
FlexSEA: Flexible, Scalable Electronics Architecture for

Wearable Robotic Applications

by

Jean-François Duval

B.Eng., Electrical Engineering
Université de Sherbrooke, 2012

Submitted to the Program in Media Arts and Sciences,

School of Architecture and Planning,
In partial fulfillment of the requirements for the degree of

Master of Science
at the

Massachusetts Institute of Technology

June 2015

Licensed under Creative Common Attribution-NonCommercial-ShareAlike
CC BY-NC-SA 2015 – Jean-François Duval

Signature of Author: ___

Program in Media Arts and Sciences
May 8th, 2015

Certified by: ___

Hugh Herr, Ph.D.
Associate Professor of Media Arts and Sciences

Thesis Supervisor

Accepted by:___

Prof. Pattie Maes
Academic Head

Program in Media Arts and Sciences

2

3

FlexSEA: Flexible, Scalable Electronics Architecture for Wearable Robotic Applications

by

Jean-François Duval

Submitted to the Program in Media Arts and Sciences,
School of Architecture and Planning, on May 8, 2015

in partial fulfillment of the requirements for the degree of
Master of Science

Abstract

The work of this thesis aims to enable the fast prototyping of multi-axis wearable robotic systems
by developing a new modular electronics system. The flexible, scalable electronics architecture
(FlexSEA) developed for this thesis fills the void between embedded systems used in commercial
devices and in research prototypes. This system provides the required hardware and software
for precise motion control, data acquisition, and networking. Scalability is obtained through the
use of fast industrial communication protocols between the modules, and the standardization of
the peripheral interfaces. Hardware and software encapsulation is used to provide high-
performance, real-time control of the actuators while keeping the high-level control
development fast, safe and simple.

The FlexSEA kits are composed of two custom circuit boards (advanced brushless motor driver
and microcontroller board), one commercial embedded computer, a complete software stack
and documentation. During its development it has been integrated into a powered prosthetic
knee as well as an autonomous ankle exoskeleton. To assess the usability of the FlexSEA kit, a
new user successfully used a kit to read sensors and control an output device in less than three
hours. FlexSEA simplifies and accelerates wearable robotics prototyping.

Thesis Supervisor: Hugh Herr, Ph.D.

Title: Associate Professor of Media Arts and Sciences

4

5

FlexSEA: Flexible, Scalable Electronics Architecture for

Wearable Robotic Applications

by

Jean-François Duval

The following served as readers on this thesis committee:

Research advisor:___

Hugh Herr, Ph.D.
Associate Professor of Media Arts and Sciences

Program in Media Arts and Sciences
Thesis Supervisor

Thesis supervisor:___

Joseph Paradiso, Ph.D.
Associate Professor of Media Arts and Sciences

Program in Media Arts and Sciences

Thesis supervisor:___
David Perreault, Ph.D.

Professor of Electrical Engineering
Electrical Engineering and Computer Science (EECS)

6

Table of Contents

Abstract ... 3

1 Introduction ... 13

2 System Design .. 18

2.1 Combining architectures .. 18

2.2 FlexSEA: core ideas and principles ... 19

2.3 Subsystems ... 19

2.3.1 FlexSEA-Plan .. 20

2.3.2 FlexSEA-Manage ... 20

2.3.3 FlexSEA-Execute .. 20

2.4 System Architecture ... 20

2.5 System-wide technical decisions .. 22

2.5.1 FlexSEA-Plan: Embedded computer ... 22

2.5.2 Communication: hardware ... 23

2.5.3 Communication: software .. 23

2.5.4 Software .. 24

2.6 Design solutions – short answers ... 24

3 Hardware design .. 27

3.1 FlexSEA-Execute ... 27

3.1.1 PSoC 5 LP Microcontroller .. 29

3.1.1.1 Microcontroller selection .. 29

3.1.1.2 Programmable System on Chip (PSoC) .. 31

3.1.2 PSoC 4 Safety Co-Processor .. 32

3.1.3 Brushless DC Motor .. 34

3.1.3.1 Half-bridges ... 36

3.1.3.2 Motor current sensing ... 39

3.1.3.3 Shorted-leads protection ... 40

3.1.4 RS-485 ... 43

3.1.5 Strain Gauge Amplifier .. 45

3.1.6 Clutch .. 48

3.1.6.1 P-MOSFET power dissipation .. 49

3.1.6.2 Level shifting .. 50

7

3.1.7 IMU.. 50

3.1.8 IO Protections ... 51

3.1.9 User interface.. 53

3.1.10 Power Supplies .. 55

3.1.10.1 Brown-out protections .. 55

3.1.10.2 Low voltage power supplies .. 56

3.1.10.3 LM25011 10V 500mA .. 58

3.1.10.4 TPS62163 5V 500mA.. 59

3.1.11 Future Work and Circuit Modifications .. 60

3.2 FlexSEA-Manage ... 61

3.2.1 Microcontroller ... 63

3.2.2 Interface to Plan .. 64

3.2.3 Inputs and Outputs ... 67

3.2.3.1 Analog Inputs with Programmable Features ... 67

3.2.3.2 Digital Inputs & Outputs .. 69

3.2.3.3 Power Outputs ... 70

3.2.4 IMU.. 71

3.2.5 FLASH .. 71

3.2.6 User Interface ... 73

3.2.7 RS-485 ... 74

3.2.8 Power .. 75

3.2.9 Future Work and Circuit Modifications .. 76

4 Software Design ... 77

4.1 Communications and networking .. 77

4.1.1 Application Layer .. 78

4.1.2 Data-link Layer .. 80

4.1.3 Physical Layer .. 81

4.1.4 Receiving commands .. 81

4.1.5 Hierarchy ... 82

4.1.6 Special Commands .. 82

4.2 FlexSEA-Execute ... 82

4.2.1 Organization and timings .. 83

4.2.2 BLDC Commutation ... 86

8

4.2.3 Current controller ... 90

4.2.4 Impedance controller .. 94

4.2.5 Trapezoidal trajectory generation .. 95

4.3 FlexSEA-Manage ... 96

4.4 FlexSEA-Plan ... 97

4.4.1 Displaying and logging data .. 97

4.4.2 High-level state machine in C ... 98

4.4.3 Interfacing with higher level languages .. 100

4.5 Future Work ... 102

5 Unit tests .. 104

5.1 FlexSEA-Execute ... 104

5.1.1 Motor Half-Bridge Load test ... 104

5.1.2 Strain Gauge Amplifier Force Calibration ... 106

5.1.3 Power Supplies .. 106

5.1.3.1 Preliminary qualification ... 106

5.1.3.2 10V SMPS Load Testing ... 107

5.1.3.3 5V SMPS Load Testing ... 109

5.1.4 Safety Features ... 110

5.1.4.1 Watchdog Clock ... 110

5.1.4.2 Over-temperature ... 112

5.1.4.3 +VB Voltage Range .. 113

5.1.4.4 Disconnected Battery .. 114

5.2 FlexSEA-Manage ... 115

5.2.1 Level shifting – FlexSEA-Plan and FlexSEA-Manage Interface 115

5.2.1.1 Analog Inputs With Programmable Features .. 116

5.2.2 Power Multiplexer and Linear Regulator Load Test ... 118

5.3 System Benchmarks ... 120

5.3.1 SPI Frequency and Data Rate .. 120

5.3.2 Communication – Plan & Execute... 121

5.3.3 Communication – Manage & Execute .. 123

5.3.4 Data Logging.. 125

6 Application/test cases ... 128

6.1 Clutched Series Elastic (CSEA) Knee ... 128

9

6.2 Autonomous Exoskeleton .. 129

7 Evaluation and Results... 130

7.1 Evaluation Criteria (legacy) .. 130

7.2 Evaluation Criteria .. 130

7.3 Results .. 132

8 Conclusion ... 134

9 References ... 135

10 Annexes ... 137

10.1 Glossary .. 137

10.2 Execute Schematic ... 139

10.3 Manage Schematic ... 153

10.4 User Study .. 165

10.5 User Manual ... 167

10

Table of Figures

Figure 1 Microcontroller based architecture example [1] .. 14

Figure 2 Embedded computer based architecture example [2] ... 14

Figure 3 FlexSEA System Architecture: 1 DOF .. 21

Figure 4 FlexSEA System Architecture: 1 axis 2 DOF .. 21

Figure 5 FlexSEA-Execute 0.1 Hardware ... 27

Figure 6. FlexSEA-Execute System Diagram .. 28

Figure 7 PSoC 5 ad - excellent visualization .. 31

Figure 8 PSoC Families .. 31

Figure 9 FlexSEA-Execute hardware safety features diagram .. 33

Figure 10 PWM signals passing through the Safety-CoP .. 34

Figure 11 BLDC schematic - top level .. 34

Figure 12 BLDC sensors (phase voltage & temperature) .. 35

Figure 13 +VB Decoupling capacitors ... 35

Figure 14 H-Bridge circuit ... 36

Figure 15 MOSFET vs IGBT: when to use .. 36

Figure 16 Half-bridge on Execute (1 of 3) ... 37

Figure 17 The 3 channels use the same compact layout (B highlighted) 39

Figure 18 Spice simulation, ±20A motor current sensing ... 40

Figure 19 Shorted-leads protection implemented with depletion mode MOSFETs 41

Figure 20 Shorted-leads protection: negative voltage generation and gate control 41

Figure 21 Spice simulation, voltage inverter .. 42

Figure 22 One of the 3 RS-485 transceivers present on FlexSEA-Execute 43

Figure 23 RS-485 Modes: synchronous/asynchronous, half- or full-duplex 43

Figure 24 TINA-TI Spice simulation of the two stage differential amplifier design 45

Figure 25 CMRR vs Frequency, TI INA331/2331 instrumentation amplifier 46

Figure 26 Input: filtering and protection .. 46

Figure 27 Two stage amplification .. 47

Figure 28 PSoC Programmable Analog Blocks - Strain Gauge Amplifier 47

Figure 29 Clutch driver schematic .. 48

Figure 30 IMU schematic .. 51

Figure 31 External I/O protection circuit .. 51

Figure 32 Expansion connector ... 52

Figure 33 TPD4E004 ESD Clamping ... 53

Figure 34 ESD diode routed right under the Expansion connector .. 53

Figure 35 RGB LED and Green "heartbeat" LED.. 54

Figure 36 USB ESD protection ... 54

Figure 37 USB protection routing ... 54

Figure 38 Power Supplies Schematic .. 55

Figure 39 Brownout protection .. 56

Figure 40 10V 500mA SMPS .. 58

Figure 41 Compact routing using polygon pours .. 58

11

Figure 42 5V 500mA SMPS .. 59

Figure 43 Compact routing using polygon pours .. 59

Figure 44 FlexSEA-Manage 0.1.. 61

Figure 45 Manage 0.1 Hardware .. 62

Figure 46 STM32F4 sub-families ... 64

Figure 47 MiddleMan 0.1 (predecessor to Manage 0.1) on top of a BeagleBone Black 65

Figure 48 Interface to Plan .. 65

Figure 49 Level translation, SPI ... 66

Figure 50 Level shifting, external reset signal... 66

Figure 51 Expansion connector ... 67

Figure 52 AN0 & AN1: 1/10kHz LPF, G=1 .. 68

Figure 53 AN2 & AN3: 1/10kHz LPF, 1<G<10 .. 68

Figure 54 AN4 & AN5: Buffered input .. 68

Figure 55 AN6 & AN7: Programmable voltage divider ... 69

Figure 56 Protected Digital IO ... 69

Figure 57 1 of 2 power outputs .. 70

Figure 58 FLASH Memory .. 71

Figure 59 User input .. 73

Figure 60 RS-485 #1 3 transceivers ... 74

Figure 61 Autoswitch Power Mux and 3.3V LDO Regulator ... 75

Figure 62 OSI model .. 77

Figure 63 Payload bytes .. 80

Figure 64 Packaged Payload ... 80

Figure 65 Visual representation of the function timings .. 84

Figure 66 Unipolar 4-Quadrant PWMs - Texas Instruments .. 86

Figure 67 FlexSEA-Execute Motor Control (PSoC Diagram) .. 89

Figure 68 PWM signals - rotating BLDC motor ... 89

Figure 69 Load test bench, equivalent to a stalled Maxon brushless motor 93

Figure 70 Current PID setpoint versus measured phase current (kp = 50, ki = 50) 94

Figure 71 First implementation of an Impedance Controller (2014).. 94

Figure 72 Calculated trajectory: acceleration, speed and position over time 95

Figure 73 Knee position over time .. 96

Figure 74 Streaming sensor values ... 97

Figure 75 Logging Data at 500Hz .. 98

Figure 76 Streaming Data in Python ... 102

Figure 77 Experimental setup ... 105

Figure 78 Force calibration test on the FitSocket ... 106

Figure 79 500mA load, DC 2V/div ... 107

Figure 80 500mA load, AC 20mV/div .. 108

Figure 81 Load testing with constant current ... 108

Figure 82 500mA load, DC 1V/div ... 109

Figure 83 500mA load, AC 20mV/div .. 109

Figure 84 Load testing, constant current .. 110

Figure 85 Watchdog Clock Pulse-Width Measurement .. 111

file:///C:/Dropbox%20(Personal)/Thesis/Writing/JFDuval_Thesis_FlexSEA_Final.docx%23_Toc418851551

12

Figure 86 Over-temperature detection .. 112

Figure 87 +VB Voltage in Range detection code ... 114

Figure 88 Disconnected Battery Detection Code.. 115

Figure 89 SPI signals, Plan side of the level translator ... 116

Figure 90 Testing the variable frequency filter ... 117

Figure 91 Testing the programmable gain .. 117

Figure 92 Load testing ... 119

Figure 93 Automatic switching of the input power source .. 120

Figure 94 SPI Data Rate (83ns = 12Mbits/s) ... 121

Figure 95 Communication - Plan & Execute (2 packets) ... 122

Figure 96 Communication - Plan & Execute (zoom on the 1st packet) 122

Figure 97 RS-485 Data, 48 bytes ... 124

Figure 98 RS-485 Data, zooming on 1 bit .. 124

Figure 99 Data logging with the "Log" application ... 127

Figure 100 CSEA Knee with FlexSEA .. 128

Figure 101 Student wearing an early prototype of the dual autonomous exoskeleton 129

file:///C:/Dropbox%20(Personal)/Thesis/Writing/JFDuval_Thesis_FlexSEA_Final.docx%23_Toc418851591
file:///C:/Dropbox%20(Personal)/Thesis/Writing/JFDuval_Thesis_FlexSEA_Final.docx%23_Toc418851592

13

1 Introduction

"Reinventing the wheel" is an idiom often associated with engineering and design. While

innovators use the expression to describe a ground breaking solution or design, it mostly has a

negative connotation. Engineers will be told not to reinvent the wheel when they are struggling

with details or technicalities rather than focusing on the big picture, the problem worth solving.

But what if that metaphorical wheel was indeed broken? Looking back at previous work in the

field of exoskeletons and powered prostheses can be depressing for an embedded system

designer. The wheel, in the form of the embedded electronics, is redesigned year after year,

project after project, with no clear progression and many system redesigns. The ‘big picture’

problem is to give mobility to people that lost it, to augment able-bodied people, not to design

electronics, but it is a critical component that can, in the worst case situation, invalidate a

revolutionary artificial limb concept.

This thesis is not about the design of a novel wearable robotic device that contains an embedded

system; it’s purely about the design of the embedded system itself. The objective of the thesis is

to advance an accessible and capable embedded system architecture that is useable across all

wearable robotic research initiatives, eliminating the need to design a new embedded system for

each and every research project. Ironically enough, once more, the goal is to redesign the wheel,

but hopefully for the last time. Through a careful analysis of wearable robotic requirements

across sensor, actuator and computational modalities, I will demonstrate in this thesis that an

embedded system design can be achieved that is scalable across a plethora of wearable robotic

research programs, and therefore will be used henceforth for more than one year in one project.

There are two main ways of designing electronic architectures for active wearable robotics: 1)

microcontroller-based and 2) embedded computer-based. Figure 1 shows a typical

microcontroller-based architecture with a single 80MHz processor [1]. Figure 2 shows an

architecture based on an embedded computer, a Raspberry Pi running at 800MHz [2].

14

Commercial products are mostly microcontroller-based while research prototypes tend to favor

systems with embedded computers [2][11][17].

Figure 1 Microcontroller based architecture example [1]

Figure 2 Embedded computer based architecture example [2]

Table 1 presents a general comparison of the two design approaches.

Table 1 Architecture comparison

Microcontroller Embedded Computer

Pros

 Small form factor that can easily be adapted to

different mechanical designs

 Low power

 Unit cost is low

 Low level software (C and/or ASM): processor

efficient

 Quick design phase

 High-level software (C++, Python, Java, Matlab): ease of

development

 Minimize the number of specialized skills required to

modify the system

Cons

 Development (prototyping) cost can be higher

 Longer design phase

 Requires Electrical Engineering skills for the

design, maintenance and modification

 Low level software (C and/or ASM): less portable,

requires specialized skills

 High-level software (C++, Python, Java, Matlab): not

processor efficient

 Higher power (less energy efficient)

 Relies on commercial parts (no control over the

production and life cycle)

 Harder to modify

15

 Integration issues between different subsystems

 Sub optimal wiring

The two approaches have been used in a multitude of published wearable robotic systems, with

various degrees of success. A few examples are described here [1][2][13][17]. Since the

embedded system aspect of a design is considered a means to an end, documentation is

considered unimportant and is usually scarce. Following the evolution of a wearable robotic

design, one will read sentences such as “Developed a new embedded electronic system” without

a clear justification as to why the previous design had to be abandoned rather than improved.

In all of the designs made in the MIT Biomechatronics Group over the last 11 years, only one

project (AAKP, Agonist-Antagonist Active Knee Prosthesis [18]) used two actuators in one joint.

Due to issues with the control electronics of previous prototypes, brushed DC motors (in lieu of

brushless DC motors) were used, thus impacting the efficiency and mass of the prosthesis. When

experiments were conducted with trans-femoral amputees wearing an active ankle-foot and an

active knee the two joints were controlled independently, without an overarching high-level

controller. Consequently, the lack of availability of an appropriate embedded system solution

had a direct impact on the system design and performance [2][11].

After reading papers, grant reports and interviewing wearable robotic designers, the following

list of general system problems and reasons justifying new designs was compiled:

 Lack of reliability

 Lack of processing power, overloaded microcontroller

 The original designer left the laboratory

 No electrical engineer on the team

 Slow communication peripherals

 Can only support brushed motors

 Can only support one motor

16

 Commercial motor driver has to be tricked into running a special control loop, no built in

functionality

 Power consumption

 Size, mechanical integration issues

These problems are shared by many researchers in related fields such as humanoid robotics and

wearable computers, therefore many designers and companies have attempted to design a

unified embedded system that could be used in a broad range of projects. Commercially available

modular hardware platforms include the Microsoft .NET Gadgeteer system, “an open-source

toolkit for building small electronic devices using the .NET Micro Framework”1 [3], the popular

Arduino and its Shields (“Shields are boards that can be plugged on top of the Arduino PCB

extending its capabilities.”2), the BeagleBone Black embedded computer with the Capes and the

Intel Edison with the Blocks3. SparkFun popularized the use of “breakout boards”, minimalist

circuit boards that simply prototyping. These products are now commonly integrated in academic

research projects [2][3][9][11]. Custom embedded system designs have been published for

wireless sensing [5], miniature mobile robots [6], and mechatronics education and teaching

[7][8]. The common goals are to minimize the number of circuit redesigns and simplify

prototyping [5].

The price to pay for modularity is often the increase of the number of circuit boards required for

an application, and the increase of inter-board connections. Wearable robotics projects have

different requirements than most pure robotics and wearable sensing projects. Safety and

reliability are major issues, especially in powered prosthetic devices. Simplifying the devices by

using a minimal number of circuit boards and by minimizing the number of interconnections

helps with safety and reliability. The number of degrees of freedom is relatively small (compared

to humanoid robotics), but the instantaneous power requirements are high [2][19]; a greater

emphasis has to be placed on power electronics than on digital communication between the

1 http://www.netmf.com/gadgeteer/
2 http://www.arduino.cc/en/Main/ArduinoShields
3 Shields, Capes and Blocks are different name for the same product category: stackable expansion boards.

17

modules. The volume and the weight of the embedded system must be minimized because of

their direct impact on the efficiency of devices attached to body extremities [19].

This thesis presents the design of a modular embedded system optimized for wearable robotic

applications. A flexible architecture allows FlexSEA to be used in a wide variety of projects, with

or without an embedded computer. All the safety features of commercial devices are included

onboard, as well as all the typical sensors and output device interfaces required for wearable

robotic applications. The highly integrated circuit board designs presented in the thesis minimize

the weight of the embedded system, require a minimal amount of wired connections, and are

proven to be easy to use by students. The design was evaluated by a user test and by multiple

quantifiable metrics related to the electrical performance of the different circuit board, and of

the system as a whole.

18

2 System Design

2.1 Combining architectures

The main trade-off between microcontroller and embedded computer based systems is ease of

development versus optimal design. A company designing a new product will likely opt for the

microcontroller-based system to allow a tight integration with the mechanical and industrial

design of the device while keeping unit cost at a minimum. A research lab will likely opt for the

embedded computer system to allow students and researchers without advanced electrical

engineering skills to develop and test new control schemes and wearable robot concepts [11].

One important limitation of both systems is the presence of a single computing element

(excluding the microcontrollers that are present in some sensors and motor drivers) to manage

all the sensors and actuators. Changing a high-level gate control algorithm has the potential to

introduce bugs in safety-critical motor control functions. Embedded programmers know how

easily one can break poorly written code functionality simply by adding one line at the wrong

location, breaking the precise flow of the program. A public example of a safety critical software

bug is the unintended acceleration problem of Toyota cars4. For sure, well written code should

prevent safety issues, but it’s not always what researchers have access to. This brings us to a core

idea of the flexible and scalable electronics architecture (FlexSEA): hardware and software

encapsulation.

In object-oriented programming, encapsulation refers to a language mechanism for restricting

access to some of the object's components. The programmer determines what needs to be

accessible from the outside and what should be kept private. It’s possible to build an electronic

architecture with the same principle used both for hardware and software. One example is

NASA’s Robonaut system: “Modularity is prevalent throughout the hardware and software along

with innovative and layered approaches for sensing and control.”[15]

4 http://www.edn.com/design/automotive/4423428/Toyota-s-killer-firmware--Bad-design-and-its-consequences

19

2.2 FlexSEA: core ideas and principles

The perfect architecture should:

 Combine the power of efficient low-level code and the flexibility of high-level languages

 Allow for quick prototyping of new prostheses and exoskeletons, both on the hardware

and the software side

 Allow quick modifications and additions of sensors and actuators

 Be scalable

 Prevent errors on the high level code to cause safety issues

 Be useable both on research prototypes and on early production units

 Minimize and simplify wiring

 Have built-in safety features

2.3 Subsystems

These specifications can be obtained by using one or many microcontrollers and an embedded

computer in the same system, with a clear boundary between their tasks and functions. The

embedded computer is used only for one task: high-level controls, such as finite state machines

or continuous control laws. One powerful microcontroller per axis is used to interface with all of

the sensors and simple output devices. A separate printed-circuit board assembly (PCBA)

interfaces with the electronics required for motion control.

Following a business organization naming strategy, the three FlexSEA boards are named Plan,

Manage and Execute.

20

2.3.1 FlexSEA-Plan

FlexSEA-Plan is an embedded computer used for high-level computing. It boasts a powerful

processor and can run an operating system such as Linux. Developing code on this platform is

similar to the regular (i.e. non-embedded) software development process. High-level languages

such as Python can be used, saving experimental data is as simple as writing to a text file and

interacting with the system can be done via USB or WiFi. FlexSEA-Plan should be used when ease

of development is important, and when complex algorithms and control schemes require

significant computing power.

2.3.2 FlexSEA-Manage

FlexSEA-Manage is used for mid-level computing tasks. It serves as an interface between FlexSEA-

Plan and FlexSEA-Execute: communication protocols translation, data routing, time-sharing. It

has an Expansion connector that can interface with a wide variety of input and output devices.

Data acquisition, processing, and aggregation can be done on this board, thus unloading FlexSEA-

Plan from these simple tasks. For applications that do not require intensive computing, FlexSEA-

Plan can be taken out of the system and FlexSEA-Manage can host the high-level state machines.

2.3.3 FlexSEA-Execute

FlexSEA-Execute is an advanced brushless motor driver. Wearable robotics applications require

different control loops than the typical position and current controllers found on commercial

drives. FlexSEA-Execute has onboard sensors (6-axis IMU, temperature, voltage, current),

interfaces (strain gauge amplifier), processing power and connectivity to make it possible to close

most control loops onboard. It is well suited for the series elastic actuators (SEA) [10] commonly

used in prostheses.

2.4 System Architecture

Figure 3 presents the simplest full-stack (all three FlexSEA boards) design, typical of what can be

used for a one degree of freedom (DOF) research project such as a powered knee.

21

Figure 3 FlexSEA System Architecture: 1 DOF

While developing and testing a new system it is expected to have most of the algorithms running

on the embedded computer, FlexSEA-Plan. FlexSEA-Manage is mostly used as a bridge/translator

between different communication busses, but it can also be used to add extra sensors to the

system. FlexSEA-Execute is in charge of all the motor control algorithms. As the software behavior

stabilizes, the high-level control algorithms can be re-written in C (if they were not already in C)

and ported on FlexSEA-Manage and/or FlexSEA-Execute. Over time, the role of the embedded

computer will be less and less important. On a commercial or pre-commercial application it could

be completely removed from the system.

Figure 4 FlexSEA System Architecture: 1 axis 2 DOF

22

2.5 System-wide technical decisions

The main goal of that thesis is to provide researchers, at the completion of this project, with a

set of electronics boards that can be used to quickly prototype new prostheses and exoskeleton

ideas. The broad range of applications, user’s technical abilities (from neuroscientists to

mechanical engineers), and the diversity of actuators and sensors used in Biomechatronics makes

it impossible to simultaneously optimize every aspect of the system. All the constituents of the

design were selected and/or designed with modularity in mind to pave the way for future

improvements. More energy was invested in the hardware design than in the software design

because typical users are more likely to improve the software than design new boards. Over the

life of the system, it is expected that the software will be optimized, thus making FlexSEA better

over time.

2.5.1 FlexSEA-Plan: Embedded computer

The initial plan was to design a custom embedded computer with only the features required for

our application. To start experimenting before designing, the BeagleBone Black was selected. It

is economical ($55), widely available, open-source hardware (with full documentation available)

and its processor, the TI AM3358, has two Programmable Realtime Units (PRU) that can be used

to efficiently communicate with peripherals, making it a perfect reference for a custom design.

By removing multimedia features and optimizing connectors its size (89 x 55 x 15.4mm) can be

greatly reduced.

While the design efforts were focused on FlexSEA-Manage and FlexSEA-Execute, the Internet of

Things (IoT) wave grew stronger. Smaller embedded computers were released, with price tags

low enough to be embedded in typical appliances. One example is the Intel Edison. At 35 x 25 x

4mm it has a 500MHz processor, 1GB of RAM, 4GB of FLASH, Bluetooth and WiFi. It was decided

not to design a custom embedded computer but to rather use a standard communication

interface (SPI) that would allow the user to select any product on the market. Processing power

can easily be added to the FlexSEA system as new embedded computers become available.

23

2.5.2 Communication: hardware

FlexSEA-Plan and FlexSEA-Manage have to exchange information. While embedded computers

offer a lot of processing power, communication isn’t always optimal. On one hand, some of them

have simple interfaces such as serial (UART) and I²C that could be used to directly interface with

sensors and microcontrollers, but the data rates are limited. At the other extreme, the Ethernet

port can be used but it requires substantial hardware and software overhead on the FlexSEA-

Manage board. SPI offers a communication compromise, with typical data rates above 20

Mbits/s, more than enough for our application. Due to data rate dropping quickly with distance,

FlexSEA-Manage has to be physically close to Plan.

For the interface between FlexSEA-Manage and FlexSEA-Execute(s) the common choices in

robotics are CAN [12] and EtherCAT. While CAN is cheap, robust and safe, its 1Mbps bandwidth

is an important bottleneck for application with multiple motor drivers. EtherCAT offers 100Mbps

but that speed comes with a price; the bus requires a Master. When this project was started, no

embedded computer was certified as an EtherCAT master, thus requiring the presence of a large

computer in the network. The cables, connectors and special ASICs required for EtherCAT add to

the cost, volume and complexity of the system. With the relatively small number of nodes on a

typical Biomechatronics project (less than 8) a simpler and slower interface can be used. RS-485

is often associated with old technology but its simplicity, low cost, robustness and speed (in

theory up to 100Mbps, 20Mbps achievable in our application) makes it an appealing option for

FlexSEA.

2.5.3 Communication: software

A custom communication protocol was developed for this project. It is used for the Plan-Manage

interface, for the Manage-Execute interface(s) and with the onboard USB. The hardware layer

can be modified; as long as it can deliver bits from point A to point B, the system will be

transparent to the changes. To avoid conflicts and to simplify the system, the communication is

24

highly hierarchical. The Master always initiates the transfer. It can request a Read from a Slave;

Slaves will only emit after a Read request was received.

All the details are in section 4.1 Communications and networking.

2.5.4 Software

FlexSEA-Plan, FlexSEA-Manage and FlexSEA-Execute have three different

microcontrollers/microprocessors but they all have to communicate together. To simplify the

development, all the controllers are ARM-based, GCC is used as the compiler and a set of

common code is shared by the three software projects.

All the details are in section 4 Software Design.

2.6 Design solutions – short answers

While all the details are available further in this document, this section offers quick answers and

solutions to all the issues identified in the introduction.

Lack of reliability: The issue of reliability is addressed at the board level with good design

practice, documented unit tests and the use of safety mechanisms (such as ESD protected inputs).

At the system level, the number of connections is reduced by embedding more features in the

boards, and robust yet miniature connectors are used.

Lack of processing power, overloaded microcontroller: A dedicated microcontroller with a wide

array of sensor inputs on the motor controller (FlexSEA-Execute) offloads the other computing

units (FlexSEA-Mange and FlexSEA-Plan) from the intensive motor control functions. The

microcontrollers used are also high performance. The optional embedded computer can be used

for processor intensive applications.

25

“The original designer left” & “No electrical engineer in the team”: Documentation must be

exhaustive and accurate in order to fully enable the user. One of the graduation criteria is a user

test. The system is designed in a modular way; the least intrusive way of using FlexSEA is to use

a simple Linux terminal.

Slow communication peripherals: Closing control loops requires deterministic timings and fast

refresh rates; it places a lot of stress on the board-to-board communication interfaces. By closing

the critical control loops on FlexSEA-Execute we offload the communication interfaces. The

FlexSEA-Manage board is also used as a bridge, communicating with FlexSEA-Plan via a high-

speed SPI interface and communicating with other boards and peripherals via a variety of other

communication protocols.

Can only support brushed motors: The Execute board is designed for brushless motors; it can

inherently support brushed motors.

Can only support one motor: FlexSEA has been designed with scalability in mind. With its two

serial interfaces, FlexSEA-Manage can support two FlexSEA-Execute without any bandwidth

restrictions. More than one FlexSEA-Execute can be on each bus, the total bandwidth being

divided between the boards.

Commercial motor driver has to be tricked into running a special control loop, no built in

functionality: The user has full control over the hardware and the software of the motor driver.

Any type of controller can be programmed in C and can run at high speed on the Execute board.

The Expansion connector supports a wide variety of external sensors; they can all be used in

control loops.

Power consumption: The power consumption of the embedded system can be high when an

embedded computer is used. Better energy efficiency can be obtained by using a simpler

computer; HD video peripherals, audio amplifiers and wired Ethernet connections are not

26

required in wearable robotics applications. By maximizing the use of FlexSEA-Execute and

FlexSEA-Manage, the FlexSEA-Plan computing requirements are lowered. A slower device can be

used, or it can be placed in sleep mode between actions. Eliminating FlexSEA-Plan and

programming the high-level algorithms on FlexSEA-Manage or FlexSEA-Execute can be extremely

energy efficient.

Size, mechanical integration: The Execute and Manage boards were designed to be as small and

light as possible. They have an integration level comparable to commercial products while having

accessible connectors for inputs and outputs.

27

3 Hardware design

3.1 FlexSEA-Execute

At its core, the FlexSEA-Execute board is a BLDC motor driver. It is specialized for robotic and

prosthetic applications. The high level design goals were to maximize the system integration

(small physical dimensions, large number of integrated peripherals and interfaces, support for

external input and output devices), allow fast communication and networkability via the use of a

fast multi-drop communication interface, and have built-in safety features. The design went

through three major revisions; this document focusses on the last generation (FlexSEA-Execute

0.1).

Figure 5 FlexSEA-Execute 0.1 Hardware

28

Figure 6 presents the logical organization of the FlexSEA-Execute 0.1 board. In orange are the

schematic sheets and in grey are the sub-circuits present on certain sheets.

Figure 6. FlexSEA-Execute System Diagram

Table 2 FlexSEA-Execute 0.1 Specifications

Electrical
specifications

Supply voltage (V) 15-24V

Motor current (A) 20A Continuous

Intermediate supply 10V 500mA SMPS

Logic supply 5V 500mA SMPS

Motor

Type 3-phase brushless (BLDC)

Sensor(s) Hall effect, optical encoder

Commutation Block, Sinusoidal, FOC

PWM 12 bits 20kHz, 10 bits 78kHz or 9.65 bits 100kHz

Microcontroller

Reference PSoC 5LP - CY8C5888AXI-LP096

Special features Programmable analog and digital blocks

CPU/RAM/IOs/Package 80MHz ARM Cortex-M3, 256KB RAM, 62 IOs, TQFP

Software / IDE PSoC Creator 3.1, mix of C (ARM GCC 4.7.3) and graphical programming.

Co-processor(s) PSoC 4 - CY8C4245LQI-483

Serial interface

Type 3x Half-Duplex RS-485 (can be full-duplex synchronous)

Bandwidth 2-10Mbps

Onboard USB Full-Speed (FS) 12 Mbps

29

Current sensing

Hardware 0.005Ω resistor

Software / control 20kHz Proportional-Integral controller

Safety features

Overvoltage TVS will clamp at 36V

Overcurrent Software protection

Locked rotor Hardware - lead shorting circuit

Motor temperature Hardware measurement

Board temperature CPU + bridge temperature reading

Clutch Variable voltage, 8-bits PWM, 400mA

Strain gauge
amplifier Dual stage, 500 < G < 10000, high CMRR

IO connector Molex PicoClasp 40 positions, SMD 1mm pitch

External
peripherals

IOs available 12

Digital IOs Up to 12

Analog inputs Up to 8 (12-bit SAR, 8-20-bits Sigma Delta)

Serial I²C, SPI, UART

Other 1 optical encoder (A/B/I), 1 Hall effect encoder (3 pins)

Dimensions (mm)

X (mm) 49

Y (mm) 49

Z (mm) From 12 to 15mm depending on capacitors

PCB technology

Layers 6

Copper 1 Oz

Trace/space/via 5/5 mils trace/space, 8/20 mils blind vias

Assembly Double-sided

Other 6-axis IMU, RGB LED

3.1.1 PSoC 5 LP Microcontroller

3.1.1.1 Microcontroller selection

Since the invention of the microcontroller in the seventies, hundreds of companies are producing

and selling microcontrollers. Most manufacturers have broad portfolios of parts, some of them

offering hundreds of part numbers per family of controllers. Motor control applications are an

important market for microcontrollers. Many manufacturers sell devices optimized for this

application.

The dsPIC series of Digital Signal Controllers by Microchip is a popular choice for low volume

products and hobby designs. They have dsPICs spanning from small device that can control a

30

single motor to large chips able to drive two motors. Having designed multiple dsPIC-based BLDC

drivers for various companies before joining MIT, I decided to stay away from Microchip

products. First, I wanted to generate new IP and avoid possible conflicts. Second, I wanted to

explore outside of my area of expertise. The main problem I was facing with dsPIC-based designs

is the limited analog integration. Adding hardware safety features such as current control and

protection requires many external ICs and large surface area (or inefficient software). Power

consumption is also an issue as the dsPICs are power hungry controllers (1.9mA/DMIPS vs

228µA/DMIPS for PSoC 5 and 414µA/DMIPS for STM32F4).

TI DSPs are commonly used for advanced motion controllers, one example being the DLR Joint

[14]. The lack of either an open-source or a free closed-source development environment

prevented me from prototyping with their devices. STMicroelectronics is aggressively marketing

some of its STM32 ARM-based MCU for motor control applications. Looking at their datasheet,

they use the same design blocks as the whole industry, therefore no real technical gain could be

had.

FPGA/CPLD can offer high performance but at the cost of complexity [13], power and minimal

analog integration. One family of mixed signal microcontrollers, the Cypress programmable

system on chips (PSoC) offers a hybrid solution between an FPAA, a microcontroller and

FPGA/CPLD.

31

3.1.1.2 Programmable System on Chip (PSoC)

Figure 7 PSoC 5 ad - excellent visualization

Figure 8 PSoC Families5

5 http://en.wikipedia.org/wiki/PSoC

http://en.wikipedia.org/wiki/PSoC

32

The PSoC 4 and 5 have modern ARM-Cortex microcontroller cores. The PSoC 5 family was chosen

because of the higher computing power, onboard USB and higher number of programmable

digital and analog blocks.

The highest end PSoC 5 subfamily, CY8C5888, was chosen to maximize the performance of the

system. While the table above mentions 67MHz, the device used in this project, CY8C5888AXI-

LP096 is 80MHz 100DMIPS. The hybrid hardware/software implementation will be described in

the Software section of this document.

3.1.2 PSoC 4 Safety Co-Processor

FlexSEA being a development platform, it is expected that users will reprogram the FlexSEA-

Execute board to add new commands or control strategies. Timings are critical in embedded

programming, especially in systems without an operating system such as ours. Adding a long

routine in an interrupt, using complex floating-point math or poorly managing communication

with peripherals can disrupt the code execution; significant delays can be added, control loops

can be rendered unstable. Running the debugger (or reprogramming the microcontroller) while

the BLDC motor is turning can also have dangerous consequences. To add one layer of safety we

use a second microcontroller, the Safety-Coprocessor (Safety-CoP). A small PSoC 4 device was

selected because of the convenience of its programmable logic and the availability of the

development tools (same as for the PSoC 5).

33

Figure 9 FlexSEA-Execute hardware safety features diagram

The two PSoC are linked via an I2C bus (same bus that is used for the IMU and the digital

potentiometers) and via a Watchdog Clock line. The master PSoC, the 5LP, toggles that line in its

main loop. The safety microcontroller use programmable hardware to measure the pulse-width

and determine if the main microcontroller is behaving normally (ie if the timings are respected).

I2C is used to share sensor data, not for safety critical functions. Multiple sensors are read by the

Safety-CoP to evaluate the system state.

All the PWM lines are going through the safety coprocessor. If a problematic situation (code not

executing properly, over-temperature, disconnected battery, etc.) is detected, the safety

coprocessor can open all the signals and place the motor in a free-wheeling mode. More

elaborate protection software will then assess the situation and put the system in a safe mode

(such as a highly damped system (shorted-leads protection)).

34

Figure 10 PWM signals passing through the Safety-CoP

The Safety-CoP is also in charge of the negative voltage generation and the gate driving for the

shorted lead protection (see 3.1.3.3). More details about the safety features are available in

section 5.1.4 Safety Features.

3.1.3 Brushless DC Motor

The BLDC schematic consists of 3 copies of the Half-bridge sheet (motor commutation), the

Shorted-Leads protection circuit, phase voltage sensing and bridge temperature sensing.

Figure 11 BLDC schematic - top level

35

Figure 12 BLDC sensors (phase voltage & temperature)

U7 is routed close to the power MOSFETs. Figure 13 shows the decoupling capacitors present on

the Power Supply schematic sheet. They are mainly used for the BLDC driver. C11-14 & C22-27

are relatively small ceramic capacitors. Their total value, 100µF, is not sufficient to guarantee that

the bus voltage won’t exceed the limits if a large amount of regeneration is done. C5 to C7 are

used to absorb all this energy (and to provide power during switching transitions as well), but

they are bulky. In applications were volume is highly constrained, C5-7 can be removed if an

external protection circuit is added to the system (typically, a bus-dump semiconductor or

resistor). This should be done with care.

Figure 13 +VB Decoupling capacitors

36

3.1.3.1 Half-bridges

Figure 14 H-Bridge circuit6

DC motors are commonly driven by a circuit called an H-Bridge. An H bridge is an electronic circuit

that enables a voltage to be applied across a load in either direction. Closing S1 and S4 will make

the motor turn in one direction, while closing S2 and S3 will make it rotate in the opposite

direction. Closing S1 and S3, or S2 and S4, can be used to brake the motor. Closing S1 and S2, or

S3 and S4, will create a short circuit on the power supply and can lead to catastrophic failure.

The switches in the above schematic can be relay contacts, bipolar transistors, MOSFETs or IGBTs.

MOSFETs offer the best efficiency for low-voltage applications.

Figure 15 MOSFET vs IGBT: when to use7

6 http://en.wikipedia.org/wiki/H_bridge
7 http://www.renesasinteractive.com/file.php/1/CoursePDFs/DevCon_On-the-road/DevCon_On-the-

Road/Power/IGBT%20vs%20MOSFET_Which%20Device%20to%20Select.pdf

http://en.wikipedia.org/wiki/H_bridge

37

For low-voltage high-frequency application such as ours MOSFETs are the most common solution.

A good reason not to use IGBTs is that a distributor like Digikey doesn't carry devices rated for less

than 300V, and the smallest SMT package available is DPAK.

“The selection of a P-channel or N-channel load switch depends on the specific needs of

the application. The N-channel MOSFET has several advantages over the P-channel

MOSFET. For example, the N-channel majority carriers (electrons) have a higher mobility

than the P-channel majority carriers (holes). Because of this, the N-channel transistor has

lower RDS(on) and gate capacitance for the same die area. Thus, for high current

applications the N-channel transistor is preferred.”8

Figure 16 Half-bridge on Execute (1 of 3)

A voltage of 10V from the Gate to the Source (noted VGS) is required to fully turn on an N-Channel

MOSFET. The source of the high side switch can swing from the lowest system voltage to the

highest. To turn the high-side switch on we need a voltage higher than the motor voltage, typically

the highest voltage in a system.

8 http://www.onsemi.com/pub_link/Collateral/AND9093-D.PDF

http://www.onsemi.com/pub_link/Collateral/AND9093-D.PDF

38

“A gate driver is a power amplifier that accepts a low-power input from a controller IC and

produces a high-current drive input for the gate of a high-power transistor such as an IGBT

or power MOSFET. Gate drivers can be provided either on-chip or as a discrete module. In

essence, a gate driver consists of a level shifter in combination with an amplifier.”9

The IRS21867 was selected because of its robustness, especially for its tolerance to negative

transient voltages. For the MOSFETs, the QFN 5x6 package (also known as 8-PowerTDFN and PG-

TDSON-8) was selected for its small size, its wide industry acceptance and the convenience of

doing bottom cooling.

The BSC014N06NS MOSFETs were selected for their availability, price, low RDSON and low gate

capacitance. As a safety margin, MOSFETs rated for at least twice the bus voltage (28V Max) were

selected. At 60V, the BSC014N06NS are protected in case of really bad inductive spikes.

The R1 and R2 gate resistors were selected from what could be called an “educated arbitrarily

decision” as a compromise value between fast switching and slow switching. Switching too slowly

can introduce shoot-through and increase switching losses, while switching too fast can increase

the transient voltages generated (can lead to more noise, and to component destruction in

extreme cases). The efficiency of the motor driver can be augmented by carefully selecting gate

resistors and by doing a careful selection of semiconductors, but this optimization is outside of

the scope of this work.

R27 is used for current sensing.

9 http://en.wikipedia.org/wiki/Gate_driver

http://en.wikipedia.org/wiki/Gate_driver

39

Figure 17 The 3 channels use the same compact layout (B highlighted)

As can be seen on Figure 17 a large number of vias are used. They serve two purposes: thermal

transfer and layer “tying”. This PCB has 6 layers:

 Layer 1: Top components, signals and small planes

 Layers 2 and 5: Ground planes

 Layer 3: Power. Top half is a +VB plane, Bottom half is a +5V plane.

 Layer 4: Mixed. In the context of the bridges, it is used for the MOT nets and for +VB.

 Layer 6: Bottom components, interface to the heat sink (so a maximum plane area is used

around the bridges).

The critical power paths are always shared by a minimum of two layers.

3.1.3.2 Motor current sensing

The programmable analog blocks of the PSoC can be used to design a small, low-cost motor

current sensor. One shunt resistor per bridge is used. Two resistors and one capacitor are

required for the feedback. In the PSoC we use one operational amplifier, one DAC and one analog

multiplexer.

40

Figure 18 Spice simulation, ±20A motor current sensing

Power rating of the sense resistor:

𝑃𝑅𝐸𝑆 = 𝐼2 ∗ 𝑅 = 20𝐴2 ∗ 0.005Ω = 2𝑊

(Eq 1)

3.1.3.3 Shorted-leads protection

For prostheses, a safe fail-safe mode is to short the leads of the motor, maximizing the

mechanical damping. Given a large enough transmission ratio and a small enough shorted lead

resistance, a patient could keep walking on his or her unpowered device. Failing with the motor

bridge open is a hazardous situation since the reduced joint stability may cause the patient to

trip and fall.

A disconnected or completely empty battery means that the control logic will lose power and

that the H-Bridge MOSFETs will turn-off. One solution is to use a backup battery to power safety

circuits but there are many downsides: cost, volume, finite lifetime. Another option, used in this

design, is to design a circuit that will short the leads when un-powered. To achieve that we used

depletion mode MOSFETs.

41

Figure 19 Shorted-leads protection implemented with depletion mode MOSFETs

Figure 20 Shorted-leads protection: negative voltage generation and gate control

42

Figure 21 Spice simulation, voltage inverter

There is inherent safety in this circuit. To turn the MOSFETs off we need a negative voltage; this

voltage is only generated when the Safety-CoP clocks the inverter circuit. When there is no

power, no negative voltage, or no gate signal, the MOSFETs are ON (shorting the leads).

The RDS-ON resistance of depletion MOSFETs available at the time of design was either large (few

ohms) or the devices were extremely large. The CPC3703 are relatively small, cheap and not too

resistive. By using 3 devices in parallel we get 1.33Ω and 1.8A of pulsed drain current. This current

rating is not enough to handle all the energy present in a system that would suddenly get

disconnected. The decoupling capacitors and the brownout protection circuits will keep the logic

circuits powered for a few milliseconds after the battery gets disconnected. The software, after

detecting a loss of power, will use the h-bridge MOSFETs to absorb most of the energy, then

enable the depletion mode MOSFETs for the unpowered state.

43

3.1.4 RS-485

Figure 22 One of the 3 RS-485 transceivers present on FlexSEA-Execute

Figure 23 RS-485 Modes: synchronous/asynchronous, half- or full-duplex

Three transceivers allow the user to select between three modes: asynchronous half duplex,

asynchronous full-duplex and synchronous full-duplex. The trade-off is between simplicity and

data transfer speed. The PSoC 5LP UART module can be configured for 8x or 16x oversampling

and has a maximum baud rate of 4Mbits/s. The Master Clock is 80MHz and we can only use

fractional dividers. Using 8x we can calculate the baud rate versus the clock divider:

Table 3 Baud rate versus clock divider

Divider Baud rate Comment

1 10M Over 4M, invalid

2 5M Over 4M, invalid

3 3.33M

4 2.5M

5 2M

44

The baud rate selected on FlexSEA-Execute has to be closely matched with the baud rate selected

on FlexSEA-Manage:

𝑏𝑎𝑢𝑑𝑟𝑎𝑡𝑒𝑀𝑎𝑛𝑎𝑔𝑒 = 𝑓𝐶𝐿𝐾 (8 ∗ (2 − 𝑂𝑉𝐸𝑅8) ∗ 𝑈𝑆𝐴𝑅𝑇𝐷𝐼𝑉)⁄

(Eq 2)

fclk is 84MHz and OVER8 is 0 for 16x oversampling.

𝑈𝑆𝐴𝑅𝑇𝐷𝐼𝑉 = 𝑓𝐶𝐿𝐾 16 ∗ 𝑏𝑎𝑢𝑑𝑟𝑎𝑡𝑒⁄

(Eq 3)

In the STM32 register, the fractional part of USARTDIV is stored in 3 bits (8 possible values). The

fractional part has to be a multiple of 1/8 (0.125). Different values have to be approximated, thus

introducing averaging errors in the communication timings.

Table 4 Error versus baud rate

Baud rate USARTDIV Rounding error Error (%)

2M 2.625 0 0

2.5M 2.100 0.025 1.19

3.33M 1.575 0.050 3.17

To minimize the communication errors 2Mbits/s is used. That limit can easily be overpassed by

using synchronous communication.

The SN65HVD75 transceivers were selected for their high tolerance against ESD events (IEC

12kV), small size and wide availability. No dual- or triple-transceivers offered the same protection

level; integration was sacrificed to increase robustness. The 8-TSSOP was only selected because

of a bad filter selection on Digikey. While designing the FlexSEA-Manage 0.1 board it was found

out that a 3x3 mm 8-SON package is available. The latter one is used on FlexSEA-Manage, and

will be used in the next FlexSEA-Execute revision.

45

3.1.5 Strain Gauge Amplifier

Strain gauge load cells are used as force and torque sensors in industrial and research

applications. Due to the commoditization of products such as digital scales it is now possible to

purchase inexpensive sensors. The sub-millivolt output signal range isn’t suited for typical ADC

inputs; amplification is required. The large common mode voltage (half-supply) is well suited for

differential/instrumentation amplifiers. The TI INA331/2331 single-supply instrumentation

amplifiers ICs are economical, small and require a minimum number of external components.

Their gain being limited to 1000V/V, a dual stage design is used. The design was first simulated

in TINA-TI.

Figure 24 TINA-TI Spice simulation of the two stage differential amplifier design

Amplifying with gains in the thousands right next to a BLDC motor can easily be problematic.

While the first page of the datasheet claims a 94dB common-mode rejection ratio (CMRR), the

first set of experiments were inconclusive. The CMRR is strongly dependent on the signal

frequency:

46

Figure 25 CMRR vs Frequency, TI INA331/233110 instrumentation amplifier

Typical motor PWM frequencies are from 20 to 100kHz. Analog filtering was added before the

first amplification stage, limiting the bandwidth to 500Hz and offering 44dB of rejection at 20kHz.

Figure 26 Input: filtering and protection

Two I2C digital potentiometers (Microchip MCP4661, dual potentiometer, U5) are used to adjust

the offset and the second stage gain. U5B allows the user to adjust the output reference of the

first stage by ±20% (centered at half supply). The offset adjustment span of ±20% and the fixed

gain of 105 were calculated based on experimental data (5 load cells were randomly selected and

measured. The worst offset was used to calculate the required compensation.)

10 http://www.ti.com/lit/ds/symlink/ina331.pdf

47

Figure 27 Two stage amplification

When possible, internal PSoC analog components were used to simplify the circuit. This is the

case for the offset buffer operational amplifier, the V/2 reference voltage and the VR2 DAC. U5C

allows the user to change the second stage gain, from 5 to 105. Via software VR2 can be

programmed (it’s on a DAC output) to change the output reference. Some applications use

unipolar forces (ex. pushing only, never pulling); using a non-half-supply reference can increase

the resolution of the measured force.

Figure 28 PSoC Programmable Analog Blocks - Strain Gauge Amplifier

48

3.1.6 Clutch

Figure 29 Clutch driver schematic

Locking the position of a motorized joint requires power, even when there is no motion. This is

an inefficient use of energy [2]. Designs such as the CSEA Knee use an electro-magnetic clutch to

hold a joint in place without requiring power from the motor [2].

When not engaged, the air gap between the two pieces of the clutch reduces the attraction force

of any magnetic field that the clutch can generate. More current is required to engage the clutch

than is necessary to keep it locked. Using PWM, it is possible to use maximum power to engage

the clutch, then reduce the voltage applied across its terminal as an energy saving feature.

Use of a high-side switch is preferred because it is typical to link the metal chassis of prostheses

to ground and some clutches have their casing grounded. Using a high-side switch can simplify

the electromechanical integration. The power requirements being low, it is possible to use a P-

Channel MOSFET as a switch. D13 is used as a free-wheeling diode for inductive loads, as a

protection for Q3.

49

3.1.6.1 P-MOSFET power dissipation

The clutched used in the experimental setup and in the CSEA Knee is rated for 24V 250mA 6W.

The unit in hand was tested at 242mA. To accommodate bigger clutches (and other output

devices) the calculations will be done for 24V 10W (417mA), used at 10V. The current at 10V will

be 174mA.

Using an FDN5618P P-MOSFET:

𝑃𝐷𝑅𝐸𝑆𝐼𝑆𝑇𝐼𝑉𝐸 = [𝐼𝐿𝑂𝐴𝐷
2 ∗ 𝑅𝐷𝑆(𝑂𝑁)] ∗ (𝑉𝑂𝑈𝑇 𝑉𝐼𝑁⁄) 11

(Eq 4)

𝑃𝐷𝑆𝑊𝐼𝑇𝐶𝐻𝐼𝑁𝐺 = [𝐶𝑅𝑆𝑆 ∗ 𝑉𝐼𝑁
2 ∗ 𝑓𝑆𝑊 ∗ 𝐼𝐿𝑂𝐴𝐷]/𝐼𝐺𝐴𝑇𝐸

(Eq 5)

Where:

ILOAD: 174mA

VOUT/VIN = D = 10V/24V = 0.42

RDS(ON) = 0.315 Ω (worst case)

CRSS: 19pF

VIN: 24V

fSW: 20kHz

Igate: 10.9mA

We obtain 𝑃𝐷𝑅𝐸𝑆𝐼𝑆𝑇𝐼𝑉𝐸 = 4𝑚𝑊 & 𝑃𝐷𝑆𝑊𝐼𝑇𝐶𝐻𝐼𝑁𝐺 = 3.49𝑚𝑊 . The total power dissipation is

7.5mW. If the clutch is powered at 24V 10W (no switching) the dissipation will be 55mW. The

thermal resistance of the SuperSOT-3 package, from junction to ambient, is 270°C/W.

𝑇𝐽 = 𝑅𝐽𝐴 ∗ 𝑃 + 𝑇𝐴 = 270˚
𝐶

𝑊
∗ 55𝑚𝑊 + 35˚𝐶 = 49˚𝐶

(Eq 6)

11 Based on http://electronicdesign.com/boards/calculate-dissipation-mosfets-high-power-supplies

50

3.1.6.2 Level shifting

A pre-biased NPN BJT (RN1106MF) and two resistors are used to allow one 0-5V microcontroller

output to turn on and off the P-MOSFET. The battery voltage can span from 15 to 28V. VGS is

determined by the ratio of R32 and R33 and by the saturation voltage (VCE_SAT) of the BJT (0.3V

max). VCE_SAT being less than 2% of the minimum voltage it is negligible.

𝑉𝐺𝑆 = 𝑉𝐵 (1 − (𝑅33/(𝑅33 + 𝑅32))) = 0.5𝑉𝐵

(Eq 7)

VB ranging from 15 to 28V, VGS will be from 7.5 to 14V, below the maximum of ±20V and high

enough to provide a low RDSON.

3.1.7 IMU

Accelerometer and gyroscope are commonly used for the control system of prostheses and

exoskeleton. They are used to measure angular velocities, angles and impacts. The MIT CSEA

Knee [2] used a sensor board12 populated with an ADXL345 accelerometer (3-axis, ±2 to ±16g)

and an ITG-3200 gyroscope (3 axis, ±2000°/s) [2][11]. The MIT Autonomous Exoskeleton [19] uses

a LPY550ALTR dual-axis gyroscope (500 °/s). These parts were selected because their range

covers the angular velocities and accelerations of human walking.

For the FlexSEA-Execute board a single chip solution is used. The MPU-6500 integrates a 3-axis

accelerometer (±2 to ±16g), a 3-axis gyroscope (±250 to ±2000°/s) and a temperature sensor. The

same IMU is present on the FlexSEA-Manage board. An example application that would require

IMUs on both the FlexSEA-Manage and the FlexSEA-Execute boards is a dual leg exoskeleton with

waist mounted control electronics. The Execute boards would be located on the feet while

12 https://www.sparkfun.com/products/10121

51

FlexSEA-Manage’s IMU can record whole body motion and user intent (such as sitting, leaning,

etc.)

Figure 30 IMU schematic

The main limitation that was found during software development was the low frequency of the

I2C bus, 400kHz. All the devices from the same manufacturer have the same limitation,

preventing an easy modification. Information can be accessed faster via SPI.

The IMUINT signal can be used to time the data acquisitions with the availability of new

measurements.

3.1.8 IO Protections

Figure 31 External I/O protection circuit

52

All the inputs and outputs that are connected to the Expansion connector have the same basic

protection circuit. The ‘E’ suffix denotes the pin that is linked to the external world, while the

same net, without the suffix, is linked to the circuit.

Figure 32 Expansion connector

A special diode pair (TI TPD4E004) is connected to each pin, as close to the connector as possible.

The TPD4E004 is designed to provide ESD protection up to ±8-kV (IEC 61000-4-2 Contact

Discharge). The diodes having a forward voltage of 0.8V, they will clamp a steady input voltage

from -0.8V to 5.8V. In case of an 8kV ESD contact discharge the voltage will be limited to 80V,

100x less. The PSoC 5 is protected up to 500V; the extra diodes will prevent pin destruction.

53

Figure 33 TPD4E004 ESD Clamping13

Figure 34 ESD diode routed right under the Expansion connector

A series 100 ohm resistor limits the current to (5-0)/100 = 50mA in case a high output is shorted

to ground. The same series resistor will also limit the current when the diodes are clamping the

input voltage. The maximum rating for PSoC 5 pins is 41mA. A resistor of 120 ohm should be used

instead of 100 ohm. This is reflected in the Future Work section.

A higher degree of protection would be gained from using a higher value resistor. The main trade-

off of designing a system that can be used for any situation is that one cannot optimize every

single detail. Using a value such as 1k or 10k for un-buffered analog inputs would introduce too

much noise in the ADC conversion.

3.1.9 User interface

A RGB LED is used to display the state of the code (normal, communication loss, warning, error).

A flashing green LED is used as a heartbeat signal: when the code is running properly it flashes.

13 http://www.ti.com/lit/ds/symlink/tpd4e004.pdf

54

Figure 35 RGB LED and Green "heartbeat" LED

The white balance of the RGB LED is poor due to a bad assumption (constant current across colors

does not lead to white light when R, G & B are turned fully ON). The Future Work section specifies

different resistor values. A USB port is present on board for debugging. Users can use it to send

FlexSEA commands to Execute without the need of Manage and/or Plan.

Figure 36 USB ESD protection

Figure 37 USB protection routing

55

3.1.10 Power Supplies

4 different voltages are required on Execute. Table 5 specifies the naming convention and the
voltage ranges.

Figure 38 Power Supplies Schematic

Table 5 Power Supplies

Symbol Voltage Source Details

+VB 15-28V (typ. 24V) Battery Battery voltage

+VG 10V +VB Gate driver voltage, input for low voltage regulators

+5V 5V +VG Logic supply - almost everything

+3V3 3.3V +5V Logic supply, RS-485 & IMU

3.1.10.1 Brown-out protections

When turned-on, inductive loads such as motors will draw a current that is only limited by their

equivalent series resistance. This current can be extremely high because the resistance is kept to

a minimum to limit thermal losses. During such events it is important to keep the control

electronics powered. To prevent those currents from stealing energy from the logic power

supplies we use a simple circuit consisting of a diode and a capacitor.

56

Figure 39 Brownout protection

+Vin is the input voltage that would normally go to the next circuit. Instead, the diode prevents

the input filter capacitor from being discharged by anything else than the current on +Vout. The

capacitor can be sized to provide a sufficient energy reserve to keep the output voltage regulated

when the bus voltage drops.

The diode decreases the efficiency of the power supply. Using a Schottky with a small voltage

drops keep the losses to a minimum. Efficiency loss for a theoretical circuit that converts from 24

to 12V with 100% efficiency, with a 500mA load on its output (6W):

𝑉𝐼𝑁 = 24𝑉 − 𝑉𝐷𝑅𝑂𝑃 = 24𝑉 − 0.5𝑉 = 23.5𝑉

(Eq 8)

𝐼𝐼𝑁 = 𝑃𝑂𝑈𝑇 𝑉𝐼𝑁⁄ = 6𝑊 23.5𝑉⁄ = 255.32𝑚𝐴

(Eq 9)

𝑃𝐼𝑁 = 𝑉𝐼𝑁 ∗ 𝐼𝐼𝑁 = 24𝑉 ∗ 255.32𝑚𝐴 = 6.13𝑊

(Eq 10)

𝑛 = 𝑃𝑂𝑈𝑇 𝑃𝐼𝑁⁄ = 6𝑊 6.13𝑊⁄ = 97.8%

(Eq 11)

3.1.10.2 Low voltage power supplies

It is important to minimize the power consumption of prostheses and other wearable robots to

minimize the volume and weight of the batteries used (they have a direct effect on system

efficiency) and to minimize heat generation, a potential cause of discomfort for the users. The

MOSFET gate drivers require 10V and the microcontroller and most sensors are powered at 5V.

57

Using a linear regulator to provide 50mA at 5V (250mW) requires 50mA at 24V (1.2W), a 21%

efficient energy conversion with almost 1 watt of heat that requires to be dissipated; this is

unacceptable. The only sensible solution is to use one or more switched-mode power supplies

(SMPS).

The current requirement on the 10V bus being small, it was decided to use the 10V as a pre-

regulation stage for the 5V power supply. Using 10V rather than 24V as an input voltage allows a

wider range of ICs to be used.

The core of both circuits was designed with TI WEBENCH Design Center14. The same list of

modifications was applied to both designs, as detailed below.

14 http://www.ti.com/lsds/ti/analog/webench/overview.page?DCMP=sva_web_webdesigncntr_en&HQS=sva-web-
webdesigncntr-vanity-lp-en

58

3.1.10.3 LM25011 10V 500mA

Figure 40 10V 500mA SMPS

Figure 41 Compact routing using polygon pours

D9, C38 and C39 were added to provide brown-out protection. Size constraints limited the

capacity of C38 and C39, leading to an extremely short protection period. C40, L2 and C8 form a

PI filter. It is used to minimize the output noise, to avoid transferring that switching noise down

59

to the 5V supply. F1 is a PTC (Positive Temperature Coefficient), also known as a resettable fuse.

The circuit was designed with a 650mA current limit (by selecting Rs = 0.2Ω), the PTC should only

trip in case of a catastrophic failure.

3.1.10.4 TPS62163 5V 500mA

Figure 42 5V 500mA SMPS

Figure 43 Compact routing using polygon pours

60

3.1.11 Future Work and Circuit Modifications

List of modifications that do not require circuit modifications (only BOM changes):

 Lower the I²C resistor pull-ups (R45, R46) to 1.8kΩ (currently 4.7kΩ)

 Change the IO protection resistors (R10-R13, R64, R65) to 120Ω (currently 100Ω)

 Less resistive PTCs (F1, F2)

 Lower the Gate resistor values by at least half. More calculations and testing is required

to find the optimal value.

List of modifications requiring circuit modifications:

 The 400kHz I²C limit on the MPU-6500 is slowing down the bus. If a new IMU has to be

selected a 1MHz version should be considered.

 RGB LED: poor color balance. The next design should use 243/249/412Ω.

 Add a second green LED to unify the user interface with Manage.

 Add an external filtering capacitor for the Delta Sigma converter (0.1 to 1.0µF, see

component datasheet).

 Add SWD (P1[3]) to the PSoC 5 SWD connector (J9). The Serial Viewer isn’t supported

yet but will be convenient in the future.

 The ‘+5V’ supply should be measured.

 The RS-485 transceivers (U4, U10, U11) should use the 8-SON package to save board

space and unify the BOM with Manage.

 The position of the SWD connectors (J5, J9) is not convenient. They should be on the top

side. Swapping their position with the RS-485 transceivers would be convenient.

 Many expansion pins are on port 12. They are SIO and not GPIO (no analog features).

Most of the expansion signals should support analog inputs.

61

The only patch that needs to be applied to use the circuit is to lower the I²C pull-ups. All the

other changes are not problematic but will improve the quality of the design.

3.2 FlexSEA-Manage

Figure 44 FlexSEA-Manage 0.1

FlexSEA-Manage is a polyvalent circuit that can have a wide range of usages depending on the

system architecture. In the simplest system designs, it will act as a communication protocol

translator, allowing Plan and Execute to communicate. When multiple FlexSEA-Execute are used,

it routes packets, and can manage communication timings. It can be used to add extra sensors

and output devices to the system. In systems that do not require the computing power of an

embedded computer, Manage can host the high-level state machines.

Figure 45 presents the hardware diagram of FlexSEA-Manage 0.1. In orange are the schematic

sheets and in grey are the sub-circuits present on certain sheets.

62

Figure 45 Manage 0.1 Hardware

Table 6 FlexSEA-Manage 0.1 Specifications

Electrical

specifications

Supply voltage (V) 5V in (from Plan or USB), on-board 3V3 regulator

Current (mA) 90mA

Microcontroller

Reference STM32F427ZIT6

Special features Floating-point co-processor can be software enabled.

CPU/RAM/IOs/Package 180MHz ARM Cortex-M4, 2MB FLASH, USB

Software / IDE Eclipse C/C++, GNU Tools for ARM Embedded Processors (arm-none-eabi-gcc), OpenOCD GDB.

Serial interfaces

Type 2x [half-duplex, asynchronous full-duplex or synchronous full-duplex RS-485]

Bandwidth 2-10Mbps

Type Full-duplex SPI

Bandwidth 20+ Mbps

Onboard USB Full-Speed (FS) / High-Speed (HS)

Peripherals /

features

FLASH memory 128Mbits

IMU 6-axis (3x accelerometer, 3x gyroscope)

Power output 2x 24V 1A high-side switches

LEDs 2x green, 1x RGB

Switches

1x user input switch

IO connector Molex PicoClasp 40 positions, SMD 1mm pitch

External

peripherals

IOs available 17, shared with functions below

Digital IOs Up to 9, protected

Analog inputs 8x 12-bit SAR with special functions (filters, amplifiers, dividers, …)

Serial

I²C, SPI, USART

Dimensions (mm)

X (mm) 40

Y (mm) 40

63

 Z (mm) 11.5

PCB technology

Layers 4

Copper 1Oz

Trace/space/via 5/5 mils trace/space, 8/20 mils vias

Technology Standard

Assembly Double-sided

3.2.1 Microcontroller

In systems with an embedded computer, Manage is used as communication translator (between

SPI and RS-485), as a router and as a sensor processing unit. When an embedded computer isn’t

used Manage will host the high-level state machines. All these applications require fast

communication peripherals (a minimum of 1 SPI and 2 UARTs) and fast processing.

To support all the sub-circuits present on Manage we need a microcontroller with:

 A minimum of 3 SPI ports (1 for Plan, 1 for the FLASH, 1 for the Expansion connector)

 A minimum of 3 UARTs (2 for RS-485, 1 for the Expansion connector)

 A minimum of 2 I²C ports (1 internal, 1 for the Expansion connector)

 A minimum of 8 12-bits analog inputs

 A minimum of 20 digital I/Os

 USB

While using a microcontroller from the same family as on Execute (another PSoC) would have

simplified the development process, no PSoC had enough computing power or I/Os to fulfill all

the requirements (100DMIPS, 62 IOs 15). Instead, an industry standard Cortex-M4 core was

implemented to benefit from the Floating point Unit (FPU).

Many vendors license the Cortex-M4 (Texas Instruments, Atmel, Freescale, STMicroelectronics,

NXP, etc.) The STM32F4 family from STMicroelectronics was selected primarily because it has a

15 With the newly released chip-scale (BGA) package more IOs are available then at the time of this design.

64

large base of customers and part references, affordable development tools and comprehensive

public documentation.

Figure 46 STM32F4 sub-families16

The STM32F427ZI was selected because it is 180MHz and has the largest amount of memory

possible. The F437 and F4x9 chips only add TFT controllers and video accelerators that are not

required in our application.

The LQFP-144 package was the smallest package that allowed the use of all the required

peripherals.

3.2.2 Interface to Plan

Most of the work presented in this thesis was using a BeagleBone Black embedded computer as

the FlexSEA-Plan board. While the previous version of the FlexSEA-Manage board, MiddleMan

0.1, was designed to fit its form factor, the Manage 0.1 was designed with polyvalence in mind.

Multiple new embedded computers are released every year. Having the option of using new

generation hardware can extend the life of the FlexSEA system.

16 http://www.st.com/web/en/catalog/mmc/FM141/SC1169/SS1577?sc=stm32f4

http://www.st.com/web/en/catalog/mmc/FM141/SC1169/SS1577?sc=stm32f4

65

Figure 47 MiddleMan 0.1 (predecessor to Manage 0.1) on top of a BeagleBone Black

The only specific requirement is to have a fast full-duplex SPI bus. The connector that interfaces

with Plan has 8 pins: +5V to power the circuits on Manage17, 4 wires for SPI (MOSI, MISO, SCK &

NSS), a reset signal and a +VP (Plan Voltage) line.

Figure 48 Interface to Plan

The +VP line is used with a TXB0104 voltage level translator IC to interface an embedded

computer with an IO voltage between 1.2 and 3.3V and the 3.3V Manage microcontroller.

17 The +5V can come from any power supply, it doesn’t have to be from Plan

66

Figure 49 Level translation, SPI

R72 to R80 are series termination resistors for the fast SPI lines. The output characteristics of the

Plan computer being unknown, and the cabling between FlexSEA-Plan and FlexSEA-Manage

depending on applications, it was not possible to calculate the proper terminations. The 0Ω

resistors are used as place-holders.

The external reset line is connected to the base of Q5B, another way of doing level shifting.

Figure 50 Level shifting, external reset signal

67

User code being executed on the Plan board can be stopped at any time. Some situations will

place the SPI bus in a bad state, thus requiring either special management code on the FlexSEA-

Manage board or that it can be rebooted by FlexSEA-Plan.

3.2.3 Inputs and Outputs

J2 is a 40 pins Molex Pico-Clasp dual row, right-angle connector. It is used by users to access the

9 digital I/Os, the 8 analog inputs, two power outputs and some supplies. It also hosts 6 twisted-

pairs for RS-485.

Figure 51 Expansion connector

3.2.3.1 Analog Inputs with Programmable Features

8 analog inputs are available on the Expansion connector. To minimize the number of external

components required to interface with common sensors, 4 different circuits are used.

 AN0 & AN1: 1 or 10kHz low-pass filter, unity gain (buffered)

 AN2 & AN3: 1 or 10kHz low-pass filter, I²C programmable gain (1<G<10, 8 bits)

 AN4 & AN5: unity gain (buffered)

68

 AN6 & AN7: programmable pull-down (0 < R < 10kΩ) to use as a voltage divider, unity gain

(buffered)

All the inputs have ESD protection and weak pull-downs to force a low level when the input is

floating.

Figure 52 AN0 & AN1: 1/10kHz LPF, G=1

Figure 53 AN2 & AN3: 1/10kHz LPF, 1<G<10

Figure 54 AN4 & AN5: Buffered input

69

Figure 55 AN6 & AN7: Programmable voltage divider

Four I2C digital potentiometers (Microchip MCP4661, dual potentiometer, U3 & U4) are used to

adjust the gains and the voltage divider resistances. They share the same I²C bus as the IMU.

3.2.3.2 Digital Inputs & Outputs

9 digital signals are available on the Expansion connector.

Figure 56 Protected Digital IO

Table 7 Special Digital IO functions

Signals Special function

DIOx0/1 I2C2

DIOx2/3 UART3

DIOx/4/5/6/7 SPI6

70

For DIO2 to DIO8 a series 1kΩ resistor limits the current to (3.3V-0)/1000Ω = 3.3mA in case a high

output is shorted to ground. The same series resistor will also limit the current when the diodes

are clamping the input voltage. The maximum rating for STM32 pins is ±25mA.

DIO0 and DIO1 do not have pull-downs and series resistors to prevent conflicts with I2C. For more

info about the ESD protection please refer to Section 3.1.8 IO Protections.

3.2.3.3 Power Outputs

Two high-side switched power outputs are available on the Expansion connector. +VB needs to

be provided by the user. When used with AWG#28 crimps the contacts are rated for 1A. Both

outputs are also rated for 1A; their total should not be more than 1A.

Figure 57 1 of 2 power outputs

The thermal calculations are simpler than for the Execute clutch output (see 0) because these

drivers are not intended to be used with PWM. The worst-case RDS(ON) of the FDN5618 P-MOSFET

is 0.315Ω and the junction-to-ambient thermal resistance is 270°C/W.

𝑃𝐷𝑅𝐸𝑆𝐼𝑆𝑇𝐼𝑉𝐸 = 𝐼𝐿𝑂𝐴𝐷
2 ∗ 𝑅𝐷𝑆(𝑂𝑁) = (1𝐴)2 ∗ 0.315 = 0.315𝑊

(Eq 12)

71

𝑇𝐽 = 𝑅𝐽𝐴 ∗ 𝑃 + 𝑇𝐴 = 270˚
𝐶

𝑊
∗ 315𝑚𝑊 + 35˚𝐶 = 120˚𝐶

(Eq 13)

It leaves a 30°C margin before the maximum junction temperature is reached. 270°C/W being for

the smallest pad possible, it is expected that the thermal resistance will be lower in the current

design. Upon close inspection of the layout a comment was added to the list of future

modifications; the drain should be attached to a bigger copper area. Another option is to replace

the FDN5618 by a SI2319CDS 77mΩ MOSFET (same package, 10 cents more).

3.2.4 IMU

Please refer to Section 3.2.4 IMU in FlexSEA-Execute hardware. The two designs use the same

IMU.

3.2.5 FLASH

The Manage board has an onboard FLASH memory for data logging during experiments. It can be

used for systems that do not include a Plan board.

Figure 58 FLASH Memory

72

Table 8 Bits of storage needed per second of data logging

 Data bytes

Frequency (Hz) 2 4 8 16 32

1 16 32 64 128 256

10 160 320 640 1.28k 2.56k

100 1.6k 3.2k 6.4k 12.8k 25.6k

1000 16k 32k 64k 128k 256k

Typical science experiments are limited to 30 minutes (1800s) and logging rates from 100Hz [11]

to 200Hz [1] are sufficient. Saving 16 bytes at 100Hz requires 23Mbits. No memories of less than

32Mbits were considered. The main part selection criteria were 1) SPI interface, 2) small size and

3) common/industry standard package. The M25P128 has 128Mbits of storage and is in a

convenient 8-VDPFN package.

Table 9 Minutes of data logging in a 128Mbits FLASH memory

 Data bytes

Frequency (Hz) 2 4 8 16 32

100 1333 667 333 167 83

1000 133 67 33 17 8

The traces between the FLASH and the STM32 being electrically short, termination should not be

required. R32 to R35 are included as placeholders.

Users can access the stored data via the USB port or via the FlexSEA network. A radio module can

also be connected to the Expansion connector.

73

3.2.6 User Interface

The same RGB LED, Green LED and USB protection circuit as on Execute are used (see 3.1.9). The

differences are: 1) the presence of a second Green LED and 2) one user button.

Figure 59 User input

Having a least one user push-button in the system is convenient for demonstrations, allowing

one to start test code and/or experiments without requiring the use of a remote computer.

74

3.2.7 RS-485

Section 3.1.4 goes over all the details

of the 3 RS-485 modes, baud rate and

transceiver selection. The differences

are: 1) the presence of 6 transceivers

on Manage, 2) the hardwired enable

signals and 3) the smaller IC packages.

By routing all the enable (DE, !RE)

signals to the PSoC, Execute could use

the three transceivers independently.

This is not the case for the Manage

board; the internal peripherals and

pin assignments made it impossible to

get the same flexibility.

USART1 and USART6 are used because

they are clocked by APB2 (84MHz)

while all the other UxARTs are clocked

by APB1 (48MHz). With a 84MHz clock

the two USARTs can achieve baud

rates up to 10.5Mbits/s.

Figure 60 RS-485 #1 3 transceivers

75

3.2.8 Power

The Manage board requires 5V. It can be provided by the Plan board (or by an external supply

connected to the Plan connector) or via the USB connector. An autoswitch power multiplexer is

used to select the power source. When +5VP (from the Plan connector) is available, it is used.

Using USB power is useful for simple tests and debugging when an external supply is not

available.

Figure 61 Autoswitch Power Mux and 3.3V LDO Regulator

A TPS73733 linear regulator is used to obtain 3.3V from +5V. As shown on the schematic note,

its junction temperature shouldn’t rise above 115°C in the absolute worst case scenario.

To test the autoswitching feature the Manage 0.1 board was powered from an external supply

and from USB. The yellow trace is +5V, the blue trace is +3V3. The external power supply was

turned off and the event was caught by the oscilloscope (triggering on a negative slope at 4.75V).

76

3.2.9 Future Work and Circuit Modifications

List of modifications for the next hardware revision:

 When hot-plugged the STM32 doesn’t not always properly power on. Evaluate the use

of a power sequencer.

 The 2 power outputs have tiny dissipation pads. Increase copper area on the drain

connection or select a MOSFET with a lower Drain to Source resistance.

 The 400kHz I²C limit on the MPU-6500 is slowing down the bus. If a new IMU has to be

selected a 1MHz version should be considered.

 RGB LED: poor color balance. The next design should use 243/249/412Ω.

77

4 Software Design

While the focus of this thesis was system and hardware design, a large amount of embedded

software had to be written to enable all the functionality of the FlexSEA system. The

communication stack, shared by all the boards, required 5153 lines of C code. 12030 lines of code

are specific to the sub projects (motor control, terminal interface, signal processing, etc.), for a

grand total of 17183 lines of C. This section will take a high-level approach to describe the

software design of FlexSEA rather than diving down in the details. Readers will get an overall

understanding of the organization; the modularity of the software and the abundance of

comments, combined with this document, should provide anyone with enough information to

use and modify the system.

4.1 Communications and networking

A communication protocol is a system of digital rules for data exchange within or between

computers and embedded devices. At the highest level, “intelligent” information is exchanged,

such as “set motor pwm duty cycle to 100%”. On the lowest level (hardware level) it’s always an

exchange of electrons or photons. The span between these two extremes is divided is layers. The

Open Systems Interconnection model (OSI) is composed of 7 layers.

Figure 62 OSI model18

18 http://en.wikipedia.org/wiki/OSI_model

78

While the OSI model can represent systems as complex as Internet, for embedded applications it

is possible to simplify by merging layers 4 through 7 into a single Application layer. With a limited

need for packet routing, layer 3 (Network) is absorbed by layer 2 (Data link).

4.1.1 Application Layer

At the highest abstraction level, intelligent information is exchanged between different FlexSEA

boards without any regards for the physical media used. The list of commands available to the

user is presented in Table 10.

Table 10 List of FlexSEA Commands

Command Details

ping Ping? Ping!

status Board Status

reset Reset

ack Acknowledge

mem Memory

acqui Acquisition strategy

rs485_config RS485 Configuration

usb_config USB Configuration

usb_write USB Write

temp Temperature

switch Switch

imu IMU

encoder Encoder

strain Strain gauge/load cell

strain_config Strain Gauge amplifier gain & offset

volt Voltage measurements

batt Battery status and values

power_out Power Outputs

clutch Clutch

adv_ana_config Advanced Analog Periph. Configuration

analog Analog Inputs

digital Digital I/Os

digital_config Digital I/Os Configuration

79

exp_periph_config Expansion Periph. Configuration

ctrl_mode Control Mode

ctrl_i_g Current (I) Controller Gains

ctrl_p_g Position (P) Controller Gains

ctrl_z_g Impedance (Z) Controller Gains

ctrl_o Open (O) Loop Controller (PWM)

ctrl_i Current (I) Controller

ctrl_p Position (P) Controller

shorted_leads Shorted Leads

spc1 Special Command 1

spc2 Special Command 2

The command codes are 7-bits long, left justified. The LSB of the command byte is 1 for Read

commands and 0 for Write commands.

All the commands that are to be transmitted have the function prefix “tx_cmd_” followed by the

category (communication, control, data, external/expansion, sensors, system or user) and the

command name. As an example, the prototype for the Clutch command is: uint32_t

tx_cmd_exp_clutch(uint8_t receiver, uint8_t cmd_type, uint8_t *buf, uint32_t len, uint8_t

clutch). The first 4 arguments are common for all the TX functions: receiver is the Slave name,

cmd_type can be CMD_READ or CMD_WRITE, *buf is the byte array that will hold the payload

generated by the function and len is the length of buf. The last parameter, clutch, contains the

duty cycle of the clutch (0 to 255, 0 to 100%). To turn the clutch off on FlexSEA-Execute the user

can call tx_cmd_exp_clutch(FLEXSEA_EXECUTE_1, CMD_WRITE, tmp_payload_xmit,

PAYLOAD_BUF_LEN, 0).

The tx_cmd_exp_clutch() function will fill the payload buffer with the fields specified in Figure

63.

80

Figure 63 Payload bytes

The payload will be framed by the data-link layer before it is ready to be transmitted.

4.1.2 Data-link Layer

To preserve data integrity, we cannot send raw bytes on the physical layer. The FlexSEA

communication software automatically adds a header and a footer, an indicator of the number

of bytes in the frame, a packet ID, a checksum to detect invalid data and escape characters19.

Figure 64 shows how the payload generated by the Application layer is packaged.

Figure 64 Packaged Payload

High values are used for the Header, Footer and Escape bytes to avoid confusion with the

command codes. The Sequence byte is used to keep track of the commands exchanged between

the boards and to detect missed packets20. At this point the command is ready to be transmitted

on any physical bus.

19 http://en.wikipedia.org/wiki/Escape_character
20 Not implemented in the current software release

81

4.1.3 Physical Layer

The system is designed to be compatible with any physical interface. Currently, we use a full-

duplex Serial Peripheral Interface21 (SPI) bus from the FlexSEA-Plan to one FlexSEA-Manage and

multi-drop RS-48522 busses from FlexSEA-Manage boards to FlexSEA-Execute boards. At this

level, the data is in the forms of bits and bytes, represented by varying electrical levels. In

software, all the data structures linked to the physical layer are named “tx_buffer” or “rx_buffer”

(with a suffix associated to the bus used). To send a command the user will copy a packaged

payload (generated by the Data Link layer) to the relevant transmission buffer.

4.1.4 Receiving commands

In the layers description the emphasis was on the transmission of commands. When bytes are

received by a physical communication interface the inverse sequence is done. First, either after

new data is received or on a fixed timing, the RX buffer is parsed by the unpack_payload()

function. That function searches for a header, then for a footer in the right position (the position

is calculated from the Bytes field that follows a valid header) and then for a valid checksum. Data

with a valid Header and Footer is known as properly framed. When a properly framed command

fails at the checksum test it is eliminated (buffer erased). If the checksum is valid it is copied to a

new buffer and the original version is erased to avoid double detection.

This new buffer containing the unpacked payload will be parsed by the payload_parse_str()

function. If the Receive ID belongs to another board the packet will be rioted to the appropriate

interface. If the packet belongs to the board that received it, it will be decoded by the appropriate

RX function (as determined by the P_CMD1 field).

21 http://en.wikipedia.org/wiki/Serial_Peripheral_Interface_Bus
22 http://en.wikipedia.org/wiki/Rs-485

82

4.1.5 Hierarchy

As mentioned before, to avoid data collisions and keep the communication protocol as simple as

possible a strict hierarchy is used. The Master always initiates the communication. Upon request,

a Slave will transmit data to its Master (a Reply message). In this convention, Execute is always a

Slave to manage, and Manage is a Slave to Plan.

There is no fundamental reason forcing us to keep the system hierarchical. With software

modifications two Execute could talk together, one acting as the Master and the other as the

Slave.

A set of files used by all the FlexSEA boards is available in the source /common/ sub-directory.

They contain all the communication stack. They are designed to be hardware agnostic; they can

be compiled with the three main projects (Plan, Manage and Execute).

4.1.6 Special Commands

To maximize the efficiency of the network communication one needs to minimize the overhead

(minimize the number of extra bytes required to send the information) and minimize the

computing requirements. Using many commands per communication string is an efficient way to

do so. The Special Commands are designed with efficiency in mind. Every project should define

one or more Special Command that supports only the required fields. Decoding a Special

Command is faster than decoding multiple commands sent back to back because only one parser

call has to be used.

4.2 FlexSEA-Execute

FlexSEA-Execute uses a PSoC 5LP system-on-chip controller as its main computing unit (refer to

section 3.1.1 for more details). The PSoC was chosen because its analog and digital

programmable blocks can be used to offload the main CPU from time consuming tasks, and to

83

minimize the number of external circuits required. Figure 28 is a good example of “analog

programming”.

4.2.1 Organization and timings

Timings are critical on the Execute board. Control loops have to be called at fixed intervals to

guarantee stability and some data conversion have timings dependant on other software

functions. One example is the Delta Sigma ADC used for the Strain Gauge Amplifier: its conversion

needs to be done when the I²C bus is in idle, otherwise the digital potentiometer are coupling

noise in the circuit.

With the compiler optimizations turned off and the Global Interrupt disabled, test code was

executed and an oscilloscope was used to measure the time it takes to call and execute some key

functions. The 3rd column uses a safety factor of 1.75 to take interrupts into account.

Table 11 Function timing benchmark - no optimizations

Function Time (µs) Time - ext. (µs)

motor_position_pid() 6,6 11,55

motor_impedance_encoder() 6,4 11,2

rgb_led_ui() 6,6 11,55

filter_adc() 5,16 9,03

strain_filter_dma() 2,84 4,97

unpack_payload_485_1() 17,48 30,59

motor_current_pid() 5,78 10,115

Sum: 50,86 89,005

The motor_current_pid() function, at 10µs (safety factor included), can be problematic. When

it’s called at 20kHz it consumes 20% of the computing power available. A manual optimization of

the function was done (minimized the number of function calls, unified the safety checks) and

84

the timing was reduced from 5.8 to 4.2µs. With the optimizations enabled and the use of an inline

function the execution time dropped to 1.42µs (2.8% of the computing budget).

A 100µs timer is used as the main time base. In the main while() loop, all the functions that are

not purely interrupt driven are called based on that timer.

Figure 65 Visual representation of the function timings

The following code details the time sharing strategy implemented. It allows functions to be

called at either 10kHz, 1kHz or 250Hz, with deterministic timings and constant offsets. The

t1_new_value and t1_time_share variables are controlled by a 100µs timer interrupt.

 if(t1_new_value == 1)

 {

 //If the time share slot changed we run the timing FSM.

 //Refer to timing.xlsx for more details. 't1_new_value'

 //updates at 10kHz, each slot at 1kHz.

 t1_new_value = 0;

 //Timing FSM:

 switch(t1_time_share)

 {

 //Case 0: I2C

 case 0:

 i2c_time_share++;

 i2c_time_share %= 4;

 #ifdef USE_I2C_INT

 //Subdivided in 4 slots.

 switch(i2c_time_share)

 {

 //Case 0.0: Accelerometer

 case 0:

 #ifdef USE_IMU

 get_accel_xyz();

 imu_last_request = IMU_RQ_ACCEL;

85

 #endif //USE_IMU

 break;

 //Case 0.1: Gyroscope

 case 1:

 #ifdef USE_IMU

 get_gyro_xyz();

 imu_last_request = IMU_RQ_GYRO;

 #endif //USE_IMU

 break;

 //Case 0.2: Safety-Cop

 case 2:

 safety_cop_get_status();

 break;

 //Case 0.3: Free

 case 3:

 //(can be the I2C RGB LED)

 break;

 default:

 break;

 }

 #endif //USE_I2C_INT

 break;

 //Case 1:

 case 1:

 break;

 //Case 2:

 case 2:

 break;

 //Case 3: Strain Gauge DelSig ADC, SAR ADC

 case 3:

 //Start a new conversion

 ADC_DelSig_1_StartConvert();

 //Filter the previous results

 strain_filter_dma();

 break;

86

At the end of this function, not shown in the code sample, is a section reserved for code that

needs to be executed every 100µs. It is called after one of the time slots.

4.2.2 BLDC Commutation

A four quadrant PWM commutation table is required to support bidirectional motor control with

regenerative currents. Figure 66 is part of “So, Which PWM Technique is Best?”23 by Texas

Instrument.

Figure 66 Unipolar 4-Quadrant PWMs - Texas Instruments

Table 12 was created from Figure 66. ‘A’ and ‘B’ are the intermediary signals, at the output of the

AND gates. The red text indicate a problem: this table sets steady-state high values on the high-

side MOSFETs. The gate drivers used on FlexSEA-Execute can’t support this. The two NOT gates

were moved from the high-side to the low-side to fix this problem, as presented in Table 13. A

test was made to confirm that the half-bridges are using complementary switching and that they

are never ON at the same time (shoot-through).

23 http://e2e.ti.com/blogs_/b/motordrivecontrol/archive/2012/03/29/so-which-pwm-technique-is-best-part-3

87

Table 12 Original 4Q Table

Table 13 Modified 4Q Table

This table has to be expanded for three phase brushless motors. The order of the phases is

determined by the Hall Effect sensors present in most research-grade brushless motors, such as

the Maxon EC-30 used in this experiment. The PSoC 5LP look-up table (LUT) component supports

a maximum of 5 inputs and 8 outputs. The 3 Hall sensors and the 2 PWM phases use all the inputs;

the Direction signal (to change from clockwise to counter-clockwise rotation) cannot be

integrated in the table. Table 14 shows the relation between the input signals and the output

signals. MUX0 and MUX1 are used for the analog multiplexer that controls the current sampling.

88

Table 14 4Q BLDC Commutation Table

Table 15 presents a second LUT, used to control the direction of the rotation.

Table 15 Hall Sensors & Direction

89

The complete system can be seen in Figure 67.

Figure 67 FlexSEA-Execute Motor Control (PSoC Diagram)

The look-up table is registered with the PWM edge to avoid transitions from happening in the

middle of a PWM cycle, when the Hall code is changed; in such an event the dead-time would

not apply. The 6 PWM outputs were connected to a logic analyzer while the motor was spinning

to confirm the validity of the table:

Figure 68 PWM signals - rotating BLDC motor

Brushless motors such as the Maxon EC-30 commonly used in wearable robotics have low

inductance and resistance (48V version, phase to phase: 65.3µH, 0.386Ω).

90

𝐼 =
1

𝐿
∫ 𝑉(𝑡)𝑑𝑡

𝑡

0

(Eq 14)

We can calculate the current rise per µs at 24V:

𝐼 =
1

65.3µ𝐻
∫ 24𝑉 ∗ 𝑑𝑡

1µ𝑠

0

= 850𝑚𝐴

(Eq 15)

Motor drivers typically use a 20kHz PWM, just above the audible spectrum. At 95% duty-cycle a

pulse is 47.5µs long, allowing the current to ramp-up by 40.375A. At 100kHz the PWM resolution

is reduced (from 12bits to 9.65bits) but the current rise is limited to a much safer value, 8A.

4.2.3 Current controller

The hardware implementation is presented in Figure 18 and Figure 67. The PWM2 output has a

rising edge in the middle of the PWM1 pulse that is used to start the ADC conversions, ensuring

that the sampling is done far from the transitions, and at a constant timing. The SAR ADC is

programmed to generate a DMA transfer every 5 samples (100kHz PWM, 20kHz DMA interrupt

rate). In the ISR, the last 5 samples are averaged and the current controller function is called.

//PI Current controller #2: speed optimized

//'wanted_curr' & 'measured_curr' are centered at zero and are in the

±CURRENT_SPAN range

//The sign of 'wanted_curr' will change the rotation direction, not the

polarity of the current (I have no control on this)

inline int32 motor_current_pid_2(int32 wanted_curr, int32 measured_curr)

{

 volatile int32 curr_p = 0, curr_i = 0;

 volatile int32 curr_pwm = 0;

 int32 sign = 0;

 int32 uint_wanted_curr = 0;

 int32 motor_current = 0;

 int32 shifted_measured_curr = 0;

91

 //Clip out of range values

 if(wanted_curr >= CURRENT_POS_LIMIT)

 wanted_curr = CURRENT_POS_LIMIT;

 if(wanted_curr <= CURRENT_NEG_LIMIT)

 wanted_curr = CURRENT_NEG_LIMIT;

 ctrl.current.setpoint_val = wanted_curr;

 //Sign extracted from wanted_curr:

 if(wanted_curr < 0)

 {

 sign = -1;

 MotorDirection_Control = 0;

 uint_wanted_curr = -wanted_curr;

 }

 else

 {

 sign = 1;

 MotorDirection_Control = 1;

 uint_wanted_curr = wanted_curr;

 }

 //At this point 'uint_wanted_curr' is always a positive value.

 //This is our setpoint.

 //From ADC value to motor current:

 shifted_measured_curr = measured_curr + CURRENT_ZERO;

 if(shifted_measured_curr <= CURRENT_ZERO)

 {

 //We are driving the motor (Q1 or Q3)

 motor_current = CURRENT_ZERO - shifted_measured_curr;

 }

 else

 {

 motor_current = shifted_measured_curr - CURRENT_ZERO;

 }

 //ToDo above code seems complex for no valid reason

92

 //At this point 'motor_current' is always a positive value.

 //This is our measured value.

 //Error and integral of errors:

 ctrl.current.error = uint_wanted_curr - motor_current;

 //Actual error

 ctrl.current.error_sum = ctrl.current.error_sum + ctrl.current.error;

 //Cumulative error

 //Saturate cumulative error

 if(ctrl.current.error_sum >= MAX_CUMULATIVE_ERROR)

 ctrl.current.error_sum = MAX_CUMULATIVE_ERROR;

 if(ctrl.current.error_sum <= -MAX_CUMULATIVE_ERROR)

 ctrl.current.error_sum = -MAX_CUMULATIVE_ERROR;

 //Proportional term

 curr_p = (int) (ctrl.current.gain.I_KP * ctrl.current.error) / 100;

 //Integral term

 curr_i = (int)(ctrl.current.gain.I_KI * ctrl.current.error_sum) / 100;

 //Add differential term here if needed

 //In both cases we divide by 100 to get a finer gain adjustement w/

 integer values.

 //Output

 curr_pwm = curr_p + curr_i;

 //Saturates PWM

 if(curr_pwm >= POS_PWM_LIMIT)

 curr_pwm = POS_PWM_LIMIT;

 if(curr_pwm <= 0) //Should not happen

 curr_pwm = 0;

 //Apply PWM

 //motor_open_speed_2(curr_pwm, sign);

 //Integrated to avoid a function call and a double saturation:

 //Write duty cycle to PWM module (avoiding double function calls)

93

 CY_SET_REG16(PWM_1_COMPARE1_LSB_PTR, (uint16)curr_pwm);

 //PWM_1_WriteCompare1((uint16)curr_pwm);

 CY_SET_REG16(PWM_1_COMPARE2_LSB_PTR, (uint16)(PWM2DC(curr_pwm)));

 //PWM_1_WriteCompare2((uint16)((curr_pwm >> 1) + 1));

 //Compare 2 can't be 0 or the ADC won't trigger

 return ctrl.current.error;

}

To avoid destroying expensive Maxon motors during the calibration phase a test bench was

designed and assembled. In the present configuration the phase to phase specs are 120µH and

0.4Ω. The power resistors are rated for 200W. The larger inductance makes it safer for the power

electronics under test. The current ripple will be half of the Maxon’s.

Figure 69 Load test bench, equivalent to a stalled Maxon brushless motor

Figure 70 is the result of a test session where the PID was hand-tuned to minimize the noise. The

setpoint was incremented by 50 for every sample and the current was measured with a Tektronix

A622 current probe.

94

Figure 70 Current PID setpoint versus measured phase current (kp = 50, ki = 50)

The sense resistor is 5mΩ, the analog gain is 20 and the ADC is 12bits over 5V. The theoretical

current resolution is 12.2mA/bit. With a setpoint of 500, the expected current is 6.1A and the

measured value is 5.94A. The absolute error is only 2.6% and the transfer function is extremely

linear.

The same controller, with the same gains, was tested on a Maxon EC-30. The mechanical noise

made by the spinning rotor covered the controller’s noise entirely.

4.2.4 Impedance controller

Figure 71 First implementation of an Impedance Controller (2014)

95

With all the compiler optimizations turned off, the motor_impedance_encoder() function takes

6.4µs to execute. It is called in the main while() loop at a 1kHz frequency.

4.2.5 Trapezoidal trajectory generation

Computer code that can generate trapezoidal speed profile trajectories has been developed in

Matlab and then translated in C. The code is optimized for integer mathematic and efficient real-

time execution. It now runs on the FlexSEA-Execute board and allows the end-user to command

smooth position changes.

Figure 72 Calculated trajectory: acceleration, speed and position over time

A proportional-integral controller has been designed to control the position of the prosthetics in

accordance with the calculated trajectory. Figure 73 shows the commanded position of a

prototype knee in one experiment (a series of trapezoidal trajectories with short plateaus):

96

Figure 73 Knee position over time

4.3 FlexSEA-Manage

As stated before, FlexSEA-Manage is a polyvalent circuit that can have a wide range of usages

depending on the system architecture. In the simplest system designs, such as in Figure 3, it will

act as a communication protocol translator (SPI <> RS-485) between Plan and Execute. While

most embedded computers have a serial port that could be used for RS-485 (with a driver), most

do not boast speeds above 230kBaud/s. Using Manage in that fashion is perfectly valid for simple

experimentations but it is not the most efficient strategy because in that scenario all the timings

are dependent on Plan (embedded computer that are not running a Real Time OS might not have

deterministic timings).

When multiple slaves are present Manage can be used to route packets in the network.

Manage can be programmed to Auto-sample its slaves. In that case, it will communicate with all

its slave at precise intervals and store their data in its memory. The communication with Plan can

be asynchronous.

Manage can also be used to add sensors to the system. In systems that do not require the

computing power of an embedded computer, Manage can host the high-level state machines.

97

4.4 FlexSEA-Plan

The FlexSEA-Plan software is written entirely in C to maximize portability and efficiency. Its main

features are:

 Can be cross-compiled for embedded computers or natively compiled for ease of

debugging.

 Supports the full FlexSEA-Network communication stack.

 Interfaces to the network via SPI (only when cross-compiled).

 Can be used as a terminal application.

 Can be interfaced with high-level code.

 Can display and log data in human-readable formats.

The Eclipse project is configured to offer 3 compilation options: Release – Single, Release –

Multiple and Debug. Debug uses the native GCC compiler to generate code that can be tested on

the host computer. All the SPI functions are disabled. Release – Single is used for C applications

and Release – Multiple is used to interface with other programming languages.

4.4.1 Displaying and logging data

In “Stream” mode, Plan will display sensor values on the terminal. The refresh rate is limited to

tens of Hertz by the time it takes to write data on the terminal (printing less data will allow a

faster refresh rate). Stream should only be used to test a system, not in a final application.

Figure 74 Streaming sensor values

98

Similar to “Stream”, “Log” will save data in a text file rather than displaying on the terminal. This

writing operation is much faster; speeds north of 500Hz can easily be obtained. Figure 75 is an

example of multiple sensors being logged at 500Hz.

Figure 75 Logging Data at 500Hz

4.4.2 High-level state machine in C

The following code example demonstrates all the functionalities of FlexSEA in one simple

example. The code comments guide the user through the configuration of a log file, the

initialization of the Execute board in Current Control mode, the writing and reading operations,

the data logging and displaying, etc.

//Demonstration/test code. Calling ./plan execute_1 shuobot will call this.

//Motor is placed in current control mode. Current will change periodically.

//When the encoder gets "out of limit" we reset it to 0.

//This code will both Stream and Log. Log will be slow because of Stream.

//The final application should log but not Stream.

static void shuobot_demo_1(void)

{

 unsigned int numb = 0;

 uint32_t cnt = 0;

 int16_t current = 0, open_spd = 0;

 uint8_t enc_rw = KEEP;

 int32_t enc_cnt = 0;

99

 uint32_t lines = 0, good = 0, tmp = 0;

 //Log file:

 //=========

 FILE *logfile;

 time_t t = time(NULL);

 struct tm tm = *localtime(&t);

 //File will be named with the date & time:

 char str[100];

 sprintf((char *)str, "log-%d-%d-%d-%d:%d:%d.txt", tm.tm_year + 1900,

tm.tm_mon + 1, tm.tm_mday, tm.tm_hour, tm.tm_min, tm.tm_sec);

 logfile = fopen(str, "w+");

 printf("Logfile created (%s)\n", str);

 //Initial configuration:

 //Controller = current

 numb = tx_cmd_ctrl_mode_write(FLEXSEA_EXECUTE_1, CTRL_CURRENT);

 send_cmd_slave();

 usleep(10000);

 //Gains (kp, ki, kd):

 numb = tx_cmd_ctrl_i_gains_write(FLEXSEA_EXECUTE_1, 10,10,0);

 send_cmd_slave();

 usleep(10000);

 //That code will run as long as you don't press on a key:

 while(!kbhit())

 {

 //Timed changes:

 cnt++;

 if(cnt > PERIOD)

 {

 //Time to change some parameters:

 cnt = 0;

 //Change the current setpoint

 current += CURRENT_STEP;

 if(current > MAX_CURRENT)

 current = 0;

 }

 //Reactive changes:

 if((exec1.encoder > MAX_ENC) || (exec1.encoder < -MAX_ENC))

 {

 //We are over the limit we specified => overwrite to 0

 enc_rw = CHANGE;

 enc_cnt = 0;

 }

 //Prepare the command:

 numb = tx_cmd_ctrl_special_1(FLEXSEA_EXECUTE_1, CMD_READ, payload_str,

PAYLOAD_BUF_LEN, \

 KEEP, 0, enc_rw, enc_cnt, current, open_spd);

 enc_rw = KEEP;

100

 //Communicate with the slave:

 send_cmd_slave();

 //Can we decode what we received?

 tmp = decode_spi_rx();

 lines++;

 good += tmp;

 //Enable these 2 lines to print ("Stream" mode):

 system("clear"); //Clear terminal

 flexsea_console_print_manage();

 //Log to file:

 fprintf(logfile, "[%d:%d],%i,%i,%i,%i,%i,%i,%i\n", tm.tm_min,

tm.tm_sec, \

 exec1.encoder, exec1.current,

exec1.imu.x, exec1.imu.y, exec1.imu.z, \

 exec1.strain, exec1.analog[0]);

 //==

 //<<< Your state machine would be here >>>

 //==

 //Delay

 usleep(10000); //Should be much shorter in a real application

 }

 //Close log file:

 fclose(logfile);

 printf("Logfile is named: %s\n", str);

 printf("\n%i lines (%i with valid data)\n", lines, good);

 printf("Log file closed. Exiting.\n\n\n");

}

4.4.3 Interfacing with higher level languages

To interface with languages other than C, the Release – Multiple compile option should be used.

In Single a new process is spawned for every FlexSEA command. In Multiple, the user can keep

feeding commands to the process (and get data back). As an example, here is Python code to

stream sensor values on a terminal:

#!/usr/bin/python

This code uses the "special1" command to demonstrate writing and

reading from an Excecute board from Linux, in Python. "special1" is

the special command used by the ShuoBot Exoskeleton.

It displays a few sensor values on the terminal.

import time, math, random, subprocess, traceback

from subprocess import Popen, PIPE

101

import pty

import os

==

Based on:

State Machine, v1 8/8/14, E J Rouse, J F Duval

Modified for BBB from original versino on RPi

See Rouse et al. 2014, IJRR, Clutchable series-elastic actuator:

implications for prosthetic knee design

==

#from DataLogger import dataLogger

data = []

==

Initializations

master, slave = pty.openpty()

cproc = Popen(["./planm"], stdin=subprocess.PIPE, stdout=slave)

stdin_handle = cproc.stdin

stdout_handle = os.fdopen(master)

Setup data output filename -- Data are saved on state machine exit

trial_num = int(raw_input('Trial Number? '))

filename = 'Test%i_03132015' % trial_num

#dl = dataLogger(filename + '.txt')

print 'starting...'

t0 = time.time()

i = 0.0

while True:

 try:

 #

===

 # Data acquisition and manipulation

 i = i + 1

 t1 = time.time() - t0

 stdin_handle.write("execute_1 special1 0 0 0 0 0 0\n")

 cout = stdout_handle.readline() #

Receiving values

 cout = cout.replace("[", "") # Remove

brackets for parsing data

 cout = cout.replace("]", "")

 vals = cout.split(',')

 #Parse values:

 encoder = int(vals[0])

 current = int(vals[1])

 imu_x = int(vals[2])

 imu_y = int(vals[3])

 imu_z = int(vals[4])

102

 strain = int(vals[5])

 angle = int(vals[6])

 #Display:

 os.system('clear')

 print "Encoder: %d" % encoder

 print "Current: %d" % current

 print "IMU Gyro x: %d" % imu_x

 print "IMU Gyro y: %d" % imu_y

 print "IMU Gyro z: %d" % imu_z

 print "Strain: %d" % strain

 print "Angle: %d" % angle

 #Delay

 time.sleep(0.01) #10ms

 except KeyboardInterrupt:

 print 'State machine stopped by user.'

 break

 except Exception as e:

 print 'Unexpected exception...'

 print traceback.format_exc()

 print 'Unhandled exception in main loop:', e

time.sleep(.1)

print "Iterations: %.2f " % (i)

print "Elapsed Time: %.2f " % (time.time()-t0)

stdin_handle.write("quit\n")

Save data

#dl.writeOut()

Figure 76 Streaming Data in Python

4.5 Future Work

As mentioned earlier, the FlexSEA software is a work in progress; it will never be completed. Each

new wearable robot design will have its own challenges and requirements. Users will add new

Special Commands, new signal processing algorithms, etc. The next paragraphs describe 3 ideas

that could improve the system, independent of the use case.

103

Network Bootloader: The three boards are programmed with different development

environments and tools. Changing software from the Common Code folder (communication

stack) requires that all the boards be reprogrammed to support the new commands. As more

and more degrees of freedom are added this task becomes time consuming. A network

bootloader would allow the user to reprogram all the boards in one simple operation.

Graphical User Interface (GUI): The Stream and Log tools allow data visualization and collection

but they are limited to raw text. Adding a GUI that can plot variables over time would be useful

for debugging. Being able to send FlexSEA commands with a few mouse clicks could also simplify

a new user’s life.

Embedded computer – coprocessors: The TI Sitara processor used on the BeagleBone Black has

two PRU that could be used to synchronize processes and manage communication. A user-space

driver needs to be written.

104

5 Unit tests

5.1 FlexSEA-Execute

5.1.1 Motor Half-Bridge Load test

FlexSEA-Execute 0.1 was attached to its heat sink (6061 aluminum, black anodization, 5.14cm³)

with 5 M2x4 screws. A TFLEX 220V0 0.508mm silicone elastomer thermal transfer pad24 was

placed between the PCB and the aluminum heat sink. The load was a BK 8500 programmable DC

load (120V/30A/300W) connected to phases A and B. The power was coming from a 40V 15A

Kepco linear power supply.

Temperature was measured with the onboard bridge temperature sensor (Microchip

MCP9700A). Its output was read on a Tektronix MDO3024 mixed domain oscilloscope as an

analog voltage.

𝑉𝑂𝑈𝑇 = 𝑇𝐶 ∗ 𝑇𝐴 + 𝑉0°𝐶

(Eq 16)

Where TC = 10mV/°C and V0°C = 500mV.

𝑇𝐴 = (𝑉𝑂𝑈𝑇 − 𝑉0°𝐶) 𝑇𝐶 = (𝑉𝑂𝑈𝑇 − 0.5𝑉)/10𝑚𝑉⁄

(Eq 17)

The initial temperature, after the circuit was powered for a few minutes and before the load was

applied, was 30°C.

24 It was noted during the assembly that the PCB was bowing due to the thickness of the transfer pad. Better options,
such as the TPCM 585 (0.127mm, 0.02°C/W, phase change) were used after this test was completed.

105

Figure 77 Experimental setup

A PWM duty cycle of 90% was used for the test. The circuit was powered at 24V. The programmed

resistive load started at 10Ω (0.9(V2/R) = 51.84W). The temperature was constantly monitored

and the load was reduced every few minutes, when the temperature had stabilized. After 5

minutes at 5Ω, the temperature was 35°C. The lowest resistance tested at 24V was 2.5Ω (pulses

of 9.6A 230W, average of 207W). After 7 minutes with that load (and a total of 15 minutes with

varying loads) the temperature was stable at 50.6°C.

The BK 8500 has a power limit of 300W; the maximum current at 24V is 12.5A. To maximize the

amount of heat generated the voltage was lowered to 15V and the load resistance decreased

enough to reach the 15A limit of both the power supply and the programmable load. After 6

minutes (and a total of 25 minutes with varying loads) the temperature was stable at 61.7°C and

the experiment was stopped.

This test confirmed that the FlexSEA-Execute 0.1 circuit can be used, with a minimalist heat sink

and no forced-airflow, for steady loads up to 15A/225W with a safe margin of more than 20°C

before the temperature rating of some semiconductors present on the circuit is reached. Due to

the absence of more powerful test equipment a 20A test was not conducted. Modelling the

106

thermal properties of the assembly will be done in the future. It is safe to assume that with some

precautions the circuit can be used at 20A, the first one being the use of a better thermal transfer

pad.

5.1.2 Strain Gauge Amplifier Force Calibration

The same amplification circuit was used on another Biomechatronics project, the FitSocket.

Figure 78 shows a force calibration test. A brushed DC motor (20kHz PWM) is compressing a

linear spring and the resulting force is measured with the strain gauge.

Figure 78 Force calibration test on the FitSocket

5.1.3 Power Supplies

5.1.3.1 Preliminary qualification

Upon reception of the first assembled FlexSEA-Execute 0.1 boards a global power supply test was

made. A lab power supply was connected to +VB, with a current limit of 100mA and an initial

voltage of 0V. The voltage was ramped-up slowly while voltage measurements were taken with

107

a Fluke 189 digital multimeter. The microcontrollers were not programmed and nothing was

connected to the Expansion connector. Table 16 summarizes the results.

Table 16 Preliminary power supply test

+VB (V) +VG (V) +5V (V) +3V3 (V) Comments

5.000 0.128 0.131 0.310 VB LED slightly ON

7.020 5.483 4.945 3.379 All the LEDs turned ON shortly after 6V

10.010 7.585 4.944 3.378

15.030 9.906 4.944 3.378

25.090 9.915 4.944 3.378 All the LEDs are ON, equal brightness

5.1.3.2 10V SMPS Load Testing

Figure 79 500mA load, DC 2V/div

108

Figure 80 500mA load, AC 20mV/div

Figure 81 Load testing with constant current

During the experiment the PTC did not trip open; the current limit kicked in before. It introduces

significant load regulation:

𝐿𝑜𝑎𝑑 𝑟𝑒𝑔𝑢𝑙𝑎𝑡𝑖𝑜𝑛 = 100%
𝑉𝑀𝐼𝑁−𝐿𝑂𝐴𝐷 − 𝑉𝑀𝐴𝑋−𝐿𝑂𝐴𝐷

𝑉𝑀𝐴𝑋−𝐿𝑂𝐴𝐷
= 100%

9.834𝑉 − 8.991𝑉

8.991𝑉
= 9.38%

(Eq 18)

109

The next design will use a less resistive PTC.

5.1.3.3 5V SMPS Load Testing

Figure 82 500mA load, DC 1V/div

Figure 83 500mA load, AC 20mV/div

110

Figure 84 Load testing, constant current

𝐿𝑜𝑎𝑑 𝑟𝑒𝑔𝑢𝑙𝑎𝑡𝑖𝑜𝑛 = 100%
𝑉𝑀𝐼𝑁−𝐿𝑂𝐴𝐷 − 𝑉𝑀𝐴𝑋−𝐿𝑂𝐴𝐷

𝑉𝑀𝐴𝑋−𝐿𝑂𝐴𝐷
= 100%

4.865𝑉 − 4.317𝑉

4.317𝑉
= 12.69%

(Eq 19)

Same conclusion as for the 10V power supply, the PTC is too resistive. A conservative specification

for peripherals attached to the Expansion connector will be 200mA at 5V.

5.1.4 Safety Features

Safety code such as the over-temperature protection and the battery disconnection detection

runs on the Safety-Cop MCU. Special test code was used in the main while() loop to test the limits

of the system. Due to the limited number of IOs available the ELED (Error LED) output was used

as the output flag signal. For all the analog measurements (temperature and voltages) Channel 4

(Green) is connected to ELED while Channel 2 (Blue) is connected to parameter being measured.

5.1.4.1 Watchdog Clock

As explained in “Section 3.1.2 PSoC 4 Safety Co-Processor” a digital clock line links the two

microcontrollers. The PSoC 5 is in charge of generating the clock and the PSoC 4 (Safety-CoP)

measures the time between transitions. If the code hangs in an interrupt or in a function the

WDCLK line won’t toggle quickly enough, a sign that the software is not behaving as expected

and that safety actions need to be taken.

111

The pulse-width measurement is done in hardware, as detailed on Figure 85.

Figure 85 Watchdog Clock Pulse-Width Measurement

The Edge Detector detects both edges and is synchronized by a 100kHz clock. Control_Reg_1 is

software controlled. It is programmed with a value of 150 to measure a maximum pulse-width of

1.5ms (667Hz).

Special test code was used on the PSoC 5 to test the limit:

void wdclk_test_blocking(void)
{
 uint8 toggle_wdclk = 0;

 while(1)
 {
 toggle_wdclk ^= 1;
 WDCLK_Write(toggle_wdclk);
 CyDelayUs(1200);
 }
}

The CyDelayUs function is imprecise; the actual delay was always longer than programmed. It

was increased up to the point where the software would detect a problem (programmed value

of 1200µs, measured value of 1485µs). During normal operation, the worst-case WDCLK period

measured was 10µs. Every time the PSoC 5 is being programmed the PSoC 4 goes into error

mode, confirming that non-functional software will trigger a safety mechanism.

112

5.1.4.2 Over-temperature

Test code:

//Test code - temperature
if(err_temp == T_NORMAL)

ELED_Write(0);

else if (err_temp == T_WARNING)
{

togg_eled ^= 1;
ELED_Write(togg_eled);

}
else

ELED_Write(1);

T_WARNING is 75°C and T_ERROR is 80°C. Heat was applied directly on the temperature sensor

with a Weller 160W soldering iron. ELED will be low when the temperature is under the 2

thresholds, alternating between digital values of 0 and 1 between 75 and 80°C and will be high

when above 80°C.

Figure 86 Over-temperature detection

113

The analog signal started at 830mV (33°C) and reached 1.33V (83°C). The temperature conversion

function was using a moving average of the last 1.28s, which explains the detection lag. The

averaging was lowered to 640ms after this experiment.

5.1.4.3 +VB Voltage Range

Test code:

//Test code - +VB
if(err_v_vb == V_NORMAL)

ELED_Write(0);
else if (err_v_vb == V_LOW)
{

togg_eled ^= 1;
ELED_Write(togg_eled);

}
else

ELED_Write(1);

V_LOW is 15V and V_HIGH is 28V. The power supply voltage was manually adjusted, starting with

a voltage in range (but close to the lower limit), dropping below V_LOW then going above

V_HIGH. ELED will be low when the voltage is between the 2 limits, alternating between digital

values of 0 and 1 below V_LOW and will be high when above V_HIGH.

114

Figure 87 +VB Voltage in Range detection code

5.1.4.4 Disconnected Battery

While using a fixed voltage threshold to detect an out of range +VB works, this technique cannot

be used to detect a disconnected battery. The battery voltage will change over time and it is

extremely important to detect the disconnection while the +VB voltage is as high as possible to

maximize the time available to place the circuit in a safe mode. +VB is sampled every 10ms and

a moving average of the last 1024 samples is calculated (10.24s). If the last sample is lower than

81.25% of the average value, the code interprets this as a disconnected battery.

In the test code, the ELED output is high when the battery is “disconnected” (simulated with a

sudden voltage drop).

115

Figure 88 Disconnected Battery Detection Code

The circuit was initially powered at 19V (calculated threshold of 15.44V). The disconnected

battery flag was raised at 77.8% of the average, close to the calculated 81.25%.

5.2 FlexSEA-Manage

5.2.1 Level shifting – FlexSEA-Plan and FlexSEA-Manage Interface

In the current application both sides of the level translator are powered at 3.3V. To confirm that

it is functional a simple SPI packet was sent from the Plan board (BeagleBone Black). In yellow is

the MOSI line and in blue is MISO, confirming that data is properly exchanged between the two

processors.

116

Figure 89 SPI signals, Plan side of the level translator

5.2.1.1 Analog Inputs With Programmable Features

To test the two filtering options a 1kHz 0-3.3V sine wave was applied to AIN0. FC0 was changed

by software every 100ms:

117

Figure 90 Testing the variable frequency filter

With the same test signal (1kHz 0-3.3V sine wave) applied to AIN2, simple test code was used to

increment the gain by 10 (out of 256) every 10ms:

Figure 91 Testing the programmable gain

118

The “1<G<10” spec was calculated with G = 1 + (RU3B/R9), assuming that RU3B could take a value

of 0. In practice, the lowest resistance is the wiper’s resistance. While the typical value is 75 ohms

it can go as high as 300 ohm. R9 is a 1% resistor.

𝐺𝑀𝐼𝑁 = 1 +
𝑅𝑈3𝐵−𝑀𝐼𝑁

𝑅9−𝑀𝐼𝑁
⁄ = 1 + 300Ω

990Ω⁄ = 1.303

(Eq 20)

The minimum gain measured on the Manage 0.1 boards was 1.21. For application requiring a lot

of precision a calibration will be required.

5.2.2 Power Multiplexer and Linear Regulator Load Test

FlexSEA-Manage was powered from its Plan connector (+5VP), at 5V. The voltage was measured

after the TPS2111, on the +5V net, with a Tektronix MDO3024 oscilloscope. The STM32F4 was

running application code. A BK 8500 programmable load was connected in parallel to the circuit.

In all the tables below, the current is the current programmed on the load, not the true total

current (total current is higher than the load current because of the current used by the circuit).

After the +5V multiplexer was tested, the programmable load was connected to +3V3. Again, the

circuit was not disconnected; the current is higher than what’s displayed.

119

Figure 92 Load testing

The TPS1111 has a current limit of 1A. Its output was dropping around 900mA in the test,

consistent with the datasheet when the current consumed in the circuit is taken into account.

The +5V signal was dropping before the +3V3 limit was reached.

A conservative specification for peripherals attached to the Expansion connector will be 500mA

at 3.3V.

120

Figure 93 Automatic switching of the input power source

The lowest +5V voltage measured was 4.6V, close to the calculated value of 4.8V. The +3V3 signal

is unaffected by the input power source transition.

5.3 System Benchmarks

5.3.1 SPI Frequency and Data Rate

Criteria: “All serial interfaces (SPI and RS-485) should have a minimum bitrate of 2MBits/s”

FlexSEA-Plan is the SPI Master; it generates the clock. Without any termination resistors the

highest value that was successfully tested (using the Stream application and test equipment) was

12Mbits/s, as shown on Figure 94. This is 6x the criteria.

121

Figure 94 SPI Data Rate (83ns = 12Mbits/s)

For typical application (and for the other benchmarks) the more conservative value of 6Mbits/s

was used.

5.3.2 Communication – Plan & Execute

Criteria: “Plan can send or receive a minimum of 1000 communication packets of a minimum of

20 bytes each from Execute (160kbits/s for pure writing, 320kbits/s for half-duplex read/write)”.

The following test code was used on Plan:

//Plan <> Manage Communication
void test_code_plan_manage_comm(void)
{
 printf("Plan <> Manage Communication Speed Test Code\n");

 while(!kbhit())
 {

122

 //Prepare the command:
 tx_cmd_switch(FLEXSEA_MANAGE_1, CMD_READ, payload_str,

 PAYLOAD_BUF_LEN);

 //Communicate with the slave:
 send_cmd_slave();

 //Delay

 usleep(100);
 }
}

usleep() is based on cycles and is therefore not accurate. The actual delay measured is 460µs, not

100. Figure 95 and Figure 96 were captured with a Saleae Logic Logic16 USB logic analyzer

connected to the SPI port linking Plan (BeagleBone Black) and Manage 0.1.

Figure 95 Communication - Plan & Execute (2 packets)

Figure 96 Communication - Plan & Execute (zoom on the 1st packet)

The refresh rate is 1.68kHz (68% above the criteria). For every transaction 48 bytes are sent and

received (full-duplex: 96 bytes), for an effective half-duplex data rate of 645kbits/s (4x the

criteria). The full-duplex data rate is 1.3Mbits/s. As can be seen on the screen captures, the

communication (at 6Mbits/s, half the maximum value tested) takes only 22.5% of the time

available. It is expected that, in future experiments, this data rate can easily be quadrupled.

123

A second design evaluation criteria linked to the communication between FlexSEA-Plan and

FlexSEA-Execute was to support two Execute boards, 1kHz sampling and 20 bytes per FlexSEA-

Execute. A test setup was made with 1 FlexSEA-Plan, 1 FlexSEA-Manage and 2 FlexSEA-Execute

(one per RS-485 bus). FlexSEA-Manage was auto-sampling its two slave every millisecond,

exchanging 96 bytes per board (48 bytes transmitted, 48 bytes received), for a total of 768kbits/s.

A special command that included the payload from both FlexSEA-Execute boards was used to

read/write from FlexSEA-Plan to FlexSEA-Manage. That way, a single command had to be sent

every millisecond, even though two circuits were controlled. The command used had 48 bytes

and was full-duplex, for a data rate of 768kbits/s.

5.3.3 Communication – Manage & Execute

Criteria: “Both RS-485 serial interfaces should have a minimum bitrate of 2MBits/s”.

The baud rate calculation is details in Section 3.1.4 RS-485. A value of 2Mbits/s is expected. On

FlexSEA-Plan, the tx_cmd_ctrl_special_1() command was used. FlexSEA-Execute replies to

FlexSEA-Manage with a fixed length of 36 bytes. An MDO3024 oscilloscope was used to probe

the receive line of FlexSEA-Manage’s RS-485 transceiver (reading the values sent by Execute

when it replies). Figure 97 and Figure 98 show two different measurements made to confirm the

2Mbits/s.

124

Figure 97 RS-485 Data, 48 bytes

173µs / (36 bytes * 10 bits/character) = 2.08Mbits/s. To confirm, one bit mas measured:

Figure 98 RS-485 Data, zooming on 1 bit

125

1/520ns = 1.92Mbits/s. The RS-485 bus has the expected baud rate. The two busses present on

FlexSEA-Manage have the same timings.

5.3.4 Data Logging

Criteria: “Record sensor values in a human readable text files. A minimum of 8 bytes of data can

be logged at least every 10ms (100Hz) (6.4kbits/s).”

Test code used:

void flexsea_console_datalogger(uint8_t slaveid, uint8_t offs)

{

 unsigned int numb = 0;

 uint32_t tmp = 0, lines = 0, good = 0;

 //Clear terminal:

 system("clear");

 printf("[FlexSEA-Plan Datalogging]\n");

 printf("==========================\n\n");

 //Log file:

 //=========

 FILE *logfile;

 time_t t = time(NULL);

 struct tm tm = *localtime(&t);

 //File will be named with the date & time:

 char str[100];

 sprintf((char *)str, "log-%d-%d-%d-%d:%d:%d.txt", tm.tm_year + 1900,

 tm.tm_mon + 1, tm.tm_mday, tm.tm_hour, tm.tm_min, tm.tm_sec);

 logfile = fopen(str, "w+");

 printf("Logfile created (%s)\n", str);

 printf("\nPress any key to exit...\n\n");

 while(!kbhit())

 {

 numb = tx_cmd_ctrl_special_1(FLEXSEA_EXECUTE_1, CMD_READ,

 payload_str, PAYLOAD_BUF_LEN, \

 KEEP, 0, KEEP, 0, 77, 0);

 numb = comm_gen_str(payload_str, PAYLOAD_BUF_LEN);

 numb = COMM_STR_BUF_LEN;

 flexsea_spi_transmit(numb, comm_str, 0);

 //Can we decode what we received?

 tmp = decode_spi_rx();

 lines++;

 good += tmp;

 //Log to file:

126

 t = time(NULL);

 tm = *localtime(&t);

 fprintf(logfile, "[%d:%d],%i,%i,%i,%i,%i,%i,%i\n", tm.tm_min,\

 tm.tm_sec, exec1.encoder, exec1.current,\

exec1.imu.x,exec1.imu.y, exec1.imu.z, \

 exec1.strain, exec1.analog[0]);

 //Delay 500us

 usleep(500);

 }

 //Close log file:

 fclose(logfile);

 //printf("\n%i lines (%i with valid data)\n", lines, good);

 t = time(NULL);

 tm = *localtime(&t);

 printf("\n%i lines logged\n", lines);

 printf("Log file closed (%d-%d-%d-%d:%d:%d) . Exiting.\n\n\n", tm.tm_year

+ 1900, tm.tm_mon + 1, tm.tm_mday, tm.tm_hour, tm.tm_min, tm.tm_sec);

}

When the CMD_SPECIAL_1 command is received it stores 16 bytes:

exec_s_ptr->imu.x = (int16_t) (BYTES_TO_UINT16(buf[CP_DATA1+0],

buf[CP_DATA1+1]));

exec_s_ptr->imu.y = (int16_t) (BYTES_TO_UINT16(buf[CP_DATA1+2],

buf[CP_DATA1+3]));

exec_s_ptr->imu.z = (int16_t) (BYTES_TO_UINT16(buf[CP_DATA1+4],

buf[CP_DATA1+5]));

exec_s_ptr->strain = (BYTES_TO_UINT16(buf[CP_DATA1+6], buf[CP_DATA1+7]));

exec_s_ptr->analog[0] = (BYTES_TO_UINT16(buf[CP_DATA1+8], buf[CP_DATA1+9]));

exec_s_ptr->encoder = (int32_t) (BYTES_TO_UINT32(buf[CP_DATA1+10],

buf[CP_DATA1+11], buf[CP_DATA1+12],

buf[CP_DATA1+13]));

exec_s_ptr->current = (int16_t) (BYTES_TO_UINT16(buf[CP_DATA1+14],

buf[CP_DATA1+15]));

127

Figure 99 Data logging with the "Log" application

Figure 99 shows the “Log” interface on the left and the log file on the right. The date and time

are not adjusted on the Plan board, but they can be used differentially. 57 – 39 = 18 seconds.

13844 lines in 18 seconds is 769Hz. Each line stores the equivalent of 16 bytes for a total of

98kbits/s, 15x higher than the criteria.

128

6 Application/test cases

6.1 Clutched Series Elastic (CSEA) Knee

The original electronics of the MIT CSEA Knee

[2][11] was replaced by an early prototype of

FlexSEA in 2014. The main goal was to test the

electronics and prepare the knee for future

experiments. In 2015, the latest generation

FlexSEA was integrated in the knee. It has

been used as a demonstration project and as

a test bench for control algorithms such as the

impedance controller.

The system has one degree of freedom and

uses all 3 FlexSEA boards.

Inputs:

 Incremental encoder

 Hall effect

 Analog angle sensor

 Analog force sensor

Outputs:

 I²C RGB LED

 Clutch

 Maxon EC-30 Brushless DC Motor

Figure 100 CSEA Knee with FlexSEA

129

The FlexSEA-Plan board runs a Python state-machine that interfaces with the FlexSEA C software.

The impedance loop is closed on FlexSEA-Execute at 1kHz. The Python algorithms are simple

enough that they could run on the FlexSEA-Manage board; a convenient feature for a future

version of this project.

6.2 Autonomous Exoskeleton

A 2 DOF system, such as the one presented in Figure 4, was used for a dual leg autonomous

exoskeleton developed at the MIT Media Lab Biomechatronics Group, an extension of the work

presented in [19].

Inputs:

 Incremental encoder

 Hall effect

 Analog angle sensor (potentiometer)

 Strain gauge-based torque sensor

 Motor current sensing

Output:

 Maxon EC-30 Brushless DC Motor

The embedded computer is used for the high-

level controller and for datalogging. The control

code does not require the processing power of

this embedded computer; as soon as the

algorithms are stable they should be

programmed on the Execute board. This will

simplify the wiring and reduce the system complexity.

Figure 101 Student wearing an early prototype of the dual

autonomous exoskeleton

130

7 Evaluation and Results

7.1 Evaluation Criteria (legacy)

In November 2014 the following list of design criteria was proposed and accepted. Most elements

lack details and are, as stated, hard to evaluate. This list is included in the interest of full

disclosure. An updated list of criteria is available in Section 7.2.

 Users can read sensors and control actuators in C and in Python.

 The system can be used without the Plan board by executing code on Manage.

 A new user can unbox a FlexSEA kit and

o control a motor from Linux in less than one working day (8h)

o read a sensor from Linux in less than one working day (8h)

 The Execute board can run an impedance loop at more than 1kHz, without being

connected to any other board.

 The Plan board can communicate with an Execute board at a minimum of 2MBits/s,

through a Manage board.

 The Manage board can connect to a minimum of two Execute boards with a data rate of

at least 2MBits/s per board.

 The Execute board will default to a shorted-leads protection in a hazardous situation

(tested by disconnecting the main battery)

7.2 Evaluation Criteria

The criteria presented in Section 7.1 have been sub-divided to ease the evaluation process.

Whenever possible, quantifiable objectives have been set. Section 7.3 summarizes the results in

one table.

1. Users can read sensors and control actuators in Linux. Software will be provided to:

a. Display live sensor values on a terminal/computer screen. (Section 4.4.1)

131

b. Record sensor values in a human readable text files. A minimum of 8 bytes of

data can be logged at least every 10ms (100Hz) (6.4kbits/s). (Section 5.3.4)

c. Demonstrate a high-level controller in C. (Section 4.4.2)

d. Demonstrate how to use FlexSEA in Python (Python calling the C program).

(Section 4.4.2)

2. The system can be used without the Plan board by executing code on Manage.

3. A new user can unbox a FlexSEA kit (1 Plan, 1 Manage, 1 Execute) and, using only the

provided documentation and tools, can read one sensor and control one actuator from

Linux in less than two business days (16h) (Sections 10.4 and 10.5)

4. The Execute board can run an impedance loop at more than 1kHz, without being

connected to any other board. (Section 0)

5. The Plan board can communicate with an Execute board through a Manage board.

a. All serial interfaces (SPI and RS-485) should have a minimum bitrate of 2Mbits/s

(Sections 5.3.1 & 5.3.2)

b. Plan can send or receive a minimum of 1000 communication packets of a

minimum of 20 bytes each from Execute (160kbits/s for pure writing, 320kbits/s

for half-duplex read/write) (Section 5.3.2)

6. The Manage board can connect to more than one Execute board.

a. Minimum of two Execute boards.

b. Both RS-485 serial interfaces should have a minimum bitrate of 2Mbits/s

(Section 5.3.3)

7. Plan can be connected to one Manage and two Execute, and send or receive a minimum

of 1000 communication packets of a minimum of 20 bytes each from each Execute (total

of 320kbits/s for pure writing, 640kbits/s for half-duplex read/write) (Section 5.3.2)

8. The Execute board will default to a shorted-leads protection in a hazardous situation

such as:

a. Microcontroller doesn't execute code or exhibits significant delays. (See 5.1.4.1)

b. Over temperature (warning at 75°C, error at 80°C) (See 5.1.4.2)

c. Battery voltage out of range (See 5.1.4.3)

132

d. Disconnected battery (See 5.1.4.4)

7.3 Results

Table 17 shows a summary of the results, associated with the design criteria described in the
previous section.

Table 17 Summary of Results

Criteria Metric/Goal Measured Status Details

1 - - Pass

 a Pass/Fail - Pass Section 4.4.1

 b 100Hz, 6.4kbits/s 769Hz, 98kbits/s Exceeded Section 5.3.4

 c Pass/Fail - Pass Section 4.4.2

 d Pass/Fail - Pass Section 4.4.2

2 Pass/Fail - Pass

3 Under 16h 2h35 Exceeded Sections 10.4 and 10.5

4 1kHz 1kHz Pass Section 0

5 - - Pass

 a 2Mbits/s, 2Mbits/s 12Mbits/s, 2Mbits/s Exceeded Sections 5.3.1 & 5.3.2

 b 320kbits/s 1.3Mbits/s Exceeded Section 5.3.2

6 - - Pass

 a 2 4 Exceeded

 b 2Mbits/s 2Mbits/s Pass Section 5.3.3

7 640kbits/s 768kbits/s Exceeded

8 - - Incomplete

 a Pass/Fail - Pass See 5.1.4.1

 b Pass/Fail - Pass See 5.1.4.2

 c Pass/Fail - Pass See 5.1.4.3

 d Pass/Fail - Pass See 5.1.4.4

133

“The Execute board will default to a shorted-leads protection in a hazardous situation” (criteria

#8) is the only incomplete criteria. While all the detection circuits and software were tested

functional, the overarching safety code could not be developed in time to be documented in this

thesis. All the other evaluation criteria specifications were met or surpassed.

134

8 Conclusion

Over the last 20 months, the idea of developing a new embedded system tailored to the specific

needs of researchers in the fields of wearable robots, such as advanced prostheses and

exoskeletons, evolved from a napkin sketch to a fully functional kit of electronics boards and

software. Past design attempts were analyzed, key actors were questioned and technology was

surveyed with one goal: unifying all the requirements in one simple to use yet powerful system.

To outlive this thesis, the FlexSEA system needed to be adaptable to a wide variety of project and

scalable both in terms of the number of modules, sensors and actuators, and in terms of

modularity and ease of accommodation of future technologies and changing needs. It is believed

that the design was brought to a sufficient level of completion to be used as a tool, as a product,

and not just as a prototype. FlexSEA is integrated in two current research projects and will soon

be integrated in two other devices. Only the future will tell if this redesign of the wheel will fasten

the development of revolutionary prosthetic limbs, but the preliminary results show great

promises.

135

9 References

[1] F. Sup, H. Atakan Varol, J. Mitchell, T. J. Withrow, M. Goldfarb, “Preliminary Evaluations of a

Self-Contained Anthropomorphic Transfemoral Prosthesis”, IEEE/ASME TRANSACTIONS ON

MECHATRONICS, VOL. 14, NO. 6, DECEMBER 2009

[2] E. J. Rouse, L. M. Mooney, E. C. Martinez-Villalpando, H. Herr, “Clutchable Series-Elastic

Actuator: Design of a Robotic Knee Prosthesis for Minimum Energy Consumption”, 2013

IEEE International Conference on Rehabilitation Robotics

[3] S. Hodges, N. Villar, J. Scott, A. Schmidt, “A New Era for Ubicomp Development”, IEEE

Pervasice Computing, Vol. 11 Issue 1, January-March 2012

[4] Y. A. Badamasi, “The Working Principle Of An Arduino”, 11th International Conference on

Electronics, Computer and Computation (ICECCO), 2014, Abuja

[5] A. Y. Benbasat, S. J. Morris, J. A. Paradiso, “A Wireless Modular Sensor Architecture and its

Application in On-Shoe Gait Analysis”, IEEE Sensors Conference, Toronto, Canada, October

22-24 2003

[6] Y. Meng, K. Johnson, B. Simms, M. Conforth, “A generic architecture of modular embedded

system for miniature mobile robots”, 2008 IEEE/RSJ International Conference on Intelligent

Robots and Systems, Nice, France, Sept, 22-26, 2008

[7] A. Ö. Nursal, “Modular embedded system design for mechatronic education”, 2010

IEEE/ASME international conference on mechatronic and embedded systems and

applications, Qingdao, ShanDong, 15-17 July 2010

[8] R. J. Mitchell, J. B. Grimbleby, R. J. Loader, C. Kambhampati, “Modular embedded system for

teaching real-time control”, International Conference on Control, Coventry, UK, 21-24 March

1994

[9] M. A. Rosly, Z. Samad, M. F. Shaari, “Feasibility Studies of Arduino Microcontroller Usage for

IPMC Actuator Control”, 2014 IEEE International Conference on Control System, Computing

and Engineering, 28 - 30 November 2014, Penang, Malaysia

[10] G. A. Pratt, M. M. Williamson, “Series Elastic Actuators”, MIT Artificial Intelligence

Laboratory and Laboratory for Computer Science, 1995

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6975730
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6975730

136

[11] E. J. Rouse, L. M. Mooney and H. M. Herr, “Clutchable series-elastic actuator: Implications for

prosthetic knee design”, The International Journal of Robotics Research, 9 October 2014

[12] A. Harris, K. Katyal, M. Para, J. Thomas, “Revolutionizing Prosthetics Software Technology”,

2011 IEEE International Conference on Systems, Man, and Cybernetics (SMC), 9-12 Oct. 2011

[13] M. Grebenstein, A. Albu-Schaffer, T. Bahls, M. Chalon, O. Eiberger, W. Friedl, R. Gruber, S.

Haddadin, U. Hagn, R. Haslinger, H. Hoppner, S. Jorg, M. Nickl, A. Nothhelfer, F. Petit, J. Reill,

N. Seitz, T. Wimbock, S. Wolf, T. Wusthoff, G. Hirzinger, “The DLR Hand Arm System”, 2011

IEEE International Conference on Robotics and Automation , May 9-13, 2011

[14] Z. Xie, J. Zhao, J. Huang, K. Sun, G. Xiong, H. Liu, “DSP/FPGA-based Highly Integrated Flexible

Joint Robot”, The 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems,

October 11-15, 2009

[15] M.A. Diftler, J.S. Mehling, M.E. Abdallah, N.A. Radford, L.B. Bridgwater, A.M. Sanders, R.S.

Askew, D.M. Linn, J.D. Yamokoski, F.A. Permenter, B.K. Hargrave, R. Platt, R.T. Savely, and

R.O. Ambrose, “Robonaut 2 – The First Humanoid Robot in Space”, 2011 IEEE International

Conference on Robotics and Automation, May 9-13, 2011

[16] L. B. Bridgwater, C. A. Ihrke, M. A. Diftler, M. E. Abdallah, N. A. Radford, J. M. Rogers, S.

Yayathi, R .s. Askew, D. M. Linn, “The Robonant 2 Hand - Designed To Do Work With Tools”,

2012 IEEE International Conference on Robotics and Automation, May 14-18, 2012

[17] S. K. Au, H. Herr, J. Weber, E. C. Martinez-Villalpando, “Powered Ankle-Foot Prosthesis for the

Improvement of Amputee Ambulation”, Proceedings of the 29th Annual International

Conference of the IEEE EMBS, August 23-26, 2007

[18] E.C. Martinez-Villalpando, J. Weber, G. Elliott, and H. M. Herr., “Design of an agonist-

antagonist active knee prosthesis”, Proceedings of IEEE BIORobotics Conference, Scottsdale,

AZ, 2008

[19] Mooney et al.: Autonomous exoskeleton reduces metabolic cost of human walking. Journal

of NeuroEngineering and Rehabilitation 2014 11:151.

http://biomech.media.mit.edu/wp-content/uploads/sites/3/2013/04/Design-of-an-Agonist-Antagonist-Active-Knee-Prosthesis.pdf
http://biomech.media.mit.edu/wp-content/uploads/sites/3/2013/04/Design-of-an-Agonist-Antagonist-Active-Knee-Prosthesis.pdf

137

10 Annexes

10.1 Glossary

ADC: Analog to digital converter

ARM: microcontroller core and instruction set developed by ARM Holdings and licensed to

microcontroller companies.

BLDC: Brushless DC Motor.

ASIC: Application Specific Integrated Circuit

BJT: bipolar junction transistor

COTS: Commercial-off-the-shelf, used to describe components or systems that can be bought

DAC: Digital to analog converter

GCC: GNU Compiler Collection, open-source compilers

GDB: GNU Debugger

GNU: "GNU's Not Unix!" Unix-like computer operating system composed wholly of free

software.

High-side switching: a high-side switch is placed between the positive supply and the load. The

other terminal of the load is connected to the negative supply.

I2C/I²C: Inter-Integrated Circuit computer bus used to link low-speed peripherals in embedded

systems and computers.

IC: integrated circuit

Low-side switching: a low-side switch is placed between the negative supply (typically the

system ground) and the load. The other terminal of the load is connected to the positive supply.

MCU/µC: Microcontroller unit, a single computer chip designed for embedded applications

MOSFET: metal–oxide–semiconductor field-effect transistor

OpAmp: Operational Amplifier

PCB: printed circuit board.

PWM: Pulse-width modulation. In this context, PWM is used to encode a variable voltage as the

average value of a digital pulse-train.

http://en.wikipedia.org/wiki/Unix-like
http://en.wikipedia.org/wiki/Operating_system
http://en.wikipedia.org/wiki/Free_software
http://en.wikipedia.org/wiki/Free_software

138

RS-485: standard defining the electrical characteristics of drivers and receivers for use in

balanced digital multipoint systems.

RX: short version of “reception”.

SMPS: Switched-mode power supply, an electronic power supply that incorporates a switching

regulator to convert electrical power efficiently.

SPI: Serial Peripheral Interface bus, synchronous serial communication interface specification

used for short distance communication.

TX: short version of “transmission”.

http://en.wikipedia.org/wiki/Balanced_line
http://en.wikipedia.org/wiki/Telecommunications_link#Multipoint
http://en.wikipedia.org/wiki/Power_supply
http://en.wikipedia.org/wiki/Electrical_power_conversion
http://en.wikipedia.org/wiki/Bus_(computing)
http://en.wikipedia.org/wiki/Synchronous_circuit
http://en.wikipedia.org/wiki/Serial_communication

139

10.2 Execute Schematic

140

141

142

143

144

145

146

147

148

149

150

151

152

153

10.3 Manage Schematic

154

155

156

157

158

159

160

161

162

163

164

165

10.4 User Study

166

167

10.5 User Manual

An offline HTML website was created for the User Study. It guides the user through the

installation of the development tools, the configuration of the system and through simple tasks

(reading sensors, controlling outputs). A copy of the documentation pages is included in the

following pages of this thesis. It is recommended to obtain the website from the archive and to

use this documentation in a browser to benefit from all the links.

FlexSEA Documentation 03/19/2015 - Table of Contents25

General:

 FlexSEA: How to use?
 Introduction to FlexSEA
 FlexSEA Virtual Machine
 What's in the box?
 Update your SVN

Hardware & connections:

 FlexSEA-Execute 0.1 Hardware overview
 Prog Adapt 0.1 for FlexSEA-Execute
 Prog Adapt 0.1 for FlexSEA-Manage 0.1
 Plan-Manage Cable
 Connect Manage to Plan
 Connect Execute to Manage
 Preparing the FlexSEA-Execute 0.1 board (Hardware)

Software & programming:

 Installing the Plan & Manage Development Environment on your host
computer

 Preparing the Plan board (BeagleBone Black)
 Using a pre-configured BeagleBone Black (Plan board)
 Eclipse OpenOCD GDB Debugging for the Manage Board
 Compile the Plan project
 Connecting to the Plan board (BBB)

25 Red titles indicate new HTML files.

file://hub.media.mit.edu/mas/biomech/storage/shared/JFDuval/FlexSEA/Documentation/03192015/FlexSEA%20How%20to%20use.html
file://hub.media.mit.edu/mas/biomech/storage/shared/JFDuval/FlexSEA/Documentation/03192015/Introduction%20to%20FlexSEA.html
file://hub.media.mit.edu/mas/biomech/storage/shared/JFDuval/FlexSEA/Documentation/03192015/FlexSEA%20Virtual%20Machine.html
file://hub.media.mit.edu/mas/biomech/storage/shared/JFDuval/FlexSEA/Documentation/03192015/What's%20in%20the%20box.html
file://hub.media.mit.edu/mas/biomech/storage/shared/JFDuval/FlexSEA/Documentation/03192015/Update%20your%20SVN.html
file://hub.media.mit.edu/mas/biomech/storage/shared/JFDuval/FlexSEA/Documentation/03192015/FlexSEA-Execute%200.1%20Hardware%20overview.html
file://hub.media.mit.edu/mas/biomech/storage/shared/JFDuval/FlexSEA/Documentation/03192015/Prog%20Adapt%200.1%20for%20FlexSEA-Execute.html
file://hub.media.mit.edu/mas/biomech/storage/shared/JFDuval/FlexSEA/Documentation/03192015/Prog%20Adapt%200.1%20for%20FlexSEA-Manage%200.1.html
file://hub.media.mit.edu/mas/biomech/storage/shared/JFDuval/FlexSEA/Documentation/03192015/Plan-Manage%20Cable.html
file://hub.media.mit.edu/mas/biomech/storage/shared/JFDuval/FlexSEA/Documentation/03192015/Connect%20Manage%20to%20Plan.html
file://hub.media.mit.edu/mas/biomech/storage/shared/JFDuval/FlexSEA/Documentation/03192015/Connect%20Execute%20to%20Manage.html
file://hub.media.mit.edu/mas/biomech/storage/shared/JFDuval/FlexSEA/Documentation/03192015/Preparing%20the%20FlexSEA-Execute%200.1%20board%20(Hard.html
file://hub.media.mit.edu/mas/biomech/storage/shared/JFDuval/FlexSEA/Documentation/03192015/Installing%20the%20Plan%20&%20Manage%20Development%20Envi.html
file://hub.media.mit.edu/mas/biomech/storage/shared/JFDuval/FlexSEA/Documentation/03192015/Installing%20the%20Plan%20&%20Manage%20Development%20Envi.html
file://hub.media.mit.edu/mas/biomech/storage/shared/JFDuval/FlexSEA/Documentation/03192015/Preparing%20the%20Plan%20board%20(BeagleBone%20Black).html
file://hub.media.mit.edu/mas/biomech/storage/shared/JFDuval/FlexSEA/Documentation/03192015/Using%20a%20pre-configured%20BeagleBone%20Black%20(Plan.html
file://hub.media.mit.edu/mas/biomech/storage/shared/JFDuval/FlexSEA/Documentation/03192015/Eclipse%20OpenOCD%20GDB%20Debugging%20for%20the%20Manage%20.html
file://hub.media.mit.edu/mas/biomech/storage/shared/JFDuval/FlexSEA/Documentation/03192015/Compile%20the%20Plan%20project.html
file://hub.media.mit.edu/mas/biomech/storage/shared/JFDuval/FlexSEA/Documentation/03192015/Connecting%20to%20the%20Plan%20board%20(BBB).html

168

 Transferring a program to the Plan board (BBB)
 Compile the Manage project
 Program/debug Manage
 Preparing the FlexSEA-Execute 0.1 board (Software)
 Programming FlexSEA-Execute 0.1

Application:

 Read a simple sensor from Linux (Pushbutton on Manage)
 Read multiple sensors from Linux (Execute)
 Add and control an output device (Execute)

FlexSEA: How to use?

03/16/2015:

First time user, introduction and preparation:

 Read Introduction to FlexSEA to get a general idea of the system
 Get SVN access

o Give your Media Lab username to the admin (jfduval)
o Change your password to a random one (they are not encrypted)
o Update your SVN

 Read What's in the box? and make sure that you have everything that you need
 Get a copy of the FlexSEA Virtual Machine (recommended) or install all the sources and

development tools on your machine (Installing the Plan & Manage Development
Environment on your host computer)

 Follow Preparing the Plan board (BeagleBone Black) to configure a new BBB
 If your Execute PCB is in a metallic bag without any wires, it's not ready to be used.

Follow these two notes: Preparing the FlexSEA-Execute 0.1 board
(Hardware) & Preparing the FlexSEA-Execute 0.1 board (Software)

Testing FlexSEA-Plan & FlexSEA-Manage:

 Compile the Plan project
 Follow Using a pre-configured BeagleBone Black (Plan board) to test some of your

development tools and your Plan board
 To test Manage: Compile the Manage project, Connect Manage to

Plan and Program/debug Manage.
 You are now ready to Read a simple sensor from Linux (Pushbutton on Manage)

Adding FlexSEA-Execute to the system:

file://hub.media.mit.edu/mas/biomech/storage/shared/JFDuval/FlexSEA/Documentation/03192015/Transferring%20a%20program%20to%20the%20Plan%20board%20(BBB.html
file://hub.media.mit.edu/mas/biomech/storage/shared/JFDuval/FlexSEA/Documentation/03192015/Compile%20the%20Manage%20project.html
file://hub.media.mit.edu/mas/biomech/storage/shared/JFDuval/FlexSEA/Documentation/03192015/Programdebug%20Manage.html
file://hub.media.mit.edu/mas/biomech/storage/shared/JFDuval/FlexSEA/Documentation/03192015/Preparing%20the%20FlexSEA-Execute%200.1%20board%20(Soft.html
file://hub.media.mit.edu/mas/biomech/storage/shared/JFDuval/FlexSEA/Documentation/03192015/Programming%20FlexSEA-Execute%200.1.html
file://hub.media.mit.edu/mas/biomech/storage/shared/JFDuval/FlexSEA/Documentation/03192015/Read%20a%20simple%20sensor%20from%20Linux%20(Pushbutton%20o.html
file://hub.media.mit.edu/mas/biomech/storage/shared/JFDuval/FlexSEA/Documentation/03192015/Read%20multiple%20sensors%20from%20Linux%20(Execute).html
file://hub.media.mit.edu/mas/biomech/storage/shared/JFDuval/FlexSEA/Documentation/03192015/Add%20and%20control%20an%20output%20device%20(Execute).html
file://hub.media.mit.edu/mas/biomech/storage/shared/JFDuval/FlexSEA/Documentation/03192015/Introduction%20to%20FlexSEA.html
file://hub.media.mit.edu/mas/biomech/storage/shared/JFDuval/FlexSEA/Documentation/03192015/Update%20your%20SVN.html
file://hub.media.mit.edu/mas/biomech/storage/shared/JFDuval/FlexSEA/Documentation/03192015/What's%20in%20the%20box.html
file://hub.media.mit.edu/mas/biomech/storage/shared/JFDuval/FlexSEA/Documentation/03192015/FlexSEA%20Virtual%20Machine.html
file://hub.media.mit.edu/mas/biomech/storage/shared/JFDuval/FlexSEA/Documentation/03192015/Installing%20the%20Plan%20&%20Manage%20Development%20Envi.html
file://hub.media.mit.edu/mas/biomech/storage/shared/JFDuval/FlexSEA/Documentation/03192015/Installing%20the%20Plan%20&%20Manage%20Development%20Envi.html
file://hub.media.mit.edu/mas/biomech/storage/shared/JFDuval/FlexSEA/Documentation/03192015/Preparing%20the%20Plan%20board%20(BeagleBone%20Black).html
file://hub.media.mit.edu/mas/biomech/storage/shared/JFDuval/FlexSEA/Documentation/03192015/Preparing%20the%20FlexSEA-Execute%200.1%20board%20(Hard.html
file://hub.media.mit.edu/mas/biomech/storage/shared/JFDuval/FlexSEA/Documentation/03192015/Preparing%20the%20FlexSEA-Execute%200.1%20board%20(Hard.html
file://hub.media.mit.edu/mas/biomech/storage/shared/JFDuval/FlexSEA/Documentation/03192015/Preparing%20the%20FlexSEA-Execute%200.1%20board%20(Soft.html
file://hub.media.mit.edu/mas/biomech/storage/shared/JFDuval/FlexSEA/Documentation/03192015/Compile%20the%20Plan%20project.html
file://hub.media.mit.edu/mas/biomech/storage/shared/JFDuval/FlexSEA/Documentation/03192015/Using%20a%20pre-configured%20BeagleBone%20Black%20(Plan.html
file://hub.media.mit.edu/mas/biomech/storage/shared/JFDuval/FlexSEA/Documentation/03192015/Compile%20the%20Manage%20project.html
file://hub.media.mit.edu/mas/biomech/storage/shared/JFDuval/FlexSEA/Documentation/03192015/Connect%20Manage%20to%20Plan.html
file://hub.media.mit.edu/mas/biomech/storage/shared/JFDuval/FlexSEA/Documentation/03192015/Connect%20Manage%20to%20Plan.html
file://hub.media.mit.edu/mas/biomech/storage/shared/JFDuval/FlexSEA/Documentation/03192015/Programdebug%20Manage.html
file://hub.media.mit.edu/mas/biomech/storage/shared/JFDuval/FlexSEA/Documentation/03192015/Read%20a%20simple%20sensor%20from%20Linux%20(Pushbutton%20o.html

169

 Power Execute (15-28V)

 Program your Execute board with the latest firmware: Programming FlexSEA-Execute 0.1 (please

not that if you just followed Preparing the FlexSEA-Execute 0.1 board (Software) you don't have

to do this step again)
 You can now stream sensor values: Read multiple sensors from Linux (Execute)

 The next step is to Add and control an output device (Execute) from Linux

 At this point controlling a motor is a simple task, but it requires a new wiring harness.

Introduction to FlexSEA

Abstract: FlexSEA aims to enable fast prototyping of multi-axis and multi-joint active prostheses by

developing a new modular electronics system. This system provides the required hardware and software

for precise motion control, data acquisition, and networking. Scalability is obtained by the use of a fast
industrial communication protocol between the modules, and by a standardization of the peripherals’

interfaces: it is possible to add functionalities to the system by simply plugging additional cards.
Hardware and software encapsulation is used to provide high-performance, real-time control of the

actuators while keeping the high-level algorithmic development and prototyping simple, fast, and easy.

Simplest full-stack system:

FlexSEA-Plan: Embedded computer for high-level computing. Can run a full Linux operating system and
execute Python or Matlab scripts. Can connect to the network through WiFi or Bluetooth. Currently a
BeagleBone Black (COTS).

file://hub.media.mit.edu/mas/biomech/storage/shared/JFDuval/FlexSEA/Documentation/03192015/Programming%20FlexSEA-Execute%200.1.html
file://hub.media.mit.edu/mas/biomech/storage/shared/JFDuval/FlexSEA/Documentation/03192015/Preparing%20the%20FlexSEA-Execute%200.1%20board%20(Soft.html
file://hub.media.mit.edu/mas/biomech/storage/shared/JFDuval/FlexSEA/Documentation/03192015/Read%20multiple%20sensors%20from%20Linux%20(Execute).html
file://hub.media.mit.edu/mas/biomech/storage/shared/JFDuval/FlexSEA/Documentation/03192015/Add%20and%20control%20an%20output%20device%20(Execute).html

170

Development Tools:

All the development is done in Linux but it could be done in OSX or Windows. An Eclipse project allows
the user to compile for host debugging and to cross-compile for the BBB.

FlexSEA-Manage: mid-level computing. Deals with all the sensor functions (data acquisition, signal
processing, and aggregation), the simple output devices (including visual and audible notifications,
clutches, and solid state relays) and sends commands to the motor driver. Has a simple API and protocol
to communicate with the embedded computer.

171

Development Tools:

All the Manage code is in Eclipse. To program and debug we use an STLink/v2 and OpenOCD.

FlexSEA-Execute: deals with all the motor control functions. Has enough computing power to run
advanced algorithms. Most control loops (current, speed, impedance, force) can be closed on this board.

172

More details: FlexSEA-Execute 0.1 Hardware overview

Development Tools:

The Execute boards has two microcontrollers, one PSoC 4 (the safety co-processor) and one PSoC 5LP

(the main computing element). The Safety Co-Processor runs safety critical code; only a user with a deep

understanding of the safety features should modify its code. To reprogram the PSoC you'll need
a proprietary (but free) IDE names PSoC Creator. I'm using 3.1

SP1. http://www.cypress.com/psoccreator/. It's Windows only. Programmation is done with a mix of
graphical programming and C (it uses GCC). I'm using a MiniProg3 with a special cable to program and

debug the code.

What's in the box?

03/17/2015:

FlexSEA kit part list:

 1x Plan (BeagleBone Black), new in box

 1x Manage (in a metallic bag), new in box

 1x Execute, with cables soldered and initial software

 2x USB Mini-B cable

 1x MiniProg3

 1x STLink/v2

 2x Prog Adapt

 1x Plan-Manage cable

 1x Manage-Execute cable

 1x Execute power cable with adapter

 1x Output device (big LED)

file://hub.media.mit.edu/mas/biomech/storage/shared/JFDuval/FlexSEA/Documentation/03192015/FlexSEA-Execute%200.1%20Hardware%20overview.html
http://www.cypress.com/psoccreator/

173

Other than that you'll need one DC power supply and an Ethernet cable connected to the network (only

for a few minutes).

Add and control an output device (Execute)

03/19/2015:

To simplify testing we use a big 12V LED. We will connect it to the Clutch Output. Use 15V to power
Execute, 24V would be too much for that LED.

Connect the Red wire to CLUTCH_POW and the Black wire to GND.

The clutch output is a 8-bit PWM output. ./plan execute_1 cmd_clutch_write 255 will give you maximum
brightness, ./plan execute_1 cmd_clutch_write 255 will turn the LED off and intermediate values will dim

it.

174

Compile the Manage project

03/19/2015:

If you are using the FlexSEA Virtual Machine you can simply:

 Launch Eclipse from the Desktop shortcut.

 The Manage project will be listed in your workspace. Click on it once.

 You can compile the project by clicking on the Hammer icon. Please note that 2 options are

available:

o 'Debug': use this for debugging your code (on the hardware, with GDB + OpenOCD).

o 'Release': use this when you want to use the board in your application, without requiring

the programmer/debugger to be connected.

Compile the Plan project

03/16/2015:

If you are using the FlexSEA Virtual Machine you can simply:

 Launch Eclipse from the Desktop shortcut.
 The Plan project will be listed in your workspace. Click on it once.

 You can compile the project by clicking on the Hammer icon. Please note that 3 options are

available:

o 'Debug': use this for debugging on your host computer. This uses a native compiler (not

a croiss-compiler). You can test your work by opening a terminal, navigating to the

file://hub.media.mit.edu/mas/biomech/storage/shared/JFDuval/FlexSEA/Documentation/03192015/FlexSEA%20Virtual%20Machine.html
file://hub.media.mit.edu/mas/biomech/storage/shared/JFDuval/FlexSEA/Documentation/03192015/FlexSEA%20Virtual%20Machine.html

175

Debug directory (cd ~/Desktop/FlexSEA/biomech-ee-

svn/Code/flexsea_1_0/plan/Debug) and launching Plan with ./plan default info
o

 You will see the list of supported FlexSEA commands.

o 'Release_Single': one task per program call. Convenient for sending commands on the

terminal as it will give you feedback.

o 'Release_Multiple': multiple tasks per program call. Use this to interface with Python (or
other languages) as it's much faster than spawning a new instance of the program every

time you want to send a command to a board.

The Release versions are cross-compiled for the BBB. They will not execute on your host computer. To

test your work you have to copy the executables to the BBB. All the details are in Using a pre-configured
BeagleBone Black (Plan board).

Connect Execute to Manage

03/19/2015:

For this experiment we are using asynchronous half-duplex RS-485 between Manage and Execute. It
requires a single twisted-pair. We use the connectors A1 & B1. By convention, A will have an orange wire

while B will have a blue wire.

Manage 0.1:

When the board is flat on a table, the twisted pair is in the top row of the connector.

Execute 0.1:

file://hub.media.mit.edu/mas/biomech/storage/shared/JFDuval/FlexSEA/Documentation/03192015/Using%20a%20pre-configured%20BeagleBone%20Black%20(Plan.html
file://hub.media.mit.edu/mas/biomech/storage/shared/JFDuval/FlexSEA/Documentation/03192015/Using%20a%20pre-configured%20BeagleBone%20Black%20(Plan.html

176

When the board is flat on a table, the twisted pair is in the bottom row of the connector.

Connect Manage to Plan

03/17/2015:

Part list:

 1x Plan (BBB)

 1x Manage

 1x USB Mini-B cable

 1x Plan-Manage cable (Plan-Manage Cable)

 1x Manage programming cable (Prog Adapt 0.1 for FlexSEA-Manage 0.1)

Step 1) Plug the Plan-Manage cable to both the Plan and the Manage boards.

Step 2) Power the Plan board with the USB Mini-B cable. The +3V3 and +5V LED on Manage will light up.

file://hub.media.mit.edu/mas/biomech/storage/shared/JFDuval/FlexSEA/Documentation/03192015/Plan-Manage%20Cable.html
file://hub.media.mit.edu/mas/biomech/storage/shared/JFDuval/FlexSEA/Documentation/03192015/Prog%20Adapt%200.1%20for%20FlexSEA-Manage%200.1.html

177

Connecting to the Plan board (BBB)

03/19/2015:

1. Connect the BBB to your host computer with a USB Mini-B connector. If you power a lot of
peripherals on Manage and/or if you use WiFi you'll need more power than what USB can

provide. In that case, connect a wall adapter to P1.

2. Make sure that it's connected to your VM. In the VMWare top menu you can see the list of
attached peripherals under VM > Removable Devices.

3. After a few seconds it should appear as a new network device.
4. Open a terminal and type ssh beaglebone.local -l root

5.

1. When asked for a key say "yes" to add it to the list of known hosts.
2. If there is a key conflict (will happen if you use multiple BBB) use the key removal

command that's in the error message.
6. Use the configuration script by typing . flexsea_bbb_init. Please not that you can hit Tab after

you typed . f and it will auto complete for you.
1. The terminal prompt will now be root@beaglebone:/home/debian/Desktop#

2. Alternatively, if you do not want to use the script (or if it doesn't work) you can call:

7.
1.

1. cd /home/debian/Desktop
2. echo BB-SPI0-01 > /sys/devices/bone_capemgr.*/slots

178

Eclipse OpenOCD GDB Debugging for the Manage Board

02/24/2015:

179

180

Always start OpenOCD in a terminal (openocd -s ~/Desktop/FlexSEA/embedded-

arm/openocd-bin/share/openocd/scripts/ -f interface/stlink-v2.cfg -f
target/stm32f4x_stlink.cfg) first.

To program the chip, build in Release mode then, in a terminal: openocd -s

~/Desktop/FlexSEA/embedded-arm/openocd-bin/share/openocd/scripts/ -f interface/stlink-v2.cfg -f

target/stm32f4x_stlink.cfg -c init -c "reset halt" -c "sleep 100" -c "wait_halt 2" -c "flash write_image erase
manage.elf" -c "sleep 100" -c "verify_image manage.elf" -c "sleep 100" -c "reset run" -c "shutdown"

FlexSEA Virtual Machine

03/16/2015:

The Installing the Plan & Manage Development Environment on your host computer note contains a lot of

cryptic statements and can be intimidating. To simplify the user's life I created a virtual machine (VM)
with all the tools pre-installed.

I'm using VMware Workstation. You can get it from IS&T: http://ist.mit.edu/vmware-

workstation Note: The key is in the compressed folder.

Details on the installation and license
key: http://kb.mit.edu/confluence/display/istcontrib/VMware+Workstation+10.0.x+for+Windows+-

+Installing+or+Upgrading

As soon as I installed 11.0.x and started it it offered an update to 11.1. It un-installed 11.0 and installed

11.1... The version I'M using is 11.1.0 build-2496824.

I created the VM with minimalist specs:

If you use it a lot you should assign more processors and RAM to it to make it snappier. Installing it on

your SSD is also a good idea.

file://hub.media.mit.edu/mas/biomech/storage/shared/JFDuval/FlexSEA/Documentation/03192015/Installing%20the%20Plan%20&%20Manage%20Development%20Envi.html
http://ist.mit.edu/vmware-workstation
http://ist.mit.edu/vmware-workstation
http://kb.mit.edu/confluence/display/istcontrib/VMware+Workstation+10.0.x+for+Windows+-+Installing+or+Upgrading
http://kb.mit.edu/confluence/display/istcontrib/VMware+Workstation+10.0.x+for+Windows+-+Installing+or+Upgrading

181

The VM is 6.83GB. You can access it on the Biomech Hub

(\\hub.media.mit.edu\mas\biomech\storage\shared\jfduval\FlexSEA\). Make a local copy, DO NOT
MODIFY THE SERVER VERSION!

Launch VMware. File > Open... > (navigate to where you are storing the VM) > FlexSEA.vmx. Click on

the green arrow to launch the machine, then click on "I Copied It". Ubuntu will boot (you might see a

black screen for 20s before is starts displaying information).

login: flexsea
password: flexsea

It's ready to be used!

Hint: Alt+Ctrl+Enter will make it full screen.

FlexSEA-Execute 0.1 Hardware overview

03/16/2015:

Top view:

182

The beige connector on the bottom right is the Expansion connector. On the bottom Left is the USB

Micro-B connector. The red wires are for power and motor, detailed below.

Bottom view:

The blue connectors are to program and debug the PSoC microcontrollers. The silkscreen indicates '4'
(PSoC 4 co-processor) and '5' (PSoC 5, main microcontroller)

183

Motor and power connections:

Expansion connector:

184

IMU Position:

Top view, IMU is on the bottom:

185

X: 31.445mm
Y: 15.621mm

Installing the Plan & Manage Development Environment on your host computer

01/18/2015 (updated 03/09/2015 & 16/03/2015):

Host computer: Ubuntu 14.04 LTS 64bits. Can also be used for Ubuntu 14.04 LTS 32bits. A pre-
configured VMWare 10 virtual machine with 32 bits Linux is available. The list of steps below is

sequential. It keeps everything separated and logical if you wish to install only certain tools. It can be
optimized by grouping similar tasks (like all the bashrc edits).

Getting the sources, installing the common software:

 Before you get started:

o All the commands below assume that your user name is "flexsea".
o Start by creating a folder named "FlexSEA" on the Desktop

(/home/flexsea/Desktop/FlexSEA).

o All the commands that need to be typed in a terminal are in orange. The text that needs
to be pasted in text files is in light blue.

o If you are not familiar with Linux commands read this: http://www.dummies.com/how-
to/content/common-linux-commands.html

o If you are not familiar with nano read this http://mintaka.sdsu.edu/reu/nano.html

 SVN:

o Install Subversion: sudo apt-get install subversion

http://www.dummies.com/how-to/content/common-linux-commands.html
http://www.dummies.com/how-to/content/common-linux-commands.html
http://mintaka.sdsu.edu/reu/nano.html

186

o Create a "biomech-ee-svn" folder (/home/flexsea/Desktop/FlexSEA/biomech-ee-svn),

navigate to that folder and checkout the code repo: svn
co https://src.media.mit.edu/r/biomech-ee/Code/

o
 You need to get access to the SVN first. Ask JFDuval, the admin.

o

 Accept the key ('p') and enter your SVN password

o Done, you have all the FlexSEA code! You'll be using the code in Code/flexsea_1_0.

 Eclipse:

o Download Eclipse C++ Luna. Make sure to get the right version for your operating
system (32/64bits)!

o
 http://www.eclipse.org/downloads/download.php?file=/technology/epp/downloa

ds/release/luna/R/eclipse-cpp-luna-R-linux-gtk.tar.gz

o Extract (via GUI) to /FlexSEA. It will create /FlexSEA/eclipse.
o At this point it probably won't launch, no valid JRE installed by default

o Use the Software manager to get a JRE or follow this website to get
Java http://tecadmin.net/install-oracle-java-8-jdk-8-ubuntu-via-ppa/

o

 sudo add-apt-repository ppa:webupd8team/java
 sudo apt-get update

 sudo apt-get install oracle-java8-installer

o Eclipse should launch when you double-click on 'eclipse'

(/home/flexsea/Desktop/FlexSEA/eclipse/eclipse). You can create a shortcut by right
clicking on the program and Make Link. I like having that shortcut on the Desktop.

o

 By default I'm placing the workspace
in /home/flexsea/Desktop/FlexSEA/workspace

 Eclipse CDT tools:

o Launch Eclipse, click on Help => Install new software
o Paste that URL http://gnuarmeclipse.sourceforge.net/updates in the search box (more

details: http://gnuarmeclipse.livius.net/blog/plugins-install/)

o Wait a few seconds while it refreshes, click on the plugin to install it. Follow the wizard.

Manage:

 ARM GCC (compiler):

o I was following this tutorial: http://hertaville.com/2013/09/02/stm32f0discovery-part-1-

linux/
o Get sources from there: https://launchpad.net/gcc-arm-embedded/+download. I

used gcc-arm-none-eabi-4_9-2014q4-20141203-linux.tar.bz2

o Unzip in /FlexSEA/embedded-arm. It will add a folder
named /home/flexsea/Desktop/FlexSEA/embedded-arm/gcc-arm-none-eabi-4_9-2014q4.

o Install 32 bits libs if using a 64 bits OS. 'ia32-libs' is obsolete, add the 3 libs that are

suggested to you when you try 'apt-get install ia32-libs' (follow Hertaville if you need to
do this. Alternatively, try to install ia32-libs and follow what the terminal tells you)

o Update bash:
o

http://www.eclipse.org/downloads/download.php?file=/technology/epp/downloads/release/luna/R/eclipse-cpp-luna-R-linux-gtk.tar.gz
http://www.eclipse.org/downloads/download.php?file=/technology/epp/downloads/release/luna/R/eclipse-cpp-luna-R-linux-gtk.tar.gz
http://tecadmin.net/install-oracle-java-8-jdk-8-ubuntu-via-ppa/
http://gnuarmeclipse.livius.net/blog/plugins-install/
http://hertaville.com/2013/09/02/stm32f0discovery-part-1-linux/
http://hertaville.com/2013/09/02/stm32f0discovery-part-1-linux/
https://launchpad.net/gcc-arm-embedded/+download

187

 Open the file with nano ~/.bashrc

 Add this line at the end: export
PATH=$PATH:/home/flexsea/Desktop/FlexSEA/embedded-arm/gcc-arm-none-

eabi-4_9-2014q4/bin
 Update bash with source ~/.bashrc

o Test your installation with arm-none-eabi-gcc -v. You should see a big chunk of text that

ends with gcc version 4.9.3 20141119 (release) [ARM/embedded-4_9-branch revision
218278] (GNU Tools for ARM Embedded Processors)

 OpenOCD (to debug and program the STM32):

o To get more info, follow the same Hertaville tutorial as for ARM GCC.
o Get the sources for 0.8.0: http://sourceforge.net/projects/openocd/files/openocd/

o Extract to /FlexSEA/embedded-arm/. You'll get a new
directory: /home/flexsea/Desktop/FlexSEA/embedded-arm/openocd-0.8.0

o We can now install OpenOCD:

o
 Dependencies: sudo apt-get install git zlib1g-dev libtool flex bison libgmp3-dev

libmpfr-dev libncurses5-dev libmpc-dev autoconf texinfo build-essential libftdi-
dev libusb-1.0.0-dev

 Navigate to /openocd-0.8.0/ and call ./configure --enable-maintainer-mode --
enable-stlink --prefix=/home/flexsea/Desktop/FlexSEA/embedded-arm/openocd-
bin

 make
 make install

 You will get a new directory: /home/flexsea/Desktop/FlexSEA/embedded-
arm/openocd-bin

o Modify the USB rules:

o
 Create the file with sudo nano /etc/udev/rules.d/stlinkv2.rules, add one line of

text ATTRS{idVendor}=="0483", ATTRS{idProduct}=="3748", MODE="0666"
 Update: sudo udevadm control --reload-rules

o Update bash:
o

 Open the file with nano ~/.bashrc

 Add this line at the end (just below the GCC ARM line that you added
before): export PATH=$PATH:/home/flexsea/Desktop/FlexSEA/embedded-

arm/openocd-bin/bin
 Update bash with source ~/.bashrc

o Test installation with openocd -s ~/Desktop/FlexSEA/embedded-arm/openocd-

bin/share/openocd/scripts/ -f interface/stlink-v2.cfg -f target/stm32f4x_stlink.cfg. You
should see Open On-Chip Debugger 0.8.0 (date and time).

 'Manage' project under Eclipse:

o Launch Eclipse then File => Import => General => Existing Projects into Workspace =>
browse to your directory (Code/flexsea_1_0/manage/)

o You will see the project in the Project Explorer
o Right click on the /manage project => Properties => C/C++ Build => Settings =>

Toolchain and update the Global toolchain path by clicking on "global" and navigating up

to /home/flexsea/Desktop/FlexSEA/embedded-arm/gcc-arm-none-eabi-4_9-2014q4/bin
o You can now build the project (hammer icon). You'll get warnings because I'm a bad

programmer but no Errors. A .hex file will be generated.

http://sourceforge.net/projects/openocd/files/openocd/

188

o The Debug configuration is saved in the Workspace and not in the project file so you

have to do it manually

o

 Right click on /manage => Debug As => Debug Configurations...
 Do exactly like on that picture (more details in Eclipse OpenOCD GDB

Debugging for the Manage Board):

o To debug, open a terminal, launch openocd (openocd -s ~/Desktop/FlexSEA/embedded-

arm/openocd-bin/share/openocd/scripts/ -f interface/stlink-v2.cfg -f

target/stm32f4x_stlink.cfg) and leave that window open. In Eclipse click Debug and use
the configuration you just made. It will open the Debug perspective and you'll be able to

do step-by step code execution, watch variables, etc.
o To program the chip:

file://hub.media.mit.edu/mas/biomech/storage/shared/JFDuval/FlexSEA/Documentation/03192015/Eclipse%20OpenOCD%20GDB%20Debugging%20for%20the%20Manage%20.html
file://hub.media.mit.edu/mas/biomech/storage/shared/JFDuval/FlexSEA/Documentation/03192015/Eclipse%20OpenOCD%20GDB%20Debugging%20for%20the%20Manage%20.html

189

o

 Compile in Release mode
 Open a terminal and navigate to /manage/Release/. You should see manage.elf.

 Use that command: openocd -s ~/Desktop/FlexSEA/embedded-arm/openocd-
bin/share/openocd/scripts/ -f interface/stlink-v2.cfg -f target/stm32f4x_stlink.cfg

-c init -c "reset halt" -c "sleep 100" -c "wait_halt 2" -c "flash write_image erase

manage.elf" -c "sleep 100" -c "verify_image manage.elf" -c "sleep 100" -c "reset
run" -c "shutdown"

Plan:

 ARM GCC (compiler)

o Note: this isn't the same as for Manage, we are now using the Embedded Linux version
of GCC.

o Get and install with: sudo apt-get install gcc-arm-linux-gnueabi
o The executables are in /usr/bin/. You can test your installation by typing arm-linux-

gnueabi-gcc -v in a terminal. You should see a large block of text followed by a

statement similar to gcc version 4.7.3 (Ubuntu/Linaro 4.7.3-12ubuntu1).
 'Plan' project under Eclipse:

o Launch Eclipse then File => Import => General => Existing Projects into Workspace =>

browse to your directory (Code/flexsea_1_0/plan/)
o You will see the project in the Project Explorer

o You can compile the project by clicking on the Hammer icon. Please note that 3 options
are available:

o

 'Debug': use this for debugging on your host computer. This uses a native
compiler (not a croiss-compiler). You can test your work by opening a terminal,

navigating to the Debuf directory (cd ~/Desktop/FlexSEA/biomech-ee-
svn/Code/flexsea_1_0/plan/Debug) and launching Plan with ./plan default info

 You will see the list of supported FlexSEA commands.
 'Release_Single': one task per program call. Convenient for sending

commands on the terminal as it will give you feedback.
 'Release_Multiple': multiple tasks per program call. Use this to interface

with Python (or other languages) as it's much faster than spawning a
new instance of the program everytime you want to send a command to

a board.

Plan-Manage Cable

03/17/2015:

We need a cable to link a Plan board (BBB) to a Manage board. The BBB is powering the Manage board.

For the BBB I'm using a 2x23 male header. For space sensitive applications wires could be soldered under

the PCB rather than adding this extra connector. Pin assignment:

190

On the Manage board we use J3. +5VP is used to power the Manage board. +VP (Voltage Plan) is used
to level-shift the SPI signals. It needs to be at the same voltage as the SPI signals coming out of the Plan

board (3.3V in that case).

The Reset signal is not currently used but in the future it will allow the Plan to reset the Manage.

+5V: Red
+VP: Orange

GND: Black

SCK: Green
NSS: Yellow

MOSI: Orange
MISO: Blue

191

192

Preparing the FlexSEA-Execute 0.1 board (Hardware)

03/17/2015:

List of parts:

 1x FlexSEA-Execute 0.1 assembled PCB

 1x aluminum mounting plate

 1x thermal pad

 1x 5x M2x4 screws

 AWG16 wire in red, black and white (McMaster 6659T48)

 PowerPole housings and crimps

Estimated time: 1h00 (1h15 if Step 0 is required).

Step 0)

If you are using the first batch of PCBs, the pull-ups I selected for the on-board I2C bus are too resistive

for speeds above 100kHz (we are using 400kHz). R45 and R46 are currently 4.7k and they should be
1.8k. You can de-solder the 4.7k and solder 1.8k resistors (recommended) or add a 3k resistor in parallel

to the 4.7k one. Failure to change these resistors will lead to inconsistent behavior as the code will
sometimes hang in the I2C routines.

193

Step 1)

Cut 3 pieces of wire, 4" long, one piece per color. Cut 2 pieces of wire, 3" long, black and red. Remove
3mm of insulation from one end and 5mm from the other end.

Step 2)

Crimp the terminals to the 5 wires, on the end with 5mm of exposed copper. Make sure to crimp on the

sleeve and not just on the copper. Insert the crimped wires in their housings.

194

Step 3)

Solder the wires to the PCB. +VB = Red, GND = Black, A = White, B = Black, C = Red. There is copper
planes on all 6 layers: a regular (60-80W) soldering iron will have a hard time melting solder. Use a high

power soldering iron (such as a Weller WD 1 M 160W) or pre-heat the PCB with a hot air gun (careful,
you can easily de-solder components with that!). On the picture below you can see the solder joints on

the white and black wires. The red solder joint was cut close to the PCB with cutters. When all 5 wires
are soldered clean the flux with alcohol (I use 91%) and a toothbrush.

195

Step 4)

Link the PowerPole connectors together, according to the order shown on the picture below. Twist the

cable assemblies.

Step 5)

I'm using a phase-change thermal transfer pad made by Laird, TPCM 585 (Digikey 926-1155-ND). It
comes in sheets of 9x9 in. I laser cut 16 pads per sheet. Epilog settings: 90% speed, 80% power,

2500Hz.

196

Remove the plastic protection, stick the thermal pad to the PCB and screw it to the aluminum plate. Make
sure that the two FFC programming ports are in the unlocked position first.

197

Next step: Preparing the FlexSEA-Execute 0.1 board (Software)

Preparing the FlexSEA-Execute 0.1 board (Software)

03/17/2015:

Previous step: Preparing the FlexSEA-Execute 0.1 board (Hardware)

List of parts:

 1x FlexSEA-Execute 0.1 with connectors

 1x MiniProg3

 1x Prog Adapt configured for the MiniProg3 (Prog Adapt 0.1 for PSoC)

 PSoC Creator and 2x code projects

Estimated time: 0h20.

Step 1)

Connect a power cable between Execute and a lab power supply. It is recommended to start with 0V and
a low current limit, then slowly increase the voltage while making sure that the current stays low the first

time that you power a new board. When you reach 7V 4 LEDs should turn on. You can use any voltage

from 15 to 24V.

file://hub.media.mit.edu/mas/biomech/storage/shared/JFDuval/FlexSEA/Documentation/03192015/Preparing%20the%20FlexSEA-Execute%200.1%20board%20(Soft.html
file://hub.media.mit.edu/mas/biomech/storage/shared/JFDuval/FlexSEA/Documentation/03192015/Preparing%20the%20FlexSEA-Execute%200.1%20board%20(Hard.html
file://hub.media.mit.edu/mas/biomech/storage/shared/JFDuval/FlexSEA/Documentation/03192015/Prog%20Adapt%200.1%20for%20FlexSEA-Execute.html

198

Step 2)

Open PSoC Creator 3.1, File > Open > Project/Workspace > navigate to ...\Code\flexsea_1_0\execute-
cop\execute-cop.cydsn\ and select the .cywrk file. Build execute-cop and make sure that there is no error

message. Connect the FFC to the Execute board, using the right FFC connector (as seen from above).

The FFC conductors need to face the PCB; seen from above they'll be visible. Click Program. You'll get a
log similar to this:

Programming started for device: 'PSoC 4200 CY8C4245LQ*-483'.
Device ID Check
Erasing...
Programming of Flash Starting...
Protecting...
Verify Checksum...
Device 'PSoC 4200 CY8C4245LQ*-483' was successfully programmed at 03/17/2015

14:54:08.

The Red LED right next to the PSoC 4 should flash "aggressively" because the PSoC 5 isn't programmed.

Step 3)

Programming FlexSEA-Execute 0.1

Preparing the Plan board (BeagleBone Black)

03/19/2015:

file://hub.media.mit.edu/mas/biomech/storage/shared/JFDuval/FlexSEA/Documentation/03192015/Programming%20FlexSEA-Execute%200.1.html

199

This page explains how to configure a brand new Rev C BeagleBone Black for FlexSEA. I'm using the

"Element 14 BeagleBone Black Rev C - 4GB - Pre-installed Debian - Element 14 Version" from Adafruit
(http://www.adafruit.com/products/1996). Scripts are provided to simplify the user's life.

Estimated time: 0h30.

Step by step instructions:

1. Connecting to the BBB and transfering files:
1. Connect the USB Mini-B cable between your host computer and the BBB. Connect an

Ethernet cable to the BBB to give it internet access.

2. If you are using a VM make sure that the BBB is listed as a connected Removable Device.

After a few seconds you should see a new network connection and/or a storage device.
3. Open a terminal and connect to the BBB (ssh beaglebone.local -l root)

4. On your host, navigate to Code/flexsea_1_0/misc/scripts/official/BBB/ (in your SVN
folder)

5. SCP the 3 scripts and the DTS file to the BBB: scp config_bbb_1 config_bbb_2

flexsea_bbb_init BB-SPI0-01-00A0.dts root@beaglebone.local:~
6. On the BBB, if you ls you should see the 3 scripts and the DTS file

7. We need to change the permissions: chmod 755 config_bbb_1 config_bbb_2
flexsea_bbb_init

2. Configuration - first part:
1. In the BBB terminal call the first script with ./config_bbb_1, enter "flexsea" twice when

prompted for a password.

2. In the Adafruit lib install say Yes when prompted
3. nano will open uEnv.txt. Paste that line capemgr.enable_partno=BB-SPI0-01, Ctrl+X to

save, Y then Enter

200

3. Reboot (command reboot). After a few seconds you'll loose the connection, then it will come

back to life.
4. Connect to the BBB (ssh beaglebone.local -l root), enter flexsea as the password

5. Configuration - first part:
1. ./config_bbb_2

6. Configuration complete, you are now ready to use the BBB!

1. To enable SPI and move to the Desktop call . flexsea_bbb_init
2. You'll get the message "FlexSEA is ready to be used!"

To test you need to send a plan program. See Using a pre-configured BeagleBone Black (Plan

board) (skip the Connect section).

Copy of the scripts:

config_bbb_1

#!/bin/bash

Configuration of a brand new Rev C BBB - Part 1
JFDuval 03/19/2015

echo "[FlexSEA] Type new password, use 'flexsea' by default."
passwd

echo "[FlexSEA] Updating the time servers."
ntpdate -u ntp.ubuntu.com pool.ntp.org

echo "[FlexSEA] Installing the Adafruit Python libs."
apt-get install python-pip python-setuptools python-smbus
pip install Adafruit_BBIO

echo "[FlexSEA] 1) Paste this line 'capemgr.enable_partno=BB-SPI0-01' (no quotation marks), 2) Ctrl+X,
'Yes', Enter"
cd /mnt/
mkdir boot
nano uEnv.txt

echo "[FlexSEA] When you are ready reboot the BBB (command: reboot)"

#End of script #1

config_bbb_2

#!/bin/bash

Configuration of a brand new Rev C BBB - Part 2
JFDuval 03/19/2015

echo "[FlexSEA] Configuring the SPI driver and pins"
dtc -O dtb -o BB-SPI0-01-00A0.dtbo -b 0 -@ BB-SPI0-01-00A0.dts
cp BB-SPI0-01-00A0.dtbo /lib/firmware/

file://hub.media.mit.edu/mas/biomech/storage/shared/JFDuval/FlexSEA/Documentation/03192015/Using%20a%20pre-configured%20BeagleBone%20Black%20(Plan.html
file://hub.media.mit.edu/mas/biomech/storage/shared/JFDuval/FlexSEA/Documentation/03192015/Using%20a%20pre-configured%20BeagleBone%20Black%20(Plan.html

201

echo BB-SPI0-01 > /sys/devices/bone_capemgr.*/slots
cd /home/debian/Desktop/

#End of script #2

flexsea_bbb_init

#!/bin/bash

echo BB-SPI0-01 > /sys/devices/bone_capemgr.*/slots
cd /home/debian/Desktop/
echo "FlexSEA is ready to be used!"

Prog Adapt 0.1 for FlexSEA-Execute

03/17/2015:

We use a MiniProg3 to program and debug the PSoC. It comes with a 10 pins connector that is out of

proportion with the size of the PCBs I design. A small PCB, called Prod Adapt 0.1, is used to convert the
10 pin connector to a small 0.5mm flat flexible cable (FFC).

Pin assignment, 10 pin connector:

Pin assignment, 6 pin connector (on Prog Adapt):

202

Mapping:

Cable / 6 pin connector

1 1
2 2

3 5

4 3
6 6

10 4

Another representation of the same information:

Step 1) Cut the cable that came with the MiniProg3 in two. By cutting it in the middle you can make two

adapters from 1 cable.

203

Step 2) Separate the wires. Keep #1/2/3/4/6/10 and cut down the others. Strip 2-3mm of insulation of

the wires.

Step 3) Solder the surface-mounted FFC connector to the PCB. Use the "Flipped" position.

Step 4) Solder the 6 wires to the PCB, according to the mapping presented above.

Step 5) Connect an FFC cable and test your work. The conductors need to face the PCB. If it works (ie

you can detect the PSoC in PSoC Creator) go to step 6.

Step 6) Hot glue everything together.

Prog Adapt 0.1 for FlexSEA-Manage 0.1

03/19/2015:

We use the STM32F4 Discovery board as a reference for the pinout (manual: http://www.st.com/st-web-
ui/static/active/en/resource/technical/document/user_manual/DM00039084.pdf)

The ST-Linv/V2 has a 20 pins cable (manual: http://www.st.com/st-web-
ui/static/active/en/resource/technical/document/user_manual/DM00026748.pdf)

http://www.st.com/st-web-ui/static/active/en/resource/technical/document/user_manual/DM00039084.pdf
http://www.st.com/st-web-ui/static/active/en/resource/technical/document/user_manual/DM00039084.pdf
http://www.st.com/st-web-ui/static/active/en/resource/technical/document/user_manual/DM00026748.pdf
http://www.st.com/st-web-ui/static/active/en/resource/technical/document/user_manual/DM00026748.pdf

204

Pin mapping:

Manage STLink
1 1

2 9

3 8
4 7

5 15
6 13

The adapter shown below uses a 6-pin male header because it was originally made for the MiddleMan 0.1
board. Prog Adapt was built with a female header to interface with the old cable. As we are not using the

MiddleMan anymore it is now possible to solder the wired directly to Prog Adapt (same pinout).

205

Use the "flipped" FFC connector position. The FFC conductors have to face the PCB. Pin 1 is Red.

Program/debug Manage

03/19/2015:

First, make that your board is powered (Connect Manage to Plan). Connect the STLink/v2

programmer/debugger to Manage using the Prog Adapt cable. Make sure that it's seen by your VM.

Debugging:

Open a terminal and call openocd -s ~/Documents/embedded-arm/openocd-bin/share/openocd/scripts/ -f

interface/stlink-v2.cfg -f target/stm32f4x_stlink.cfg. Leave that window open.

file://hub.media.mit.edu/mas/biomech/storage/shared/JFDuval/FlexSEA/Documentation/03192015/Connect%20Manage%20to%20Plan.html

206

In Eclipse, compile for Debug (Compile the Manage project). Click on the Bug icon, use "OpenOCD Debug

FlexSEA". The IDE will switch to the Debug perspective. Click Resume (F8) to start the code.

The RGB LED will be green for a few seconds then blue. LED0 will blink. You can use the Pause button to
pause the code execution, the Step Into and Over buttons to navigate in the code, the Variables and

Watch windows to inspect values, etc.

When you are done you can hit Terminate (Ctrl + F2). In your terminal Ctrl+C will close OpenOCD.

Programming:

In Eclipse, compile for Release (Compile the Manage project). Open a terminal, navigate to the release

folder (cd ~/Desktop/FlexSEA/biomech-ee-svn/Code/flexsea_1_0/manage/Release/) and call openocd -s

~/Desktop/FlexSEA/embedded-arm/openocd-bin/share/openocd/scripts/ -f interface/stlink-v2.cfg -f
target/stm32f4x_stlink.cfg -c init -c "reset halt" -c "sleep 100" -c "wait_halt 2" -c "flash write_image erase

manage.elf" -c "sleep 100" -c "verify_image manage.elf" -c "sleep 100" -c "reset run" -c "shutdown"

Your chip is programmed. The RGB LED will be green for a few seconds then blue. LED0 will blink.

Programming FlexSEA-Execute 0.1

03/19/2015:

Important: if your board has never been programmed (if you have 4 steady green power LEDs ON and
nothing else (no flashing red LED)) you need to follow this first: Preparing the FlexSEA-Execute 0.1 board

(Software)

Open the 'execute' project in PSoC Creator (...\Code\flexsea_1_0\execute\execute.cywrk). Open main.h

and make sure that the modules you want are enabled:

//Enable/Disable sub-modules:

#define USE_RS485
//#define USE_USB

file://hub.media.mit.edu/mas/biomech/storage/shared/JFDuval/FlexSEA/Documentation/03192015/Compile%20the%20Manage%20project.html
https://www.evernote.com/shard/s316/nl/53670106/dd14b801-3d0b-457c-b4d6-a1f2f678db65
file://hub.media.mit.edu/mas/biomech/storage/shared/JFDuval/FlexSEA/Documentation/03192015/Preparing%20the%20FlexSEA-Execute%200.1%20board%20(Soft.html
file://hub.media.mit.edu/mas/biomech/storage/shared/JFDuval/FlexSEA/Documentation/03192015/Preparing%20the%20FlexSEA-Execute%200.1%20board%20(Soft.html

207

#define USE_COMM //Requires USE_RS485 and/or USE_USB

#define USE_QEI1

#define USE_TRAPEZ
//#define USE_DIETEMP

#define USE_I2C_INT
//#define USE_I2C_EXT

#define USE_IMU //Requires USE_I2C_INT

#define USE_STRAIN //Requires USE_I2C_INT

Build the code (Release mode).

Connect the FFC to Execute, leftmost connector (as viewed from the top). Click Program:

Programming started for device: 'PSoC 5LP CY8C5888AX*-LP096'.
Device ID Check
Erasing...
Programming of User NVL Succeeded
Programming of Flash Starting...
Protecting...
Verify Checksum...
Device 'PSoC 5LP CY8C5888AX*-LP096' was successfully programmed at 03/17/2015

14:59:09.

After a few seconds the RGB LED should be Blue, a green LED should be flashing and the red LED should

be gently pulsing as an indication that both PSoC are working properly. Power cycling might be required.

Read a simple sensor from Linux (Pushbutton on Manage)

03/19/2015:

Program the latest code to Manage (Program/debug Manage), in Release mode. The RGB LED will initially
be green then, after a few seconds, steady blue. It means that the board isn't receiving commands from

Plan. LED0 will blink.

Connect to the Plan board (Connecting to the Plan board (BBB)), transfer the latest Plan code

(Transferring a program to the Plan board (BBB)).

Call ./plan manage_1 stream. The RGB LED will turn green and the switch state will be displayed:

It will turn to 0 if you press on the pushbutton. It's tiny, use your fingernail.

file://hub.media.mit.edu/mas/biomech/storage/shared/JFDuval/FlexSEA/Documentation/03192015/Programdebug%20Manage.html
file://hub.media.mit.edu/mas/biomech/storage/shared/JFDuval/FlexSEA/Documentation/03192015/Connecting%20to%20the%20Plan%20board%20(BBB).html
file://hub.media.mit.edu/mas/biomech/storage/shared/JFDuval/FlexSEA/Documentation/03192015/Transferring%20a%20program%20to%20the%20Plan%20board%20(BBB.html

208

The code isn't 100% stable yet. If the LED is Blue while Stream is running something is wrong. Either
reprogram Manage or power cycle it and it should be fine.

To stop streaming, quit the program with Ctrl+D.

For now "manage_1 stream" is calling one function, CMD_SWITCH. In the future it will display more
information.

Read multiple sensors from Linux (Execute)

03/19/2015:

Program the latest code to Manage (Program/debug Manage), in Release mode. The RGB LED will initially
be green then, after a few seconds, steady blue. It means that the board isn't receiving commands from

Plan. LED0 will blink.

Power Execute and make sure that it's running up to date code (Programming FlexSEA-Execute 0.1).

Connect to the Plan board (Connecting to the Plan board (BBB)), transfer the latest Plan code

(Transferring a program to the Plan board (BBB)).

Call ./plan execute_1 stream. The RGB LED will turn green on Manage and on Execute. "Stream" is

currently tweaked for the ShuoBot Exoskeleton (it will soon be generalized); it will display all the sensors
that she needs:

file://hub.media.mit.edu/mas/biomech/storage/shared/JFDuval/FlexSEA/Documentation/03192015/Programdebug%20Manage.html
file://hub.media.mit.edu/mas/biomech/storage/shared/JFDuval/FlexSEA/Documentation/03192015/Programming%20FlexSEA-Execute%200.1.html
file://hub.media.mit.edu/mas/biomech/storage/shared/JFDuval/FlexSEA/Documentation/03192015/Connecting%20to%20the%20Plan%20board%20(BBB).html
file://hub.media.mit.edu/mas/biomech/storage/shared/JFDuval/FlexSEA/Documentation/03192015/Transferring%20a%20program%20to%20the%20Plan%20board%20(BBB.html

209

You can move the board and observe the IMU values changing. Ctrl+D to quit.

The code isn't 100% stable yet. If the LED is Blue while Stream is running something is wrong. Either

reprogram Manage or power cycle it and it should be fine.

Transferring a program to the Plan board (BBB)

03/15/2015:

While it's possible to compile your code on the BBB, it is not the most efficient way of working. Cross-

compiling on the Host is a lot faster, but it means that we need to transfer the executable from the host

to the BBB.

1. Open a new terminal tab enter cd ~/Desktop/FlexSEA/biomech-ee-svn/Code/flexsea_1_0/plan/
2. Depending on what you compiled for you'll have different "Release_x" folders. Navigate to the

one you want to use. In it you'll find your executable.

3. We use Secure copy (scp) to transfer files. To send 'plan' to the desktop of the BBB use: scp plan
root@beaglebone.local:/home/debian/Desktop

1. If you need to get 'plan' from the BBB (reverse operation), use: scp
root@beaglebone.local:/home/debian/Desktop/plan /home/flexsea/Documents/

2. scp can be used to move multiple files, folders, etc. More

info: http://www.hypexr.org/linux_scp_help.php
4. At this point if you ls on the BBB desktop you'll see the 'plan' program.

Tip: if you need to send 'plan' and 'planm' you can navigate to ...Code/flexsea_1_0/plan/ and use the

following two commands: scp Release_Single/plan root@beaglebone.local:/home/debian/Desktop & scp

Release_Multiple/planm root@beaglebone.local:/home/debian/Desktop.

Update your SVN

03/19/2015:

1. In a terminal navigate to /home/flexsea/Desktop/FlexSEA/biomech-ee-svn/flexsea_1_0/

http://www.hypexr.org/linux_scp_help.php

210

2. Update the SVN with the command svn up

3. If asked, accept the key and provide your Media Lab username and SVN password.

Using a pre-configured BeagleBone Black (Plan board)

03/16/2015:

 Before you get started:

o If you are using the pre-configured VM look on the Desktop for a file named Common
Commands.txt. Copying & pasting long commands will be faster than typing them.

o It's useful to open one Terminal program with multiple tabs (Shift+Ctrl+t to open a new
tab). I usually have tabs named "BBB", "SVN', "SCP", "OpenOCD" and "Misc."

 Connecting to the Plan board (BBB)

 Transferring a program to the Plan board (BBB)

 Executing the program:

o For the first test it is recommended that you use the single command plan (executable

named 'plan' in Release_Single folder). scp 'plan' to the BBB.
o In your BBB terminal confirm that you transfered the executable by calling ls on the

Desktop.
o ./plan default info will list the available FlexSEA commands.

Please note that the list of commands is currently being updated to both clarify what they do and expand

the available functions.

file://hub.media.mit.edu/mas/biomech/storage/shared/JFDuval/FlexSEA/Documentation/03192015/Connecting%20to%20the%20Plan%20board%20(BBB).html
file://hub.media.mit.edu/mas/biomech/storage/shared/JFDuval/FlexSEA/Documentation/03192015/Transferring%20a%20program%20to%20the%20Plan%20board%20(BBB.html

