The Quick Guide To Subaru Tuning with the UTEC Sponsored by PDXTuning, Inc. http://www.pdxtuning.com

The Ginge's UTEC tuning experience
As of 12/02/2004

Updates

- 09/07/2003 Initial Version
- 02/26/2004 Added information on 4.1 firmware release
- 03/22/2004 Started Adding notes pages!
- 12/02/2004 Clean up and added some additional information (Trip to the UK and back)

The UTEC

Override control of:

- > Fueling
- > Timing
- > Boost

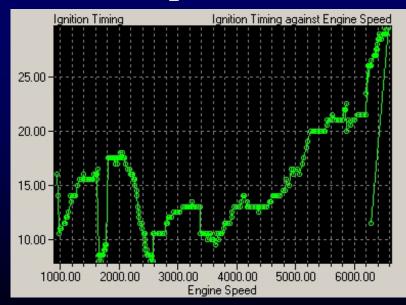
User Tunable Engine Computer

Expectations

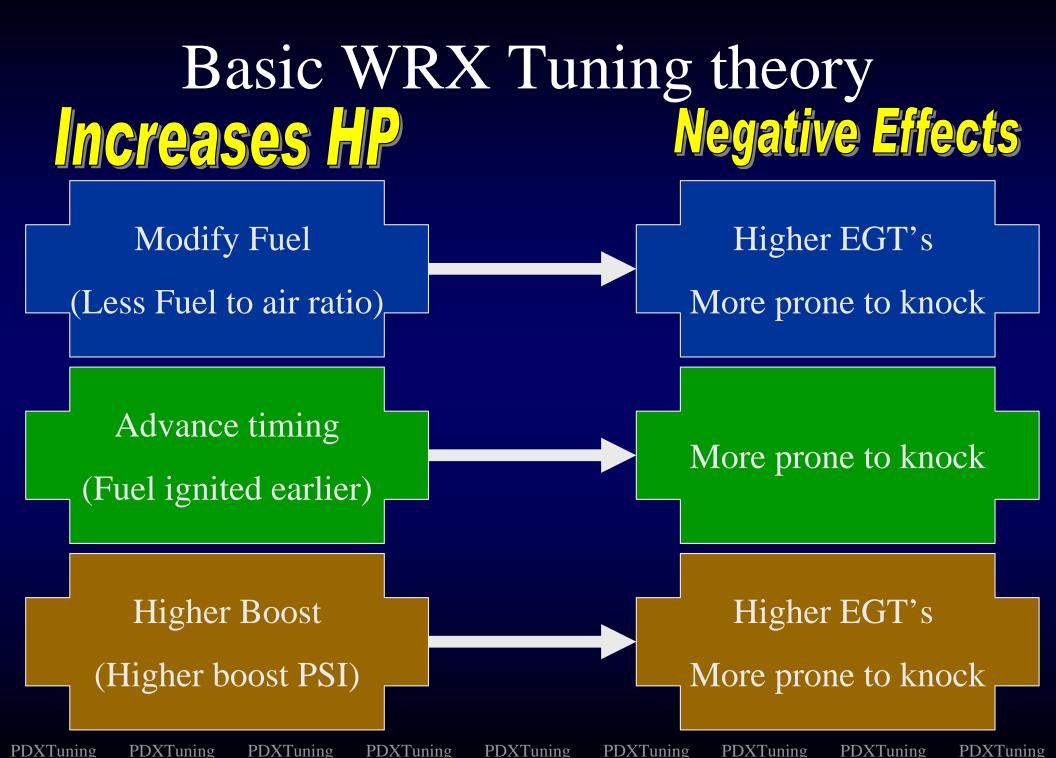
- What you are going to learn
 - ✓ The basics required to tune with the UTEC
- What you are NOT going to learn
 - Real WRX tuning!
- Caution: This will be enough information to destroy your WRX!
- ** READ THE UTEC USER MANUAL **
 - This quick guide does not replace it

USERS MANUAL

Just in case you did not read the last bullet on the previous page


Agenda

- UTEC Overview
- Basic WRX Tuning theory
- UTEC Control and TPS Calibration
- UTEC and knock
- Map Tuning
 - Fuel 0% tuning and Open Loop Fueling
 - Timing, Boost, Parameters
- Logging
- Spare Solenoid Usage
- Handy software applications
- FAQ's

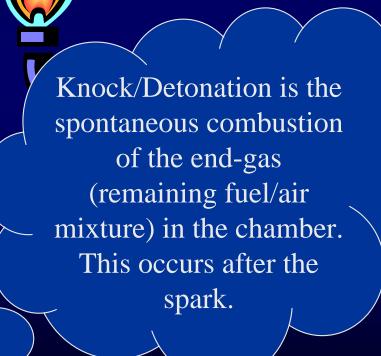

UTEC Overview

- How does the UTEC enable more Horse Power?
 - Increases/decreases fuel
 - Advances/retards timing
 - Control over boost pressure

UTEC Control

- Fuel
 - Based on Throttle position, TPS, versus (RPM or MAP)
- Timing
 - Based on Throttle position, TPS, versus (RPM or MAP)
- 0% column applies to all RPM's below TPS cross over point
 - Past cross over point 10%-100% columns represent MAP as set in the SPECIAL CONSTANTS
 - Below Cross over it's TPS
- Boost
 - Based on Throttle position versus RPM

TPS Calibration


- Why?
 - Enables correct load point selection based on TPS
- How?
 - Modify values in SPECIAL CONSTANTS menu
 - 1. Turn on Car, do NOT start car
 - Using Logger 4
 - Record TPS (T0)
 - Full depress throttle, record TPS (T1)
 - 2. Min TPS = T0 / 51
 - 3. Max TPS = T1 / 51

If TPS never reads 100% you will never reach the 100% load column And TPS/RPM to RPM/MAP cross over point will be incorrect!

UTEC and Knock

- UTEC only corrects knock when it is in control of timing:
 - TPS > Crossover
- Timing retarded by 2 degrees for 100 crank cycles
 - Continues to retard timing until knock is no longer detected
- Very sensitive
 - Which is a good thing!!

Map Tuning

Fuel
Timing
Boost
Parameters

Fuel Tuning

Information applicable to classic MAF modification in 3.1 and 4.1 mode and Open Loop Fueling mode

Know your MAP based load points

- Settings found in SPECIAL CONSTANTS menu
 - Defined as
 - Min PSI (0 default)
 - Max PSI (18 default)

Load Column	Min PSI	Max PSI
10%	0.0	2.0
20%	2.0	4.0
30%	4.0	6.0
40%	6.0	8.0
50%	8.0	10.0
60%	10.0	12.0
70%	12.0	14.0
80%	14.0	16.0
90%	16.0	18.0
100%	18.0	18+

Modify Max PSI setting to your desired PSI
This will effect your fuel tuning

PDXTuning PDXTuning

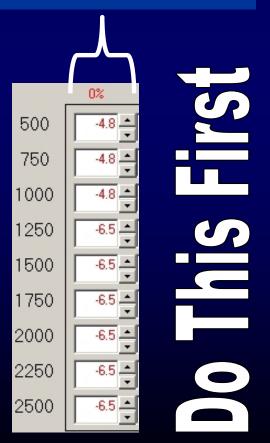
PDXTuning

PDXTuning

PDXTuning

PDXTuning

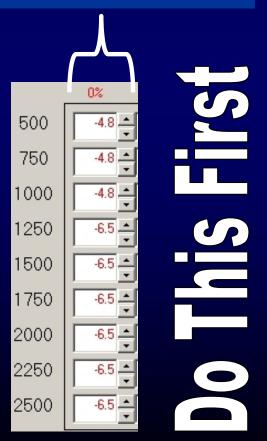
Caution When Fuel Tuning



If in doubt go RICH (But not too rich as that will cause misfire)

- Stock O2 sensor is wideband but it's not recommended to tune against it under WOT
 - Do not use the WOT AFR reading to tune!
 - Even when UTEC log reads rich, AFR maybe as high as 12.5:1 (Far too lean without water injection)
- Lean AFR's lead to high EGT's and possible engine damage
- Tune fuel using a real wideband O2 sensor

Tuning the 0% column for NON-stock injectors


0% column applies to all RPM's below TPS crossover

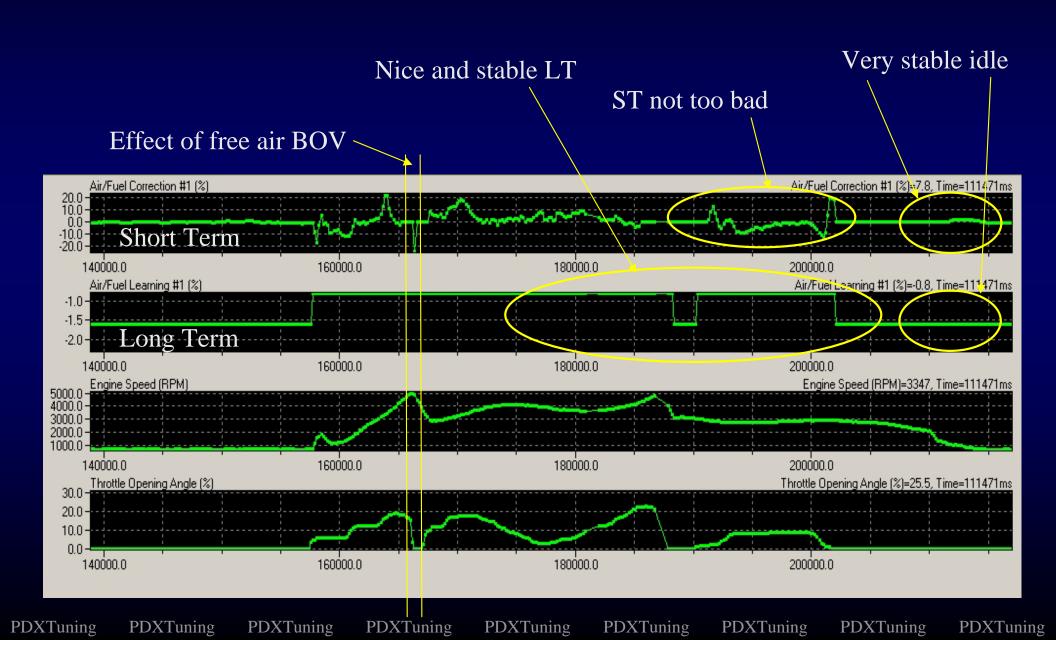
- If you have larger than stock injectors you should tune your 0% column using an OBDII Scanner
- Effects ECU's Long Term and Short Term trim values
 - Typical Stage4 map yields LT values from +20 to -20%
 - Fine to be within –7% to +7% (I think that -7% to 0 is better)
- This is not required if you're still using the stock injectors
- Add/remove a percentage of MAF to get the trims in line.

Tuning the 0% column for NON-stock injectors — Open loop fueling

0% column applies to all RPM's below TPS crossover

- When using open loop fueling the UTEC automatically does 0% fueling compensation.
- The value used is calculated from the difference between the Stock injector size and the UTEC injector size
- The larger the difference the more modification is done.
- Follow the attached notes to work out how to really do it.

Tuning the 0% column – Simple Tuning Procedure #1


- Warm the car up
- Reset the ECU
- While in neutral
 - Rev car from idle to 5000+ RPM while logging LT and ST
 - Adjust 0% to add/remove fuel where needed
 - If LT and ST show positive, ADD fuel
 - If LT and ST show negative, REMOVE fuel
 - Reset ECU and Repeat
 - Do this until LT and ST read close to 0

Tuning the 0% column – Simple Tuning Procedure #2

- Go drive the car while logging LT and ST
 - Under load fuel conditions are different
- Again adjust 0% column to try and get LT and ST as close to 0 as possible
 - It's never going to be perfect, but it should be close

TIP: At Idle force ECU to be removing fuel. Idle seems to run smoother

Delta Dash Log of 0% Tune

PDXTuning PDXTuning

PDXTuning

PDXTuning

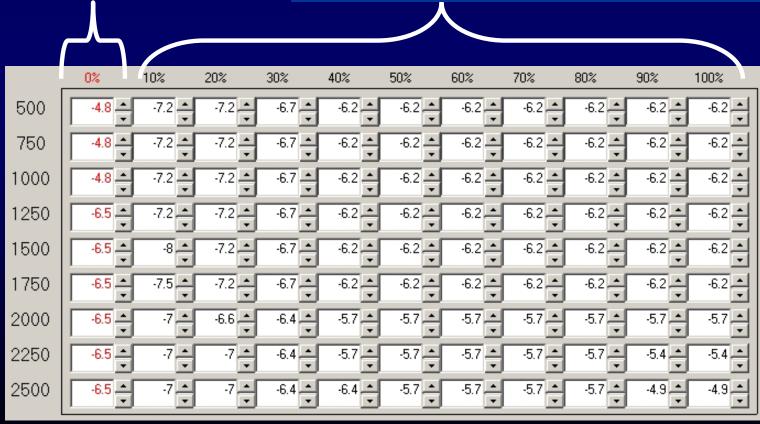
PDXTuning

PDXTuning

Knock after shift (fuel correction)

Add some fuel in these areas to minimize knock after shift

- Knock after shift is usually down to two things
 - #1 Lean conditions just after shift
 - #2 Large jump in timing just after shift
- Adding fuel at 5000+ RPM's in the lower boost range can minimize this effect
- Having timing values down in the lower columns also helps


Fuel Tuning

OPEN LOOP FUELING Mode

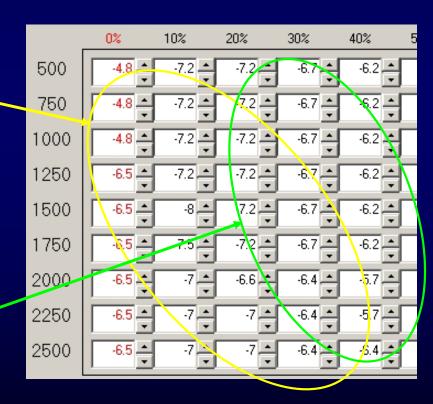
Fuel Map Tuning

0% column applies to all RPM's below TPS cross over point

Past cross over point, Throttle > 25%, load is represented by Mass Absolute Pressure, MAP as defined in the SPECIAL CONSTANTS

Fuel Tuning Table

- More positive numbers represent more fuel
 - A value of 2 is more fuel than an value of 1
 - A value of –6 is less fuel than a value of –5
 - Get the drift.....


- ❖You are modifying the Mass Air Flow, MAF, voltage reading by a percentage
 - Applies to both classic and open loop fueling modes

Fuel Tuning >TPS crossover Fueling for Rapid Spool Up

Always use a Wideband O2 sensor to tune your fuel values!

Over TPS crossover - UTEC load swaps to MAP

- ➤ Keep Low RPM and Low Boost Fuel values on the leaner side
- This creates *HOTTER* EGT's which helps the turbo spool quicker
- ➤ Richen up fuel at mid RPM and mid boost (Safer for your WRX if you don't have water injection)

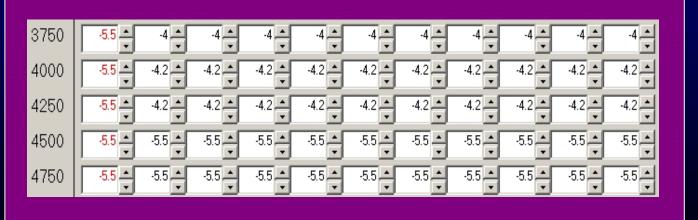
➤ My AFR target was 12.5:1 up until 2750 RPM

Fueling Part 2

Always use a Wideband O2 sensor to tune your fuel values!

					Knock			Mod	Mod		Mod
RPM	MAP			Site	Count	Iqn#1	Inj#1	Iˌgn	Fuel	Boost	MAF
	psiq	V	%			deg	duty	deg	%	(CL)	V
3115	+6.1	3.1	104	40	00	+19.0	24.0	+22.0	-7.5	320.00	2.9
3150	+7.0	3.2	104	40	00	+18.1	25.0	+22.0	-7.5	320.00	2.9
3202	+8.0	3.2	105	50	00	+15.8	28.0	+18.9	-7.5	320.00	3.1
3353	+9.0	3.4	105	50	00	+14.4	30.0	+19.0	-7.5	320.00	3.1
3436		3.4	105	60	00	+12.6	33.0	+18.0	-7.5	320.00	3.3
				79	00	+10.5		+17.0		320.00	
3654	+13.5	3.8	104	80	00	+9.4	43.0	+17.0		320.00	
	. —			99	00	+9.2	50.0	+17.1	-8.5	320.00	3.4
3858	+17.0	3.6	104	100	00	 +10.1	51.0	+17.4	-8.5	320.00	3.6

AFR data is coming from Wideband Not shown.


Much easier with a TXS "Tuna", AFR data right in the log file

- Log to correlate AFR/RPM/MAP data back to UTEC load column reference
- ➤ Adjust column to meet target AFR
- ➤ My AFR target was 11.5:1

Knock correction and Fuel Tuning

- Add fuel to correct knock conditions
 - WRX typical problem areas
 - Around 4000 RPM
 - Around 5500 RPM
- Stage4 Map example
 - Rich around 4000 RPM

Fuel Tuning

New in 4.1 - Open Loop Fueling Mode

Why Open Loop Fueling

- Eliminates the delay in transitioning from closed to open loop fuel control in the stock ECU.
 - Big issue with the 2004+ WRX ECU.
- Enables Programmable Rev limit
- Enables injector scaling
 - Eases fuel tuning when larger than stock injectors are installed
 - Do not use scaling with a classic style fuel map.

What is Open Loop Fueling?

UTEC MAF BASED FUELING

Full fuel control, not an offset of the ECU fueling

No longer have to worry about effects of the Long Term Fuel Trim value

CONSITENT FUELING, no more long term trim offset

- * MAF base fueling
- UTEC calculates injector duty cycle based on MAF/RPM
- * UTEC is in full control of fueling

Turning on Open Loop Fueling

- Requires 4.1 or above firmware
 - To enable:
 - Enter the Open Loop Fueling menu option
 - Turn on Open Loop Fueling. Change to be 1
 - On by default in 4.2c and above
 - New base maps from TurboXS are tuned for QLF

 PARAMETERS
 OPEN LOOP FUELLING
 TURBOXS UTEC (Version 3.2a) (c) 2003

 PARAMETER
 RANGE
 VALUE

 Open Loop Fuelling (OFF = 0, ON = 1)
 (0 or 1) : 0

 Injector Flow (cc per min)
 (300 to 1000) : 420

 Rev Limiter (x100)
 (30 to 80) : 73

Screen parameters may have changed a little since this screen shot was taken

Default OLF Operation

- If injector flow has not been adjusted then classic style Fuel Maps are compatible when Open Loop Fueling is enabled
 - Fueling will be much more consistent
 - Default cross over into OLF is 25% TPS
 - Resolves 2004 WRX closed/open transition issues

- * You may have to re-tune some of your lower load point
 - * Why? Because before this you may have never been running through these lower load points

Changing Injector Flow Scaling

• Requires 4.1 or above firmware

To enable:

Kev Limiter (x100)

- Enter the OLF menu option
- Modify Injector Flow:
 - Supports 300 to 1000 flow rate
 - − 500 − 560 seems to work for STi Injectors
 - When a Stock style air box is used!

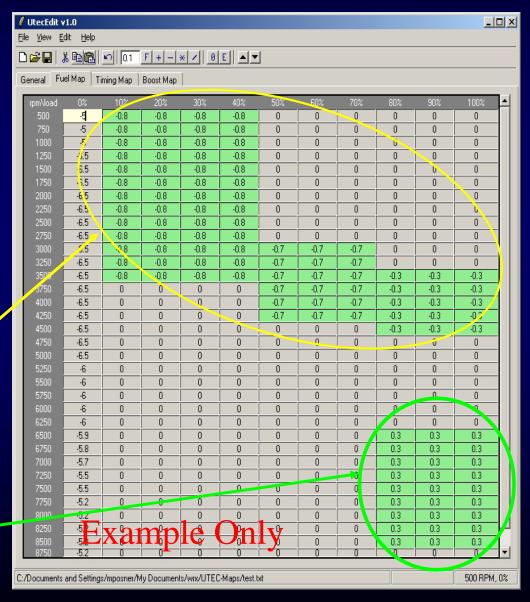
AFR curve
based on
MAF/RPM and
scaling factor

<u>Parameters</u>	<u>OPEN LOOP FUELLIN</u>	<u>G</u> <u>TURBOXS UTEC</u>	(Version 3.2a)	(c) 2003
PARAMETER		RANGE	VALUE	
Open Loop Fuelling (OF	$F = \emptyset$, $ON = 1$)	(0 or 1)	: 0	_
Injector Flow (cc per		(300 to 1000)	: 420 ←	
D 1'' 1 / 400\		/00 L 00}	70	

PDXTuning PDXTuning PDXTuning PDXTuning PDXTuning PDXTuning PDXTuning PDXTuning

lJU to BUI:

IJ


Modified Stock Injector Flow Scaling

- Start with a low value
 - The injectors may flow 740cc but do they match your MAF readings
 - You maybe flowing more air! BigMaf for example
 - Start with injector flow set at 700 (guess)
 - Increase this value while monitoring AFR curve with wideband O2 sensor
 - Fine tune AFR curve using a map overlay
 - Next page ©

Modifying Scaled OLF AFR Curve

- Fine tune AFR curve by adjusting fuel map in standard fashion.
 - Minus fuel to lean sections of curve '
 - Add fuel to richen sections of curve

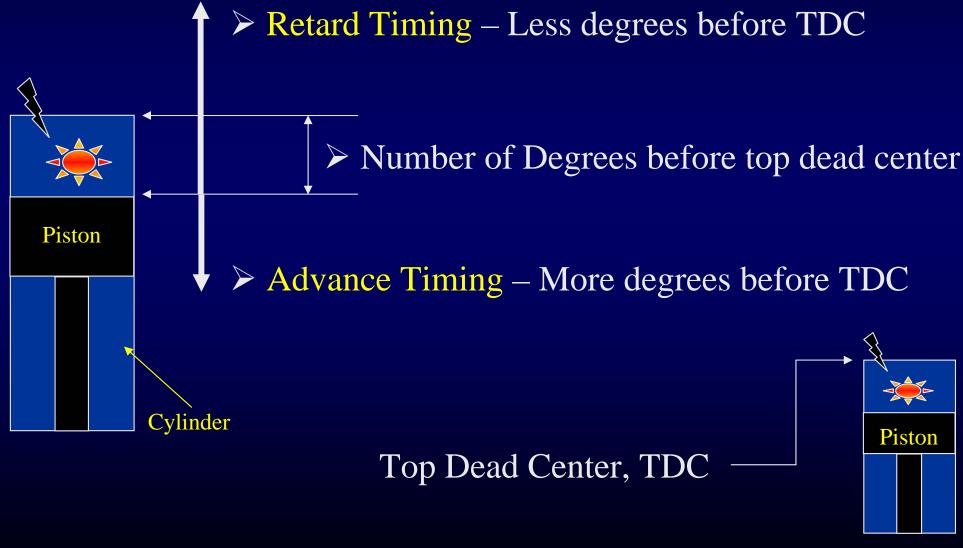
Programmable Rev Limit

- Now UTEC controls fueling, it can also control rev limit Way cool ©
- Warning: Unless you have strengthened internals changing rev limit could cause serious engine damage

<u>PARAMETERS</u>	<u>OPEN LOOP FUELLING</u>	TURBOXS UTEC	(Version	3.2a)	(c)	<u> 2003</u>
PARAMETER		RANGE	VALUE	-		
Open Loop Fuelling (OF		(0 or 1)				
Injector Flow (cc per	min)	(300 to 1000)				
Rev Limiter (x100)		(30 to 80)	: 73 🛧			

Timing Tuning

Timing ninja fu


Timing Map Tuning

0% column applies to all RPM's below TPS cross over point

Past cross over point, Throttle load is represented by Mass Absolute Pressure, MAP as defined in the SPECIAL CONSTANTS

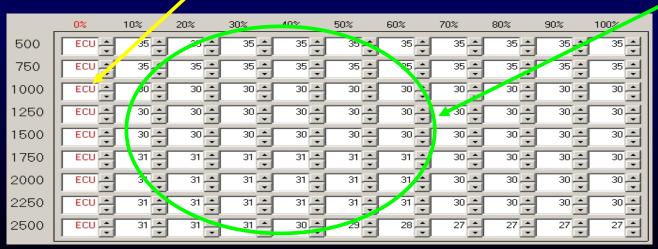
Timing Advance / Retard

Effects of timing adjustment

Advance Timing
Spark ignites air/fuel mix MORE
degrees before top dead center

More Power

Lower EGT's

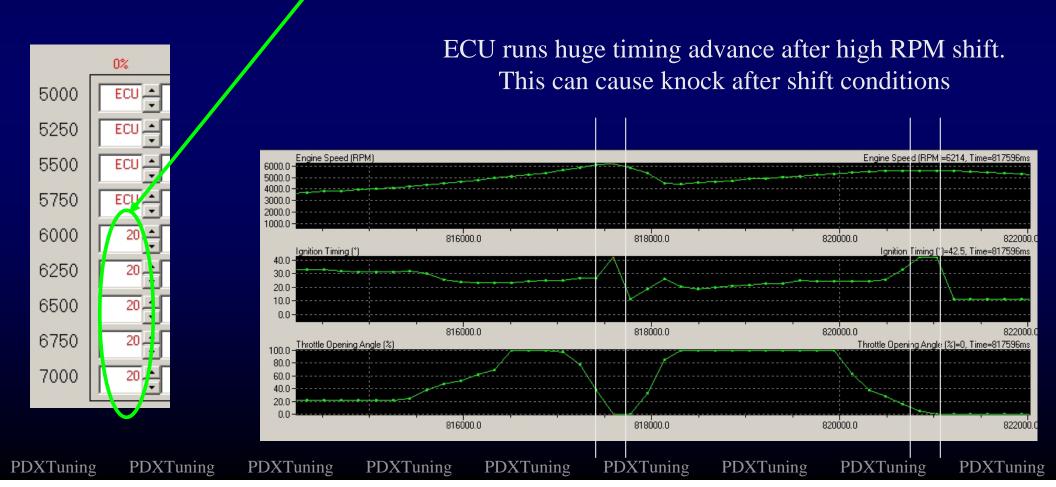

More prone to knock

More Torque
Higher EGT's
Less prone to knock

Retard Timing
Spark ignites air/fuel mix LESS
degrees before top dead center

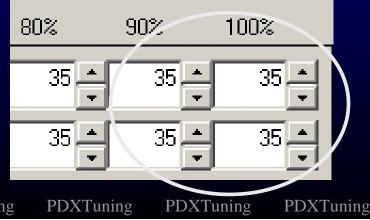
Timing Adjustment

- Issue: Default maps don't have timing down in the 10-60% columns Can cause knock when control passes from ECU to UTEC and back. Needed for cars with BigMAF
 - Resolution: Move timing values into those area
 - LEAVE lower RPM 0% under ECU control



Smooth transitions in timing minimizes the chance of knock

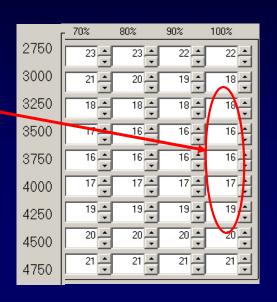
Try to limit steps in timing to less than 3 degrees

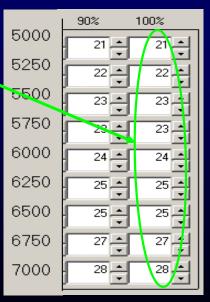

Knock after shift (timing correction)

Use conservative timing values in upper 0% column to minimize the chance of knock after shift

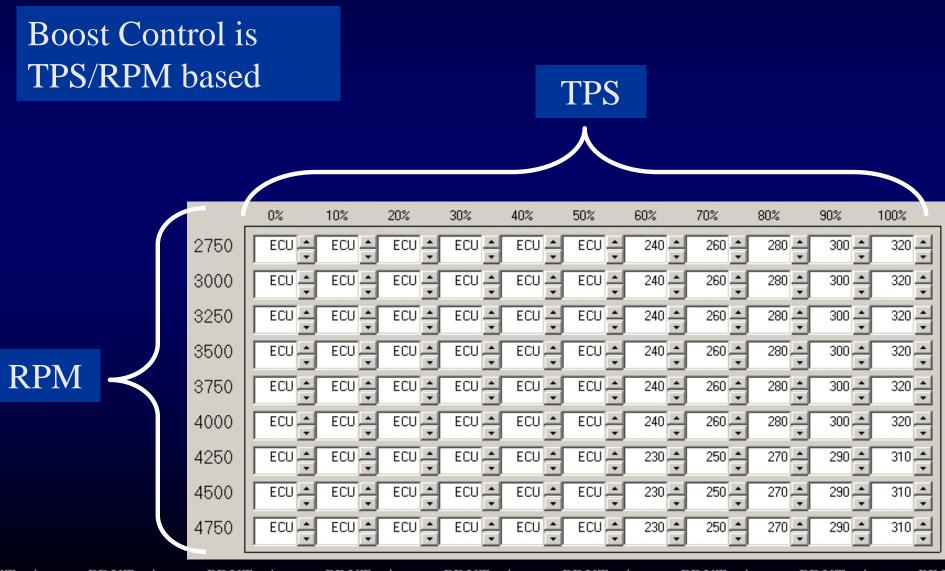
Too much advance!

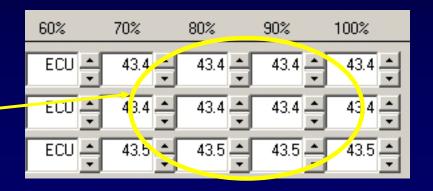
- Too much advance leads to **KNOCK** and engine destruction!
- Mark At redline, too much advance means very high cylinder pressure
 - BANG − Dead WRX
- Mark At a point, more advance does not yield more power
 - At that point more advance just takes you closer to knock
 - Back timing off 1-2-3 points to create a safe map
 - Saw this on the dyno


Timing Low Down

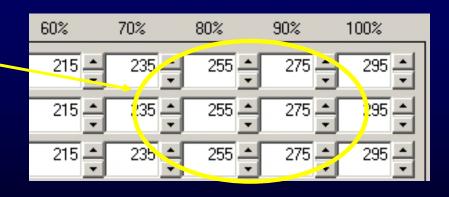

- > Retarding ignition would increase EGT's thus help spool up
 - Negatives: Loss of power because of reduced timing
- ✓ BETTER: Advance timing at the low RPM's
 - ✓ More advance means more power

Timing Values Mid to Top End


- Watch for knock in the mid rpm range
 - ➤ Minimal advance here is good ©
- ➤ After 3750 RPM's start ramping timing up
 - \geq 22 26 degrees of advance should be safe at redline
 - ➤ Smooth Transitions, steps of 1-3 are best
- Watch for KNOCK!
 - If you get knock, back off the timing 1-2-3 degrees at LEAST


UTEC Boost Controller Setup

Boost Map Tuning

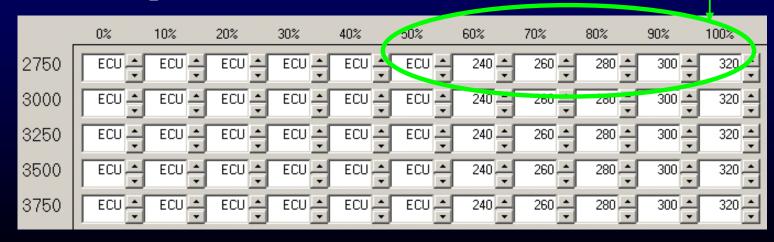


Open Loop / Closed Loop Boost Control

- Open Loop (Default)
 - UTEC map sets boost solenoid duty cycle

- Closed Loop
 - UTEC map defines target boost unit,
 UTEC automatically changes solenoid duty cycle to hit boost target

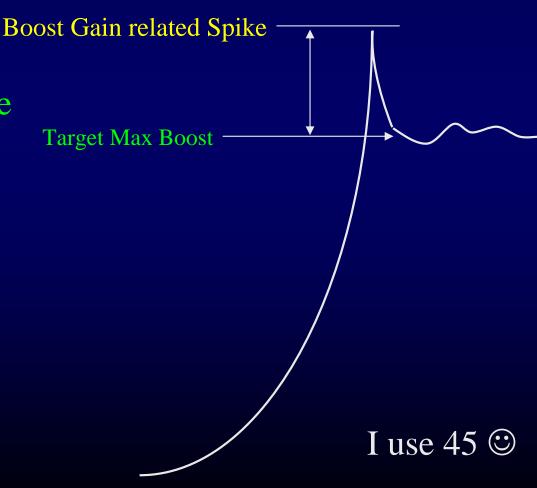
Open loop control


- I just stuck with the TurboXS map until closed loop was introduced
 - Used bleed valve to set max boost value

Sorry No More Information Available

Closed Loop Control

- Change Control mode in SPECIAL CONSTANTS (To 0)
- Start with low numbers and work up
 - Bleed valve effects max boost (set at open 2-3 turns and forget)
 - Boost Gain value effects max boost
 - 45-50 seems to work best
 - Effects boost ramp as well


Ramp up the boost, this will make part throttle control feel smooth

PDXTuning PDXTuning PDXTuning PDXTuning PDXTuning PDXTuning PDXTuning PDXTuning PDXTuning

Closed Loop Boost Gain

- Lower Boost Gain Values =
 - Quicker Boost Ramp up
 - Bigger boost spike
 - 45 can yield ~1 psi spike
- Higher Boost Gain Values =
 - Slower Boost Ramp up
 - Smaller boost spikes
 - 50 yields ~0 psi spike
- Caution: Boost Gain effects MAX boost value

PDXTuning

PDXTuning

PDXTuning

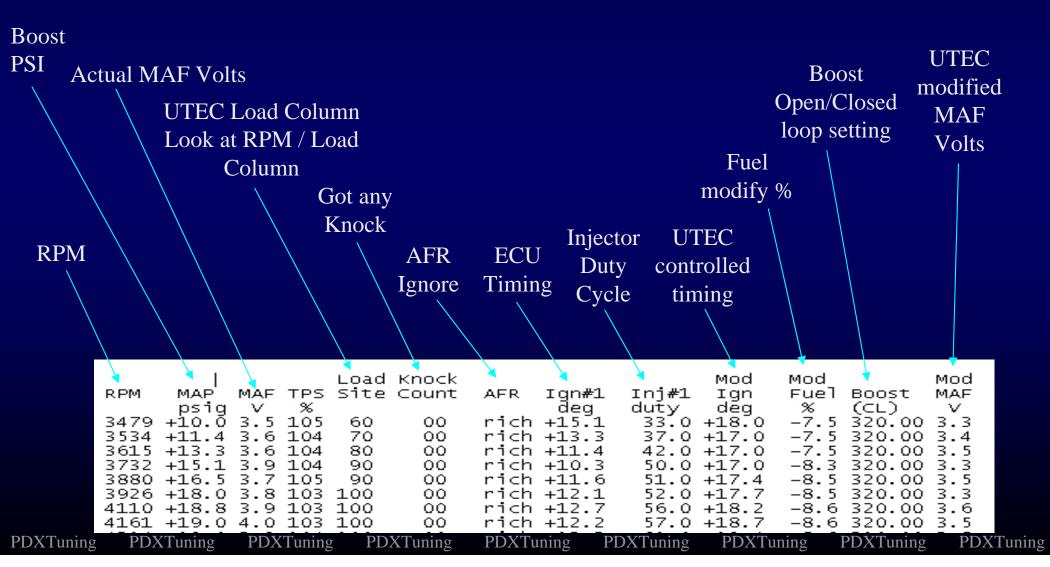
PDXTuning

PDXTuning

PDXTuning

PDXTuning

PDXTuning

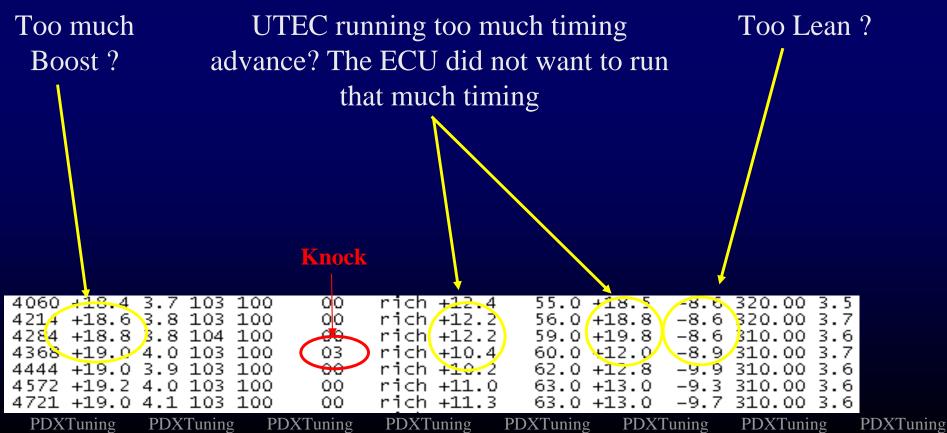

PDXTuning

UTEC Parameters

- Split into three sections
 - User
 - Tuner
 - Special
 - Open Loop Fueling
- It's best to read the UTEC users manual to understand these. They are fully explained in the manual.

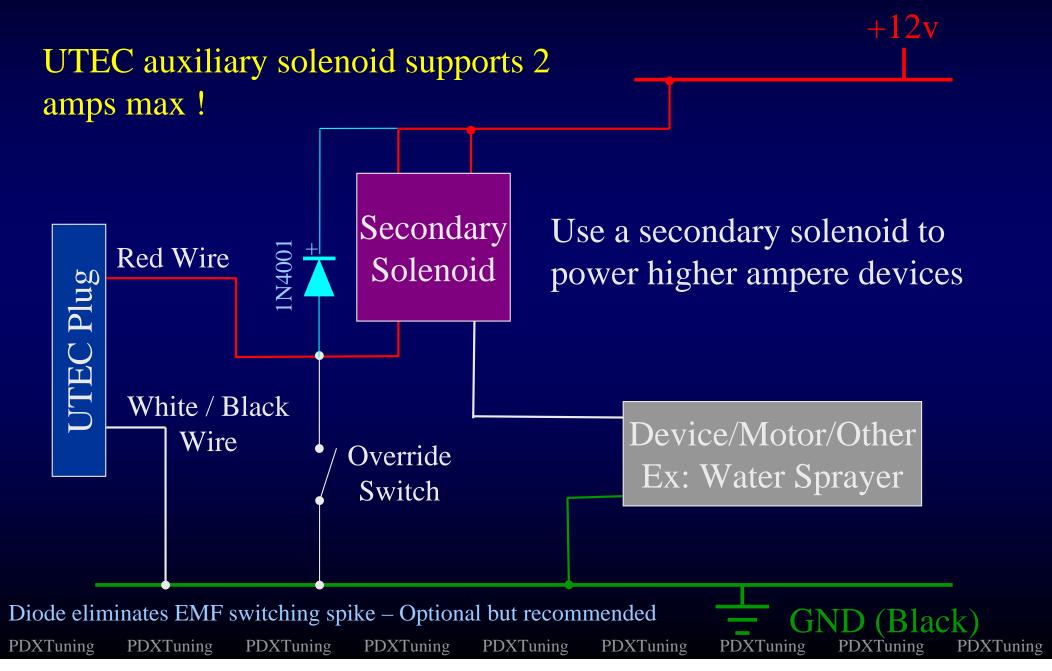
Logging

• Log 1 seems to be the best for daily logging



PDXTuning PDXTuning PDXTuning PDXTuning PDXTuning PDXTuning PDXTuning PDXTuning PDXTuning

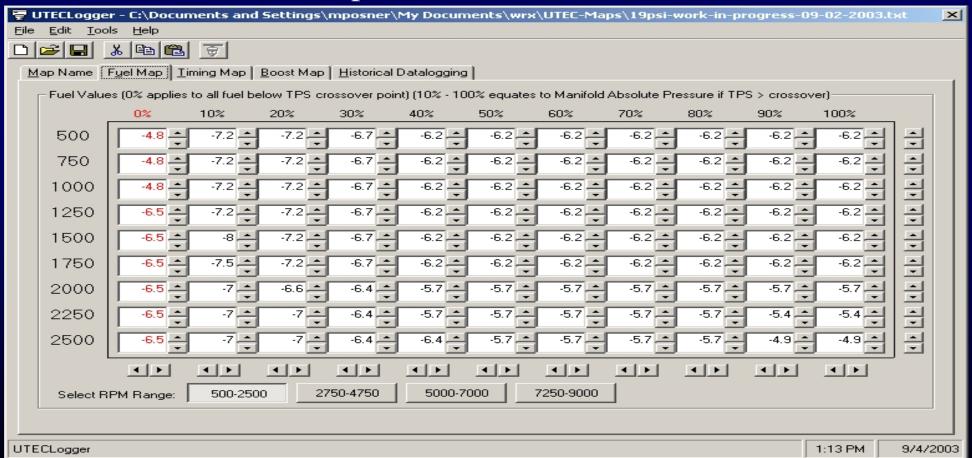
Log Debugging


Always look at the values that lead up to the knock event

Boost, Timing, Fuel

PDXTuning

Spare Solenoid Usage



PDXTuning PDXTuning PDXTuning PDXTuning PDXTuning PDXTuning PDXTuning PDXTuning PDXTuning PDXTuning

Handy UTEC Utilities

UTECLogger (Free/Pay) – Found on http://www.wrxhackers.com
Create / Edit UTEC maps, can connect to UTEC in real time.

Other Handy UTEC Utilities

- Log-Template.xlt
 - Excel Spread sheet that converts log file to graph format
- AutoLogger
 - Automatic logging with some other cool features.
- UTECEdit
 - Another great UTEC map creation tool
 - (I use this one ©)

FAQ's

- Do I have to use the UTEC boost controller?
 - No, UTEC can be used to control only timing and fuel while something else, MBC, AVCR controls boost
- Should I calibrate the MAP?
 - Yes, but I didn't
- My TPS never reads 100% is that ok?
 - No, calibrate it

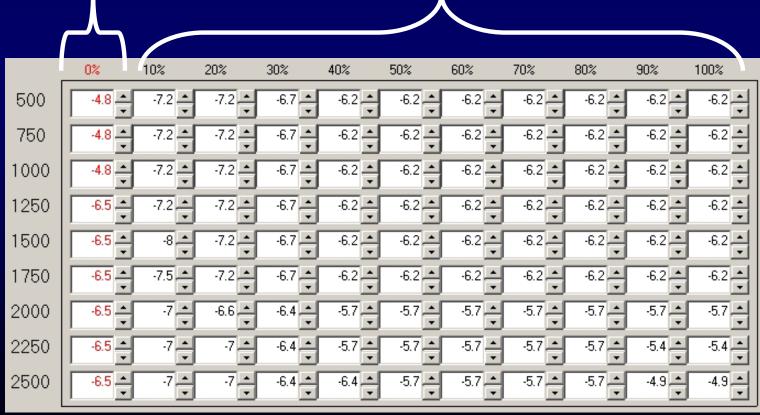
FAQ's

- Should I use launch control?
 - Risky but fun, it's your car you make the decision
- How much boost should I run?
 - Use TurboXS recommendation as a guide

RPM/Stage	Stage 1	Stage 2	Stage 3	Stage 4	Stage 4 FMIC
4000	16.1psi	16.5psi	17psi	17.5psi	18psi
5500	15psi	15psi	15.5psi	17.5psi	18psi
6000	12.5psi	12.5psi	12.5psi	16.5psi	17.5psi
7000	12 psi	12psi	12.5psi	16.5psi	17psi

FAQ's

- Why do I get knock with the TurboXS supplied maps?
 - TurboXS maps are usually tuned for 94 octane petrol, maybe your on 91/92 octane petrol
 - Use Octane challenged map or increase the octane content of your petrol
 - I find Toluene works very well
- What's the nearest planet to the sun
 - Mercury


Backup Information – Classic Fuel Tuning

Classic Mode Fuel Tuning
NOT Applicable to OPEN LOOP
FUELING Mode

Fuel Map Tuning – 3.1 Default

0% column applies to all RPM's below TPS cross over point (60% by default)

Past cross over point, Throttle > 60%, load is represented by Mass Absolute Pressure, MAP as defined in the SPECIAL CONSTANTS

Fuel Tuning

- More positive numbers represent more fuel
 - A value of 2 represents more fuel than an value of 1
 - A value of –5 represents more fuel than a value of –6

- * You are NOT modifying injector duty cycle!
- * You are modifying the Mass Air Flow, MAF, voltage reading by a percentage

Theory behind MAF based fuel modification

- Fools the ECU/(UTEC when in OLF control)
 - A reduction in MAF voltage fools the ECU/UTEC in thinking that less air is flowing into the engine thus less fuel is required
 - Injectors duty cycle is reduced
 - An increase in MAF voltage fools the ECU/UTEC in thinking that more air is flowing into the engine thus more fuel is required
 - Injector duty cycle is increased

Why Tune the 0% is using classic fueling mode

- Long Term Trim value used in ECU Open Loop (ECU open loop not UTEC) fuel control
 - Long term value will effect your >63% TPS fuel values
 - If Long Term is not stable, your >63% TPS AFR will never be stable.
 - Maybe too rich or maybe too LEAN
- Short Term always goes to 0 over 63% TPS

The End

Thank you