
Frequently Asked Questions

Version 2.8

February 26, 2010

MLDesign Technologies, Inc.
2130 Hanover St
Palo Alto, CA 94306

support : www.mldesigner.com/support
http : www.mldesigner.com

http://www.mldesigner.com/support.php
http://www.mldesigner.com

2 MLDesigner Version 2.8

Chapter 1

Frequently Asked Questions

This chapter is designed to help you find quick and short answers to your questions. All these
topics are covered in detail in the MLDesigner user manual which can be opened by clicking the
Help button in the top right corner of the GUI and selecting the option Search Index.

1.1 General Questions
Do I need to learn Ptolemy and BONeS to be able to design with MLDesigner? Go to Answer 2.1.

1.2 Error Messages and Their Most Common Causes
1. Cannot create library ”xxx” to location ”file:/user/xxx/yyy/zzz/xxx.mml”. Maybe you have

no write permission. Cannot create model ”xxx”. You must create the library ”yyy” first.
Go to Answer 1.

2. Compilation error , unable to load the primitive Dynamic. Go to Answer 2.
3. ”make: fatal error in reader: /export/home/mldesigner/mk/ config-default.mk,line 59: Un-

expected end of line seen” Go to Answer 3.

1.3 Segmentation Faults
What are the most common causes of segmentation faults that cause MLDesigner to crash? Go to
Answer 2.3.

1.4 Data Structures
1. When must a data structure be deleted and when is it a clone?
2. What is a memory leak?

Go to Answer 2.4.

1 Frequently Asked Questions

1.5 Load Mode
What is the difference between Load Mode Dynamic and Load Mode Permanent? Go to An-
swer 2.5.

1.6 Plotting Systems
How do I make data available to, or save data for analysis using external programs? Go to An-
swer 2.6.

1.7 Setting Environment Variables
1. How do I change the environment variables so I can use another Editor to debug or change

source code in my primitives? Go to Answer 2.7.
2. How do I change the MLD USER environment variable. Go to Answer 2.7.
3. How do I change the environment variables so I can use an external debugger? Go to

Answer 2.7.
4. Is setting the Working Directory entry the same as setting the $MLD USER environ-

ment variable? Go to Answer 2.7.

1.8 ddd debugger and Red Hat
I am running MLDesigner under Red Hat and I am unable to debug using the standard debugger
ddd. Go to Answer 2.8.

1.9 Linked Objects
Why must I restart MLDesigner before changes made to Linked Object take effect? Go to An-
swer 2.9.

1.10 Shared Libraries
What is the environment variable MLD SHARED used for and how do I set this variable? Why are
there invalid modules in my Shared Libraries? Go to Answer 2.10.

1-2 MLDesigner Version 2.8

Chapter 2

Answers to FAQ’s

2.1 Answers for the General Questions

No but it is necessary to bear in mind that the Ptolemy base type int is different to any data
structure type including those like Root.Integer. It is only possible to connect ports of the
same type. Back to Question 1.1.

2.2 Error Messages and Their Causes

1. This error message normally occurs when you do not have permission to write to the target
directory or to one of the directories higher in the hierarchical structure. Another reason
could be caused by a file that is write protected in the target directory when you have checked
the option “Overwrite existing Files” in the appropriate Import dialog window. Back to
Question 1.2.

2. There are a number of reasons for this error message.

• Firstly your primitive contains syntactical errors and can not be compiled by the C++
compiler. In that case you will get an error dialog (”Compilation failed.”), when you
compile the primitive in MLD. You should open the primitive editor, try to compile it
and correct the reported errors until successful compilation is confirmed.

• Secondly a primitive with the same name already exists in the same Domain.
• Another reason could be the primitive was already loaded with Load mode set to Per-

manent. If a Primitive is loaded permanent it is not possible to make any changes to its
source code and then recompile the primitive. You must shutdown MLDesigner and
restart before the changes take effect. You only need to load a primitive as permanent
if you want it to be inherited by another primitive. A primitive that is a child of another
primitive can only be recompiled if the parent is loaded as permanent.

Back to Question 1.2.
3. This error is often caused by compiler incompatibility. What version of make do you use?

You need gmake 3.74 or later. Please look at the section on system requirements in the
app. ??. Back to Question 1.2.

2 Answers to FAQ’s

2.3 Segmentation Faults / System Crashes
The most common reason for system crashes with MLDesigner is programmer error in user de-
fined primitives. When a segmentation fault occurs you should first check to see if your system
contains user defined primitives. Often the crash is caused by inconsistencies in memory allocated
to output datasets. The next step is to run the simulation extern possibly using an external debug-
ger to debug the system. External simulations occur outside of the MLDesigner environment. See
the MLDesigner manual index for more information on debugging. Back to Question 1.3.

2.4 Data Structures
1. When to clone a particle Generally you don’t have to clone particles. In sending

particles over the ports you can use operators like << or =. For data structures the situation
is more complicated, because you have to take into account how it is instantiated as a data
structure and how it is used.

When to create a new particle When you instantiate a new data structure for direct us-
age (not to be used as parameter in a method that takes const Type* as parameter - meth-
ods of setType() kind), you have to use the method DsHandler::makeNewStructure().

When is a particle a clone? When you set a data structure to a Memory, Event or a
DataStructMember, the parameter is cloned inside the method so there is no need for a new
created object.

When to delete a data structure: When you get a data structure using the method
DsHandler::makeNewStructure() be sure to delete it to avoid overloading mem-
ory. Every new data structure created using the clone () method must be deleted. The
exception is when you place it on an output port. DataStructParticles take care to delete
the data structure when the last reference to it is deleted. Do not delete const pointers to
Type or class derivedfrom, returned by some methods. These are references to the class
members and the object takes care of deleting them. On the contrary, non const pointers
to Types must be deleted if you are not in the exceptional case previously mentioned.

Do not delete particles when As an exception, don’t delete the non const Type*
returned by DataStructMember’s methods getData () or fieldWithName () of the
DataStructure class, or every time when you write or read a Memory, using writeMemory()

2. A Memory Leak occurs when new memory is allocated dynamically and never deallocated.
In C++ new memory is created by the new operator and deallocated by the delete or the
delete []operator. Memory leaks accumulate over time and can crash the program.

Back to Question 1.4.

2.5 Load Mode
While creating a new primitive model component, you can define its load mode. By selecting
the load mode Dynamic, a shared library containing the primitive code is created on loading.
This shared library is linked dynamically to MLDesigner so that you can reload the primitive any
time. All changes made to the primitive are effective immediately. Conversely, by selecting load
mode Permanent, the primitive is linked to MLDesigner on loading as it would be with a built-in

2-2 MLDesigner Version 2.8

2.6 Plotting Systems

primitive. All changes made to a primitive with load mode permanent only take effect after closing
and restarting MLDesigner. Back to Question 1.5.

2.6 Plotting Systems
1. There are a number of ways to display or handle datasets and results of simulations.

• You may use SatLab to display data. (see Demos/DopplerIR, you need to start SatLab
before running the demo!). It uses a Tcl script $MLD/MLD Libraries/DE/Contrib/WiNeS.tcl.

• You may save your data to one or more files and postprocess/display it with another
tool of your choice. You could for example use a DEPrinter primitive to dump data to
a file, then use GnuPlot, Matlab or even a spreadsheet program like StarCalc (within
StarOffice) to display the information.

Back to Question 1.6.

2.7 Setting Environment Variables

Change the Default Editor
To define the editor you prefer to use when working with source code it is no longer necessary
to set the environment variables. A dialog is available where a variety of setting can be changed.
To define which editor you prefer click the Settings option in the main menu. Expand the tree
by clicking the Primitive Source Editor item as shown in fig. 2.1. The following options are
available:

1. Use external editors with xterm. Some editors open in a terminal and others not. Often the
terminal is not required and only gets in the way. To stop the xterm from opening with your
editor, click the check box to remove the tick. If the editor cannot open without a console,
you will get an error message in the MLDesigner console when attempting to open a source
file. In this case make sure you have a tick in the check box. Try open vi without a tick in
this check box or set the editor variable to emacs in the $EDITOR input field.

2. Internal. This points to the built-in editor installed with MLDesigner .
3. $EDITOR This radio button sets the default editor to the one you have defined by setting

your environment variable. i.e.,

For sh and bash command shells:
export EDITOR=emacs

For csh and tcsh command shells:
setenv EDITOR=emacs

You must close and restart MLDesigner before changes take effect.
4. User-defined Has the same effect as the $EDITOR radio button except you do not have to

close and reopen MLDesigner to get the new setting to work. You must only change the

2-3

2 Answers to FAQ’s

editor name. The @$ are variables that instruct the editor you choose to open the source
code of the open primitive in your Model Editor Window.

Figure 2.1: Generated hypertext documentation

NOTE: The built-in editor is used as default editor in cases where compile errors occur. The�
reason is that you can highlight errors in the built-in editor error console and the cursor
will be automatically placed in the correct line of the source code editor.

Back to Question 1.7.

Set the MLD USER variable
It is possible to set your MLD USER environment variable to point to a project library or external
library. Lets assume you want to work on a project called MLD.project. This project is the
$MLD USER directory of another user. You want to access the systems and share libraries that
exist in the other user’s environment. Enter the following command where you would normally
open MLDesigner:

• for bash or sh shells

export MLD_USER=/home/user/MLD.project

• for tcsh and csh shells

2-4 MLDesigner Version 2.8

2.8 Using ddd Debugger under Red Hat

setenv MLD_USER /home/user/MLD.project

You could also do the same locally on your own computer if you wanted to separate libraries
and projects. You can create a new directory /MLDProject in your home directory. Set your
MLD USER environment variable to point to the new directory. When you open MLDesigner again
you will see the tree view with MLDesigner libraries and no user libraries. You could then create
a top level library with read and write rights for a workgroup on your network.
Back to Question 1.7.

Use an External Debugger
Depending on the type of shell you are using, enter one of the following at the prompt:

export MLD_PREBIN=ddd (sh and bash)

or

setenv MLD_PREBIN ddd (csh and tcsh)

The ddd entry refers to the ddd debugger supplied with every Linux package and can be replaced
with a call referring to your favorite debugger.
You must now start MLDesigner as normal. The debugger you have chosen will start. If you are
using ddd proceed as follows:

• Click the View menu and choose Command Tool.
• Click Run to start MLDesigner . This can take longer than normal.
• You can now work as normal with MLDesigner .

Back to Question 1.7.

Differences Between $MLD USER and Working Directory
$MLD USER and Working Directory are not related to each other at all. The variable $MLD USER
defines where MLDesigner looks for user defined models and libraries where the option Working
Directory defines which directory is the working directory for the command console window after
starting MLDesigner. Both these topics are explained in the MLDesigner manual which can be
opened by clicking on the Search Index option of the Help menu found in the top right corner of
the GUI. Find the index entries Command Console or Working Directory to get more detail on the
topic.
Back to Question 1.7.

2.8 Using ddd Debugger under Red Hat
It is not possible to debug MLDesigner using ddd because Red Hat was developed completely
using GCC 2.96 contrary to the recommendations of the Free Software Foundation
(see http://www.fsf.org/software/gcc/gcc-2.96.html).

2-5

2 Answers to FAQ’s

As a result ddd compiled under GCC 2.96 needs a symbol dynamic cast 2 defined in
libstdc++-libc6.2-2.so.3.

With a SuSE system compiled using GCC 2.95 running under Red Hat, the system crashes when
accessing the system internal libstdc++-libc6.2-2.so.3. This is apparently caused by a
change in the library interface.

At the moment there are no solutions to the problem and we can only suggest you to use gdb or
xxgdb as an alternative debugger.
Back to Question 1.8.

2.9 Linked Objects
Files containing object code must be loaded before the primitive that calls the external functions
in the object file is compiled. All changes made to the external library will only be actualized
when MLDesigner is shutdown and restarted. The reason is that it is not possible to delete the
relevant primitive from memory without conflicts arising in the kernel’s reload mechanism. The
result would be a primitive containing a mixture of new and old code.
Back to Question 1.9.

2.10 Shared Libraries
The Shared Libraries directory was introduced to make it easier for design teams to exchange
models and work on group projects.
It is possible to develop a library within the environment specified by the $MLD USER environment
variable and then move this library to the shared environment specified by the $MLD SHARED
environment variable. However, since the $MLD USER variable is dynamic (because it can be
different for every user) the following prerequisite applies.

• All modules and files needed by systems in the library must be located within this library,
or in a location that never changes, such as the directory to which $MLD SHARED and
$MLD point.

The reason for this is that the systemName.mml file contains references to all model elements
needed for the system to function. If these variables change then MLDesigner will not be able to
locate the missing model elements.
Back to Question 1.10.

2-6 MLDesigner Version 2.8

	1 Frequently Asked Questions
	1.1 General Questions
	1.2 Error Messages and Their Most Common Causes
	1.3 Segmentation Faults
	1.4 Data Structures
	1.5 Load Mode
	1.6 Plotting Systems
	1.7 Setting Environment Variables
	1.8 ddd debugger and Red Hat
	1.9 Linked Objects
	1.10 Shared Libraries

	2 Answers to FAQ's
	2.1 Answers for the General Questions
	2.2 Error Messages and Their Causes
	2.3 Segmentation Faults / System Crashes
	2.4 Data Structures
	2.5 Load Mode
	2.6 Plotting Systems
	2.7 Setting Environment Variables
	2.8 Using ddd Debugger under Red Hat
	2.9 Linked Objects
	2.10 Shared Libraries

