FlexSEA: Flexible, Scalable Electronics Architecture for

Wearable Robotic Applications
by
Jean-Frangois Duval

B.Eng., Electrical Engineering
Université de Sherbrooke, 2012

Submitted to the Program in Media Arts and Sciences,
School of Architecture and Planning,
In partial fulfillment of the requirements for the degree of

Master of Science
at the
Massachusetts Institute of Technology

June 2015

Licensed under Creative Common Attribution-NonCommercial-ShareAlike

Signature of Author:

Certified by:

CC BY-NC-SA 2015 — Jean-Frangois Duval

Program in Media Arts and Sciences
May 8t, 2015

Accepted by:

Hugh Herr, Ph.D.
Associate Professor of Media Arts and Sciences
Thesis Supervisor

Prof. Pattie Maes
Academic Head
Program in Media Arts and Sciences

FlexSEA: Flexible, Scalable Electronics Architecture for Wearable Robotic Applications
by
Jean-Frangois Duval

Submitted to the Program in Media Arts and Sciences,
School of Architecture and Planning, on May 8, 2015
in partial fulfillment of the requirements for the degree of
Master of Science

Abstract

The work of this thesis aims to enable the fast prototyping of multi-axis wearable robotic systems
by developing a new modular electronics system. The flexible, scalable electronics architecture
(FlexSEA) developed for this thesis fills the void between embedded systems used in commercial
devices and in research prototypes. This system provides the required hardware and software
for precise motion control, data acquisition, and networking. Scalability is obtained through the
use of fast industrial communication protocols between the modules, and the standardization of
the peripheral interfaces. Hardware and software encapsulation is used to provide high-
performance, real-time control of the actuators while keeping the high-level control
development fast, safe and simple.

The FlexSEA kits are composed of two custom circuit boards (advanced brushless motor driver
and microcontroller board), one commercial embedded computer, a complete software stack
and documentation. During its development it has been integrated into a powered prosthetic
knee as well as an autonomous ankle exoskeleton. To assess the usability of the FlexSEA kit, a
new user successfully used a kit to read sensors and control an output device in less than three
hours. FlexSEA simplifies and accelerates wearable robotics prototyping.

Thesis Supervisor: Hugh Herr, Ph.D.

Title: Associate Professor of Media Arts and Sciences

FlexSEA: Flexible, Scalable Electronics Architecture for
Wearable Robotic Applications

by

Jean-Frangois Duval

The following served as readers on this thesis committee:

Research advisor:

Hugh Herr, Ph.D.

Associate Professor of Media Arts and Sciences
Program in Media Arts and Sciences

Thesis Supervisor

Thesis supervisor:

Joseph Paradiso, Ph.D.
Associate Professor of Media Arts and Sciences
Program in Media Arts and Sciences

Thesis supervisor:

David Perreault, Ph.D.
Professor of Electrical Engineering
Electrical Engineering and Computer Science (EECS)

Table of Contents

LY o151 = [AP P PP PPR 3
1 INErOQUCTION e st 13
P Y1 =] 0 W D 1= =4 o O OO RORO 18
2.1 Combining arChitE@CIUIESuvviiieie e e e e e e e e e e e s eenneeees 18
2.2 FlexSEA: core ideas and prinCiplesooviiieiiiiieeeiiiiiee e 19
P20 T U1 1Y) =Y o PSSP 19
2.3 1 FIEXSEA-PIAN ..ttt ettt sttt e b ettt e s aee e 20
2.3.2 L) AN Y T o F- =PSRRI 20
2.3.3 FIEXSEA-EXECULEeiiiiiieiiiieieeeete e 20
IV =T o g T AN el o[=Tt (U1 U 20
2.5 System-wide technical deCiSIONS.........uvviiiiiiiiiiee e 22
2.5.1 FlexSEA-Plan: Embedded COMPULENceeeeiiiiieeeee et 22
2.5.2 Communication: hardWarecoouiiiiiiieiieeetee et 23
2.5.3 CommuNICatioN: SOFEWAIEcooviiiiiiiiiiee ettt 23
2514 SOFEWAIE ettt st ettt s ane e e nareeeas 24

2.6 Design solutions — SHOIt @NSWETS........uiiiiiiiiieiciie e e e s e e e aaaee s 24

I o P 1o Y T T [Ty - o SRR 27
3.1 FIEXSEA-EXECULE ...ttt sttt 27
3.11 PSOC 5 LP MicroCONtrollercooiiiiiiiiiiiieeieeceeee e 29
3.1.1.1 Microcontroller SeleCtionccecueevierieiiieeeeeeeeeee e 29
3.1.1.2 Programmable System on Chip (PSOC)........cccovurreeeeeeeiiiiiireeeeeee e 31

3.1.2 PSOC 4 Safety CO-PrOCESSONuuiiiiiieeeee ettt e eecerrree e e e e e e e rere e e e e e e e e seaanreees 32
3.1.3 Brushless DCIMOTONcccueiiiiiiiiiiieeee e e 34
70 0 T8 A o 1 2 oY T F =T 36
3.1.3.2 Y/ Lo} o] ol U1 =T) T =] 0] V=Nt 39
3.1.3.3 Shorted-leads protection......ccccoccciiiiiiee e 40

BL1L4 RS48G5 et h et e bt e e bt e ae e et e e he e e abeenheeereenaeeeane 43
3.1.5 SErain GaUZE AMPITIEI .. e e e e ar e e e e e e e e eenans 45
70t ST @1 171 e o IO PSPPSR 48
3.1.6.1 P-MOSFET power disSipationccccvveeeeeeiiiiiiiiieeeeeeeeeeeeeinreeeeeeeeeeennnnnreneeeeens 49
3.1.6.2 LeVel SNITEING e e 50

3.1.7 IMUL e st e st e e e e s 50

3.1.8 [O Prot@CLIONS oo 51
3.1.9 USEr iNTerface. . e e 53
3.1.10 POWET SUPPIES . .uteieieei ettt e e e e e s e s e e e e e e e s sennaaareeeaeeeenan 55
3.1.10.1 Brown-0Ut ProteCLIONS ccoeeeeeiecece e s e e e e e e e e e e e e e e e 55
3.1.10.2 Low voltage power SUPPHES ..cccoeeeeieiieeeee e 56
3.1.10.3 LM25011 10V 500MA ...cniiiiieiitenee ettt ettt ettt ettt e et s e e e e saeas 58
3.1.10.4 TPS62163 5V 500MA.....cceiiiiiitieeieeiee ettt ettt sae e e sae e it e e be e s e ereesaeas 59
3.1.11 Future Work and Circuit Modificationsccceeeiiiiriiiiniieinieeee e 60
I A o 1] X 1Y, =T g - = PSPPI 61
3.21 MICIOCONTIOIIET .. e e s 63
3.2.2 INEErface TO PIan....cooeiiiiiee e s 64
3.23 INPULS @NA OULPULS ...eviiiieeee et e e et e e e e e e e s arr e e e e e e e e s e s ennnrenees 67
3.2.3.1 Analog Inputs with Programmable Features........ccccccevvecciiireeeeee e, 67
3.2.3.2 Digital INputs & OULPULSevviiiiieiiiieccee st 69
3.2.33 POWET OULPUES ...ttt bbb besssssssssnsnsnnnnes 70
324 IMU ittt h e bt ht et e e ht e et e naeesteenaee e 71
32,5 FLASH Lttt h e et at e st h e et e ate s teenaae e 71
3.2.6 USErINtErface .ooueiiieiieeiieee e e e 73
32,7 RS48G5 ettt h et enhe e e b e e he e e bt e he e eareenree e 74
3.2.8 POWE ..t e 75
3.2.9 Future Work and Circuit ModifiCationscccceeriieiiieniiinee e 76
Yo i 0TV [T DT F=d o TR PP 77
4.1 Communications and NETWOIKINGcoocciiiieiieii et e e e e e errrreeeeeeeeeans 77
g St R Yo T o] [o= 1 i o] o W =1 V7= PP 78
4.1.2 (B 1= B 11] S =1V R 80
4.1.3 [NV [or= I T SR 81
4.1.4 Yol =T AViT o T oleTa 0] a ¥ [o Yo KRR 81
4.1.5 [1T = ol o 1 TR 82
0 N ST o T=Yol =1 I @eT 1 0] 4 = a1 E USROS 82
4.2 FIEXSEA-EXECULEeeeiiieriieeteeett ettt esne e st e sneesneens 82
4.2.1 Organization and LIMINESuueeeiiii i e e e e e e eeeeeanrrereeeeeesennnns 83
4.2.2 BLDC ComMmMUEATIONcciiiiiiiiiiiiiiic i 86

4.2.3 CUITENT CONTIOIIOE ettt e et e e et e e e et e e e eaanas 90

4.2.4 IMPEAANCE CONTIOIIEI..cii it s e e saaee s 94
4.2.5 Trapezoidal trajectory 8enerationccccueveeeiei e 95
I 1 Y o7 V. =Y = - SRR 96
B4 FIEXSEA-PIAN et 97
44.1 Displaying and 1088INE datauvvieeiiiiieiceee e 97
4.4.2 High-level state Mmaching in Ccooiiiiiii i 98
4.4.3 Interfacing with higher level |anguages........cccovvviiiiiiiieiie e 100
A5 FUBUIE WOTK .ottt ettt ettt e et e e st e e sab e s saneessaneesnnneeeas 102
ST U 1T =) £ T PO PP PPR N OPPI 104
5.1 FIEXSEA-EXECULEeeiiiiiieee ettt 104
5.1.1 Motor Half-Bridge Load testuuueeeeriieiccieee e e e 104
5.1.2 Strain Gauge Amplifier Force Calibrationcccoccvveeiiiiiiee e 106
5.13 o N Ny T YT o] o] =TS 106
5.1.3.1 Preliminary qualificationcccooouiiiiiiiiiie e 106
5.1.3.2 10V SMPS LOAd TESTING .eeeeoutiieeiiiiiieeeeiiee et ee et e e e e et e e s aae e e e 107
5.1.3.3 5V SIMPS LOAd TESHING .veeveieiiiiieiiiiiieeeiiiee e eeiieee e esttee e s ssaee e e e sanneeessnneeassnasees 109
5.1.4 Safety FEATUIES ittt et e e e e e e e sarae e e e e araeeeenn 110
5.1.4.1 Watchdog ClOCK ...t e e et e e 110
5.1.4.2 OVer-temMPeraturecoooiiiiiiiieie it reerr s e e e e e eaaarss e e s 112
5.1.4.3 +VB VORAZE RANGE ...eeeeeeiieeeee ettt e et e e e e e et e e e e 113
5.1.4.4 DisconNNECted BAtteryueeeiiiiiiieiiiiieiee et anrree e e 114

I A N 1o] 1V - o F- 1= U UPURRP 115
5.2.1 Level shifting — FlexSEA-Plan and FlexSEA-Manage Interface.........cccecveeeernnennn. 115
5.2.1.1 Analog Inputs With Programmable Features..........cccceevvvvrreeeeeeeeiicccnrreeennnnn. 116
5.2.2 Power Multiplexer and Linear Regulator Load Testcccceeeevieciiiiieeeeee e, 118
5.3 System BeNCMArKS ..ot e e e e e e 120
53.1 SPI Frequency and Data Rate.......cccuuiiiiieeii et 120
5.3.2 Communication — Plan & EXECULE.........ceiiiiiiiiiiiiieiiieeieee e 121
5.3.3 Communication —Manage & EXECULEccevvvvveviiiieee e, 123
5.3.4 D) = N o Y= =4 o V= PPNt 125

L Y oY o] Lo 1A oY g ¥ A €Ty d ot LY X SRR 128
6.1 Clutched Series Elastic (CSEA) KNEEuvueeiiieiieiiiiieeeee ettt e e eeetreeee e e e e e e sennnees 128

6.2 AULONOMOUS EXOSKEIETON ..eeeeeeieeieee ettt ettt e et e e e et e e e et e e enanas 129

7 Evaluation and RESUILS........cooueiiiiieie e e s 130
7.1 Evaluation Criteria (I€8ACY) ..eeeieeiree ettt et e e e 130
7.2 EVAlUGLION Criteria...cciiiiiiiiiiiiiceee e 130
7.3 RESUILS et s e 132

8 CONCIUSION it b e st nee s 134

O REFEIENCES ettt aeeas 135

10 LAY] 1= (PP PRSPPI 137
0 TS R € (o 117 VPP 137
10.2 EXECULE SChEMATIC coueeeiiiiieeiee et 139
10.3 Manage SChEMAtIC ... e e e e e e e e e e e e s e nnnaeees 153
O S U Y Y o ¥« 1Y SRR 165
10.5 USEr ManUAl....coouiiiiiieiieiee e s s s 167

Table of Figures

Figure 1 Microcontroller based architecture example [1].....cccooeeiieeecciee e 14
Figure 2 Embedded computer based architecture example [2]......ccccocvveeeicciiee e 14
Figure 3 FIexSEA System Architecture: 1 DOFcoooviiiiiiiiiiiee e 21
Figure 4 FlexSEA System Architecture: 1 axisS 2 DOFcccovcuiiiiiiiieeeeriiee e 21
Figure 5 FIEXSEA-EXECUte 0.1 HAardWareceeiicuiiiiiiiiiie et csriee e e st e e s e e s e e s 27
Figure 6. FlexSEA-Execute System Diagram.......ccueeieiiiieeiiiiiieeseiiieee e sieee e s saae e e s s saee e e s 28
Figure 7 PSoC 5 ad - excellent Visualizationc.c.cooviiiiiiniiie e 31
FIUIE 8 PSOC FAMIIIES c.eviveeeieiiiie ettt ettt et e e e st e e e s bae e e s s sta e e e s saneeeesnanees 31
Figure 9 FlexSEA-Execute hardware safety features diagramcccoecvveeeiiciiee e 33
Figure 10 PWM signals passing through the Safety-CoPcccocoveiiiiiiiiiiiiiee e 34
Figure 11 BLDC sChematiC - tOP [@VEl....cccoeeieieeeeee et 34
Figure 12 BLDC sensors (phase voltage & temperature)......cccccevecveeeeeiiiieee e 35
Figure 13 +VB Decoupling CAPACITONS ...ciiieuiiieiiiiiieeeeiieee ettt e s e e s e e s s saae e e e s e e e e e eanees 35
Figure 14 H-Bridge CIrCUIL ...eeiiiiiieeeeiiiiee ettt e st e e e s e e e s e e e s s ntae e e s snaeeeeenannes 36
Figure 15 MOSFET VS IGBT: WhEN £0 USEuuiiiiiiiiieieciiiee ettt ettt ee e st ssaae e e e s e e e s 36
Figure 16 Half-bridge on EXecUte (1 Of 3) ..uuiiiiiiiiieieieee ettt 37
Figure 17 The 3 channels use the same compact layout (B highlighted)cccecvvveerinnnnennnne. 39
Figure 18 Spice simulation, 220A MoOtor CUrrent SENSINGccceveccviiiieieee et eerrrree e 40
Figure 19 Shorted-leads protection implemented with depletion mode MOSFETs 41
Figure 20 Shorted-leads protection: negative voltage generation and gate control................... 41
Figure 21 Spice simulation, VOItage INVEItErcco i 42
Figure 22 One of the 3 RS-485 transceivers present on FIexSEA-EXecutecccoceveeeeecineeeeennnee, 43
Figure 23 RS-485 Modes: synchronous/asynchronous, half- or full-duplexc..cccceeeeuveeneen. 43
Figure 24 TINA-TI Spice simulation of the two stage differential amplifier design..................... 45
Figure 25 CMRR vs Frequency, TI INA331/2331 instrumentation amplifiercccccccveeeeveeenneen. 46
Figure 26 Input: filtering and pProteCtion ... e e e 46
Figure 27 Two stage amplificationoooeiiiiieecc e e 47
Figure 28 PSoC Programmable Analog Blocks - Strain Gauge Amplifierccccceeeeeiiiiccniinnnnn.n. 47
Figure 29 Clutch driver SChemMAtiCccii e e 48
Figure 30 IMU SCHEMALIC ..cccceeiiiieeee e e e e e e e e s et e e e e e e e s e e annnaaaneeeeeas 51
Figure 31 External I/O proteCtion CirCUILcccuiiiiiiiieiiie ettt e 51
(ST={U d RSP 2 qo =1 0 1 o] W ole] o] 1=To 1 o] 52
Figure 33 TPDAEOOS ESD ClamPing....ccceieeceirreeeeeeeeeieciirreeeeeeeeeeessinreeeeeeeessesnnssseesseessesssnsssseseseeens 53
Figure 34 ESD diode routed right under the Expansion connector.........cccececvvvveeeeeeeeicccnnveeeennnn. 53
Figure 35 RGB LED and Green "heartbeat" LED.........cccoveeieiieiiiiiiinreeeeee e eeirreeee e e e eeeennrreeeee e 54
Figure 36 USB ESD ProteCTIONcoi it e e e et e e e s e e e e e e e e e e e e e e e e e sennnans 54
Figure 37 USB proteCtion FOULINGcccvviuiiie ettt e e e e e e e et e e e e e e e e e e eanne e e e e eeeeeeennnnns 54
Figure 38 Power SUPPIIes SChEMATICcccuuriiieiiiii ettt e e e eeeeaarrereee e 55
Figure 39 BrownouUt ProteCioNcoceiiiiiiie et e e e e e e e e et e e e e e e e e eeennaans 56
Figure 40 10V S500MA SIVIPS ...t re e e e e e e e ettt e e e e e e e e e eataa e e e s eeeeeesssnnnaeeeeeeeessnnnnns 58
Figure 41 Compact routing USiNg POIYEON POUIS........uvriiiieieeiieiireeeeee et e e eeeearrreeeeee s 58

Figure 42 5V 500MA SIVIPScee ettt crre e e e e e e ettt e e e e e e e e e eata e e e eeeeesesssnnnaeeeeeesessnnnnns 59

Figure 43 Compact routing using PoOlYZON POUIS.........uviiiiiiiiii i e e 59
Figure 44 FIEXSEA-MaNQAgE O.1......oooiiiiieieiieeeee ettt e e e s e e et e e e e e e e s s antaeeeeeeeesesnnnnnanneeeeeas 61
Figure 45 Manage 0.1 HardWAareccieeicceiiiieeee e ceitteee e e e e et e e e e e e e e s st ara e e e e e e s e s nnnnnnneeeaeas 62
Figure 46 STM32F4 SUD-famili@S.....cccuviiiiieiiiee e e s e e e e 64
Figure 47 MiddleMan 0.1 (predecessor to Manage 0.1) on top of a BeagleBone Black.............. 65
Figure 48 INterface t0 Plan.....cc.uiii it e e e e e e e e etae e e s s e e e e e eanes 65
Figure 49 Level translation, SPl........ et e e et e e e e e s e neeeeeeas 66
Figure 50 Level shifting, external reset signal........cccooouiiiiiriiiie i 66
Figure 51 EXPanSion CONNECTON it sssssbssasssssnsnsnsnnes 67
Figure 52 ANO & ANL: 1/10KHZ LPF, G=1...oiciiiciieiee ettt ettt st ae e s sreesne e 68
Figure 53 AN2 & AN3: 1/10KHZ LPF, 1<G<L0..cccuuieiiieiieeirieereesteesteestee et esreesteesteeeveesaeesreesnneenne 68
Figure 54 AN4 & ANS: BUffered iNPULc.eveii it 68
Figure 55 AN6 & AN7: Programmable voltage dividerccccevvviieeieiciiee e 69
Figure 56 Protected Digital 10......ccooiuiiiiiiiiee e e s e e e s e e e e 69
Figure 57 1 Of 2 POWET OULPULS ...eeiiiiiiieeiiiiee et ce et ee et e e s st e e e e st e e e e s aae e e s snaaeeesssaeeeeenanees 70
FIGUIE 58 FLASH IMIBIMOIY ...uuuiiiiiiiiiitiiiieiit ettt ssbssssssssasssnsssnnnnes 71
FIGUIE 59 USEI INPUL. ..ttt ssssssssssnsnsnnnnes 73
Figure 60 RS-485 H1 3 tranSCOIVEIS .. .uuuuuuiiieiiiiiiiiititititi bbb babesabsssssbssssasssssnnnsnnes 74
Figure 61 Autoswitch Power Mux and 3.3V LDO Regulator.......cccueeeeviiieeeieiieee e 75
=W Y ©] I g To Lo [PRSI 77
FIgUre 63 Payload DYLEScii ittt s e e s e e s st e e e e s e e e e e eannas 80
Figure 64 Packaged Payload ...ttt e e e e e s a e 80
Figure 65 Visual representation of the function timings.........cccccovveeriiiie e, 84
Figure 66 Unipolar 4-Quadrant PWMs - Texas INStrumentscccceveeeeeiccciiiieeee e, 86
Figure 67 FlexSEA-Execute Motor Control (PSOC Diagram)........ccccueeeeecveeeeeeiveeeeeciieeeeecineee e 89
Figure 68 PWM signals - rotating BLDC MOtOrcoceiiiiiiiiee ettt e e eectrrree e e e evrreeeee e 89
Figure 69 Load test bench, equivalent to a stalled Maxon brushless motorccocccvvvieeee..n. 93
Figure 70 Current PID setpoint versus measured phase current (kp = 50, ki = 50)........c..ccc........ 94
Figure 71 First implementation of an Impedance Controller (2014).......cccceccveeeeeccieeeeccieee e, 94
Figure 72 Calculated trajectory: acceleration, speed and position over timeccccccvvveeeee.n. 95
Figure 73 KNee POSItiON OVEF TiME....uuuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieiiirisieasarareerereaererereeerererererararrrrrerrrree, 96
Figure 74 Streaming SENSOT VAIUESccoccueiiiieeiee ettt e e e e e eertre e e e e e e e e et aee e e e e e e s esnnraaaneeeaens 97
Figure 75 Logging Data @t SO0HZuuvuuuiiiiiiiiiiiiiiiiiiiiiiiieiiieiirrirearerebeeeeabeaeeerererererararrrrrereerees 98
Figure 76 Streaming Data in PYthon ... 102
Figure 77 EXPerimental SELUDuuviiiiie ittt e ettt e e e e st r e e e e e e e eenraea e e e e e e s e s nnatanneaaaens 105
Figure 78 Force calibration test on the FitSOCKetccveviiiiiiiiciiieeee e 106
Figure 79 500mMA 10ad, DC 2V/ IV ..cuuiiiiiiiiiteeeeiee ettt ettt e e aee e s e enae e eeareeeeneeeeanes 107
Figure 80 500mMA 10ad, AC 20MV/AIV...cuuiiiiriiieiie ettt ere et eeare e eeree e 108
Figure 81 Load testing with constant CUIreNnt.........ccccvvveeiiiiiiiicc e 108
Figure 82 500mMA 10ad, DC IV/IV ..ccuuiiiiuiieitieectie ettt ettt e et e e e e e ere e e erae e eeareeeeneeeeanes 109
Figure 83 500mMA 10ad, AC 20MV/AIV...ccuuiiiiriiieiie ettt eae e eeare e eeree e 109
Figure 84 Load testing, CONSTANT CUITENT......ueviiiiiiieiiiiiieeee et e e e anrreeeee e 110
Figure 85 Watchdog Clock Pulse-Width Measurement.........cccccceuvveeeeiieeieiiiineeeeeee e 111

file:///C:/Dropbox%20(Personal)/Thesis/Writing/JFDuval_Thesis_FlexSEA_Final.docx%23_Toc418851551

Figure 86 Over-temperature detECIONuuuuuririiiiiiiiiiiiiarauarerrrraararararararararararararararararsranes 112

Figure 87 +VB Voltage in Range detection Code........ccmmiiiiiiiiiiciiiiieee e 114
Figure 88 Disconnected Battery Detection COde........uummiiiiiiiiiciiiiiieiee e 115
Figure 89 SPI signals, Plan side of the level translatorcccooeciei e, 116
Figure 90 Testing the variable frequency filter........coouiii e, 117
Figure 91 Testing the programmable SaiN........ccooo i 117
TN I Mo ¥- o IR = F] a1 = 2SR 119
Figure 93 Automatic switching of the input POWer SOUICecccvievieeiiiee i, 120
Figure 94 SPI Data Rate (83NS = 12MDItS/S) c.veevuieeiiieiiiiiiieiiee ettt ee et e reesaaeenee s 121
Figure 95 Communication - Plan & Execute (2 packets).....cccccueeeviieciiieccieecee e 122
Figure 96 Communication - Plan & Execute (zoom on the 1st packet).......cccccceevciveivieeceveenne. 122
Figure 97 RS-485 Data, 48 DYLES ..cciiviiiieiieiiie ettt ettt et e s e e s sata e e e e s abaee e snnaeeeeenas 124
Figure 98 RS-485 Data, z00mMinNg 0N 1 Dit.....uciiiiiiiieiiiiiiee et e e e 124
Figure 99 Data logging with the "Log" applicationcceevviiiiiiiiiiee e 127
Figure 100 CSEA KNee With FIEXSEA.cco ittt e et e e et e e e s e e s e saanee e e 128
Figure 101 Student wearing an early prototype of the dual autonomous exoskeleton............ 129

12

file:///C:/Dropbox%20(Personal)/Thesis/Writing/JFDuval_Thesis_FlexSEA_Final.docx%23_Toc418851591
file:///C:/Dropbox%20(Personal)/Thesis/Writing/JFDuval_Thesis_FlexSEA_Final.docx%23_Toc418851592

1 Introduction

"Reinventing the wheel" is an idiom often associated with engineering and design. While
innovators use the expression to describe a ground breaking solution or design, it mostly has a
negative connotation. Engineers will be told not to reinvent the wheel when they are struggling
with details or technicalities rather than focusing on the big picture, the problem worth solving.
But what if that metaphorical wheel was indeed broken? Looking back at previous work in the
field of exoskeletons and powered prostheses can be depressing for an embedded system
designer. The wheel, in the form of the embedded electronics, is redesigned year after year,
project after project, with no clear progression and many system redesigns. The ‘big picture’
problem is to give mobility to people that lost it, to augment able-bodied people, not to design
electronics, but it is a critical component that can, in the worst case situation, invalidate a

revolutionary artificial limb concept.

This thesis is not about the design of a novel wearable robotic device that contains an embedded
system; it’s purely about the design of the embedded system itself. The objective of the thesis is
to advance an accessible and capable embedded system architecture that is useable across all
wearable robotic research initiatives, eliminating the need to design a new embedded system for
each and every research project. Ironically enough, once more, the goal is to redesign the wheel,
but hopefully for the last time. Through a careful analysis of wearable robotic requirements
across sensor, actuator and computational modalities, | will demonstrate in this thesis that an
embedded system design can be achieved that is scalable across a plethora of wearable robotic

research programs, and therefore will be used henceforth for more than one year in one project.

There are two main ways of designing electronic architectures for active wearable robotics: 1)
microcontroller-based and 2) embedded computer-based. Figure 1 shows a typical
microcontroller-based architecture with a single 80MHz processor [1]. Figure 2 shows an

architecture based on an embedded computer, a Raspberry Pi running at 800MHz [2].

13

Commercial products are mostly microcontroller-based while research prototypes tend to favor

systems with embedded computers [2][11][17].

High-Level Control Low-Level Control Actuation
s ™

Single Board 400W Brushless [200W Brushless
Computer Motor Drive i Motor w/ Encoder
L 7
Electromagnetic
Clutch

802.11n Wireless

Adapter
24V LiPo Battery
2
2 kHz Audible (1200 mAH)

Alarm

Signal Processing > Communication

[

16-Bit A/D

Conversion

Inertial
Interfaces Measurement Unit

ash, J2 KB RAM J MATL AR
| nk Flexure Based

Load Sensor

Computation

[IC 32 Micro
SOMHZ, $12 KB F
v 4

Power Supplies Absolute Encoder
L*o
4000 L
mAH
Mer

Y

Smart LED
Status Indicator

=~/

SB

Communication

=

J

)]
J

agernment Sold Stee Reley

o

5 | ‘l"irl—vll|”l|
Power Electronics
i] Son

Figure 2 Embedded computer based architecture example [2]

620
[rower

Figure 1 Microcontroller based architecture example [1]

Table 1 presents a general comparison of the two design approaches.

Table 1 Architecture comparison

Microcontroller Embedded Computer

Pros

e Small form factor that can easily be adapted to | ® Quick design phase

different mechanical designs e High-level software (C++, Python, Java, Matlab): ease of
e Low power development
e Unit costis low e Minimize the number of specialized skills required to
e Low level software (C and/or ASM): processor modify the system

efficient

Cons

e Development (prototyping) cost can be higher e High-level software (C++, Python, Java, Matlab): not
e Longer design phase processor efficient

e Requires Electrical Engineering skills for the | ® Higher power (less energy efficient)

design, maintenance and modification e Relies on commercial parts (no control over the
e Low level software (C and/or ASM): less portable, production and life cycle)
requires specialized skills e Harder to modify

14

e Integration issues between different subsystems

e Sub optimal wiring

The two approaches have been used in a multitude of published wearable robotic systems, with
various degrees of success. A few examples are described here [1][2][13][17]. Since the
embedded system aspect of a design is considered a means to an end, documentation is
considered unimportant and is usually scarce. Following the evolution of a wearable robotic
design, one will read sentences such as “Developed a new embedded electronic system” without

a clear justification as to why the previous design had to be abandoned rather than improved.

In all of the designs made in the MIT Biomechatronics Group over the last 11 years, only one
project (AAKP, Agonist-Antagonist Active Knee Prosthesis [18]) used two actuators in one joint.
Due to issues with the control electronics of previous prototypes, brushed DC motors (in lieu of
brushless DC motors) were used, thus impacting the efficiency and mass of the prosthesis. When
experiments were conducted with trans-femoral amputees wearing an active ankle-foot and an
active knee the two joints were controlled independently, without an overarching high-level
controller. Consequently, the lack of availability of an appropriate embedded system solution

had a direct impact on the system design and performance [2][11].

After reading papers, grant reports and interviewing wearable robotic designers, the following

list of general system problems and reasons justifying new designs was compiled:

e Lack of reliability

e Lack of processing power, overloaded microcontroller
e The original designer left the laboratory

e No electrical engineer on the team

e Slow communication peripherals

e Can only support brushed motors

e Can only support one motor

15

e Commercial motor driver has to be tricked into running a special control loop, no built in
functionality
e Power consumption

e Size, mechanical integration issues

These problems are shared by many researchers in related fields such as humanoid robotics and
wearable computers, therefore many designers and companies have attempted to design a
unified embedded system that could be used in a broad range of projects. Commercially available
modular hardware platforms include the Microsoft .NET Gadgeteer system, “an open-source
toolkit for building small electronic devices using the .NET Micro Framework”? [3], the popular
Arduino and its Shields (“Shields are boards that can be plugged on top of the Arduino PCB
extending its capabilities.”?), the BeagleBone Black embedded computer with the Capes and the
Intel Edison with the Blocks3. SparkFun popularized the use of “breakout boards”, minimalist
circuit boards that simply prototyping. These products are now commonly integrated in academic
research projects [2][3][9][11]. Custom embedded system designs have been published for
wireless sensing [5], miniature mobile robots [6], and mechatronics education and teaching
[7]1[8]. The common goals are to minimize the number of circuit redesigns and simplify

prototyping [5].

The price to pay for modularity is often the increase of the number of circuit boards required for
an application, and the increase of inter-board connections. Wearable robotics projects have
different requirements than most pure robotics and wearable sensing projects. Safety and
reliability are major issues, especially in powered prosthetic devices. Simplifying the devices by
using a minimal number of circuit boards and by minimizing the number of interconnections
helps with safety and reliability. The number of degrees of freedom is relatively small (compared
to humanoid robotics), but the instantaneous power requirements are high [2][19]; a greater

emphasis has to be placed on power electronics than on digital communication between the

L http://www.netmf.com/gadgeteer/
2 http://www.arduino.cc/en/Main/ArduinoShields
3 Shields, Capes and Blocks are different name for the same product category: stackable expansion boards.

16

modules. The volume and the weight of the embedded system must be minimized because of

their direct impact on the efficiency of devices attached to body extremities [19].

This thesis presents the design of a modular embedded system optimized for wearable robotic
applications. A flexible architecture allows FlexSEA to be used in a wide variety of projects, with
or without an embedded computer. All the safety features of commercial devices are included
onboard, as well as all the typical sensors and output device interfaces required for wearable
robotic applications. The highly integrated circuit board designs presented in the thesis minimize
the weight of the embedded system, require a minimal amount of wired connections, and are
proven to be easy to use by students. The design was evaluated by a user test and by multiple
guantifiable metrics related to the electrical performance of the different circuit board, and of

the system as a whole.

17

2 System Design

2.1 Combining architectures

The main trade-off between microcontroller and embedded computer based systems is ease of
development versus optimal design. A company designing a new product will likely opt for the
microcontroller-based system to allow a tight integration with the mechanical and industrial
design of the device while keeping unit cost at a minimum. A research lab will likely opt for the
embedded computer system to allow students and researchers without advanced electrical

engineering skills to develop and test new control schemes and wearable robot concepts [11].

One important limitation of both systems is the presence of a single computing element
(excluding the microcontrollers that are present in some sensors and motor drivers) to manage
all the sensors and actuators. Changing a high-level gate control algorithm has the potential to
introduce bugs in safety-critical motor control functions. Embedded programmers know how
easily one can break poorly written code functionality simply by adding one line at the wrong
location, breaking the precise flow of the program. A public example of a safety critical software
bug is the unintended acceleration problem of Toyota cars*. For sure, well written code should
prevent safety issues, but it’s not always what researchers have access to. This brings us to a core
idea of the flexible and scalable electronics architecture (FlexSEA): hardware and software

encapsulation.

In object-oriented programming, encapsulation refers to a language mechanism for restricting
access to some of the object's components. The programmer determines what needs to be
accessible from the outside and what should be kept private. It’s possible to build an electronic
architecture with the same principle used both for hardware and software. One example is
NASA’s Robonaut system: “Modularity is prevalent throughout the hardware and software along

with innovative and layered approaches for sensing and control.”[15]

4 http://www.edn.com/design/automotive/4423428/Toyota-s-killer-firmware--Bad-design-and-its-consequences

18

2.2 FlexSEA: core ideas and principles

The perfect architecture should:

e Combine the power of efficient low-level code and the flexibility of high-level languages

e Allow for quick prototyping of new prostheses and exoskeletons, both on the hardware
and the software side

e Allow quick modifications and additions of sensors and actuators

e Bescalable

e Prevent errors on the high level code to cause safety issues

e Be useable both on research prototypes and on early production units

e Minimize and simplify wiring

e Have built-in safety features

2.3 Subsystems

These specifications can be obtained by using one or many microcontrollers and an embedded
computer in the same system, with a clear boundary between their tasks and functions. The
embedded computer is used only for one task: high-level controls, such as finite state machines
or continuous control laws. One powerful microcontroller per axis is used to interface with all of
the sensors and simple output devices. A separate printed-circuit board assembly (PCBA)

interfaces with the electronics required for motion control.

Following a business organization naming strategy, the three FlexSEA boards are named Plan,

Manage and Execute.

19

2.3.1 FlexSEA-Plan

FlexSEA-Plan is an embedded computer used for high-level computing. It boasts a powerful
processor and can run an operating system such as Linux. Developing code on this platform is
similar to the regular (i.e. non-embedded) software development process. High-level languages
such as Python can be used, saving experimental data is as simple as writing to a text file and
interacting with the system can be done via USB or WiFi. FlexSEA-Plan should be used when ease
of development is important, and when complex algorithms and control schemes require

significant computing power.

2.3.2 FlexSEA-Manage

FlexSEA-Manage is used for mid-level computing tasks. It serves as an interface between FlexSEA-
Plan and FlexSEA-Execute: communication protocols translation, data routing, time-sharing. It
has an Expansion connector that can interface with a wide variety of input and output devices.
Data acquisition, processing, and aggregation can be done on this board, thus unloading FlexSEA-
Plan from these simple tasks. For applications that do not require intensive computing, FlexSEA-

Plan can be taken out of the system and FlexSEA-Manage can host the high-level state machines.

2.3.3 FlexSEA-Execute

FlexSEA-Execute is an advanced brushless motor driver. Wearable robotics applications require
different control loops than the typical position and current controllers found on commercial
drives. FlexSEA-Execute has onboard sensors (6-axis IMU, temperature, voltage, current),
interfaces (strain gauge amplifier), processing power and connectivity to make it possible to close
most control loops onboard. It is well suited for the series elastic actuators (SEA) [10] commonly

used in prostheses.

2.4 System Architecture

Figure 3 presents the simplest full-stack (all three FlexSEA boards) design, typical of what can be

used for a one degree of freedom (DOF) research project such as a powered knee.

20

Remote
Computer

Figure 3 FlexSEA System Architecture: 1 DOF

While developing and testing a new system it is expected to have most of the algorithms running
on the embedded computer, FlexSEA-Plan. FlexSEA-Manage is mostly used as a bridge/translator
between different communication busses, but it can also be used to add extra sensors to the
system. FlexSEA-Execute is in charge of all the motor control algorithms. As the software behavior
stabilizes, the high-level control algorithms can be re-written in C (if they were not already in C)
and ported on FlexSEA-Manage and/or FlexSEA-Execute. Over time, the role of the embedded
computer will be less and less important. On a commercial or pre-commercial application it could

be completely removed from the system.

Remote

Computer

|
.

\
=

——
P

o
= o

Figure 4 FlexSEA System Architecture: 1 axis 2 DOF

21

2.5 System-wide technical decisions

The main goal of that thesis is to provide researchers, at the completion of this project, with a
set of electronics boards that can be used to quickly prototype new prostheses and exoskeleton
ideas. The broad range of applications, user’s technical abilities (from neuroscientists to
mechanical engineers), and the diversity of actuators and sensors used in Biomechatronics makes
it impossible to simultaneously optimize every aspect of the system. All the constituents of the
design were selected and/or designed with modularity in mind to pave the way for future
improvements. More energy was invested in the hardware design than in the software design
because typical users are more likely to improve the software than design new boards. Over the
life of the system, it is expected that the software will be optimized, thus making FlexSEA better

over time.

2.5.1 FlexSEA-Plan: Embedded computer

The initial plan was to design a custom embedded computer with only the features required for
our application. To start experimenting before designing, the BeagleBone Black was selected. It
is economical (S55), widely available, open-source hardware (with full documentation available)
and its processor, the Tl AM3358, has two Programmable Realtime Units (PRU) that can be used
to efficiently communicate with peripherals, making it a perfect reference for a custom design.
By removing multimedia features and optimizing connectors its size (89 x 55 x 15.4mm) can be

greatly reduced.

While the design efforts were focused on FlexSEA-Manage and FlexSEA-Execute, the Internet of
Things (loT) wave grew stronger. Smaller embedded computers were released, with price tags
low enough to be embedded in typical appliances. One example is the Intel Edison. At 35 x 25 x
4mm it has a 500MHz processor, 1GB of RAM, 4GB of FLASH, Bluetooth and WiFi. It was decided
not to design a custom embedded computer but to rather use a standard communication
interface (SPI) that would allow the user to select any product on the market. Processing power

can easily be added to the FlexSEA system as new embedded computers become available.

22

2.5.2 Communication: hardware

FlexSEA-Plan and FlexSEA-Manage have to exchange information. While embedded computers
offer a lot of processing power, communication isn’t always optimal. On one hand, some of them
have simple interfaces such as serial (UART) and I2C that could be used to directly interface with
sensors and microcontrollers, but the data rates are limited. At the other extreme, the Ethernet
port can be used but it requires substantial hardware and software overhead on the FlexSEA-
Manage board. SPI offers a communication compromise, with typical data rates above 20
Mbits/s, more than enough for our application. Due to data rate dropping quickly with distance,

FlexSEA-Manage has to be physically close to Plan.

For the interface between FlexSEA-Manage and FlexSEA-Execute(s) the common choices in
robotics are CAN [12] and EtherCAT. While CAN is cheap, robust and safe, its 1Mbps bandwidth
is an important bottleneck for application with multiple motor drivers. EtherCAT offers 100Mbps
but that speed comes with a price; the bus requires a Master. When this project was started, no
embedded computer was certified as an EtherCAT master, thus requiring the presence of a large
computer in the network. The cables, connectors and special ASICs required for EtherCAT add to
the cost, volume and complexity of the system. With the relatively small number of nodes on a
typical Biomechatronics project (less than 8) a simpler and slower interface can be used. RS-485
is often associated with old technology but its simplicity, low cost, robustness and speed (in
theory up to 100Mbps, 20Mbps achievable in our application) makes it an appealing option for
FlexSEA.

2.5.3 Communication: software

A custom communication protocol was developed for this project. It is used for the Plan-Manage
interface, for the Manage-Execute interface(s) and with the onboard USB. The hardware layer
can be modified; as long as it can deliver bits from point A to point B, the system will be

transparent to the changes. To avoid conflicts and to simplify the system, the communication is

23

highly hierarchical. The Master always initiates the transfer. It can request a Read from a Slave;

Slaves will only emit after a Read request was received.

All the details are in section 4.1 Communications and networking.

2.5.4 Software

FlexSEA-Plan, FlexSEA-Manage and FlexSEA-Execute have three different
microcontrollers/microprocessors but they all have to communicate together. To simplify the
development, all the controllers are ARM-based, GCC is used as the compiler and a set of

common code is shared by the three software projects.

All the details are in section 4 Software Design.

2.6 Design solutions - short answers

While all the details are available further in this document, this section offers quick answers and

solutions to all the issues identified in the introduction.

Lack of reliability: The issue of reliability is addressed at the board level with good design
practice, documented unit tests and the use of safety mechanisms (such as ESD protected inputs).
At the system level, the number of connections is reduced by embedding more features in the

boards, and robust yet miniature connectors are used.

Lack of processing power, overloaded microcontroller: A dedicated microcontroller with a wide
array of sensor inputs on the motor controller (FlexSEA-Execute) offloads the other computing
units (FlexSEA-Mange and FlexSEA-Plan) from the intensive motor control functions. The
microcontrollers used are also high performance. The optional embedded computer can be used

for processor intensive applications.

24

“The original designer left” & “No electrical engineer in the team”: Documentation must be
exhaustive and accurate in order to fully enable the user. One of the graduation criteria is a user
test. The system is designed in a modular way; the least intrusive way of using FlexSEA is to use

a simple Linux terminal.

Slow communication peripherals: Closing control loops requires deterministic timings and fast
refresh rates; it places a lot of stress on the board-to-board communication interfaces. By closing
the critical control loops on FlexSEA-Execute we offload the communication interfaces. The
FlexSEA-Manage board is also used as a bridge, communicating with FlexSEA-Plan via a high-
speed SPI interface and communicating with other boards and peripherals via a variety of other

communication protocols.

Can only support brushed motors: The Execute board is designed for brushless motors; it can

inherently support brushed motors.

Can only support one motor: FlexSEA has been designed with scalability in mind. With its two
serial interfaces, FlexSEA-Manage can support two FlexSEA-Execute without any bandwidth
restrictions. More than one FlexSEA-Execute can be on each bus, the total bandwidth being

divided between the boards.

Commercial motor driver has to be tricked into running a special control loop, no built in
functionality: The user has full control over the hardware and the software of the motor driver.
Any type of controller can be programmed in C and can run at high speed on the Execute board.
The Expansion connector supports a wide variety of external sensors; they can all be used in

control loops.

Power consumption: The power consumption of the embedded system can be high when an
embedded computer is used. Better energy efficiency can be obtained by using a simpler

computer; HD video peripherals, audio amplifiers and wired Ethernet connections are not

25

required in wearable robotics applications. By maximizing the use of FlexSEA-Execute and
FlexSEA-Manage, the FlexSEA-Plan computing requirements are lowered. A slower device can be
used, or it can be placed in sleep mode between actions. Eliminating FlexSEA-Plan and
programming the high-level algorithms on FlexSEA-Manage or FlexSEA-Execute can be extremely

energy efficient.

Size, mechanical integration: The Execute and Manage boards were designed to be as small and

light as possible. They have an integration level comparable to commercial products while having

accessible connectors for inputs and outputs.

26

3 Hardware design

3.1 FlexSEA-Execute

At its core, the FlexSEA-Execute board is a BLDC motor driver. It is specialized for robotic and
prosthetic applications. The high level design goals were to maximize the system integration
(small physical dimensions, large number of integrated peripherals and interfaces, support for
external input and output devices), allow fast communication and networkability via the use of a
fast multi-drop communication interface, and have built-in safety features. The design went
through three major revisions; this document focusses on the last generation (FlexSEA-Execute

0.1).

Figure 5 FlexSEA-Execute 0.1 Hardware

27

Figure 6 presents the logical organization of the FlexSEA-Execute 0.1 board. In orange are the

schematic sheets and in grey are the sub-circuits present on certain sheets.

Temperature

TVS,
LEDs,
decoupling

Figure 6. FlexSEA-Execute System Diagram

Table 2 FlexSEA-Execute 0.1 Specifications

Electrical
specifications

Supply voltage (V)

Motor current (A)

15-24v

20A Continuous

Motor

Intermediate supply 10V 500mA SMPS
Logic supply 5V 500mA SMPS
Type 3-phase brushless (BLDC)
Sensor(s) Hall effect, optical encoder

Commutation

PWM

Block, Sinusoidal, FOC
12 bits 20kHz, 10 bits 78kHz or 9.65 bits 100kHz

Microcontroller

Reference
Special features
CPU/RAM/IOs/Package
Software / IDE

Co-processor(s)

PSoC 5LP - CY8C5888AXI-LP096
Programmable analog and digital blocks

80MHz ARM Cortex-M3, 256KB RAM, 62 |0s, TQFP

PSoC Creator 3.1, mix of C (ARM GCC 4.7.3) and graphical programming.

PSoC 4 - CY8C4245LQ1-483

Serial interface

Type
Bandwidth

3x Half-Duplex RS-485 (can be full-duplex synchronous)
2-10Mbps

Onboard USB

Full-Speed (FS) 12 Mbps

28

Current sensing

Hardware

Software / control

0.005Q resistor

20kHz Proportional-Integral controller

Safety features

Overvoltage

Overcurrent

Locked rotor
Motor temperature

Board temperature

TVS will clamp at 36V
Software protection
Hardware - lead shorting circuit
Hardware measurement

CPU + bridge temperature reading

Clutch Variable voltage, 8-bits PWM, 400mA
Strain gauge
amplifier Dual stage, 500 < G < 10000, high CMRR

10 connector

Molex PicoClasp 40 positions, SMD 1mm pitch

10s available 12
External Digital 10s Upto 12
peripherals Analog inputs Up to 8 (12-bit SAR, 8-20-bits Sigma Delta)
Serial 12C, SPI, UART
Other 1 optical encoder (A/B/1), 1 Hall effect encoder (3 pins)
X (mm) 49
Dimensions (mm) ¥ (mm) 49
Z (mm) From 12 to 15mm depending on capacitors
Layers 6
Copper 10z

PCB technology

Trace/space/via

Assembly

5/5 mils trace/space, 8/20 mils blind vias
Double-sided

Other

6-axis IMU, RGB LED

3.1.1 PSoC 5 LP Microcontroller

3.1.1.1 Microcontroller selection

Since the invention of the microcontroller in the seventies, hundreds of companies are producing
and selling microcontrollers. Most manufacturers have broad portfolios of parts, some of them
offering hundreds of part numbers per family of controllers. Motor control applications are an
important market for microcontrollers. Many manufacturers sell devices optimized for this

application.

The dsPIC series of Digital Signal Controllers by Microchip is a popular choice for low volume

products and hobby designs. They have dsPICs spanning from small device that can control a

29

single motor to large chips able to drive two motors. Having designed multiple dsPIC-based BLDC
drivers for various companies before joining MIT, | decided to stay away from Microchip
products. First, | wanted to generate new IP and avoid possible conflicts. Second, | wanted to
explore outside of my area of expertise. The main problem | was facing with dsPIC-based designs
is the limited analog integration. Adding hardware safety features such as current control and
protection requires many external ICs and large surface area (or inefficient software). Power
consumption is also an issue as the dsPICs are power hungry controllers (1.9mA/DMIPS vs

228uA/DMIPS for PSoC 5 and 414puA/DMIPS for STM32F4).

Tl DSPs are commonly used for advanced motion controllers, one example being the DLR Joint
[14]. The lack of either an open-source or a free closed-source development environment
prevented me from prototyping with their devices. STMicroelectronics is aggressively marketing
some of its STM32 ARM-based MCU for motor control applications. Looking at their datasheet,
they use the same design blocks as the whole industry, therefore no real technical gain could be

had.

FPGA/CPLD can offer high performance but at the cost of complexity [13], power and minimal
analog integration. One family of mixed signal microcontrollers, the Cypress programmable
system on chips (PSoC) offers a hybrid solution between an FPAA, a microcontroller and

FPGA/CPLD.

30

3.1.1.2 Programmable System on Chip (PSoC)

ophn?

” (o

by

Figure 7 PSoC 5 ad - excellent visualization

PSoC 1 PSoC3 PSoC 4 PSoC5
8-bit MBC core 8-bit 8051 core (single-cycle) 32-bit ARM Cortex-M0O 32-bit ARM Cortex-M3
up to 24 MHz, 4 MIPS up to 67 MHz, 33 MIPS up to 48 MHz, ? MIPS up to 67 MHz, 84 MIPS
Flash: 4 KB to 32 KB Flash: 8 KB to 64 KB Flash: 16 KB to 32 KB Flash: 32 KB to 256 KB
SRAM: 256 bytes to 2 KB SRAM: 3 KB to 8 KB SRAM: 2 KB to 4 KB SRAM: 8 KB to 64 KB
I2C, SPI, UART, IC, SPI, UART, LIN, IC, SPI, UART I2C, SPI, UART, LIN,
FSUSB2.0 FS USB 2.0, I?S, CAN . FSUSB 20, 1’8

1 Delta-Sigma ADC (8 to 20-bit)

1 Delta-Sigma ADC (6 to 14-bit) | 1 Delta-Sigma ADC (8 to 20-bit) [1 SAR ADC (12-bit) 192 ksps @12-bit;
131 ksps @ 8-bit; 192 ksps @ 12-bit; 1 Msps @ 12-bit; 2 SAR ADCs (12-bit)
Up to two DACs (6 to 8-bit) Up to four DACs (8-bit) Up to two DACs (7 to 8-bit) |1 Msps @ 12-bit;

Up to four DACs (8-bit)

Up to 64 1/O Upto721/0 Up to 36 I/0 Upto721/0
Operation: 1.7 V10 5.25 V Operation: 0.5 V1055V Operation: 1.71 Vto 55V | Operation: 27 Vto 5.5V
Active: 2 mA, Active: 1.2 mA, Active: 1.6 mA, Active: 2 mA,
Sleep: 3 pA Sleep: 1 pA, Sleep: 1.3 pA, Sleep: 2 pA,
Hibernate: ? Hibernate: 200 nA Hibernate: 150 nA Hibernate: 300 nA
On-chip JTAG, SWD, SWV,
Requires ICE Cube and FlexPods On-chip SWD, Debug renip ' ’
Debug, Trace
CY8CKIT-040 Pioneer Kit

CYBCKIT-001 Development Kit CYBCKIT-042 Pioneer Kit CYBCKIT-001 Development Kit

CYBCKIT-030 Development Kit CYBCKIT-049 Prototype Kit CY8CKIT-050 Development Kit

CY8CKIT-001 Development Kit

Figure 8 PSoC Families®

> http://en.wikipedia.org/wiki/PSoC

http://en.wikipedia.org/wiki/PSoC

The PSoC 4 and 5 have modern ARM-Cortex microcontroller cores. The PSoC 5 family was chosen
because of the higher computing power, onboard USB and higher number of programmable

digital and analog blocks.

The highest end PSoC 5 subfamily, CY8C5888, was chosen to maximize the performance of the
system. While the table above mentions 67MHz, the device used in this project, CY8C5888AXI-
LP096 is 80MHz 100DMIPS. The hybrid hardware/software implementation will be described in

the Software section of this document.

3.1.2 PSoC 4 Safety Co-Processor

FlexSEA being a development platform, it is expected that users will reprogram the FlexSEA-
Execute board to add new commands or control strategies. Timings are critical in embedded
programming, especially in systems without an operating system such as ours. Adding a long
routine in an interrupt, using complex floating-point math or poorly managing communication
with peripherals can disrupt the code execution; significant delays can be added, control loops
can be rendered unstable. Running the debugger (or reprogramming the microcontroller) while
the BLDC motor is turning can also have dangerous consequences. To add one layer of safety we
use a second microcontroller, the Safety-Coprocessor (Safety-CoP). A small PSoC 4 device was
selected because of the convenience of its programmable logic and the availability of the

development tools (same as for the PSoC 5).

32

3= Current + 3x Phase voltage

WDCLK Temperature
—Pc_b Temperature
+“—>r —>
B PUWM >
SL_GATE
Phase
voltage

+WV G Measure TVS,
_ LEDs,
+VB Measure decoupling

3V3

RGE LED

LDO

Figure 9 FlexSEA-Execute hardware safety features diagram

The two PSoC are linked via an 12C bus (same bus that is used for the IMU and the digital
potentiometers) and via a Watchdog Clock line. The master PSoC, the 5LP, toggles that line in its
main loop. The safety microcontroller use programmable hardware to measure the pulse-width
and determine if the main microcontroller is behaving normally (ie if the timings are respected).
I12C is used to share sensor data, not for safety critical functions. Multiple sensors are read by the

Safety-CoP to evaluate the system state.

All the PWM lines are going through the safety coprocessor. If a problematic situation (code not
executing properly, over-temperature, disconnected battery, etc.) is detected, the safety
coprocessor can open all the signals and place the motor in a free-wheeling mode. More
elaborate protection software will then assess the situation and put the system in a safe mode

(such as a highly damped system (shorted-leads protection)).

33

PWMH 1 i+ ;D_ — o H1
PWML1 J——:D_ ——fm L1
PWMH2 [u —:D_ —e—fa] H2
PWML2 _'_—iD_ —fx] L2
PWMH3 _ngD_ —flH3
PWML3 F—iD_ L3
Control_Reg_1
Control Reg
control_0 —

Figure 10 PWM signals passing through the Safety-CoP

The Safety-CoP is also in charge of the negative voltage generation and the gate driving for the
shorted lead protection (see 3.1.3.3). More details about the safety features are available in

section 5.1.4 Safety Features.

3.1.3 Brushless DC Motor

The BLDC schematic consists of 3 copies of the Half-bridge sheet (motor commutation), the

Shorted-Leads protection circuit, phase voltage sensing and bridge temperature sensing.

3% Y2 H-Bridge

% 1z REPEAT(1al(B,1,3):
HE——— 1B NN BIOM FLEXSEA EXECUTE 0 1 Hall-Bridge SchDoc I
R SO 3] il N MOT MOT [1.3 AWGT6_TH
> REPEAT(H) REPEAT(MOT_) <, Iy MOT 1]
I LI MOT 2
0z {: ~, MOT 3 3 "
3 i | i
R 3 L — REPEAT(L) 1 AWG16_TH
sl L
Cs2
CS3 8
R ot cs —] REPEAT(CS) AWG16_TH

Shorted Leads
BIOM_FLEXSEA_EXECUTE_0_1_Shorted-Leads.Schoc

5 SL_CLK MOT 1
[» SL EN MOT 2
MOT_3

Figure 11 BLDC schematic - top level

34

GND vDD 5
c
S

Less
T 100ar

MCPS700A

¢
&

o
P
=

vour H'_
e m—

MOT 1

R53
50k

==

DISA F3F

TPD4EOD4DRYR

=

GND

~

-
5V & 5V
£ g el
R4
0l - 104
&
e B2
& i A&
10k 2
=
=5
82
==
v = =
GND GND GND

Figure 12 BLDC sensors (phase voltage & temperature)

3

MOT

R55
50k

+5V

R5%

DlsC =
TPDAEOO4DRYR

/1
S

Q
7
=

=
GND

U7 is routed close to the power MOSFETSs. Figure 13 shows the decoupling capacitors present on

the Power Supply schematic sheet. They are mainly used for the BLDC driver. C11-14 & C22-27

are relatively small ceramic capacitors. Their total value, 100uF, is not sufficient to guarantee that

the bus voltage won’t exceed the limits if a large amount of regeneration is done. C5 to C7 are

used to absorb all this energy (and to provide power during switching transitions as well), but

they are bulky. In applications were volume is highly constrained, C5-7 can be removed if an

external protection circuit is added to the system (typically, a bus-dump semiconductor or

resistor). This should be done with care.

v B +VB +\’B +\ B +\ B v B v B +VB +v B
+ ‘1- T ‘
'I:: - ?6 . f; . cn cw cn c14 czz cn C24 25 C26 (2?
Ou B0u 0u ‘ 10uF ‘ 10uF ‘ 10uF ‘ 10uF ‘ 10uF ‘ 10uF ‘ 10uF ‘ 10uF ‘ 10uF ‘ 10uF
GND GND GND GND GND GND GND GND GND GND GND GND GND

Figure 13 +VB Decoupling capacitors

35

3.1.3.1 Half-bridges

S1 S3

oft

S2 S4

Figure 14 H-Bridge circuit®

DC motors are commonly driven by a circuit called an H-Bridge. An H bridge is an electronic circuit
that enables a voltage to be applied across a load in either direction. Closing S1 and S4 will make
the motor turn in one direction, while closing S2 and S3 will make it rotate in the opposite
direction. Closing S1 and S3, or S2 and S4, can be used to brake the motor. Closing S1 and S2, or

S3 and S4, will create a short circuit on the power supply and can lead to catastrophic failure.

The switches in the above schematic can be relay contacts, bipolar transistors, MOSFETs or IGBTSs.

MOSFETs offer the best efficiency for low-voltage applications.

Voltage (V)

IGBT
1000

IGBT ? MOSFET

MOSFET
20 100

250

Fsw (kHz)

Figure 15 MOSFET vs IGBT: when to use’

6 http://en.wikipedia.org/wiki/H_bridge
7 http://www.renesasinteractive.com/file.php/1/CoursePDFs/DevCon_On-the-road/DevCon_On-the-
Road/Power/IGBT%20vs%20MOSFET_Which%20Device%20t0%20Select.pdf

36

http://en.wikipedia.org/wiki/H_bridge

For low-voltage high-frequency application such as ours MOSFETs are the most common solution.
A good reason not to use IGBTs is that a distributor like Digikey doesn't carry devices rated for less

than 300V, and the smallest SMT package available is DPAK.

“The selection of a P-channel or N-channel load switch depends on the specific needs of
the application. The N-channel MOSFET has several advantages over the P-channel
MOSFET. For example, the N-channel majority carriers (electrons) have a higher mobility
than the P-channel majority carriers (holes). Because of this, the N-channel transistor has
lower RDS(on) and gate capacitance for the same die area. Thus, for high current

applications the N-channel transistor is preferred.”®

“Gate Driver % I1-Bridge “Local Decoupling

+VB +VB VG VG
VB
T 1 T T I I
T DI
Bs J—L'-lz J—L'u 1 cz
Dl o B I O I S T T
MERO580-TP Rl |'—}|Hc_mmm_.r~15
Ul 1 415 Gl
L vee we LB 3 4 g
T‘ F T'““ﬂt GND GND GND GND
Rk o 20y po g2 HO [I (b ‘:: MOT T
T ke SN vs |8 — bl 0
COM L0 2 LO R2 I'_}HSI'OHNOGNS
475 Gl
IRS21867 (b ?)
GD
GND
-+
R27
0,005
NS

GND

Figure 16 Half-bridge on Execute (1 of 3)

A voltage of 10V from the Gate to the Source (noted Ves) is required to fully turn on an N-Channel
MOSFET. The source of the high side switch can swing from the lowest system voltage to the
highest. To turn the high-side switch on we need a voltage higher than the motor voltage, typically

the highest voltage in a system.

8 http://www.onsemi.com/pub_link/Collateral/AND9093-D.PDF

37

http://www.onsemi.com/pub_link/Collateral/AND9093-D.PDF

“A gate driver is a power amplifier that accepts a low-power input from a controller IC and
produces a high-current drive input for the gate of a high-power transistor such as an IGBT
or power MOSFET. Gate drivers can be provided either on-chip or as a discrete module. In

essence, a gate driver consists of a level shifter in combination with an amplifier.”®

The IRS21867 was selected because of its robustness, especially for its tolerance to negative
transient voltages. For the MOSFETs, the QFN 5x6 package (also known as 8-PowerTDFN and PG-
TDSON-8) was selected for its small size, its wide industry acceptance and the convenience of

doing bottom cooling.

The BSCO14NO6NS MOSFETs were selected for their availability, price, low Rpson and low gate
capacitance. As a safety margin, MOSFETs rated for at least twice the bus voltage (28V Max) were

selected. At 60V, the BSCO14NO6NS are protected in case of really bad inductive spikes.

The R1 and R2 gate resistors were selected from what could be called an “educated arbitrarily
decision” as a compromise value between fast switching and slow switching. Switching too slowly
can introduce shoot-through and increase switching losses, while switching too fast can increase
the transient voltages generated (can lead to more noise, and to component destruction in
extreme cases). The efficiency of the motor driver can be augmented by carefully selecting gate
resistors and by doing a careful selection of semiconductors, but this optimization is outside of

the scope of this work.

R27 is used for current sensing.

% http://en.wikipedia.org/wiki/Gate_driver

38

http://en.wikipedia.org/wiki/Gate_driver

Figure 17 The 3 channels use the same compact layout (B highlighted)

As can be seen on Figure 17 a large number of vias are used. They serve two purposes: thermal

transfer and layer “tying”. This PCB has 6 layers:

e Layer 1: Top components, signals and small planes

e Llayers 2 and 5: Ground planes

e Layer 3: Power. Top half is a +VB plane, Bottom half is a +5V plane.

e Layer 4: Mixed. In the context of the bridges, it is used for the MOT nets and for +VB.

e Layer 6: Bottom components, interface to the heat sink (so a maximum plane area is used

around the bridges).

The critical power paths are always shared by a minimum of two layers.

3.1.3.2 Motor current sensing

The programmable analog blocks of the PSoC can be used to design a small, low-cost motor
current sensor. One shunt resistor per bridge is used. Two resistors and one capacitor are
required for the feedback. In the PSoC we use one operational amplifier, one DAC and one analog

multiplexer.

39

Quadrants 1 and 3

Circuit 2 - With Offset

Works with Regen

SINE(0 20 20k 0)

24Y
Y

24V 5V

.tran 2m Can be the DAC (1V ref = 4mV/bit)

Figure 18 Spice simulation, 20A motor current sensing

Power rating of the sense resistor:
PRES = 12 *R = 20A2 * 0.00SQ - 2W

(Eq 1)

3.1.3.3 Shorted-leads protection

For prostheses, a safe fail-safe mode is to short the leads of the motor, maximizing the
mechanical damping. Given a large enough transmission ratio and a small enough shorted lead
resistance, a patient could keep walking on his or her unpowered device. Failing with the motor
bridge open is a hazardous situation since the reduced joint stability may cause the patient to

trip and fall.

A disconnected or completely empty battery means that the control logic will lose power and
that the H-Bridge MOSFETSs will turn-off. One solution is to use a backup battery to power safety
circuits but there are many downsides: cost, volume, finite lifetime. Another option, used in this
design, is to design a circuit that will short the leads when un-powered. To achieve that we used

depletion mode MOSFETs.

40

{MOT 1
o < e
D = D = =
SL_GATE, =1 = = = = = 'i z
(S i e G T E G T = 4
- oo o =
o Su 30 o
RS0 58 & g | 8% 4
200k
GND GND GND GND
GND y
MOT 2
o (=] o
D = D = D =
=% 2 =} = N
cAfE o fs o fE z
g ge 52 | a5
s oG S az
o
GND GND GND GND
7 MOT 3
o o
D = D =
=% = [
G G £ G] g Z
S| 5k I EE
OU OD [aR=
GND GND GND GRD

Figure 19 Shorted-leads protection implemented with depletion mode MOSFETs

Q6
cs3 2SAITHG
R47 R48 ;
SL_CLK ——w——| [SLEN e 2 3 SLGATE
e 1000F D19 Tk *
SDMA0E20LS-T-F 54 R49
100nF 10k
GND GND Vs
GND

Figure 20 Shorted-leads protection: negative voltage generation and gate control

41

V[-4v5)

R2 c1 D2

b
q'

V1 470 100n |D1 BATS4

PULSE(0501n1n 0.5u 1u 0)

.tran 2m

Figure 21 Spice simulation, voltage inverter

There is inherent safety in this circuit. To turn the MOSFETs off we need a negative voltage; this
voltage is only generated when the Safety-CoP clocks the inverter circuit. When there is no

power, no negative voltage, or no gate signal, the MOSFETs are ON (shorting the leads).

The Ros-on resistance of depletion MOSFETs available at the time of design was either large (few
ohms) or the devices were extremely large. The CPC3703 are relatively small, cheap and not too
resistive. By using 3 devices in parallel we get 1.33Q and 1.8A of pulsed drain current. This current
rating is not enough to handle all the energy present in a system that would suddenly get
disconnected. The decoupling capacitors and the brownout protection circuits will keep the logic
circuits powered for a few milliseconds after the battery gets disconnected. The software, after
detecting a loss of power, will use the h-bridge MOSFETs to absorb most of the energy, then

enable the depletion mode MOSFETSs for the unpowered state.

42

3.1.4 RS-485

b RSHES BI >

485 RXI 7= RO
485 RE] —— =4 RE

VCC

7 RG
& 120

3 A
485 DEI] :—4l> DE |
485 TX] =——= DI < — _RS485 Al -

L

GND

SN6SHVDTS

GND
Figure 22 One of the 3 RS-485 transceivers present on FlexSEA-Execute

Mode Clock? Duplex? | Twisted pair(s) (TP)? Details
1 | Asynchronous| Half TP1 Transmit and receive on TPL. Use RX12 & TX12.
2 | Asynchronous| Full TP1+TP2 Transmit on TP1 (TX12), receive on TP2 [RX12}
3 Synchronous Full TP1+TP2+TP3 Transmit on TP1 (TX12), receive on TP2 (RX12}, clock on TP3

Note: For port #2 replace RX/TX'12' by '45' and use TP4 to 6.
Figure 23 RS-485 Modes: synchronous/asynchronous, half- or full-duplex

Three transceivers allow the user to select between three modes: asynchronous half duplex,
asynchronous full-duplex and synchronous full-duplex. The trade-off is between simplicity and
data transfer speed. The PSoC 5LP UART module can be configured for 8x or 16x oversampling
and has a maximum baud rate of 4Mbits/s. The Master Clock is 80MHz and we can only use

fractional dividers. Using 8x we can calculate the baud rate versus the clock divider:

Table 3 Baud rate versus clock divider

Divider | Baud rate Comment
1 10M Over 4M, invalid
2 5M Over 4M, invalid
3 3.33M
4 2.5M
5 2M

43

The baud rate selected on FlexSEA-Execute has to be closely matched with the baud rate selected

on FlexSEA-Manage:

baudrateyanage = fex/(8 * (2 — OVER8) x USARTDIV)
(Eq 2)
fak is 84MHz and OVERS is O for 16x oversampling.
USARTDIV = f¢1x/16 * baudrate
(Eq 3)

In the STM32 register, the fractional part of USARTDIV is stored in 3 bits (8 possible values). The
fractional part has to be a multiple of 1/8 (0.125). Different values have to be approximated, thus

introducing averaging errors in the communication timings.

Table 4 Error versus baud rate

Baud rate | USARTDIV | Rounding error | Error (%)
2M 2.625 0 0
2.5M 2.100 0.025 1.19
3.33M 1.575 0.050 3.17

To minimize the communication errors 2Mbits/s is used. That limit can easily be overpassed by

using synchronous communication.

The SN65HVD75 transceivers were selected for their high tolerance against ESD events (IEC
12kV), small size and wide availability. No dual- or triple-transceivers offered the same protection
level; integration was sacrificed to increase robustness. The 8-TSSOP was only selected because
of a bad filter selection on Digikey. While designing the FlexSEA-Manage 0.1 board it was found
out that a 3x3 mm 8-SON package is available. The latter one is used on FlexSEA-Manage, and

will be used in the next FlexSEA-Execute revision.

44

3.1.5 Strain Gauge Amplifier

Strain gauge load cells are used as force and torque sensors in industrial and research
applications. Due to the commoditization of products such as digital scales it is now possible to
purchase inexpensive sensors. The sub-millivolt output signal range isn’t suited for typical ADC
inputs; amplification is required. The large common mode voltage (half-supply) is well suited for
differential/instrumentation amplifiers. The Tl INA331/2331 single-supply instrumentation
amplifiers ICs are economical, small and require a minimum number of external components.

Their gain being limited to 1000V/V, a dual stage design is used. The design was first simulated
in TINA-TI.

[re—
[Variable gain (now = 45)] 26 B alg | TigiyE~Of s S

Fixed G=105 R 1k R28k 500
L lxed G2 . 9?_'[\‘ 2V5 —4—AAN— i N TN
RS 1k 5 20k 1

Sirain gauge

T ——
5
)
AN
.

IMJUS(offset here

Figure 24 TINA-TI Spice simulation of the two stage differential amplifier design

Amplifying with gains in the thousands right next to a BLDC motor can easily be problematic.
While the first page of the datasheet claims a 94dB common-mode rejection ratio (CMRR), the

first set of experiments were inconclusive. The CMRR is strongly dependent on the signal

frequency:

45

COMMON-MODE REJECTION RATIO
vs FREQUENCY

120

100

80 \

60

CMRR (dB)

40

20

10 100 1k 10k 100k
Frequency (Hz)

Figure 25 CMRR vs Frequency, Tl INA331/2331%0 instrumentation amplifier

Typical motor PWM frequencies are from 20 to 100kHz. Analog filtering was added before the
first amplification stage, limiting the bandwidth to 500Hz and offering 44dB of rejection at 20kHz.

AInpm filter & protection

SG N R’»&D RJGL

N
Lo L
C48D C48C

E‘ 100nF 100nF
DI2A O
TPD4E004DRYR

GND GND GND

SG P] R?ﬁR R%A

+5V l Ik
C48B C48A

E‘ 100nF 100nF
DI2B O
TPD4EOO4DRYR

GND GND

Cascaded LPF 1.6kHz
made with networks to get
the best matching possible.

Figure 26 Input: filtering and protection

Two 12C digital potentiometers (Microchip MCP4661, dual potentiometer, U5) are used to adjust
the offset and the second stage gain. U5B allows the user to adjust the output reference of the
first stage by +20% (centered at half supply). The offset adjustment span of +20% and the fixed
gain of 105 were calculated based on experimental data (5 load cells were randomly selected and

measured. The worst offset was used to calculate the required compensation.)

10 http://www.ti.com/lit/ds/symlink/ina331.pdf
46

R3&
7.5k

UsB

P1A
% PIwW
PIB

MCP4661T-103

7

BN

R4l C31

7.5k | 100nF

v

GND - GND

R26 lt'—i—'l

UbA =SV

R39
Wl 1 fraa soRA {,JN

REFA VoutA

Vin-A

Vin+A

usc I
&
POA |—o— -
_q e -
%& POw .
pop |12 A7F
MCPAGAIT-103
ush sy

Ra0)
9 1| rge STDNB qq‘

" e

VoutB

Vin-B

[NA2331

Figure 27 Two stage amplification

VintB
INA233 1

When possible, internal PSoC analog components were used to simplify the circuit. This is the

case for the offset buffer operational amplifier, the V/2 reference voltage and the VR2 DAC. U5C

allows the user to change the second stage gain, from 5 to 105. Via software VR2 can be

programmed (it's on a DAC output) to change the output reference. Some applications use

unipolar forces (ex. pushing only, never pulling); using a non-half-supply reference can increase

the resolution of the measured force.

DMA_2

Strain Gauge: ADC _DelSig_1
AMux_2 ADC_DelSig
SG_V02 [f——)
SG_VO1 ' | EAY
Vdda/2 [Vref]-] HalfV — |
VDACS8_3 Yo
VDACS8 Opamp_3
Opamp
| 1
VDAC » I 1 VR2
Opamp_2
Opamp
VR1_PRE [i—— t & VR

DMA

drg nrq——{+isr ds

Figure 28 PSoC Programmable Analog Blocks - Strain Gauge Amplifier

47

3.1.6 Clutch
PWM Clutch

VB VB Q3
FDN3618P
—_CLUTCIH POW
W a
R32
VB is in the * <

15-28V range.
This gives us a
Vesof 7.5 to 14V,

TTJI.‘-
MBROSEO-TP
o~

Q3

LS

RN1106MFV

GND GND

Figure 29 Clutch driver schematic

Locking the position of a motorized joint requires power, even when there is no motion. This is
an inefficient use of energy [2]. Designs such as the CSEA Knee use an electro-magnetic clutch to

hold a joint in place without requiring power from the motor [2].

When not engaged, the air gap between the two pieces of the clutch reduces the attraction force
of any magnetic field that the clutch can generate. More current is required to engage the clutch
than is necessary to keep it locked. Using PWM, it is possible to use maximum power to engage

the clutch, then reduce the voltage applied across its terminal as an energy saving feature.

Use of a high-side switch is preferred because it is typical to link the metal chassis of prostheses
to ground and some clutches have their casing grounded. Using a high-side switch can simplify
the electromechanical integration. The power requirements being low, it is possible to use a P-
Channel MOSFET as a switch. D13 is used as a free-wheeling diode for inductive loads, as a

protection for Q3.

48

3.1.6.1 P-MOSFET power dissipation

The clutched used in the experimental setup and in the CSEA Knee is rated for 24V 250mA 6W.
The unit in hand was tested at 242mA. To accommodate bigger clutches (and other output
devices) the calculations will be done for 24V 10W (417mA), used at 10V. The current at 10V will
be 174mA.

Using an FDN5618P P-MOSFET:

PDggsistive = [ILOAD2 * RDS(ON)] * Vour/Vin) 1
(Eq 4)
PDswirching = [CRSS * VIN2 * fsw * ILOAD]/IGATE
(Eq 5)
Where:
lLoap: 174mA
Vout/Vin =D = 10V/24V = 0.42
Rosion) = 0.315 Q (worst case)
Crss: 19pF
Vin: 24V
fsw: 20kHz
lgate: 10.9mMA

We obtain PDggsistive = 4mW & PDsyircuing = 3-49mW . The total power dissipation is
7.5mW. If the clutch is powered at 24V 10W (no switching) the dissipation will be 55mW. The
thermal resistance of the SuperSOT-3 package, from junction to ambient, is 270°C/W.
C
T] = R]A * P + TA = 270°W * 55mW + 35°C = 4‘9°C

(Eq 6)

11 Based on http://electronicdesign.com/boards/calculate-dissipation-mosfets-high-power-supplies

49

3.1.6.2 Level shifting

A pre-biased NPN BJT (RN1106MF) and two resistors are used to allow one 0-5V microcontroller
output to turn on and off the P-MOSFET. The battery voltage can span from 15 to 28V. Vs is
determined by the ratio of R32 and R33 and by the saturation voltage (Vce_sar) of the BJT (0.3V

max). Vce_sat being less than 2% of the minimum voltage it is negligible.

Ves = Vg (1 - (R33/(R33 + R3z))) = 0.5Vp

(Eq 7)

Vg ranging from 15 to 28V, VGS will be from 7.5 to 14V, below the maximum of £20V and high

enough to provide a low Rpson.

3.1.7 IMU

Accelerometer and gyroscope are commonly used for the control system of prostheses and
exoskeleton. They are used to measure angular velocities, angles and impacts. The MIT CSEA
Knee [2] used a sensor board!? populated with an ADXL345 accelerometer (3-axis, +2 to +16g)
and an ITG-3200 gyroscope (3 axis, £2000°/s) [2][11]. The MIT Autonomous Exoskeleton [19] uses
a LPY550ALTR dual-axis gyroscope (500 °/s). These parts were selected because their range

covers the angular velocities and accelerations of human walking.

For the FlexSEA-Execute board a single chip solution is used. The MPU-6500 integrates a 3-axis
accelerometer (+2 to +16g), a 3-axis gyroscope (+250 to £2000°/s) and a temperature sensor. The
same IMU is present on the FlexSEA-Manage board. An example application that would require
IMUs on both the FlexSEA-Manage and the FlexSEA-Execute boards is a dual leg exoskeleton with

waist mounted control electronics. The Execute boards would be located on the feet while

12 https://www.sparkfun.com/products/10121
50

FlexSEA-Manage’s IMU can record whole body motion and user intent (such as sitting, leaning,

etc.)
[MPU-6300 6-axis Morion Sensor |
e VI H3V3 HVE £3V3
It.'|-| I("15
U o T inoE] 10nF
DAL Uil spasDl 2 o AUXCL bt
SCLT_—j—53#{ SCLSCLK £ £ AUX DA = —
— gt NS = NC —3 GND GND
ne 2l ADSDO NC
o] e - [3
——5 FSYNC NC = =
- IMUINT |— 7:—?:: IN.T NC 3 Foute 1inF |
— Nl._ 5 Nl_ FE— near pin &
L] :;w 2 S :E 1o
LAY = o C =
20 | gesy g5 2 Ne |
o o] MRS
lfr-'('-. O] 101000
Clé
T roonk
7 | .
GND GHND GRD

Figure 30 IMU schematic

The main limitation that was found during software development was the low frequency of the

I12C bus, 400kHz. All the devices from the same manufacturer have the same limitation,

preventing an easy modification. Information can be accessed faster via SPI.

The IMUINT signal can be used to time the data acquisitions with the availability of new

measurements.

3.1.8 10 Protections

3V
R13C
{EXP1 ~ 10'0 = 103
)
o
i
=
(=3
X
22
2y =)
GND

Figure 31 External I/O protection circuit

51

All the inputs and outputs that are connected to the Expansion connector have the same basic
protection circuit. The ‘E’ suffix denotes the pin that is linked to the external world, while the

same net, without the suffix, is linked to the circuit.

okl ekl
J6
1 1 a4 2) CLUTCH POW
313 s 4
EXPSE L 5 1% 6 16 | HALL3E
EXPOE [[713 s |2 [HALLZE
[NCI BE [[9 |4 10 10 [HALLIE
ENC1 1E [[11| 12 [ENC1_AE
1 12
L PR L
EXP3E 15 1].\ 16 16 EXP5E
EXP2E [[7] .5 g 18 J_EXP4E
EXPIE L (19 | o 5 20
Ff— 21 2 e PR
. . —1 = 23 24 |—= B
EXPGE [L 25 26 L 1 EXPTE
> 25 26 >
[7] 50 5 28
7 28 . .
RS485 A3 \ 29 15 3 |20 [| EXPIOE
RS485 B3 ¢ 313 3y [32 C I EXPIIE
RS485 A2 [33 | 33 .“;f 34 [
RS485 B2 { 35 | 55 a6 | 30 [L sgrp
RS485 Al [37 | 37 g |38 [[SG N
RS485 Bl [3935 49 % [
PC40H |
GND GND

Figure 32 Expansion connector

A special diode pair (TI TPD4E004) is connected to each pin, as close to the connector as possible.
The TPD4EOO04 is designed to provide ESD protection up to +8-kV (IEC 61000-4-2 Contact
Discharge). The diodes having a forward voltage of 0.8V, they will clamp a steady input voltage
from -0.8V to 5.8V. In case of an 8kV ESD contact discharge the voltage will be limited to 80V,

100x less. The PSoC 5 is protected up to 500V; the extra diodes will prevent pin destruction.

TYPICAL OPERATING CHARACTERISTICS (continued)

120

100

80

60

Amplitude (V)

R A
\v/“"" v A

0 5 10 15 20 25 30 35 40 45 50
Time (ns)
Figure 5. IEC ESD Clamping Waveforms +8-kV Contact

52

Figure 33 TPD4E004 ESD Clamping??

Figure 34 ESD diode routed right under the Expansion connector

A series 100 ohm resistor limits the current to (5-0)/100 = 50mA in case a high output is shorted
to ground. The same series resistor will also limit the current when the diodes are clamping the
input voltage. The maximum rating for PSoC 5 pins is 41mA. A resistor of 120 ohm should be used

instead of 100 ohm. This is reflected in the Future Work section.

A higher degree of protection would be gained from using a higher value resistor. The main trade-
off of designing a system that can be used for any situation is that one cannot optimize every
single detail. Using a value such as 1k or 10k for un-buffered analog inputs would introduce too

much noise in the ADC conversion.

3.1.9 User interface

A RGB LED is used to display the state of the code (normal, communication loss, warning, error).

A flashing green LED is used as a heartbeat signal: when the code is running properly it flashes.

13 http://www.ti.com/lit/ds/symlink/tpd4e004.pdf

53

o]
jani
5V a
T -
—
D16
- gR17
. A L £ 3k
\T) wY ¥ uy
=
=
wr
==
RI8 SRI9 §R20 h 42K
3k P13k 313k *LNJ347W83RA
LEDR
LED G ;
LEDB YD

Figure 35 RGB LED and Green "heartbeat" LED

The white balance of the RGB LED is poor due to a bad assumption (constant current across colors
does not lead to white light when R, G & B are turned fully ON). The Future Work section specifies
different resistor values. A USB port is present on board for debugging. Users can use it to send

FlexSEA commands to Execute without the need of Manage and/or Plan.

D6
TPD2EUSB3I0DRTR

Figure 36 USB ESD protection

Figure 37 USB protection routing

54

3.1.10

Power Supplies

4 different voltages are required on Execute. Table 5 specifies the naming convention and the
voltage ranges.

@‘ +10V 500mA SMPS +5V 500mA SMPS ‘+3V3 250mA LDO
AWGLe TH . LU.(\ & LU‘
2 s [TV will clarp at min 36.7V J—;"P - J—:J
Figure 38 Power Supplies Schematic
Table 5 Power Supplies
Symbol Voltage Source Details
+VB 15-28V (typ. 24V) | Battery Battery voltage
+VG 10V +VB | Gate driver voltage, input for low voltage regulators
+5V 5V +VG Logic supply - almost everything
+3V3 3.3V +5V Logic supply, RS-485 & IMU
3.1.10.1 Brown-out protections

When turned-on, inductive loads such as motors will draw a current that is only limited by their
equivalent series resistance. This current can be extremely high because the resistance is kept to
a minimum to limit thermal losses. During such events it is important to keep the control
electronics powered. To prevent those currents from stealing energy from the logic power

supplies we use a simple circuit consisting of a diode and a capacitor.

55

~Vin +Vout
D?

—C?

N

GND

Figure 39 Brownout protection

+Vin is the input voltage that would normally go to the next circuit. Instead, the diode prevents
the input filter capacitor from being discharged by anything else than the current on +Vout. The
capacitor can be sized to provide a sufficient energy reserve to keep the output voltage regulated

when the bus voltage drops.
The diode decreases the efficiency of the power supply. Using a Schottky with a small voltage
drops keep the losses to a minimum. Efficiency loss for a theoretical circuit that converts from 24

to 12V with 100% efficiency, with a 500mA load on its output (6W):

VIN = 24’V - VDROP = 24V - OSV = 235V

(Eq 8)
Iy = Poyr/Viy = 6W /23.5V = 255.32mA
(Eq 9)
Py = Viy * I}y = 24V % 255.32mA = 6.13W
(Eq 10)
n = Poyr/Piy = 6W/6.13W =97.8%
(Eq 11)

3.1.10.2 Low voltage power supplies

It is important to minimize the power consumption of prostheses and other wearable robots to
minimize the volume and weight of the batteries used (they have a direct effect on system
efficiency) and to minimize heat generation, a potential cause of discomfort for the users. The

MOSFET gate drivers require 10V and the microcontroller and most sensors are powered at 5V.

56

Using a linear regulator to provide 50mA at 5V (250mW) requires 50mA at 24V (1.2W), a 21%
efficient energy conversion with almost 1 watt of heat that requires to be dissipated; this is
unacceptable. The only sensible solution is to use one or more switched-mode power supplies

(SMPS).

The current requirement on the 10V bus being small, it was decided to use the 10V as a pre-
regulation stage for the 5V power supply. Using 10V rather than 24V as an input voltage allows a

wider range of ICs to be used.

The core of both circuits was designed with TI WEBENCH Design Center!4. The same list of

modifications was applied to both designs, as detailed below.

14 http://www.ti.com/Isds/ti/analog/webench/overview.page?DCMP=sva_web_webdesigncntr_en&HQS=sva-web-
webdesigncntr-vanity-lp-en

57

3.1.10.3 LM25011 10V 500mA

+VB
T D26 VG
Do MBROSEO-TP
VB
MBROSE0-TP
Uy
L vin BST ‘0—|
F R21 J:(',w
Link 1.0{7\1, 110k 100nF 11 12 Fl
Unused for 3 — — Ve | 5
now. 5 SwW o 2”: N 2 @;—
= 2l <1
*T S00mA
sy R22
7 29 4k
R2} 1 MBROSEO-TP
PGD
10k
s &
=038 =—=C390 s ==C40 —C&
uF 1uF 4 20 22uF
58 R24
02 R25
Cal ep |EP 10k
10nF § 7
5 CSG o
= SGND FB
LM25011Q1
NSNS v e ~7
GND GND GND GND GND GND GND

Figure 40 10V 500mA SMPS

2

£

NetC40_2

Figure 41 Compact routing using polygon pours

D9, C38 and C39 were added to provide brown-out protection. Size constraints limited the
capacity of C38 and C39, leading to an extremely short protection period. C40, L2 and C8 form a

PI filter. It is used to minimize the output noise, to avoid transferring that switching noise down

58

to the 5V supply. F1is a PTC (Positive Temperature Coefficient), also known as a resettable fuse.
The circuit was designed with a 650mA current limit (by selecting Rs = 0.2Q), the PTC should only

trip in case of a catastrophic failure.

3.1.10.4 TPS62163 5V 500mA
g

+VG D27 +5Y
T MBROSSU-TP T
D28
Vgl
MBROSEG-TP U3
L3 L4 F2
2 VN SW L * o @
2.2uH luH =
500mA
L 2l N vos 4
R16
LI panp PGt —
110k
=033 ——(C34 4 . 5 ——C35 =36
ATF | 10uF SIERTY G 220F 10uF
THERM |2
TPS62163
v v v
GND GND GND

7 =7 %7
GND GND GND

Figure 42 5V 500mA SMPS

Figure 43 Compact routing using polygon pours

59

3.1.11 Future Work and Circuit Modifications

List of modifications that do not require circuit modifications (only BOM changes):

Lower the I2C resistor pull-ups (R45, R46) to 1.8kQ (currently 4.7kQ)

Change the 10 protection resistors (R10-R13, R64, R65) to 120Q (currently 100Q)

Less resistive PTCs (F1, F2)

Lower the Gate resistor values by at least half. More calculations and testing is required

to find the optimal value.

List of modifications requiring circuit modifications:

The 400kHz I2C limit on the MPU-6500 is slowing down the bus. If a new IMU has to be
selected a 1MHz version should be considered.

RGB LED: poor color balance. The next design should use 243/249/412Q).

Add a second green LED to unify the user interface with Manage.

Add an external filtering capacitor for the Delta Sigma converter (0.1 to 1.0uF, see
component datasheet).

Add SWD (P1[3]) to the PSoC 5 SWD connector (J9). The Serial Viewer isn’t supported
yet but will be convenient in the future.

The 45V’ supply should be measured.

The RS-485 transceivers (U4, U10, U11) should use the 8-SON package to save board
space and unify the BOM with Manage.

The position of the SWD connectors (J5, J9) is not convenient. They should be on the top
side. Swapping their position with the RS-485 transceivers would be convenient.

Many expansion pins are on port 12. They are SIO and not GPIO (no analog features).

Most of the expansion signals should support analog inputs.

60

The only patch that needs to be applied to use the circuit is to lower the 12C pull-ups. All the

other changes are not problematic but will improve the quality of the design.

3.2 FlexSEA-Manage

Figure 44 FlexSEA-Manage 0.1

FlexSEA-Manage is a polyvalent circuit that can have a wide range of usages depending on the
system architecture. In the simplest system designs, it will act as a communication protocol
translator, allowing Plan and Execute to communicate. When multiple FlexSEA-Execute are used,
it routes packets, and can manage communication timings. It can be used to add extra sensors
and output devices to the system. In systems that do not require the computing power of an

embedded computer, Manage can host the high-level state machines.

Figure 45 presents the hardware diagram of FlexSEA-Manage 0.1. In orange are the schematic

sheets and in grey are the sub-circuits present on certain sheets.

61

2x G=1 =
2% 1=G<10 2x 0-10k
1/10kHz LPF Divider

3V3
LDO
Power
multiplexer

[\

Figure 45 Manage 0.1 Hardware

Table 6 FlexSEA-Manage 0.1 Specifications

Electrical Supply voltage (V) 5V in (from Plan or USB), on-board 3V3 regulator
specifications Current (mA) 90mA
Reference STM32F4277ZI1T6

Microcontroller Special features
CPU/RAM/I10s/Package

Software / IDE

Floating-point co-processor can be software enabled.
180MHz ARM Cortex-M4, 2MB FLASH, USB
Eclipse C/C++, GNU Tools for ARM Embedded Processors (arm-none-eabi-gcc), OpenOCD GDB.

Type

Serial interfaces Bandwidth

Type
Bandwidth

2x [half-duplex, asynchronous full-duplex or synchronous full-duplex RS-485]
2-10Mbps
Full-duplex SPI

20+ Mbps

Onboard USB

Full-Speed (FS) / High-Speed (HS)

FLASH memory
IMU

Peripherals / Power output

128Mbits
6-axis (3x accelerometer, 3x gyroscope)

2x 24V 1A high-side switches

features LEDs 2x green, 1x RGB
Switches
1x user input switch
10 connector Molex PicoClasp 40 positions, SMD 1mm pitch
10s available 17, shared with functions below
External Digital I0s Up to 9, protected
peripherals Analog inputs 8x 12-bit SAR with special functions (filters, amplifiers, dividers, ...)
Serial
12C, SPI, USART
X (mm) 40
Dimensions (mm) Y (mm) 40

62

Z (mm) 11.5
Layers 4
Copper 10z
PCB technology Trace/space/via 5/5 mils trace/space, 8/20 mils vias
Technology Standard
Assembly Double-sided

3.2.1 Microcontroller

In systems with an embedded computer, Manage is used as communication translator (between
SPl and RS-485), as a router and as a sensor processing unit. When an embedded computer isn’t
used Manage will host the high-level state machines. All these applications require fast

communication peripherals (a minimum of 1 SPI and 2 UARTSs) and fast processing.

To support all the sub-circuits present on Manage we need a microcontroller with:

e A minimum of 3 SPI ports (1 for Plan, 1 for the FLASH, 1 for the Expansion connector)
e A minimum of 3 UARTSs (2 for RS-485, 1 for the Expansion connector)

e A minimum of 2 I2C ports (1 internal, 1 for the Expansion connector)

e A minimum of 8 12-bits analog inputs

e A minimum of 20 digital I/Os

e USB

While using a microcontroller from the same family as on Execute (another PSoC) would have
simplified the development process, no PSoC had enough computing power or 1/Os to fulfill all
the requirements (100DMIPS, 62 10s'?). Instead, an industry standard Cortex-M4 core was

implemented to benefit from the Floating point Unit (FPU).

Many vendors license the Cortex-M4 (Texas Instruments, Atmel, Freescale, STMicroelectronics,

NXP, etc.) The STM32F4 family from STMicroelectronics was selected primarily because it has a

15 With the newly released chip-scale (BGA) package more 10s are available then at the time of this design.

63

large base of customers and part references, affordable development tools and comprehensive

public documentation.

: Ethemet UF
$ Serial
: E acko
g mm ™ M‘ﬁl (KBl
.| - ART Accslerator™
H T |- Upto2xUSB200TG
AW smznss 512 K to
@ | . SDIO STM32F429
H 2| - USART, SPI, PC STM32F437 i ®
H5 . pss i STMioE7 | 180 1to2M 258 2
H 1 | - 18 and 32-bit fimers.
| P STM32F417 512K to .
‘H Siaokaz | %% 1m 192 2 . .
g STM32F415 512K .
 +| (041us) 12K to
B sTMa2Fd0s % 1w 12 2
Q| . External memory 258 K to .
= ‘ confrolier {excapt STM32F446 180 Tl 128
H = | for STMAZFA1Y
H % | sTmazFam)
K -Em.-m l' sm. -
H 3 Product current package | Acquisition
: - Low 170 ™
; S o= VM {KB) | Efficiency [)
Down to
STMIZFAN | 100 2510512 123 Downto 100 Downto12 , 240, .
STM32F401 54 12810512 96 . Downto 128 Downto 10 Down to 3x3

Figure 46 STM32F4 sub-families®

The STM32F427Z1 was selected because it is 180MHz and has the largest amount of memory
possible. The F437 and F4x9 chips only add TFT controllers and video accelerators that are not

required in our application.

The LQFP-144 package was the smallest package that allowed the use of all the required

peripherals.

3.2.2 Interface to Plan

Most of the work presented in this thesis was using a BeagleBone Black embedded computer as
the FlexSEA-Plan board. While the previous version of the FlexSEA-Manage board, MiddleMan
0.1, was designed to fit its form factor, the Manage 0.1 was designed with polyvalence in mind.
Multiple new embedded computers are released every year. Having the option of using new

generation hardware can extend the life of the FlexSEA system.

16 http://www.st.com/web/en/catalog/mmc/FM141/SC1169/SS1577?sc=stm32f4

64

http://www.st.com/web/en/catalog/mmc/FM141/SC1169/SS1577?sc=stm32f4

Figure 47 MiddleMan 0.1 (predecessor to Manage 0.1) on top of a BeagleBone Black

The only specific requirement is to have a fast full-duplex SPI bus. The connector that interfaces
with Plan has 8 pins: +5V to power the circuits on Manage'’, 4 wires for SPI (MOSI, MISO, SCK &

NSS), a reset signal and a +VP (Plan Voltage) line.

+3VP+VP
13
1 Plan
2 BIOM FLEXSEA MANAGE 0 1 Plan.SchDoc
3 > SPI NSS SPI4 NSS [
4] SPI_MISO SPI4 MISO
5 > SPI_MOSI SPI4 MOSI [
6 > SPI SCK SP14 SCK [
7 > RESET T NRST <
8
PCR&H
GND

Figure 48 Interface to Plan

The +VP line is used with a TXB0104 voltage level translator IC to interface an embedded

computer with an 10 voltage between 1.2 and 3.3V and the 3.3V Manage microcontroller.

17 The +5V can come from any power supply, it doesn’t have to be from Plan

65

SI"I NSS

SPI MISO
SPI_MOSI
SPI SCK

/

\

VP +VP +3V3

R70
100k

R77

VP +3V3

‘-[Cﬁ C54

T

=
E

=|=|=|=

70

100nF 100nF
SPI4 NS§
TSPI4_MISO
SPI4 MOSI

jos}
-
=l = [

R B L7 o)

30

]
=
=Y
GND VCCA ——o

w
o NC
TXBO104

R76
100k

GF\D

SPM SCK

g

Figure 49 Level translation, SPI

R72 to R80 are series termination resistors for the fast SPI lines. The output characteristics of the

Plan computer being unknown, and the cabling between FlexSEA-Plan and FlexSEA-Manage

depending on applications, it was not possible to calculate the proper terminations. The 0Q

resistors are used as place-holders.

The external reset line is connected to the base of Q5B, another way of doing level shifting.

T _NRST >

+3V3 LRI
20
&
& -
: R ['
g 2 [s 7 fosB
EIO" Wi
g Iy
28 =
[y -
GND GND

Figure 50 Level shifting, external reset signal

66

User code being executed on the Plan board can be stopped at any time. Some situations will
place the SPI bus in a bad state, thus requiring either special management code on the FlexSEA-

Manage board or that it can be rebooted by FlexSEA-Plan.

3.2.3 Inputs and Outputs

J2 is a 40 pins Molex Pico-Clasp dual row, right-angle connector. It is used by users to access the
9 digital I/Os, the 8 analog inputs, two power outputs and some supplies. It also hosts 6 twisted-

pairs for RS-485.

F3V3 F3V3I-VB
‘ 12
L 5 |2
PWROUTO 3], !
PWROUTI __ [513 P AINO
AIN2 L 715 g -8 [AINI
AIN4 [9 14 10 112 [AIN3
AING L 1l 2 12 [AINS
L 13 113 11 |14 L AINT
. 10 5 g
DIOEQ 1 17117 g |18
DIOE2 1 19 1 19 9|20 1 DIOEI
DIOE4 1 2L] o 5 |22 DIOE3
DIOE6 1 23 |5 5y |-24___1_ DIOES
DIOES A 25 | 55 56 204 DIOE7
27 | 57 5g |28
RS485 B6 L 29 |5 39 |30 [RS485 B3
RS485 A6 L 31 3 P 32 [RS483 A3
RS485 B5 L EET IS Y [RS485 B2
RS485 AS L 33 135 36 |38 [RS485 A2
RS485 B4 L 37 137 3¢ 138 [RS485 BI
RS485 A4 C 39 139 a9 20 [RS485 Al
PC40H
GND GND
Figure 51 Expansion connector
3.2.3.1 Analog Inputs with Programmable Features

8 analog inputs are available on the Expansion connector. To minimize the number of external

components required to interface with common sensors, 4 different circuits are used.

e ANO & AN1: 1 or 10kHz low-pass filter, unity gain (buffered)
e AN2 & AN3: 1 or 10kHz low-pass filter, I>C programmable gain (1<G<10, 8 bits)
e AN4 & ANS5: unity gain (buffered)

67

e ANG6 & AN7: programmable pull-down (0 < R < 10kQ) to use as a voltage divider, unity gain
(buffered)

All the inputs have ESD protection and weak pull-downs to force a low level when the input is

floating.

C1

- n | IOnF—I_IO()nF 220k
-
DIC 3 U
4

TPD4EOMDRY R
GND GND

U3B 4]
l_“
s
mE< T
J
A B A 2
o
) L
e 8
R7 T | A > e
Tz - : R ST
1.6k
V3 L l MCP6004
" C9 C10 gR& RO
10nF 100nF 3220k $1k
3
DID C©
TPD4EO04DRYR o N
GND GND &= GND GND
Figure 53 AN2 & AN3: 1/10kHz LPF, 1<G<10
I
o | A >
CANa sl

+3V3 MCP6004
R3

= £220k
D S
TPD4EOD4DRYR N
GND GND

Figure 54 AN4 & ANS: Buffered input

68

|
‘ Analog input w/ divider |

=

+3v3 D2D 5 TPD4EOD4DRYR

GND
ANe T30
U4B 9 ™~
Le % 0], A -
g PIW 7‘ S
PA MCP6004

MCP4661T-103

GND

Figure 55 AN6 & AN7: Programmable voltage divider

Four 12C digital potentiometers (Microchip MCP4661, dual potentiometer, U3 & U4) are used to

adjust the gains and the voltage divider resistances. They share the same I>C bus as the IMU.

3.2.3.2 Digital Inputs & Outputs

9 digital signals are available on the Expansion connector.

< DIOE2 > { DIO2 :
Ik
+3V3 gRI8
$100k
<t
M-
D4C O
N\ TPD4EOO4DRYR N/
GND GND

Figure 56 Protected Digital 10

Table 7 Special Digital 10 functions

Signals Special function

DIOx0/1 12C2

DIOx2/3 UART3
DIOx/4/5/6/7 SP16

69

For DIO2 to DIOS a series 1kQ resistor limits the current to (3.3V-0)/1000Q = 3.3mA in case a high
output is shorted to ground. The same series resistor will also limit the current when the diodes

are clamping the input voltage. The maximum rating for STM32 pins is £25mA.

DIO0 and DIO1 do not have pull-downs and series resistors to prevent conflicts with 12C. For more

info about the ESD protection please refer to Section 3.1.8 10 Protections.

3.2.3.3 Power Outputs

Two high-side switched power outputs are available on the Expansion connector. +VB needs to
be provided by the user. When used with AWG#28 crimps the contacts are rated for 1A. Both

outputs are also rated for 1A; their total should not be more than 1A.

“24\’ it e e e

VB 4VB QI
 PWROUTO

D3
MBROSRO-TP

2.2k GND

n 4
B PWROUT(O :—'AAM—% 234

GND

Figure 57 1 of 2 power outputs

The thermal calculations are simpler than for the Execute clutch output (see 0) because these
drivers are not intended to be used with PWM. The worst-case Rps(on) of the FDN5618 P-MOSFET

is 0.315Q and the junction-to-ambient thermal resistance is 270°C/W.

PDrgsistive = lroan” * Rpscony = (14)% % 0.315 = 0.315W

(Eq 12)

70

c
Ty = Ry * P+ Ty = 270° - » 315mW + 35°C = 120°C

(Eq 13)

It leaves a 30°C margin before the maximum junction temperature is reached. 270°C/W being for
the smallest pad possible, it is expected that the thermal resistance will be lower in the current
design. Upon close inspection of the layout a comment was added to the list of future
modifications; the drain should be attached to a bigger copper area. Another option is to replace

the FDN5618 by a S12319CDS 77mQ MOSFET (same package, 10 cents more).

3.2.4 IMU

Please refer to Section 3.2.4 IMU in FlexSEA-Execute hardware. The two designs use the same

IMU.

3.2.5 FLASH

The Manage board has an onboard FLASH memory for data logging during experiments. It can be

used for systems that do not include a Plan board.

“usmits FLASH Memory |

V3 +3V3 F3V3 F3V3
=R31 C13
= 100k w 100nF

Us
2 A r—
SPI5 NSS E?:.‘.-.g ';(S) s ::= SS o)

7 SPI5_MISO Rgl'" 5 5 — MISO = oMb
SPI5_ MOST,—pZawirr === MOsI -
SPI5_SCK Wy = = SCK

& 7

Up to —— HOLD 22

54MHz ——= W/VPP &=
M25P128

T LR36 M

Route R MISO near the 3100k

FLASH, all the other ones

near the STM

GND GND

Figure 58 FLASH Memory

71

Table 8 Bits of storage needed per second of data logging

Data bytes
Frequency (Hz) 2 4 8 16 32
1 16 32 64 128 256
10 160 320 640 1.28k 2.56k
100 1.6k 3.2k 6.4k 12.8k 25.6k
1000 16k 32k 64k 128k 256k

Typical science experiments are limited to 30 minutes (1800s) and logging rates from 100Hz [11]
to 200Hz [1] are sufficient. Saving 16 bytes at 100Hz requires 23Mbits. No memories of less than
32Mbits were considered. The main part selection criteria were 1) SPl interface, 2) small size and
3) common/industry standard package. The M25P128 has 128Mbits of storage and is in a
convenient 8-VDPFN package.

Table 9 Minutes of data logging in a 128 Mbits FLASH memory

Data bytes
Frequency (Hz) 2 4 8 16 32
100 1333 667 333 167 83
1000 133 67 33 17 8

The traces between the FLASH and the STM32 being electrically short, termination should not be

required. R32 to R35 are included as placeholders.

Users can access the stored data via the USB port or via the FlexSEA network. A radio module can

also be connected to the Expansion connector.

72

3.2.6 User Interface

The same RGB LED, Green LED and USB protection circuit as on Execute are used (see 3.1.9). The

differences are: 1) the presence of a second Green LED and 2) one user button.

£
User button
33 3V3
LR60
3 R61
ok_RYL s K s
1k 4 e
. o
37 IO3§
2 3 s
'/ ﬁ’g =
1 4)=
KMTO71 NGJ LHS
NS NS
GND GND GND

Figure 59 User input

Having a least one user push-button in the system is convenient for demonstrations, allowing

one to start test code and/or experiments without requiring the use of a remote computer.

73

3.2.7 RS-485

< 485 RX12

IS REZ 2o
35 DEZ

485 DEI
485 CK3

vee H——

) SNGSHVDTS TR
RATS
RO
RE 5 Lz R4%
5 120
a A
DE
=
ot G& s 5485 Al -
- j
il
MDY
1y
Ul SMNASHVDTS REARE B
L R0 o
“-| RE = s L7 RS0
120
a A
DE
Z e —rorroroaerae
DI G s RSARS AL
..—-._AE
v
GND
3y3
U13 SNESHVDTS T
— RO U
— <& RE 2 - R
B 1= 120
3 A
=t DE
A A REAES AT
v
GND GND

Figure 60 RS-485 #1 3 transceivers

Section 3.1.4 goes over all the details
of the 3 RS-485 modes, baud rate and
transceiver selection. The differences
are: 1) the presence of 6 transceivers
on Manage, 2) the hardwired enable

signals and 3) the smaller IC packages.

By routing all the enable (DE, !RE)
signals to the PSoC, Execute could use
the three transceivers independently.
This is not the case for the Manage
board; the internal peripherals and
pin assignments made it impossible to

get the same flexibility.

USART1 and USART6 are used because
they are clocked by APB2 (84MHz)
while all the other UxARTs are clocked
by APB1 (48MHz). With a 84MHz clock
the two USARTs can achieve baud

rates up to 10.5Mbits/s.

74

3.2.8 Power

The Manage board requires 5V. It can be provided by the Plan board (or by an external supply
connected to the Plan connector) or via the USB connector. An autoswitch power multiplexer is
used to select the power source. When +5VP (from the Plan connector) is available, it is used.

Using USB power is useful for simple tests and debugging when an external supply is not

available.
+5vp SVU sy 5V £33
D14 MBROSEO-TP
UR J
o 8
R4D Eo| il U7 TPSTITI3 .
B 2o o1 ou 1 L v +VO 0‘
2 vens m |2 3 EN NREB 2
4 tim Gnd [g =z
2 =
TPS2II1 Ly L
——c2 lral R42 R4 T T ——c17 n Lo Lew
100nF 4.7k 1k Flk " T R I BRLS LuF
)
v N S S N N
GND GND GND GND GND GND GND GND GND GND GND GND GND

] _

Figure 61 Autoswitch Power Mux and 3.3V LDO Regulator

A TPS73733 linear regulator is used to obtain 3.3V from +5V. As shown on the schematic note,

its junction temperature shouldn’t rise above 115°C in the absolute worst case scenario.

To test the autoswitching feature the Manage 0.1 board was powered from an external supply

and from USB. The yellow trace is +5V, the blue trace is +3V3. The external power supply was

turned off and the event was caught by the oscilloscope (triggering on a negative slope at 4.75V).

75

3.2.9 Future Work and Circuit Modifications

List of modifications for the next hardware revision:

e When hot-plugged the STM32 doesn’t not always properly power on. Evaluate the use
of a power sequencer.

e The 2 power outputs have tiny dissipation pads. Increase copper area on the drain
connection or select a MOSFET with a lower Drain to Source resistance.

e The 400kHz I>C limit on the MPU-6500 is slowing down the bus. If a new IMU has to be
selected a 1MHz version should be considered.

e RGB LED: poor color balance. The next design should use 243/249/412Q.

76

4 Software Design

While the focus of this thesis was system and hardware design, a large amount of embedded
software had to be written to enable all the functionality of the FlexSEA system. The
communication stack, shared by all the boards, required 5153 lines of C code. 12030 lines of code
are specific to the sub projects (motor control, terminal interface, signal processing, etc.), for a
grand total of 17183 lines of C. This section will take a high-level approach to describe the
software design of FlexSEA rather than diving down in the details. Readers will get an overall
understanding of the organization; the modularity of the software and the abundance of
comments, combined with this document, should provide anyone with enough information to

use and modify the system.

4.1 Communications and networking

A communication protocol is a system of digital rules for data exchange within or between
computers and embedded devices. At the highest level, “intelligent” information is exchanged,
such as “set motor pwm duty cycle to 100%”. On the lowest level (hardware level) it’s always an
exchange of electrons or photons. The span between these two extremes is divided is layers. The

Open Systems Interconnection model (OSl) is composed of 7 layers.

Osl Model
Layer Data unit Functionl! Examples
High-level APls, including resource sharing, remote file access, directory services
7. Application HTTP, FTP, SMTP
and virtual terminals
Translation of data between a networking service and an application; including
6. Presentation Data ASCII, EBCDIC, JPEG
Host character encoding, data compression and encryption/decryption
layers Managing communication sessions, i.e. continuous exchange of infarmation in the ~
5. Session RPC, PAP

form of multiple back-and-forth transmissions between two nodes.

Reliable transmission of data segments between points on a network, including -
4. Transport Segments o TCP, UDP
segmentation, acknowledgement and multiplexing

Structuring and managing a multi-node network, including addressing, routing and _
3. Network Packet/Datagram - . IPv4, IPvG, IPsec, AppleTalk
raffic control

Media
) Reliable transmission of data frames between two nodes connected by a physical
layers 2 Data link Bit/Frame ‘ PPP, IEEE 802.2, L2TP
ayer

1. Physical Bit Transmission and reception of raw bit streams over a physical medium DSL, USB

Figure 62 OSI model8

18 http://en.wikipedia.org/wiki/OSI_model

77

While the OSI model can represent systems as complex as Internet, for embedded applications it
is possible to simplify by merging layers 4 through 7 into a single Application layer. With a limited

need for packet routing, layer 3 (Network) is absorbed by layer 2 (Data link).

4.1.1 Application Layer

At the highest abstraction level, intelligent information is exchanged between different FlexSEA
boards without any regards for the physical media used. The list of commands available to the

user is presented in Table 10.

Table 10 List of FlexSEA Commands

Command Details
ping Ping? Ping!
status Board Status
reset Reset
ack Acknowledge
mem Memory
acqui Acquisition strategy
rs485_config RS485 Configuration
usb_config USB Configuration
usb_write USB Write
temp Temperature
switch Switch
imu IMU
encoder Encoder
strain Strain gauge/load cell
strain_config Strain Gauge amplifier gain & offset
volt Voltage measurements
batt Battery status and values
power_out Power Outputs
clutch Clutch
adv_ana_config | Advanced Analog Periph. Configuration
analog Analog Inputs
digital Digital I/Os
digital_config Digital I/Os Configuration

78

exp_periph_config Expansion Periph. Configuration
ctrl_mode Control Mode
ctrl i g Current (1) Controller Gains
ctrl_ p g Position (P) Controller Gains
ctrl_z_ g Impedance (Z) Controller Gains
ctrl_o Open (O) Loop Controller (PWM)
ctrl_i Current (1) Controller
ctrl_p Position (P) Controller
shorted_leads Shorted Leads
spcl Special Command 1
spc2 Special Command 2

The command codes are 7-bits long, left justified. The LSB of the command byte is 1 for Read

commands and 0 for Write commands.

All the commands that are to be transmitted have the function prefix “tx_cmd_" followed by the
category (communication, control, data, external/expansion, sensors, system or user) and the
command name. As an example, the prototype for the Clutch command is: uint32 t
tx_cmd_exp_clutch(uint8_t receiver, uint8_t cmd_type, uint8_t *buf, uint32_t len, uint8 t
clutch). The first 4 arguments are common for all the TX functions: receiver is the Slave name,
cmd_type can be CMD_READ or CMD_WRITE, *buf is the byte array that will hold the payload
generated by the function and len is the length of buf. The last parameter, clutch, contains the
duty cycle of the clutch (0 to 255, 0 to 100%). To turn the clutch off on FlexSEA-Execute the user
can call tx_cmd_exp_clutch(FLEXSEA_EXECUTE_1, @ CMD_WRITE, tmp_payload_xmit,
PAYLOAD_BUF_LEN, 0).

The tx_cmd_exp_clutch() function will fill the payload buffer with the fields specified in Figure
63.

79

FlexSEA 1.0 payload fields:
Byte Code Details
0 P_XID Emitter 1D
1 P_RID Receiver ID
2 P_CMDS Number of commands sent
& P_CMD1 First command
4 P_DATA1 First data byte (if needed)
n

Figure 63 Payload bytes

The payload will be framed by the data-link layer before it is ready to be transmitted.

4.1.2 Data-link Layer

To preserve data integrity, we cannot send raw bytes on the physical layer. The FlexSEA
communication software automatically adds a header and a footer, an indicator of the number
of bytes in the frame, a packet ID, a checksum to detect invalid data and escape characters'®.

Figure 64 shows how the payload generated by the Application layer is packaged.

Header Bytes Data[0] | | Data[n-1] Sequence Checksum Footer
Ob11101101. 0127 0b11101110,
237d, 0xED 238d, OxEE

Start of frame —| Number of ‘Unique’ packet Error End of frame —

. . Payload bytes o .

unique byte. | bytes in frame. ’ ! 1D verific ation unigue byte.

Figure 64 Packaged Payload

High values are used for the Header, Footer and Escape bytes to avoid confusion with the
command codes. The Sequence byte is used to keep track of the commands exchanged between
the boards and to detect missed packets?°. At this point the command is ready to be transmitted

on any physical bus.

19 http://en.wikipedia.org/wiki/Escape_character
20 Not implemented in the current software release

80

4.1.3 Physical Layer

The system is designed to be compatible with any physical interface. Currently, we use a full-
duplex Serial Peripheral Interface?! (SP1) bus from the FlexSEA-Plan to one FlexSEA-Manage and
multi-drop RS-48522 busses from FlexSEA-Manage boards to FlexSEA-Execute boards. At this
level, the data is in the forms of bits and bytes, represented by varying electrical levels. In
software, all the data structures linked to the physical layer are named “tx_buffer” or “rx_buffer”
(with a suffix associated to the bus used). To send a command the user will copy a packaged

payload (generated by the Data Link layer) to the relevant transmission buffer.

4.1.4 Receiving commands

In the layers description the emphasis was on the transmission of commands. When bytes are
received by a physical communication interface the inverse sequence is done. First, either after
new data is received or on a fixed timing, the RX buffer is parsed by the unpack payload()
function. That function searches for a header, then for a footer in the right position (the position
is calculated from the Bytes field that follows a valid header) and then for a valid checksum. Data
with a valid Header and Footer is known as properly framed. When a properly framed command
fails at the checksum test it is eliminated (buffer erased). If the checksum is valid it is copied to a

new buffer and the original version is erased to avoid double detection.

This new buffer containing the unpacked payload will be parsed by the payload parse_str()
function. If the Receive ID belongs to another board the packet will be rioted to the appropriate
interface. If the packet belongs to the board that received it, it will be decoded by the appropriate
RX function (as determined by the P_CMD1 field).

21 http://en.wikipedia.org/wiki/Serial_Peripheral_Interface_Bus
22 http://en.wikipedia.org/wiki/Rs-485

81

4.1.5 Hierarchy

As mentioned before, to avoid data collisions and keep the communication protocol as simple as
possible a strict hierarchy is used. The Master always initiates the communication. Upon request,
a Slave will transmit data to its Master (a Reply message). In this convention, Execute is always a

Slave to manage, and Manage is a Slave to Plan.

There is no fundamental reason forcing us to keep the system hierarchical. With software
modifications two Execute could talk together, one acting as the Master and the other as the

Slave.

A set of files used by all the FlexSEA boards is available in the source /common/ sub-directory.
They contain all the communication stack. They are designed to be hardware agnostic; they can

be compiled with the three main projects (Plan, Manage and Execute).

4.1.6 Special Commands

To maximize the efficiency of the network communication one needs to minimize the overhead
(minimize the number of extra bytes required to send the information) and minimize the
computing requirements. Using many commands per communication string is an efficient way to
do so. The Special Commands are designed with efficiency in mind. Every project should define
one or more Special Command that supports only the required fields. Decoding a Special
Command is faster than decoding multiple commands sent back to back because only one parser

call has to be used.

4.2 FlexSEA-Execute

FlexSEA-Execute uses a PSoC 5LP system-on-chip controller as its main computing unit (refer to
section 3.1.1 for more details). The PSoC was chosen because its analog and digital

programmable blocks can be used to offload the main CPU from time consuming tasks, and to

82

minimize the number of external circuits required. Figure 28 is a good example of “analog

programming”.

4.2.1 Organization and timings

Timings are critical on the Execute board. Control loops have to be called at fixed intervals to

guarantee stability and some data conversion have timings dependant on other software

functions. One example is the Delta Sigma ADC used for the Strain Gauge Amplifier: its conversion

needs to be done when the I2C bus is in idle, otherwise the digital potentiometer are coupling

noise in the circuit.

With the compiler optimizations turned off and the Global Interrupt disabled, test code was

executed and an oscilloscope was used to measure the time it takes to call and execute some key

functions. The 3™ column uses a safety factor of 1.75 to take interrupts into account.

Table 11 Function timing benchmark - no optimizations

Function Time (s Time - ext. (us)
motor_position_pid() 6,6 11,55
motor_impedance_encoder() 6,4 11,2
rgb_led_ui() 6,6 11,55
filter_adc() 5,16 9,03
strain_filter_dma() 2,84 4,97
unpack_payload_485 1() 17,48 30,59
motor_current_pid() 5,78 10,115
Sum: 50,86 89,005

The motor_current_pid() function, at 10us (safety factor included), can be problematic. When

it’s called at 20kHz it consumes 20% of the computing power available. A manual optimization of

the function was done (minimized the number of function calls, unified the safety checks) and

83

the timing was reduced from 5.8 to 4.2us. With the optimizations enabled and the use of an inline

function the execution time dropped to 1.42pus (2.8% of the computing budget).

A 100us timer is used as the main time base. In the main while() loop, all the functions that are

not purely interrupt driven are called based on that timer.

Time (us!
Category Function Refresh(Hz) | 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 // 500 510 520 530 540 550
Gyroscope 250 1
12C Accelerometer 250 1/

Safety-CoP 250
Delsi Strain ADC DMA 1000
i Averaging 1000 /"

PWM PWM ISR 100000 I
SAR DMA ISR 20000 I

Figure 65 Visual representation of the function timings

The following code details the time sharing strategy implemented. It allows functions to be
called at either 10kHz, 1kHz or 250Hz, with deterministic timings and constant offsets. The

t1l_new_value and t1_time_share variables are controlled by a 100us timer interrupt.

if (tl new value == 1)

{
//If the time share slot changed we run the timing FSM.
//Refer to timing.xlsx for more details. 'tl new value'
//updates at 10kHz, each slot at 1kHz.

tl new value = 0;

//Timing FSM:
switch(tl time share)
{
//Case 0: I2C
case O0:
i2c_time share++;

Q

i2c_time share %= 4;
#ifdef USE I2C_ INT

//Subdivided in 4 slots.
switch(i2c_time share)
{
//Case 0.0: Accelerometer
case O0:

#ifdef USE_IMU

get accel xyz();
imu last request = IMU RQ ACCEL;

84

#endif //USE_IMU

break;

//Case 0.1: Gyroscope
case 1:

#ifdef USE_IMU

get_gyro_xyz();

imu last request = IMU RQ GYRO;

#endif //USE_IMU

break;

//Case 0.2: Safety-Cop
case 2:

safety cop get status();

break;

//Case 0.3: Free

case 3:
// (can be the I2C
break;

default:
break;

}

#endif //USE_I2C_INT
break;

//Case 1:
case 1:
break;

//Case 2:
case 2:
break;

//Case 3: Strain Gauge DelSig ADC,
case 3:

//Start a new conversion
ADC Delsig 1 StartConvert();

//Filter the previous results
strain filter dma();

break;

RGB LED)

SAR ADC

85

At the end of this function, not shown in the code sample, is a section reserved for code that

needs to be executed every 100us. It is called after one of the time slots.

4.2.2 BLDC Commutation

A four quadrant PWM commutation table is required to support bidirectional motor control with
regenerative currents. Figure 66 is part of “So, Which PWM Technique is Best?”?3 by Texas

Instrument.

Vgus

Figure 66 Unipolar 4-Quadrant PWMs - Texas Instruments

Table 12 was created from Figure 66. ‘A’ and ‘B’ are the intermediary signals, at the output of the
AND gates. The red text indicate a problem: this table sets steady-state high values on the high-
side MOSFETs. The gate drivers used on FlexSEA-Execute can’t support this. The two NOT gates
were moved from the high-side to the low-side to fix this problem, as presented in Table 13. A
test was made to confirm that the half-bridges are using complementary switching and that they

are never ON at the same time (shoot-through).

2 http://e2e.ti.com/blogs_/b/motordrivecontrol/archive/2012/03/29/so-which-pwm-technique-is-best-part-3

86

Table 12 Original 4Q Table

Table 13 Modified 4Q Table

PWM 0 1 0 1 PWM 0 1 0 1
FWD/REV 0 0 1 1 FWD/REV 0 0 1 1

A FALSE TRUE FALSE FALSE A FALSE TRUE FALSE FALSE

B FALSE FALSE FALSE TRUE B FALSE FALSE FALSE TRUE

a1 TRUE FALSE TRUE TRUE Qi FALSE TRUE FALSE FALSE

Q2 FALSE TRUE FALSE FALSE Q2 TRUE FALSE TRUE TRUE

Q3 TRUE TRUE TRUE FALSE Q3 FALSE FALSE FALSE TRUE

Q4 FALSE FALSE FALSE TRUE Q4 TRUE TRUE TRUE FALSE

Q1/2 Comp? | TRUE TRUE TRUE TRUE Rotation - cw . ccw

Q1/2 Shoot.? | FALSE " FALSE ~ FALSE =~ FALSE Q1/2 Comp? | TRUE TRUE TRUE TRUE

Q3/4 Comp? TRUE TRUE TRUE TRUE Q1/2 Shoot.? | FALSE FALSE FALSE FALSE

Q3/4 Shoot.? | FALSE FALSE FALSE FALSE Q3/4 Comp? [TRUE TRUE TRUE TRUE

Q3/4 Shoot.? | FALSE FALSE FALSE FALSE

This table has to be expanded for three phase brushless motors. The order of the phases is

determined by the Hall Effect sensors present in most research-grade brushless motors, such as

the Maxon EC-30 used in this experiment. The PSoC 5LP look-up table (LUT) component supports

a maximum of 5 inputs and 8 outputs. The 3 Hall sensors and the 2 PWM phases use all the inputs;

the Direction signal (to change from clockwise to counter-clockwise rotation) cannot be

integrated in the table. Table 14 shows the relation between the input signals and the output

signals. MUX0 and MUX1 are used for the analog multiplexer that controls the current sampling.

87

Table 14 4Q BLDC Commutation Table

Shoot?

FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE

Out Hex

o
AD

2
AD

48

43

2
0
1]

A2

A
AB

68

4A
22

0
o

Al

5]
A4

58
49

12

0
o
0
o
o
o
o
0
0

LUT Qutputs

9 Q@5 Q4 Q3 Q2 a1

LUT Inputs

H1 |MUX1 MUX0

H2

In Hex

10

11

12

13

14

16

17

18

19

1B
1c
1D

1E

1F

Table 15 presents a second LUT, used to control the direction of the rotation.

Table 15 Hall Sensors & Direction

HA | Out Hex

HB

88

The complete system can be seen in Figure 67.

Motor control:

PWM 1 Sync_1 ADC_SAR_2 DMA_1
P 100kHz Sync ADC_SAR DMA
[T —enable s_in s_out t saRr drq nrg—— =]isr_dma
tc= —
pwm1 ——f1] EXP2 vref_out
[+ >clock soc
ph1 aclk eoc— {EXP3 w
BUS CLKFIL- —>clock ph2}- | T VDACS8_1 W =
v [0 —reset interrupt}= VDACS l”; 3
76-bit (UDB} ADC_CLK[J— 7 0
. MASTER_CLK /6 O
4
LUT HALL DIR LUT_4Q_PWM S
LUT LUT ' g":mp—‘ i
H1 [in0 out0 in0 U0 |5 PWMH1 AMuxHw_1
H2 [a}+——in1 out!——++——in1 out!p———=fw PWML1 Cs1 [wl—— 0 R_1 +
H3 [———in2 out2 in2 out2————=fm PWMH2 CS2 [w] - —AN—-- - |
in3 +—1in3 out3 o PWMLZ CS3 [ab— 10K X
p-+——find outd—————[u] PWMH3 B AOP_IN [s}—— 1
clock outS——fw PWML3 BUS_CLK 2 5 | R_2 |
. - t6 Lo e e e oo LY |
MotorDirection 2: Tl currmux[0] 5 200k
Control Reg currmux[1] = currmux[1:0] =
control_0 QuadDec_1
S) R —— Q1_I sl QuadDec
EdgeDetect_1 EdgeDetect_2 Q1_A [—e——{quad_A
Edge Detector Edge Detector Q1_B [#— gquad_B
—d ol — Lt interrupt =
Register PWM autputs with
]] phase edges to avoid BUS_CLKFI——/>clock
BUS—CLK&@_ T clock | clock weirdness when Hall changes 80 MHz -
in the middie of a PWM cycle. 32-bit

Figure 67 FlexSEA-Execute Motor Control (PSoC Diagram)

The look-up table is registered with the PWM edge to avoid transitions from happening in the
middle of a PWM cycle, when the Hall code is changed; in such an event the dead-time would
not apply. The 6 PWM outputs were connected to a logic analyzer while the motor was spinning

to confirm the validity of the table:

Figure 68 PWM signals - rotating BLDC motor

Brushless motors such as the Maxon EC-30 commonly used in wearable robotics have low

inductance and resistance (48V version, phase to phase: 65.3uH, 0.3860Q).

89

1t
I=—1| Vt)d
fo(wt

L
(Eq 14)
We can calculate the current rise per us at 24V:
1us
I = m}; 24V * dt = 850mA
(Eq 15)

Motor drivers typically use a 20kHz PWM, just above the audible spectrum. At 95% duty-cycle a
pulse is 47.5us long, allowing the current to ramp-up by 40.375A. At 100kHz the PWM resolution

is reduced (from 12bits to 9.65bits) but the current rise is limited to a much safer value, 8A.

4.2.3 Current controller

The hardware implementation is presented in Figure 18 and Figure 67. The PWM2 output has a
rising edge in the middle of the PWM1 pulse that is used to start the ADC conversions, ensuring
that the sampling is done far from the transitions, and at a constant timing. The SAR ADC is
programmed to generate a DMA transfer every 5 samples (100kHz PWM, 20kHz DMA interrupt

rate). In the ISR, the last 5 samples are averaged and the current controller function is called.

//PI Current controller #2: speed optimized
//'wanted curr' & 'measured curr' are centered at zero and are in the
+*CURRENT SPAN range
//The sign of 'wanted curr' will change the rotation direction, not the
polarity of the current (I have no control on this)
inline int32 motor current pid 2(int32 wanted curr, int32 measured curr)
{

volatile int32 curr p = 0, curr i = 0;

volatile int32 curr pwm = 0;

int32 sign = 0;

int32 uint wanted curr = 0;

int32 motor current = 0;

int32 shifted measured curr = 0;

90

//Clip out of range values

if (wanted curr >= CURRENT POS LIMIT)
wanted curr = CURRENT POS LIMIT;

if (wanted curr <= CURRENT NEG LIMIT)
wanted curr = CURRENT NEG LIMIT;

ctrl.current.setpoint val = wanted curr;

//8ign extracted from wanted curr:
if (wanted curr < 0)

{

sign = -1;

MotorDirection Control = 0;

uint wanted curr = -wanted curr;
}
else
{

sign = 1;

MotorDirection Control = 1;

uint wanted curr = wanted curr;

//At this point 'uint wanted curr' is always a positive value.

//This is our setpoint.

//From ADC value to motor current:
shifted measured curr = measured curr + CURRENT ZERO;
if (shifted measured curr <= CURRENT ZERO)
{
//We are driving the motor (Q1 or Q3)

motor current CURRENT ZERO - shifted measured curr;

else

motor current = shifted measured curr - CURRENT ZERO;

}

//ToDo above code seems complex for no valid reason

91

//At this point 'motor current' is always a positive value.

//This is our measured value.

//Error and integral of errors:
ctrl.current.error = uint wanted curr - motor current;
//Actual error
ctrl.current.error sum = ctrl.current.error sum + ctrl.current.error;

//Cumulative error

//Saturate cumulative error

if (ctrl.current.error sum >= MAX CUMULATIVE ERROR)
ctrl.current.error sum = MAX CUMULATIVE ERROR;

if (ctrl.current.error sum <= -MAX CUMULATIVE ERROR)
ctrl.current.error_sum = -MAX CUMULATIVE ERROR;

//Proportional term

curr p = (int) (ctrl.current.gain.I KP * ctrl.current.error) / 100;
//Integral term

curr i = (int) (ctrl.current.gain.I KI * ctrl.current.error sum) / 100;
//Add differential term here if needed

//In both cases we divide by 100 to get a finer gain adjustement w/

integer values.

//0utput

curr pwm = curr p + curr i;

//Saturates PWM
if (curr pwm >= POS PWM LIMIT)
curr pwm = POS PWM LIMIT;
if (curr pwm <= 0) //Should not happen

curr _pwm = 0;
//BApply PWM
//motor open speed 2 (curr_pwm, sign);

//Integrated to avoid a function call and a double saturation:

//Write duty cycle to PWM module (avoiding double function calls)

92

CY SET REG16 (PWM 1 COMPARElL LSB_PTR, (uintl6)curr pwm);

//PWM_1 WriteComparel ((uintl6)curr pwm);
CY SET REG16(PWM 1 COMPAREZ LSB PTR, (uintl6) (PWM2DC (curr pwm))) ;
//PWM 1 WriteCompare2 ((uintl6) ((curr pwm >> 1) + 1));

//Compare 2 can't be 0 or the ADC won't trigger

return ctrl.current.error;

To avoid destroying expensive Maxon motors during the calibration phase a test bench was
designed and assembled. In the present configuration the phase to phase specs are 120uH and
0.4Q). The power resistors are rated for 200W. The larger inductance makes it safer for the power

electronics under test. The current ripple will be half of the Maxon’s.

Figure 69 Load test bench, equivalent to a stalled Maxon brushless motor

Figure 70 is the result of a test session where the PID was hand-tuned to minimize the noise. The
setpoint was incremented by 50 for every sample and the current was measured with a Tektronix

A622 current probe.

93

Current vs setpoint (kp = 50, ki = 50)
16

14

12 il

10 .
‘:?-_. " “
4 .
un_c'l E L ¢
IS *
w 6 o]
o
¥
4 -
et [
) o y = D.0105x + 0.6347
» R?=0.9909
0 200 400 00 800 1000 1200 1400

Setpoint

Figure 70 Current PID setpoint versus measured phase current (kp = 50, ki = 50)

The sense resistor is 5mQ, the analog gain is 20 and the ADC is 12bits over 5V. The theoretical
current resolution is 12.2mA/bit. With a setpoint of 500, the expected current is 6.1A and the
measured value is 5.94A. The absolute error is only 2.6% and the transfer function is extremely

linear.

The same controller, with the same gains, was tested on a Maxon EC-30. The mechanical noise

made by the spinning rotor covered the controller’s noise entirely.

4.2.4 Impedance controller

User command:
[initial position, final
position, maximum
speed, acceleration]

AT
Impedance | T 5 Current Power BLDC Optical
k., b y kp, ki pwm -~ |Electronics| v Motor Encoder
y u 4 y >

A

[20kHZ] A

p——
Current
sensing

4

[1kHz]

pos, spd

Figure 71 First implementation of an Impedance Controller (2014)

94

With all the compiler optimizations turned off, the motor_impedance_encoder() function takes

6.4us to execute. It is called in the main while() loop at a 1kHz frequency.

4.2.5 Trapezoidal trajectory generation

Computer code that can generate trapezoidal speed profile trajectories has been developed in
Matlab and then translated in C. The code is optimized for integer mathematic and efficient real-
time execution. It now runs on the FlexSEA-Execute board and allows the end-user to command

smooth position changes.

Acceleration
20

[] L -
-20 L
5 10 15
Speed
100 T
B0+ B
[] 1 1
0 5 10 15
Position
1000 T T
500 -
U 1 1
0 5 10 15

Figure 72 Calculated trajectory: acceleration, speed and position over time

A proportional-integral controller has been designed to control the position of the prosthetics in
accordance with the calculated trajectory. Figure 73 shows the commanded position of a

prototype knee in one experiment (a series of trapezoidal trajectories with short plateaus):

95

Position versus time
T T

1000

500+

500

-1000

Position (ticks)

-1500

-2000

-2500 -

-300[] C 1 1 1 1 1 1 1 1 L
0 2 4 6 8 10 12 14 16 18
Time (s)

Figure 73 Knee position over time

4.3 FlexSEA-Manage

As stated before, FlexSEA-Manage is a polyvalent circuit that can have a wide range of usages
depending on the system architecture. In the simplest system designs, such as in Figure 3, it will
act as a communication protocol translator (SPI <> RS-485) between Plan and Execute. While
most embedded computers have a serial port that could be used for RS-485 (with a driver), most
do not boast speeds above 230kBaud/s. Using Manage in that fashion is perfectly valid for simple
experimentations but it is not the most efficient strategy because in that scenario all the timings
are dependent on Plan (embedded computer that are not running a Real Time OS might not have

deterministic timings).

When multiple slaves are present Manage can be used to route packets in the network.

Manage can be programmed to Auto-sample its slaves. In that case, it will communicate with all
its slave at precise intervals and store their data in its memory. The communication with Plan can

be asynchronous.

Manage can also be used to add sensors to the system. In systems that do not require the

computing power of an embedded computer, Manage can host the high-level state machines.

96

4.4 FlexSEA-Plan

The FlexSEA-Plan software is written entirely in C to maximize portability and efficiency. Its main
features are:

e Can be cross-compiled for embedded computers or natively compiled for ease of

debugging.

e Supports the full FlexSEA-Network communication stack.

e Interfaces to the network via SPI (only when cross-compiled).

e Can be used as a terminal application.

e Can be interfaced with high-level code.

e Candisplay and log data in human-readable formats.

The Eclipse project is configured to offer 3 compilation options: Release — Single, Release —
Multiple and Debug. Debug uses the native GCC compiler to generate code that can be tested on
the host computer. All the SPI functions are disabled. Release — Single is used for C applications

and Release — Multiple is used to interface with other programming languages.
4.4.1 Displaying and logging data

In “Stream” mode, Plan will display sensor values on the terminal. The refresh rate is limited to
tens of Hertz by the time it takes to write data on the terminal (printing less data will allow a

faster refresh rate). Stream should only be used to test a system, not in a final application.

: 1070
: 204

er: 9998

Figure 74 Streaming sensor values

97

Similar to “Stream”, “Log” will save data in a text file rather than displaying on the terminal. This

writing operation is much faster; speeds north of 500Hz can easily be obtained. Figure 75 is an

example of multiple sensors being logged at 500Hz.

Encoder
12000

Position (analog)

4500

4000

10000

3500

2000 3000
—— ColumnB =00 s Column H
6000 2000
1500
4000
1000
2000 500
0
o P S P A R &
0 2000 4000 6000 8000 10000 12000 TS B ‘3!'9@50'\'69"\‘5@@ 9990—@\'

Gyroscope

—_—

_—y

Figure 75 Logging Data at 500Hz

4.4.2 High-level state machine in C

The following code example demonstrates all the functionalities of FlexSEA in one simple

example. The code comments guide the user through the configuration of a log file, the

initialization of the Execute board in Current Control mode, the writing and reading operations,

the data logging and displaying, etc.

//Demonstration/test code. Calling ./plan

//Motor is placed in current control mode.

//When the encoder gets "out of limit" we
//This code will both Stream and Log. Log

execute 1 shuobot will call this.
Current will change periodically.
reset it to 0.

will be slow because of Stream.

//The final application should log but not Stream.

static void shuobot demo 1 (void)

{

unsigned int numb = 0;

uint32 t cnt = 0;

intl6 t current = 0, open spd = 0;
uint8 t enc rw = KEEP;

int32 t enc cnt = 0;

98

uint32 t lines = 0, good = 0, tmp = 0;
//Log file:
FILE *logfile;

time t t = time (NULL) ;
struct tm tm = *localtime (&t);

//File will be named with the date & time:

char str[100];

sprintf ((char *)str, "log-%d-%d-%d-%d:%d:%d.txt", tm.tm year + 1900,
tm.tm mon + 1, tm.tm mday, tm.tm hour, tm.tm min, tm.tm sec);

logfile = fopen(str, "w+");
printf ("Logfile created (%s)\n", str);

//Initial configuration:

//Controller = current

numb = tx cmd ctrl mode write (FLEXSEA EXECUTE 1, CTRL_CURRENT) ;

send cmd slave();
usleep (10000) ;
//Gains (kp, ki, kd):

numb = tx cmd ctrl i gains write (FLEXSEA EXECUTE 1, 10,10,0);

send cmd slave();
usleep (10000) ;

//That code will run as long as you don't press on a key:

while (!kbhit ())
{
//Timed changes:
cnt++;
if (cnt > PERIOD)
{
//Time to change some parameters:
cnt = 0;

//Change the current setpoint

current += CURRENT STEP;

if (current > MAX CURRENT)
current = 0;

}

//Reactive changes:

if ((execl.encoder > MAX ENC) || (execl.encoder < -MAX ENC))

{

//We are over the limit we specified => overwrite to 0

enc_rw = CHANGE;
enc_cnt = 0;

}

//Prepare the command:

numb = tx cmd ctrl special 1 (FLEXSEA EXECUTE 1, CMD READ, payload str,

PAYLOAD BUF_LEN, \

KEEP, 0, enc rw, enc _cnt, current,
enc_rw = KEEP;

open_spd) ;

99

//Communicate with the slave:
send cmd slave();

//Can we decode what we received?
tmp = decode spi rx();

lines++;

good += tmp;

//Enable these 2 lines to print ("Stream" mode) :

system ("clear"); //Clear terminal

flexsea console print manage();

//Log to file:

fprintf (logfile, "[%d:%d],%1i,%1i,%1i,%i,%1i,%1i,%i\n", tm.tm min,

tm.tm sec, \

execl.encoder, execl.current,

execl.imu.x, execl.imu.y, execl.imu.z, \

execl.strain, execl.analog[0]);

//
//<<< Your state machine would be here >>>

/7

//Delay

usleep(10000); //Should be much shorter in a real application

}

//Close log file:
fclose(logfile);

printf ("Logfile is named: %s\n", str);

printf ("\n%i lines (%i with valid data)\n", lines,

printf ("Log file closed. Exiting.\n\n\n");

4.4.3 Interfacing with higher level languages

good) ;

To interface with languages other than C, the Release — Multiple compile option should be used.

In Single a new process is spawned for every FlexSEA command. In Multiple, the user can keep

feeding commands to the process (and get data back). As an example, here is Python code to

stream sensor values on a terminal:

#!/usr/bin/python

reading from an Excecute board from Linux, in Python.
the special command used by the ShuoBot Exoskeleton.
It displays a few sensor values on the terminal.

H o W e

import time, math, random, subprocess, traceback
from subprocess import Popen, PIPE

This code uses the "speciall" command to demonstrate writing and

"speciall" is

100

import pty
import os

#

Based on:

State Machine, vl 8/8/14, E J Rouse, J F Duval

Modified for BBB from original versino on RPi

See Rouse et al. 2014, IJRR, Clutchable series-elastic actuator:
implications for prosthetic knee design

[

=

#from Datalogger import datalogger
data = []

#

Initializations
master, slave = pty.openpty/()

cproc = Popen (["./planm"], stdin=subprocess.PIPE, stdout=slave)
stdin handle = cproc.stdin
stdout handle = os.fdopen (master)

Setup data output filename -- Data are saved on state machine exit
trial num = int(raw_input ('Trial Number? '))

filename = 'Test%i 03132015' % trial num

#d1l = datalogger (filename + '.txt')

print 'starting...'

t0 = time.time ()

i =20.0
while True:

try:
#

Data acquisition and manipulation
i=1+1
tl = time.time() - tO
stdin handle.write ("execute 1 speciall 0 0 0 0 O 0\n")
cout = stdout handle.readline()
Receiving values
cout = cout.replace("[", "")
brackets for parsing data
cout = cout.replace("]", "™M)
vals = cout.split(',")

#Parse values:

encoder = int (vals[0])
imu x = int(vals]|

0
current = int(vals[1l])

)

)

)

2]
imu y = int(vals[3]
]

imu z int (vals[4

Remove

101

strain = int(vals[5])
angle = int(vals[6])

#Display:
os.system('clear"')

print "Encoder: %d" % encoder
print "Current: %d" % current
print "IMU Gyro x: %d4d" imu x
print "IMU Gyro y: %d" % imu y
print "IMU Gyro z: %d" % imu z
print "Strain: %d" % strain
print "Angle: %d" % angle

o\

#Delay
time.sleep(0.01) #10ms

except KeyboardInterrupt:
print 'State machine stopped by user.'
break

except Exception as e:
print 'Unexpected exception...
print traceback.format exc()
print 'Unhandled exception in main loop:', e

time.sleep(.1)

print "Iterations: %.2f " % (i)

print "Elapsed Time: %.2f " % (time.time()-t0)
stdin handle.write ("quit\n")

Save data
#dl.writeOut ()

BBB x

Encoder: 10176
Current: -102

IMU Gyro x: 233
IMU Gyro y: 155

IMU Gyro z: -590
Strain: 18457
Angle: 144

Figure 76 Streaming Data in Python

4.5 Future Work

As mentioned earlier, the FlexSEA software is a work in progress; it will never be completed. Each
new wearable robot design will have its own challenges and requirements. Users will add new
Special Commands, new signal processing algorithms, etc. The next paragraphs describe 3 ideas

that could improve the system, independent of the use case.

102

Network Bootloader: The three boards are programmed with different development
environments and tools. Changing software from the Common Code folder (communication
stack) requires that all the boards be reprogrammed to support the new commands. As more
and more degrees of freedom are added this task becomes time consuming. A network

bootloader would allow the user to reprogram all the boards in one simple operation.

Graphical User Interface (GUI): The Stream and Log tools allow data visualization and collection
but they are limited to raw text. Adding a GUI that can plot variables over time would be useful
for debugging. Being able to send FlexSEA commands with a few mouse clicks could also simplify

a new user’s life.
Embedded computer — coprocessors: The Tl Sitara processor used on the BeagleBone Black has

two PRU that could be used to synchronize processes and manage communication. A user-space

driver needs to be written.

103

5 Unit tests
5.1 FlexSEA-Execute

5.1.1 Motor Half-Bridge Load test

FlexSEA-Execute 0.1 was attached to its heat sink (6061 aluminum, black anodization, 5.14cm3)
with 5 M2x4 screws. A TFLEX 220V0 0.508mm silicone elastomer thermal transfer pad?* was
placed between the PCB and the aluminum heat sink. The load was a BK 8500 programmable DC
load (120V/30A/300W) connected to phases A and B. The power was coming from a 40V 15A

Kepco linear power supply.

Temperature was measured with the onboard bridge temperature sensor (Microchip
MCP9700A). Its output was read on a Tektronix MD03024 mixed domain oscilloscope as an

analog voltage.

Vour = T¢ * Ty + Voo

(Eq 16)

Where Tc = 10mV/°C and Voc= 500mV.

Ty = Wour — Vo) /Te = (Voyr — 0.5V)/10mV
(Eq 17)

The initial temperature, after the circuit was powered for a few minutes and before the load was

applied, was 30°C.

241t was noted during the assembly that the PCB was bowing due to the thickness of the transfer pad. Better options,
such as the TPCM 585 (0.127mm, 0.02°C/W, phase change) were used after this test was completed.

104

"~ Figure Eieal setup
A PWM duty cycle of 90% was used for the test. The circuit was powered at 24V. The programmed
resistive load started at 10Q (0.9(V?/R) = 51.84W). The temperature was constantly monitored
and the load was reduced every few minutes, when the temperature had stabilized. After 5
minutes at 5Q, the temperature was 35°C. The lowest resistance tested at 24V was 2.5Q (pulses
of 9.6A 230W, average of 207W). After 7 minutes with that load (and a total of 15 minutes with

varying loads) the temperature was stable at 50.6°C.

The BK 8500 has a power limit of 300W; the maximum current at 24V is 12.5A. To maximize the
amount of heat generated the voltage was lowered to 15V and the load resistance decreased
enough to reach the 15A limit of both the power supply and the programmable load. After 6
minutes (and a total of 25 minutes with varying loads) the temperature was stable at 61.7°C and

the experiment was stopped.

This test confirmed that the FlexSEA-Execute 0.1 circuit can be used, with a minimalist heat sink
and no forced-airflow, for steady loads up to 15A/225W with a safe margin of more than 20°C
before the temperature rating of some semiconductors present on the circuit is reached. Due to

the absence of more powerful test equipment a 20A test was not conducted. Modelling the

105

thermal properties of the assembly will be done in the future. It is safe to assume that with some
precautions the circuit can be used at 20A, the first one being the use of a better thermal transfer

pad.

5.1.2 Strain Gauge Amplifier Force Calibration

The same amplification circuit was used on another Biomechatronics project, the FitSocket.
Figure 78 shows a force calibration test. A brushed DC motor (20kHz PWM) is compressing a

linear spring and the resulting force is measured with the strain gauge.

Force Calibration Test

y =0.0022x - 16.422
R?=0.9928

Force [N)

10700 11700 12700 13700 14700 15700 16700 17700

16-bit analog voltage reading

Figure 78 Force calibration test on the FitSocket

5.1.3 Power Supplies

5.1.3.1 Preliminary qualification

Upon reception of the first assembled FlexSEA-Execute 0.1 boards a global power supply test was
made. A lab power supply was connected to +VB, with a current limit of 100mA and an initial

voltage of OV. The voltage was ramped-up slowly while voltage measurements were taken with

106

a Fluke 189 digital multimeter. The microcontrollers were not programmed and nothing was

connected to the Expansion connector. Table 16 summarizes the results.

Table 16 Preliminary power supply test

+VB (V) [+VG (V)| +5V (V) | +3V3 (V) Comments

5.000 | 0.128 | 0.131 | 0.310 VB LED slightly ON

7.020 | 5.483 | 4.945 3.379 All the LEDs turned ON shortly after 6V

10.010 | 7.585 | 4.944 | 3.378

15.030 | 9.906 | 4.944 | 3.378

25.090 | 9.915 | 4.944 | 3.378 All the LEDs are ON, equal brightness

5.1.3.2 10V SMPS Load Testing

ek Run
- 4

Figure 79 500mA load, DC 2V/div

107

Figure 80 500mA load, AC 20mV/div

VG +VG
Current (mA) Voltage (V) Voltage (V] LM25011 10V 500mA

0 9.863 9.834 12,000

50 9.841 9.751

100 9.796 9.667 10.000

150 9.771 9.595
200 9.729 9.528 2,000
250 9.700 9.461 o
300 9.662 9.372 F 6.000 VG - Before PTC
350 9.617 9.282 5 G- After PTC
400 9.573 9.193 2000
450 9.527 9.081
500 9.463 8.991
550 9.416 8.858 2000
600 9.349 8.702
650 3.900 3.420 0.000

700 0 50 100 150 200 250 300 350 400 450 500 550 600 650 700

Figure 81 Load testing with constant current

During the experiment the PTC did not trip open; the current limit kicked in before. It introduces

significant load regulation:

Vaiin—soap — Vitax— 9.834V — 8.991V
Load regulation = 100% ——~—£042 "MAXZL0AD _ 100% = 9.38%
VMmax-roap 8.991V

(Eq 18)

108

The next design will use a less resistive PTC.

5.1.3.3 5V SMPS Load Testing

Figure 82 500mA load, DC 1V/div

Figure 83 500mA load, AC 20mV/div

109

5V +5V

Current (mA) Voltage (V] Voltage (V) TPS62163 5V 500mA SMPS

0 4.925 4.865 6.000
50 4914 4.820
5.000
100 4.895 4.768
150 4.881 4.719 4,000
200 4.880 4.675 i
250 4.869 4g19 2000
300 4.858 4.563 2,000
350 4.847 4.507
400 4.836 4.451 1000
450 4.825 4.390 0.000
500 4.805 4.317 \6‘?\' Q » ‘59)330 "9Q "3’0 1‘@ ﬂ;p 79(\ & %@, %‘_;L\ @0 @0
550 4.791 4.239 &
500 4.780 4.138 o
650 4.769 3.949 5V - Before PTC +5V - After PTC
700 4.746 0.060

Figure 84 Load testing, constant current

Vaiin—roap — Vitax— 4865V — 4.317V
Load regulation = 100% ——~—2040___MAXZLOAD _ 100% = 12.69%
Varax—1oap 4317V

(Eq 19)

Same conclusion as for the 10V power supply, the PTC is too resistive. A conservative specification

for peripherals attached to the Expansion connector will be 200mA at 5V.

5.1.4 Safety Features

Safety code such as the over-temperature protection and the battery disconnection detection
runs on the Safety-Cop MCU. Special test code was used in the main while() loop to test the limits
of the system. Due to the limited number of |0s available the ELED (Error LED) output was used
as the output flag signal. For all the analog measurements (temperature and voltages) Channel 4

(Green) is connected to ELED while Channel 2 (Blue) is connected to parameter being measured.

5.1.4.1 Watchdog Clock

As explained in “Section 3.1.2 PSoC 4 Safety Co-Processor” a digital clock line links the two
microcontrollers. The PSoC 5 is in charge of generating the clock and the PSoC 4 (Safety-CoP)
measures the time between transitions. If the code hangs in an interrupt or in a function the
WDCLK line won’t toggle quickly enough, a sign that the software is not behaving as expected

and that safety actions need to be taken.

110

The pulse-width measurement is done in hardware, as detailed on Figure 85.

BasicCounter 1 DigitalComp_1

EdgeDetect_1 8-bit Counter Compare
Edge Detector
9 [T+ —en cnt{7:0]—a[7:0] S | o ier wackk
WDCLK [us}———d det reset b[7:0] = -
o] CMP
At q1DOkHZ > clock > clock
T liControl Reg 1
clk_ZOOkHEU%%I— clk o e
CLK DET [ou—— control[7:0]
0-2.55ms

Figure 85 Watchdog Clock Pulse-Width Measurement

The Edge Detector detects both edges and is synchronized by a 100kHz clock. Control_Reg_1 is
software controlled. It is programmed with a value of 150 to measure a maximum pulse-width of

1.5ms (667Hz).

Special test code was used on the PSoC 5 to test the limit:

void wdclk test blocking(void)
{

uint8 toggle wdclk = 0;

while (1)

{
toggle wdclk "= 1;
WDCLK Write(toggle wdclk);
CyDelayUs (1200) ;

The CyDelayUs function is imprecise; the actual delay was always longer than programmed. It
was increased up to the point where the software would detect a problem (programmed value
of 1200us, measured value of 1485us). During normal operation, the worst-case WDCLK period
measured was 10us. Every time the PSoC 5 is being programmed the PSoC 4 goes into error

mode, confirming that non-functional software will trigger a safety mechanism.

111

5.1.4.2 Over-temperature

Test code:
//Test code - temperature
if (err _temp == T NORMAL)

ELED Write(0);

else if (err temp == T WARNING)
{
togg eled "= 1;
ELED Write(togg eled);
}
else
ELED Write(1);

T _WARNING is 75°C and T_ERROR is 80°C. Heat was applied directly on the temperature sensor

with a Weller 160W soldering iron. ELED will be low when the temperature is under the 2

thresholds, alternating between digital values of 0 and 1 between 75 and 80°C and will be high

when above 80°C.

‘ Period

Figure 86 Over-temperature detection

112

The analog signal started at 830mV (33°C) and reached 1.33V (83°C). The temperature conversion
function was using a moving average of the last 1.28s, which explains the detection lag. The

averaging was lowered to 640ms after this experiment.

5.1.4.3 +VB Voltage Range

Test code:

//Test code - +VB
if (err v _vb == V NORMAL)
ELED Write (0);
else if (err v _vb == V_LOW)
{
togg _eled "= 1;
ELED Write(togg eled);
}

else
ELED Write(1);

V_LOW is 15V and V_HIGH is 28V. The power supply voltage was manually adjusted, starting with
a voltage in range (but close to the lower limit), dropping below V_LOW then going above
V_HIGH. ELED will be low when the voltage is between the 2 limits, alternating between digital

values of 0 and 1 below V_LOW and will be high when above V_HIGH.

113

ke el ARt ke e W e el B

g e ol e o e T, Y L oy

Figure 87 +VB Voltage in Range detection code

5.1.4.4 Disconnected Battery

While using a fixed voltage threshold to detect an out of range +VB works, this technique cannot
be used to detect a disconnected battery. The battery voltage will change over time and it is
extremely important to detect the disconnection while the +VB voltage is as high as possible to
maximize the time available to place the circuit in a safe mode. +VB is sampled every 10ms and
a moving average of the last 1024 samples is calculated (10.24s). If the last sample is lower than

81.25% of the average value, the code interprets this as a disconnected battery.

In the test code, the ELED output is high when the battery is “disconnected” (simulated with a

sudden voltage drop).

114

Figure 88 Disconnected Battery Detection Code

The circuit was initially powered at 19V (calculated threshold of 15.44V). The disconnected

battery flag was raised at 77.8% of the average, close to the calculated 81.25%.

5.2 FlexSEA-Manage

5.2.1 Level shifting - FlexSEA-Plan and FlexSEA-Manage Interface

In the current application both sides of the level translator are powered at 3.3V. To confirm that
it is functional a simple SPI packet was sent from the Plan board (BeagleBone Black). In yellow is
the MOSI line and in blue is MISO, confirming that data is properly exchanged between the two

processors.

115

] i i i I T] i e —

[I | [] i [}]] [}
T L ——— M————— Y SR S e

C I | (L R B Ny BN R P W S -

Figure 89 SPI signals, Plan side of the level translator

5.2.1.1 Analog Inputs With Programmable Features

To test the two filtering options a 1kHz 0-3.3V sine wave was applied to AINO. FCO was changed

by software every 100ms:

116

HH ‘ ..I e '

1 w}ﬂ

With the same test signal (1kHz 0-3.3V sine wave) applied to AIN2, simple test code was used to
incremen t the gain by 10 (out of 256) every 10ms:

) e IIIIF'{III ||||""||| ||”‘|'!I”!!! Ll
Wk e H| L

117

The “1<G<10” spec was calculated with G = 1 + (Russ/Rg), assuming that Russ could take a value
of 0. In practice, the lowest resistance is the wiper’s resistance. While the typical value is 75 ohms

it can go as high as 300 ohm. Rg is a 1% resistor.

Rysp-
Gy = 1+ "U3B-MIN/ =1+ 30082/ = 1303

9-MIN
(Eq 20)

The minimum gain measured on the Manage 0.1 boards was 1.21. For application requiring a lot

of precision a calibration will be required.

5.2.2 Power Multiplexer and Linear Regulator Load Test

FlexSEA-Manage was powered from its Plan connector (+5VP), at 5V. The voltage was measured
after the TPS2111, on the +5V net, with a Tektronix MD0O3024 oscilloscope. The STM32F4 was
running application code. A BK 8500 programmable load was connected in parallel to the circuit.
In all the tables below, the current is the current programmed on the load, not the true total

current (total current is higher than the load current because of the current used by the circuit).

After the +5V multiplexer was tested, the programmable load was connected to +3V3. Again, the

circuit was not disconnected; the current is higher than what’s displayed.

118

Current (mA)
0

100
200
300
400
500
600
700
800
900
1000

Current (mA)
0
100
200
300
400
500
600
700
800
900
1000

+5V (V)
4.945
4.900
4.853
4.800
4.755
4.700
4.655
4.609
4.554
0.500

+3V3 (V)
3.303
3.303
3.297
3.292
3.292
3.292
3.289
3.281
3.281
0.500

6.000

5.000

4.000

3.000

2.000

1.000

0.000

3.500
3.000
2500
2.000
1500
1.000
0.500
0.000

TPS2111 +5V Output

Current 0 100 200 300
(mA)

400

500

TPS73733 Regulator output

Current 0 100 200 300
(mA)

Figure 92 Load testing

400

500

)

)

=]

=]

The TPS1111 has a current limit of 1A. Its output was dropping around 900mA in the test,

consistent with the datasheet when the current consumed in the circuit is taken into account.

The +5V signal was dropping before the +3V3 limit was reached.

A conservative specification for peripherals attached to the Expansion connector will be 500mA

at 3.3V.

119

Figure 93 Automatic switching of the input power source

The lowest +5V voltage measured was 4.6V, close to the calculated value of 4.8V. The +3V3 signal

is unaffected by the input power source transition.

5.3 System Benchmarks

5.3.1 SPIFrequency and Data Rate
Criteria: “All serial interfaces (SPI and RS-485) should have a minimum bitrate of 2MBits/s”
FlexSEA-Plan is the SPI Master; it generates the clock. Without any termination resistors the

highest value that was successfully tested (using the Stream application and test equipment) was

12Mbits/s, as shown on Figure 94. This is 6x the criteria.

120

*

[P - ety N f

Figure 94 SPI Data Rate (83ns = 12Mbits/s)

For typical application (and for the other benchmarks) the more conservative value of 6Mbits/s

was used.

5.3.2 Communication - Plan & Execute

Criteria: “Plan can send or receive a minimum of 1000 communication packets of a minimum of

20 bytes each from Execute (160kbits/s for pure writing, 320kbits/s for half-duplex read/write)”.

The following test code was used on Plan:

//Plan <> Manage Communication

void test code plan manage comm(void)

{

printf ("Plan <> Manage Communication Speed Test Code\n");

while (!kbhit ())
{

121

//Prepare the command:
tx cmd switch (FLEXSEA MANAGE 1, CMD READ, payload str,
PAYLOAD BUF_LEN) ;

//Communicate with the slave:
send cmd slave();

//Delay
usleep (100);

usleep() is based on cycles and is therefore not accurate. The actual delay measured is 460us, not
100. Figure 95 and Figure 96 were captured with a Saleae Logic Logicl6 USB logic analyzer

connected to the SPI port linking Plan (BeagleBone Black) and Manage 0.1.

1-CLOCK

2- MOST

3-MISO

4 - Execute RX

0- ENABLE

1-docK

2-MOSI

Figure 96 Communication - Plan & Execute (zoom on the 1st packet)

The refresh rate is 1.68kHz (68% above the criteria). For every transaction 48 bytes are sent and
received (full-duplex: 96 bytes), for an effective half-duplex data rate of 645kbits/s (4x the
criteria). The full-duplex data rate is 1.3Mbits/s. As can be seen on the screen captures, the
communication (at 6Mbits/s, half the maximum value tested) takes only 22.5% of the time

available. It is expected that, in future experiments, this data rate can easily be quadrupled.

122

A second design evaluation criteria linked to the communication between FlexSEA-Plan and
FlexSEA-Execute was to support two Execute boards, 1kHz sampling and 20 bytes per FlexSEA-
Execute. A test setup was made with 1 FlexSEA-Plan, 1 FlexSEA-Manage and 2 FlexSEA-Execute
(one per RS-485 bus). FlexSEA-Manage was auto-sampling its two slave every millisecond,
exchanging 96 bytes per board (48 bytes transmitted, 48 bytes received), for a total of 768kbits/s.
A special command that included the payload from both FlexSEA-Execute boards was used to
read/write from FlexSEA-Plan to FlexSEA-Manage. That way, a single command had to be sent
every millisecond, even though two circuits were controlled. The command used had 48 bytes

and was full-duplex, for a data rate of 768kbits/s.

5.3.3 Communication - Manage & Execute

Criteria: “Both RS-485 serial interfaces should have a minimum bitrate of 2MBits/s”.

The baud rate calculation is details in Section 3.1.4 RS-485. A value of 2Mbits/s is expected. On
FlexSEA-Plan, the tx_cmd_ctrl_special_1() command was used. FlexSEA-Execute replies to
FlexSEA-Manage with a fixed length of 36 bytes. An MD03024 oscilloscope was used to probe
the receive line of FlexSEA-Manage’s RS-485 transceiver (reading the values sent by Execute
when it replies). Figure 97 and Figure 98 show two different measurements made to confirm the

2Mbits/s.

123

80.00mY
J.200v

288,88
115.8ps

A173.0ps A3120 Y

(@ zo0v

(@3 DvM DC

)(40.0ps
—42 4lmy -—-—-Hz 18355725

25065/
10M paints

& 11 Apr 2015
1.44 Y 18:32:09

181.837pis
181.317pis

3.280V
J.azov

A520.000ns

A160.0mY | -

(@ zo0v

(@3 DvM DC

—42 4lm¥ ——-Hz ‘][wm

) 1.00ps

- 2.5068/’5.

3.5572Ps 10M points

& 11 Apr 2015
18:35:17

1/520ns = 1.92Mbits/s. The RS-485 bus has the expected baud rate. The two busses present on

FlexSEA-Manage have the same timings.

5.3.4 Data Logging

Criteria: “Record sensor values in a human readable text files. A minimum of 8 bytes of data can

be logged at least every 10ms (100Hz) (6.4kbits/s).”

Test code used:

void flexsea console datalogger (uint8 t slaveid
{

unsigned int numb = 0;

uint32 t tmp = 0, lines = 0, good = 0;

//Clear terminal:

system("clear");
printf ("[FlexSEA-Plan Datalogging]l\n");
printf (" \n\n") ;

//Log file:

FILE *logfile;
time t t = time (NULL);
struct tm tm = *localtime (&t);

//File will be named with the date & time:
char str[100];

sprintf ((char *)str, "log-%d-%d-%d-%d:%d:%d.txt",
tm.tm mon + 1, tm.tm mday, tm.tm hour, tm.tm min, tm.tm sec);

logfile = fopen(str, "w+");
printf ("Logfile created (%s)\n", str);
printf ("\nPress any key to exit...\n\n");

while (!kbhit ())
{

numb

KEEP, 0, KEEP, 0, 77, O

, uint8 t offs)

) ;

tx cmd ctrl special 1 (FLEXSEA EXECUTE 1,
payload str, PAYLOAD BUF LEN,

\

tm.tm year + 1900,

CMD READ,

numb = comm _gen str(payload str, PAYLOAD BUF LEN) ;

numb = COMM STR BUF LEN;
flexsea spi transmit (numb, comm str,

//Can we decode what we received?
tmp = decode_spi rx();

lines++;

good += tmp;

//Log to file:

0);

125

t = time (NULL) ;

tm = *localtime (&t) ;

fprintf (logfile, "[%d:%d],%i,%i,%i,%1i,%1i,%1i,%i\n", tm.tm min,\
tm.tm sec, execl.encoder, execl.current, \
execl.imu.x,execl.imu.y, execl.imu.z, \
execl.strain, execl.analog[0]);

//Delay 500us
usleep (500) ;
}

//Close log file:
fclose(logfile);

//printf ("\n%i lines (%i with valid data)\n", lines, good);
t = time (NULL) ;

tm = *localtime (&t) ;

printf ("\n%i lines logged\n", lines);

printf ("Log file closed (%d-%d-%d-%d:%d:%d) . Exiting.\n\n\n", tm.tm year

+ 1900, tm.tm mon + 1, tm.tm mday, tm.tm hour, tm.tm min, tm.tm sec);

}
When the CMD_SPECIAL_1 command is received it stores 16 bytes:

exec_s ptr->imu.x = (intl6_t) (BYTES TO UINT16 (buf[CP_DATAl+0],
buf [CP_DATAl+1]));

exec_s ptr->imu.y = (intl6 t) (BYTES TO UINT16 (buf[CP_DATAl+2],

buf [CP_DATA1+3])) ;

exec_s ptr->imu.z = (intl6_t) (BYTES TO UINT16 (buf[CP_DATAl+4],
buf [CP_DATAl+5]));

exec_s ptr->strain = (BYTES TO UINT16 (buf[CP_DATAl1+6], buf[CP _DATAl+7]));
exec_ s ptr->analog[0] = (BYTES TO UINT16 (buf[CP DATA1+8], buf[CP DATAI+9]))
exec_s ptr->encoder = (int32 t) (BYTES TO UINT32 (buf[CP_DATAl1+10],

buf [CP DATA1+11], buf[CP DATA1+12],
buf [CP_DATA1+13]));

exec_s ptr->current = (intlé6_t) (BYTES TO UINT16 (buf[CP_DATAl+14],
buf [CP_DATAl+15]));

’

126

® Open.. x SVN x jfduv... x jFduv.. x GNU nano 2.2.6 File: log-2014-4-23-21:21:39.txt

1 [21:39],39192,-32,0,0,0,1353,147
= [21:39],39192,-32,0,0,0,1353,147
[21:39],39192,-32,0,0,0,1349,160
[21:39],39192,-32,0,0,0,1349,160
) [21:39],39192,-32,0,0,0,1349,151
Press any key to exit... [21:39],39192,-32,0,0,0,1349,151
. [21:39],39192,-32,0,0,0,1351,149
(A [21:39],39192,-32,0,0,0,1351,149
13844 lines logged [21:39],39192,-32,0,0,0,1349,151

Logfile created (log-2014-4-23-21:21:39.txt)

Log file closed (2014-4-23-21:21:57) . Exiting. [21:39],39192,-32,0,0,0,1349,151

[21:39],39192,-32,0,0,0,1348,151

) [21:39],39192,-32,0,0,0,1348,151
Sending 48 bytes. [21:39],39192,-32,0,0,0,1352,152
Read: [21:39],39192,-32,0,0,0,1352,152
G L B G G [21:39],39192,-32,0,0,0,1349,154
G L B G G [21:39],39192,-32,0,0,0,1349,154
AR AR AR AA AR [21:39],39192,-32,0,0,0,1349,152
DL DG B B G [21:39],39192,-32,0,0,0,1349,152
BB B B G [21:39],39192,-32,0,0,0,1349,153
G L B G G [21:39],39192,-32,0,0,0,1349,153
22 22 22 :2 22 [21:39],39192,-32,0,0,0,1350,148
root@beaglebone: fhome /debian/Desktop# [%ii;;g%:ggig;:7;;:3:3:2:1;?3:1:2
[21:39],39192,-32,0,0,0,1349,150

a¥ Get Help Q¥ WriteOut g8 Read File @ Prev Page g{ Cut Text @g& Cur Pos
W Exit a8 Justify sl Where Is @Y Next Page gV UnCut Textgll] To Spell

Figure 99 Data logging with the "Log" application

Figure 99 shows the “Log” interface on the left and the log file on the right. The date and time
are not adjusted on the Plan board, but they can be used differentially. 57 — 39 = 18 seconds.
13844 lines in 18 seconds is 769Hz. Each line stores the equivalent of 16 bytes for a total of
98kbits/s, 15x higher than the criteria.

127

6 Application/test cases

6.1 Clutched Series Elastic (CSEA) Knee

The original electronics of the MIT CSEA Knee
[2][11] was replaced by an early prototype of
FlexSEA in 2014. The main goal was to test the
electronics and prepare the knee for future
experiments. In 2015, the latest generation
FlexSEA was integrated in the knee. It has
been used as a demonstration project and as
a test bench for control algorithms such as the

impedance controller.

The system has one degree of freedom and

uses all 3 FlexSEA boards.

Inputs:

e Incremental encoder
e Hall effect
e Analog angle sensor

¢ Analog force sensor

Figure 100 CSEA Knee with FlexSEA

Outputs:
e [2CRGB LED

e C(Clutch

e Maxon EC-30 Brushless DC Motor

128

The FlexSEA-Plan board runs a Python state-machine that interfaces with the FlexSEA C software.
The impedance loop is closed on FlexSEA-Execute at 1kHz. The Python algorithms are simple
enough that they could run on the FlexSEA-Manage board; a convenient feature for a future

version of this project.

6.2 Autonomous Exoskeleton

A 2 DOF system, such as the one presented in Figure 4, was used for a dual leg autonomous
exoskeleton developed at the MIT Media Lab Biomechatronics Group, an extension of the work

presented in [19].

Inputs:

e Incremental encoder

e Hall effect

e Analog angle sensor (potentiometer)
e Strain gauge-based torque sensor

e Motor current sensing

Output:
e Maxon EC-30 Brushless DC Motor

The embedded computer is used for the high-
level controller and for datalogging. The control

code does not require the processing power of

this embedded computer; as soon as the

Figure 101 Student wearing an early prototype of the dual
autonomous exoskeleton

algorithms are stable they should be
programmed on the Execute board. This will

simplify the wiring and reduce the system complexity.

129

7 Evaluation and Results

7.1 Evaluation Criteria (legacy)

In November 2014 the following list of design criteria was proposed and accepted. Most elements
lack details and are, as stated, hard to evaluate. This list is included in the interest of full

disclosure. An updated list of criteria is available in Section 7.2.

e Users can read sensors and control actuators in C and in Python.
e The system can be used without the Plan board by executing code on Manage.
e A new user can unbox a FlexSEA kit and
o control a motor from Linux in less than one working day (8h)
o read a sensor from Linux in less than one working day (8h)
e The Execute board can run an impedance loop at more than 1kHz, without being
connected to any other board.
e The Plan board can communicate with an Execute board at a minimum of 2MBits/s,
through a Manage board.
e The Manage board can connect to a minimum of two Execute boards with a data rate of
at least 2MBits/s per board.
e The Execute board will default to a shorted-leads protection in a hazardous situation

(tested by disconnecting the main battery)

7.2 Evaluation Criteria

The criteria presented in Section 7.1 have been sub-divided to ease the evaluation process.
Whenever possible, quantifiable objectives have been set. Section 7.3 summarizes the results in

one table.

1. Users can read sensors and control actuators in Linux. Software will be provided to:

a. Display live sensor values on a terminal/computer screen. (Section 4.4.1)

130

b. Record sensor values in a human readable text files. A minimum of 8 bytes of
data can be logged at least every 10ms (100Hz) (6.4kbits/s). (Section 5.3.4)

c. Demonstrate a high-level controller in C. (Section 4.4.2)

d. Demonstrate how to use FlexSEA in Python (Python calling the C program).
(Section 4.4.2)

. The system can be used without the Plan board by executing code on Manage.

. A new user can unbox a FlexSEA kit (1 Plan, 1 Manage, 1 Execute) and, using only the

provided documentation and tools, can read one sensor and control one actuator from

Linux in less than two business days (16h) (Sections 10.4 and 10.5)

. The Execute board can run an impedance loop at more than 1kHz, without being

connected to any other board. (Section 0)

. The Plan board can communicate with an Execute board through a Manage board.

a. All serial interfaces (SPI and RS-485) should have a minimum bitrate of 2Mbits/s
(Sections 5.3.1 & 5.3.2)

b. Plan can send or receive a minimum of 1000 communication packets of a
minimum of 20 bytes each from Execute (160kbits/s for pure writing, 320kbits/s
for half-duplex read/write) (Section 5.3.2)

. The Manage board can connect to more than one Execute board.
a. Minimum of two Execute boards.
b. Both RS-485 serial interfaces should have a minimum bitrate of 2Mbits/s

(Section 5.3.3)

Plan can be connected to one Manage and two Execute, and send or receive a minimum

of 1000 communication packets of a minimum of 20 bytes each from each Execute (total

of 320kbits/s for pure writing, 640kbits/s for half-duplex read/write) (Section 5.3.2)

. The Execute board will default to a shorted-leads protection in a hazardous situation

such as:
a. Microcontroller doesn't execute code or exhibits significant delays. (See 5.1.4.1)
b. Over temperature (warning at 75°C, error at 80°C) (See 5.1.4.2)

c. Battery voltage out of range (See 5.1.4.3)

131

d. Disconnected battery (See 5.1.4.4)

7.3 Results

Table 17 shows a summary of the results, associated with the design criteria described in the
previous section.

Table 17 Summary of Results

Criteria Metric/Goal Measured Status Details
1 - - Pass
a Pass/Fail - Pass Section 4.4.1
b 100Hz, 6.4kbits/s 769Hz, 98kbits/s Exceeded Section 5.3.4
c Pass/Fail - Pass Section 4.4.2
d Pass/Fail - Pass Section 4.4.2
2 Pass/Fail - Pass
3 Under 16h 2h35 Exceeded Sections 10.4 and 10.5
4 1kHz 1kHz Pass Section 0
5 - - Pass
a | 2Mbits/s, 2Mbits/s | 12Mbits/s, 2Mbits/s Exceeded Sections 5.3.1 & 5.3.2
b 320kbits/s 1.3Mbits/s Exceeded Section 5.3.2
6 - - Pass
a 2 4 Exceeded
b 2Mbits/s 2Mbits/s Pass Section 5.3.3
7 640kbits/s 768kbits/s Exceeded
8 - - Incomplete
a Pass/Fail - Pass See5.1.4.1
b Pass/Fail - Pass See 5.1.4.2
c Pass/Fail - Pass See5.1.4.3
d Pass/Fail - Pass See5.1.4.4

132

“The Execute board will default to a shorted-leads protection in a hazardous situation” (criteria
#8) is the only incomplete criteria. While all the detection circuits and software were tested
functional, the overarching safety code could not be developed in time to be documented in this

thesis. All the other evaluation criteria specifications were met or surpassed.

133

8 Conclusion

Over the last 20 months, the idea of developing a new embedded system tailored to the specific
needs of researchers in the fields of wearable robots, such as advanced prostheses and
exoskeletons, evolved from a napkin sketch to a fully functional kit of electronics boards and
software. Past design attempts were analyzed, key actors were questioned and technology was
surveyed with one goal: unifying all the requirements in one simple to use yet powerful system.
To outlive this thesis, the FlexSEA system needed to be adaptable to a wide variety of project and
scalable both in terms of the number of modules, sensors and actuators, and in terms of
modularity and ease of accommodation of future technologies and changing needs. It is believed
that the design was brought to a sufficient level of completion to be used as a tool, as a product,
and not just as a prototype. FlexSEA is integrated in two current research projects and will soon
be integrated in two other devices. Only the future will tell if this redesign of the wheel will fasten
the development of revolutionary prosthetic limbs, but the preliminary results show great

promises.

134

9

[1]

[2]

[3]

(4]

[5]

(6]

[71

8l

(9]

[10]

References

F. Sup, H. Atakan Varol, J. Mitchell, T. J. Withrow, M. Goldfarb, “Preliminary Evaluations of a
Self-Contained Anthropomorphic Transfemoral Prosthesis”, IEEE/ASME TRANSACTIONS ON
MECHATRONICS, VOL. 14, NO. 6, DECEMBER 2009

E. J. Rouse, L. M. Mooney, E. C. Martinez-Villalpando, H. Herr, “Clutchable Series-Elastic
Actuator: Design of a Robotic Knee Prosthesis for Minimum Energy Consumption”, 2013

IEEE International Conference on Rehabilitation Robotics

S. Hodges, N. Villar, J. Scott, A. Schmidt, “A New Era for Ubicomp Development”, IEEE

Pervasice Computing, Vol. 11 Issue 1, January-March 2012

Y. A. Badamasi, “The Working Principle Of An Arduino”, 11* International Conference on

Electronics, Computer and Computation (ICECCO), 2014, Abuja

A.Y. Benbasat, S. J. Morris, J. A. Paradiso, “A Wireless Modular Sensor Architecture and its
Application in On-Shoe Gait Analysis”, IEEE Sensors Conference, Toronto, Canada, October
22-24 2003

Y. Meng, K. Johnson, B. Simms, M. Conforth, “A generic architecture of modular embedded
system for miniature mobile robots”, 2008 IEEE/RSJ International Conference on Intelligent
Robots and Systems, Nice, France, Sept, 22-26, 2008

A. O. Nursal, “Modular embedded system design for mechatronic education”, 2010
IEEE/ASME international conference on mechatronic and embedded systems and
applications, Qingdao, ShanDong, 15-17 July 2010

R. J. Mitchell, J. B. Grimbleby, R. J. Loader, C. Kambhampati, “Modular embedded system for
teaching real-time control”, International Conference on Control, Coventry, UK, 21-24 March
1994

M. A. Rosly, Z. Samad, M. F. Shaari, “Feasibility Studies of Arduino Microcontroller Usage for
IPMC Actuator Control”, 2014 IEEE International Conference on Control System, Computing

and Engineering, 28 - 30 November 2014, Penang, Malaysia

G. A. Pratt, M. M. Williamson, “Series Elastic Actuators”, MIT Artificial Intelligence

Laboratory and Laboratory for Computer Science, 1995

135

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6975730
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6975730

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

E. J. Rouse, L. M. Mooney and H. M. Herr, “Clutchable series-elastic actuator: Implications for

prosthetic knee design”, The International Journal of Robotics Research, 9 October 2014

A. Harris, K. Katyal, M. Para, J. Thomas, “Revolutionizing Prosthetics Software Technology”,

2011 IEEE International Conference on Systems, Man, and Cybernetics (SMC), 9-12 Oct. 2011

M. Grebenstein, A. Albu-Schaffer, T. Bahls, M. Chalon, O. Eiberger, W. Friedl, R. Gruber, S.
Haddadin, U. Hagn, R. Haslinger, H. Hoppner, S. Jorg, M. Nickl, A. Nothhelfer, F. Petit, J. Reill,
N. Seitz, T. Wimbock, S. Wolf, T. Wusthoff, G. Hirzinger, “The DLR Hand Arm System”, 2011
IEEE International Conference on Robotics and Automation , May 9-13, 2011

Z. Xie, J. Zhao, J. Huang, K. Sun, G. Xiong, H. Liu, “DSP/FPGA-based Highly Integrated Flexible
Joint Robot”, The 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems,
October 11-15, 2009

M.A. Diftler, J.S. Mehling, M.E. Abdallah, N.A. Radford, L.B. Bridgwater, A.M. Sanders, R.S.
Askew, D.M. Linn, J.D. Yamokoski, F.A. Permenter, B.K. Hargrave, R. Platt, R.T. Savely, and
R.0. Ambrose, “Robonaut 2 — The First Humanoid Robot in Space”, 2011 IEEE International
Conference on Robotics and Automation, May 9-13, 2011

L. B. Bridgwater, C. A. lhrke, M. A. Diftler, M. E. Abdallah, N. A. Radford, J. M. Rogers, S.
Yayathi, R .s. Askew, D. M. Linn, “The Robonant 2 Hand - Designed To Do Work With Tools”,
2012 IEEE International Conference on Robotics and Automation, May 14-18, 2012

S. K. Au, H. Herr, J. Weber, E. C. Martinez-Villalpando, “Powered Ankle-Foot Prosthesis for the
Improvement of Amputee Ambulation”, Proceedings of the 29th Annual International
Conference of the IEEE EMBS, August 23-26, 2007

E.C. Martinez-Villalpando, J. Weber, G. Elliott, and H. M. Herr., “Design of an agonist-
antagonist active knee prosthesis”, Proceedings of IEEE BIORobotics Conference, Scottsdale,
AZ, 2008

Mooney et al.: Autonomous exoskeleton reduces metabolic cost of human walking. Journal

of NeuroEngineering and Rehabilitation 2014 11:151.

136

http://biomech.media.mit.edu/wp-content/uploads/sites/3/2013/04/Design-of-an-Agonist-Antagonist-Active-Knee-Prosthesis.pdf
http://biomech.media.mit.edu/wp-content/uploads/sites/3/2013/04/Design-of-an-Agonist-Antagonist-Active-Knee-Prosthesis.pdf

10 Annexes

10.1 Glossary

ADC: Analog to digital converter

ARM: microcontroller core and instruction set developed by ARM Holdings and licensed to
microcontroller companies.

BLDC: Brushless DC Motor.

ASIC: Application Specific Integrated Circuit

BJT: bipolar junction transistor

COTS: Commercial-off-the-shelf, used to describe components or systems that can be bought
DAC: Digital to analog converter

GCC: GNU Compiler Collection, open-source compilers

GDB: GNU Debugger

GNU: "GNU's Not Unix!" Unix-like computer operating system composed wholly of free
software.

High-side switching: a high-side switch is placed between the positive supply and the load. The
other terminal of the load is connected to the negative supply.

I12C/12C: Inter-Integrated Circuit computer bus used to link low-speed peripherals in embedded
systems and computers.

IC: integrated circuit

Low-side switching: a low-side switch is placed between the negative supply (typically the
system ground) and the load. The other terminal of the load is connected to the positive supply.
MCU/uC: Microcontroller unit, a single computer chip designed for embedded applications
MOSFET: metal-oxide—semiconductor field-effect transistor

OpAmp: Operational Amplifier

PCB: printed circuit board.

PWM: Pulse-width modulation. In this context, PIWM is used to encode a variable voltage as the

average value of a digital pulse-train.

137

http://en.wikipedia.org/wiki/Unix-like
http://en.wikipedia.org/wiki/Operating_system
http://en.wikipedia.org/wiki/Free_software
http://en.wikipedia.org/wiki/Free_software

RS-485: standard defining the electrical characteristics of drivers and receivers for use in
balanced digital multipoint systems.

RX: short version of “reception”.

SMPS: Switched-mode power supply, an electronic power supply that incorporates a switching
regulator to convert electrical power efficiently.

SPI: Serial Peripheral Interface bus, synchronous serial communication interface specification
used for short distance communication.

TX: short version of “transmission”.

138

http://en.wikipedia.org/wiki/Balanced_line
http://en.wikipedia.org/wiki/Telecommunications_link#Multipoint
http://en.wikipedia.org/wiki/Power_supply
http://en.wikipedia.org/wiki/Electrical_power_conversion
http://en.wikipedia.org/wiki/Bus_(computing)
http://en.wikipedia.org/wiki/Synchronous_circuit
http://en.wikipedia.org/wiki/Serial_communication

10.2 Execute Schematic

1

|

'BIOM_FLEXSEA EXECUTE 0 1

112014

MIT Media Lab - Biomechatronics

PWR _STG 0_x. With the old naming
convention this one is 0_3.

=}

75 Amherst Street

st
Revision: Cambridge, MA 02139
Us4

: PSoCS Safety-CoP
] BIOM_FLEXSEA_EXECUTE_0_I_PSoC5.SchDoc BIOM_FLEXSEA EXECUTE_0_1_Safety-CoP.SchDoc
anci on oller BIOM _FLEXSEA EXECUTE 0 1 PSoC5.Schc PIOM FLEXSEA EXECUTE 0 1 Safety-CoPS Sc
NA.< 8> g PWMHI [- PWMHI HI [
ax PWMH2 | — PWMH2 H2 [
PWMH3 [< PWMH3 H3 [
15V 5y PWMLI [> PWMLI LI[3
A =L PWML2 [" PWML2 A
5 PWML3 [m,, PWML3 L3 [
1 2 LLUTCH POW WDCLK [< WDCLK u]
EXPSE L 3 3 HALL3E SDA_ s e e e]
EXPOE 3 9 HALLOF 28 spA BH%ege SLCK [
ENCI_BE 8 HALLIE 1 va SNSRI s SLEN [
ENCIIE 4 N ENCI A EACEENANARANR
EXP3E o EXPSE o8 L _
EXPOE 7 1 B A_EXPIE e
EXPIE 4 19 20 22 cs3 A
rd NI L exee =
a2
EXP6E L S s EXPTE
- > = 25 26 — - —
4 2 s 2
RS485 A L 7 = EXPI0E BLDC
RSI85 B3 4 i C{ EXPLIE BIOM _FLEXSEA EXECUTE_0_1_BLDC.SchDoc
RSI85 A =| P =]
o 7) ;
RSI8S B E m WM SG P R«w = A AL w ﬁw mm_.lmz =
RSI85 A | R 1T — . CLK s
RSI85 B 9 S la € e i =
39 40 13 |
R
PC40H : a
\/ - H3 |
S NG - H2 |
Clutch] Cst HI
BIOM FLEXSEA EXECUTE 0 1 Clutch SchDoc
CLUTCH POW [— - = Power
*H CEUICHPOW (G A0, JICEOTCH BIOM_FLEXSEA EXECUTE 0_1 Power.SchDo
= VB_SNS 1 m VB_SNS
BIOM FLEXSEA EXECUTE 0_1_Strain-Gauge SchDo Pl VG SNS
sG P et 4
SGN = S F 2 i UL IMU 1 [Fess
e ol - BIOM FLEXSEA EXECUTE 0_I UL IMU SctiDoc
Vo1 [———— i
$G.V02 [——— 5G V02 LED R [. LED R DM DM 2 | ysp.
VRI __+————————— | VRI LED G | T LED G RN -
VRI PRE [—————— VRI PRE LED B | -— LED B DPK_ USB+
VR2 {__t———————_ | VR2 LED HB [__ . LED HB 4
/T — R /)] = B
| DN DN :
e DP ® 2 GND
BIOM FLEXSEA EXECUTE 0 1 Protection SchDoc — saL _ 0473460001
S " HALLIE HALLI [i HALLI A oL
HALLE t > HALL2E HALL2 [{_> HALL2 i
ENCLAE—— HALLSE HALL3 [{_ HALL3
NeTSE L ENCLAE ENCLA [[ENCLA
ENCIE ¢ e ENCLB[¢ ENGLIH BIOM_FLEXSEA EXECUTE 0_1 RS-485.SchDoc
el — ENCIIE ENCLI [— ENCLI D0 Rsdgs Al
Lk I~ EXPOE EXP0 . ~ EXPO 485 RX1 485 RX1 R$485 Al s
AT "~ EXPIE EXPL — EXPI 485 TX1 485 TXI Rs4ss Bl it Bl
B = EXPE EXP2 = EXP2 485 DF1 > 485 DE1 RSdss A2 o
D L= EXP3E EXP3 ¢ = EXp3 485 REL [485 RE1 RS48STRY a2t
e = EXPIE EXP4 — EXP4 485 RX2 485 RX2 R$485 A3 s
B \— EXPSE EXPS = EXPS 435 0 [> 485 TX2 RS485 B3 E
L 1~ EXP6E EXP6 — EXP6 485 DE2 [485 DE2
B = EXPTE EXP7 {4 = EXP7 485 RE2 [485 RE2
. \— EXPSE @ = EXPS 485 RX3 485 RX3
L e .~ EXP9E EXPY — EXPY 485 TX3 [> 485 TG
g = EXPIOE EXPIO ~ EXPI0 485 DE3 | 485 DE3
- > EXPLIE EXP11 < __ EXP11 485 RE3 485 RE3 open source
ardware
Title FlexSEA-Execute 0.1 Bibmeclaronics
e e e MIT Media Lab - E14-274

3

ML M2 M3 M4 MS
Size: Letter Number:*
Sl g gl 2 S| [Dae 2015:05:05 Time: 122857 | Sheet* of *

File: BIOM FLEXSEA EXECUTE 0 1.SchDoc

4

Ly

139

02A

VDDIO2
P25 (TRACEDATAL, GPIO
P2_6 (TRACEDATA2, GPIO
P2_7 (TRACEDATA3, GPIO
P12_4 (12C0_SCL, SIO)
P12_5(12C0_SDA, SIO)
P6_4 (GPIO)

P6_5 (GPIO)

P6_6 (GPIO)

P6_7 (GPIO)

P2_4(GPIO, TRACEDATAO)
P2 3(GPIO, TRACECLK)
P2 2(GPIO)

P2_1(GPIO)

P2 0(GPIO)

PI5_5(GPIO)

P15_4(GPIO)

P6_3(GPIO)

P6_2(GPIO)

P6_1(GPIO)

P6_0(GPIO)

CY8C5888AXI-LP096

XRESS

+5V +5V

%

6
3

L1 PS_0(GPIO)

41 PS_L(GPIO)

St PS2GPIO)

19 ps 3GPIO)

P1_0(TMS, SWDIO, GPIO)
P1_1(TCK. SWDCK. GPIO)
P1_2(aXRES, GPIO)
P13(TDO, SWV, GPIO)
P1_4(TDI, GPIO)
P1_S(NTRST, GPIO)
P1_6(GPIO)

PI_7(GPIO)

PI2_6(SI0)

P12 7(SI0)

P5_4(GPIO)

P5_S(GPIO)

P5_6(GPIO)

P5_7(GPIO)

l =

u2C

VDDIO3

P15_0(MHZ_XO, GPIO)

P15_I(MHZ _XI, GPIO)

P3_0(IDAC1, GPIO)

P3_1(IDAC3, GPIO)

P3_2(OPAMP3-, EXTREF1, GPIO;
P3_3(OPAMP3+, GPIO)
P3_4(OPAMPI-, GPIO)
P3_S5(OPAMP1+, GPIO)
P3_6(GPIO, OPAMPIOUT)
P3_7(GPIO, OPAMP30UT)

P12_0(SIO, 2C1_SCL)
P12_1(SIO, 2C1_SDA)
P15_2(GPIO, KHZ_XO)

P15_3(GPIO, KHZ XI)
CYBCS888AXI-LP096

U2E
P15_7(USBIO, D-, SWDCK)

P15_6(USBIO, D+, SWDIO)

CY8CS888AXI-LP096

+5V
- Tevenairc
_ U
75 N B v
12C OPT PU LR wr P ¢ CYRCSIBAXLLPO9G 2C OPT PU
T — P46 GPIO) —0 0y aa =« veep -4
ENCI L ———Sc: P4_5(GPIO) —4L1 Ne e g VCCD Fu 4
= 2 62 gB g bR 51 52
NCLB Soel P4 UGPIO) & Ne o S Syl
NCI A ——8le P4 3(GPIO) — xc veea
ALLT £0o1 P4 2(GPIO) —- ~eC "
IALL2 Zv4 P0_7(GPIO, IDAC2) —3- xc np —i— ol -
ALL3 P0_6(GPIO, IDACO) —381 NC & &
T 57 oo 4 m 12 o o
27t PO S(GPIO, OPAMP2-) N 2322 § §veoost
PO_4(GPIO, OPAMP2+, SAR0_EXTREF) VBAT 2 1
[[SG VoI - L4+ P0_3(GPIO, OPAMPO-, EXTREF0) R l 4 FHI9C-68-0 55H(05)
14 PO 2(GPIO, OPAMPO-, SARI_EXTREF) alelels] 2 =
Zet P0_1(GPIO, OPAMPOOUT) w0 Gy
o i P0_0(GPIO, OPAMP20UT) BV
==c17 ==c18 7
1000F | 100nF o)
%l P4 0(GPIO)
P12 3(SI0) N7 N7 SZ. R4S a6
Y e 6Xp GXp G\ 2k
CYSC3888AXI-LP0%
GND
3 s
2 8
1SV 4V 8V 45V 45V 4V 48V
"EXP6/7: optional external FC. Pull-ups can be
enabled with [2C_OPT _PU.
Cl6 ==C19 20 == =28 ==C29
C : TF T w00 | o0ck | ta0ak | Tooee | xoouk | so0uF i Execite - PSoC5 Blomecharanies
PO[7:0], P3[7:0]. and P4[7:0] have a slight analog 75 Amiberss Sereet mit
performance advantage as these ports reside in Size: Letter | Number: Revision: Cambridge, MA 02139 — media
Hﬂs._nw%ﬁ. Poion ot e Syt Due JU 0SS G\D GND G\D GN\D GND Date: 2015-03-05 Time: 122858 | Sheet o US4 lab
File: BIOM FLEXSEA EXECUTE 0 1 PSoC3.SchDoc

3

140

+5V
usc USE
P20
P22
z ale| UsF
N<w_ P43 “I"_cvscazasi
P25 CYSC4245LQI-483 =
P26 a4 XRES
P27 ge
CYSCA245LQI483 <
- 42 m VCeD
2680
. b =
GND
g GXD XD
= 5V
USA Is
P30 P00 1
o @ SRR }
P32 P02 TR 3
P33 PO 3 AREM 1y e
P34 PO 4 5
Pis PO S JR—
__”wiw %lw 23 FHI9C-68-0.5SH(05)
. x LNJ247WS2RA G\D 59 60
CYSCA245LQI483 CYSCA245LQI483

— TuF 100nF
GND GND GND

141

Biomechatronics
Tite Exvecute - .w.&.\. e CoP MIT Media Lab - E14-274
ize: . e 75 Amherst Street
Size: Letter | Number: Revision: Cambridge, MA 02139 —
[Date: 2015-03-05 Time: 12:28:59 Sheet _of US4

File: BIOM FLEXSEA EXECUTE 0 1 Safety-CoP.SchDoc
1 2 3 4

1 2 _ 3 4
+3V3
o
l RS485 BI
8
= m R6
6 120
485 DEI 2 DE S
485 TX1 b & RSA8S Al
SNGSHVDTS
"
GXD
+3V3
&
P RS485 B2
385 R Liro u
485 RE2 4 RE S 5 7
B |
: e 120
& RS48S A2 >
L] SNesHvDTs
GN\D
+3V3
3V
|
L RS485 B3
85 RO —< RO ©
e Z e e +3V3 +3V3 43v3
B -
g
C30 C63
o RS485 A3 1000F 1000F 1000F
SNGSHVDTS
)
GND GND GXD
GXD

Title

Execute - 3x RS-485

Biomechatronics
MIT Media Lab - E14-274
75 Amherst Street

Ly

Size: Letter | Number: Revision: Cambridge, MA 02139
Date: 2015-03-05 Time: 12:28:59 Sheet of USA
File: BIOM FLEXSEA EXECUTE 0 1 RS-485 SchDoc

3

iy

142

REPEAT(HalfB, 1.3);
BIOM_FLEXSEA EXECUTE 0_1 Half-Bridge.SchDoc

SER L " REPEAT(H) REPEAT(MOT) <

L1
K ()
2
Lo N NI L AWGI6 TH
" REPEAT(L) -
cst
=]
(&) 18
csna) cs REREAT(CS) AWG16 TH

o

by
AWGI16_TH

A

Shorted_Leads
BIOM _FLEXSEA EXECUTE 0_1_Shorted-Leads.SchDoc

SL_CLK MOT 1
SL_EN MOT 2
MOT 3

SL CLK)
SL_EN)

4
|
<

u7

55

GND VDD (i
MOT 1
|+
12
MOT 2
|+
12
MOT 3
s
12

143

Y 4 N 4 N 4
vouT - ——— R
|_| [1 — = 01 G = 104 N z 103
&% 1
MCP9700A C56 S - < 8% 2N
G 100nF 10k 2 10k 2 10k 2
z 5] o
28 g2 %2
S SR A
GND GND GND GND GND GND GND GND
N Biomechatronics
Title Execute - BLDC Rt S
o ; e 75 Amherst Street
Size: Letter | Number: Revision: Cambridge, MA 02139
Date: 2015-03-05 Time: 12:28:57 Sheet of US4
File: BIOM FLEXSEA EXECUTE 0 I BLDCSchDoc

2 & 4

1 2 u ..
VB VB
VB
VG L
=i DIA
S Co2a ==CaA ClA ==C2
p|_qia 1000F WF | 1000F
MBROS80-TP R _|H+mm83zszm
yia 3 47.5 G -
1 8 ==C3A ==C4A S
HECEWE WF | 1000F A 7
HN HO p-l—HO MOT MOT_ >
‘ O |
LLIN Vs 2 ki
COM LO = LO Rl TWmmno:z&zm
W 1
@ 475
IRS21867 A
GD
GXD
GCSIH
JESIN
20.005
GXD

Iy
Designed for 24V with 2x margin.

+VB caps are 50V
MOSFETSs are 60V

Tite Execute - ¥ Bridge

Size: Letter | Number:*

Revision*

Date: 2015-03-05 Time: 12:28:57

Sheet* of *

Biomechatronics

MIT Media Lab - E14-274
75 Amherst Street
Cambridge, MA 02139
us4

File: BIOM FLEXSEA EXECUTE 0

Half-Bridge. SchDoc

3

144

R47
SL_CLK g

Cs3

1000F

D19

SDM40E20LS-7-F

Q6

MOT 1]
~ [
D D D
SL GATE, H*m m WM 2
ro o [G 17T 8 4=
S 4] s[sc s[ag om
S0 58 & & az
00k
GND GND GND
GND
MOT 2 |
p| & p| & p| &
o [=il El= 8
[T == I i e = s T Z
S g s[728 s[=8 e
=0 g o8 az
= A
GND GND GND GND
< MOT 3
pl H p| & p| E&
_Iw 2 uIWm _IH*m 2
CNTLE T TER | " TsR | ki
WC o o8 az
GND GND GND GND

Tile Execute - Shorted Leads

Biomechatronics
MIT Media Lab - E14-274

T A BhatiE 75 Amherst Street mit
Size: Letter | Number:* Revision* Cambridge, MA 02139 f— media
Date: 2015-03-05 Time: 12:28:59 | Sheet* of * Us4 lab
File: BIOM FLEXSEA EXECUTE 0 1 Shorted-Leads.SchDoc

3

Sl

145

AWGI6_TH

2

BIOM FLEXSEA EXECUTE 0_1 _LM25011_DCDC.SchDoc

TPS62163

BIOM_FLEXSEA EXECUTE 0_1_TPS62163 DCDC.SchDoc

TVS will clamp at min 36.7V/
and max 40.6V. The maximum
tolerable voltage is determined

AWGI6_TH _

L=

Hnm IA_\Mnm ﬁﬁq
M—uoﬁu M—uo&» M—wa:m

NG
4RS9
F10k
4R60
7.5k
Gain = 1/7 (0.14493)
LPF 2.2kHz v
GND

+VB +VB +VB

e
gl bl il

GND GND GND

._' UI2 MCPIT00T-33
3 2

_ +VIN

GND

3

S

3

—

+VOUT

67
— F 5 IuF
GND GND GND
B
LR42
ok NG b= 4 +3V3
RS LRY bR 14 bR15
10k 275k 3k F13k
g £ g -
ke *® el m
Y ¥ ¥ w
& [T -
8 2 & g & g &
GND GND GND GND
+VB +VB +VB +VB +VB +VB
GND GND GND GND GND GND
< > Biomechatronics
Tite Execute - Power Supplies s iz
o . P 75 Amherst Street mit
Size: Letter | Number: Revision: Cambridge, MA 02139 — media
Date: 2015-03-05_Time: 12:28:58 Sheet _of UsA lab
File: BIOM FLEXSEA EXECUTE 0 1 PowerSchDoc

3

3

4

146

Max +VB: 42V

D26

==C38
1uF

LR21
110k

==C39
1uF

i

MBRO580-TP

U9

VIN BST 2

JH_InI 37

1000F L1 L2
sw 2 Y. LYY
RT 22uH 2.2uH
R0
ﬂ_ﬂw $29.4k
ROSS0-TP
PGD
8
cs ==C40 —
20F 2uF
ss R4
202 Lras
ep LEP 210k
CsG 1
SGND FB
LM25011Q1
GND GND GND GND

Tite Execute - LM25011 10V DC/DC

Biomechatronics
MIT Media Lab - E14-274

Size: Letter

Number:

Revision:

75 Amherst Street
Cambridge, M4 02139
Us4

Date: 2015-03-05 _Time:

12:28:58

Sheet of

L

mit
media
lab

File: BIOM FLEXSEA EXECUTE 0

LM25011 DCDC.SchDoc

~

3

147

3 4
WG D27 Sy
._| Z!mms..:v ._u
D28
VGl
MBROS80-TP U3
L3 L4 F2
7 Y Y 1 2
VIN SW
2.2uH 1uH
500mA
EN vos 2
3 R16
PGND PG M-
110k
—— el — o7 5 ==C35 ==Ca6
I 47uF | 10uF AGND FB, 2uF 10uF
THERM 2
TPS62163
GND
< Biomechatronics
Tite Execute - TPS62163 5V DC/DC el e
e N T 75 Amherst Street mit
Size: Letter | Number: Revision: Cambridge, MA 02139 — media
Date: 2015-03-05 Time: 12:28:59 Sheet of UsA lab

File: BIOM FLEXSEA EXECUTE 0

TPS62163 DCDC.SchDoc

3

4

148

UsB

P1A
£y
PIB

MCP4661T-103

SV
38
7.5k
7
6
S
Gw_
mr 1000F
GND GND

CEER— RiD RIC N

:
5
F<

DI2A

D12B

i I—I Ik _
C48D 48C

100nF 100nF
e
TPD4E004DRYR

a

GND GND GND
R36B R36A P
1k 1k

C48B 48A

x 100nF 1000F
o

=]
TPD4EOO4DRYR

GND GND GND

Vaer O ﬂ“
).bt._s.uu wiring: e oY
Vour =aEms=csanzans

Vi O - Add a shield to the cable. Link it to GND on the Strain Amp. 7 = 7
o] - Make two twisted pair. excitation wires and signal wires Tite Execute - Strain Amplifier i

T T T For all the details please refer to Size: Letter | Number:* Revision* M.“M_“MMM .MMMmc- 2139 _ “..M&D

oW Shutdonn Iy x vy conVdoe10S U0 Tndt Date: 2015-0305_Time. 122859 | Sheet* of * usa lab

File: BIOM FLEXSEA EXECUTE 0 I Strain-Gauge SchDoc
3 _ 4

I . VR - rera Voua p
X~ 2 viea

LR26 ==C44
Ak [47pF

U6A +5V

$R39
L RGa SDNA Allu_:

A
S
w

A
b

3

o

+ VintA
INA2331

usc
POA
==C45

wl
USA | MCP4661T-103
a
oL S Hvoao & Al e—
SCL SRS SCL A2 s
{_SDA > SDA 22 wp
298 nc U1 —

3
4
EP

g
g

15

11

QMAES_ 5V 15V +5
“—\VOA@ Hﬁme C52

1000F | 1000F 100F

>

2

149

3 7 4
By o)
= +3V3 +3V3 43V3 3V 43V
. R17 o . s1 Hn&
3 3k ui3 | 1000F | 100F
P mmw w«w A—3e SDASDI @ g AUX (L po—
2 <531 SCLSCLK & & AUXDA Aml
= g o E NG GND GND
i ~—{*1 ADO/SDO NC f——
= FSYNC NC
LNJ347WS3RA VM| Ne 5
— NC 5 NC [—i—
LEDR —5 NC NC =
LED G <, —] RESV & m NC —>
LED B Bl RESV] NC

D6
TPD2EUSB30DRTR

GND GND GND
+3V3 48V 43V3 43V
_ U4 PCA9306
2 7
| VRERL VRER2 |3 % &
47k 4Tk
SCL 3V3 3 6
S SCLI 2 SCL2 ———SCL
SDA 3V3) 3 CSCL_] @
A spal O spA2 ———(SDA_ z z
- g 3
7 Z

Title Execute - UI & IMU

Biomechatronics
MIT Media Lab - E14-274

Size: Letter | Number: Revision:

Date: 2015-03-05 Time: 12:28:59 Sheet o

75 Amherst Street mit
Cambridge, MA 02139 — media
Us4

File: BIOM FLEXSEA EXECUTE 0 1 UI IMU.SchDoc

3

150

1 2 3 4
VB +VB Q3
FDN5618P
—_CLUTCH_POW
Ao
1r3n2
33k s
4R33
33k
e
ROS80-TP
o
CLUTCH —l .c.fW W
=
Z
4
o
GND GND
Biomechatronics
Tie Execute - Clutch MIT Media Lab - E14-274
= . o 75 Amherst Street mit
Size: Letter | Number: Revision: Cambridge, MA 02139 — media
[Date: 2015-03-05 Time: 122858 | Sheet of Us4 lab
File: BIOM FLEXSEA EXECUTE 0 I Clutch SchDoc

3

i

151

152

By Y b § By By
w w
o @ 4
& 2 3
x = X x i XK (| X
E— R1IB == . RIOA _ = RIOB | e R10C
101 < Fli.lr 102 {ENCII 103 < ENCI B 104 (ENCLA 103
100 & 100 & 100 & 100 o 100 &
Y 4 i 4 - 4 i 4 i 4
3 - - g 2
<3 % 2 g oF
= m =3 m wm mm 22
a a a a =
GND GND GND GND GND
=L =i By By By
1w :.t 1w w
= 3 v <+
B £ & &
x i X 5 X Y 4 o X
RIOD | R11D ,,_ __RlC [R12D _\) R12C ,,_
Hl?lr 104 EXP9 102 (EXPS_ 01 {EXP5 102 {EXP4 101
100 & 100 & 100 & 100 o 100 o
e X : X s X § X : X
3 2 2 2 2
2 = = g 2
a% = g Z g
2a @A <8 ad <d
ok ak AE g8 B&
GND GND GND GND GND
gL -4 6 3V BV
w 1w mE w
§ X x 5 X x
RI2B . RpRA RI3C
EE—we—b—{ 103 B —We—d—— 104 w1 104
100 & 100 & 100 & 100 o
Y 4 3 4 i 4 3 4
(=3 =3 =3 (=3
g £ £ g
3 a8 g2 g2
BE O a8 L 2k N aE u
GND GND GND GND
5V By By Y
X o
5 =
x f X x A 4
~ RBD [RI3B I R64 P R65
EXP) ——We————] 102 P —we———1 101 T EXPI0 103 <_EXPIl I§|h| 104
100 & 100 & 120 g 120 =
& &~ & 3
g x g x £ x g x
[} = = =
g2 £z 12 ag
a a a2 a
GND GND GND GND
Tile Execute - 10 Protection L TR
A i ok A Street it
Size: Letter | Number: Revision: Cambridge, MA 02139 — e dia
| Date: 2015-03-05 Time: 12:28:58 Sheet of Us4 lab
File: BIOM FLEXSEA EXECUTE 0 1 Protection SchDoc

1 2 3

10.3 Manage Schematic

+5VP+VP

MU
BIOM_FLEXSEA MANAGE 0_1_IMU SchDoc

FLASH
BIOM_FLEXSEA MANAGE 0_1 FLASH.SchDoc

10s
BIOM_FLEXSEA MANAGE 0_1_IOs.SchDoc

i
I BIOM FLEXSEA MANAGE 0_1 Plan SchDoc

R S

g
g

14

T

L

GND

3 4
+5VU
n
STM32F4_A ut L vee
BIOM_FLEXSEA MANAGE 0_I_STM32F4_A SchDoc BIOM FLEXSEA MANAGE 0_1_ULSchDoc
| USB-
DB 3 yepy
4

w Rz

&@5

RS-485
BIOM_FLEXSEA MANAGE 0_1_RS-485.SchDoc

Power
BIOM_FLEXSEA MANAGE 0_1 Power.SchDoc

3| GNp
_ 0473460001
&

RS485 Al
RS485 B1

RS485 A2
RS485 B2

RS485 A3
RS485 B3

RS485 A4
RS485 B4

RS485 AS
RS485 BS

RS485 A6
RS485 B6

Ty 5 +3V34]
1 2
PWROUTO 3 i
PWROUTL N o
AN 3 G T
ANG 9 10 12
e 1L By ol 12 ANS
B o
DIOEO % m ”M e
e Plo o[Z 1 pog
BoE———712 2 G —por—
= 23 24 (]
DIOES L S
57 =
ResssBe U501 % 287501 Reass ey
RSass a6 € 3113, 35 [32 RS485 A3
RS485 B, 33133 34 [38§ RS B?
R 35135 3¢ 26§ RS4ES A)
RS85 B 5 e
L 713 38 { RSIBSBI
T — S Reteral
PCA0H
GND GND
Tite FlexSEA-Manage 0.1 Biomechatronics

Size: Letter

75 Ambherst Street

Number:* _ Revision:*

3

MIT Media Lab - F14-274
idge, MA 02139 — ain
- lab

C
Date: 2015-04-08 Time: 12:52:46 Sheet* of * US4

File: BIOM FLEXSEA MANAGE 0 1.SchDoc

_

4

153

1 7 2 _ 3 4
U1SA UISB u1sC u1sD UISE UISF U15G
ANG PAO "ANS/9 ﬁ$.v PBO LED L 25c1 peo IMUINT 1! ppo —L8LJ peg DIOO/SDAZ PFO —2ed pGo
Al] LED O 2 11 1 DIOI/SCL? 5
PAI PBI PCI —c! pDI . —2ci PEI PFI —571 PGl
Al 3 DC OPT PU_72 1l SPI4 SCK 3
PA2 PB2 PC2 PD2 PE2 . —rt PR2 PG2
Al T SWO 3 2 11 SW1 LED G iR
pN | S10] B piog o] PG ﬁ s SPI XSS i LED £t e
i PA4 — PB4 et PCY PD4 —— PE4 PF4 PG4
Al ALl pas —12e pes —3el pes —19] pps SPI4 MISO PES LB PFS 201 PGS
Al 320 PAG —2%e PBS 483 X4 %6, pos —122 pps SPl4 MOST PE6 SRS NS PF6 21 pGe
A 43,] pa7 37 pR7 35 RX4s o7] PC? 123} pp7 58 . PE7 SPIS SCK. PF7 e 2] pg7
485 CK3 100] pite SCL1 By it 385 CK6 O8] S DIO2/USTX Tl 5% e SPIS MISO__ 20, prd DIO4/SS6 x|
385 TXIZ___10 SDAL 30" = 9 DIO3/USRX 7 [SPI5_ MOSL_—_2 [¥)
485 IX12__10L} ppg i PBY PCY . PDY PE9 \ PF9 PGY
383 RXI2__10 3)] ECI 7 485 DE4 3 5] 2
PAI0 —=2551 PBIO PC0 | ESWROTI s PDIO : PE10 PF10 PGI10
D PAIL —Dc pBII L2} pciy | BEWROUTO 80] b)), ABS REA Sde PEII o] e PRI 1261 pGi1
D P 04, FC3 7 Tl B PWROUTI 81 485 DES [385 REL S0, DIO6/MISO6 127
PAIL2 1 PBI2 —et pen2 PDI2 PE12 PFI2 DROES0 el pGI2
T _ITMS 0 FC2 7 3 485 RES G 485 DE2 DIOS/SCK6 12
—_ PAI3 PBI3 PCI3 PD13 PEI3 PF13 PGI3
TITCK 100 1 S 85 DEG gL 8 Ror L e 671 oris 385 RE2 B DIOTMOSIE 129,] pi1y
110, FCo 7 9 36, 68, 385 DE3 132,
PAIS PBIS —24 pCIs —20%1 pp1s PEIS PFI5 PGIS
STM32F427ZIT6 STM32F427ZIT6 STM32F427ZIT6 STM32F427ZIT6 STM32F427ZIT6 STM32F427ZIT6 STM32F427ZIT6

g
l%<}

154

>}

% DN A ———— _ DIOO/SDA2 B PWROUT) SPIS NSS 43V3 433
o
25 CDP A DIOO >—hio1/scLa B ROUTY B PwWROUTI SPIS MISO [2C OPT PU
D] n—— 5 SPI5_ MOSI
- SPIS_SCK
ANG SPLS SCK RSS RS7
ANS DIOS/SCKG 47k 4.7k
ANG DIOGMISOG
SPI4 NSS ANT DIO7/MOSI6 IMUINT DIQO/SDA2
e - —oios N —————
TNoS-2 Pl MO Semee® o S-DI0T Do IMUINT. DIOISCL?
SPI4_MOSI L FC (pIog —————
SPI4_MOSI c >
4 p
SPIf Soc S SPH SCK | O
CFe FG3_ +43V3 +3V3 +3V3 71
%
i i :
._nl\(i)) VDDA -
. A =
) - [
3| cl=llefelrlEEEERR e g
o ASREL g 485 RE4 LRSRER S uist g UIsH
485 RE4 2 <z 95
5 485 <« cooaaaAceQal e Dol NRST
5 DEL 485 RX12 485 RX43 3 18pF 138
(48T RXD —e=ys [485 RS D—gins 8 ggegggggegges A 93| B2OI0
S TXI12 85 TX45 — PHO
185 RE2 385 RES 32 6 X1 2
185 RE2_ I85 DE2 85 RES 85 DES YRR WBADH™ 143 12MH: GEE
485 DE2 - DE5 +———t PDR_ON =
Ciote b SREREL e bEs A m STM32F427ZIT6
B WS 3. oD 385 CKG e 7 o1 ==C30
{485 CK3 < CK6 % 999529095 VCAP I = 1 1000F
cimciecaelecss | & PEREEEEEE vosrh |
WF | 100nf IuF | 1000F STM32F427ZIT6 18pF
= < slzls) e
2u2F| 2uwF GXD
- NRST has an internal pull-up
G\D GX\D GND GND GXD G\D GXD GXD
@ +3V3 43V 43V3 43V 43V 43V3 43V3 43V3 43V3 43V3 43V3 43V3 43V3 43V3
0
2 T JTMS 38 ==C39 ==C40 41 ==C42 ==C43 44 ==C45 46 ==C47 ==C48 ==C49 50 ==Cs1
9 T NRST 1000F | 100nF | 1000F | 100nF | 1000F | 100nF | 100nF | 1000F | 100uF | 100aF | 100nF | 1000F | 2u2F | 2u2F
2 T—Tswo
N G\D GN\D GND GND GND GND GND GND GND GND GND _GND _ GND
GND % Biomechatronics
Tile Manage - STM32 MIT Media Lab - E14-274
E . s 30 75 Amherst Street mit
Size: Letter | Number: _ Revision: Cambridge, MA 02139 — media
Date: 2015-04-08 Time: 12:52:48 | Sheet _of Us4 lab
File: BIOM FLEXSEA MANAGE 0 | STM32F4 A SchDoc

1 2 8 _ 4

2 _ 3 4
o *| SNGSHVD7S uto | SNesHYD7S
7485 RX12 w RO Y 485 RX45 —1<RO ©
385 REL - RE % 485 RE4 ———=1 RE
B B
A A
485 DEI i pE £ 485 DEi_———c1 DE
485 TX12 b Sf RS485 A1 > [485 TX45 pi Gf
vl b |
GND GND
+3V3 +3V3
- o]
, Uil | SN6SHVD7S RS _ U2 *| sN6sHVDTS RS
, 71RO B >JRO Y
485 RE2 RE S 5 R0 485 RES - RE S
2 120 B
185 DE2 S DE £ 485 DES - 3 DE £
bl Gf RS485 A2 > b Gf RS485_AS
wl wl
GND GND
+3V3 +3V3
Uiz *| SNesHVD7S uls | SNesHVD7S
1 1
P] — R0 Y
RE > RE >
B B
A A
485 DE3 > 3 DE 2 X 485 DE6 3l DE 8
[T485 CK3 b Gf < RS485 A3 > 485 CK6 bl Gf
GND GND GND GND
Mode| Clock? | Duplex?| Twisted pair(s) (TP)? Details
+3V3 +3V3 +3V3 +3V3 +3V3 +3V3 1 | Asynchronous| Half TP1 Transmit and receive on TP1. Use RX12 & TX12.
Full TP1+TP2 Transmit on TP1 (TX12), receive on TP2 (RX12)

Hnnu Hnna C25

TP1+TP2+TP3

Transmit on TP1 (TX12), receive on TP2 (RX12), clock on TP3

y
Synchronous | Full

2
3
26 C27 C28 Note:

: For port #2 replace RX/TX'12' by '45' and use TP4 to 6.

100nF 100nF 100nF 1000F 100nF 100nF » Biomechatronics
Tile Manage - 6x RS-485 MIT Vot Lob E14-274
== . ST 75 Amherst Street mit
Size: Letter | Number: % Revision: Cambridge, MA 62139 — media
GND GND GND GND GND GND Date: 2015-04-08 Time: 12:52:48 Sheet of Us4 lab
File: BIOM FLEXSEA MANAGE 0 1 RS-485SchDoc

; i ;

155

Analogln
BIOM FLEXSEA MANAGE 0_1_Analogln SchDoc

DigitallO
BIOM_FLEXSEA MANAGE 0_I_DigitallO.SchDoc

PowerQut

BIOM FLEXSEA MANAGE 0 1 PowerOut.SchDoc

PWROUTO i PWROUTO
PWROUTL ———— PWROUT1

156

: 2 Biomechatronics

Tite Manage - Expansion 10s Pl
s N s 75 Amherst Street

Size: Letter | Number: % Revision: Cambridge, MA 02139

Date: 2015-04-08 Time: 12:52:47 | Sheet of Us4

File: BIOM FLEXSEA MANAGE 0 1 I0s.SchDoc

3 _ 4

GND

pic 8
TPD4E004DRYR

1000F

20k

MCP6004

+3V3 +3V3

4

UIE

4
MCP6004
U2E
MCP6004

11
11

GND GND

+3V3 +3V3 +3V3 +3V3

+3V3 MCP6004

RS
220k

DB 2
TPD4EO04DRYR
GND GND

U4B _ S

DIB S
TPD4E004DRYR -
GND GND 2 GND
U3B g
mh
r+1 g
@Z< |2
=
=S =
wlefe
9
SRR
R7 A -
AN 3¢ o A0t 4
+3V3 Iﬁl I—I MCP6004
Co Cl10 SRS LRY
100F _ 1000F $220k 31k
pD 3
TPD4EO04DRYR o 7
GND GND = GND GND
usc 2
B
g
e
SR B
=
wg_s
13
14
Can S N NEER
4+
16k _
+3V3 Iﬁl CP6004
Cl1 C12 11 $R12
100F _ 100nF $220k $1k
DIA O i
TPD4E004DRYR e N
GND GND td GND GND

g

udc _ 13 IS

PIB —— | A £ PoB i | A
m PIW ———>"o 4 € POW ol
L MCP6004 2, MCP6004
MCP4661T-103 MCP4661T-103
GND GND
I=|
> L v
U3A UdA
Q Q
scur | Lv HVC/A0 8 Al scL Lv HVC/A0 8 Al
DAL, ho~ 27 =<k = SDAL €7+ 20 & 22
SDA 2g, WP SDA 2%, WP
M,] NC —m—— = NC ——
|k MCP4661T-103 N MCP4661T-103
; T (oo
$ fazossy ™
GND GND GND GND GND GND

Tite Manage - Analog inputs

Biomechatronics
MIT Media Lab - E14-274

E . s 30 75 Amherst Street mit
Size: Letter | Number: _ Revision: Cambridge, MA 02139 — media
Date: 2015-04-08 Time: 12:52:47 | Sheet _of Us4 lab

File; BIOM FLEXSEA MANAGE 0 1 Analogin.SchDoc

3

157

158

RI3 R14 RIS
< DIOE)__— +— D00 > < DIOEI :) < DIOE2 o Doz
43v3 $RI6 43V3 4R17 13V RIS
NS EDNS 100k
DIsD & DB 3 pic 3
TPD4EOO4DRYR TPD4EOOIDRYR N/ TPD4EOMDRYR N/
GXD GND GXD GXD GXD GXD
Sovosener=_ sk R19 o R20 Ssown_u_I¥ R21 o=
< DIOE3 __—¢ DO > < DIOEd —4 Diod > < DIOES __—¢ < DI0S >
3V3 $R22 +3V3 $R23 +3V3 R4
2100k 3100k 3100k
Dia S D3B
TPDIEOMMDRYR N/ D4 TPDIEOMDRYR
GXD GND GXD GXD XD GXp
A R2S R26 : NETE R27 -
< DIOEG : D06 > < DIOET pio7 > < DIOES ? W—— DIOS >
+3V3 $R28 +3V3 $R29 3V3 $R30
2100k 2100k 100k
D¢ 8 DA O DD 3
TPD4EOOMDRYR N/ TPD4EOO4DRYR N/ TPD4EOMMDRYR N/
GXD GND GND GND GND GND
43V3
56
1000F | i Manage - Digital Inputs/Outputs L rird
Size: Letter | Number: _ Revision: WQMNM“M wﬁﬂﬁ 39 — ?F
GND Date: 2015-04-08 Time: 12:52:47 | Sheet _of USsA lab
File. BIOM FLEXSEA MANAGE 0 1 DigitallO.SchDoc

1 2 3 4

B_PWROUT0 ——

m Q3A

B_PWROUTI —— .ttlm (3B

Tite Manage - Power outputs

Size: Letter ;z_:gon Revision:

Date: 2015-04-08 Time: 12:52:48 | Sheet of

Biomechatronics

MIT Media Lab - E14-274
75 Amherst Street
Cambridge, MA 02139
Us4

o

gE

File: BIOM FLEXSEA MANAGE 0 1 PowerOut.!

3

SchDoc

159

3 4
£ +VP +VP +3V3
5! AWVP 43V
70
+3V3 bR 71 100k 1 = 53 54
3o uls | 1000F | 1000F
SPL_NSS - Al < SPI4_NSS
= GEWy xS
iz YT WAL 2
o A3 > SPI4_MOSI
& xR = S A4 SPI_SCK GHD; oND
WSN 2 2 .:<L7\. 2B 5 Ne ma
I}
g el
@ ” R76 &
wm 100k
-
VP
GND GND

Tite Manage - Plan Interface

Size: Letter | Number: _ Revision:

Date: 2015-04-08 Time: 12:52:47 Sheet

of

Biomechatronics

MIT Media Lab - E14-274
75 Amherst Street
Cambridge, MA 02139
USA

File; BIOM FLEXSEA MANAGE 0 1 Plan.SchDoc

3

_

160

161

+3VP 31 £y BV 33 'S 33
| D14l MBRO580-TP. |
U8
1 8 _ R38 L R39
Lo Lt Do Inl f UT TPSTITI o 16k 681
R 2o p1 out = L v o 2 W =
3 6 5 4 0 m &
Vsns n2 EN NRFB 2 m
Z
—= llim Gnd = 2 n R 4
& R ol Z o Z
TPS2011 L v x 3 8 2 gl 5
==C22 R4l 42 IR43 T e ==u1 CI18 ==C19
1000F $4.7k 1k Tk 1000F 7 = 100F 1uF 7
GND GND
GND GND GND GND GND GND GND GND
Tile Manage - Power DiomEChaTONIES
MIT Media Lab - E14-274
= : e 75 Amherst Street
Size: Letter |_Z==En-. _ Revision: Cambridge, MA 02139
Date: 2015-04-08 Time: 12:52:47 | Sheet of US4
File: BIOM FLEXSEA MANAGE 0 1 Power.SchDoc

2 3 J 4

2 3 4
+3V3 +3V3
+5V 5V
= I
2 & lice
0
= =
C52 § C F100k__ R6l —
D10 1000F = g
w#n HSMF-C114 4 1038
$R62 63 ST 2
$681 31 £ 3 &
GND \ 28
< < 1 4 (=13
bR6S $R66 g g
306 $80.6 KMT071 NGJ LHS,
v w
e S GND GND GND
GND GND
o - o
DI3
Q4A 5 Q4B 2 QsA TPD2EUSB30DRTR
o © o :
m = E = E - =]
— =} = x
GND GND GND % LV

Tite Manage - Ul

Size: Letter | Number:

_ Revision:

Date: 2015-04-08 Time:

12:52:48

| Sheet of

Biomechatronics

MIT Media Lab - E14-274
75 Amherst Street
Cambridge, MA 02139
us4

L.

mit
lab

File: BIOM FLEXSEA MANAGE 0 1 ULSchDoc

3

162

2 3 4
+3V3 4313 +3V3 +3V3
rat “_xlo;
3100k 5 100nF
us |
SPI5_NSS AWA- 21 53 9
A MISO g
—- MOSI GNp
SPIS_SCK AN SCK
V==
t——= HOLD 29
WPP &>
M25P128 _|
bR36 = i
3
$100k
GND GND

Tite Manage - FLASH

Size: Letter | Number: _wniﬂo.r.

Date: 2015-04-08 Time: 12:52:47 | Sheet

of

Biomechatronics

MIT Media Lab - E14-274
75 Amherst Street
Cambridge, MA 02139
US4

L.

mit
media
lab

File: BIOM FLEXSEA MANAGE 0 1 FLASH. SchDoc

3

4

163

164

+3V3 +3V3 +3V3 +3V3 +3V3

uk_‘ M—v M_vlo: Hn_m
U6 100nF 100F
SDAT 24) SDA/SDI @ O AUXCL pr
[T 2 . T
[[SCLI —p—5+1 SCL/ISCLK & & AUXDA
: nCs g N 6D G\p

Pin Number Pin Name Pin Description’
7 AU_CL L for
O VooI0 VO supply voage _
0 ADO /SO0 ‘Stave Addross LSB (ADO); SPI seria data ot (SOO)
10 REGOUT | Regulator fler capacior connecton
T FSYNG ? 10 OND #f urused.
Intarmupt digital output (fotem pole or open-crain)
2 wr Note: should pin on the

Application Processor (AP) that can bring the AP out of
VoD Power supply and Dightal UO supply votage

RESV Reserved. Do not connect.

Z|e|s(x|x|5|sls]a] =

RESV | Rsserved Comnect o GND.

AUX DA | PC master serialdata. for connecting 1o exieral sensors

s Chip select (SP1 mode orly) = i i

SCL/SCLK | FC serial clock (SCL); SP! seral cloch (SCLK) Title g&!&%@ -IMU nwﬁnnhnwﬁwﬂ E14-274

SOA/SDI_ | FC serial data (SDA): SPI sedal data npust (SOY) - = 75 Ambherst Street
~61417 NC 'No Connect pins. Do not connect. Size: Letter Number: _ Revision: Cambridge, MA 02139

Table 10: Signal Descriptions Date: 2015-04-08 Time: 12:52:47 Sheet of Us4
File: BIOM FLEXSEA MANAGE 0 1 IMU .SchDoc

1 _ 2 3 _ c

10.4 User Study

FlexSEA — User testing

MIT Media Lab — Biomechatronics — 03/19/2015

Part 1) Before the experiment:

Yes | No
Have you heard of FlexSEA before this experiment? V4)
Have you tested the FlexSEA system before this experiment? 5 v
Are you, by training, an engineer? 2
Are you, by training, an electrical, software or computer engineer? / v
Do you have a basic proficiency with C? V4
Do you have a basic proficiency with Linux? v
Were you given documentation about the system? 4
Did you receive 3 circuit boards (1x Plan, 1x Manage, 1x Execute) and accessories? v
Were the 3 circuit boards connected together?

From this point on, please follow “FlexSEA: How to use?” in the provided documentation.

Part 2) Testing FlexSEA-Plan and FlexSEA-Manage:

Yes | No
Did you use the pre-configured virtual machine? 4 7
Did you install the development tools yourself? £ v
Were you able to successfully configure a new BeagleBone Black? V 7
Can you cross-compile the ‘plan’ program (Release mode)? /
Can you connect to the Plan board over SSH (via USB)?
Can you transfer a file from your host computer to the BBB?
Can you use the ‘plan’ executable on the BBB? V
Can you compile the ‘manage’ program? /)
Can you program the Manage board?
Can you read the state of the Manage pushbutton from Linux? V4
Estimated time required to complete part2: | 1S ~ 1, by

If you were able to successfully read the state of the Manage pushbutton from Linux, please
proceed to Part 3. Otherwise, please stop the experiment.

Part 3) Adding FlexSEA-Execute to the system:

Yes | No
Were you able to connect Manage and Execute together? i >
Can you stream the Execute sensor values in Linux? V)
Were you able to connect the output device to Execute?
Can you control the output device from Linux? v
1

165

Estimated time required to complete part 3: L(0 wins

Total time spent on this experiment (sum of parts 2 and 3): ls 6 oabin

Part 4) Summary:

Yes/| No
Did you receive help from a FlexSEA user during this test? F4
Were you able to read 1 sensor and control 1 output device in less than 16h? 4

If you requested help during the experiment, please explain Whl:

A a ;-'11‘ %“‘
Sv‘ 'L JL ST ko Qj{MI7A),,\ r,_J; 1 onclear V/_Af -\”9/1{ I o Af ‘/ w1

vgenr

Comments?

Tl bt ful W T o ot g bl b oy £y)

Wt odide T Lﬂ“) W o e § pot .),,ﬁ{) Ol j, o A iy nl?

/ ~
Name in print: I’./ L {J‘.’x

Date: 3/20/ ! S
Signature: /2//Q\ Z/Z\

74

™

166

10.5 User Manual

An offline HTML website was created for the User Study. It guides the user through the
installation of the development tools, the configuration of the system and through simple tasks
(reading sensors, controlling outputs). A copy of the documentation pages is included in the
following pages of this thesis. It is recommended to obtain the website from the archive and to

use this documentation in a browser to benefit from all the links.

FlexSEA Documentation 03/19/2015 - Table of Contents®>

General:

o FlexSEA: How to use?

e Introduction to FlexSEA
o FlexSEA Virtual Machine
e What'sin the box?

o Update your SVN

Hardware & connections:

o FlexSEA-Execute 0.1 Hardware overview

o Prog Adapt 0.1 for FlexSEA-Execute

e Prog Adapt 0.1 for FlexSEA-Manage 0.1

o Plan-Manage Cable

e Connect Manage to Plan

e Connect Execute to Manage

e Preparing the FlexSEA-Execute 0.1 board (Hardware)

Software & programming:

o Installing the Plan & Manage Development Environment on your host
computer

o Preparing the Plan board (BeagleBone Black)

o Using a pre-configured BeagleBone Black (Plan board)

o Eclipse OpenOCD GDB Debugging for the Manage Board

o Compile the Plan project

o Connecting to the Plan board (BBB)

% Red titles indicate new HTML files.

167

file://hub.media.mit.edu/mas/biomech/storage/shared/JFDuval/FlexSEA/Documentation/03192015/FlexSEA%20How%20to%20use.html
file://hub.media.mit.edu/mas/biomech/storage/shared/JFDuval/FlexSEA/Documentation/03192015/Introduction%20to%20FlexSEA.html
file://hub.media.mit.edu/mas/biomech/storage/shared/JFDuval/FlexSEA/Documentation/03192015/FlexSEA%20Virtual%20Machine.html
file://hub.media.mit.edu/mas/biomech/storage/shared/JFDuval/FlexSEA/Documentation/03192015/What's%20in%20the%20box.html
file://hub.media.mit.edu/mas/biomech/storage/shared/JFDuval/FlexSEA/Documentation/03192015/Update%20your%20SVN.html
file://hub.media.mit.edu/mas/biomech/storage/shared/JFDuval/FlexSEA/Documentation/03192015/FlexSEA-Execute%200.1%20Hardware%20overview.html
file://hub.media.mit.edu/mas/biomech/storage/shared/JFDuval/FlexSEA/Documentation/03192015/Prog%20Adapt%200.1%20for%20FlexSEA-Execute.html
file://hub.media.mit.edu/mas/biomech/storage/shared/JFDuval/FlexSEA/Documentation/03192015/Prog%20Adapt%200.1%20for%20FlexSEA-Manage%200.1.html
file://hub.media.mit.edu/mas/biomech/storage/shared/JFDuval/FlexSEA/Documentation/03192015/Plan-Manage%20Cable.html
file://hub.media.mit.edu/mas/biomech/storage/shared/JFDuval/FlexSEA/Documentation/03192015/Connect%20Manage%20to%20Plan.html
file://hub.media.mit.edu/mas/biomech/storage/shared/JFDuval/FlexSEA/Documentation/03192015/Connect%20Execute%20to%20Manage.html
file://hub.media.mit.edu/mas/biomech/storage/shared/JFDuval/FlexSEA/Documentation/03192015/Preparing%20the%20FlexSEA-Execute%200.1%20board%20(Hard.html
file://hub.media.mit.edu/mas/biomech/storage/shared/JFDuval/FlexSEA/Documentation/03192015/Installing%20the%20Plan%20&%20Manage%20Development%20Envi.html
file://hub.media.mit.edu/mas/biomech/storage/shared/JFDuval/FlexSEA/Documentation/03192015/Installing%20the%20Plan%20&%20Manage%20Development%20Envi.html
file://hub.media.mit.edu/mas/biomech/storage/shared/JFDuval/FlexSEA/Documentation/03192015/Preparing%20the%20Plan%20board%20(BeagleBone%20Black).html
file://hub.media.mit.edu/mas/biomech/storage/shared/JFDuval/FlexSEA/Documentation/03192015/Using%20a%20pre-configured%20BeagleBone%20Black%20(Plan.html
file://hub.media.mit.edu/mas/biomech/storage/shared/JFDuval/FlexSEA/Documentation/03192015/Eclipse%20OpenOCD%20GDB%20Debugging%20for%20the%20Manage%20.html
file://hub.media.mit.edu/mas/biomech/storage/shared/JFDuval/FlexSEA/Documentation/03192015/Compile%20the%20Plan%20project.html
file://hub.media.mit.edu/mas/biomech/storage/shared/JFDuval/FlexSEA/Documentation/03192015/Connecting%20to%20the%20Plan%20board%20(BBB).html

o Transferring a program to the Plan board (BBB)

e Compile the Manage project

o Program/debug Manage

e Preparing the FlexSEA-Execute 0.1 board (Software)
e Programming FlexSEA-Execute 0.1

Application:

e Read a simple sensor from Linux (Pushbutton on Manage)
o Read multiple sensors from Linux (Execute)
e Add and control an output device (Execute)

FlexSEA: How to use?

03/16/2015:

First time user, introduction and preparation:

Read Introduction to FlexSEA to get a general idea of the system
e Get SVN access
o Give your Media Lab username to the admin (jfduval)
o Change your password to a random one (they are not encrypted)
o Update your SVN
e Read What's in the box? and make sure that you have everything that you need
e Get a copy of the FlexSEA Virtual Machine (recommended) or install all the sources and
development tools on your machine (Installing the Plan & Manage Development
Environment on your host computer)
e Follow Preparing the Plan board (BeagleBone Black) to configure a new BBB
o If your Execute PCB is in a metallic bag without any wires, it's not ready to be used.
Follow these two notes: Preparing the FlexSEA-Execute 0.1 board
(Hardware) & Preparing the FlexSEA-Execute 0.1 board (Software)

Testing FlexSEA-Plan & FlexSEA-Manage:

e Compile the Plan project

e Follow Using a pre-configured BeagleBone Black (Plan board) to test some of your
development tools and your Plan board

e To test Manage: Compile the Manage project, Connect Manage to
Plan and Program/debug Manage.

e You are now ready to Read a simple sensor from Linux (Pushbutton on Manage)

Adding FlexSEA-Execute to the system:

168

file://hub.media.mit.edu/mas/biomech/storage/shared/JFDuval/FlexSEA/Documentation/03192015/Transferring%20a%20program%20to%20the%20Plan%20board%20(BBB.html
file://hub.media.mit.edu/mas/biomech/storage/shared/JFDuval/FlexSEA/Documentation/03192015/Compile%20the%20Manage%20project.html
file://hub.media.mit.edu/mas/biomech/storage/shared/JFDuval/FlexSEA/Documentation/03192015/Programdebug%20Manage.html
file://hub.media.mit.edu/mas/biomech/storage/shared/JFDuval/FlexSEA/Documentation/03192015/Preparing%20the%20FlexSEA-Execute%200.1%20board%20(Soft.html
file://hub.media.mit.edu/mas/biomech/storage/shared/JFDuval/FlexSEA/Documentation/03192015/Programming%20FlexSEA-Execute%200.1.html
file://hub.media.mit.edu/mas/biomech/storage/shared/JFDuval/FlexSEA/Documentation/03192015/Read%20a%20simple%20sensor%20from%20Linux%20(Pushbutton%20o.html
file://hub.media.mit.edu/mas/biomech/storage/shared/JFDuval/FlexSEA/Documentation/03192015/Read%20multiple%20sensors%20from%20Linux%20(Execute).html
file://hub.media.mit.edu/mas/biomech/storage/shared/JFDuval/FlexSEA/Documentation/03192015/Add%20and%20control%20an%20output%20device%20(Execute).html
file://hub.media.mit.edu/mas/biomech/storage/shared/JFDuval/FlexSEA/Documentation/03192015/Introduction%20to%20FlexSEA.html
file://hub.media.mit.edu/mas/biomech/storage/shared/JFDuval/FlexSEA/Documentation/03192015/Update%20your%20SVN.html
file://hub.media.mit.edu/mas/biomech/storage/shared/JFDuval/FlexSEA/Documentation/03192015/What's%20in%20the%20box.html
file://hub.media.mit.edu/mas/biomech/storage/shared/JFDuval/FlexSEA/Documentation/03192015/FlexSEA%20Virtual%20Machine.html
file://hub.media.mit.edu/mas/biomech/storage/shared/JFDuval/FlexSEA/Documentation/03192015/Installing%20the%20Plan%20&%20Manage%20Development%20Envi.html
file://hub.media.mit.edu/mas/biomech/storage/shared/JFDuval/FlexSEA/Documentation/03192015/Installing%20the%20Plan%20&%20Manage%20Development%20Envi.html
file://hub.media.mit.edu/mas/biomech/storage/shared/JFDuval/FlexSEA/Documentation/03192015/Preparing%20the%20Plan%20board%20(BeagleBone%20Black).html
file://hub.media.mit.edu/mas/biomech/storage/shared/JFDuval/FlexSEA/Documentation/03192015/Preparing%20the%20FlexSEA-Execute%200.1%20board%20(Hard.html
file://hub.media.mit.edu/mas/biomech/storage/shared/JFDuval/FlexSEA/Documentation/03192015/Preparing%20the%20FlexSEA-Execute%200.1%20board%20(Hard.html
file://hub.media.mit.edu/mas/biomech/storage/shared/JFDuval/FlexSEA/Documentation/03192015/Preparing%20the%20FlexSEA-Execute%200.1%20board%20(Soft.html
file://hub.media.mit.edu/mas/biomech/storage/shared/JFDuval/FlexSEA/Documentation/03192015/Compile%20the%20Plan%20project.html
file://hub.media.mit.edu/mas/biomech/storage/shared/JFDuval/FlexSEA/Documentation/03192015/Using%20a%20pre-configured%20BeagleBone%20Black%20(Plan.html
file://hub.media.mit.edu/mas/biomech/storage/shared/JFDuval/FlexSEA/Documentation/03192015/Compile%20the%20Manage%20project.html
file://hub.media.mit.edu/mas/biomech/storage/shared/JFDuval/FlexSEA/Documentation/03192015/Connect%20Manage%20to%20Plan.html
file://hub.media.mit.edu/mas/biomech/storage/shared/JFDuval/FlexSEA/Documentation/03192015/Connect%20Manage%20to%20Plan.html
file://hub.media.mit.edu/mas/biomech/storage/shared/JFDuval/FlexSEA/Documentation/03192015/Programdebug%20Manage.html
file://hub.media.mit.edu/mas/biomech/storage/shared/JFDuval/FlexSEA/Documentation/03192015/Read%20a%20simple%20sensor%20from%20Linux%20(Pushbutton%20o.html

e Power Execute (15-28V)

e Program your Execute board with the latest firmware: Programming FlexSEA-Execute 0.1 (please
not that if you just followed Preparing the FlexSEA-Execute 0.1 board (Software) you don't have

to do this step again)

e You can now stream sensor values: Read multiple sensors from Linux (Execute)

e The next step is to Add and control an output device (Execute) from Linux

e At this point controlling a motor is a simple task, but it requires a new wiring harness.

Introduction to FlexSEA

Abstract: FlexSEA aims to enable fast prototyping of multi-axis and multi-joint active prostheses by
developing a new modular electronics system. This system provides the required hardware and software
for precise motion control, data acquisition, and networking. Scalability is obtained by the use of a fast
industrial communication protocol between the modules, and by a standardization of the peripherals’
interfaces: it is possible to add functionalities to the system by simply plugging additional cards.
Hardware and software encapsulation is used to provide high-performance, real-time control of the
actuators while keeping the high-level algorithmic development and prototyping simple, fast, and easy.

Simplest full-stack system:

FlexSEA-Plan

Linux computer: high-level algorithms,

neuromuscular models

N

A

Y

Additional output FlexSEA-Manage

[|

devices

ARM Cortex-M4: state machines,
sensor fusion, data pre-processing

A
Y

/ N

Remote
Computer

S

%.

Additional input

|

FlexSEA-Execute

PsoC 5LP: advanced motor
controller

devices
/‘
Brushless motor
+ sensors
y .

FlexSEA-Plan: Embedded computer for high-level computing. Can run a full Linux operating system and
execute Python or Matlab scripts. Can connect to the network through WiFi or Bluetooth. Currently a

BeagleBone Black (COTS).

169

file://hub.media.mit.edu/mas/biomech/storage/shared/JFDuval/FlexSEA/Documentation/03192015/Programming%20FlexSEA-Execute%200.1.html
file://hub.media.mit.edu/mas/biomech/storage/shared/JFDuval/FlexSEA/Documentation/03192015/Preparing%20the%20FlexSEA-Execute%200.1%20board%20(Soft.html
file://hub.media.mit.edu/mas/biomech/storage/shared/JFDuval/FlexSEA/Documentation/03192015/Read%20multiple%20sensors%20from%20Linux%20(Execute).html
file://hub.media.mit.edu/mas/biomech/storage/shared/JFDuval/FlexSEA/Documentation/03192015/Add%20and%20control%20an%20output%20device%20(Execute).html

Development Tools:

All the development is done in Linux but it could be done in OSX or Windows. An Eclipse project allows
the user to compile for host debugging and to cross-compile for the BBB.

FlexSEA-Manage: mid-level computing. Deals with all the sensor functions (data acquisition, signal
processing, and aggregation), the simple output devices (including visual and audible notifications,
clutches, and solid state relays) and sends commands to the motor driver. Has a simple API and protocol
to communicate with the embedded computer.

2% G=1 _
2% 1<G<10 2% 0-10k
1/10kHz LPF Divider |

170

FlexSEA
Manage 0.1
B g) N =

LO.{

us Uil U3 ulo. U112 U4

,‘lAA"] i

|
|

Development Tools:

All the Manage code is in Eclipse. To program and debug we use an STLink/v2 and OpenOCD.

FlexSEA-Execute: deals with all the motor control functions. Has enough computing power to run

v AR EAS FRas2 JHhan

i
\
\

advanced algorithms. Most control loops (current, speed, impedance, force) can be closed on this board.

Expansion
Connector

RGB 3x gyro
LED 3x accelero
4

[Les e N BLDC Motor Driver
Connector | v 3y
—_— Half-Bridge
(T PsoC 5LP - wi current | | 'emperature
Clutch Microcontroller P sensing
| driver "
. 4 Shorted Phase
Strain G / 1 \
ain Gauge / /
1 Amplifier f,r"r
y
v/
‘,r l ./ Power (Tvs, 3
- =~ LEDs,
3x 0 decoupling
l—| Half-duplex Protections
RS-485 v 3v3
L LDO
Ul-IMU

' ™y
1o0v 5V
SMPS SMPS

171

More details: FlexSEA-Execute 0.1 Hardware overview

Development Tools:

The Execute boards has two microcontrollers, one PSoC 4 (the safety co-processor) and one PSoC 5LP
(the main computing element). The Safety Co-Processor runs safety critical code; only a user with a deep

understanding of the safety features should modify its code. To reprogram the PSoC you'll need
a proprietary (but free) IDE names PSoC Creator. I'm using 3.1
SP1. http://www.cypress.com/psoccreator/. It's Windows only. Programmation is done with a mix of

graphical programming and C (it uses GCC). I'm using a MiniProg3 with a special cable to program and
debug the code.

What's in the box?

03/17/2015:

FlexSEA kit part list:

1x Plan (BeagleBone Black), new in box
1x Manage (in a metallic bag), new in box
1x Execute, with cables soldered and initial software
2x USB Mini-B cable

1x MiniProg3

1x STLink/v2

2x Prog Adapt

1x Plan-Manage cable

1x Manage-Execute cable

1x Execute power cable with adapter

1x Output device (big LED)

172

file://hub.media.mit.edu/mas/biomech/storage/shared/JFDuval/FlexSEA/Documentation/03192015/FlexSEA-Execute%200.1%20Hardware%20overview.html
http://www.cypress.com/psoccreator/

Other than that you'll need one DC power supply and an Ethernet cable connected to the network (only
for a few minutes).

Add and control an output device (Execute)

03/19/2015:

To simplify testing we use a big 12V LED. We will connect it to the Clutch Output. Use 15V to power
Execute, 24V would be too much for that LED.

Connect the Red wire to CLUTCH_POW and the Black wire to GND.

010 0. 0lo
© 0 ‘
Wl L& o8 e 0 0 0
:I, b & i 5 . 4-

The clutch output is a 8-bit PWM output. ./plan execute_1 cmd_clutch_write 255 will give you maximum
brightness, ./plan execute_1 cmd_clutch_write 255 will turn the LED off and intermediate values will dim
it.

173

Compile the Manage project

03/19/2015:

If you are using the FlexSEA Virtual Machine you can simply:

e Launch Eclipse from the Desktop shortcut.
e The Manage project will be listed in your workspace. Click on it once.
e You can compile the project by clicking on the Hammer icon. Please note that 2 options are
available:
L]
o 'Debug': use this for debugging your code (on the hardware, with GDB + OpenOCD).
L]
o 'Release': use this when you want to use the board in your application, without requiring
the programmer/debugger to be connected.

Compile the Plan project

03/16/2015:

If you are using the FlexSEA Virtual Machine you can simply:

Launch Eclipse from the Desktop shortcut.
The Plan project will be listed in your workspace. Click on it once.
e You can compile the project by clicking on the Hammer icon. Please note that 3 options are
available:
[)
o 'Debug': use this for debugging on your host computer. This uses a native compiler (not
a croiss-compiler). You can test your work by opening a terminal, navigating to the

174

file://hub.media.mit.edu/mas/biomech/storage/shared/JFDuval/FlexSEA/Documentation/03192015/FlexSEA%20Virtual%20Machine.html
file://hub.media.mit.edu/mas/biomech/storage/shared/JFDuval/FlexSEA/Documentation/03192015/FlexSEA%20Virtual%20Machine.html

Debug directory (cd ~/Desktop/FlexSEA/biomech-ee-
svn/Code/flexsea_1_0/plan/Debug) and launching Plan with ./plan default info
O
= You will see the list of supported FlexSEA commands.

o 'Release_Single': one task per program call. Convenient for sending commands on the
terminal as it will give you feedback.

o 'Release_Multiple': multiple tasks per program call. Use this to interface with Python (or
other languages) as it's much faster than spawning a new instance of the program every
time you want to send a command to a board.

The Release versions are cross-compiled for the BBB. They will not execute on your host computer. To
test your work you have to copy the executables to the BBB. All the details are in Using a pre-configured
BeagleBone Black (Plan board).

Connect Execute to Manage

03/19/2015:

For this experiment we are using asynchronous half-duplex RS-485 between Manage and Execute. It
requires a single twisted-pair. We use the connectors Al & B1. By convention, A will have an orange wire
while B will have a blue wire.

Manage 0.1:

0 00! 0 O

OOL 0O 00O
o o .0 ©

Bk

00 0
e

o o] |
000000000
Wi e fes ¢ L |5 g

When the board is flat on a table, the twisted pair is in the top row of the connector.

Execute 0.1:

175

file://hub.media.mit.edu/mas/biomech/storage/shared/JFDuval/FlexSEA/Documentation/03192015/Using%20a%20pre-configured%20BeagleBone%20Black%20(Plan.html
file://hub.media.mit.edu/mas/biomech/storage/shared/JFDuval/FlexSEA/Documentation/03192015/Using%20a%20pre-configured%20BeagleBone%20Black%20(Plan.html

010 0.0l o

o NBILe 088 .0 0 0

Connect Manage to Plan

03/17/2015:

Part list:

1x Plan (BBB)

1x Manage

1x USB Mini-B cable

1x Plan-Manage cable (Plan-Manage Cable)

1x Manage programming cable (Prog Adapt 0.1 for FlexSEA-Manage 0.1)

Step 1) Plug the Plan-Manage cable to both the Plan and the Manage boards.

Step 2) Power the Plan board with the USB Mini-B cable. The +3V3 and +5V LED on Manage will light up.

176

file://hub.media.mit.edu/mas/biomech/storage/shared/JFDuval/FlexSEA/Documentation/03192015/Plan-Manage%20Cable.html
file://hub.media.mit.edu/mas/biomech/storage/shared/JFDuval/FlexSEA/Documentation/03192015/Prog%20Adapt%200.1%20for%20FlexSEA-Manage%200.1.html

o=
=u
w
L8
LD
o

Connecting to the Plan board (BBB)

03/19/2015:

1. Connect the BBB to your host computer with a USB Mini-B connector. If you power a lot of
peripherals on Manage and/or if you use WiFi you'll need more power than what USB can
provide. In that case, connect a wall adapter to P1.

2. Make sure that it's connected to your VM. In the VMWare top menu you can see the list of
attached peripherals under VM > Removable Devices.

3. After a few seconds it should appear as a new network device.

4. Open a terminal and type ssh beaglebone.local -| root

5.

1. When asked for a key say "yes" to add it to the list of known hosts.
2. If there is a key conflict (will happen if you use multiple BBB) use the key removal
command that's in the error message.

6. Use the configuration script by typing . flexsea_bbb_init. Please not that you can hit Tab after
you typed . f and it will auto complete for you.

1. The terminal prompt will now be root@beaglebone:/home/debian/Desktop#
2. Alternatively, if you do not want to use the script (or if it doesn't work) you can call:

7.

1.
1. cd /home/debian/Desktop
2. echo BB-SPI0-01 > /sys/devices/bone_capemgr.*/slots

177

BBB X | SCP X OpenOCD

jfduval@ubuntu:~% ssh beaglebone.local -1 root
Debian GNUfLinux 7

BeagleBoard.org BeagleBone Debian Image 2014-04-23

Support/FAQ: http://elinux.org/Beagleboard:BeagleBoneBlack_Debian
root@beaglebone.local's password:

Last login: Wed Apr 23 20:57:41 2014 from ubuntu-2.local
root@beaglebone:~# . flexsea_bbb_init

FlexSEA is ready to be used!

root@beaglebone: /home/debian/Desktop# I

Eclipse OpenOCD GDB Debugging for the Manage Board

02/24/2015:

Debug Configurations

Create, manage, and run configurations @\

2 X B v Name: | OpenOCD Debug

[| @] [El Main 3 Debugger| & Startup| & Source|] Common

» [£] c/c++ Application c/c++Application:
|| c/c++ Attach to Application Debug/manage.elf

[€] ¢/C++Postmortem Debugger
- Variables... | SearchProject... | Browse..
¥ [£] ¢/C++ Remote Application
[€] manage Debug (1) Project:
v [£] GDB Hardware Debugging manage Browse...
[£] OpenocD Debug Build (if required) before launching
|| & GDB OpenoCD Debugging E— .
[€] GDB SEGGER J-Link Debugging Build configurati
Launch Group [select configuration using ' C/C++ Application®
|
) Enable auto build Disable auto build
@ Use workspace settings Configure Workspace Settings...

|
|

Filter matched 12 of 12 iteme. Using GDB (DSF) Hardware Debugging Launcher - Select other...

@
@ Close | Debug |

(-] Debug Configurations

Create, manage, and run configurations @\ |

- |
28 B - Name: |OpenOCD Debug |
I @) | (@ Main[% Debugger . & Startup| & Source| & Common
» [E] ¢/C++ Application SRRy
|| El¢/c++ Attachto Application GDB Command:
[E] ¢/C++ Postmartem Debugger arm-none-eabi-gdb Browse... | | Variables...
¥ [E] ¢/c++ Remote Application |
[€] manage Debug (1) Remote Target |
¥ [£1GDB Hardware Debugging (& Use remote target |

[€1 openOCD Debug
[E1 GDB OpenOCD Debugging
[€1 GDB SEGGER J-Link Debugging

& Launch Group
| Port number: 3333

| JTAG Device: | Generic TCP/IP =

Host name or IP address: |localhost

[Force thread list update on suspend

Using GDB (DSF) Hardware Debugging Launcher - Select other...
Filter matched 12 of 12 items g (DSF) 'gging selectother.

Close Debug

178

Debug Configurations

Create, manage, and run configurations

R Name: |OpenOCD Debug |
I @ Main (%5 Debugger [# Startup % Source| [Common)|
» B c/c++ Application Initialization Commands
[E]¢/C++Attach to Application & Resetand Delay (seconds): |3 J
[€] ¢/c++Postmortem Debugger & Halt
¥ [&] ¢/C++ Remote Application

[€] manage Debug (1)
¥ [£] GDB Hardware Debugging
[£] OpenOCD Debug
[£] GDB OpenOCD Debugging
[£] GDB SEGGER J-Link Debugging
& Launch Group

monitor halt reset

Load Image and Symbols
& Load image

@ Use project binary: manage.elf

O Usefile: Workspace... | | File System

Image offset (hex): | |

[Load symbols

@ Use project binary: manage.elf

O Usefile: Workspace... | | File System <
Filter matched 12 of 12items Using GDB (DSF) Hardware Debugging Launcher - Select other. Apply Revert
©)

close | ([0ebug]
Debug Configurations
Create, manage, and run configurations

[x v Name: | OpenOCD Debug |
I Main [%5 Debugger [# startup %~ Source “ [common|
» [¢/Cr+ Application Source Lookup Path:
(€] ¢/C++ Attach to Application > & Default Add...
[€] ¢/C++ Postmortem Debugger Edit
v [&] ¢/c++ Remote Application
manage Debug (1) Remove
v [£] GDB Hardware Debugging up
[£] OpenOCD Debug
[=] GDB OpenOCD Debugging Down
[€] GDB SEGGER J-Link Debugging e e
& Launch Group
(] Search For duplicate source files on the path
Filter matched 12 of 12 items Using GDB (DSF) Hardware Debugging Launcher - Select other...

Apply Reverk

Close | Debug |

[R Name: |OpenOCD Debug |
I @ Main (¥ Debugger [# startup (5 source [common
» €] ¢/c++ Application SR
[E] C/C++ Attach to Application @ Localfile
[€] ¢/C++ Postmortem Debugger () Shared file: Browse
v [&] ¢/c++ Remote Application = = = =
anage Debug (1) Display in favorites menu Encoding
v [] GDB Hardware Debugging & 4 Debug @ Default- inherited (UTF-8)
[E1 OpenOCD Debug () Other -
[€] GDB Open0OCD Debugging
[] GDB SEGGER J-Link Debugging
& Launch Group standard Input and Output
(8 Allocate console (necessary for input)
O File:
Workspace... | | File System Variables.
Append
& Launchinbackground
Filter matched 12 0f 12 items Using GDB (DSF) Hardware Debugging Launcher - Select other. Apply Revert
@ close | ([Debug

179

Always start OpenOCD in a terminal (openocd -s ~/Desktop/FlexSEA/embedded-
arm/openocd-bin/share/openocd/scripts/ -f interface/stlink-v2.cfg -f
target/stm32f4x_stlink.cfg) first.

To program the chip, build in Release mode then, in a terminal: openocd -s
~/Desktop/FlexSEA/embedded-arm/openocd-bin/share/openocd/scripts/ -f interface/stlink-v2.cfg -f
target/stm32f4x_stlink.cfg -c init -c "reset halt" -c "sleep 100" -¢ "wait_halt 2" -c "flash write_image erase
manage.elf" -c "sleep 100" -c "verify_image manage.elf" -c "sleep 100" -c "reset run" -c "shutdown"

FlexSEA Virtual Machine

03/16/2015:

The Installing the Plan & Manage Development Environment on your host computer note contains a lot of
cryptic statements and can be intimidating. To simplify the user's life I created a virtual machine (VM)
with all the tools pre-installed.

I'm using VMware Workstation. You can get it from IS&T: http://ist.mit.edu/vmware-

workstation Note: The key is in the compressed folder.

Details on the installation and license

key: http://kb.mit.edu/confluence/display/istcontrib/VMware+Workstation+10.0.x+for+Windows+-
+Installing+or+Upgrading

As soon as I installed 11.0.x and started it it offered an update to 11.1. It un-installed 11.0 and installed
11.1... The version I'M using is 11.1.0 build-2496824.

I created the VM with minimalist specs:

[IFlexSEA

P+ Power on this virtual machine
<= Edit virtual machine settings
el g
ﬁUpgradethisvirtual machine

¥ Devices
i Memary 2GB
[Processors 4

=i Hard Disk (5CSI) 20 GB

) CD/DVD (SATA] Auto detect
©JCD/DVD 2 (SATA) Auto detect
5 Network Adapter NAT

USE Controller Present

@I) Sound Card Auto detect
(= Printer Present
;-__] Display Auto detect

¥ Description

Type here to enter a description of this
wvirtual machine,

If you use it a lot you should assign more processors and RAM to it to make it snappier. Installing it on
your SSD is also a good idea.

180

file://hub.media.mit.edu/mas/biomech/storage/shared/JFDuval/FlexSEA/Documentation/03192015/Installing%20the%20Plan%20&%20Manage%20Development%20Envi.html
http://ist.mit.edu/vmware-workstation
http://ist.mit.edu/vmware-workstation
http://kb.mit.edu/confluence/display/istcontrib/VMware+Workstation+10.0.x+for+Windows+-+Installing+or+Upgrading
http://kb.mit.edu/confluence/display/istcontrib/VMware+Workstation+10.0.x+for+Windows+-+Installing+or+Upgrading

The VM is 6.83GB. You can access it on the Biomech Hub
(\\hub.media.mit.edu\mas\biomech\storage\shared\jfduval\FlexSEA\). Make a local copy, DO NOT
MODIFY THE SERVER VERSION!

Launch VMware. File > Open... > (navigate to where you are storing the VM) > FlexSEA.vmx. Click on
the green arrow to launch the machine, then click on "I Copied It". Ubuntu will boot (you might see a
black screen for 20s before is starts displaying information).

login: flexsea
password: flexsea

Ubuntu Desktop

® W

—~—

¢

Eclipse‘Luna

Common
Commands.txt

It's ready to be used!

Hint: Alt+Ctrl+Enter will make it full screen.

FlexSEA-Execute 0.1 Hardware overview

03/16/2015:
USB PN 14 N BLDC Motor Driver
+“——>
Connector 3x
Half-Bn
A PsoC 5LP gl m;?gﬁf Temperature
Microcontroller M i
_ | Cltch |q e
driver
—_— / Shorted Phase
AN > Leads voltage
(AT 4 A A ag
Strain Gauge / /
" Amplifier ff'f
- /’f
¥ g TVS,
(T LEDs,
3x 10 [decoupling
l+—»| Hali-duplex Protections Sensing,
RS-485 v battery 3v3
< and 10V LDO
Ul-iMu
Expansion RGB 3x gyro 10v 5V
¥ Connector ‘ LED 3x accelero SMPS SMPS
o =
Top view:

181

Ol 1oL 10
47

B
i
i
i
i

2
'

AERE
e -
w I

L
‘11010

”I | IIII | IT

4]-

N i p
: 0 [0 wamsj

= ﬂﬂ
I

[ala! Execute
b l'-

7

The beige connector on the bottom right is the Expansion connector. On the bottom Left is the USB
Micro-B connector. The red wires are for power and motor, detailed below.

Bottom view:

j‘r'nﬁwn?Iiﬂlllﬂiﬂlﬁiiﬂlﬂiiﬂlﬂi" o ‘

The blue connectors are to program and debug the PSoC microcontrollers. The silkscreen indicates '4'
(PSoC 4 co-processor) and '5' (PSoC 5, main microcontroller)

182

Motor and power connections:

Phase A

Power input

A0 r :l B t5.0—")0 65,0

(=
[a -l ol
e;g:'u“;}_° !b=:o.°'_b

2 ¢

_— Execut
(X B
o B
3
G

»
s
"
(e
2

5
"]
B v 3
= Gl | |=l‘.’|.I/l1f'-‘°
e G EREOD ORO0
N

183

6
1 2 . CLUTCH POW
| 3] ! 23
EXPSE L 5 g 2 6 { HALL3E
EXPOE [C 713 % [HALL2E
ENCI_BE L L 0 1, 10 0 [IIALLIE
ENCI IE L L 1, 12 2 [ENC1 AE
O P L. .
EXP3E L L 15 15 16 16 [EXPSE
EXP2E 4 17 | i3 P I EXP4L
- - 55 o
FAHE P T 1? 19 20 52 L | Expor
+T— 2! 2 |57 -
. P 23 24 |—=
EXP6E s 23 5 26 [| ©xp7E
3 525 26 ¢ 3
e r—"*— 27 28 = ,
RS485 A3 \ 29 | 55 30 |30 [| EXPIOE
RS485 B3 i KT [3 |22 L [EXPIIE
T 3 z 2 3
r§24:~ gi T ;; ig ;g ;2 L | sGp
RS485 Al L 37 133 33 |38 L] SGN
RS485 Bl , 39 139 4 2 , |
PC40H
GND GND

IMU Position:

Top view, IMU is on the bottom:

184

X: 31.445mm
Y: 15.621mm

Installing the Plan & Manage Development Environment on your host computer

01/18/2015 (updated 03/09/2015 & 16/03/2015):

Host computer: Ubuntu 14.04 LTS 64bits. Can also be used for Ubuntu 14.04 LTS 32bits. A pre-
configured VMWare 10 virtual machine with 32 bits Linux is available. The list of steps below is
sequential. It keeps everything separated and logical if you wish to install only certain tools. It can be
optimized by grouping similar tasks (like all the bashrc edits).

Getting the sources, installing the common software:

e Before you get started:

@)
@)

All the commands below assume that your user name is "flexsea".

Start by creating a folder named "FlexSEA" on the Desktop
(/home/flexsea/Desktop/FlexSEA).

All the commands that need to be typed in a terminal are in orange. The text that needs
to be pasted in text files is in light blue.

If you are not familiar with Linux commands read this: http://www.dummies.com/how-
to/content/common-linux-commands.html

If you are not familiar with nano read this http://mintaka.sdsu.edu/reu/nano.html

Install Subversion: sudo apt-get install subversion

185

http://www.dummies.com/how-to/content/common-linux-commands.html
http://www.dummies.com/how-to/content/common-linux-commands.html
http://mintaka.sdsu.edu/reu/nano.html

o Create a "biomech-ee-svn" folder (/home/flexsea/Desktop/FlexSEA/biomech-ee-svn),
navigate to that folder and checkout the code repo:

o

You need to get access to the SVN first. Ask JFDuval, the admin.

= 0

Accept the key ('p") and enter your SVN password
[)
o Done, you have all the FlexSEA code! You'll be using the code in Code/flexsea_1_0.
e Eclipse:
[)
o Download Eclipse C++ Luna. Make sure to get the right version for your operating
system (32/64bits)!
O
= http://www.eclipse.org/downloads/download.php?file=/technology/epp/downloa
ds/release/luna/R/eclipse-cpp-luna-R-linux-gtk.tar.gz
o Extract (via GUI) to /FlexSEA. It will create /FlexSEA/eclipse.
At this point it probably won't launch, no valid JRE installed by default
o Use the Software manager to get a JRE or follow this website to get
Java http://tecadmin.net/install-oracle-java-8-jdk-8-ubuntu-via-ppa/

@)

= = = QO

o Eclipse should launch when you double-click on 'eclipse'
(/home/flexsea/Desktop/FlexSEA/eclipse/eclipse). You can create a shortcut by right
clicking on the program and Make Link. I like having that shortcut on the Desktop.

(@]
» By default I'm placing the workspace
in /home/flexsea/Desktop/FlexSEA/workspace
e Eclipse CDT tools:

[)

o Launch Eclipse, click on Help => Install new software

o Paste that URL http://gnuarmeclipse.sourceforge.net/updates in the search box (more
details: http://gnuarmeclipse.livius.net/blog/plugins-install/)

o Wait a few seconds while it refreshes, click on the plugin to install it. Follow the wizard.

Manage:
e ARM GCC (compiler):

[)

o I was following this tutorial: http://hertaville.com/2013/09/02/stm32f0discovery-part-1-
linux/

o Get sources from there: https://launchpad.net/gcc-arm-embedded/+download. I
used gcc-arm-none-eabi-4 9-2014q4-20141203-linux.tar.bz2

o Unzip in /FlexSEA/embedded-arm. It will add a folder
named /home/flexsea/Desktop/FlexSEA/embedded-arm/gcc-arm-none-eabi-4_9-2014q4.

o Install 32 bits libs if using a 64 bits OS. 'ia32-libs' is obsolete, add the 3 libs that are
suggested to you when you try 'apt-get install ia32-libs' (follow Hertaville if you need to
do this. Alternatively, try to install ia32-libs and follow what the terminal tells you)

o Update bash:

o

186

http://www.eclipse.org/downloads/download.php?file=/technology/epp/downloads/release/luna/R/eclipse-cpp-luna-R-linux-gtk.tar.gz
http://www.eclipse.org/downloads/download.php?file=/technology/epp/downloads/release/luna/R/eclipse-cpp-luna-R-linux-gtk.tar.gz
http://tecadmin.net/install-oracle-java-8-jdk-8-ubuntu-via-ppa/
http://gnuarmeclipse.livius.net/blog/plugins-install/
http://hertaville.com/2013/09/02/stm32f0discovery-part-1-linux/
http://hertaville.com/2013/09/02/stm32f0discovery-part-1-linux/
https://launchpad.net/gcc-arm-embedded/+download

= Open the file with nano ~/.bashrc
= Add this line at the end: export
PATH=$PATH:/home/flexsea/Desktop/FlexSEA/embedded-arm/gcc-arm-none-
eabi-4_9-2014g4/bin
= Update bash with source ~/.bashrc
o Test your installation with arm-none-eabi-gcc -v. You should see a big chunk of text that
ends with gcc version 4.9.3 20141119 (release) [ARM/embedded-4_9-branch revision
218278] (GNU Tools for ARM Embedded Processors)
OpenOCD (to debug and program the STM32):
[)
o To get more info, follow the same Hertaville tutorial as for ARM GCC.
o Get the sources for 0.8.0: http://sourceforge.net/projects/openocd/files/openocd/
o Extract to /FlexSEA/embedded-arm/. You'll get a new
directory: /home/flexsea/Desktop/FlexSEA/embedded-arm/openocd-0.8.0
o We can now install OpenOCD:
(e}
= Dependencies: sudo apt-get install git zliblg-dev libtool flex bison libgmp3-dev
libmpfr-dev libncurses5-dev libmpc-dev autoconf texinfo build-essential libftdi-
dev libusb-1.0.0-dev
= Navigate to /openocd-0.8.0/ and call ./configure --enable-maintainer-mode --
enable-stlink --prefix=/home/flexsea/Desktop/FlexSEA/embedded-arm/openocd-
bin
= make
= make install
= You will get a new directory: /home/flexsea/Desktop/FlexSEA/embedded-
arm/openocd-bin

o Modify the USB rules:
(e}
= (Create the file with sudo nano /etc/udev/rules.d/stlinkv2.rules, add one line of
text ATTRS{idVendor}=="0483", ATTRS{idProduct}=="3748", MODE="0666"
= Update: sudo udevadm control --reload-rules
)
o Update bash:
o
= Open the file with nano ~/.bashrc
= Add this line at the end (just below the GCC ARM line that you added
before): export PATH=$PATH:/home/flexsea/Desktop/FlexSEA/embedded-
arm/openocd-bin/bin
= Update bash with source ~/.bashrc
[)
o Test installation with openocd -s ~/Desktop/FlexSEA/embedded-arm/openocd-

bin/share/openocd/scripts/ -f interface/stlink-v2.cfg -f target/stm32f4x_stlink.cfg. You
should see Open On-Chip Debugger 0.8.0 (date and time).
'Manage' project under Eclipse:

[)

o Launch Eclipse then File => Import => General => Existing Projects into Workspace =>
browse to your directory (Code/flexsea_1_0/manage/)

o You will see the project in the Project Explorer

o Right click on the /manage project => Properties => C/C++ Build => Settings =>
Toolchain and update the Global toolchain path by clicking on "global" and navigating up
to /home/flexsea/Desktop/FlexSEA/embedded-arm/gcc-arm-none-eabi-4_9-2014g4/bin

o You can now build the project (hammer icon). You'll get warnings because I'm a bad
programmer but no Errors. A .hex file will be generated.

187

http://sourceforge.net/projects/openocd/files/openocd/

o

The Debug configuration is saved in the Workspace and not in the project file so you

have to do it manually

(e}

= Right click on /manage => Debug As => Debug Configurations...

= Do exactly like on that picture (more details in Eclipse OpenOCD GDB
Debugging for the Manage Board):

Debug Configurations
c ;

reate, manage, and run configurations
|
| 0 B %X B v Name: [manageDebug]

) Main | % Debugger B Startup | i~ Source| [Common

& ¢/c++ Application GDB Setup

[&] ¢/C++ Attach to Applicatio

[€] ¢/Cc++ Postmortem Debugc arm-none-eabi-gdb Browse... | | Variables...

[&] €/C++ Remote Application

¥ [t] GDB Hardware Debugging Remote Target
[c] manage Debug Use remote target
BB openoth D
pen €PugaINg | ;raG Device] | Generic TCP/IP -
[t] Manage Debug OpenOCD
|| [E]GDBSEGGERJ-LinkDebugc || st name d 1P address: |localhost
| # Launch Group
Port numbe}: 3333
["] Force thread list update on suspend
!
|
. Using GDB (DSF) Hard Deb ingL h Select oth . R
sin ardware Debugging Launcher - Select other... Apply Revert

: Filter matched 10 of 10 items - - - -
[® Close [Debug J

)

o To debug, open a terminal, launch openocd (openocd -s ~/Desktop/FlexSEA/embedded-
arm/openocd-bin/share/openocd/scripts/ -f interface/stlink-v2.cfg -f
target/stm32f4x_stlink.cfg) and leave that window open. In Eclipse click Debug and use
the configuration you just made. It will open the Debug perspective and you'll be able to
do step-by step code execution, watch variables, etc.

o To program the chip:

188

file://hub.media.mit.edu/mas/biomech/storage/shared/JFDuval/FlexSEA/Documentation/03192015/Eclipse%20OpenOCD%20GDB%20Debugging%20for%20the%20Manage%20.html
file://hub.media.mit.edu/mas/biomech/storage/shared/JFDuval/FlexSEA/Documentation/03192015/Eclipse%20OpenOCD%20GDB%20Debugging%20for%20the%20Manage%20.html

Compile in Release mode
Open a terminal and navigate to /manage/Release/. You should see manage.elf.
Use that command:

e ARM GCC (compiler)

o

Note: this isn't the same as for Manage, we are now using the Embedded Linux version
of GCC.
Get and install with:
The executables are in /usr/bin/. You can test your installation by typing

in a terminal. You should see a large block of text followed by a
statement similar to gcc version 4.7.3 (Ubuntu/Linaro 4.7.3-12ubuntul).

e 'Plan' project under Eclipse:

@)

Launch Eclipse then File => Import => General => Existing Projects into Workspace =>
browse to your directory (Code/flexsea_1_0/plan/)
You will see the project in the Project Explorer
You can compile the project by clicking on the Hammer icon. Please note that 3 options
are available:
O
= 'Debug': use this for debugging on your host computer. This uses a native
compiler (not a croiss-compiler). You can test your work by opening a terminal,
navigating to the Debuf directory (
) and launching Plan with
= You will see the list of supported FlexSEA commands.
= 'Release_Single': one task per program call. Convenient for sending
commands on the terminal as it will give you feedback.
= 'Release_Multiple': multiple tasks per program call. Use this to interface
with Python (or other languages) as it's much faster than spawning a
new instance of the program everytime you want to send a command to
a board.

Plan-Manage Cable

03/17/2015:

We need a cable to link a Plan board (BBB) to a Manage board. The BBB is powering the Manage board.

For the BBB I'm using a 2x23 male header. For space sensitive applications wires could be soldered under
the PCB rather than adding this extra connector. Pin assignment:

189

F3V +3V3 F3V3+5V
2
l ol 2 2
113 4
712 S [3
9 "7 3o
9 10
3| 112 =3
l:‘i :: :g 16 MISO
BBB SPI0 CSO_J.. 17 | .5 o, 18 BBB SPI0 DI
T) 20
BBB SPI0 DO 21 1 29 722 | BBB SPI0 SCLK
e T 23 5y g4 24 [BBB UITX
25 | 52 5 | 26 BBB UIRX
5
3 29 30 5
51 31 32 55
35 | 33 3 3¢
37| 23 0 33
9] 37 B 4
T Y
33 | 4 2
b
45 46
H23x2
N N/
GND EEENE GND

On the Manage board we use J3. +5VP is used to power the Manage board. +VP (Voltage Plan) is used
to level-shift the SPI signals. It needs to be at the same voltage as the SPI signals coming out of the Plan

board (3.3V in that case).

The Reset signal is not currently used but in the future it will allow the Plan to reset the Manage.

~SVP+VP

13
q Plan
5 BIOM FLEXSEA
3 > SPI_NSS
4] SPI_MISO
5 > SPI_MOSI
6 > SPI SCK
7 > RESET
8 e —
PC8H
_.;;
GND
+5V: Red
+VP: Orange
GND: Black
SCK: Green
NSS: Yellow
MOSI: Orange
MISO: Blue

190

191

Preparing the FlexSEA-Execute 0.1 board (Hardware)

03/17/2015:

List of parts:

1x FlexSEA-Execute 0.1 assembled PCB

1x aluminum mounting plate

1x thermal pad

1x 5x M2x4 screws

AWG16 wire in red, black and white (McMaster 6659T48)
PowerPole housings and crimps

Estimated time: 1h00 (1h15 if Step 0 is required).
Step 0)

If you are using the first batch of PCBs, the pull-ups I selected for the on-board I2C bus are too resistive
for speeds above 100kHz (we are using 400kHz). R45 and R46 are currently 4.7k and they should be
1.8k. You can de-solder the 4.7k and solder 1.8k resistors (recommended) or add a 3k resistor in parallel
to the 4.7k one. Failure to change these resistors will lead to inconsistent behavior as the code will
sometimes hang in the 12C routines.

192

Step 1)

Cut 3 pieces of wire, 4" long, one piece per color. Cut 2 pieces of wire, 3" long, black and red. Remove
3mm of insulation from one end and 5mm from the other end.

Step 2)

Crimp the terminals to the 5 wires, on the end with 5mm of exposed copper. Make sure to crimp on the
sleeve and not just on the copper. Insert the crimped wires in their housings.

193

Step 3)

Solder the wires to the PCB. +VB = Red, GND = Black, A = White, B = Black, C = Red. There is copper
planes on all 6 layers: a regular (60-80W) soldering iron will have a hard time melting solder. Use a high
power soldering iron (such as a Weller WD 1 M 160W) or pre-heat the PCB with a hot air gun (careful,
you can easily de-solder components with that!). On the picture below you can see the solder joints on
the white and black wires. The red solder joint was cut close to the PCB with cutters. When all 5 wires
are soldered clean the flux with alcohol (I use 91%) and a toothbrush.

194

Step 4)

Link the PowerPole connectors together, according to the order shown on the picture below. Twist the
cable assemblies.

Step 5)
I'm using a phase-change thermal transfer pad made by Laird, TPCM 585 (Digikey 926-1155-ND). It

comes in sheets of 9x9 in. I laser cut 16 pads per sheet. Epilog settings: 90% speed, 80% power,
2500Hz.

195

Remove the plastic protection, stick the thermal pad to the PCB and screw it to the aluminum plate. Make
sure that the two FFC programming ports are in the unlocked position first.

196

Next step: Preparing the FlexSEA-Execute 0.1 board (Software)

Preparing the FlexSEA-Execute 0.1 board (Software)

03/17/2015:

Previous step: Preparing the FlexSEA-Execute 0.1 board (Hardware)

List of parts:

1x FlexSEA-Execute 0.1 with connectors

1x MiniProg3

1x Prog Adapt configured for the MiniProg3 (Prog Adapt 0.1 for PSoC)
PSoC Creator and 2x code projects

Estimated time: 0h20.

Step 1)

Connect a power cable between Execute and a lab power supply. It is recommended to start with OV and
a low current limit, then slowly increase the voltage while making sure that the current stays low the first

time that you power a new board. When you reach 7V 4 LEDs should turn on. You can use any voltage
from 15 to 24V.

197

file://hub.media.mit.edu/mas/biomech/storage/shared/JFDuval/FlexSEA/Documentation/03192015/Preparing%20the%20FlexSEA-Execute%200.1%20board%20(Soft.html
file://hub.media.mit.edu/mas/biomech/storage/shared/JFDuval/FlexSEA/Documentation/03192015/Preparing%20the%20FlexSEA-Execute%200.1%20board%20(Hard.html
file://hub.media.mit.edu/mas/biomech/storage/shared/JFDuval/FlexSEA/Documentation/03192015/Prog%20Adapt%200.1%20for%20FlexSEA-Execute.html

Step 2)

Open PSoC Creator 3.1, File > Open > Project/Workspace > navigate to ...\Code\flexsea_1_0\execute-
cop\execute-cop.cydsn\ and select the .cywrk file. Build execute-cop and make sure that there is no error
message. Connect the FFC to the Execute board, using the right FFC connector (as seen from above).
The FFC conductors need to face the PCB; seen from above they'll be visible. Click Program. You'll get a
log similar to this:

Programming started for device: 'PSoC 4200 CY8C4245LQ*-483"'.

Device ID Check

Erasing...

Programming of Flash Starting...

Protecting...

Verify Checksum...

Device 'PSoC 4200 CY8C4245LQ*-483' was successfully programmed at 03/17/2015
14:54:08.

The Red LED right next to the PSoC 4 should flash "aggressively" because the PSoC 5 isn't programmed.

Step 3)

Programming FlexSEA-Execute 0.1

Preparing the Plan board (BeagleBone Black)

03/19/2015:

198

file://hub.media.mit.edu/mas/biomech/storage/shared/JFDuval/FlexSEA/Documentation/03192015/Programming%20FlexSEA-Execute%200.1.html

This page explains how to configure a brand new Rev C BeagleBone Black for FlexSEA. I'm using the
"Element 14 BeagleBone Black Rev C - 4GB - Pre-installed Debian - Element 14 Version" from Adafruit
(http://www.adafruit.com/products/1996). Scripts are provided to simplify the user's life.

Estimated time: 0h30.

Step by step instructions:

1. Connecting to the BBB and transfering files:
1. Connect the USB Mini-B cable between your host computer and the BBB. Connect an
Ethernet cable to the BBB to give it internet access.
2. If you are using a VM make sure that the BBB is listed as a connected Removable Device.
After a few seconds you should see a new network connection and/or a storage device.
3. Open a terminal and connect to the BBB (ssh beaglebone.local -| root)
4. On your host, navigate to Code/flexsea_1_0/misc/scripts/official/BBB/ (in your SVN
folder)
5. SCP the 3 scripts and the DTS file to the BBB: scp config_bbb_1 config_bbb_2
flexsea_bbb_init BB-SPI0-01-00A0.dts root@beaglebone.local:~
6. On the BBB, if you Is you should see the 3 scripts and the DTS file
7. We need to change the permissions: chmod 755 config_bbb_1 config_bbb_2
flexsea_bbb_init
2. Configuration - first part:
1. In the BBB terminal call the first script with ./config_bbb_1, enter "flexsea" twice when
prompted for a password.
2. In the Adafruit lib install say Yes when prompted
3. nano will open uEnv.txt. Paste that line capemgr.enable_partno=BB-SP10-01, Ctrl+X to
save, Y then Enter

199

3. Reboot (command). After a few seconds you'll loose the connection, then it will come

back to life.
4. Connect to the BBB (), enter flexsea as the password
5. Configuration - first part:
1

6. Configuration complete, you are now ready to use the BBB!
1. To enable SPI and move to the Desktop call
2. You'll get the message "FlexSEA is ready to be used!"

To test you need to send a plan program. See Using a pre-configured BeagleBone Black (Plan
board) (skip the Connect section).

Copy of the scripts:

config bbb 1
#1l/bin/bash

Configuration of a brand new Rev C BBB - Part 1
JFDuval 03/19/2015

echo "[FlexSEA] Type new password, use flexsea' by default.”
passwd

echo "[FlexSEA] Updating the time servers. "
ntpdate -u ntp.ubuntu.com pool.ntp.org

echo "[FlexSEA] Installing the Adafruit Python libs."
apt-get install python-pip python-setuptools python-smbus
pip install Adafruit_BBIO

echo "[FlexSEA] 1) Paste this line ‘capemgr.enable_partno=BB-SPI0-01' (no quotation marks), 2) Ctri+X,
'Yes' Enter”

cd /mnt/

mkdir boot

nano uknv.txt

echo "[FlexSEA] When you are ready reboot the BBB (command: reboot)"
#End of script #1

config bbb 2

#1/bin/bash

Configuration of a brand new Rev C BBB - Part 2
JFDuval 03/19/2015

echo "[FlexSEA] Configuring the SPI driver and pins”

dtc -0 dtb -o BB-SPI0-01-00A0.dtbo -b 0 -@ BB-SPI0-01-00A0.dts
¢p BB-SPI0-01-00A0.dtbo /lib/firmware/

200

file://hub.media.mit.edu/mas/biomech/storage/shared/JFDuval/FlexSEA/Documentation/03192015/Using%20a%20pre-configured%20BeagleBone%20Black%20(Plan.html
file://hub.media.mit.edu/mas/biomech/storage/shared/JFDuval/FlexSEA/Documentation/03192015/Using%20a%20pre-configured%20BeagleBone%20Black%20(Plan.html

echo BB-SPI0-01 > /sys/devices/bone_capemgr. */slots
cd /home/debian/Desktop/

#End of script #2

flexsea bbb init

#1/bin/bash

echo BB-SPI0-01 > /sys/devices/bone_capemgr. */slots
cd /home/debian/Desktop/
echo "FlexSEA is readly to be used!”

Prog Adapt 0.1 for FlexSEA-Execute

03/17/2015:

We use a MiniProg3 to program and debug the PSoC. It comes with a 10 pins connector that is out of

proportion with the size of the PCBs I design. A small PCB, called Prod Adapt 0.1, is used to convert the

10 pin connector to a small 0.5mm flat flexible cable (FFC).

Pin assignment, 10 pin connector:

Table 3-2. Communication Protocol Pin Assignments

Protocol

5-Pin

10-Pin

ISSP

SCLK

4

SDAT

5

XRES

3

JTAG

TMS

TCK

TDO

TDI

@@ | &

XRES

SWD / sSwWv

SDIO

SCK

N L

SW\V

XRES

3

10

12c

SCK

4

SDA

5

a. SWV trace is only available in conjunction with SWD debugging.

Pin assignment, 6 pin connector (on Prog Adapt):

201

Mapping:

Cable / 6 pin connector

= D~ WNE
Ao wWwuUIN -

0

Another representation of the same information:

3.2.2 10-Pin Connector

The 10-pin connector is configured as a dual row with 50-mil pitch. It is used with a ribbon cable
(provided) to mate to a similar connector on the target board. The recommended mating connectors
are the Samtec FTSH-105-01-L-DV-K (surface mount) and the FTSH-105-01-L-D-K (through hole)
or similar connectors available from other vendors. The signal assignment is shown in Figure 3-3.

When programming JTAG devices, note that MiniProg3 does not support nTRST pins.

Figure 3-3. 10-Pin Connector with Pin Assignments

XRES

GND
TDI

GND

TCK-> TPO
SWD_CLK &

Bt

TCK

0

GND

™S
VTARG

TMS ->SWD_I0

O

\Pin 1

——— Note The ribbon

cable connector
extends beyond the
body of the
connector. Be sure
to allow room.

GND

VTARG -> #5V

Step 1) Cut the cable that came with the MiniProg3 in two. By cutting it in the middle you can make two
adapters from 1 cable.

202

Step 2) Separate the wires. Keep #1/2/3/4/6/10 and cut down the others. Strip 2-3mm of insulation of
the wires.

Step 3) Solder the surface-mounted FFC connector to the PCB. Use the "Flipped" position.
Step 4) Solder the 6 wires to the PCB, according to the mapping presented above.

Step 5) Connect an FFC cable and test your work. The conductors need to face the PCB. If it works (ie
you can detect the PSoC in PSoC Creator) go to step 6.

Step 6) Hot glue everything together.

Prog Adapt 0.1 for FlexSEA-Manage 0.1

03/19/2015:

We use the STM32F4 Discovery board as a reference for the pinout (manual: http://www.st.com/st-web-
ui/static/active/en/resource/technical/document/user manual/DM00039084.pdf)

Table 3. Debug connector CN2 (SWD)

Pin CN2 Designation
1 VDD_TARGET VDD from application
2 SWCLK SWD clock
3 GND Ground
4 SWDIO SWD data input/output
5 NRST RESET of target MCU
6 SWO Reserved

The ST-Linv/V2 has a 20 pins cable (manual: http://www.st.com/st-web-
ui/static/active/en/resource/technical/document/user manual/DM00026748.pdf)

203

http://www.st.com/st-web-ui/static/active/en/resource/technical/document/user_manual/DM00039084.pdf
http://www.st.com/st-web-ui/static/active/en/resource/technical/document/user_manual/DM00039084.pdf
http://www.st.com/st-web-ui/static/active/en/resource/technical/document/user_manual/DM00026748.pdf
http://www.st.com/st-web-ui/static/active/en/resource/technical/document/user_manual/DM00026748.pdf

3.2 Connection with STM32 applications

For STM32 developments, the ST-LINK/V2 needs to be connected to the application using
the standard 20-pin JTAG flat ribbon provided.

Table 4 summarizes the signals names, functions, and target connection signals of the
standard 20-pin JTAG flat ribbon.

Table 4. JTAG/SWD cable connections
Pin no. ST-LINK/V2 connector | ST-LINK/V2 function | Target connection | Target connection
(CN3) (JTAG) (SWD)
C:;) VAPP Target VCC Mcu voptt Mcu vbp(
3 |TRST JTAG TRST JNTRST GND@
4 |GND GND GND® GND®@
5 |TDI JTAG TDO JTDI GND'@
6 |GND GND GND3 GND®@
@ TMS_SWDIO JTAG TMS, SW IO [JTMS SWDIO
Q) GND GND GND® GND'@
@ TCK_SWCLK JTAG TCK, SWCLK [JTCK SWCLK
10 |GND GND GND3 GND®@
11 NC Not connected Not connected Not connected
12 |GND GND GND3) GND®
@ TDO_SWO JTAG TDI, SWO JTDO TRACESWO
14 | GND GND GND® GNDW)
@ NRST NRST NRST NRST
16 |GND GND GND'® GNDW)
17 NC Mot connected Mot connected Mot connected
18 |GND GND GND3 GND
19 | VDD VDD (3.3V)(5) Not connected Mot connected
20 |GND GND GND3 GND®

board to ensure signal compatibility between both boards.

recommended).

. Connect to GMND for noise reduction on the ribbon.

. At least one of this pin must be connected to the ground for correct behavior (connecting all of them is

4. Optional: for Serial Wire Viewer (SWY) trace.
5. Available on ST-LINK/NV2 only and not connected on ST-LINK/V2/OPTO.

. The power supply from the application board is connected to the ST-LINK/V/2 debugging and programming

Pin ma :
Manage STLink
1 1

2 9

3 8

4 7

5 15

6 13

The adapter shown below uses a 6-pin male header because it was originally made for the MiddleMan 0.1
board. Prog Adapt was built with a female header to interface with the old cable. As we are not using the
MiddleMan anymore it is now possible to solder the wired directly to Prog Adapt (same pinout).

204

Use the "flipped" FFC connector position. The FFC conductors have to face the PCB. Pin 1 is Red.

Program/debug Manage

03/19/2015:

First, make that your board is powered (Connect Manage to Plan). Connect the STLink/v2
programmer/debugger to Manage using the Prog Adapt cable. Make sure that it's seen by your VM.

Debugging:

Open a terminal and call openocd -s ~/Documents/embedded-arm/openocd-bin/share/openocd/scripts/ -f
interface/stlink-v2.cfg -f target/stm32f4x_stlink.cfg. Leave that window open.

flexsea@ubuntu:
uments/ cd-bin/shar
cfg -f targ link.cfg
5-03-089-14:36)

.cpu: hardw

205

file://hub.media.mit.edu/mas/biomech/storage/shared/JFDuval/FlexSEA/Documentation/03192015/Connect%20Manage%20to%20Plan.html

In Eclipse, compile for Debug (Compile the Manage project). Click on the Bug icon, use "OpenOCD Debug
FlexSEA". The IDE will switch to the Debug perspective. Click Resume (F8) to start the code.

The RGB LED will be green for a few seconds then blue. LEDO will blink. You can use the Pause button to
pause the code execution, the Step Into and Over buttons to navigate in the code, the Variables and
Watch windows to inspect values, etc.

When you are done you can hit Terminate (Ctrl + F2). In your terminal Ctrl+C will close OpenOCD.

Programming:

In Eclipse, compile for Release (Compile the Manage project). Open a terminal, navigate to the release
folder () and call

@ @ flexsea@ubuntu: ~/Desktop/FlexSEA/biomech-ee-svn/Code/flexsea_1_0/manage/Release

flexsea@ubuntu:~S$ cd ~/Desktop/FlexSEA/biomech-ee-svn/Code/flexsea_1_0/manage/Release/
flexsea@ubuntu:~/Desktop/FlexSEA/bilomech-ee-svn/Code/flexsea_1_0/manage/Release$ openocd -s ~/Desktop/Flexs
EA/embedded-arm/openocd-bin/sharefopenocd/scripts/ -f interface/stlink-v2.cfg -f target/stm32f4x_stlink.cfg
-c init -c "reset halt" -c "sleep 108" -c "wait_halt 2" -c "flash write_image erase manage.elf" -c "sleep
100" -c "verify_image manage.elf" -c "sleep 100" -c "reset run" -c "shutdown"”
Open On-Chip Debugger ©.8.0 (2015-03-09-14:36)
Licensed under GNU GPL v2
For bug reports, read
http://openocd.sourceforge.net/doc/doxygen/bugs.html

: This adapter doesn't support configurable speed

: STLINK w2 JTAG v17 API v2 SWIM v4 VID 0x0483 PID 0x3748

: using stlink api v2

: Target voltage: 3.247431

: stm32f4x.cpu: hardware has 6 breakpoints, 4 watchpoints

state: halted

target halted due to debug-request, current mode: Thread
xPSR: 0x01000000 pc: Ox08000268 msp: Ox20030000
auto erase enabled

: device id = 9x10076419

: flash size = 2048kbytes
wrote 32768 bytes from file manage.elf in 1.869838s (17.114 KiB/s)
target state: halted
target halted due to breakpoint, current mode: Thread
xPSR: 0x61000000 pc: 0x2000002e msp: Ox20030000
verified 24152 bytes in 0.500174s (47.155 KiB/s)
shutdown command invoked
flexsea@ubuntu:~/Desktop/FlexSEA/biomech-ee-svn/Code/flexsea_1_0/manage/Release$ I

Your chip is programmed. The RGB LED will be green for a few seconds then blue. LEDO will blink.

Programming FlexSEA-Execute 0.1

03/19/2015:

Important: if your board has never been programmed (if you have 4 steady green power LEDs ON and
nothing else (no flashing red LED)) you need to follow this first: Preparing the FlexSEA-Execute 0.1 board

(Software)

Open the 'execute’ project in PSoC Creator (...\Code\flexsea_1_0\execute\execute.cywrk). Open main.h
and make sure that the modules you want are enabled:

//Enable/Disable sub-modules:

#define USE_RS485
//#define USE USB

206

file://hub.media.mit.edu/mas/biomech/storage/shared/JFDuval/FlexSEA/Documentation/03192015/Compile%20the%20Manage%20project.html
https://www.evernote.com/shard/s316/nl/53670106/dd14b801-3d0b-457c-b4d6-a1f2f678db65
file://hub.media.mit.edu/mas/biomech/storage/shared/JFDuval/FlexSEA/Documentation/03192015/Preparing%20the%20FlexSEA-Execute%200.1%20board%20(Soft.html
file://hub.media.mit.edu/mas/biomech/storage/shared/JFDuval/FlexSEA/Documentation/03192015/Preparing%20the%20FlexSEA-Execute%200.1%20board%20(Soft.html

#define USE COMM //Requires USE RS485 and/or USE USB
#define USE QEI1

#define USE TRAPEZ

//#define USE DIETEMP

#define USE_I2C_ INT

//#define USE I2C EXT

#define USE_IMU //Requires USE I2C INT

#define USE STRAIN //Requires USE I2C INT

Build the code (Release mode).

Connect the FFC to Execute, leftmost connector (as viewed from the top). Click Program:

Programming started for device: 'PSoC 5LP CY8C5888AX*-LP096"'.

Device ID Check

Erasing...

Programming of User NVL Succeeded

Programming of Flash Starting...

Protecting...

Verify Checksum...

Device 'PSoC 5LP CYB8C5888AX*-LP096' was successfully programmed at 03/17/2015
14:59:00.

After a few seconds the RGB LED should be Blue, a green LED should be flashing and the red LED should
be gently pulsing as an indication that both PSoC are working properly. Power cycling might be required.

Read a simple sensor from Linux (Pushbutton on Manage)

03/19/2015:

Program the latest code to Manage (Program/debug Manage), in Release mode. The RGB LED will initially
be green then, after a few seconds, steady blue. It means that the board isn't receiving commands from
Plan. LEDO will blink.

Connect to the Plan board (Connecting to the Plan board (BBB)), transfer the latest Plan code
(Transferring a program to the Plan board (BBB)).

Call ./plan manage_1 stream. The RGB LED will turn green and the switch state will be displayed:

It will turn to 0 if you press on the pushbutton. It's tiny, use your fingernail.

207

file://hub.media.mit.edu/mas/biomech/storage/shared/JFDuval/FlexSEA/Documentation/03192015/Programdebug%20Manage.html
file://hub.media.mit.edu/mas/biomech/storage/shared/JFDuval/FlexSEA/Documentation/03192015/Connecting%20to%20the%20Plan%20board%20(BBB).html
file://hub.media.mit.edu/mas/biomech/storage/shared/JFDuval/FlexSEA/Documentation/03192015/Transferring%20a%20program%20to%20the%20Plan%20board%20(BBB.html

BIOMECH puus
__FlexSEA Al

Manage 0.1

(g L™
@ |
L o | =

The code isn't 100% stable yet. If the LED is Blue while Stream is running something is wrong. Either
reprogram Manage or power cycle it and it should be fine.

To stop streaming, quit the program with Ctrl+D.

For now "manage_1 stream" is calling one function, CMD_SWITCH. In the future it will display more
information.

Read multiple sensors from Linux (Execute)

03/19/2015:

Program the latest code to Manage (Program/debug Manage), in Release mode. The RGB LED will initially
be green then, after a few seconds, steady blue. It means that the board isn't receiving commands from
Plan. LEDO will blink.

Power Execute and make sure that it's running up to date code (Programming FlexSEA-Execute 0.1).

Connect to the Plan board (Connecting to the Plan board (BBB)), transfer the latest Plan code
(Transferring a program to the Plan board (BBB)).

Call . The RGB LED will turn green on Manage and on Execute. "Stream" is
currently tweaked for the ShuoBot Exoskeleton (it will soon be generalized); it will display all the sensors
that she needs:

208

file://hub.media.mit.edu/mas/biomech/storage/shared/JFDuval/FlexSEA/Documentation/03192015/Programdebug%20Manage.html
file://hub.media.mit.edu/mas/biomech/storage/shared/JFDuval/FlexSEA/Documentation/03192015/Programming%20FlexSEA-Execute%200.1.html
file://hub.media.mit.edu/mas/biomech/storage/shared/JFDuval/FlexSEA/Documentation/03192015/Connecting%20to%20the%20Plan%20board%20(BBB).html
file://hub.media.mit.edu/mas/biomech/storage/shared/JFDuval/FlexSEA/Documentation/03192015/Transferring%20a%20program%20to%20the%20Plan%20board%20(BBB.html

1 -62
: 9998

You can move the board and observe the IMU values changing. Ctrl+D to quit.

The code isn't 100% stable yet. If the LED is Blue while Stream is running something is wrong. Either
reprogram Manage or power cycle it and it should be fine.

Transferring a program to the Plan board (BBB)

03/15/2015:

While it's possible to compile your code on the BBB, it is not the most efficient way of working. Cross-
compiling on the Host is a lot faster, but it means that we need to transfer the executable from the host
to the BBB.

—

Open a new terminal tab enter cd

2. Depending on what you compiled for you'll have different "Release_x" folders. Navigate to the
one you want to use. In it you'll find your executable.

3. We use Secure copy (scp) to transfer files. To send 'plan' to the desktop of the BBB use:

1. If you need to get 'plan' from the BBB (reverse operation), use:
2. scp can be used to move multiple files, folders, etc. More

info: http://www.hypexr.org/linux scp help.php
4. At this point if you Is on the BBB desktop you'll see the 'plan' program.

Tip: if you need to send 'plan' and 'planm' you can navigate to ...Code/flexsea_1_0/plan/ and use the
following two commands: &

BBB x | sCP X | OpenOCD X SUN % jfduval@ubuntu: -/Documents/...

jfduval@ubuntu:~/Documents/biomech-ee-svn/Code/flexsea_1_0/plan$ scp Release_Single/plan root@beaglebone.local: /home/debian/Desktop
Debian GNU/Linux 7

% jfduval@ubuntu: ~/Documents/... x

BeagleBoard.org BeagleBone Debian Image 2014-04-23

Support/FAQ: http://elinux.org/Beagleboard:BeagleBoneBlack_Debian
root@beaglebone.local's password:

plan 100% 42KB 42.2KB/s 00:00
jfduval@ubuntu:~/Documents/biomech-ee-svn/Code/flexsea_1_0/plan$ I

Update your SVN

03/19/2015:

1. In a terminal navigate to /home/flexsea/Desktop/FlexSEA/biomech-ee-svn/flexsea_1_0/

209

http://www.hypexr.org/linux_scp_help.php

2. Update the SVN with the command
3. If asked, accept the key and provide your Media Lab username and SVN password.

Using a pre-configured BeagleBone Black (Plan board)

03/16/2015:

e Before you get started:
[)
o If you are using the pre-configured VM look on the Desktop for a file named Common
Commands.txt. Copying & pasting long commands will be faster than typing them.
o It's useful to open one Terminal program with multiple tabs (Shift+Ctrl+t to open a new
tab). I usually have tabs named "BBB", "SVN', "SCP", "OpenOCD" and "Misc."
e Connecting to the Plan board (BBB)
e Transferring a program to the Plan board (BBB)
e Executing the program:
[)
o For the first test it is recommended that you use the single command plan (executable
named 'plan’ in Release_Single folder). scp 'plan' to the BBB.
o Inyour BBB terminal confirm that you transfered the executable by calling Is on the
Desktop.
o will list the available FlexSEA commands.

[} flexsea@ubuntu: ~

root@beaglebone:~# . flexsea_bbb_init
FlexSEA is ready to be used!
root@beaglebone: fhome/debian/Desktop# ./plan default info

[FlexSEA-Plan][v1.0][62/11/2015]
[FlexSEA-SPI]: Mode = 0, Bits = 8, Max Speed (Hz) = 5000000

fo', arg = 0.
‘cmd_imu_read', arg = 2.
'cmd_encoder_write', arg =
'cmd_encoder_read', arg =
'cmd_strain_read', arg
‘cmd_strain_config', ar
'cmd_clutch_write', arg =
'cmd_analog_read', arg = 2.
'cmd_ctrl_mode_write', arg {1
_ 'emd_ctrl_i_gains_write', arg = 3.
fep_list[10]: 'emd_ctrl_p_gains_write', arg = 3.
fep_list[11]: 'emd_ctrl_o_write', arg 1.
fep_Llist[12]: 'emd_ctrl_i_write', 1.
fep_Llist[13]: 'emd_ctrl_i_read’,
fep_list[14]: 'cmd_mem_read', a
fcp_list[15]: 'cmd_acq_mode_write', arg = 1.
fcp_Llist[16]: 'stream', arg = @.
fcp_Llist[17]: 'log', arg = O.
fcp_Llist[18]: 'shuobot', arg = 0.
fcp_list[19]: 'set_z_gains', arg = 3.
fcp_list[20]: 'speciall', arg = 6.

Sending 48 bytes.

Read:
00 00 00 00 00
00 00 00 00 00
00 00 06 00 00
00 60 00 00 00
00 00 00 00 00
00 60 00 00 00
00 00 00 00 00
00 60 00 00 00

root@beaglebone: /home/debian/Desktop#

Please note that the list of commands is currently being updated to both clarify what they do and expand
the available functions.

210

file://hub.media.mit.edu/mas/biomech/storage/shared/JFDuval/FlexSEA/Documentation/03192015/Connecting%20to%20the%20Plan%20board%20(BBB).html
file://hub.media.mit.edu/mas/biomech/storage/shared/JFDuval/FlexSEA/Documentation/03192015/Transferring%20a%20program%20to%20the%20Plan%20board%20(BBB.html

