# **USER MANUAL**

# Accessory 35B

JTHW Local Buffer / Remote Buffer (remote)

3Ax-602345-xUxx

October 16, 2003



Single Source Machine Control Power // Flexibility // Ease of Use 21314 Lassen Street Chatsworth, CA 91311 // Tel. (818) 998-2095 Fax. (818) 998-7807 // www.deltatau.com

#### **Copyright Information**

© 2003 Delta Tau Data Systems, Inc. All rights reserved.

This document is furnished for the customers of Delta Tau Data Systems, Inc. Other uses are unauthorized without written permission of Delta Tau Data Systems, Inc. Information contained in this manual may be updated from time-to-time due to product improvements, etc., and may not conform in every respect to former issues.

To report errors or inconsistencies, call or email:

Delta Tau Data Systems, Inc. Technical Support

Phone: (818) 717-5656 Fax: (818) 998-7807 Email: <u>support@deltatau.com</u> Website: <u>http://www.deltatau.com</u>

#### **Operating Conditions**

All Delta Tau Data Systems, Inc. motion controller products, accessories, and amplifiers contain static sensitive components that can be damaged by incorrect handling. When installing or handling Delta Tau Data Systems, Inc. products, avoid contact with highly insulated materials. Only qualified personnel should be allowed to handle this equipment.

In the case of industrial applications, we expect our products to be protected from hazardous or conductive materials and/or environments that could cause harm to the controller by damaging components or causing electrical shorts. When our products are used in an industrial environment, install them into an industrial electrical cabinet or industrial PC to protect them from excessive or corrosive moisture, abnormal ambient temperatures, and conductive materials. If Delta Tau Data Systems, Inc. products are directly exposed to hazardous or conductive materials and/or environments, we cannot guarantee their operation.

#### **Table of Contents**

| INTRODUCTION                                      | 1        |
|---------------------------------------------------|----------|
| CONNECTORS FOR ACC-35A                            | 3        |
| J1 (JTHW)                                         |          |
| TB1 (Option 2)                                    | 6        |
| P1 (Option 1)                                     | 6        |
| Connectors for ACC-35B                            | 6        |
| J1 (JTHW)                                         | 6        |
| TB2 (Option 2)                                    | 6        |
| P1 (Option 1)                                     | 6        |
| TB1                                               | 6        |
| MULTIDE EV ADDRESS MAD SELECTION                  | 7        |
| ACC-35A/B Addressing with Multiple Boards         |          |
| POWER SUPPLY REQUIREMENTS AND RECOMMENDED WIRING  |          |
| Power Supply Requirements                         |          |
| Recommended Wiring Between ACC-35A and ACC-35B    |          |
| CONNECTORS                                        | 15       |
| I1 (ITHW) on Acc. 25A & Acc. 25B                  |          |
| TP1 on ACC 25A Option 2 & TP2 on ACC 25P Option 2 | 13       |
| P1 on ACC 35A Option 1 & P1 on ACC 35B Option 1   | 10<br>17 |
| TD1 on ACC 25D only.                              | / I.o.   |
| IBI ON ACC-55B ONLY                               |          |

# **INTRODUCTION**

PMAC's Accessory 35A and Accessory 35B are two complementary printed circuit boards. These boards are designed to provide differential signal transmission capability between PMAC and most of its accessories that communicate via its JTHW connector. Currently this accessory pair enables the following PMAC accessories to communicate with PMAC via long distance cables:

- ACC-18 (the Thumbwheel Mutliplexer Board)
- ACC-34 (the Opto 64 Bit input/output Board)
- ACC-34A (the Opto 32-Bit Input/32-Bit Output board)

ACC-35A is the local JTHW buffer board. This board should be attached to PMAC's JTHW connector via the supplied 26-pin flat cable. ACC-35B is the remote JTHW buffer board. One ACC-35B is required per each cluster of the remotely positioned I/O accessory boards. Note that the recommended cable length for the direct connection of PMAC to any of the above accessories is less than 3 meters (10 feet). However by buffering the signals through the ACC-35 pair, and by using twisted pair wires with proper shielding, cable lengths in excess on 100 meters may be used.

ACC-35A and ACC-35B are supplied with the following options:

Option 1- A DB37 connector for communication between the local and the remote buffers.

**Option 2-** A 38-pin terminal block connector for communication between the local and the remote buffers (this is the default option).

**Option 3-** A 6 ft daisy chain JTHW cable with four headers. This provides for the connection of up to four I/O accessory boards to a single ACC-35.

# **CONNECTORS FOR ACC-35A**

Refer to the layout diagram of ACC-35A for the location of the connectors on the board. A pin definition listing for each connector is provided at the end of this Manual.

#### J1 (JTHW)

This 26-pin header provides the link between PMAC's J3 (JTHW) and ACC-35A. Using the supplied flat cable PMAC's J3 should be connected to J1. The multiplex address lines are brought in from PMAC through this connector. They are buffered and made differential prior to the long distance transmission via TB1 or P1. Also the bi-directional differential data lines brought in from the remote accessories via ACC-35B are converted to single-ended signals prior to transmission to PMAC. In addition to the above signals, the +5V power supply for this board is brought in through this connector.





# ACC-35B Option 1 The DB37S Connector Option





# ACC-35B Option 2 The Terminal Block Option



### TB1 (Option 2)

This is a 38-pin terminal block through which ACC-35A is connected to the remote buffer accessory, ACC-35B. Long cables may be used for this connection. However, to minimize the effects of electrical noise, the differential address and data lines should run as twisted pair and the cable should be shielded. Also, with the jumper E1 installed, the +5V power supply for ACC-35B may be brought out through this connector.

### P1 (Option 1)

This is a 37-pin DB female header which replaces TB1 on ACC-35A when ordered with its Option 2.

#### **Connectors for ACC-35B**

Refer to the layout diagram of ACC-35B for the location of the connectors on the board. A pin definition listing for each connector is provided at the end of this Manual.

#### J1 (JTHW)

This 26-pin header provides the link between the remote accessory (e.g. ACC-34A) and ACC-35B. Using the supplied flat cable, the JTHW connector for the remote accessory should be connected to ACC-35B's J1. The bi-directional data lines brought in from the remote accessory through this connector are buffered and made differential prior to the long distance transmission via TB2 or P1. Also the differential address lines brought in from PMAC via ACC-35A are converted to single-ended signals prior to transmission to the remote accessory. In addition to the above signals, the +5V power supply for this board may be brought out through this connector for use by the remote accessory(s).

#### TB2 (Option 2)

This is a 38-pin terminal block through which ACC-35B is connected to the local buffer accessory, ACC-35A. Long cables may be used for this connection. However, to minimize the effects of electrical noise, the differential address and data lines should run as twisted pair and the cable should be shielded. Also, with the jumper E1 installed on ACC-35A, the +5V power supply for this accessory may be brought in through this connector.

#### P1 (Option 1)

This is a 37-pin DB male header which replaces TB2 on ACC-35B when ordered with its Option 2.

#### TB1

This is a 2-pin terminal block which may be used to bring in the +5V supply for the logic circuits on ACC-35B. With the E1 jumper removed from ACC-35A, the +5V supply will not be brought in through J1 to ACC-35B. In this case TB1 should be used to bring in the required supply. Note that whenever the distance between an ACC-35A and its complementary ACC-35B is long, it is recommended to use TB1 to supply the power to ACC-35B. In this case the jumper E1 on the ACC-35A board must be removed.

## MULTIPLEX ADDRESS MAP SELECTION

Each ACC-35 (A or B) has two sets of DIP switches SW1 and SW2. The 5-bit DIP switch SW1 selects the address space on the PMAC's JTHW multiplex memory space. On each ACC-35 (A or B), the DIP switch SW1 should be set to correspond to the *highest* addressed remote I/O card connected through that particular accessory. The 5-bit DIP switch SW2 selects the number of remote I/O cards connected to PMAC via a particular ACC-35 (A or B). This is done by matching the data on the address lines with setting of the SW1 switch. The tables on the following pages show the possible combinations of SW1 and SW2 settings.

| Highest Byte     | Switch 5         | Switch 4             | Switch 3         | Switch 2           | Switch 1          |
|------------------|------------------|----------------------|------------------|--------------------|-------------------|
| Address of       | (address         | (address             | (address         | (address           | (address          |
| I/O              | decode for       | decode for           | decode for       | decode for         | decode for        |
|                  | Bit 7 of         | Bit 6 of             | Bit 5 of         | Bit 4 of           | Bit 3 of          |
|                  | JTHW             | JTHW                 | JTHW             | JTHW               | JTHW              |
|                  | address          | address              | address          | address            | address           |
|                  | space)           | space)               | space)           | space)             | space)            |
| 0-7              | ON               | ON                   | ON               | ON                 | ON                |
| 8-15             | ON               | ON                   | ON               | ON                 | OFF               |
| 16-23            | ON               | ON                   | ON               | OFF                | ON                |
| 24-31            | ON               | ON                   | ON               | OFF                | OFF               |
| 32 - 39          | ON               | ON                   | OFF              | ON                 | ON                |
| 40-47            | ON               | ON                   | OFF              | ON                 | OFF               |
| 48-55            | ON               | ON                   | OFF              | OFF                | ON                |
| 56-63            | ON               | ON                   | OFF              | OFF                | OFF               |
| 64-71            | ON               | OFF                  | ON               | ON                 | ON                |
| 72-79            | ON               | OFF                  | ON               | ON                 | OFF               |
| 80-87            | ON               | OFF                  | ON               | OFF                | ON                |
| 88-95            | ON               | OFF                  | ON               | OFF                | OFF               |
| 96-103           | ON               | OFF                  | OFF              | ON                 | ON                |
| 104-111          | ON               | OFF                  | OFF              | ON                 | OFF               |
| 112-119          | ON               | OFF                  | OFF              | OFF                | ON                |
| 120-127          | ON               | OFF                  | OFF              | OFF                | OFF               |
| 128-135          | OFF              | ON                   | ON               | ON                 | ON                |
| 136-147          | OFF              | ON                   | ON               | ON                 | OFF               |
| 144-151          | OFF              | ON                   | ON               | OFF                | ON                |
| 152-159          | OFF              | ON                   | ON               | OFF                | OFF               |
| 160-167          | OFF              | ON                   | OFF              | ON                 | ON                |
| 168-175          | OFF              | ON                   | OFF              | ON                 | OFF               |
| 176-183          | OFF              | ON                   | OFF              | OFF                | ON                |
| 184-191          | OFF              | ON                   | OFF              | OFF                | OFF               |
| 192-199          | OFF              | OFF                  | ON               | ON                 | ON                |
| 200-207          | OFF              | OFF                  | ON               | ON                 | OFF               |
| 208-215          | OFF              | OFF                  | ON               | OFF                | ON                |
| 216-223          | OFF              | OFF                  | ON               | OFF                | OFF               |
| 224-231          | OFF              | OFF                  | OFF              | ON                 | ON                |
| 232-239          | OFF              | OFF                  | OFF              | ON                 | OFF               |
| 240-247          | OFF              | OFF                  | OFF              | OFF                | ON                |
| 248-255          | OFF              | OFF                  | OFF              | OFF                | OFF               |
| Note: ON=CLO     | SED, OFF=OPEN    | I. To turn "off" a s | witch, push down | on the "open" side | e. To turn "on" a |
| switch, push dow | n on the "number | ed" side.            |                  | -                  |                   |

#### SW1 (address Select) Dip Switch Setting

| <b>DIP Switch</b>  | Result                                                                 |
|--------------------|------------------------------------------------------------------------|
| Switch 5 ON        | Match bit 7 of JTHW address line with setting on SW1                   |
| Switch 5 OFF       | Do not match (let through) bit 7 address line                          |
| Switch 4 ON        | Match bit 6 of JTHW address line with setting on SW1                   |
| Switch 4 OFF       | Do not match (let through) bit 6 address line                          |
| Switch 3 ON        | Match bit 5 of JTHW address line with setting on SW1                   |
| Switch 3 OFF       | Do not match (let through) bit 5 address line                          |
| Switch 2 ON        | Match bit 4 of JTHW address line with setting on SW1                   |
| Switch 2 OFF       | Do not match (let through) bit 4 address line                          |
| Switch 1 ON        | Match bit 3 of JTHW address line with setting on SW1                   |
| Switch 1 OFF       | Do not match (let through) bit 3 address line                          |
| Note: ON=CLOS      | ED, OFF=OPEN. To turn "off" a switch, push down on the "open" side. To |
| turn "on" a switch | , push down on the "numbered" side.                                    |

SW2 (Address Matching) Dip Switch Setting

#### ACC-35A/B Addressing with Multiple Boards

PMAC ACC-35A and 35B boards, plus boards that have ACC-35B functionality built in (currently ACC-34C and ACC-8DR Rack I/O, and NC control panel, both when connected thru DB-37 cable only) have pairs of DIP switch banks SW1 and SW2 that together specify a range of addresses on the JTHW "thumbwheel" multiplexer port for which they are active.

On an ACC-35A board, the active range must include all boards connected to PMAC through this ACC-35A. The active range must not include any other board connected directly to the JTHW port, whether another ACC-35A (and its active range), an ACC-34x, or an NC control panel.

On an ACC-35B or board with built-in ACC-35B functionality, the active range must include all boards connected to PMAC through this ACC-35B and its matching ACC-35A. The active range must not overlap with the active range of any other ACC-35B or board with ACC-35B functionality connected to the same ACC-35A.

The numeric range in the table entry specifies the JTHW "thumbwheel" multiplexer port address range for which the card is enabled for the specified SW1 and SW2 settings. The 5-digit binary numbers for the SW1 and SW2 settings, represent from left to right, SWn-5 to SWn-1 (most significant to least significant). A '0' means CLOSED, and a '1' means OPEN, on the DIP switch.

| SW1                     | 00000           | 00001              | 00011             | 00111           | 01111              | 11111          |
|-------------------------|-----------------|--------------------|-------------------|-----------------|--------------------|----------------|
| Setting                 | (1 board)       | (2 boards)         | (4 boards)        | (8 boards)      | (16 boards)        | (32 boards)    |
| 00000                   | 0-7             | XXX                | XXX               | XXX             | XXX                | XXX            |
| 00001                   | 8-15            | 0-15               | XXX               | XXX             | XXX                | XXX            |
| 00010                   | 16-23           | XXX                | XXX               | XXX             | XXX                | XXX            |
| 00011                   | 24-31           | 16-31              | 0-31              | XXX             | XXX                | XXX            |
| 00100                   | 32-39           | XXX                | XXX               | XXX             | XXX                | XXX            |
| 00101                   | 40-47           | 32-47              | XXX               | XXX             | XXX                | XXX            |
| 00110                   | 48-55           | XXX                | XXX               | XXX             | XXX                | XXX            |
| 00111                   | 56-63           | 48-63              | 32-63             | 0-63            | XXX                | XXX            |
| 01000                   | 64-71           | XXX                | XXX               | XXX             | XXX                | XXX            |
| 01001                   | 72-79           | 64-79              | XXX               | XXX             | XXX                | XXX            |
| 01010                   | 80-87           | XXX                | XXX               | XXX             | XXX                | XXX            |
| 01011                   | 88-95           | 80-95              | 64-95             | XXX             | XXX                | XXX            |
| 01100                   | 96-103          | XXX                | XXX               | XXX             | XXX                | XXX            |
| 01101                   | 104-111         | 96-111             | XXX               | XXX             | XXX                | XXX            |
| 01110                   | 112-119         | XXX                | XXX               | XXX             | XXX                | XXX            |
| 01111                   | 120-127         | 112-127            | 96-127            | 64-127          | 0-127              | XXX            |
|                         |                 |                    |                   |                 |                    |                |
| 01111                   | 248-255         | 240-255            | 224-255           | 192-255         | 128-255            | 0-255          |
| An 'xxx' er<br>enabled. | try in the tabl | e signifies that t | there is no multi | plexer port add | ress for which the | e card will be |

The SW1 setting specifies the highest address that can be enabled on this card; multiply the SW1 number by 8 and add 7. The SW2 setting specifies the number of cards that are to be enabled minus 1 (if the SW2 number is  $2^{n}$  - 1, as for all settings in this table). The table below summarizes the SW1 and SW2 settings for ACC-35A/B.

#### Example:

Suppose we have two local ACC-34As and four remote ACC-34As. Furthermore, of the four remote ACC-34As, one pair is to be physically located a long distance away from the other pair. In this example we need one ACC-35A and two ACC-35Bs (see schematic diagram). With reference to the User's Manual for ACC-34A, the SW1 switches on ACC-34As must be set such that each responds to a distinct JTHW memory space. Also, all of the SW1 and SW2 switches on the ACC-35A and the ACC-35Bs must be set such that the correct decoding of the address lines is accomplished.

In order to do so, the user must decide on the address allocation for each local and each remote ACC-34A. It is more convenient to cluster the addresses of the I/O cards which are local or connected to a particular ACC-35B. In this example (referring to the User's Manual for ACC-34A) it may be decided that the two local ACC-34As will occupy the first and the second 8 bytes on the PMAC's JTHW multiplex memory space. This means that their respective SW1 switches will be set as follows:

Local ACC-34A board #1 SW1 switch setting:

| ACC-34A  | Port A/B<br>Address | SW1 #5 | SW1 #4 | SW1 #3 | SW1 #2 | SW1 #1 |
|----------|---------------------|--------|--------|--------|--------|--------|
| Board #1 | Bytes 0 - 7         | ON     | ON     | ON     | ON     | ON     |

Local ACC-34A board #2 SW1 switch setting:

| ACC-34A  | Port A/B<br>Address | SW1 #5 | SW1 #4 | SW1 #3 | SW1 #2 | SW1 #1 |
|----------|---------------------|--------|--------|--------|--------|--------|
| Board #2 | Bytes 8 - 15        | ON     | ON     | ON     | ON     | OFF    |

For the remote ACC-34As we intentionally leave the address space for bytes 16 to 31 empty. This is done in order to allow us to select a contiguous set of OFF positions for the set of least significant SW1 switches needed for decoding four remote ACC-34As. Now the four remote ACC-34As may be set to be occupy bytes 32 to 63 of the JTHW multiplex address as follows:

Remote ACC-34A board #3 SW1 switch setting:

| ACC-34A  | Port A/B<br>Address | SW1 #5 | SW1 #4 | SW1 #3 | SW1 #2 | SW1 #1 |
|----------|---------------------|--------|--------|--------|--------|--------|
| Board #3 | 32-39               | ON     | ON     | OFF    | ON     | ON     |

Remote ACC-34A board #4 SW1 switch setting:

| ACC-34A  | Port A/B<br>Address | SW1 #5 | SW1 #4 | SW1 #3 | SW1 #2 | SW1 #1 |
|----------|---------------------|--------|--------|--------|--------|--------|
| Board #4 | 40-47               | ON     | ON     | OFF    | ON     | OFF    |

Remote ACC-34A board #5 SW1 switch setting:

| ACC-34A  | Port A/B<br>Address | SW1 #5 | SW1 #4 | SW1 #3 | SW1 #2 | SW1 #1 |
|----------|---------------------|--------|--------|--------|--------|--------|
| Board #5 | 48-55               | ON     | ON     | OFF    | OFF    | ON     |

Remote ACC-34A board #6 SW1 switch setting:

| ACC-34A  | Port A/B<br>Address | SW1 #5 | SW1 #4 | SW1 #3 | SW1 #2 | SW1 #1 |
|----------|---------------------|--------|--------|--------|--------|--------|
| Board #6 | 56-63               | ON     | ON     | OFF    | OFF    | OFF    |

ACC-34A Base Address Selection for this Example

| Board # | Bytes  | SW1 Dip Switch Setting |    |    |     |     | ng  |
|---------|--------|------------------------|----|----|-----|-----|-----|
|         | Port A | Port B                 | 1  | 2  | 3   | 4   | 5   |
| #1      | 0-3    | 4-7                    | ON | ON | ON  | ON  | ON  |
| #2      | 8-11   | 12-15                  | ON | ON | ON  | ON  | OFF |
|         | 16-19  | 20-23                  | ON | ON | ON  | OFF | ON  |
|         | 24-27  | 28-31                  | ON | ON | ON  | OFF | OFF |
| #3      | 32-35  | 36-39                  | ON | ON | OFF | ON  | ON  |
| #4      | 40-43  | 44-47                  | ON | ON | OFF | ON  | OFF |
| #5      | 48-51  | 52-55                  | ON | ON | OFF | OFF | ON  |
| #6      | 56-59  | 60-63                  | ON | ON | OFF | OFF | OFF |

Again, note that we intentionally did not use bytes 16 to 31 such that the state of SW1 switch 3 remains always OFF. This, as seen below, will simplify the setting of the SW2 DIP switch on ACC-35A and ACC-35B.

Now, with reference to tables 3, the setting on ACC-35A would be as follows:

ACC-35A local buffer board SW1 switch setting:

| ACC-35A  | SW1 #5 | SW1 #4 | SW1 #3 | SW1 #2 | SW1 #1 |
|----------|--------|--------|--------|--------|--------|
| Board #1 | ON     | ON     | OFF    | OFF    | OFF    |

ACC-35A local buffer board SW2 switch setting:

| ACC-35A  | SW2 #5 | SW2 #4 | SW2 #3 | SW2 #2 | SW2 #1 |
|----------|--------|--------|--------|--------|--------|
| Board #1 | ON     | ON     | ON     | OFF    | OFF    |

Note that the SW1 setting on ACC-35A corresponds to the highest addressed remote ACC-34A (board #6). But on SW2 the switches 5, 4 and 3 are ON which provides for automatic matching of the 3 most significant address lines. Also, switches 1 and 2 are OFF which provides for the decoding of 4 remote ACC-34As connected to the two ACC-35B remote buffers.

Finally, in this example, the setting for the SW1 and SW2 switches on the two remotely stationed ACC-35Bs should be as follows:

ACC-35B remote buffer board #1 SW1 switch setting:

| ACC-35B  | SW1 #5 | SW1 #4 | SW1 #3 | SW1 #2 | SW1 #1 |
|----------|--------|--------|--------|--------|--------|
| Board #1 | ON     | ON     | OFF    | ON     | OFF    |

This means that the highest address decoded for boards connected through this remote buffer is 47.

ACC-35B remote buffer board #1 SW2 switch setting:

| ACC-35B  | SW2 #5 | SW2 #4 | SW2 #3 | SW2 #2 | SW2 #1 |
|----------|--------|--------|--------|--------|--------|
| Board #1 | ON     | ON     | ON     | ON     | OFF    |

With only SW2 switch 1 OFF, this provides for the decoding of two ACC-34As through this particular ACC-35B (at addresses 23-39 and 40-47).

ACC-35B remote buffer board #2 SW1 switch setting:

| ACC-35B  | SW1 #5 | SW1 #4 | SW1 #3 | SW1 #2 | SW1 #1 |
|----------|--------|--------|--------|--------|--------|
| Board #2 | ON     | ON     | OFF    | OFF    | OFF    |

This means that the highest address decoded for boards connected through this remote buffer is 63.

ACC-35B remote buffer board #2 SW2 switch setting:

| ACC-35B  | SW2 #5 | SW2 #4 | SW2 #3 | SW2 #2 | SW2 #1 |
|----------|--------|--------|--------|--------|--------|
| Board #2 | ON     | ON     | ON     | ON     | OFF    |

With only SW2 switch 1 OFF, this provides for the decoding of two ACC-34As through this particular ACC-35B (at addresses 48-55 and 56-63).

# POWER SUPPLY REQUIREMENTS AND RECOMMENDED WIRING

### **Power Supply Requirements**

The +5V power supply for ACC-35A is brought in from PMAC via the J1 (JTHW) header. ACC-35A's maximum current requirement at 5 volts is approximately 100 mA. The +5 volt power supply for ACC-35B may be brought in either from ACC-35A or directly through TB1. If the power is to be brought into ACC-35B from ACC-35A then the jumper E1 on ACC-35A must be installed. For situations in which the cable distance between the two accessories is long it is recommended to use TB1 for direct supply of power to ACC-35B. ACC-35B's maximum current requirement at 5 volts is approximately 100 mA.

#### **Recommended Wiring Between ACC-35A and ACC-35B**

It is recommended that the long cable between ACC-35A and ACC-35B be shielded with the shield grounded at the ACC-35A end. Also the differential signal lines should be connected using twisted pair wires (see the enclosed schematic).

# CONNECTORS

# J1 (JTHW) on Acc-35A & Acc-35B

| Pin #      | Symbol                                                                 | Function         | Description               | Notes                    |  |  |  |  |
|------------|------------------------------------------------------------------------|------------------|---------------------------|--------------------------|--|--|--|--|
| 1          | GND                                                                    | Common           | PMAC Common               |                          |  |  |  |  |
| 2          | GND                                                                    | Common           | PMAC Common               |                          |  |  |  |  |
| 3          | DAT0                                                                   | Output           | Data Bit 0                |                          |  |  |  |  |
| 4          | SEL0                                                                   | Input            | Address Line 0            |                          |  |  |  |  |
| 5          | DAT1                                                                   | Output           | Data Bit 1                |                          |  |  |  |  |
| 6          | SEL 1                                                                  | Input            | Address Line1             |                          |  |  |  |  |
| 7          | DAT2                                                                   | Output           | Data Bit 2                |                          |  |  |  |  |
| 8          | SEL2                                                                   | Input            | Address Line 2            |                          |  |  |  |  |
| 9          | DAT3                                                                   | Output           | Data Bit 3                |                          |  |  |  |  |
| 10         | SEL3                                                                   | Input            | Address Line 3            |                          |  |  |  |  |
| 11         | DAT4                                                                   | Output           | Data Bit 4                |                          |  |  |  |  |
| 12         | SEL 4                                                                  | Input            | Address Line 4            |                          |  |  |  |  |
| 13         | DAT5                                                                   | Output           | Data Bit 5                |                          |  |  |  |  |
| 14         | SEL5                                                                   | Input            | Address Line 5            |                          |  |  |  |  |
| 15         | DAT6                                                                   | Output           | Data Bit 5                |                          |  |  |  |  |
| 16         | SEL6                                                                   | Input            | Address Line 6            |                          |  |  |  |  |
| 17         | DAT7                                                                   | Output           | Data Bit 6                |                          |  |  |  |  |
| 18         | SEL7                                                                   | Input            | Data Bit 7                |                          |  |  |  |  |
| 19         | N.C.                                                                   |                  |                           | Not connected            |  |  |  |  |
| 20         | GND                                                                    | Common           | PMAC Common               |                          |  |  |  |  |
| 21         | N.C.                                                                   |                  |                           | Not connected            |  |  |  |  |
| 22         | GND                                                                    | Common           | PMAC Common               |                          |  |  |  |  |
| 23         | N.C.                                                                   |                  |                           | Not connected            |  |  |  |  |
| 24         | GND                                                                    | Common           | PMAC Common               |                          |  |  |  |  |
| 25         | +5V                                                                    | Input            | +5Vdc Supply              |                          |  |  |  |  |
| 26         | N.C.                                                                   |                  |                           | Not connected            |  |  |  |  |
| On ACC-35A | this header should be                                                  | connected to PMA | C's J3 (JTHW) via the sup | plied 26-pin flat cable. |  |  |  |  |
| On ACC-35B | On ACC-35B this header should be connected to the remote I/O board(s). |                  |                           |                          |  |  |  |  |

## TB1 on ACC-35A Option 2 & TB2 on ACC-35B Option 2

(38-pin Terminal Block)

| Pin # | Symbol | Function | Description           | Notes         |
|-------|--------|----------|-----------------------|---------------|
| 1     | BSEL0  | Input    | Diff. Address Line 0  |               |
| 2     | BDAT0  | I/O      | Diff. Data Line 0     |               |
| 3     | BSEL1  | Input    | Diff. Address Line 1  |               |
| 4     | BDAT1  | I/O      | Diff. Data Line 1     |               |
| 5     | BSEL2  | Input    | Diff. Address Line 2  |               |
| 6     | BDAT2  | I/O      | Diff. Data Line 2     |               |
| 7     | BSEL3  | Input    | Diff. Address Line 3  |               |
| 8     | BDAT3  | I/O      | Diff. Data Line 3     |               |
| 9     | BSEL4  | Input    | Diff. Address Line 4  |               |
| 10    | BDAT4  | I/O      | Diff. Data Line 4     |               |
| 11    | BSEL5  | Input    | Diff. Address Line 5  |               |
| 12    | BDAT5  | I/O      | Diff. Data Line 5     |               |
| 13    | BSEL6  | Input    | Diff. Address Line 6  |               |
| 14    | BDAT6  | I/O      | Diff. Data Line 6     |               |
| 15    | BSEL7  | Input    | Diff. Address Line 7  |               |
| 16    | BDAT7  | I/O      | Diff. Data Line 7     |               |
| 17    | GND    | Common   | PMAC Common           | 1             |
| 18    | +5V    | Input    | +5Vdc Supply          | 2             |
| 19    | GND    | Common   | PMAC Common           |               |
| 20    | BSEL0/ | Input    | Diff. Address Line 0/ |               |
| 21    | BDAT0/ | I/O      | Diff. Data Line 0/    |               |
| 22    | BSEL1/ | Input    | Diff. Address Line 1/ |               |
| 23    | BDAT1/ | I/O      | Diff. Data Line 1/    |               |
| 24    | BSEL2/ | Input    | Diff. Address Line 2/ |               |
| 25    | BDAT2/ | I/O      | Diff. Data Line 2/    |               |
| 26    | BSEL3/ | Input    | Diff. Address Line 3/ |               |
| 27    | BDAT3/ | I/O      | Diff. Data Line 3/    |               |
| 28    | BSEL4/ | Input    | Diff. Address Line 4/ |               |
| 29    | BDAT4/ | I/O      | Diff. Data Line 4/    |               |
| 30    | BSEL5/ | Input    | Diff. Address Line 5/ |               |
| 31    | BDAT5/ | I/O      | Diff. Data Line 5/    |               |
| 32    | BSEL6/ | Input    | Diff. Address Line 6/ |               |
| 33    | BDAT6/ | I/O      | Diff. Data Line 6/    |               |
| 34    | BSEL7/ | Input    | Diff. Address Line 7/ |               |
| 35    | BDAT7/ | I/O      | Diff. Data Line 7/    |               |
| 36    | GND    | Common   | PMAC Common           | 1             |
| 37    | +5 V   | Input    | +5Vdc Supply          | 2             |
| 38    | N.C.   |          |                       | Not Connected |

<sup>1</sup> On ACC-35A this signal directly connects to PMAC's digital ground. On ACC-35B, if power is supplied through TB1, this pin connects the digital ground of PMAC to the digital ground of the power supply input through TB1 of ACC-35B.

<sup>2</sup> On ACC-35A this supply is directly brought in from PMAC. With the jumper E1 installed, the +5V supply is also brought out through this connector for ACC-35B. With the jumper E1 removed the +5V supply is <u>not</u> brought out to ACC-35B. In this case, ACC-35B's TB1 should be used for the +5V supply input.

## P1 on ACC-35A Option 1 & P1 on ACC-35B Option 1

(DB37 Connector)

| Pin # | Symbol | Function | Description           | Notes |
|-------|--------|----------|-----------------------|-------|
| 1     | BSEL0  | Input    | Diff. Address Line 0  |       |
| 2     | BDAT0  | I/O      | Diff. Data Line 0     |       |
| 3     | BSEL1  | Input    | Diff. Address Line 1  |       |
| 4     | BDAT1  | I/O      | Diff. Data Line 1     |       |
| 5     | BSEL2  | Input    | Diff. Address Line 2  |       |
| 6     | BDAT2  | I/O      | Diff. Data Line 2     |       |
| 7     | BSEL3  | Input    | Diff. Address Line 3  |       |
| 8     | BDAT3  | I/O      | Diff. Data Line 3     |       |
| 9     | BSEL4  | Input    | Diff. Address Line 4  |       |
| 10    | BDAT4  | I/O      | Diff. Data Line 4     |       |
| 11    | BSEL5  | Input    | Diff. Address Line 5  |       |
| 12    | BDAT5  | I/O      | Diff. Data Line 5     |       |
| 13    | BSEL6  | Input    | Diff. Address Line 6  |       |
| 14    | BDAT6  | I/O      | Diff. Data Line 6     |       |
| 15    | BSEL7  | Input    | Diff. Address Line 7  |       |
| 16    | BDAT7  | I/O      | Diff. Data Line 7     |       |
| 17    | GND    | Common   | PMAC Common           | 1     |
| 18    | +5V    | Input    | +5Vdc Supply          | 2     |
| 19    | GND    | Common   | PMAC Common           |       |
| 20    | BSEL0/ | Input    | Diff. Address Line 0/ |       |
| 21    | BDAT0/ | I/O      | Diff. Data Line 0/    |       |
| 22    | BSEL1/ | Input    | Diff. Address Line 1/ |       |
| 23    | BDAT1/ | I/O      | Diff. Data Line 1/    |       |
| 24    | BSEL2/ | Input    | Diff. Address Line 2/ |       |
| 25    | BDAT2/ | I/O      | Diff. Data Line 2/    |       |
| 26    | BSEL3/ | Input    | Diff. Address Line 3/ |       |
| 27    | BDAT3/ | I/O      | Diff. Data Line 3/    |       |
| 28    | BSEL4/ | Input    | Diff. Address Line 4/ |       |
| 29    | BDAT4/ | I/O      | Diff. Data Line 4/    |       |
| 30    | BSEL5/ | Input    | Diff. Address Line 5/ |       |
| 31    | BDAT5/ | I/O      | Diff. Data Line 5/    |       |
| 32    | BSEL6/ | Input    | Diff. Address Line 6/ |       |
| 33    | BDAT6/ | I/O      | Diff. Data Line 6/    |       |
| 34    | BSEL7/ | Input    | Diff. Address Line 7/ |       |
| 35    | BDAT7/ | I/O      | Diff. Data Line 7/    |       |
| 36    | GND    | Common   | PMAC Common           | 1     |
| 37    | +5 V   | Input    | +5Vdc Supply          | 2     |

<sup>1</sup> On ACC-35A this signal directly connects to PMAC's digital ground. On ACC-35B, if power is supplied through TB1, this pin connects the digital ground of PMAC to the digital ground of the power supply input through TB1 of ACC-35B.

<sup>2</sup> On ACC-35A this supply is directly brought in from PMAC. With the jumper E1 installed, the +5V supply is also brought out through this connector for ACC-35B. With the jumper E1 removed the +5V supply is <u>not</u> brought out to ACC-35B. In this case, ACC-35B's TB1 should be used for the +5V supply input.

# TB1 on ACC-35B only (2-pin Terminal Block)

| Pin #                                                                                                                                                         | Symbol | Function     | Description     | Notes |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------------|-----------------|-------|--|--|--|
| 1                                                                                                                                                             | GND    | Common       | PMAC Common     |       |  |  |  |
| 2                                                                                                                                                             | +5V    | Power Supply | External Supply | 1     |  |  |  |
| <sup>1</sup> This terminal block should be used to supply power to ACC-35 B whenever the distance between ACC-<br>35A and ACC-35B is longer than a few meters |        |              |                 |       |  |  |  |