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Abstract- Application Development for FPGA 
based reconfigurable systems includes hardware 
design, for circuitry to be mapped on FPGAs, and 
software design for a general-purpose processor. A 
significant part of the application development for 
reconfigurable systems is debugging and validation 
of the hardware and software design. 
Hardware/software co-debugging and development 
of techniques for reducing the hardware debugging 
time is an important issue. This paper describes how 
reconfigurable hardware watch-points in the FPGA 
designs can be used in a hardware/software 
debugging environment and can expedite the 
hardware debugging. We have described the 
techniques to add watch-point logic at many different 
steps in the FPGA design flow. We also discuss how 
these techniques can be automated, and how new 
debugging tools such as Jbits and Jroute can be used 
to modify the watch-point logic and further reduce 
the hardware debugging time. Using one of the 
proposed techniques it is observed that watch-point 
logic modification has a speedup ranging from 5 to 
12 times for different benchmark circuits. 
 
1   Introduction 
 
A typical reconfigurable computing application 
consists of hardware running on one or more FPGA 
devices present on a co-processor board and software 
running on the general-purpose processor. Debugging 
of these applications involves debugging of both the 
hardware and software components. Hardware 
simulation is one of the most widely used techniques 
for hardware debugging and validation before design 
implementation. Hardware simulation allows the 
designer to examine the circuit in detail, but can be 
prohibitively slow. It can take hours to days for the 
designer to reach a desired point of interest. This 
process of debugging can be very time consuming at 
initial stages of the design, when multiple simulation 
runs may be required to correct an error. Thus, 
isolated debugging of hardware and software 

components using simulators can be a time 
consuming process. Besides, the final application 
after integration may still not work because of the 
errors induced after integration of these two 
components.  
 
The problem of lengthy hardware debugging time can 
be mitigated by running the hardware directly on the 
target platform; Since, for reconfigurable computing 
applications the target platform is available before the 
design is completed. There has been some research 
done in the area of debugging for reconfigurable 
computing using the target platform [1][2][3]. The 
key feature behind these debugging efforts is the use 
of the readback capability provided in some of the 
FPGAs [4][5][6]. A readback operation can acquire 
internal state of FPGA internal elements such as the 
LUTs, flip-flop and IOBs and can match that 
acquired state with the symbolic name in the original 
design. Thus, the user can use readback to analyze 
the values of the signals during execution. The 
readback operation can be used to get the circuit state 
at any point during the design execution. The clock 
supplied to the design is halted before the readback 
operation is initiated. Once the clock is suspended, 
the signal values can be sampled out by stepping the 
clock one by one (single-stepping) or after stepping 
many clock cycles at once (multi-stepping). The 
readback capability while allowing the designer to 
debug the design on the target platform has a few 
drawbacks. For example, the designer cannot initiate 
the readback operation without stopping the design 
execution or halting the clock. Another problem with 
design readback is that it is a slow operation; 
Configuration readback of the complete design takes 
around 1 second, which makes it too slow to check a 
signal value every clock cycle. 
 
To overcome the slow speed of the readback 
operation, an additional debugging circuit can be 
added into the design. The added debugging circuit 
(watch-point) provides the designer with 
observability and controllability, while the design 



executes at or close to normal speed. The design 
running in the FPGA can be executed until the user 
desired point without stopping in between. Then the 
readback operation can be initiated to observe and 
analyze the circuit status. The additional debugging 
circuit is removed from the design, when the whole 
debugging and validation process is completed. Thus, 
final design after validation process has the same area 
and speed as the design before adding debugging 
circuit. The hardware watch-points enable a 
controlled execution of the hardware design and 
speed up the debugging procedure by minimizing the 
user intervention in debugging. 
 
One of the most obvious ways of adding debugging 
logic in the design would be to add it before the 
design is synthesized. The debugging logic can be 
added in HDL, schematic entry or in its netlist. 
However, if the debugging logic is added in the top 
most level in the design flow, any modification in 
that logic will entail a complete recompilation of the 
design, which is a time consuming process and can 
take up to a few hours for big designs. Many 
debugging logic modification iterations may be 
required if the designed being debugged is at an 
initial stage of development. However, the large 
recompilation time can make this complete 
debugging process very slow.   
 
In this paper, we have proposed different techniques 
to add debugging logic into the design. The use of 
Jbits and Jroute to further reduce the modification 
time of debugging logic by altering the configuration 
bit file is also discussed. 
 
2     Related Work 
 
The addition of debugging logic in FPGA designs for 
debugging and validation purposes has also been 
proposed by other researchers [7][8]. For example, in 
[7] a design level scan chain is proposed for complete 
design debugging. However, area overhead of this 
design chain can reach up to 100%, which may 
restrict this technique to less congested designs. In 
[8], a technique to modify debugging logic is 
proposed using a java based design environment. 
This technique limits designers to a java based 
structural design environment, which is less familiar 
than a behavioral HDL/Schematic environment. The 
technique proposed in [8] allows instrumenting the 
debugging logic at bit-level, but in some cases the 
modification can be quite frequent, and thus time to 
make the new bitstream and time to load the 
bitstream on target FPGA may make the debugging 
process slow.   
 

Many commercial tools provide more automated and 
powerful features to add and modify the debugging 
logic in the design. Xilinx has a tool named 
Chipscope[9], which allows the designers to put 
embedded logic analyzer(ELA) cores in their designs. 
These ELA can monitor design signals during design 
execution and can produce a trigger if the signals 
meet some predefined condition. The trigger 
conditions and signals monitored can be changed 
without any design recompilation. Chipscope needs a 
logic analyzer to view the signal status and a port on 
the reconfigurable computing board to connect it. In 
addition, the area overhead of ELA is fixed, i.e. even 
if designer needs only few signals to be monitored, 
the area overhead will be the same.  Altera also has a 
product named SignalTap[10][11], which is a logic 
analyzer embedded into the design running on the 
FPGA. SignalTap is similar to Chipscope in 
operation, however any modification in the 
debugging logic except for changing the trigger 
condition requires complete recompilation of the 
design. 
 
Validation and debugging of the design by adding 
debugging logic is not limited to FPGAs. For 
example, Triscend E5 configurable system on chip 
platform [12] has on-chip debugging support using an 
additional breakpoint logic unit kept on the chip. This 
breakpoint unit monitors the user specified 
combinations of address and data control. The MCU 
freezes at the end of the current condition, whenever 
a breakpoint condition occurs. The breakpoint unit, 
though aids the user in debugging is limited only to 
the data, control and DMA signals. SIDSA also has a 
system on chip known as FIPSOC [13], which also 
has the hardware breakpoint capability [14]. The 
breakpoint mechanism in FIPSOC is similar to that in 
Triscend E5, i.e. breakpoint can be set only on user 
specified data and address values. 
 
In [3], a software watch-point facility is presented. In 
this technique, the comparison between user specified 
condition and actual value design signals is 
performed in the software running on general purpose 
processor. This operation of comparing FPGA design 
signals in software entails readback of the design 
signals at every clock cycle (single-stepping) or after 
every fixed number of clock cycles (multi-stepping). 
Single stepping the clock makes the whole debugging 
procedure very slow, as each readback operation 
takes around 1 second with software overheads. On 
the other hand multi-stepping the clock can 
completely miss a user-desired event.  
 



3     Reconfigurable Hardware Watch-
points 
 
Just as in software debugging tools and hardware 
simulators, watch-points can be introduced in 
hardware designs running on the FPGAs present on a 
co-processor board. These watch-points can monitor 
signal(s) for any user specified event or condition. 
The user can specify the signal(s) present in the 
design to be monitored for a particular value and/or 
an event. Table 1 shows the trigger conditions for 
which a signal can be monitored. The signals, which 
are monitored, are compared with the user-defined 
pattern or an event, and this operation takes place 
every clock cycle. If there is a match, between the 
signal value and the user specified trigger condition, 
the design running on the FPGA stops executing and 
an interrupt is given to the application program 
running on a general-purpose processor. Upon getting 
an interrupt from the FPGA co-processor board the 
software running on the general-purpose computer 
may initiate a readback operation to obtain the 
internal state of the circuit.  The hardware execution 
cessation is achieved by disconnecting the processing 
element clock from the FPGA design. To provide the 
similar watch-point capability as software debugging 
tools, the design should be able to restart from the 
same point after the watch-point condition is reached. 
This requires control over the system clock, which 
should be disconnected from the design whenever the 
user specified condition occurs, and should be 
connected back to design after the readback 
operation. This clock control is implemented with 
some simple Finite State Machines (FSMs) and a 
gated clock. An FSM takes input from all the signals 
monitored for a particular condition/event and when 
the desired condition is reached the FSM outputs an 
interrupt.  This control FSM gives input to another 
FSM, which controls when to enable or disable the 
clock. Once the interrupt has been acknowledged by 
the 
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Software running on the general-purpose computer 
the control FSM can enable the clock. This operation 
is illustrated in figure 1. Any signal can be set to a 
variety of trigger conditions, also if there are multiple 
trigger conditions for a signal they can be logically 
ANDed or Ored depending upon the requirement. 
Similarly, if there are multiple signals with different 
trigger conditions, they can be ANDed or Ored to 
make one interrupt output. Table 1 shows the trigger 
conditions implemented. The trigger conditions 
mentioned in table 1 provide the user with flexibility 
in debugging. Any of these conditions can be set such 
that they should be asserted for some user defined 
number of clock cycles. This includes two situations, 
one in which the condition is satisfied for consecutive 
clock cycles and a second in which the condition 
must be satisfied for some number of user defined 
clock cycles (not necessarily in a row). 
 

Trigger 
Condition 

Description 

Greater than Trigger when signal monitored is 
greater than watch-point value 

Greater than 
equal to 

Trigger when signal monitored is 
greater than or equal to watch-point 
value 

Less than Trigger when signal monitored is 
less than watch-point value 

Less than equal Trigger when signal monitored is 
less than or equal to watch-point 
value 

Not equal to Trigger only when the signal 
monitored value is not equal to 
watch-point value 

Equal to Trigger only when the signal 
monitored value is equal to watch-
point value 

Rising edge 
only 

Trigger only when a signal 
monitored makes rising edge 
transition  

Falling edge 
only 

Trigger only when a signal 
monitored makes falling edge 
transition 

Both edges 
(rising edge or 
falling edge) 

Trigger when a signal monitored 
either makes falling or rising edge 
transition User defined 

logic and  
watch-point 
conditions/ 
events 

Control 
FSM Table.1. Watch-point trigger conditions. 

 
4 Watch-point logic implementation 
 
Three techniques are described for watch-point logic 
implementation in this paper. These are discussed in 
the following sections.  

Interrupt 
Clock gating 
FSM Clock Out  

 
 



4.1 Addition of watch-point constant in HDL 
(Hardwired condition) 
 
The first technique of adding debugging logic is the 
addition of watch-point signals with constant value. 
These constant type signals have the same type as of 
the signals that are being monitored in the HDL 
design. The constant signal value is the value, which 
the watch control logic compares with the monitored 
signal. In this method the trigger condition for user 
selected signals is designed and added in the HDL. 
The modified HDL is then synthesized to implement 
and optimize the design with debugging logic. Of all 
the three techniques discussed in this paper, this 
implementation gives the most area optimized 
solution for adding the watch-point logic. This 
technique is well suited for the designs, which have a 
high area or CLB utilization, and have little room for 
additional logic. However, any change in the watch-
point logic pattern or condition has to be made in the 
HDL file itself. This is because after synthesis 
optimization, placement and routing of FPGA design 
many signals names are changed; Thus, it is difficult 
to relate the watch-point constant signals with the 
signals name generated after synthesis, placement 
and routing. This procedure of changing watch-point 
logic can be time consuming for large designs, 
because each iteration of watch-point logic 
modification will require the whole of synthesis and 
place and route time. 
 
4.2 Implementation of watch-point logic by 
instantiating library primitives (Component 
instantiation) 
 
The watch point logic can also be implemented by 
instantiating library primitives which can be 
technology-specific or technology independent. In 
this research, we have used Xilinx FPGA and so its 
library primitives such as flip-flops, latches, LUT 
RAMs and LUTs (use of LUT instantiation in HDL is 
available in Virtex series only). The user has to 
manually synthesize the logic when implementing 
watch point logic using library primitives. For 
example for constructing an eight-bit register, the 
user has to connect eight instantiated flip-flops in the 
VHDL design. Similarly, for mapping any function 
into Lookup Table (LUT) RAM, LUT ROM or LUT 
primitive the user has to program them appropriately. 
This can be done using logical constraints inserted 
into the HDL design and/or in the constraint file at 
the time of place and route. If flip-flops are used to 
implement the watch-points then a flip-flop is 
instantiated for storing every single watch-point logic 
bit in the design. The values of these flip-flops are 

then compared with the monitored signal using a 
comparator, which generates an interrupt on match. 
For example, if there are a total of 32 bits of watch-
point logic (e.g. for monitoring a 32 bit wide signal) 
in the design, then 32 flip-flops have to be 
instantiated and are set or reset based on the watch-
point pattern. It has been observed that when design 
primitives are used in the design, the signal names 
associated with them are preserved even after 
synthesis, place and route. Thus, values stored in the 
flip-flop can be changed in the final binary file, 
which is generated after place and route, by 
identifying the respective watch-point signals. To 
change the value of these flip-flops the user must 
know where these components are placed in the 
FPGA. This information can be obtained from 
parsing the user accessible text file, containing 
information about placement of all the components in 
the design. In Xilinx design flow this text file is 
generated by converting a Native Circuit Description 
(.NCD) file into text file. Once the user has 
ascertained the exact location of flip-flops, a script 
file is written for the Xilinx FPGA Editor [15] to 
automate the changes in the NCD file. The changing 
of the watch-point value is fast and efficient in this 
way, as the user just has to change values in the script 
file each time a change in the watch-point values is 
required and then generate a new bitstream from 
modified NCD file.  
 
Watch-point logic can also be implemented using the 
LUT RAM/ROM instantiation. For example, for 
implementing a “greater than” condition, the signal to 
be monitored is connected on the address lines of a 
LUT. The LUT is then programmed with logical one 
for an active high interrupt signal at all the locations 
greater than the given value and logical zero every 
where else and vise versa for an active low signal. 
Similarly for implementing the comparison “less 
than” the LUT is programmed with a logical one for 
an active high interrupt signal at all the locations less 
than the given value and logical zero every where 
else and vice versa for an active low signal.  
 
For detecting the rising and falling edges, library D 
flip-flops are instantiated and they are clocked with 
the monitored signal. For rising-edge, a non-inverted 
connection is made to the CLK pin and for falling-
edge an inverting connection is made to the clock 
input of the flip flop. The interrupt acknowledge 
signal is connected to the reset or preset input of the 
flip-flops to clear the interrupt once it is 
acknowledged. The last condition, where the signal 
must satisfy the condition for a given number of 
clock cycles, is implemented by keeping a counter in 
the design. 



 
4.3 Watch-point logic implementation using 
register chain (Register chain) 
 
In this approach, watch-point logic is implemented 
by storing a watch-point signal value in the flip-flops. 
In this technique, a design level register chain is 
added in the design, which is analogous to flip-flop 
scan chain in VLSI testing [16]. All the flip-flops 
required for implementing watch point logic are 
connected together to form a register chain. The 
register chain is formed by connecting output of one 
flip-flop to the input of other and so on. At the time 
of initialization, data corresponding to watch-point 
values are shifted into the respective registers. It 
takes as many clock cycles to shift the data as there 
are watch-point values registers in the design. The 
data coming out of these registers is compared with 
the user specified signal using a comparator. 
Whenever the user wants to change the watch point 
signal pattern, the RESET signal is asserted in the 
design and appropriate data is given at the memory 
input port. A control FSM is added into the design to 
synchronize the operation of shifting the data and 
enabling the reset logic. Upon receiving RESET 
signal the controller starts shifting the data serially 
across the register chain. The advantage of this 
methodology of register chain is that user can change 
the watch point signal on-line by just asserting the 
RESET signal, which can be asserted using software 
API calls. Moreover, the time consuming synthesis, 
place and route process is bypassed completely in 
this technique. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.2. Block diagram showing watch-point technique 
using register chain 
 
This technique can be easily integrated with an 
interactive GUI-based hardware/software co-

debugging utility, developed as part of this research. 
The reason for quick integration of this technique 
with co-debugging is that the user only has to provide 
the values stored by the register chain using the GUI; 
No partial or complete recompilation of design is 
necessary. Figure 2 illustrates this methodology. This 
technique, while allowing the user to change the 
watch-point signal values on-line, does not allow on-
line change in the watch-point conditions. To change 
a watch-point condition, which is implemented in a 
comparator, the user can change the LUT values of 
the LUTs which corresponds to the comparator in the 
NCD file and then generate a new bit-stream. 
 
4.4 Bitstream Modification for Debugging 
 
In all of the above techniques for adding debugging 
logic in the design, the user cannot change the signals 
connecting to the debugging logic without complete 
or partial recompilation of the design. The signals, 
which connect to the debugging logic, can be 
changed at the netlist level or after the place and 
route (PAR) process. Changing of signals connected 
to the debugging logic requires two steps. First, the 
original signal has to be disconnected from the 
debugging logic; second, the new signal has to be 
connected to the debugging logic. If the signals 
connectivity has to be changed at the netlist level, the 
user has to identify the original and the new signal in 
the netlist and update the netlist for new connectivity; 
and finally do the place and route of the netlist. This 
process of updating the netlist and PAR can be time 
consuming. The signal connectivity can also be 
changed after the PAR, by opening the Native Circuit 
Description (.NCD) file in Xilinx FPGA editor [15]. 
However, identifying and manual routing of signal 
source and sink can also be a time consuming 
procedure. To mitigate this problem we have 
proposed the use of Jbits and Jroute[19] from Xilinx, 
to change the signal connectivity at configuration 
bitstream level. The JBits tool suite is a set of Java 
API to build, test, debug and modify design at the 
configuration bitstream level. At this level, Jbits 
gives read and write access to all configurable 
elements and access to all the routing resources of the 
FPGA. Modification in the design for changing 
signal connectivity can be performed in few seconds 
using the JBits API. The change in signal 
connectivity is done using JRoute, which is a part of 
JBits. For changing signal connectivity, first the 
signal source and sink are identified. This operation 
can be done using the map report file(.mrp) generated 
by Xilinx place and route. Then the original net 
connected to the source is unrouted using the 
respective API call. Finally, the API call to route a 
net between source and sink is used, to make new 
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signal connectivity. Source and sink are the pins 
attached to a CLB. This operation is elaborate in the 
excerpt below. 
 
Pin_Source=(CLB_Row_20,CLB_Column_12,Out_S0_XQ) 
Pin_Sink = (CLB_Row_17,CLB_Column_9, Input_S1_F1) 
jroute.unroute(Pin_Source); 
jroute.route(Pin_Source, Pin_Sink); 

 
5 Comparison and analysis of different 
techniques implemented and 
experimental results 
 
The methodologies for watch-point logic 
introduction, discussed in the sections above have 
their own advantage and limitations. Table 2 shows 
the comparison of different watch-point 
implementation techniques. These techniques are 
evaluated for the area overhead, ease of modification, 
time taken to modify watch-point signal patterns and 
whether they can be modified by a co-debugging 
interface developed between hardware and software. 
Since the original design is already constrained (at 
the time of synthesis and place & route) for the speed 
requirements, the addition of watch point logic does 
not slow down the design. In the placement and 
routing process, the watch-point logic is not 
constrained so the placer has the flexibility to place it 
anywhere to meet the original design constraints.   
 

Watch-Point 
technique 

Area 
Overhead  

Time to 
change 
watch-
point 
value 

Changes in 
watch-point 
values 
possible 
through co-
debug 
interface 

Register 
chain. 

Large Small YES 

Component 
instantiation. 

Medium Medium NO 

Hardwired 
condition 

Small Large NO 

Table.2. Comparison of different watch-points 
techniques 
 
If the design under test is a stable design without the 
possibility of many errors and there are only a few 
signals, which require a watch point, keeping a 
register chain in the design is the best option as it 
allows the user to quickly make the modification in 
watch-point patterns and can be easily incorporated 
into an interactive co-debugging utility. The register 
chain technique has the maximum area overhead 
among all the three techniques, as it requires one flip-
flop per bit of watch-point value and has an 
additional area overhead for the logic of the control 

FSM. Equations (1) and (2) below show an increment 
in the CLB count by the register chain and the control 
FSM respectively. It is assumed that N is the number 
of watch-point logic condition value bits required in 
the design and thus the number of clock cycles 
required to shift the data. In our experiments we have 
used Xilinx FPGAs and each CLB in a Xilinx 
XC4000 and Virtex series of FPGAs has two flip-
flops. 
 
             Count(CLBs) = ceil(N/2)                  (1) 
             Count(CLBs) = (ceil(log2N)+1)/2   (2) 
 
The register chain technique also requires more 
routing resources to connect all the watch-point flip-
flops together, which may be scattered all throughout 
the FPGA. Instantiating flip-flops has the same area 
overhead for keeping watch-point value as in register 
chain i.e. one flip-flop per bit but in this case the 
control FSM is not needed and also less routing 
resources are used. However, in this method, a part of 
design recompilation is necessary for any change in 
watch-point logic values.  
 
If the number of watch-point condition bits is large 
and area is a major concern then instantiating LUT 
RAM/ROM methodology is an optimum solution. In 
Xilinx FPGAs a LUT has four address lines therefore 
a four bit wide watch-point can be programmed in a 
single LUT. If the signal to be monitored is a bus, it 
is broken down in four bit wide signals for each LUT 
output, which are later ANDed together.  
 
The first methodology of making watch-point 
changes in the HDL design itself is the most area 
efficient technique among all three techniques 
discussed. In this methodology synthesis, place and 
route has full freedom to optimize the watch-point 
logic thus an optimized implementation is obtained. 
If the design is very big and densely routed this 
methodology may still make introduction of watch-
point logic possible, other techniques on the other 
hand may fail because they consume more area and 
may require more space to route.  
 
We have used six different benchmark circuits for the 
implementation of different watch-point insertion 
techniques. These benchmark circuits are part of the 
High Level Synthesis (HLSW 92), PREP benchmark 
suite, and some are freely available processor VHDL 
models. The largest benchmark circuit is a SPARCS 
complaint processor obtained from European Space 
Agency [17]. The target FPGA for these experiments 
is Xilinx 4085xl; Leon processor, which is the largest 
benchmark, could not fit into XC4085xl and so we 
have used Xilinx Virtex series of FPGA ‘XCV300’ 



for it. In its current form, JBits is limited only to 
support Virtex series of devices. Thus, we mapped 
the designs also to Virtex series of FPGA to use 
JRoute. Figure 3 and 4 shows the area overhead for 
various sizes of watch-point logic for register chain 
and component instantiation techniques respectively. 
These graphs were obtained by calculating the CLB 
overhead obtained from the Map Report File (.mrp), 
which contains the CLB count of the design after 
mapping, placement and routing. This file is 
generated by the Xilinx design implementation tools. 
The circuit without the debugging logic is placed and 
routed first. Then the debugging circuit is added in 
steps of a few bits, and finally the CLB count from 
the original design and modified design is obtained to 
calculate the area overhead. Each time the number of 
bits of the monitored signals is increased, the design 
has to be recompiled to calculate the accurate CLB 
count. In the figures, there is a steep increase at the 
starting point because of the fact that a control FSM 
is also added at the time of initial watch-point 
addition. For the first technique i.e. adding signals to 
the HDL file, it has been found that CLB count 
increases linearly with the size of the watch-point 
logic (number of bits).  
 

Benchmark Circuit Normal 
Place and 
route time 
(minutes) 

Guide mode 
place and 
route time 
(minutes) 

Leon Processor 25.13 2.18 
6502 microcontroller 5.50 1.26 
AM2901 1.9 0.37 
PREP5 2.51 1.1 
PREP4 1.7 0.53 
HC11 8.53 1.38 

Table 3: Comparison between normal and guided 
mode place and route for different benchmark circuits 
 
The watch-point logic when implemented using the 
component instantiation technique mentioned in 4.2, 
can have its values changed in the final placed and 
routed design, using guided place and route (PAR) 
facility provided in the Xilinx implementation tools 
[18]. Guided PAR can be used to speed up the time 
consuming place and route process.  Guided PAR 
tool, take an already placed and routed file as an 
input, and using this information it tries to place and 
route the modified netlist. Thus, if the netlist has only 
a few minor additions, guided PAR only has to place 
and route the additional logic. Place and route of 
small additional logic takes significantly less time 
than normal PAR. Guided PAR can be used in 
technique 4.2 by putting a different LUT RAM/ROM 
initialization value in the Netlist Constraints File 
(.ncf) file and then running the place and route and 

process with the guide file. Table 3, shows the 
speedup obtained when using guided place and route 
for technique 4.2 
 
6    Conclusion and future work 
 
This paper describes three different approaches to 
introduce watch-points logic in FPGA design for 
hardware/software co-debugging environment. These 
techniques together with the readback capability 
provide a co-debugging environment which has most 
of the features of traditional hardware and software 
debugging systems. Moreover, this process of 
debugging the hardware design using watch-points is 
much faster than traditional hardware simulation. 
Table 4 shows some simulation times of a design 
with and without the co-processor board model 
(Wildforce from Annapolis micro systems in this 
case). The design is simulated at a Pentium 600 Mhz 
PC with 512 MB of RAM. If there is an error in the 
design which occurs after 4,194,303 clock cycles a 
user may have to wait hours when using simulation. 
Whereas, in the debugging environment using 
hardware watch-points a user can instantly reach to 
the point of interest (at the 4,194,303th clock cycle).  
 

Type of Simulation  Run Time  
Minutes (hours)  

Functional  
Functional with board model  
Timing level  

40.5 (.675) 
516 (8.6) 
46.5 (.775) 

Table 4: ModelSim simulation times for a 
synchronous counter run for 4,194,303 clock cycles. 
 
In addition, these techniques allow the debugging of 
the application running on the actual platforms, so 
there is no need of doing multiple iterations of 
hardware simulations (i.e. functional and timing with 
delays back annotated in the design). To modify a 
watch-point value or its condition a user may have to 
synthesize, place and route the whole design which 
can be time consuming process. Table 3 shows 5 to 
12 times speedup we get over the normal synthesis, 
place and route process when using one of techniques 
proposed for implementing watch-point logic. We 
have also discussed how we can incorporate JBits 
and JRoute to further expedite debugging. Our on-
going research focuses on the complete automation of 
watch-point logic generation; i.e. the relevant HDL 
code generation, which could be inserted into the 
original, design and which is generated upon the user 
specification given using a GUI. 
 
Future work can be done to enhance the debugging 
techniques discussed in this paper for debugging of 
the designs having external asynchronous interfaces. 



A trace buffer can be kept in the design which will 
keep history of the data coming through external 
interface. With the help of data in the trace buffer a 
user can ascertain the inputs (coming from external 
interface) which might have caused a malfunction. 
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Fig.3. Area overhead for register chain technique 
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Fig.4. Area overhead for Component instantiation 
technique  
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