GKLEE User Manual

Gauss Research Group,
School of Computing,
University of Utah,
Salt Lake City, UT 84112

March 9, 2012

Contents

1 ITNTRODUCTION 2
(L1 More GKLEE featuresf 2

[2 Case Study: Radix Sort| 4

A TOUR OF GKLEE-MODE

6 ANOTHER TUTORIAL EXAMPLE

7 CONCLUDING REMARKS

1 INTRODUCTION

GKLEHls a concolic verifier-cum-analyzer for CUDA (Compute Unified De-
vice Architecture [I]) C/C++ programs that are typically executed on GPUs
(Graphical Processing Unit). GKLEE actually analyzes whole programs,
which means that it verifies the “main” (CPU) program together with the
collection of GPU kernel functions that it calls (we call these programs “GPU
programs”). The term “concolic” is a portmanteau of the terms ‘Concrete’
and ‘Symbolic.” Concolic verifiers are gaining widespread adoption in many
areas of software testing [2]. They aim to achieve the union of the good
features of concrete and symbolic verification methods, while also aiming for
the intersection of their disadvantages. GKLEE extends KLEE [3] in many
ways. While KLEE provides the basic capabilities for sequential program
analysis, GKLEE (“GPU + KLEE") extends KLEE to provide self-contained
and powerful facilities for analyzing GPU programs.

1.1 More GKLEE features

GKLEE is a tool that executes the programmer’s CUDA application in a sym-
bolic environment. With the user declared symbolic assignment of program
variables, GKLEE can execute through all different branches in the code
where the predicates are based on the symbolic variables. These executions
are output as test cases, with concrete values substituted for the symbolic
ones. GKLEE fully executes the CUDA program, including the kernel por-
tion, closely following CUDA semantics and using a canonical schedule for
warp execution (which is proven to be sound for race detection).

Using GKLEE’s Emacs interface, the user may navigate through these
test cases, stepping through both the original source code and the generated
LLVM, and gain insight into the behavior of their CUDA program.

For more information on GKLEE, please refer to
http://www.cs.utah.edu/fv/GKLEE/, which includes usage instructions, ex-
amples, a liveDVD with a fully configured environment, a detailed tech re-
port, and our PPoPP 2012 paper.

The GKLEE Emacs interface works by encapsulating the execution of
GKLEE and the LLVM compilers. With a few keystrokes, the user’s CUDA
program can be compiled into bytecode (at the specified optimization level)

L«GKLEE” is pronounced as “G” followed by how “KLEE” is pronounced (“Clay?”)

http://www.cs.utah.edu/fv/GKLEE/

and fed into GKLEE. Feedback is immediately generated on the status of the
execution. Once the run is complete, the output is analyzed and the user is
presented with a buffer giving a synopsis of the GKLEE run. Each generated
trace is listed with statistics on its execution, including a measurement of
performance anomalies and indication of any errors. Gklee-mode then allows
the user to drill down to the location of uncovered issues. From there, the
user may step through the execution, focusing only on the locations, blocks,
threads, warps of interest.

Execution
on GPU -

-(Concrete test-case generation

Hardware
User [\ t Deadlocks
C++ Canonical Divergent warp reports
Program | CI(;rI;::)'\i/Iler » LLWM | Plus .- Checks for missing 'volatile'

calling Byte-code SIMD Path reduction heuristics
CUDA Scheduler Concurrency check levels
Kernels
¥ .
Degree of Bank Conflicts Ty ’
Shared Memory Intra-warp and | Shared Global Degree of Non-coalesced Accesses

Global memory races
Inter-warp Races | Memory Memory y

Figure 1: GKLEE’s overall flow and verification features supported

Figure [1] summarizes the overall flow of GKLEE and its verification fea-
tures. The rest of this manual will detail how these features can be exercised
through either an Emacs based interface or a command-line based interface.

GKLEE’s main features are the following:

e Compiles the program into LLVM

e GKLEE detects and reports occurrences of divergent thread warps (branches
inside SIMD paths); these can degrade performance.

e GKLEE finds deadlocks caused by non textually-aligned barrier
(__syncthreads()) calls.

e GKLEE’s symbolic virtual machine can systematically generate con-
crete test inputs based on path constraint solving.

e GKLEE employs GPU-specific heuristics for reducing the number of
tests generated. It also retain’s KLEE’s flag options, which includes
the ability to either retain or eliminate redundant test inputs that drive
execution through the same path.

e A feature of GKLEE’s flow is the ability to process these tests to a form
that can be run on the GPU hardware. (We will send you these scripts
if you are interested.)

We target two classes of memory access inefficiencies, namely non-
coalesced global memory accesses and shared memory accesses that
result in bank conflicts, and show how GKLEE can spot these ineffi-
ciencies, also “understanding” platform rules (i.e., compute capability
1.x or 2.x).

GKLEE’s VM incorporates the CUDA memory model within its con-
colic execution framework, while accurately modeling the SIMD concur-
rency of GPUs. It can scale to large concurrent executions involving 2K
threads mainly because it uses a new scheduling method called canoni-
cal plus SIMD. This scheduling method is sound, while generating only
one schedule (as opposed to an exponential number of schedules in
traditional approaches).

GKLEE handles many C++/CUDA features including: struct, class,
template, pointer, inheritance, CUDA’s variable and function deriva-
tives, and CUDA specific functions.

GKLEE’s analysis occurs on LLVM byte-codes (also targeted by Fortran
and Clang). Byte-code level analysis can help cover pertinent compiler-
induced bugs in addition to supporting future work on other binary
formats.

GKLEE’s Emacs mode has several noteworthy features:

2

It helps compile user programs to LLVM byte-code and helps launch
concolic analysis

It helps check for races, assertion violations, global memory coalesced
accesses, bank conflicting shared memory accesses and warp divergence
It helps distill the GKLEE output, giving concise program statistics
It makes all generated execution traces available for exploration

It provides a stepping mode

It has filter functionality to only view the threads/blocks/warps/code
locations of interest

Case Study: Radix Sort

The best way to obtain a comprehensive picture of GKLEE is to dive into an
example that came with CUDA SDK 2.0, namely the radixSort.C example.
We now walk you through all the steps in debugging this example using
GKLEE.

Choose the example radixSort.C in directory

/home/ganesh/gkllee/Gklee/CUDA /Benchmarks/Table-1/SDK2.0/radixSort /radixSort.C
e Now type ESC-g r, which means “Run Gklee.”

e An explanation of some of GKLEE’s Emacs-mode buffers:

— Buffer *gklee-run-debug* contains the details of the GKLEE
analysis

— Buffer xgklee-compile-debug* contains the details of GKLEE’s
compilation

— Buffer *gklee-run* shows red-highlighted occurrences of Write
write races within a warp

We notice from buffer *gklee-run* that there are data races involving
threads 0 and 4. A single trace file *test000001.tracex* is listed in
this buffer (GKLEE may, in general, produce many tests that cover
various control branches). Click just under the red-highlighted error
message in this buffer. This pulls up the trace file (source + LLVM)
into the *test000001.tracex* buffer.

Notice that the bottom two windows (buffers) have changed into the fol-
lowing: *gklee-available-filters* and *gklee-active-filtersx.
Suppose you wish to hide the LLVM-level instructions. Focus (“click”)
on buffer *test000001.trace*, and type ESC-gta (toggle away the
LLVM assembly). The LLVM instructions should hide away. Try this
again, and the LLVM instructions re-appear.

Now let us proceed to identify the bug. Generally a user is interested
in quickly discovering where the data race happens by watching the
execution around the site of the bug. We already know that Thread 0
and Thread 4 are involved in the race. So how about filtering away the
other threads? Here is how you accomplish the filtering:

— Set focus on *gklee-available-filters* (by clicking anywhere
in this buffer).

— Search (using Emacs search commands) for ” Thread Filters”. Click
on ”All_Threads”. This makes all threads part of the
xgklee-active-filters* buffer. This also makes all the trace
entries to disappear!

— Now add back threads T0 and T4 by going to the buffer
xgklee-active-filters and selecting T0 and T4 (click on them).
You'll find that these two entries move to the
xgklee-available-filtersx* buffer.

— At the same time, you also see the *test000001.trace* trace
buffer come alive, now containing only the activities of these two

threads.

— Click on one of the red lines which reads Line 499, Block 0, Thread
4, File radixsort.C

— You will now see that the cursor is set on radixsort.C at line 499

— Now paint a region of text ending at line 499, going up a few lines
(as far behind as you want)

— Right-click (on a MacBook Pro, two fingers on the pad softly at
the top, and a third finger wandering down and clicking towards
the right of the pad)

— Presto! The remaining lines go away!

— Now set focus on the *test000001 . tracex* buffer, and type ESC-
gss (enter single-stepping mode)

— Single-step by typing "n” or ESC-gne (after setting focus on the
trace buffer *test000001.trace*).

— You can now see how the error is arrived at!

3 A TOUR OF GKLEE-MODE

This section will go over the features of Gklee-Mode, including what is hap-
pening under the hood, the output that is generated, and the user controls
that are provided in the form of key bindings and mouse aware buffers.

3.1 Compilation

This subsection is to describe the general work flow that one uses to analyze
their program with Gklee-Mode.

First, the user must open the C or C++ file containing the driver/host
code and including a main function. Currently, Gklee-Mode isn’t set up to
compile multiple file projects. To work around this issue, you may use
#include statements in your main file to ‘pull in’ the ancillary files.

Next, while the focus within Emacs is in the main source file, the user
simply executes run-gklee. This is available through a key binding, /meta/-gr
and then choosing the optimization level to set the LLVM compiler output
to.

Once run-gklee has been initiated, the code will be compiled into LLVM
bytecode, using the chosen optimization level and also with the option -
g, which causes debugging information to be embedded into the generated

object code. This is necessary for generating a trace and to match the trace
to detected errors later.

If there is an error in compilation, a message will be generated and dis-
played in the mini-buffer. To see what is happening with the compilation,
a user may toggle an Emacs window to the *gklee-compile-debug* window.
This shows the command line used to invoke llvim-g++, and the output gen-
erated by this.

3.2 Concolic Execution

After the compilation completes successfully, GKLEE is executed, passing on
its command line all of the options selected and the name of the object file
generated in the previous step. The main result buffer, *gklee-run*, displays
the number of program executions explored (one for each generated path,
depending upon the user’s choice of setting program variables to symbolic).
Also, all of the output of GKLEE is dumped into the *gklee-run-debug*
buffer. If the execution of GKLEE is unsuccessful, a message to this effect is
posted in the mini-buffer.

3.3 Trace Walking and Debugging

Once GKLEE successfully completes execution, the *gklee-run* buffer is pop-
ulated with some general statistics along with a section for each generated
path. They include metrics on CUDA performance issues, and will list any
detected anomalies by description (in red) and information on the location
of the problem in the user code.

The trace synopses in *gklee-run* are sensitive to the mouse. Each trace
is highlighted when the mouse floats over it; also, the user may click on the
trace in general or on a specific issue. This opens a trace window for that
execution, and if an error was clicked on, will set the focus to the first trace
line in question (also highlighted in red).

Each trace line in the trace buffer / window is mouse aware. By clicking
on a line, the related line in the user source code is brought to focus in that
buffer, or if the file containing that instruction isn’t open, it will be opened
and scrolled to the correct location. There is also an arrow in the right
margin that points to the related source code instruction.

When the user has Emacs focus set to the trace buffer there are a number
of features available for navigation and narrowing the amount of information

presented. With the correct keystrokes (see , the user can filter out un-
wanted CUDA blocks, threads and warps, and also limit visible trace lines to
certain locations in code, or by entire source code files. Also, by highlight-
ing sections of the code in a source buffer, these regions can be selected for
specific study in the trace. Another feature is the ability to toggle between
having a view of the LLVM bytecode in the trace or not. When viewing
bytecode, there are many more instructions as source level instructions often
generate many intermediate level instructions.

Another feature available from the trace buffer is the ability to invoke a
stepping mode (When started, the first unfiltered line in the trace is
highlighted, and a key is available to step to the next unfiltered instruction.
When stepping to the next trace line, the related source code line is also
shown with the ‘next instruction’ arrow.

These features allow the CUDA developer to locate problems in their
code, set focus to particular features of their program, such as a section of
code and / or a particular warp, and the steps leading up to an error or
performance issue.

3.4 GKLEE Buffers

This section, along with §4] explains how the user can control GKLEE and
modify the information that is available, and how information is displayed.
Information is displayed in Emacs buffers and the mini-buffer, with much of
it sensitive to mouse actions. Mouse clicks and key bindings are provided so
the user may modify the behavior of GKLEE and Gklee-Mode.

Output from GKLEE and Gklee-Mode is provided by using Emacs buffers.
There is some static data, and many entries in these buffers are mouse-
clickable in order to drill down into more information, or toggle settings.
Here is a list of the buffers, what stage in the general process they are relevant,
and what controls they provide.

e Buffer *gklee-compile-debug™ contains the output of the LLVM compi-
lation and its command line. See Figure

e Buffer *gklee-run* displays an overview of the results of the GKLEE
execution. It includes a synopsis on each generated trace. Each trace
and issue/error within them is navigable with a mouse click. See Figure

3]

executed with:

Saya/experiments/simpleRace/race.cpp -00 -g
in directory:
/home/sawaya/experiments/simpleRace
compilation output:

Done.

0

J:**- *gklee-compile-debug* All L11

(Fundamental)

/home/sawaya/gklee/bin/klee-1++ -0 /home/sawaya/experiments/simpleRace/target.o /home/sawi

Figure 2: The *gklee-compile-debug* buffer after compilation

GKLEE, copyright (c) 2811, Gauss Group, University of Utah

total instructions = 45
completed paths =

1
generated tests = 1

testoooodl.trace
Write write race within warp
race.cpp on line:
race.cpp on line:

0% warps bank conflicted
8% BIs bank conflicted

9% warps memory coalesced
8% BIs memory coalesced

0% warps warp divergent
E% BIs warp divergent

l:%*- *gklee-run* Top L19

11, block: 8, thread: 0
11, block: 8, thread:

1

(Fundamental)--------------------------.

Figure 3: The *gklee-run* buffer

executed with: L

/home/sawaya/gklee/bin/gklee --trace --emacs --ignore-concur-bug=0 --check-BC=1 --check-#
SMC=1 --check-WD=1 --check-volatile=1 --check-barrier-redundant=0 --device-capability=2 -@2
S -reduce-tests=0 --bc-cov=0 --Path-Reduce= --verbose=0 --check-level=1 /home/sawaya/exper#
Siments/simpleRace/target.o -D_ASSERT

gklee output:

Configuration: concurrency bug checking level is: 1

KLEE: output directory = "klee-out-57"

KLEE: WARNING: undefined reference to function: puts

KLEE: WARNING: calling external: puts(30411712)

Got a command line arg

path num explored here: 1

Across 8 BIs, the total num of instructions with BC : @, the total num of instructions: &
S0

Across 0 BIs, the total num of warps with BC : @, the total num of warps: ©
| BC:1:0:0:0:0:0:0 I
J:**- *gklee-run-debug* Top L12 (Fundamental)------------------~-~-~-~- - -1

Figure 4: The *gklee-run-debug* buffer

| call woid @ ZL7raceFunPi(i32* %6) nounwind, !dbg !'91

Line 26, Block 8, Thread 1, File race.cpp
call void @ ZL7raceFunPi(i32* %6) nounwind, 'dbg !91

Line 11, Bleock 8, Thread 8, File race.cpp
%0 = load 132** %data_addr, align 8, !'dbg !84

Line 11, Block 8, Thread 1, File race.cpp
%0 = load 132** %data_addr, align 8, !dbg !84

Line 11, Block 8, Thread 8, File race.cpp
%1 = getelementptr inbounds i32* %8, i64 @, !dbg !84

Line 11, Block 8, Thread 1, File race.cpp
| %1 = getelementptr inbounds 132* %08, i64 @, !dbg !84
J:%*- *test000001.trace* 30% L30 (Fundamental Step Mode)------

Figure 5: The trace buffer

10

S5IZE 2

__device
void raceFun({int *data)
{
IDD datal[@] += threadIdx.x;
J/fdatalthreadIdx.x] += datal(threadIdx.x + 1) % blockDim.x];

¥

int
main(int argc, char* argv[])
{
|
-i1*¥*¥_- race.cpp 18% L11 (C++/1 Abbrev)---------------ooonn

Figure 6: A source buffer, with the trace enabled

-

Block Filters
All Blocks BE®

Thread Filters

All Threads T@ T1 T1@ T11 T1z T13 T14 T15 T16 T17 T18 T19 T2 T20 T21 T22 #

§ T23 T24 T25 T26 T27 T28 T29 T3 T3e T31

T32 T33 T34 T35 T36 T37 T38 T39 #

§ T4 T40 T41 T42 T43 T44 T45 T46 T47 T48 T49 T5 T58 T51 T52 T53 T54 T55 #
§T56 T57 T58 T59 T6 Te6@ T6l Te2 Te3 T7 T& T9

File Filters

All_Files cpu_bitmap.h shared_bitmap_buggy GKLEE.C cutil.h

Warp Filters

ALl _Warps W1 Wwe

Location Filters

All_Locations cpu_bitmap.h:29 cpu_bitmap.h:30 cpu_bitmap.h:31 cpu_bitmap.h:32 cpu_bi®

shared_bitmap_buggy GKLEE.C:183 shared_bitmap_buggy GKLEE.C:@

GESS shared_bitmap_buggy GKLEE.C:113 shared_bitmap_buggy GKLEE.C:114 shared_bitmap_bugg®
~|éy GKLEE.C:117 shared bitmap buggy GKLEE.C:118 shared bitmap buggy GKLEE.C:119 shared b@&
-U:**- *gklee-available-filters* Top L14 (Fundamental)------------------“-~-~-------- -

Stmap.h:33 cpu_bitmap.h:48

Figure 7: A filter buffer (one of two)

11

e Buffer *gklee-run-debug* contains all of the output generated by GK-
LEE. It is useful to understand how GKLEE works and to see what
went wrong on an unsuccessful execution. See Figure

e The trace buffer is populated when a trace item is clicked on in the
gklee-run buffer. The trace contains a line for each low-level instruc-
tion (when viewing LLVM is toggled, or one per source instruction
otherwise) and is sensitive to mouse clicks. See §4| for bindings avail-
able from the trace buffer. Also, from within the trace buffer you may
activate stepping mode. See figure

e The source buffer is like an ordinary C/C++ buffer in Emacs, unless a
trace line has been selected in the trace buffer, either through mouse-
click, keyboard or through stepping mode. When a trace line has been
activated, the buffer window will be centered on the related instruction,
and there will be an arrow in the right margin pointing to that instruc-
tion. Also, there is a context menu available from source code buffers
that allows the user to limit which instruction locations are visible in
the trace and for stepping; also stepping mode may be activated from
here. See figure [0]

e The filter buffers (there are two: *gklee-available-filters® and *gklee-
active-filters) are used to choose trace items to view or ignore, and to
see which are visible and which are not. Criteria available are blocks,
threads, files, warps and locations. By clicking on an item in the *gklee-
available-filters buffer, that item will be filtered out of the trace window
and the excluded trace lines won’t be activated in step mode. The
reverse is also true, as the user may reactivate trace items by clicking
on an identifier in the *gklee-active-filter* window. Also, when filter
criteria are modified by using a source buffer context window, the filter
buffers are updated accordingly. Refer to figure [7| for an example view

12

4 QUICK REFERENCE

This section gives a listing of available global and buffer specific key bindings.
By using the key bindings in Gklee-Mode, all GKLEE specific options are
configurable and also the features of Gklee-Mode are exposed. Please refer to
the GKLEE manual (or ask us) for complete descriptions of the GKLEE fea-
tures that can be controlled here. Keep in mind that M indicates the Emacs
Meta key (you may visit the Emacs wiki for system specific key bindings:
http://www.emacswiki.org/emacs/
Here is a list of the key bindings globally available in Gklee-Mode:

M-gr
M-gk
M-gtcb
M-gtbc
M-gtmc
M-gtwd
M-gtcv
M-gsdc
M-gtrt
M-gtgc
M-gspr
M-gtv
M-gscl
M-gupa
M-guca
M-gaga

GKLEE run (will prompt for optimization level)

GKLEE Kkill (stops GKLEE execution)

Toggle the —ignore-concur-bug flag passed to GKLEE

Toggle the —check-BC flag passed to GKLEE

Toggle the —check-MC flag passed to GKLEE

Toggle the —check-WD flag passed to GKLEE

Toggle the —check-volatile flag passed to GKLEE

Pass the flag —device-capability <n> to GKLEE

Toggle the —reduce-redundant-tests flag passed to GKLEE

Toggle the —bc-cov flag passed to GKLEE

Pass the flag —reduce-path with 'b’” or 't” or none to GKLEE

Toggle the —verbose flag passed to GKLEE

Pass the flag —check-level flag to GKLEE with an argument of 1/2/3
Helps pass arguments to the user program being run under GKLEE
Helps pass arguments to klee-1++

Helps pass arguments to GKLEE (e.g., -max-time etc)

The meaning of the above GKLEE flags is as follows:

13

http://www.emacswiki.org/emacs/

—ignore-concur-bug If set, no global and shared memory race conditions
are checked, <0(default)/1>

—generate-perform-tests If set, test inputs leading to performance defects
are generated, <0(default)/1>

—check-BC Check bank conflicts, <0/1(default)>

—check-MC Check whether global memory accesses can
be coalesced, <0/1(default)>

—check-WD Check whether there exists warp divergence,
<0/1(default)>

—check-volatile Check whether volatile keywork is missing,
<0/1(default)>

—device-capability Set device capability

(0): 1.0-1.1; (1): 1.2-1.3;
(2): 2.x (default)

—reduce-redundant-tests outputs only a subset of test
cases <0(default)/1>

—~bc-cov calculate bytecode coverage
for the threads <0(default)/1>
—reduce-path path reduction <”B/T” >
—verbose Dump informative debugging
information <0(default)/1>
—check-level Race check level (0): no check;

(1): shared memory (2): shared & global memory (default)
This is a list of the key bindings available from the trace buffer:
backspace Exit trace

M-gta Toggle show /hide of LLVM level instructions
M-gss Enter stepping mode
M-gne Set focus of the trace buffer to the next error

Here are the key bindings when in gklee step mode:
n next step
q quit step mode
¢ continue — will execute until error instruction

14

5 OBTAINING GKLEE, INSTALLING

There are a few ways that you can obtain GKLEE for yourself and run it.
You may:

e run GKLEE on our servers and then analyze the results with your
Emacs (go to http://www.cs.utah.edu/fv/GKLEE/run/)

e Use the Ubuntu ISO — you can use this as a virtual machine in some
environment such as VM Ware Workstation or VirtualBox

e Get the latest version through our Subversion code repository

With the first item you may create a session on our server, upload your
code, and then analyze it with the click of a button. When it is complete,
press another button to transfer the results to a location of your choice. You
may then load the results into your local Emacs for exploration.

If you are using the current code base, you can find directions on config-
uring and installing GKLEE in our wiki, located at
http://www.cs.utah.edu/fv/mediawiki/index.php?title=GKLEE.

15

http://www.cs.utah.edu/fv/GKLEE/run/
http://www.cs.utah.edu/fv/mediawiki/index.php?title=GKLEE

6 ANOTHER TUTORIAL EXAMPLE

For this tutorial, we will take an example that is included with GKLEE,
(and coded from an example in the book CUDA by Example) called ‘Shared
Bitmap’, and analyze it with GKLEE. We will then choose an issue to ex-
plore, filtering out irrelevant data and will then step through the trace to
understand the origins of the issue.

To begin, navigate to the top level of your GKLEE installation (.../gklee)
and proceed to (i.e. cd) .../gklee/examples/CBE/Chapter5_shared_bitmap.
This example is contained in a single source file,
shared_bitmap_correct.GKLFEE.C.

Open this file by issuing ‘emacs shared_bitmap_correct_GKLEE.C’ on the
command line.

Now you should have Emacs open with the combined host / kernel code
for the shared bitmap example.

Now you are ready to invoke the process of compilation and analysis by
GKLEE. To begin, enter the sequence ‘M-gr’, or ‘gklee-run’. You will be
prompted for the optimization level; enter ‘3’ (which will pass the option
O3’ to the LLVM compiler).

The first thing you will notice is that Emacs split its windows so that
you now have four windows showing. The top left should contain the source
buffer, the top right the *gklee-run* buffer, the bottom left displays the
gklee-run-debug buffer and the bottom right the *gklee-compile-debug buffer.

If compilation doesn’t fail (you can tell by looking at the *gklee-compile-
debug buffer), the *gklee-run* buffer will contain the results of the GKLEE
execution as it progresses. You will see it count the number of paths com-
pleted and then, once the GKLEE execution is done, you will see a list of
information for *test000001.trace*®, the path generated for this program.

If the compilation does fail for some reason, you can find out why by
examining the contents of *gklee-compile-debug*.

If the execution of GKLEE fails, there will be a message in the mini-buffer
to that effect, along with the full output of GKLEE in *gklee-run-debug* to
help diagnose the issue.

This example contains a long list of bank conflicts. Bank conflicting
shared memory accesses are a performance issue in CUDA programs where
concurrently executing instructions (within a warp) are requesting a read or
write from shared memory from locations served by the same memory bank.
However, since the span of the addresses exceed the width of a memory bank

16

http://developer.nvidia.com/cuda-example-introduction-general-purpose-gpu-programming

(as of CUDA 4.0 banks serve 128 byte segments), the shared memory reads
or writes have to be serialized instead of being issued concurrently.

Now we will choose one of the bank conflicts listed in *gklee-run*. Enter
the key sequence ‘Control-s (for search), and type ‘write’. This will expose
the first Write write bank conflict detected in the program, which should be
on line 69, block 3 and threads 251 and 255. Click somewhere in the area close
to ‘Write write bank conflict’ and the two lines below that list the location
information for each thread. This will cause the top right window to display
the trace buffer, in this case *test000001.trace*, with the first error location
brought to focus. Also, you will see the filter windows, *gklec-available-filter*
and *gklee-active-filters* displayed in the two bottom windows.

The line in focus in the trace buffer’s window is the first instruction that
may be involved in the indicated write write bank conflict. We say that it
may be involved because trace lines are associated with the issue only by
location in code, thread id, and block id. It is possible that this location
was executed by these processing elements more than once writing to non-
conflicting addresses due to a loop. But we know that the issue did occur
at least once, and we make it easy to view all of the occurrences. In future
work the exact occurrence could be identified by an instruction trace counter
or some other means. We will cycle through all the occurrences of this issue
below with a Gklee-Mode feature.

To see all the potential occurrences of this issue, let’s begin by removing
some information to make it easier to understand. The first thing is that
we have one trace line per intermediate instruction (LLVM), and in the case
of this source instruction, has many of them. Also, since ultimately the
machine level instructions are executed in lock step within a warp (so we
execute the intermediate instructions inter-warp in lockstep), you don’t see
all the intermediate instructions that compose the source instruction for this
processing element (block and thread).

Click on the line in focus in the trace window, ‘Line 79, Block 3, Thread
251 . . .". You will see the corresponding source instruction in the source
code buffer window. You can see that this is a rather ‘compound’ source
instruction, as it involves loads of processing element identification constants
(‘threadldx.x” and ‘threadldx.y’), two variables, some complex mathemat-
ics for the value to be assigned to shared memory, etc. Now we will hide
the intermediate instructions in the trace. Just enter the sequence ‘M-gta’,
for ‘toggle assembly’, and you will see the trace collapse to only location /
processing element identifiers.

17

To make it easier to examine the circumstances in the program execution
leading up to this issue, let’s filter out the threads that are not involved in it.
To begin with, we will filter out all of the irrelevant cooperative thread arrays,
or blocks, by clicking ‘All_Blocks’ in the *gklee-available-filters buffer. When
you do this, you should find that there are no longer any trace lines visible
in the trace window, and inside the *gklee-active-filters® buffer’'s window
underneath Block Filters shows ‘All_Blocks BO B1 B2 B3. We will now
show only the block of interest, ‘B3’, by clicking on it. Now you will see that
‘B3’ is back in the available filter window, and the trace window shows only
instructions executed by block 3.

Now let’s narrow our trace view even further by showing only the threads
of interest, ‘T251” and ‘T'255". To do this, again we will filter them all and
then unfilter the ones we want to see. Click ‘All_Threads’ to filter out all
threads, and then click on ‘T251” and ‘T255” in *gklee-active-filters to reveal
them once again.

One more step to limit the view. We will now display only the source
locations that we are interested in studying. The source buffer,
shared_bitmap_correct_GKLFEE. C should still be pointing to line 69, the loca-
tion of the write write shared memory bank conflict. Let’s limit our study to
the instructions leading up to this instruction within this function. To do so,
using the mouse left button, highlight the lines in the source buffer from 55
to 70, getting the function signature and the currently focused line. Now, by
right clicking on the highlighted region, you will be presented with a context
menu that exposes a few functions of Gklee-Mode. Click on ‘Filter other
lines out’. You will see that all the other locations in *gklee-available-filters*
are moved to *gklee-active-filters, and only the trace lines of interest remain
in the trace window.

Finally, we will use the automatic stepping mode to go through the section
of execution we are studying. To begin, click on a trace item to be sure that
the input focus is set to that window. Then, if you enter the key sequence
‘M-gss’, you will enter stepping mode.

In order to understand this bank conflict, the processing element’s iden-
tification must be translated into a two dimensional id (as this example uses
a block size of 8 x 8 and a grid size of 2 x 2). Gklee grants each thread a
sequential id (and uses the same scheme to identify blocks). Since we are
studying threads 251 and 255, we must calculate the block and thread ids for
the x and y dimensions. They are assigned in an x-dimension major order.

Here are the formulas to extract the 2 dimensional identifiers from the

18

1-dimensional block and thread ids (using tid, bid, bdim and [tid [the block
local tid] for the 1-d identifiers, and the CUDA built-in processing element
identifier variable names for 2-d)%}

bdim = block Dim.x x block Dim.y

tid — tid mod bdim

bid —
’ bdim

ltid = tid — bid x bdim

blockIdx.x = bid mod gridDim.x

bid — bid mod gridDim.x
gridDim.x

blockldx.y =

threadldx.x = ltid mod blockDim.x

ltid — ltid mod blockDim.x

threadldx.y = Vock Dimz

In the case of bid = 251 and bid = 255, the values are assigned
threadldx.x = 3 and threadldx.y = 7 and
threadldx.x = 7 and threadldx.y = 7 respectively.

So now Gklee-Mode is configured to step through the kernel up to the
point of interest (the write write bank conflict), showing only the two threads
of interest, for bid = 251 and bid = 255. Simply press n to cycle to the next
instruction.

As you step through, you will see that the array shared is accessed at
shared[threadldz.x][threadldz.y] which, for bid = 251, is equivalent to
shared|7 + 3 * blockDim.z = 31|, and for bid = 255 is
shared|7+T7x*block Dim.x = 63]. This means that the accesses are 63 —31 =
32 floats apart (which are currently 4 bytes each). There are 32 shared mem-
ory banks (under CUDA device capability 2.0), each of which are assigned

20f course, we already know bid from GKLEE

19

addresses 4 bytes apart. This means that addresses that are 128 bytes apart
(or 32 words)0 are served by the same memory bank.

20

7 CONCLUDING REMARKS

This document gave you an overview of the interface Gklee-Mode, which
is an Emacs extension that allows the CUDA developer to easily analyze
their program with the GKLEE tool. It provides a controlled environment
that sets all available options for GKLEE, performs all necessary compilation
and command line executions, and connects the provided analysis directly to
the developer’s CUDA source code. This way, users can select a trace with
some interesting feature (such as a correctness or performance issue), filter
out superfluous execution elements (such as threads, blocks, warps and code
locations) and step directly to the event under study.
Please refer to the GKLEE website for further information:

http://www.cs.utah.edu/fv/GKLEE/

References

[1] CUDA Programming Guide Version 4.0. http://developer.download.
nvidia.com/compute/cuda/4_0/toolkit/docs/CUDA_C_Programming_
Guide.pdf.

2] C. Cadar, P. Godefroid, S. Khurshid, C. Pasareanu, K. Sen, N. Tillmann,
and W. Visser. Symbolic Execution for Software Testing in Practice —
Preliminary Assessment. In Proc. Impact Project Focus Area in 33rd In-

ternational Conference on Software Engineering (ICSE’11), pages 1066—
1071, 2011.

[3] Cristian Cadar, Daniel Dunbar, and Dawson R. Engler. KLEE: Unas-
sisted and Automatic Generation of High-Coverage Tests for Complex
Systems Programs. In OSDI, 8th USENIX Symposium, 2008.

21

http://www.cs.utah.edu/fv/GKLEE/
http://developer.download.nvidia.com/compute/cuda/4_0/toolkit/docs/CUDA_C_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/cuda/4_0/toolkit/docs/CUDA_C_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/cuda/4_0/toolkit/docs/CUDA_C_Programming_Guide.pdf

	INTRODUCTION
	More GKLEE features

	Case Study: Radix Sort
	A TOUR OF GKLEE-MODE
	Compilation
	Concolic Execution
	Trace Walking and Debugging
	GKLEE Buffers

	QUICK REFERENCE
	OBTAINING GKLEE, INSTALLING
	ANOTHER TUTORIAL EXAMPLE
	CONCLUDING REMARKS

