

GTOSS

“Getting Started”

GTOSS Version H12.1

Release for Ubuntu Distribution of Linux

(likely compatible with all Linux and Unix variants)

Oct 2008

Developed By
David D. Lang Associates

Seattle, WA

Originally for

NASA Johnson & Marshall Space Flight Centers

Then On-going for

Various Industry Advocates & Supporters

ACKNOWLEDGEMENT

The author of GTOSS would like to acknowledge Keith Curtis and Brad
Edwards for their encouragement and support in making this release of
GTOSS available to the Space Elevator Community.

Table of Contents

OVERVIEW – What is GTOSS ...3

The GTOSS Applications..3

How GTOSS Works ..4

User Defined Input to GTOSS..6

Delivery Files and Suggested Directory Structure7

Installing GTOSS.. 9
The Target Platform... 9

Installing the Fortran Compiler .. 9
“C” Pre-Processing ... 10

Building GTOSS.. 10
Building Post Processors .. 12
Resulting Application Programs ... 12
Make-file Options, and Using the Other Script Files .. 12

Running GTOSS ..13

How To Do It, and What Happens .. 13
“Terminal” Output and other Useful Results .. 14
Error Reports.. 14
Making Your First Example GTOSS Run ... 15
Making More Advanced Space Elevator Explorations ... 16

Admonitions ...18

Recommended Reading...19

Getting Started with GTOSS

3

OVERVIEW – What is GTOSS

GTOSS stands for Generalized Tethered Object Simulation System. It has a rich
genealogy dating back almost 30 years to its initial development under the sponsorship of
NASA; in the intervening time, it has been used by 30 organizations, including
government organizations and large aerospace companies. More can be found about the
evolutionary details of GTOSS on the web site: http://home.comcast.net/~GTOSS/.

The current GTOSS software system consists of a large body of Fortran 95 source-code
and 10 reference manuals describing all phases of user operation, mathematical model
derivations, and system software design. GTOSS programming is characterized by top
down design, object oriented structure, modular isolation of environment models, and
convenient software hooks provided for user-specific modifications. The code is
constrained to a highly portable subset of Fortran 95, and can run on virtually all
computers (with more or less minor modifications required to adhere to system/compiler
idiosyncrasies). The ability to conduct automated verification of GTOSS execution is
provided to substantiate correct installation and/or user code modifications if desired.
This particular incarnation of GTOSS is specifically aimed at a Linux/Unix installation;
in particular, it should be a “turn-key” installation for the Ubuntu distribution of Linux.

It must be stated up front that GTOSS is complex, which, in a sense, simply reflects the
complexity of the subject matter itself; namely, GTOSS allows the simulation of an
arbitrary number of bodies, connected in arbitrary fashion, by an arbitrary number of
tethers. Thus, it could simulate flight of a sailing Frigate’s “chained-cannonball” shot; or,
a wind-tossed dirigible constrained by multiple mooring lines; or, a kite; or, the electro-
dynamic behavior of connected bare-wire tethers in orbit; or, the modern day space
elevator; and everything in between. Dynamics is a complicated scientific/engineering
discipline, and tether dynamics is doubly so. Correct results to tether dynamics problems
are often non-intuitive, and complex to interpret.

As you use GTOSS, before you conclude it is in error, it should be pointed out that over a
period of 30 years of serving GTOSS users of all levels and disciplines, that 99 % of the
problems that were encountered by users have proven to be of the users’ own making due
to having not read the documentation, or a general lack of dynamics/engineering
experience; that said, legitimate bug-detections/reports are always welcome .

The GTOSS Applications

The GTOSS complex consists of 5 executable programs:

 GTOSS – Conducts the actual tethered object simulation run
 DTOSS – A “post-processor” to provide printer-friendly data output
 CTOSS – A “post-processor” to provide graphing-program-friendly data output
 UTOSS – A “post-processor” to provide other useful utility-data output
 VTOSS – Execute to accomplish the automated run-verification capability

The next section elaborates on the actual rolls played by the above application programs:

Getting Started with GTOSS

4

How GTOSS Works

The GTOSS simulation program,

 (1) First accepts an input text file created by the user per a format specified in the

documentation (said text file defining the dynamical system to be examined);

 (2) Then performs a time-domain simulation of the specified dynamic situation.

 (3) As this simulation unfolds in time, GTOSS periodically dumps data describing
all aspects of this simulation into a set of “Results Data Base” files (called the
RDB); this data is essentially an exhaustive compendium of analytical variables
pertaining to a GTOSS solution.

As the last step, the Post Processor Programs come into use;

 (4) After the simulation has completed, the user can then run Post Processing
programs against the GTOSS-generated RDB to produce user-friendly results.

 Note: These post-processed results above could be text “printer-friendly formats”,
“column-delimited formats” (friendly to graphic-display programs), “data formatted
to drive specific animation programs” (for example, data complying with an API
defined per an animation application), or even, “arbitrarily formatted data” as
defined by the user, who would create a sub-program that would access the RDB
(via an intermediary GTOSS program called UTOSS, designed with just this intent
in mind).

A Note on the RDB Scheme: This scheme exists because one frequently never knows in
advance just what data ultimately are going to be of interest or need examining after a
simulation has completed. Thus, were the desired output variables necessarily specified
before a run, to be dumped during the run, and if after the run, the user wished other
variables could be examined, the run would have to be repeated, clearly a significant
waste of lapsed-time as well as CPU resources. Since complex tether simulations often
take hours (and even days) to complete, it represents a significant use of resources to re-
do a run. The RDB, by capturing all the data from a run becomes then a way to preserve
this resource investment. The definition of this data can be related to the analytical
variables defined in the GTOSS equations document. More information can be found
about this in the RDB (ie. RTOSS) User manual.

The POST PROCESSORS (PP’s)

All these programs that provide access to the RDB in behalf of the user are called “Post
processors” (PP’s). There is a large number of user-friendly options already available
within each of these PP’s. The PP output options typically are data synopses that are
applicable to aspects of specific types simulation explorations, and other useful general

Getting Started with GTOSS

5

aggregations of data pertaining to dynamics interpretations. The definitions of these
options are found in the respective PP user manuals (as well as the Quick Ref manual).

The specific Post Processor Programs provided are:

DTOSS: generates a text-file layout format (friendly to user visual perusal)
CTOSS: generates column-delimited text output (friendly to plotting programs)
UTOSS: provided to allow a user flexibility beyond that available in either DTOSS or

CTOSS for post processing of the RDB. For instance, this PP is where various
sub-programs reside that create output formats specifically defined to drive
animation programs; this is also where the output data format is created to
accomplish automated verification of GTOSS. This PP is equally aimed at
supporting outputs that are binary as well as text oriented.

The above three PP’s can be thought of as an intermediary standing in as a tool for the
user to gain access to the “analytically defined variables” of GTOSS that reside in the
RDB. The definition of the RDB format is generally of no concern to a GTOSS
applications user; only the set of subroutines constituting the RDB subsystem (called
RTOSS) need be privy to details of the RDB design. Thus during runtime, the RTOSS
routines grab the analytical variables of GTOSS dynamics definition, and stow them in
the RDB; then, at post processing time, a set of RTOSS co-routines reconstitute the time
histories of these same analytical variables for the benefit of the user display. The PP’s
then aggregate these analytical variables in user-friendly arrangements for output.

Note: If a user wants to expand on a particular PP’s option offerings, this is easily done
via cloning then modifying a provided “stubb” and declaring it as a new output option for
that PP (as opposed to writing a whole new standalone PP program to access the RDB);
adding a clone can often be done in 10 or 15 minutes for those who are familiar with this.
For instance, suppose a user wants to create a column-delimited data file that contains a
particularly convenient subset of data; the user would either clone and modify an existing
output option that was similar to what was desired, or clone and flesh-out a “stubb”. In all
cases, the user would presume upon the PP to actually take care of details of accessing
the analytical variables of the RDB, rather than attempting to deal directly with the
schema used by GTOSS to stash this data in the RDB.

VTOSS: This is not a PP in the above sense, however, it is a program that can be run to

compare data that has been previously output (in a special validation-data
format) by the post processor UTOSS in such a way as to allow validation (ie.
comparison between a “Reference set of data” (usually generated from a
previously verified version of GTOSS), and the identical data items as
generated by the new version of GTOSS that is a candidate for verification.

Getting Started with GTOSS

6

User Defined Input to GTOSS

When GTOSS wakes up during execution, it first looks around the directory (or folder) in
which it launched, for a file with the explicit name “INGOSS” (note, this must be upper-
case, as “case-counts” in Unix); GTOSS views this file as containing all the information
needed to define the dynamical system and thus commence executing the simulation.
Failing to find an INGOSS file in its local directory, GTOSS next looks for a file named
“RTPATH”; this file would then be assumed to provide information about where
GTOSS can find the intended INGOSS file (thus, RTPATH is a directory “re-direction”
file). Under all conditions, failure to identify and open a requested “file name” will
precipitate a Fortran file-open-failure system warning message and a run-time abort.

The format and contents of the INGOSS file is explicitly specified within the GTOSS
documentation. Furthermore, a “skeleton version” of this file is included within the
GTOSS delivery, found here: “A__RUN / GRUNS / _GSKL_vH12”. This “GSKL” file
is rather voluminous as it contains EVERY system configuration data item, as well as
execution options offered by ALL features of GTOSS, thus it can be daunting at first
sight. A good way to deal with this complexity is to build-on existing INGOSS files that
have already been setup to define typical situations with appropriate execution option
features.

For instance, within the main delivery-directory (folder) there can be found a set of 36
INGOSS files located at: “A__RUN / GRUNS / GRUNOO …thru… GRUN35. These
correspond to a myriad of tethered dynamics situations. These files are included as part of
the exhaustive array of executions that GTOSS must perform to pass auto-validation,
BUT, in addition, they also represent a wealth of examples that can be used as starting
points for building new situation INGOSS files. These runs are generally easier to deal
with because they have been stripped of many of the options that are extraneous to a
particular application, and feature a narrowed sub-set of geometry configuration data.

Of course, one can always start with the full-content GSKL file and systematically delete
non-applicable items, however even for a knowledgeable GTOSS user this can become
tedious, thus, said users usually resort to this approach somewhat infrequently.

The post processors behave in a totally parallel fashion to GTOSS regarding their attempt
to read input. They too look for a primary input file, and failing to find same, then turn to
a possible alternate input path re-direction, namely, that same file RTPATH that GTOSS
would use (thus RTPATH defines input re-direction to ALL GTOSS application). The
only difference is in the name of the input files that each program ultimately reads; these
designations are shown below along with their locations in the delivery file set:

DTOSS – reads INDOSS (see “A__RUN / DRUNS / _DSKLv04/ DRUN00…DRUN35)

CTOSS – reads INCOSS (see “A__RUN / CRUNS / _CSKLv04/ CRUN04…misc selec)

UTOSS – reads INUOSS (see “A__RUN / URUNS / _USKLv03/ URUN00…URUN35)

VTOSS – reads INVOSS (see “A__RUN / VRUNS / _VSKLv02/ VAFOWF1…misc)

Getting Started with GTOSS

7

Delivery Files and Suggested Directory Structure

The software delivery consists of five distinct elements:

 1. This “Getting Started” document,

 2. Directory containing GTOSS User Reference Document set (10 pdf files),

 3. Directory containing “getting started” first example GTOSS run for users

 4. Directory containing Extensive GTOSS Space Elevator Dynamics Explorations

 5. Directory containing:
 Source Code Directories (and sub-directories),
 Unix/Linux Scripts for “make-files”, and other useful operations
 Input Text File Directories (for reference and GTOSS verification)

NOTE: The source-code delivery structure is chosen specifically so as to expedite the
creation of GTOSS using delivered make-files; the hierarchical directory order of this
delivery is critical because source-code references to include-files use path-names that
assume this specific source-code directory structure; so to compile as a “turn-key
operation”(with no need to touch source code), requires the suggested source-code
structure below.

So, one would start by creating a directory, say, /myGTOSS/ and deposit delivery conten
into that directory; this would result in a directory structure containing “at a minimum”
the files and directories shown below:

/myGTOSS/  the directory you create to contain all the delivery files

 /A_HDR/  source for GTOSS include files & F95 modules & data classes
 /A_GOSS/  source for main program host for GTOSS
 /A_TOSS/  source for GTOSS sub-system for TOSS Bodies
 /A_FOSS/  source for GTOSS sub-system for Tethers
 /A_ROSS/  source for GTOSS RDB sub-system
 /A_BOSS/  source for GTOSS Flexible boom RDB sub-system
 /A_ENVR/  source for natural environment models
 /A_UTIL/  source for general Utility routines

 /A_DOSS/  source for Post Processor program DTOSS
 /A_COSS/  source for Post Processor program CTOSS
 /A_UOSS/  source for Post Processor program UTOSS
 /A_VOSS/  source for Post Processor program VTOSS

 /A__RUN/  input data files for reference and for verification
 /verify GTOSSv12/  data images of correct reference version of GTOSS
 …the delivery script files…  GNU make-files and other useful scripts

Getting Started with GTOSS

8

Revealed below are the contents of various chosen directories from above:

/A__RUN/
 /GRUNS/  INGOSS files for verification and reference
 /DRUNS/  INDOSS files for verification and reference
 /URUNS/  INUOSS files for verification and reference
 /CRUNS/  INCOSS files for chosen runs defined in /GRUNS/
 /VRUNS/  INVOSS files for chosen examples
 Nom SE Ribbon Data  Text Data snippet for specifying the nominal tapered Space
 Elevator ribbon specification within an IGOSS file to reflect
 the original ribbon design of Brad Edwards.
 /INGOSS_Late_Start_run_setup/  Examples of specifying the “Late Start” feature

 .…assorted script files…..  GNU make-files and other scripts shown as below:
 MakeGTOSS  GNU make-file to build GTOSS
 MakeDTOSS  GNU make-file to build DTOSS
 MakeCTOSS  GNU make-file to build CTOSS
 MakeUTOSS  GNU make-file to build UTOSS
 MakeVTOSS  GNU make-file to build VTOSS
 MakeALL  Linux Script file to build all the GTOSS programs
 ALL_cleanwell  Linux Script file to delete all GTOSS “.o” files
 RTPATH  Re-direction file for GTOSS inputs (optional usage only!)
 /case-convert script/  Contains script to convert Dir/File names->upper case (if needed)

/verify GTOSSv12/
 INVOSS  Input to VTOSS (INVOSS) used to verify GTOSSvH12.1
 /OUTDISvH121/  Contains Output data files from DTOSS for the 36 ref. runs
 /VERIFYvH121/  Contains output from UTOSS for GTOSS verification w/VTOSS

/SE_ Lib_Run_Example/
 INGOSS (SE Lib)  GTOSS Sample Run input file
 INCOSS (SE Lib)  CTOSS Post Processor input file

/Your First GTOSS run/
 INGOSS (SE Lib)  GTOSS input file to create a Space Elevator example run
 INCOSS (SE Lib)  CTOSS Post processing input to create graph-able results

/SE Dynamics Exploration Runs/
 Directories containing definitions of 35 different SE dynamics explorations!

Getting Started with GTOSS

9

Installing GTOSS

Due to the idiosyncrasies of various computer platforms and operating systems, the best
way to acquire GTOSS is to simply compile an executable version of the program from
the Source code itself.

It is assumed that the user is at least functionally comfortable with Unix or Linux.
While this delivery was developed under Ubuntu, a particular Linux distribution, it
should be fairly applicable to all such variants of Unix (for example, the Darwin Unix
variant underlying the Mac OS X implementation).

The Target Platform

This delivery was specifically developed in the context of Ubuntu running on an Intel PC
machine (and arrived thereto from a previous implementation on the Darwin Unix kernel
running on a PowerPC Mac). While, all that is really essential to setting up GTOSS is
access to a Fortran 95 compiler on your platform, cross-platform/cross-compiler porting
can present a multitude of small (but surmountable) nuisances and roadblocks; for
bringing up GTOSS under other Ubuntu platforms, such should be virtually non-existent.

A word of warning

Some Linux/Unix Platforms may take liberties with the “text-case” of directory and file
names, during the process of porting and reconstitution of source code file structures! In
particular, the OS may set all UPPER-case names to Lower-case; this perversity can go
deep into the directory structure. This, of course, can wreak havoc upon the Unix make-
file/Fortran compiling and directory access protocols! Since it does not touch text “within
a file”, one can consult the make-files to gain an understanding of how the “naming
convention should look”. The GTOSS delivery files have bee zipped within a single
delivery folder as a means of hopefully avoiding this.

Installing the Fortran Compiler

This delivery was compiled under the GNU Open Source Fortran called g95; another
variant of this Fortran, called gFortran, is also available as free-ware. The g95 compiler
was found to present no bugs in running through the 60,000 + lines of code that exercised
a great many of the advanced features of the Fortran 95 language specifications (complex
data classes, pointers, etc).

To get started, visit the g95 web site (or go through GNU directly), and locate the g95
delivery downloads that pertain to your specific OS and CPU platform type. The
installation of g95 can be somewhat problematic if you fail to install ALL the support
packages needed (or if Ubuntu is missing tools that g95 needs, but were not installed on
your original Ubuntu implementation). If this is the case, you will likely not know it until

Getting Started with GTOSS

10

you attempt your first “executable build” (see next section). The g95 download site
strongly recommends utilizing a package installer such as “apt-get” or “Synaptic Package
Manager”, as opposed to attempting to figure out what is needed and performing a
manual install.

Confirm compiler operation by issuing the command “g95” in a Unix “terminal shell”. If
the compiler has been properly installed and its location (ie. search paths to it) has been
made known to the system, then this command should elicit a response from the
compiler, identifying itself, and possibly complaining to the effect that the compiler “was
invoked but no source file was identified (or some similar diagnostic type response)”. On
the other hand, if the Terminal shell responds by telling you something like “file or
directory not found”, then likely what has happened is that your “Unix PATH variable”
(which specifies the search routes you proclaim to the system that you want followed in
any attempt to honor an application execution attempt) does not include a pathway to
g95. To remedy this, then you will want to modify your system “PATH” variable to
include a path that leads to the compiler (wherever you may find it to be).

“C” Pre-Processing

To compile properly under Fortran 95, GTOSS requires “C” preprocessing of the source
prior to its being submitted to the Fortran compiler. This is a compiler-invoked function
that is conventionally triggered by use of the source file name suffix of “.F90”. The g95
compiler installation seems to automatically provide such capability if the compiler has
been installed properly. Failure to have pre-processing on the GTOSS source will
precipitate a myriad of compiler error messages, most likely pertaining to un-recognized
or un-declared variable names, Fortran 95 “Code Modules” having compile errors, and
missing Modules, etc, etc. It will be evident that something is gravely wrong with the
compile process (for instance, it will not silently sneak up on the code so as to render an
executable, but dysfunctional GTOSS application).

Building GTOSS

1. At this point it is assumed that the user has created a directory (folder), called, say,
/myGTOSS/ and contained directly-under this directory are all the intact sub-directories
of the GTOSS code delivery (see section above on “Delivery Files” for what the source
contents of this directory should look like).

2. The various Unix Script files should be removed from their sub-directory, and now
also reside as “individual files” directly-under the same user directory /myGTOSS/.

3. Open a Unix/Linux “terminal shell”, and navigate until the shell’s “current working
directory” is in fact /myGTOSS /. Confirm this by using the “pwd” command.

Getting Started with GTOSS

11

4. Now attempt a GTOSS compile and link by invoking the GTOSS make-file using the
command: “make –f MakeGTOSS”.

5. This should start a compilation, as witnessed by a march of lines, each containing: the
list of compiler options being used, the GTOSS sub-routine name being compiled (such a
“GTOSS”, “GTOSUB”, etc,), etc.

If you have arrived at this point, then just let the process proceed until completion.

However, it is possible that the response you get to invoking the make-file may be a
system diagnostic such as “no such directory or file found”. If this is the case, then
(barring an error in navigating to /myGTOSS/) the make-file may not be recognized as a
legitimate Script input. This could be a “permissions type of problem”, that can be
remedied by executing the following command from the terminal: “chmod 755
MakeGTOSS”, which will set proper permission for the Script file to be recognized in
that role (this problem can occur with ANY of the Script files contained in this delivery).

Note, at a minimum, the make files must reflect the choice of Fortran compiler. This is
specified is the 2nd line in each make-file, and should either be:
 FC=g95
or,
 FC=gfortran
or,
 FC= “your system recognized name of whatever compiler you are using”

Now assume that compilation goes to completion, but a “link error” occurs that interrupts
creation of an executable application program. This is usually because a program
reference has been made to an external procedure that cannot be found. If the bogus
reference is traced to a source code routine as the culprit, then that source module is
usually identified, and the problem can be remedied with dispatch! However, if no source
procedure is identified, then it is usually a system-level library module that cannot be
found (such as “crt1”, or some such). In this case, culprit may be the absence of a
required (but uninstalled) system library module. Such missing modules can sometimes
be attributed to “non-thorough manual-installs of software”. This could be true of your
Fortran install (and is why g95 recommends using an “installer package”; the g95/GNU
website names a couple of candidate package-installers for this). An appropriate Internet
search of identifying names of the missing “library module” will usually turn up
information leading to the identity of the missing library and information about how to
download and install same (you are likely not the first to have encountered this failure).

Getting Started with GTOSS

12

Building Post Processors

In a manner completely parallel to the GTOSS build procedure described above, the rest
of the GTOSS Post Processor executable programs can be built. Instead of using
“MakeGTOSS”, they would employ

 make –f MakeDTOSS
 make –f MakeCTOSS
 make –f MakeUTOSS
 make –f MakeVTOSS

Resulting Application Programs

A successful “make” of the GTOSS application programs will yield the following
executable files:

 GTOSSvH12
 DTOSSvH12
 CTOSSvH12
 UTOSSvH12
 VTOSSvH12

These will all reside in your directory called /myGTOSS/.

Make-file Options, and Using the Other Script Files

The first thing to note about all the delivered make-files is the “cleanwell” feature. For
instance, many times a change is made in a header (ie. include) file that will affect ALL
(or most) of the other sub-routines of GTOSS, etc. In this case, re-running a make-file
build will not precipitate a re-compile of all of the subroutines (which, say, is necessary
for the include-file change to be properly felt through all code). This is due to the way in
which the GNU make-utility manages the selection of which files need to be re-compiled
at any particular time; that rule being, if a source file has changed, then re-compile it. The
problem is that this decision is triggered only by explicit-changes to a source file, and is
oblivious to changes in header files. Thus the user MUST force a full recompile. This can
be done by using an argument in the make-file that will simply delete the associated “.o”
files related to the make. So, simply execute:

 make –f MakeGTOSS cleanwell

There will be no terminal response, this will not precipitate a compile, BUT, you will find
that the “.o” files will now be gone. Next, then just re-execute the make command, except
with the “cleanwell” argument deleted. This will force re-compilation of all the related
modules. This same modus operandi will apply to ALL the Post Processor make-files.

Getting Started with GTOSS

13

If ALL the “.o” files need to be deleted, and a completely clean new build of GTOSS and
all the PP’s need to be made, use the Scripts: “ALL_cleanwell”, followed by
“MakeALL”. These would be invoked from the terminal via the commands:

 ./ALL_cleanwell

followed by

 ./MakeALL

These make-files adhere closely to the standard GNU make-utility definitions. One can
fairly well determine what is going on in the make-files by examining their contents,
however, before modifying them, make sure to save a copy, as it is easy to enter a place
where nothing seems to work properly and what’s more there is little to go on as to what
is wrong when you enter this “wonderful world of the make-file madness”

Running GTOSS

How To Do It, and What Happens

The preferred way to run GTOSS is to place both a copy of the GTOSS executable AND
the INGOSS file in the same directory (Folder) and execute GTOSS there (you can just
clone a copy GTOSS to this directory containing the run ingredients). After execution,
this folder then will contain the following (note, you start by putting into the directory the
“green-files”, and after execution the “red-files” will have shown up in the directory):

 - GTOSS which you put there
 - INGOSS which you put there, and serves as a run’s concise definition for later ref.
 - RDB files, created by GTOSS, and which can be Post Processed for results display
 - GERROR, created by GTOSS, a text file with info about any errors that occurred
 - OUTQUIK created by GTOSS, a text file time-history synopsis that is written as the

 simulation unfolds to provide the user a quick-look at how the simulation
 progressed (it can also be examined during execution also); there are a
 number of different pageformat definitions available for this synopsis
 file, pertaining to various generic usages of GTOSS; page selection is
 made via a parameter in the INGOSS file.

Note, output to a Unix “terminal shell” can also be specified as a means of monitoring execution
throughout the GTOSS run (here, the user can again select from an array of terminal output pre-
formatted pages).

Thus, expanding this example, an actual GTOSS production-run directory that might
result from invoking all the post processors against a GTOSS simulation might look
something like this:

 - GTOSS, INGOSS, GERROR, OUTQUIK,
 - DTOSS, INDOSS, DERROR
 - CTOSS, INCOSS, CERROR
 - UTOSS, INUOSS, UERROR

Getting Started with GTOSS

14

 - RDB files
 - The results output file called “OUTDIS”, created by DTOSS
 - The results output file(s) created by CTOSS
 - The results output file(s) created by UTOSS

Note: VTOSS is not included above since it is only brought into play to verify new
versions of GTOSS code, and is not a part of routine production usage of GTOSS.

“Terminal” Output and other Useful Results

Some Unix/Linux system implementations conveniently do two things automatically for
you when you double-click an executable application within a directory (folder).

1. It opens a “terminal shell” with the “current working directory” set to that directory
from which the application is started, AND,

2. It starts the application executing.

Thus, if the application is configured to output results to a shell terminal, it can
conveniently be monitored as the run proceeds.

This can of course be accomplished explicitly via a manual route, namely, after one has
placed the copy of GTOSS in a folder with its associated INGOSS file, then,

1. The user can open a terminal, and set its current working directory to the subject
folder, AND,

2. Enters a command to execute GTOSS directly.

Note 1: In the first example, these steps are accomplished automatically for you by the
simple act of double-clicking the executable GTOSS; the 2nd scheme is much less
convenient, but works fine to accomplish the end result.

Note 2: GTOSS is executed in the later case from the terminal by entering the command
“./GTOSS” (or whatever the name of the GTOSS application happens to be).

The GTOSS user can specify Terminal output formats from a selection of output options;
these options are noted-in and specified-via a data item in the INGOSS file (also
discussed in the Official documentation). In addition, during a run, GTOSS writes to the
OUTQUIK file (discussed previously in this document).

Error Reports

Two kinds of errors can appear; System/Fortran runtime errors, and GTOSS perceived
errors. Some GTOSS errors are reported via the Terminal, while others are reported via
the GERROR file that always attends a GTOSS execution. If any kind of problem

Getting Started with GTOSS

15

develops, it is wise to check the GERROR file (for the case of Post Processing, the
DERROR, CERROR file, etc).

A large number of GTOSS subroutines can encounter and will report problems and then
execute a Fortran STOP command; such Stop commands are almost always accompanied
by the identification of the routine that decided to execute a Stop, and some indication of
the location within a routine where the Stop occurred (some routine can have many types
of error detection events). If a Stop occurs one can examine the routine for possibly more
info, BUT, one should always check the GERROR file, as these Stops are frequently
attended by an “intelligent error diagnosis” being written to the GERROR file by the
offended-routine.

There are a class of numerical errors that occur when catastrophic numerical instability
sets in upon the integration processes within GTOSS. These frequently show up as a Stop
in certain Utility routines such as “VECNRM”, and is usually a manifestation of the fact
that numerics have gone-bad (ie floating point under/over-flows, zeroes in denominators
where they shouldn’t be, etc, etc). One very quickly learns to recognize the artifacts of
this error, and if you examine the numeric results this is frequently preceded by
pathological and erratic behavior and oscillations in numerical values, etc. This is why it
is mandatory to read the section in both the GTOSS and TOSS reference manuals
pertaining to “Numerical stability”.

Making Your First Example GTOSS Run

To be concrete, we will make an example Space Elevator related run. Create a directory,
say /SE_Run/. Make a copy of the executable programs GTOSS and CTOSS into this
directory. Now, in the delivery data, there is a directory (folder) within which is an
INGOSS and INCOSS files as shown below:

/Your_first_GTOSS_Run/  a Directory-folder
 INGOSS (SE Lib)  GTOSS Sample Run input file
 INCOSS (SE Lib)  CTOSS Post Processor input file

Move these two files to your directory / SE_Run / and rename them to simply INGOSS
and INCOSS. At this point your test run folder should look like this:

/ SE_Run /
 INGOSS
 INCOSS
 GTOSSvH12
 CTOSSvH12

Now, execute GTOSS by opening a Terminal/shell and navigating (current working
directory) to / SE_Run /, and entering the command ./GTOSSvH12

Getting Started with GTOSS

16

This should start output data appearing in the Terminal shell; this output will consist of
an initial set of run setup information, followed by a sequential synopsis of the time-
history of the GTOSS solution as it unfolds. The run terminates at 100,000 sec, and you
should see a “GTOSS Normal termination” enunciation. You can now examine the
contents of / SE_Run / to see what has transpired. In your test run directory, you should
see the OUTQUIK file (which you can open and examine with a text editor), and also the
set of RDB files.

Next, execute the Post Processor CTOSS in a similar fashion to what you did to execute
GTOSS (just use the same Terminal shell, since its “current working directory” is already set
to / SE_Run /). After running CTOSS, you should immediately get an enunciation of Normal
CTOSS termination. At this point a new set of files will have appeared in / SE_Run /; these
will be files containing “column delimited data results” from the simulation.

Now, examine the CTOSS input file (INCOSS) by opening it in a text editor. Each (of the
7) output file invocation-blocks will start by specifying a CTOSS format. Look in the
Quick Ref Use manual (under CTOSS formats), or the CTOSS User manual to see details
about what the columns of data represent. Finally, with your favorite engineering
graphing program, see if you can open and plot some variables that look to be interesting.
If you do this, you will have successfully executed your first GTOSS simulation of the
Space Elevator and derived actual useful practical results.

Last, examine the INGOSS file and try some variations in parameters; for example:

- Shorten or lengthen the run time; or,
- Output data less frequently, or more frequently; or
- Change the “libration perturbation”. Note: since the run is configured to perturb

the SE from a stable vertical configuration by a linearly distributed velocity
perturbation profile along its length that culminates at a peak value of 2000 fps at
the ballast (ie. SE upper body) mass, search the INGOSS file for the number 2000
to find how that perturbation was specified, then modify it to say 4000.

Making More Advanced Space Elevator Explorations

Included in the GTOSS delivery (/SE Dynamics Exploration Runs/) are a number of
individual directories representing a total of 35 different SE runs. These runs can be
conducted in exactly the same way as your initial example run (described above) was
conducted, except now you will be executing complex simulations of all the various
dynamically interesting aspects of the SE; the Space Elevator dynamic genres’ addressed
with these runs are:

SE Basic Tapered Ribbon Examination
SE Nominal Stress State Examination

SE Longitudinal Ribbon Modes
SE Transverse Ribbon Modes

SE Libration Dynamics

Getting Started with GTOSS

17

SE Transverse Wave Propagation
SE Stress Wave Propagation

SE Climber Liftoff
SE Climber Transit
SE Climber Transit Arrest
SE Climber Transit Resume

SE Aerodynamic Response

For each run genre, there is a Word file describing (multiple) related runs, special
admonitions related to each run, and a diagram of each simulated configuration.

Basic graphical results for these runs can be found in the SE Dynamics Handbook
(available on the SE Wiki).

For each INGOSS file, there is one (or more) corresponding INCOSS file(s), these being
input streams for CTOSS post processing of the simulation runs; by using these INCOSS
files, CTOSS will generate the output data that has been presented in the corresponding
sections of the Dynamics Handbook. To execute these runs is quite simple, but to fluently
build on and extend these run explorations requires a significant background in Space
Elevator analysis as well as simulation experience with complex dynamical systems,
however, each run does represent a very convenient starting point to in fact proceed
along these lines (thus saving the user significant time developing new explorations
stemming from those already done).

Getting Started with GTOSS

18

Admonitions

As the author of GTOSS who has served the engineering/aerospace tether community for
over 30 years, providing formal class instruction in the use of GTOSS and tether
dynamics, informal help to many users, GTOSS installation at enumerable facilities on
enumerable different computer platforms and operating systems, general consulting and
conducting design studies for many clients, I have made the following observations;

99% of the problems perceived by the user as being a bug in GTOSS, is in
fact a user precipitated error; either an overt miscue in interpreting and/or
entering physical system specification data and execution options, or,
inattention to numerical convergence of integrated-time-domain dynamics
solutions, or, a lack of understanding in interpreting results.

One of the most insidious (and common) problems that tend to plague new users is the
failure to be ever vigilant in insuring the “Numerical Convergence” of the integrated
solutions to the GTOSS equations. To this end, it is mandatory that a new user read and
understand fully Section 4 of the GTOSS User Manual, and Section 7 of the TOSS User
manual. Both non-converged as well as fully-diverged numerical solutions are easy to
detect and remedy, but the user must become aware of the phenomenon in order to be
vigilant in this regard.

Perusal of the “input skeleton files” (included in the delivery), and that contain the input
data “item identification numbers” for every input item known to GTOSS, etc, can
function admirably as a complete and concise GTOSS features expose' (actually to a
fault, since EVERYTHING GTOSS does is represented there).

You may not like the GTOSS user interface (admittedly, it is a bit dated since GTOSS
was conceived and written initially before bit-mapped monitors when all user-interaction
was via text-line output, with no GUI’s), but realize that the input specification problem
of defining to the simulation code “an arbitrary number of bodies connected in arbitrary
fashion, by an arbitrary number of tethers” is not a trivial user-interface or data
specification problem. That admitted, GTOSS has been used by MANY scientific and
engineering organizations in the hands of highly skilled and experienced engineers and
scientists and has “passed muster”, as well as passed “simulation reconciliation testing”
against an assortment of other recognized tether dynamic codes. The point here is that
one MUST read at least the basic documentation describing what GTOSS does, and how
it does it; then they will be in a much better position to assess the nature of difficulties
that are encountered, and look first to themselves for the answer rather than blame a code
that is likely almost as old, or older than they are  .

Getting Started with GTOSS

19

Recommended Reading

Included in the GTOSS delivery area are a number of .pdf files containing extensive
documentation of GTOSS operation. In order of decreasing importance (with Red
meaning MOST important).

GTOSS Reference Manual

At least a skim-read of Sections 1, 2, 4 (very important), 5, 6, 8, 10, 11, 12

TOSS Reference Manual

At least a skim-read of Sections 2, 3, 5, 6, 7 (very important), 8

Quick Reference Manual

This volume contains a potpourri of information, some of which is unique to this
document, others of which has been duplicated (and shortened) from other
documents for which frequent reference is made, but all of which has been found to
be highly useful, whether setting up runs, or modifying code. This is the bread-and-
butter day-to-day stalwart of the GTOSS documentation. The first section in the
Quick Ref is particularly valuable in interpreting results data as much of these results
are referenced to the various “frame definitions” within GTOSS. This also boils down
concisely much of the information pertaining to the myriad of dynamics
Initialization, Execution and Control options.

G/TOSS Equations Reference Manual

Provides detailed equation derivations, modeling assumptions, and the equivalence
mappings between “analytical dynamics symbols” -to- “Fortran variable names”. This is
an abstruse dissertation, the full understanding of which would require significant
experience in advanced dynamics; that said, it does give one an appreciation and
overview of resides within GTOSS. The source code files contained in the directory
/A_HDR/ are also vital to understanding the definition of results data made available to
the user via DTOSS and CTOSS; in particular, the header files,

 EQU_HOST.i Host simulation (TOSS Object 1, the Ref Point) data items

 COM_RPS.i the State of the TOSS Ref Point and items related to a wide scope

 COM_ALL.i Universal parameters used by all

 EQU_OBJI.i Non-Body-specific data items related to ALL TOSS Bodies

 EQU_TOSS.i data items related to ALL TOSS

 In the files below, disregard the lower case “r” and “I” preceding variable names:
 the uppercase characters are the ones being defined and used in actual code.

Finite_Solution_Data_Structure.i Finite Tether Object data items

 TOSS_Object_Data_Structure.i TOSS Body Object data items

Getting Started with GTOSS

20

Interface Control Document

Many concepts which the other documentation has assumed to be common knowledge (to
the user), are in fact introduced and defined only in this manual.

DTOSS Reference Manual
CTOSS Reference Manual
UTOSS Reference Manual
RTOSS Reference Manual
Skim-read these for indoctrination only.

VTOSS Reference Manual

Useful read if you intend to validate your installation or do user-modifications to GTOSS.

