_dep and dynamic_demod_all are both set, if α and
β are identical-except-variables (Sec. 8.1.4), and if vars(α) ⊇ vars(β), the
equality becomes a lex-dependent demodulator.

8.1.4 Lex-dependent Demodulation (Ad Hoc)

Two terms are identical-except-variables if they are identical after replacing all oc-
currences of variables with x. An input or dynamic demodulator is lex-dependent
only if α and β are identical-except-variables. (See Sec. 8.1.3 for determining lex-
dependent dynamic demodulators.) A lex-dependent demodulator applies to a term
only if the replacement term is smaller in the lex-order. In particular, Otter will
apply a lex-dependent demodulator α = β if and only if ασ � βσ in the lex-order,
where σ is the matching substitution.

For example, in the presence of the lex command and the (lex-dependent) de-
modulators

lex([a, b, c, d, or(_,_)]).

list(demodulators).
or(x,y) = or(y,x).
or(x,or(y,z)) = or(y,or(x,z)).

end_of_list.

the term or(or(d,b),or(a,c)) will be demodulated to or(a,or(b,or(c,d))) (in
several steps).

8.2 LRPO

8.2.1 Term Ordering (lrpo)

The lexicographic recursive path ordering (lrpo, or rpo with status) [5, 8, 10] is a
method for comparing terms. The important theoretical property of lrpo is that it
is a termination ordering. That is, let R be a set of demodulators in which in each
demodulator, the left side is lrpo-greater than the right side; then demodulation
(applying the demodulators left to right) is guaranteed to terminate.

To use lrpo one typically uses the lex command (Sec. 5.5) to assign an ordering
on constant and function symbols. If the lex command is not present, Otter
assigns an ordering (which is frequently ineffective). (Otter uses a total ordering
on symbols that is fixed at input time. Other implementations of lrpo use partial
orderings or dynamically changing orderings.)

With respect to lrpo, function symbols can have either left-to-right status (the
default) or multiset status. The command lrpo multiset status(symbol list) gives

32



symbols multiset status.

Lrpo comparison is used when orienting equality literals, deciding whether an
equality should be a demodulator or an lrpo-dependent demodulator, and deciding
whether to apply an lrpo-dependent demodulator. Lrpo comparison is never used
when evaluating the functions/predicates that perform lexical comparison ($LLT,
$LGT, etc.).

8.2.2 Orienting Equalities (lrpo)

If the flag order_eq is set and if one argument of the equality literal (positive or
negative) is greater in the lrpo order, the greater argument is placed on the left
side. This rule applies to input demodulators, to inferred clauses, and, if the flag
process_input is set, to input usable and sos clauses.

8.2.3 Determining Dynamic Demodulators (lrpo)

If the flag dynamic_demod is set, Otter attempts to make all equalities into de-
modulators (dynamic_demod_all is ignored when lrpo is set). If α � β in the
lrpo order, the derived equality becomes a demodulator (α is not lrpo-less-than
β, because orienting has already occurred). If dynamic_demod_lex_dep is set, if
neither argument is lrpo-less-than the other, and if every variable that occurs in β
also occurs in α, the derived equality becomes an lrpo-dependent demodulator.

8.2.4 lrpo-dependent Demodulation (lrpo)

An lrpo-dependent demodulator is allowed to rewrite a term if and only if its
application produces an lrpo-less-than term.

8.3 Knuth-Bendix Completion

The Knuth-Bendix completion procedure [12] attempts to transform a set E of
equalities into a terminating, canonical set of rewrite rules (demodulators). If it
is successful, the resulting set of rewrite rules, a complete set of reductions, is a
decision procedure for equality of terms in the theory E. There are many variations
and refinements of the Knuth-Bendix procedure.

Setting the flag knuth_bendix causes Otter to automatically alter a set of
options so that its search will behave like a Knuth-Bendix completion procedure. If
Otter’s search stops because its sos list is empty, and if certain other conditions are
met, then the resulting set of equalities is a complete set of reductions. (Otter was
not designed to implement a completion procedure, and it has not been optimized
for completion.)

Claim. If (1) the set E of equalities, along with x=x, is input in list sos, (2) flag
knuth_bendix is set, (3) other options that are changed from the defaults do not
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affect the search, (4) Otter stops with “sos empty”, and (5) other than x=x, the
final usable list is the same as the final demodulators list, then the demodulators
list is a complete set of reductions for E.

Here is an input file that causes Otter to search for and quickly find a complete
set of reductions for free groups. Note that the predeclared (right associative) infix
operator * is used.

set(knuth_bendix).
set(print_lists_at_end).
lex([e, _*_, g(_)]).

list(sos).
x = x.
e*x = x. % left identity
g(x)*x = e. % left inverse
(x*y)*z = x*y*z. % associativity
end_of_list.

The critical issue in most applications of the Knuth-Bendix completion procedure
is the choice of ordering scheme and/or the specific ordering on symbols. Note, in
this case, that if the lex command is absent, the default symbol ordering suffices
because it is essentially the same as the one specified.

The knuth-bendix flag is also very useful when trying to prove equational the-
orems. (Many open problems have been solved at Argonne in this way; see, e.g.,
[17]). When using knuth_bendix to search for proofs, we are not bound by the
conditions listed in the above claim; in fact, we usually apply additional strategies
such as limiting the size of retained equalities, being more selective about making
equalities into demodulators, and disabling lrpo ordering.

With the following input file, Otter uses the knuth-bendix option to prove
the difficult half of a group theory theorem of Levi: The commutator operation is
associative if and only if the commutator of any two elements lies in the center of
the group. (A textbook proof can be found in [13].) Note that, contrary to common
practice, the symbol order does not cause the definition of the commutator operation
h(_,_) to be used as a rewrite rule to eliminate commutator expressions in h.
Note also that weight templates are used to eliminate clauses containing terms with
particular structures; this decision is purely heuristic, derived from experimentation
and intuition. Otter finds a proof in about half an hour on a SPARCstation 2 and
uses about 6 megabytes of memory.

set(knuth_bendix). lex([a,b,c,e,h(_,_),f(_,_),g(_)]).
assign(max_weight, 20). assign(pick_given_ratio, 5).
assign(max_mem, 8000).
clear(print_kept). clear(print_new_demod). clear(print_back_demod).
assign(report, 300).

list(usable).
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x = x.
f(e,x) = x. % complete set of reductions for groups
f(x,e) = x.
f(g(x),x) = e.
f(x,g(x)) = e.
f(f(x,y),z) = f(x,f(y,z)).
g(e) = e.
g(g(x)) = x.
f(g(y),f(y,x)) = x.
f(y,f(g(y),x)) = x.
g(f(y,x)) = f(g(x),g(y)).
end_of_list.

list(sos).
f(g(x),f(g(y),f(x,y))) = h(x,y). % definition of commutator
h(h(x,y),z) = h(x,h(y,z)). % commutator is associative
% denial: there are two elements whose commutator is not in the center
f(h(a,b),c) != f(c,h(a,b)).
end_of_list.

weight_list(purge_gen).
weight(h($(0),f($(0),h($(0),$(0)))), 100).
weight(h(f($(0),h($(0),$(0))),$(0)), 100).
weight(h($(0),f(h($(0),$(0)),$(0))), 100).
weight(h(f(h($(0),$(0)),$(0)),$(0)), 100).
weight(h($(0),h($(0),h($(0),$(0)))), 100).
weight(h($(0),f($(0),f($(0),$(0)))), 100).
weight(h(f($(0),f($(0),$(0))),$(0)), 100).
end_of_list.

9 Evaluable Functions and Predicates ($SUM, $LT, . . .)

Otter can be used in a “programmed” mode that is quite different from normal
refutational theorem proving. When using the programmed mode, one generally has
in mind a particular method for solving a problem; and when writing clauses for the
programmed mode, one generally knows exactly how they will be used by Otter.

The programmed mode frequently involves a set of evaluable function and pred-
icate symbols known as the $-symbols (because each starts with $). Examples are
$SUM and $LT for integer arithmetic and $AND for Boolean operations.

The evaluable symbols operate on four types of Otter term: integer constants,
bit-string constants, the Boolean constants $T and $F, and arbitrary terms. The
symbols that evaluate to type Boolean can occur either as function symbols or as
predicate symbols. The integer and bit operations behave the same as the under-
lying C operations applied to the data type “long int” and “unsigned long int”,
respectively. Table 7 lists the evaluable functions and predicates by type.

Additional notes on the operations (unless otherwise stated, the term in question
evaluates if all arguments demodulate/evaluate to the appropriate type):
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Table 7: Evaluable Functions and Predicates
int× int → int $SUM, $PROD, $DIFF, $DIV, $MOD
int× int → bool $EQ, $NE, $LT, $LE, $GT, $GE
bits× bits → bits $BIT_AND, $BIT_OR, $BIT_XOR
bits× int → bits $SHIFT_LEFT, $SHIFT_RIGHT
bits → bits $BIT_NOT
int → bits $INT_TO_BITS
bits → int $BITS_TO_INT
term× term → bool (lexical) $ID, $LNE, $LLT, $LLE, $LGT, $LGE
→ bool $T, $F
bool × bool → bool $AND, $OR
bool → bool $TRUE, $NOT
term → bool $ATOMIC, $INT, $BITS, $VAR, $GROUND
→ int $NEXT_CL_NUM
bool × term× term → term $IF

• int× int → int. The symbol $SUM is addition, $PROD is multiplication, $DIFF
is subtraction, $DIV is integer division, and $MOD is remainder.

• int × int → bool. These are the ordinary relational operations on integers.
The symbol $EQ is =, $NE is 6=, $LT is <, $LE is ≤, $GT is >, and $GE is ≥.

• bits× int → bits. The shift operations $SHIFT_LEFT and $SHIFT_RIGHT shift
the first argument by the number of places given by the second argument.

• bits × bits → bits. The symbols $BIT_AND, $BIT_OR, and $BIT_XOR are the
bitwise conjunction, disjunction, and exclusive-or operations.

• bits → bits. The symbol $BIT_NOT is the one’s complement operation on bit
strings.

• int → bits. The symbol $INTS_TO_BITS translates a decimal integer to a bit
string.

• bits → int. The symbol $BITS_TO_INT translates a bit string to the corre-
sponding decimal integer.

• term× term → bool. The term always evaluates. These operations are analo-
gous to the six operations in int× int → bool, except that the comparisons are
lexical instead of arithmetic. The symbol $ID tests identity of terms. The lex-
ical comparison is the same as in lex-dependent demodulation; in particular,
the flag lex_order_vars (Secs. 6.1.5 and 8.1.1) has effect.

• → bool. The symbols $T and $F represent true and false. When they appear as
literals or atomic formulas in clauses, the clauses are simplified as appropriate.

• bool → bool. The symbol $TRUE is essentially a “no operation” on Boolean
constants. It is used to trick hyperresolution into evaluating literals (see be-
low).
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• term → bool. A term is $ATOMIC iff it is a constant (including integer and bit
string), a term is a $INT iff it is an integer, a term is a $BITS iff it is a string of
{0,1}, a term is a $VAR iff it is a (unbound) variable, and a term is a $GROUND
iff it does not contain any variables.

• → int. The term $NEXT_CL_NUM (no arguments) evaluates to the next integer
that will be assigned as a clause identifier (this is useful for placing the ID of
a clause within the clause).

• bool × term × term → term. The $IF function is the if-then-else operator.
When inside-out (the default) demodulation encounters a term $IF(condition,
t1, t2), demodulation takes a path different from its normal inside-out behav-
ior. The term condition is demodulated (evaluated); if the result is $T, the
value of the $IF term is the result of demodulating t1; if the result is $F,
the value of the $IF term is the result of demodulating t2; if the result is
neither $T nor $F, demodulation returns to its normal behavior. Note that
if the condition evaluates to a Boolean value, demodulation deviates from its
inside-out behavior, because just one of t1 and t2 is demodulated. (If demod-
ulation were always outside-in, $IF would not need to be built in, because
it could be efficiently defined with the two demodulators if($T,x,y)=x and
if($F,x,y)=y.)

Evaluation occurs as part of the demodulation process. In particular, if de-
modulation comes across an evaluable term, say $SUM(2,3), it tries to convert the
arguments into the appropriate type (integers for $SUM); then if the arguments have
the correct type, it rewrites the term to the result of the operation, in this case,
just as if the demodulator $SUM(2,3)=5 had been present. The evaluation mech-
anisms, along with ordinary demodulation, form a reasonably complete (although
not particularly speedy or convenient) equational programming subsystem.

Evaluation/demodulation can also occur, in a very particular way, during hy-
perresolution. (Recall that hyperresolution takes a clause, the nucleus, with some
negative literals, the conditions, and resolves each negative literal with a positive
clause, producing a clause with no negative literals.) Just as evaluation during de-
modulation can be thought of as rewriting with an implicit demodulator, evaluation
during hyperresolution can be thought of resolving with the implicit positive unit
clause $T (meaning “true”). The mechanism is this: if hyperresolution encounters
a negative literal that has an evaluable predicate symbol, then it demodulates the
atom (the literal without the sign); if the result of the demodulation is $T, then the
literal is considered to have been resolved.

During hyperresolution, demodulation/evaluation is triggered by the presence of
an evaluable literal. In many cases, however, the user defines a Boolean function
that he or she wishes to trigger the mechanism. Consider the following definition of
list membership, written as demodulators:

member(x,[]) = $F.
member(x,[y|z]) = $IF($ID(x,y),

$T,
member(x,y)).
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Because the symbol member is not evaluable, the demodulation/evaluation mecha-
nism will not be activated; however, the unary evaluable predicate $TRUE can be
used in the following way to trigger demodulation/evaluation.

−L1 | · · · | -$TRUE(member(element, list)) | · · · | −Ln | M .

Evaluable functions and predicates are useful to implement forward-chaining rule-
based systems, for example, state-space search problems (Sec. 9.2).

Hyperresolution operates on the conditions (negative literals) in order, left to
right. (The preceding sentence is not quite true, because the first step is typically
resolution of a positive given clause with any one of the conditions, but for this
paragraph, we may assume that it is true.) If a literal resolves or evaluates, the next
literal is considered. If nothing more can be done with a literal, then hyperresolution
backtracks to the preceding literal in search of an alternative. When a nucleus
contains evaluable conditions, the order of the conditions is important both for
efficiency and for actually deriving hyperresolvents. Evaluable conditions typically
have variables that must be instantiated when nonevaluable literals are resolved.
If an evaluable literal is too far to the left, its variables will not be sufficiently
instantiated when hyperresolution encounters it, evaluation will fail, and possible
paths to hyperresolvents will be blocked. If an evaluable literal is too far to the
right, then hyperresolution can explore many paths that are sure to fail.

Technical Note and Advice. The evaluable symbols are an add-on feature rather than
an integral part of Otter. In particular, the objects that are manipulated (integers,
bit strings, etc.) in most cases are stored by Otter as character strings rather than
as the appropriate data type. To evaluate a term, say $SUM(2,3), Otter must
find the strings "2" and "3" in a hash table, translate them to integers, add them,
translate the result to the string "5", then look up "5", and possibly insert it into
the hash table. This procedure is obviously much slower than it needs to be. If the
user has a problem that requires a hundred million evaluations, he or she should
consider using something else, including writing a special-purpose C program.

Warning 1. The evaluable symbols should not be thought of as theories “built in”
to Otter. As theories, they are very incomplete, and Otter uses them only in
very constrained ways.

Warning 2. Ordinary resolution inference rules (e.g., binary_res, hyper_res,
ur_res) never apply to evaluable literals.

9.1 Using More Natural Expressions for Evaluation

Writing complex evaluable expressions with $-symbols can be quite tedious. There-
fore, a feature was added that allows more natural expressions. The command
make_evaluable copies the evaluation properties from a $-symbol to any other
symbol of the same arity. The form of the command is

make evaluable(any-symbol,evaluable-symbol).
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The symbols in the command are given dummy arguments to specify the arity. The
following list contains typical examples for integer arithmetic (assuming the symbols
on the left are already known to be infix).

make_evaluable(_+_, $SUM(_,_)).
make_evaluable(_-_, $DIFF(_,_)).
make_evaluable(_>_, $GT(_,_)).
make_evaluable(_>=_, $GE(_,_)).

Warning 1. If a binary symbol that is recognized by paramodulation or demod-
ulation as an equality symbol is given evaluation properties, it will no longer be
recognized by paramodulation or demodulation. For example, if the command
make_evaluable(_=_, $EQ(_,_)) is issued, paramodulation and demodulation will
not recognize a=b as an equality. The convention is to use == for evaluation.

Warning 2. This is not an “alias” mechanism; the symbols remain distinct for
unification, matching, and identity testing.

9.2 Evaluation Examples

Equational Programming. The evaluable functions and predicates enable the
use of equalities with demodulation as a general-purpose equational programming
language. Here are some examples.

gcd(x,y) = % greatest common divisor for nonnegative integers
$IF($EQ(x,0),

y,
$IF($EQ(y,0),

x,
$IF($LT(x,y),

gcd(x,$DIFF(y,x)),
gcd(y,$DIFF(x,y))))).

factorial(x) = % factorial for nonnegative integers
$IF($EQ(x,0),

1,
$PROD(x,factorial($DIFF(x,1)))).

quick_sort([]) = []. % naive quicksort
quick_sort([x|y]) = append(quick_sort(le_list(x,y)),

[x|quick_sort(gt_list(x,y))]).
le_list(z,[]) = [].
le_list(z,[x|y]) = $IF($LLE(x,z),

[x|le_list(z,y)],
le_list(z,y)).

gt_list(z,[]) = [].
gt_list(z,[x|y]) = $IF($LGT(x,z),

[x|gt_list(z,y)],
gt_list(z,y)).
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A State-Space Search. Here is a complete Otter input file for a simple state-
space search.

% We have a 3-gallon jug and a 4-gallon jug, both empty, and a well.
% Our goal is to have exactly 2 gallons in the 4-gallon jug. We
% can fill a jug from the well, empty a jug onto the ground, and
% carefully pour water from one jug into the other.
%
% j(m, n) is the state in which the 3-gallon jug contains m gallons,
% and the 4-gallon jug contains n gallons.

set(hyper_res).

make_evaluable(_+_, $SUM(_,_)).
make_evaluable(_-_, $DIFF(_,_)).
make_evaluable(_<=_, $LE(_,_)).
make_evaluable(_>_, $GT(_,_)).

list(usable).
-j(x, y) | j(3, y). % fill the 3-gallon jug
-j(x, y) | j(0, y). % empty the 3-gallon jug
-j(x, y) | j(x, 4). % fill the 4-gallon jug
-j(x, y) | j(x, 0). % empty the 4-gallon jug
-j(x, y) | -(x+y <= 4) | j(0, y+x). % small -> big; it all fits
-j(x, y) | -(x+y > 4) | j(x - (4-y), 4). % small -> big, until full
-j(x, y) | -(x+y <= 3) | j(x+y, 0). % big -> small; it all fits
-j(x, y) | -(x+y > 3) | j(3, y - (3-x)). % big -> small, until full

-j(x, 2). % goal state --- 4-gallon jug containing 2 gallons
end_of_list.

list(sos).
j(0, 0). % initial state --- both jugs empty
end_of_list.

10 Weighting

Otter recognizes four lists of weight templates. (See Sec. 5.4 for input of weight
template lists.)

weight list(pick given). This list is used for selection of given clauses from list
sos. When the weight of a clause is printed, it is the pick_given weight.

weight list(purge gen). This list is used in conjunction with the max_weight
parameter to discard generated clauses.

weight list(pick and purge). In many cases, one can use the same weighting
strategy for both selecting given clauses and purging generated clauses. The
pick_and_purge list serves the purposes of both the pick_given and the
purge_gen lists. If the pick_and_purge list is present, then neither the
pick_given nor the purge_gen list may be present.
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weight list(terms). This list is for calculating the weight of terms when using
the weight-lex-order (Sec. 8.1.1) to compare terms. This occurs when the flag
lrpo is clear when orienting equality literals (Secs. 8.1.2 and 8.1.3).

10.1 Weighing Clauses and Literals

The weight of a clause is always the sum of the weights of its literals (excluding
any answer literals). The weight of a positive literal is the weight of its atom. The
weight of a negative literal is the weight of its atom plus the value of the neg_weight
parameter (Sec. 6.2.5).

10.2 Weighing Atoms and Terms

Atoms and terms are weighed top-down. To weigh a given term, Otter searches
the appropriate weight list (in the order input) for the first matching template. If a
match is found, then the subterms of the given term that match the integers in the
template are weighed. The weight of the given term is the sum of the products of
each integer and the weight of its corresponding subterm, plus the second argument
of the weight template. For example, the template

weight(f(g($(2)),$(-3)), -50).

matches the given term

f(g(h(a)),f(b,x)).

Let wt(t) be the weight of term or atom t. Then

wt(f(g(h(a)),f(b,x))) = 2 ∗ wt(h(a)) + (−3) ∗ wt(f(b,x)) + (−50).

If a matching weight template is not found, then the weight of the given term is
1 plus the sum of the weights of the subterms. (See the flags atom_wt_max_args
and term_wt_max_args, Sec. 6.1.9, for overrides.) Note that this weighting scheme
implies that if no weight templates are present, the default weight of a term or atom
is the number of variable, constant, function, and predicate symbols (the symbol
count).

Variables in weight templates are generic. A variable in a weight template will
match any variable, and only a variable, in the given term. As a consequence, it
is never necessary to use different variable names in a weight template. For exam-
ple, weight(f(x,x),-7) matches the term f(u,v), and weight(x,32) matches all
variables.

Warning. The two occurrences of symbol f in the term f(f,x) are treated by
Otter as different symbols because they have different arities. The weight template
weight(f, 0) applies to the second occurrence but not to the first.
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The default weight of an answer literal is 0, but templates can be used to assign
weights to answer literals. The parameter neg_weight never applies to answer
literals.

If one wishes to have a weight template containing a Skolem function or constant
that is generated by Otter, one must first make a short trial run to find out how
the formulas are Skolemized, then return to the input file and insert the weight list
containing the Skolem symbol after the formula lists.

11 Answer Literals

The main use of answer literals is to record, during a search for a refutation, instanti-
ations of variables in input clauses. For example, if the theorem under consideration
states that an object exists, then the denial of the theorem contains a variable, and
an answer literal containing the variable can be appended to the denial. If a refuta-
tion is found, then the empty clause has an answer literal that contains the object
whose existence has just been proved.

Any literal whose predicate symbol starts with $ans, $Ans, or $ANS is an answer
literal. Most routines—including the ones that count literals and decide whether a
clause is positive or negative—ignore any answer literals. The inference rules insert,
into the children, the appropriate instances of any answer literals in the parents. If
factoring is enabled, Otter does attempt to factor answer literals.

12 The Passive List

Either clauses or formulas can be input to list passive. After input, the passive
list is fixed for the rest of the run. Clauses in the passive list are used for exactly
two purposes: forward subsumption and unit conflict. If forward subsumption is
enabled, a newly generated clause will be deleted if it is subsumed by any clause in
usable, sos, or passive, and newly kept unit clauses are checked for unit conflict
against unit clauses in usable, sos, or passive.

The passive list has been most useful for monitoring the progress of a search.
Suppose we are trying to prove a difficult theorem, we have some lemmas in mind,
and we would like to know whether Otter has proved the lemmas. Then denials
of the lemmas can be placed in the passive list, and Otter will report proofs if
it proves any lemmas, but the denials of the lemmas will not interfere with the
search for the main theorem. (Recall that an appropriate value must be assigned to
max_proofs; otherwise Otter will stop at the first proof.)
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13 Completeness and Soundness

13.1 Completeness

If the clause set does not involve equality, or if it involves equality and includes the
equality axioms, then many of the common refutation-complete resolution search
strategies can be easily achieved with Otter. For example, hyperresolution and
factoring, with positive clauses in the list sos and nonpositive clauses in the list
usable, is complete. If the input clause set is Horn, then factoring is not required.
The default method of selecting the given clause (take one with the fewest symbols)
does not interfere with completeness, and neither forward nor back subsumption, as
implemented in Otter, interferes with completeness of the basic inference rules.

Completeness issues are more complex when paramodulation is the inference
rule, especially when the set of support strategy is considered. A simple and com-
plete paramodulation strategy for Otter is (1) paramodulate from and into the
given clause, (2) paramodulate from and into both sides of equality literals, (3)
paramodulate from (but not into) variables, and (4) place all input clauses in the
list sos. The equality x=x is required, but the functionally reflexive axioms are not
required.

Completeness of the basic inference rules is important, but incomplete restric-
tions and refinements are frequently required to find proofs. For example, I almost
always use the max_weight parameter; strictly speaking, it is incomplete, but it
saves a lot of time and memory, and careful use of it does not prevent Otter from
finding proofs in practice. For paramodulation, I generally use a search based on
some variation of the Knuth-Bendix completion procedure; some versions are known
to be incomplete, and others have not been analyzed. I sometimes use UR-resolution
on nonHorn sets, which is incomplete. And I make extensive use of weighting to
purge “uninteresting clauses” and the options delete_identical_nested_skolem,
max_distinct_vars, and max_literals, all of which interfere with completeness.

13.2 Soundness

As far as I know, no part of Otter has been formally verified in any way. If it
finds a proof, it can print the proof line by line (excluding individual demodulation
steps), so the user has the option of checking it. If anything depends on the proof, I
recommend at least scanning the proof for obvious errors. The few soundness bugs
in previous versions of Otter have surfaced in ways that are easy to spot in proofs,
for example, deriving x = y from a nontrivial equational theory.

I won’t jump off a bridge (even a small one) if someone finds a bug that makes
Otter unsound, but I will tell everyone about the the bug and try to fix it promptly.

14 Interaction during the Search

Otter has a primitive interactive feature that allows the user to interrupt the
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search, modify the options, and then continue the search. The interrupt is trig-
gered in two ways: (1) with Otter running in the foreground, the user types
the “interrupt” character (often delete or control-C), or (2) if the parameter
interrupt_given is set to n, the search is interrupted after every n given clauses.
When interrupted, Otter immediately goes into a simple loop to read and execute
commands. The accepted commands are listed in Table 8.

Table 8: Interaction Commands
help. Give simple help.
set(flag-name). Set a flag.
clear(flag-name). Clear a flag.
assign(param-name,value). Assign a value to a parameter.
stats. Send statistics to std. output and the terminal.
usable. Print list usable on the terminal.
sos. Print list sos on the terminal.
demodulators. Print list demodulators on the terminal.
passive. Print list passive on the terminal.
fork. Fork and run the child process;

resume parent when child finishes.
continue. Continue the search.
kill. Send statistics to standard output, and exit.

The following notes elaborate on the interactive feature.

• The flag interactive_given (Sec. 6.1.1) can be useful with the interactive
feature. For example, if the user thinks the search is going to fail, he or she
can interrupt it, print list sos, set the interactive_given flag, then continue,
selecting given clauses interactively.

• The fork command creates a separate copy, called a child, of the entire Ot-
ter process. Immediately after the fork, the child is running (waiting for
more commands) and the original process, the parent, is waiting for the child
to finish. When the child finishes, the parent resumes (waiting for more com-
mands). Changes that the child makes to the clause space, options, etc., are
not reflected in the parent; when the parent resumes, it is in exactly the same
state as when the fork occurred. (The timing statistics are not handled cor-
rectly in child processes; CPU times are from the start of the current process;
wall-clock time is correct; other timings are not reliable.)

• The interactive routine is an area where a user who is also a C programmer
can easily add features. For example, most of the ordinary input commands
could be made available in the interactive mode.

Warning. Do not interactively change any option that affects term or literal index-
ing.
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15 Output and Exit Codes

Otter sends most of its output to “standard output”, which is usually redirected by
the user to a file; I’ll just call it the output file. The first part of the output file is an
echo of most of the input and some additional information, including identification
numbers for clauses and description of some input processing. Comments are not
echoed to the output. The second part of the output file reflects the search. Various
print flags determine what is output. Given clauses, generated clauses, kept clauses,
and several messages about the processing of generated and kept clauses can be
printed. Both statistics from the parameter report and proofs can also be printed
during the search. The final part of the output file lists counts of various events
(such as clauses given and clauses kept) and times for various operations.

Whenever a clause is printed, it is printed with its integer identifier (ID) and a
justification list, which is enclosed in brackets. Examples:

4 [] -j(x,y)|j(x,0).
13 [hyper,11,8,eval,demod] j(3,1).
41 [31,demod] p([a,b,b,c,c,c,d,e,f]).
14 [new_demod,13] f(y,f(y,f(y,x)))=x.
71 [back_demod,58,demod,70,14,55,11,34,11] e!=e.
12 [demod,9] f(a,f(b,f(g(a),g(b))))!=e.
77 [binary,57.3,30.2] sm|mm| -sl.
33,32 [para_from,26.1.1,15.1.1.2,demod,21] g(x)=f(x,x).
36 [hyper,31,2,26,30,unit_del,19,18,20,19] p(k,g(k)).
4 [factor_simp,factor_simp] p(x)|p($f1(x))| -q($f2(y))| -q(y)|p($c6).
199 [binary,198.1,191.1,factor_simp] q($c14).

If the justification list is empty, the clause was input. Otherwise, the first item in
the justification list is one of the following.

An inference rule. The clause was generated by an inference rule. The IDs of the
parents are listed after the inference rule with the given clause ID listed first
(unless order_history is set).

A clause identifier. The clause was generated by the demod_inf rule.

new demod. The clause is a dynamically generated demodulator; it is a copy of the
clause whose ID is listed after new_demod.

back demod. The clause was generated by back demodulating the clause whose ID
is listed after back_demod.

demod. The clause was generated by back demodulating an input clause.

factor simp. The clause was generated by factor-simplifying an input clause. For
example, p(x)|p(a) factor-simplifies to p(a).

The sublist [demod, id1, id2, . . .] indicates demodulation with id1, id2, . . .. The sublist
[unit del, id1, id2, . . .] indicates unit deletion with id1, id2, . . .. The symbols eval

45



indicates that a literal was “resolved” by evaluation (Sec. 9) during hyperresolu-
tion. The sublist [factor simp, factor simp, . . .] indicates a sequence of factor-
simplification steps (Sec. 6.1.4).

In proofs, some clauses are printed with two (consecutive) IDs. In such a case,
the clause is a dynamically generated demodulator, and the two IDs refer to different
copies of the same clause: the first ID refers to its use for inference rules, and the
second to its use as a demodulator.

If the flag detailed_history is set, then for the inference rules binary_res,
para_from, and para_into, the positions of the unified literals or terms are listed
along with the parent IDs. For example, [binary,57.3,30.2] means that the third
literal of clause 57 was resolved with the second literal of clause 30. For paramod-
ulation, the “from” parent is listed as ID.i.j, where i is the literal number of the
equality literal, and j (either 1 or 2) is the number of the unified equality argument;
the “into” parent is listed as ID.i.j1. · · · .jn, where i is the literal number of the
“into” term, and j1. · · · .jn is the position vector of the “into” term; for example,
400.3.1.2 refers to the second argument of the first argument of third literal of
clause 400. If the flag para_all is set, then the paramodulation positions are not
listed.

When the flag sos_queue is set, the search is breadth first (level saturation),
and Otter sends a message to the output file when given clauses start on a new
level. (Input clauses have level 0, and generated clauses have level one greater than
the maximum of the levels of the parents. Since clauses are given in the order in
which they are retained, the level of given clauses never decreases.)

Exit Codes. When Otter stops running, it returns with an exit code that gives
the reason for termination. The codes are useful when another program or system
calls Otter. Table 9 lists the exit codes. Note that we do not follow the unix
convention of returning zero for normal and nonzero for abnormal termination.

Table 9: Exit Codes
101 Input error(s)
102 Abnormal end (compile-time limit or Otter bug)
103 Proof(s) found (stopped by max_proofs)
104 sos list empty
105 max_given parameter exceeded
106 max_seconds parameter exceeded
107 max_gen parameter exceeded
108 max_kept parameter exceeded
109 max_mem parameter exceeded
110 Operating system out of memory
111 Interactive exit
112 Memory error (probable Otter bug)
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16 Controlling Memory

In many Otter searches, the sos list accumulates many clauses that never enter
the search, possibly wasting a lot of memory. The normal way to conserve memory
is to put a maximum on the weight of kept clauses. It can be difficult, however,
to find an appropriate maximum. Otter has a feature, enabled by the command
set(control_memory), that attempts to automatically adjust the maximum.

The memory-control feature operates as follows. When one third of available
memory (max_mem parameter) has been filled, Otter assigns or reassigns a maxi-
mum weight. The new maximum, say n, is such that 5% of all clauses in sos have
weight ≤ n. From then on, at every tenth iteration of the main loop, Otter calcu-
lates a prospective new maximum n′ in the same way. If n′ < n, then the maximum
is reset to n′. I arrived at the values 1/3 and 5% by trial and error. Perhaps these
values should be parameters.

17 Fringe Features

This section describes some features that are new, not well tested, and/or not well
documented.

17.1 Autonomous Mode

If the flag auto is set, Otter will scan the input clauses for some simple syntactic
properties and decide on inference rules and a search strategy. We think of the au-
tonomous mode as providing a built-in metastrategy for selecting search strategies.
The search strategy that Otter selects for a particular set of clauses is usually
refutation complete (except for the flag control_memory), but the user should not
expect it to be especially effective. It will find proofs for many easy theorems, and
even for cases in which it fails to find a proof, it provides a reasonable starting point.

In the input file, the command set(auto) must occur before any input clauses,
and all input clauses must be in list usable; it is an error to place input clauses on
any of the other lists when in autonomous mode. Otter will move some of the input
clauses to sos before starting the search. When Otter processes the set(auto)
command, it alters some options, even before examining the input clauses. If the
user wishes to augment the autonomous mode by including some ordinary Otter
commands (including overriding Otter’s choices), the commands should be placed
after set(auto) and before list(usable).

After list(usable) has been read, Otter examines the input clauses for several
syntactic properties and decides which inference rules and strategies should be used,
and which clauses should be moved to sos. The user cannot override the decisions
that Otter makes at this stage.

Otter looks for the following syntactic properties of the set of input clauses: (1)
whether it is propositional, (2) whether it is Horn, (3) whether equality is present,
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(4) whether equality axioms are present, and (5) the maximum number of literals
in a clause. The program then considers six basic combinations of the properties:
(1) propositional, (2) equality in which all clauses are units, and (3–6) the four
combinations of {equality, Horn}. To see precisely what Otter does for these
cases, the reader can set up and run some simple experiments.

Please be aware that the autonomous mode reflects my own experiences with
Otter; other users would certainly formulate different metastrategies. For example,
Larry Wos prefers UR-resolution to hyperresolution or in addition to hyperresolution
in rich Horn or nearly-Horn theories, and he prefers to add few or no dynamic
demodulators for equality theories.

17.2 The Hot List

The hot list is a strategy that can be used to emphasize particular clauses. It was
invented by Larry Wos in the context of paramodulation, and it has been extended
to most of Otter’s inference rules. To use the strategy, the user simply inputs one
or more clauses in the special list named hot. Whenever a clause is generated and
kept by Otter’s ordinary mechanisms, it is immediately considered for inference
with clauses in the hot list.

Which Clauses Should Be Hot? Clauses input in the hot list are usually copies
of clauses that occur also in sos or usable. They are usually clauses that the user
believes will play a key role in the search for a proof, for example, the special
hypothesis.

Managing Hot-List Clauses. Input to the hot list is the same as input to other
lists and can be in either clause or formula form, for example,

list(hot).
f(x,x) = x. m(m(x)) = x.
end_of_list.

The flag process_input has no effect on hot-list clauses; they are never altered
during input. Hot-list clauses are never deleted, for example by back subsumption
or back demodulation. Even if a hot-list clause is identical to a clause in another
list, it has a unique identifying number, and proofs that use hot-list clauses generally
refer to two copies (with different ID numbers) of those clauses.

Hot Inference Rules. The inference rules that are applied to newly kept clauses
and hot-list clauses are the same as the rules in effect for ordinary inference, with
the exceptions demod_inf, geometric_rule, and linked_ur_res, which are never
applied to hot-list clauses.
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Applying Hot Inference. When hot inference is applied, the newly kept clause
is treated as the given clause, and the hot list is treated as the usable list. (Note
that the newly kept clause is not in the hot list, so it will not be considered for
inference with itself, as happens with the given clause in ordinary inference.) For
inference rules such as hyperresolution or UR-resolution that can use more than two
parents, all of the other parents must be in the hot list; this generally means that
the nucleus and other satellites must be in the hot list. Hot inference is not applied
to clauses that are “kept” during processing of the input.

Level of Hot Inference (Parameter heat). To prevent long sequences of hot
inferences (i.e., hot inference applied to a clause generated by hot inference, and
so on) we consider the heat level of hot inference. The heat level of an ordinary
inference is 0, and the heat level of a hotly inferred clause is one more than the heat
level of the new-clause parent. The parameter heat, default 1, range [0..100], is the
maximum heat level that will be generated. When a clause is printed, its heat level,
if greater than 0, is also printed.

Dynamic Hot Clauses (Parameter dynamic heat weight). Clauses can be
added to the hot list during a search. If the pick_given weight of a kept clause
is less than or equal to the parameter dynamic_heat_weight, default −max int,
range [−max int..max int], then the clause will be added to the hot list and used
for subsequent hot inference. Input clauses that are “kept” during processing of the
input are never made into dynamic hot clauses. Dynamic hot clauses can be added
to an empty hot list (i.e., no input hot list).

17.3 Linked UR-Resolution

Otter has an inference rule, linked_ur_res, that is an application of the linked
inference principle [27] to UR-resolution. As this manual is written, there is not
yet any documentation. The inference rule is still evolving and is highly experimen-
tal. For current information on the status of linked UR-resolution, send e-mail to
wos@mcs.anl.gov and veroff@cs.unm.edu.

17.4 Conditional Demodulation

A conditional demodulator has the form

condition -> equality-literal.

The equality is applied as a demodulator if and only if the instantiated condition
evaluates to $T. The equality of a conditional demodulator is not subjected on
input to being flipped or to being flagged as a lex-dependent demodulator, and
conditional demodulators are never back demodulated. In other ways, conditional
demodulators behave as ordinary demodulators. Examples are (member and gcd are
defined in Sec. 9.)
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$ATOMIC(x) -> conjunctive_normal_form(x)=x.
member(gcd(4,x),y) -> Equal(f(x,y), g(y)).
$GT($NEXT_CL_NUM,1000) -> e(x,x) = junk.

17.5 Special Unary Function Demodulation

A feature, activated by the special_unary command, allows Otter to avoid one
of the problems caused by the lack of associative-commutative matching during
demodulation. The feature is useful when an associative-commutative function and
an inverse are present, as in rings. Without this feature, the following lex command
and demodulators

lex([0,a,b,c,d,e,g(_),f(_,_)]).

list(demodulators).
f(x,y) = f(y,x).
f(x,f(y,z)) = f(y,f(x,z)).
f(x,g(x)) = 0.
f(x,f(g(x),y)) = f(0,y).
f(0,x) = x.
end_of_list.

will cause the expression

f(f(f(g(b),a),c),f(b,g(c)))

to be sorted into

f(a,f(b,f(c,f(g(b),g(c))))).

One would like b and g(b) to be next to each other so that they could be canceled
by one of the inverse demodulators. The special-unary feature accomplishes just
that. The command

special_unary([g(x)])

causes g to be ignored during term comparisons, and the expression would be de-
modulated to a. The special_unary command has no effect if the flag lrpo is set.
This is an experimental feature. Its behavior has not been well analyzed.

17.6 Ancestor Subsumption

Otter does not necessarily prefer short or simple proofs—it simply reports the
proofs that it finds. An option ancestor_subsume extends the concept of subsump-
tion to include the derivation history, so that if two clause occurrences are logically
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identical, the one with fewer ancestors is preferred. The motivation is to find short
proofs.

ancestor_subsume — default clear. If this flag is set, the notion of subsump-
tion (forward and back) is replaced with ancestor-subsumption. Clause C ancestor-
subsumes clause D iff C properly subsumes D or if C and D are variants and
size(ancestorset(C)) ≤ size(ancestorset(D)).

When setting ancestor_subsume, we strongly recommend not clearing the flag
back_subsume, because doing so can cause many occurrences of the same clause to
be retained and used as given clauses.

17.7 Reducing max weight on the Fly

In many searches, the number of kept clauses grows much faster than the number
of given clauses. In other words, the list sos is very large, and most of those clauses
never participate in the search. To save memory, one can use the max_weight
parameter to discard many of the clauses that will (probably) never become given
clauses.

A few searches and proofs show a phenomenon we call the complexity hump. To
get a search started, one must use complex clauses; then one can continue the search
using simpler clauses. That is, the first few steps in the proof are complex, and the
remaining steps are simpler. If one needs to carefully conserve memory when a
complexity hump is present, one can use the parameters change_limit_after and
new_max_weight to change the value of max_weight after a specified number of
given clauses.

change_limit_after — default 0, range [0..max int]. If n (the value) is not 0,
this parameter has effect. After n given clauses have been used, the parameter
max_weight is automatically reset to the value of the parameter new_max_weight.

new_max_weight — default max int, range [−max int..max int]. See the descrip-
tion of the preceding parameter.

Note that the memory-control feature (Sec. 16) can also address the complexity
hump phenomenon.

17.8 The Invisible Argument

Otter recognizes a built-in unary function symbol $IGNORE(_). Forward subsump-
tion treats each term that starts with $IGNORE as the constant $IGNORE, completely
ignoring its argument. For example, p(a,$IGNORE(b)) subsumes p(a,$IGNORE(c)).
All other operations (in particular, inference rules, demodulation, and back sub-
sumption) treat $IGNORE as an ordinary function symbol.

The purpose of $IGNORE is to record data about the derivation of a clause with-
out having that data prevent the forward subsumption of clauses that would be
subsumed without that data. The $IGNORE term is the term analog of the answer
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literal. For example, one can use $IGNORE terms in the jugs and water puzzle (Sec.
9.2) to record the sequence of pourings that leads to each state.

17.9 Floating-Point Operations

Table 10 lists a set of floating-point evaluable functions and predicates that are
analogous to the integer arithmetic operations listed in Sec. 9. They operate in the
same way as the integer operations.

Table 10: Floating-Point Operations
float× float → float $FSUM, $FPROD, $FDIFF, $FDIV, $FMOD
float× float → bool $FEQ, $FNE, $FLT, $FLE, $FGT, $FGE

The floating-point constants, however, are a little peculiar, both in the way they
look and in the way they behave. They are written as quoted strings, using either
single or double quotes. (Otherwise, they would not be able to contain decimal
points.) Other than the quotation marks, the form of the floating-point constants
accepted by Otter is exactly the same as the form accepted by the C programming
language (actually the C library used by the compiler). Examples are "1.2", "10e6",
"-3.333E-5". A floating-point constant must contain either a decimal point or an
exponent character e or E.

The peculiar behavior comes from the fact Otter stores the floating point
numbers as character strings instead of directly as floating point numbers. To apply
a floating-point operation, Otter starts with the operand strings, translates them
to true floating-point numbers (the C data type “double” is used), performs the
operation, then translates the result into a string so that it can be an Otter
constant. As well as being inefficient, this scheme also has a problem with precision,
because a fixed format is used to translate the results back into strings. The default
format is "%.12f", and it can be changed with a command such as

float_format("%17.8f")

Caution. Otter does not check that the string in the float_format command is
a well-formed format specification. This is the user’s responsibility.

To fully understand how this works, see the standard C language reference [11,
Appendix B]; in particular, the C library functions sscanf and sprintf are used
to translate to and from strings.

17.10 Foreign Evaluable Functions

Otter provides a general mechanism through which the user can create his or
her own evaluable functions and predicates. The user (1) declares the function, its
argument types, and its result type, (2) inserts a call to the function in the Otter
source code, (3) writes a C routine to implement the function, and (4) recompiles
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Otter. The user must have his or her own copy of the source code to use this
feature. See the source code file foreign.h for step-by-step instructions, examples,
templates, and test files.

Important note. Many times you can avoid having to do all of this by just writing
your function with demodulators and using existing built-in functions. For exam-
ple, if you need the maximum of two doubles, you can just use the demodulator
float_max(x,y) = $IF($FGT(x,y), x, y).

17.11 Sequent Notation for Clauses

There are two flags that enable the use of sequent notation for clauses.

input_sequent — default clear. If this flag is set, clauses in the input file must be
in sequent notation.

output_sequent — default clear. If this flag is set, then sequent notation is used
when clauses are output.

Syntax:

• All sequent clauses have an arrow.

• The negative literals (if any) are written on the left side of the arrow, are
written without the negation sign, and are separated by commas.

• The positive literals (if any) are written on the right side of the arrow and are
separated by commas.

Table 11 lists some examples.

Table 11: Examples of Sequent Clauses
Ordinary Clause Sequent Clause
-p | -q | -r | s | t p,q,r->s,t
p(a,b,c) -> p(a,b,c)
a!=b a=b ->
$F (the empty clause) ->

Note that p,q->r,s is ordinarily thought of as (p and q) implies (r or s).

Sequent clauses are treated as (parsed as) a special case, because they can’t be
made to fit within Otter’s ordinary syntax.

17.12 The Inference Rule gL for Cubic Curves

Based on work of R. Padmanabhan and others, a new inference rule, gL (“geo-
metric Law”, or “Local to global”), was added to Otter. The rule implements a
local-to-global generalization principle that has a geometric interpretation for cubic
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curves. The article [18] contains a description of the rule, some details about its
implementation in Otter, and several new results obtained with its use.

The rule gL applies to single positive unit equalities, and it is implemented in
two ways: as an inference rule, with unification, and as a rewrite rule, for when the
target terms are already identical. The following flags, usually used together, enable
the rule.

geometric_rule — default clear. When this flag is set, gL is applied as an inference
rule (along with any other inference rules that are set) to each given clause. The
rule gL applies to single positive unit equalities.

geometric_rewrite — default clear. When this flag is set, gL is applied as a rewrite
rule, after ordinary demodulation, to each generated clause.

Our experience has shown that given two equalities of equal weight, one the result
of gL and the other not, the gL result is usually more interesting. The following
parameter can give preference to gL results.

geo_given_ratio — default 1, range [−1..max int]. When this parameter is not
−1, it affects selection of the given clause in a way similar to pick_given_ratio.
If the ratio is n, then for each n given clauses selected in the normal way by weight,
one given clause is selected because it is the lightest gL result available in sos.
If pick_given_ratio and geo_given_ratio are both in effect, then clashes are
resolved in favor of geo_given_ratio.

18 Limits, Abnormal Ends, and Fixes

Otter has several compile-time limits. If a limit is exceeded, a message containing
the name of the limit will appear in the output file and/or at the terminal. To raise
the limit, find the appropriate definition (#define) in a .h or .c file, increase the
limit, and recompile Otter. (Of course, one must have his or her own copy of the
source code to do this.) Some of the limits are as follows.

MAX_NAME — Maximum number of characters in a variable, constant, function, or
predicate symbol.

MAX_BUF — Maximum number of characters in an input string (clause, formula,
command, weight template, etc.).

MAX_VARS — Maximum number of distinct variables in a clause.

MAX_FS_TERM_DEPTH — Maximum depth of terms in the forward subsumption dis-
crimination tree.

MAX_AL_TERM_DEPTH — Maximum depth of left-hand arguments of equalities in the
demodulation discrimination tree.

Conserving Memory. Several steps can be taken if Otter is using too much
memory.
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• Use max_weight to discard (more) generated clauses. This is a very effective
way to save memory (and time).

• Set the flag control_memory (Sec. 6.1.9), or use the parameters
change_limit_after and new_max_weight (Sec. 17.7).

• Decrease (down to 0) the value of the fpa_literals and fpa_terms parame-
ters.

• Set the for_sub_fpa flag to switch forward subsumption indexing from dis-
crimination tree to fpa indexing.

• If the inference rules being used are binary resolution or paramodulation, clear
the flag detailed_history.

• If a lot of back subsumption or back demodulation is expected, set the flag
really_delete_clauses (Sec. 6.1.9).

• If applicable, set no_fapl or no_fanl (Sec. 6.1.8).

• If back demodulation is being used, clear the flag index_for_back_demod.

• Run an Otter job until memory runs out, collect interesting lemmas from the
output file, then rerun the job including the lemmas as input clauses. Repeat.
(This can be a good strategy even when memory is not a problem.)

19 Obtaining and Installing Otter

Otter 3 is free, and there are no restrictions on copying or distributing it. The
main means of distribution is anonymous FTP from info.mcs.anl.gov. See the
file README in the directory pub/Otter for information on the current state and
versions of Otter 3.

Once you have a copy of the Otter 3 distribution directory, you can compile
Otter. (There may be Macintosh and DOS binaries available; see below.) The
directory source contains all of the source code and a unix-style makefile. On
many unix-like operating systems, including Linux 99.pl13, SunOS 4.1.3, AIX 3.2.2,
NeXTStep 3.1, and IRIX 4.0.5, simply typing “make otter” should compile Otter.
If compilation fails, see comments in the file makefile for hints on getting Otter
to compile on your system.

Once you have Otter compiled, go to the directory test and see the file README.
You can then run the test and example input files in that directory.

As I write this manual, Otter 3 has not been compiled for DOS or Macintosh
computers; I hope that those versions will soon become available in binary as well
as in source form. Inquiries on Otter 3 for DOS or Macintosh systems can be sent
to the author.
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