Gigabit Linespeed
packet analyzer on an

IXP2400 network
Processor

Masteroppgave

Morten Pedersen

Gigabit Linespeed packet analyzer on an IXP2400
network processor

Morten Pedersen

Contents

1

Introduction 1
1.1 Background and Motivation 1
1.2 ProblemStatement 2
1.3 Researchmethod 2
1.4 Maincontributions 2
15 Outline e 2
Hardware 4
2.1 OVEeIVIEW e e 4
2.2 IXP2400chipset. e 4
221 XScale 4
2.2.2 Microengines e e e 8
2.2.3 Memorytypes 10
224 SRAMControllers 11
225 ECCDDRSDRAMController. 12
2.2.6 Scratchpad and ScratchRings 12
2.2.7 Media and Switch Fabric Interface (MSF) 12
2.28 PClController 13
229 HashUnit. 13
2.2.10 Control and Status Registers Access Proxy (CAP) 13
2.2.11 XScale Core Peripherals 14
23 RadisysENP2611 41
2.4 SUMMANY o e 16
Related work 17
3.1 Network Monitoring e 17
3.1.1 CiscoNetFlow 17
3.1.2 Fluke e 18
3.1.3 Wildpackets. 18
3.1.4 Netscout 18
3.1.5 Summary 18
3.2 Network Processors e e 19
3.2.1 Pipelining vs. Multiprocessors - Choosing the Rigatibrk Processor
SystemTopology 19
3.2.2 Building a Robust Software-Based Router Using NetiRvocessors . 20
3.2.3 Offloading Multimedia Proxies using Network Processa 22

3.2.4 SpliceNP: A TCP Splicer using A Network Processor
3.3 Thoughts/Discussion

4 Design and Implementation of a Real-time Packet Logger

4.1 OVEIVIEW o o e e
411 SRAMhashtables L.
4.1.2 SDRAMringbuffer o
4.1.3 RXmicroengine
4.1.4 Loggermicroengine i
415 TXMICIOBNGINES o ottt e
4.1.6 XScale
4.1.7 Intel21555bridge
4.1.8 Hostcomputerkernel Lo
419 Clientprogram e
4.1.10 MySQLdatabase
4.1.11 Databasereader.

4.2 Design and implementationchoices,
4.2.1 Programminglanguage
4.2.2 Streamtablememory Lo
4.2.3 Processing of finished streamentries
4.2.4 Connectiontothenetwork
425 RXblock
426 SDK

4.3 Howtostartthesystem

44 SRAMhashtables

4.5 SDRAM ring bufferand sharedmemory

4.6 XScaleprogram e e e
4.6.1 Initialization
4.6.2 Normaloperation

4.7 Microengine program e
4.7.1 Microengineassembly oL
4.7.2 MaCros e
47.3 MemoOryacCCessS v v v i e e e e e
4.7.4 Hashunit
4.7.5 Interrupts and scratchrings
4.7.6 Mutex e
A4.7.7 Signals e
4.7.8 ProgramFlowRXBlock
4.7.9 Program Flow Logger

4.8 XScale, Intel 21555 nontransparent bridge and hosekern.
4.8.1 DatatransferoverPClbus
4.8.2 Irg. . . . o e e e

4.9 Hostkerneldriver
4.9.1 Description e e
49.2 SDRAMPCItransfer.
493 IRQ . . .

4.10 ClientprogramattheHost a.. 52

4.10.1 Driverhookup 52
4.10.2 MySQL e 52
4.10.3 Programflow 53
4,11 SUMMAIY . . . o o e e e e e e e e e e e e e 54
Evaluation 55
51 OVEIVIEW e e e e 55
5.2 PCltransfer 55
5.3 Databasebandwidth. 57
5.4 Microengine program evaluation 0w e . 58
54.1 Testprograms o o i e e e e e 58
5.4.2 How many contextsareneeded? 59
5.4.3 Sending data between two computers 61
5.4.4 Sending data between four computers 63
5.5 Abilityto monitorinrealtime L. 68
56 LiveTest. 71
5.7 DISCUSSION o o e e e e 37
Conclusion 76
6.1 Summary 76
6.2 Contributions 77
6.2.1 Aworking, line speed trafficanalyzer 77
6.2.2 Intel SDK vs Lennert Buytenheks SDK 77
6.2.3 Assemblercode 77
6.2.4 Largetablesand hashunit 77
6.25 PCl e 77
6.3 Futurework 77

Abstract

Network monitoring is getting more and more important. Weghtiget government laws about
monitoring and storing data about network traffic [1] [2]. fmnitor a 1Gb/s link, extract and
store information from every network stream or connect®mery hard on a regular computer
with a regular network card. The problem is that the procegsi each packet has to be done on
the host computer, and the packets needs to be transfereed twus. There is special hardware
to do network monitoring and analysis, but this is expenaitveGb/s.

In this project, we are going to look at how network processman be used to implement
a lowoverhead, linespeed, gigabit packet analyzer. Aspbed of the network increases, the
regular computer is getting more and more problems to keapitlpall the data that is needed
to be copied back and forth on the PCI bus, so we will use a P@lw#h network interface
and network processors.

Network processors may be a solution to some of the probldimsy can be programmed
to process each packet on the card at line speed, and arae@é$rgm the ground to handle
network traffic.

We have built a gigabit packet monitor and analyzer thatistesf a regular computer and
a Radisys ENP2611 card [3] with the Intel IXP2400 chip set [4]

Our system can be used in two ways: 1) connected to a mirr@B4AN) port on a switch
and 2) as an intermediate node (bump in the wire) analyziryfarwarding packets. One
reason to use a mirror port is that if our Logger crashes, litvait affect the network. Another
reason is that we do not delay network traffic.

We will give examples of usage of the specialized hardwage, the hash unit which can
be used to locate the right entry in a table spread over twoNRKRannels.

You will also see how you can have the XScale make interruptseé host computer that ends
up as a signal to an application in user land. We used the @@etegh PCI driver [5] to transfer
data from the IXP card to the host computer over the PCI bus.

At the end, we will have some tests to see how the card perfofhe last test is from a
real world network at our university. We were logging allffi@in the building for computer
science for about half an hour. And yes, our Logger does work.

In summary, we present a linespeed gigabit packet monitaaalyzer running on a com-
modity PC with a commodity network processor.

Chapter 1

Introduction

The speed of the network increases everywhere. You can nowe ptaces get 1Gbps to your
house [6, 7]. As more people get higher bandwidth, the bao&lod the network needs to keep
up. This includes servers and routers.

Network processors are processors especially made foonepvocessing. They are sim-
ple, specialized, and fast. We will take a look at the difféneesources on a network card,
and try to explain them. We will also take a look at what othsase written about network
processors. Finally, we describe an implementation anbhatran of a traffic monitor on the
IXP2400

1.1 Background and Motivation

As Internet traffic increases, the need to monitor the traffareases too. Internet service
providers might want to monitor their traffic to see what timeed to upgrade, or what kind of
traffic their customers produce. There are government laiess that might be made [1] [2],
that make the Internet service providers log all traffic. Eoable to log all traffic, you need to
log many connections a second, so specialized hardwardevileeded. Network processors
are well suited for this. Another usage is logging data irvarsities or companies that develop
hardware or software to see that their systems producedghemnetwork traffic.

Network processors are designed to process packets ghdiedsThey are often connected
to different kinds of fast memory to be able to work fast ertou@heir chipset often utilize
many processors to get more work done in parallel. Since #teark processor(s) can be
placed on the network card itself, they are close to the nétand do not need to copy or move
data over buses like the PCI bus to process the packets.

Network processors can help to make servers get higherghput and less latency be-
cause more of the processing occurs on the network card vibelre the network processors
are placed. They try to offer the speed from ASIC designs hagtogrammability from com-
puter based servers by being especially designed for hmapdétwork traffic, and have enough
registers, memory types and hardware support so that thepe@rogrammed. Network pro-
cessors can also do some packet processing to lighten tthetotae host computer even more.

Network processors are fairly new, so it is not easy to gee@admples and documentation
about how to do things. Another challenge is that we in thelIl{P2xxx [8] system have
one “core” processor and 8 microengines which need to cab@eA microengine is a simple
but fast processor designed to do handle network packetsAdslitionally, there are a lot of

1

different memory types and hardware supported operati®osareful consideration is required
to make an optimal implementation.

1.2 Problem Statement

When we started on this project, the only known way to commatei with the IXP card from
the host computer was with the IXP cards 100Mbit/s netwark &nd its serial port. Since the
card is a 64bit PCI card, we needed to find a PCI driver that esyrkr develop one. We also
need to support interrupts, so that the IXP card can tell tre¢ bomputer that there are data
ready to be read, and we need to come up with a design thatsatfewdata to be transferred
from the IXP to the host computer.

Since we can have many thousands connections at the same/gralso need to understand
the hardware hashunit well, since we are using it to find thletrentry without a linear search,
which will take too much time and resources. All the conrawdineed to be stored in memory
in a efficient manner, to avoid memory bottlenecks.

The code needs to be fast so the system can handle as mangtoms@s possible. We
wanted to write the microengine code in assembler to haveuas gontrol as possible. Another
reason for writing in assembler is that we have problems thighC compiler.

All the entries need to be stored in a database, we used th&@Myg&tabase. The question
is how many connections it can store in one second. We needlte sure we have a database
system with enough write performance.

Network traffic can have spikes, that mean a lot of connestinra short time. We wanted
to design our system in a way that spikes are evened out.ri tha spike, we want the data to
arrive at the database at a lower rate.

1.3 Research method

We have designed, implemented, and tested the system ohaelbare. There exist some
tools for simulation of the IXP2400 card.

1.4 Main contributions

It works! The IXP2400 card can be used as a line speed pacygéto Additionally we have
documented the hash unit, found a PCI driver that workspalgh at a very slow bandwidth.
All the code for the mirror version is written in GPL, or openusce, there is no copyprotected
code. We found that Lennert Buytenhek [9] has written songe ¢bat can reset, load code into,
and start the microengines. This means that we do not usefdhg software development kit
provided by Intel. This code enables us to restart the progma the IXP card without resetting
it.

1.5 Outline

Chapter 2 describes the hardware in the Radisys ENP261Iwdaath includes the IXP2400
chipset.

Chapter 3 is about related work. It talks about papers réledeur work, and systems similar
to our logger.

Chapter 4 is our design. Why we did the things we did and howiaé.d

Chapter 5 is tests we performed and their results. This evdodes a test from the real world,
as we tested our system at the network at our university.

Chapter 6 is our conclusion.

Chapter 2

Hardware

2.1 Overview

The Network processor card we are using in this project ha$XR2400 chipset [8] from Intel
integrated in the Radisys ENP2611 card [3]. It is a regular &d. It has the 64bit PCI
connectors, but can be used in a 32bit PCI slot like the onerevesing in our computer. The
system can run without any help from the host computer. Heweat boot, it needs a DHCP
server to get its operating system and file system. This istieagth of the card. It can do a lot
of computing locally, and only send the information that bost need up to the main general
purpose CPU. It is great for operations that enable the raiggmes to do simple computings
at each packet and let the XScale deal with more complex thskdhappens less frequently.
For storage of data larger than its memories, the host casripdtard drives can be used by
transferring the data over the PCI bus. To get an overvielwetechnology and its capabilities,
we first take a look at the chipset and then the card as a whole.

2.2 I1XP2400 chipset

The IXP2400 [8] is Intel's second generation network preoeghipset, and it retires the pre-
vious 1XP1200 [10]. It has many different resources to makekpt processing as effective as
possible. A simple layout can be seen in figure 2.1. We canhgeedamponents that are shared.
For example, all microengines and the XScale share the SRAdMle SDRAM. This is a real
advantage for multistage packet handling. The code thatves packets reads in the packets,
and only sends a 32bit handle to the microengines that takeotdhe next step. If the XScale
needs to see the packet, it gets the same 32 bit handle. Thithes is a little copying to have
the packet accessed from different places. The chipsetalsthardware SRAM and Scratch
memory rings. These are intended for making a queue for kandbu typically have one ring
to transfer the packet handle from one stage or process tbem@elow, we take a look at the
different components.

2.2.1 XScale

The XScale is a 32bit, 600MHz, general purpose RISC CPU, atitrlp with ARM version 5.
It does not have hardware floating point, but vector floatioigpis supported by a coprocessor.

Media Switch
Fabric (MSF)

Scratchpad
Memory

SRAM
Controller 0

g

g

g

SRAM
Controller 1

SDRAM
Controller

g

g

g

g

g

g

g

g

g

Hash PCI Intel XScale
; AP
Unit Controller ¢ ME €— ME ME) ME Intel XScale core
0x1 0x0 0x10 0x11 core
Periperials
y v
ME ME |/ ME ME
ox2 [] ox3 ox13 [¥] ox12
Performance
Monitor
ME Cluster 0 ME Cluster 1

Figure 2.1: Overview of IXP chipset

It also includes the Thumb instruction set (ARM V5T) [11] aitd ARM V5E DSP exten-
sions [11]. It has 32KB cache for instructions and 32KB fotadal'he processor has several
different types of memory mapped in a continuous region tkemaeasier to access it all, see
figure 2.3 and table 2.1. Here is an example of how we map thér@and Status Register
Access Proxy (CAP) registers into a variable so we can agtess

cap_csr = ioremap_nocache(0xc0004000, 4096);

See 1XP2400_2800 [12] section 4.1.3.3 for the address td-#s¢ Write CSR. According to
ioremap_nocache’s manual page: “loremap_nocache pesfanptatform specific sequence of
operations to make bus memory CPU accessible via the resdlwrreadl/writeb/ writew/writel
functions and the other mmio helpers.” Our version of lorpm@cache is a function that
Lennert Buytenhek [9] has implemented. In figure 2.2 you s@ewe use the mapped memory
to access the hash unit’s registers to initialize it. Read2%00_2800 [12] section 5.6.2 to see
how we got the addresses.

voi d hash_init(void) {
unsi gned i nt rhashunit;
hashunit = (unsigned int*) (cap_csr + 0x900);
/1 48bit multipler registers:
hashuni t[0] = 0x12345678;
hashuni t[1] = 0x87654321;
/1 64bit multipler registers:
hashuni t[2] = Oxabcd8765;
hashuni t[3] = 0x5678abcd;
/1 128bit nultipler registers (four of these):

hashuni t[4] = Oxaabb2367;
hashuni t[5] = 0x6732aabb;
hashuni t[6] = 0x625165ca;
hashuni t[7] = 0x65cal561;

Figure 2.2: Memory map example

Note that the microengines do not do the memory mapping, shbave to translate the
addresses when we access the same byte from XScale and tbemgices.

The XScale is used to initialize the other devices, it canaioesprocessing of higher level
packets, and e.g. set up connections, but most of the packegsing is supposed to be done
at the microengines. It can also be used to communicate hatihost computer over the PCI
bus. The XScale can sustain a throughput of one multiplyimedate (MAC) every cycle. It
also has a 128 entry branch target buffer to predict the mogcof branch type instructions to
increase speed. Endianness is configurable and chosenhowterg. This way the CPU can
be either little or big endian. Not at the same time, but itti isnpressive. It also supports
virtual memory and runs the kernel in kernel level and the psegrams in user level. It runs
MontaVista Linux [13] or VxWorks [14] for embedded platfoson our board.

FFFF FFFF
PCI memory PCI Controller CSRs 0xDF00 0000
1/2 GB /|xp PCI Config Regs ~ OxDE00 0000
E000 0000 PCI Spec/IACK 0xDCO00 0000
PCl i/o, SRAM ring, Scratch PCI CFG 0xDA0O 0000
Flash ROM, CAP, CSR PCI 1/0 0xD800 0000
1/2 GB Core Local CSRs 0xD600 0000
C000 0000 Reserved (64MB)
DRAM CSRs 0xD000 0000
SRAM CSRs and
Queue Array 0xCCO00 0000
SRAM Scratch 0xCA00 0000
1GB MSF 0xC800 0000
Slowport (or Flash RAM)0xC400 0000
Reserved
8000 0000 CAP-CSRs 0xC000 0000
DRAM and XScale
Flash ROM
2 GB
0000 0000

Figure 2.3: XScale memory map

Area:

Content:

00000000-7FFFFFFF
80000000-8FFFFFFF
90000000-9FFFFFFF
A0000000-AFFFFFFF
B0000000-BFFFFFFF
C0000000-CO00FFFF
C0004000-CO004FFF
C0004800-C00048FF
C0004900-C000491F
CO0004A00-C0004A1F
C000C000-CO00CFFF
C0010000-CO01FFFF
C0020000-CO02FFFF
C0030000-CO03FFFF
C0050000-CO05FFFF
C0080000-CO08FFFF
C4000000-4FFFFFF
C5000000-C53FFFFF
C5800000

C5800004

C5800008
ContentC580000C
C5800010

C5800014

C5800018

C580001C
C5800020-C5FFFFFF
C6000000-C63FFFFF
C6400000-C67FFFFF
C6800000-CBFFFFFF
C6C00000-CFFFFFFF
C7000000-C7FFFFFF
C8000000-C8003FFF
CAO000000-CBFFFFFF
CC000100-CCO001FF
CC010000-CCO101FF
CC400100-CC4001FF
CC410100-CC4101FF
CC800100-CC8001FF
CC810100-CC8101FF
CCC00100-CCCO001FH
CCC10100-CCC101FH
CEO00000-CEFFFFFF
CE400000-CE4FFFFF
CE800000-CE8FFFFF
CECO00000-CECFFFFH
D0000000-D0O00003F
D0000040-D000007F
D0000080-D0O0000BF
D6000000-D6FFFFFF
D7000220-D700022F
D7004900-D700491F
D8000000-D8FFFFFF
DAO00000-DAFFFFFF
DB000000-DBFFFFFF
DCO000000-DDFFFFFFH
2?7

??7?
DEO00000-DEFFFFFF
DF000000-DF00015F

E0000000-FFFFFFFF

SDRAM, XScale Flash RAM
SRAM Channel 0

SRAM Channel 1

SRAM Channel 2 (IXP2800 only)
SRAM Channel 3 (IXP2800 only)
Scratchpad CSRs

CAP Fast Write CSRs

CAP Scratchpad Memory CSRs
CAP Hash Unit Multiplier Registers
CAP IXP Global CSRs
Microengine CSRs

CAP XScale GPIO Registers

CAP XScale Timer CSRs

CAP XScale UART Registers
PMU?

CAP XScale Slow Port CSRs
XScale Flash ROM (Chip-select 0) (16MB 28F128J3
FPGA SPI-3 Bridge Registers (Chip-select 0)
POST Register (Chip-select 0)

Port 0 Transceiver Register (Chip-select 0)
Port 1 Transceiver Register (Chip-select 0)
Port 2 Transceiver Register (Chip-select 0)
FPGA Programming Register (Chip-select 0)
FPGA Load Port (Chip-select 0)

Board Revision Register (Chip-select 0)
CPLD Revision Register (Chip-select 0)
Unused (Chip-select 0)

PM3386 #0 Registers (Chip-select 1)
PM3387 #1 Registers (Chip-select 1)
Unused (Chip-select 1)

SPI-3 Option Board (Chip-select 1)

Unused (Chip-select 1)

Media and Switch Fabric (MSF) Registers
Scratchpad Memory

SRAM Channel 0 Queue Array CSRs

SRAM Channel 0 CSRs

SRAM Channel 1 Queue Array CSRs

SRAM Channel 1 CSRs

SRAM Channel 2 Queue Array CSRs (IXP2800 only)
SRAM Channel 2 CSRs (IXP2800 only)
SRAM Channel 3 Queue Array CSRs (IXP2800 only)
SRAM Channel 3 CSRs (IXP2800 only)
SRAM Channel 0 Ring CSRs

SRAM Channel 1 Ring CSRs

SRAM Channel 2 Ring CSRs (IXP2800 only)
SRAM Channel 3 Ring CSRs (IXP2800 only)
SDRAM Channel 0 CSRs

SDRAM Channel 1 CSRs (1XP2800 only)
SDRAM Channel 2 CSRs (1XP2800 only)
XScale Interrupt Controller CSRs

XScale Breakpoint CSRs

XScale Hash Unit Operand/Result CSRs
PCI I/O Space Commands

ClI Configuration Type 0 Commands

PCI Configuration Type 1 Commands

PCI Special and IACK Commands

System Control Coprocessor (CP15)
Coprocessor 14 (CP14)

IXP PCI Configuration Space CSRs

PCI CSRs

PCI Memory Space Commands

~

Table 2.1: The memory map for the XScale.

2.2.2 Microengines

D Push S_Push
NNData_In (from DRAM) (from SRAM

_ Intel® XScale®
(from previous ME) Architecturs,

Scratchpad,
I 7 ____7 MSF Hash
| _640 _ | CAP)
| Local |
o _rd_eL“_ - dpbF=-===d41 F=-===4d1 F=-=-==48 |-F====4d} |-===-4
______ e _128 | | _128 _ | 128 _ | __128 _ | __128 _ | Control
______ - EGPRs]| [GPRs<] Next |8 LD 225 "] store
] c [ABank]] [EBank]| [Meighbor|] [XEER]| |CXFER]
______ In In
d _____________________________
------ o F----- I _——] e] - —]
1 1 1 1 1 1
][| : R M
m_addr
Lm_addr 0 : : 'Qu
L e B e il bl e L ---&-I--'------ A_Src
O S N P :-‘-----. B_Src
1
T_Index
* NN_Get
&
>
»
CRC Unit [T Immed
N
+ A_Operand + B_Operand
Execution
Datapath
(Shift, Add, Subtract, Multiply Logicals,
Find First Bit, CAM)
ALU_Out
S_Push _| P L L L Dest
1 1
——— 3= NN_Data_Out
' ; V ; (to next ME)
_ 2]| [-fze_]
- D__ | [|--3 S__ |
Local _ XEER_ | _ XEER_
CSRs __Out_ | _ _Out _ |
— .M L == == Control
¢ ; Command Data
D_Pull S_Pull

Figure 2.4: Overview of microengine components

The IXP2400 also has eight microengines which also run aM&@f) For a simple picture
of what they look like inside, see figure 2.4. They have a sagstpipeline and are 32bit
processors that are specialized to deal with network taskgey are somewhat simple. Their
lack of stack means that you need to keep track of the retudread when programming them.
If you want to do nested calls, you need to allocate registeach procedure so it knows where
to return. Their code is loaded by the XScale and they haveigeldl space for the code. Itis
stored in the Control Store that can be seen in figure 2.4.1é5096 instructions, each 40 bits

wide.

Another thing is that you need to manually declare signatsvaait for them when writing
to a ring or memory. You can choose to run them with either fmuight contexts or threads.
A context swap is similar to a taken branch in timing [4]. ThEsnice when you parallelize
problems for hiding memory latencies, e.g. if a context igwg for memory, another context
could run.

Another limitation can be seen from figure 2.4, that is thatéRecution datapath needs its
operands to be from different sources. You can not add twistexg that both are in the A bank.
The assembler takes care of the assignment of registersiaeslygpu an error if the registers
can not be assigned without a conflict [12].

They have many options for memory storage:

* Their own individually 2560 (640 32bit words) bytes of |dcaemory.
* SDRAM.

* DDR SDRAM.

* The Scratchpad memory

* Hardware rings.

A ring is a circular buffer. It is very nice to use to implemgracket queues. You have one
processor putting the packet handles in a ring and anothepimks them up. This way you do
not have to use mutexes since the operations are hardwgverseg and atomic. And it is also
a way to have one microengine produce data for two or moreamrggines. The microengines
do not have all memory types mapped out in a single addrese sssamentioned above for
the XScale. Each type of memory has its own capabilities hag have different instructions
to access each memory type.(See section 2.2.3). You neeatbto \What type of memory you
are using when you declare it. SRAM channel O is located atesdd)x0 and channel 1 is at
0x4000 0000, so to some degree they have a address map.

The microengines’ branch prediction assumes “branch r@nta i.e. to optimize your
programs, you should write your code so that the branchesar@aken most of the time. It is
not really a branch prediction, it just reads the next indian after the branch. To optimize,
you can use a defer[n] argument after the branch if you hade tieat can be executed if the
branch is taken or not. n is the number of instructions thatlemdone while the microengine
figures out if it branches or not. Usually, nis 1-3.

In the code below, the first line is a branch, and we use dgftr|let the line under execute
whether the branch is taken or not. If the branch is not takerjamage is done, and we do
not use more clockcycles than without the defer option. éf inanch is not taken, we save a
clockcycle since we can start the last line before the braode is finished.

bne[get_offset_search_start#],defer[1] alu[-, $entrd;, xor, iphigh] /* Check lo-
cal IP */

Each microengines have the following features:
* 256 general purpose registers.

* 512 transfer registers.

* 128 next neighbor registers.

* 640 32-bit words of local memory

*

A limited instruction storage. 4Kx40bit-instructionsrfeach microengine.

*

16 entry CAM (Content Addressable Memory) [15] with 32 bt feach entry.
* It has control over one ALU.
* Its own unit to compute CRC checksums. CRC-CCITT and CRG&2supported.

These resources are shared by all contexts. With contexteamireads that the microengine
can run at the same time. This is a way to hide memory latehopd context has to wait, the
microengine just runs another one.

The next neighbor registers can be seen in figure 2.1 as afrowsone microengine to
its neighbor. This can be used if two microengines are wgrkin the same task and need to
transfer data between themselves without using any shesedirces.

They can not write to console, so debugging is a little mackyr Add the fact that there can
be multiple microengines having multiple threads doinggame code, debugging can require
some thinking. But, since we have 8 of these microenginegtadhave a lot of possibilities,
they are very useful. You just have to think about what youtvwamse them for.

2.2.3 Memory types

It is important to use as fast memory as you can, since it denddong time to read or write to
“slow” memory. Use registers and local memory as much as you The relative speed of the
different memory types is shown in Table 2.2. The informaiiotable 2.2 is taken from [15].

Type of memory| Relative access timgBus width | Data rate
Local memory 1 NA on chip
Scratchpad 10 32 on chip
SRAM 14 32 1.6Gb/s
SDRAM 20 64 2.4Gb/s

Table 2.2: Access time for memory types

However, the faster the type of memory, the less storagest Haocal memory in mi-
croengines is very fast, it is made up of registers, but we diave 2560 bytes of it in each
microengine. Remember that you can read/write in parallef different memory types and
channels. A channel is an independent “path” to a memory &oii can read or write to each
memory channel independently of the other ones. SDRAM haglehbandwidth than one
SRAM channel, but with SRAM you can use two channels in palkalthich gives a larger
total bandwidth than SDRAM. SRAM is faster for small transfee.g. meta data and variables.
The SRAM read or write instruction can read or write up to 8ydebwords at the same time.
The SDRAM read or write instruction can read or write up to &#e words. This can save
you some memory access, if you plan what you need to read te.wrbcal memory for the

10

microengines can not be shared. The intended use is to B®extual packet in SDRAM, and
the packet meta data in SRAM.

In our forwarding version, which uses the Intel Software 8leper Kit (SDK) [16], we pass
a 32 bit handle, which includes a reference to both the SRAMad&a and the SDRAM packet
data, when we want to give the packet to the next processamgr (See Figure 2.5) The “E”

Buffer Handle structure

Bit number:
3130 29 24 23 0
el s| 589 Offset in [D,S]RAM
count

E = End of Packet bit
S = Start of Packet bit
Seg. count tells how many buffers used for

this packet
Offest is the offset to DRAM and SRAM

where packet is stored

Figure 2.5: Packet handle

and “S” bit tells if it is the end or the start of a packet. If thacket is small enough to fit in
one buffer, both bits are set. We have a buffer size of 2048%which is larger than a Ethernet
frame, so all packets should be in one buffer. The 24bit offsees you the address to both
SRAM metadata and SDRAM packet data. To get the SRAM metadiati@ss you leftshift the
offset with 2 bits. For the SDRAM data address we leftshiét tfset 8 bits. For SDRAM the
number of bits to leftshift will depend on the buffersize. B4BKB buffer like we use in the
forwarding version, requires an 8 bit leftshift.

In our version for a mirror port on a switch, we made the loggad the data directly from
the media switch fabric (MSF) without any data being copieait from SDRAM. We will
explain this in chapter 4.

2.2.4 SRAM Controllers

The Chipset has two SRAM Controllers. These work indepetiglerf each other. Atomic
operations that are supported by hardware are swap, biiisetear, increment, decrement, and
add operations. Both controllers support pipelined QDRcByonous SRAM. Peak bandwidth
is 1.6 GBps per channel as seen in table 2.2. They can addréesdMB per channel. The
data is parity protected. This memory can be used to shanmetexsuand variables between
microengines and between microengines and the XScale. €agewf this memory is to keep
metadata for packets, and variables that is shared betwetkmiicroengines and XScale.

11

2.2.5 ECC DDR SDRAM Controller

ECC DDR SDRAM is intended to use for storing the actual paeket other large data struc-
tures. The chipset has one 64bit channel (72 bit with ECCYlamgeak bandwidth is 2.4GBps.
We see from table 2.2 that the SRAM has lower latency, but SMRAs the higher bandwidth
per channel. The memory controller can address up to 2GB;wikiimpressive for a system
that fits on a PCI card.

One thing to point out is that memory is byte-addressablaHerXScale, but the SRAM
operates with an access unit of 4 bytes and the SDRAM 8 bytes inferface hardware reads
all bytes and gives you only what you want, or it reads all byiest, changes only the one you
write and writes the whole unit back to memory.

2.2.6 Scratchpad and Scratch Rings

The scratchpad has 16KB of general purpose storage whiclyaiaed in 4K 32bit words.
It includes hardware support for the following atomic opemnas: bit-set, bit-clear, increment,
decrement, add, subtract, and swap. Atomic swap maked gasg to implement mutexes to
make sure that shared variables do not get messed up if memmeotie process tries to write to
them at the same time, or a process reads a variable and nga@syént others from reading or
writing to it before it writes the new value back.

It also supports rings in hardware. These rings are useftrattsfer data between micro-
engines. For example, the packet handles are transferred iee memory is organized as 4K
32bit words. You can not write just a byte, you need to write Whole 32bit word. We can
have up to 16 rings which can be from 0 to 1024 bytes. A ringkis & circular buffer. You
can write more items to them, even if the receiver has not teadtems that are in the ring.
This is the third kind of memory the microengines and the X&can use. We can use all types
concurrently to get a lot done in parallel.

2.2.7 Media and Switch Fabric Interface (MSF)

This chip is used as a bridge to the physical layer device (Pbi¥a switch fabric. It contains
one sending and one receiving unit which are independemtd&ach other. Both are 32bit. They
can operate at a frequency from 25 to 133MHz. The interfaceides buffers for receiving and
transmitting packets.

Packets are divided into smaller pieces called mpacketedWiSF. The mpackets can be
64, 128, or 256 bytes large. If a network packet is larger tih@mpacket size you are using,
you need to read all the mpackets that belongs to one netvamlkep and put it together. The
MSF is very programmable so it can be compatible with difiéhysical interface standards.

The MSF can be set up to support Utopia level 1/2/3, POS-Ph¥l /3, or SPI-3, or
CSIX-L1 [11]. UTOPIA is a protocol for cell transfer betwearphysical layer device and a
link layer device (IXP2400), and is optimized for transfefdixed size ATM cells. POS-PHY
(POS=Packet Over SONET) is a standard for connecting paoket SONET link layer devices
to physical layer. SPI-3 (POS-PHY Level 3) (SPI-3=SysterkBalnterface Level 3) is used
to connect a framer device to a network processor. CSIX (G8ldnmmon Switch Interface)
defines an interface between a Traffic Manager and a switcic flao ATM, IP, MPLS, Ethernet
and other data communication applications [17].

12

If you like, you can use this interface directly. There arstinctions that allow you to read
and send data using it. In our mirror version, we read the6idiytes from the network packets
directly from the MSF.

2.2.8 PCI Controller

We also got a 64bits/66MHz PCI 2.2 Controller. It commuresawith the PCI interface on the
Radisys card helped by three DMA channels.

2.2.9 Hash Unit

The Hash unit has hardware support for making hash caloastiSuch support is nice when
you need to organize data in tables. You can use the hashoukiitoiv which table index to
store or retrieve an entry. It can take a 48, 64, or 128bitrakgnt, and give a hash index with
the same size out. Three hash indexes can be created usimgie rsiicroengine instruction.
It uses 7 to 16 cycles to do a hash operation. It has pipeliaeacteristics, so it is faster to
do multiple hash operations from one instruction than rplédtseparate instructions. There are
separate registers for the 48, 64, and 128bit hashes. Theengines and the XScale share
this hash unit, so it is easy to access the same hash tabléofitinprocessor types. The hash
unit uses some base numbers to make the hash value, You neetetthese numbers to their
designated registers before you use it. The hash unit usafgarithm to calculate the hash
value, and the base numbers are used in that calculation.

We use the hash unit to access our table of streams in a effegty, we will have more
about this in section 4.7.4.

2.2.10 Control and Status Registers Access Proxy (CAP)

The Control and Status Registers Access Proxy is used fomeornitation between different
processes and microengines. A number of chip-wide contrblstatus registers are also found
here. The following is an overview of its registers and time@anings:

* Inter Thread Signal is a signal a thread or context can serahbther thread by writing
to thel nt er Thr ead_Si gnal register. This enables the thread to sleep waiting for the
completion of another task on a different thread. We useahosir logger, to be sure that
the packets are processed in order. This is important inT&Cg handshake. All threads
have aThr ead- Message register where they can post a message. Other threads can
poll this to read it. The system makes sure only one gets tresage, to prevent race
conditions.

* The version of the IXP2400 chipset and the steppings carée in the CSR (CAP).
* The registers to the four count down timers is also founceher

* The Scratchpad Memory CSRs (CAP CSR) are located here.eldresused to set up the
scratch rings. The scratch rings are used in our logger tonwanicate between micro-
engines.

13

* | XP_RESET_0 andl XP_RESET _1 is two of the registers found hereXP_RESET_0
is used to reset everything except for the microengihé$_ RESET 1 is used to reset
the microengines.

* We also find the hash unit configuration registers here.

* The serial port that we use on the IXP card has its configonategisters here.

2.2.11 XScale Core Peripherals

The XScale Core Peripherals consists of an Interrupt Cetyéour timers, one serial Univer-
sal Asynchronous Receiver/Transmitter(UART) port, eiG@neral Purpose input/output cir-
cuits, interface for low speed off-chip peripherals, argisters for monitoring performance.

The Interrupt Controller can enable or mask interrupts ftoners, interrupts from micro-
engines, PCI devices, error conditions from SDRAM ECC, drZParity error. The IXP2400
has four count down timers that can interrupt the XScale vithey reach zero. The timers can
only be used by the XScale. The countdown rate can be set XSbale clock rate, the XScale
clock rate divided by 16, or the XScale clock rate divided B2 Each microengine has its
own timer, which we use to put timestamps in the entry for tlagt @nd endtime of a stream.
The microengine timers are not part of XScale Core Perigbera

IXP2400 also has a standard RS-232 compatible UART. Thiheansed as an interface
with the IXP chipset from a serial connection from a computer

The General Purpose pins can be programmed as either inputut and can be used for
slow speed IO as LEDs or input switches. The interface foraffvchip peripherals is used for
Flash ROM access, and other asynchronous device accessaortiring registers can show
how well the software runs on the XScale. It can monitor insion cache miss rate, TLB miss
rate, stalls in the instruction pipeline, and number of brees taken by software.

2.3 Radisys ENP2611

Figure 2.6 gives you a layout of the Radisys ENP2611. Theldpueent card includes the
IXP2400 chipset as described above and the following commsn

* Two SODIMM sockets for 200-pin DDR SDRAM: They are filled wi256MB ECC
memory in our card.

* 16MB StrataFlash Memory: The bootcode and some utilitreskapt here.

* Three 1Gps Ethernet Interfaces: The PM3386 controls tweriaces and PM3387 con-
trols one. These go to sfp GBICS slots that you can put eitbpper or fiber ports in.
These are the network interfaces you can see marked as “3eb{BEOptical Transceiver
Ports 0,1,2" in figure 2.6

* SCSI Parallel Interface v3. (SPI-3) bridge FPGA: This ie tink between the PM3386
and PM3387 controllers and the IXP2400

14

Ix1 Gigabit Optical
Transcelver Ports 0, 1, ﬁﬁ

82559 10/100
Ethernet Controller

PM3386 Gigabh
Ethernet Controller

& e PM33BE Gigabit
—#————— Ethernet Controller

21555 Mon-transparent
PCIWPCI Bridge

BGA Option
Boord Connectar

SPI-3 Bridge FPGA

1XP2400 Sausalita

200-Pin SODIMM socket
= for DDR SDRAM

Figure 2.6: The Radisys ENP2611 card. Note that one of the¥gI3hould read PM3387.
Picture is taken from [18].

* Two PCI to PCI Bridges: One is a non-transparent Intel 21B%3-to-PCI bridge [19]
which connects the internal PCI bus in the 1XP2400 chipséhéoPCl bus on the host
computer. It lets the XScale configure and manage its PClrmependently of the host
computers PCI system. The 21555 forwards PCI transactietveden the PCI buses and
it can translate the addresses of a transaction when it @éte tother bus. This resolves
any resource conflicts that can happen between the host &ndPC{ buses. The IXP
system is independent of the host computer, and both as€igad@iresses to the devices
connected to their bus at boot [20]. It has registers for bathl (XScale) side and host
side where it defines the address ranges to respond to anddhesaes to translate to.
These registers must be set up right to make the translatwok. Whe 21555 can also be
used to make interrupts on the PCI buses, e.g., an interrugiteohost computer PCI bus
will end up as an interrupt on the host computer kernel. Thewoone is a TI PCI2150
transparent PCI bridge which connects to an Ethernet axterf

* Intel 82559 10/100 Ethernet Interface: It can be used faaudging, to load the operating
system with DHCP/TFTP, or mount NFS filesystems. Is not midn¢ used in the router
infrastructure.

* Clock Generation Device: System clock for the 1XP2400, ameérface clocks for the

15

IXP2400 MSF/FPGA and FPGA/PM338x interfaces.

“Network Systems Design” [15] is a book that describes tligic It talks about networks
in general first, then gets into network processors, andsatilas about the IXP2xxx series
specifically. It does a good job of explaining how the différparts of the card works.

2.4 Summary

We believe that special hardware is necessary to handlectiweork traffic as it grows further.
Residents are getting faster and faster network connegtithand 100 or even 1000Mbps is
already available some places [6] [7]. With all this bandWwjdhere will be a new market for
streaming of data. Sport events, movies, and video confeszare some of the things that
come to mind that require high bandwidth. Online games,o/mnferences, and virtual reality
applications require low latency, and network processans®Ip make that happen by enabling
application dependent processing without full TCP/IP tiagd The online games will grow,
and they will need to send more and more detailed informabanore and more participants.
If two players are shooting at each other, low latency is ieducA lot of them will need the
same information. Intelligent routers will help to makesthore efficient and with less latency
by sending the same data to all the players in the same areadhsf sending the same data
over again between the routers.

We have in the IXP2400 a powerful tool to do packet processitgglarge memories can
hold a lot of information and it can do a lot of computing wite XScale and microengines.
Intel has put a lot of thought into this chipset. There aretafdardware supported features,
rings and atomic memory operations which can save a lot & tesigning software, and speed
up execution.

It is important to get a good understanding of the systemrbefe® implement a service
on the card. We need to program it so that all resources areopytod use. We have eight
microengines with four or eight threads each, hardwarestitacks, and hash operations, the
XScale CPU and then we have the host computer. Furtherm@eesd to know what we
can cut up into a pipeline and let different microengines qmad each and pass it on to the
next one. We also need to consider how many pipeline stageawese, versus how much
we can parallelize. Considering memory access, we do not mamy processes trying to
access the same memory at the same time. We got SRAM, SDRABMcBenemory, and each
microengines local memory on the IXP card, and local memarthe host computer. The host
computer’s harddrive can also be used for storage. To makeytstem perform at its best, we
need to think through and plan what memory to use for what anchich order. However, this
is one of the coolest pieces of hardware we have seen.

16

Chapter 3

Related work

Here we are going to take a look a similar works. We first lookedated technologies or
systems. Lastly we look at other works with network processo

3.1 Network Monitoring

3.1.1 Cisco NetFlow

Cisco has a product called NetFlow [21] [22], which is a netagrotocol which runs on Cisco
equipment for collecting IP traffic information. Accordirtg Cisco, NetFlow can be use for
network traffic accounting, usage-based network billinggwork planning, security, Denial of
Service monitoring capabilities, and network monitorirkgom Wikipedia we see that it can
give the records shown in Table 3.1.

* Version number

* Sequence number

* Input and output interface snmp indices

* Timestamps for the flow start and finish time

* Number of bytes and packets observed in the flow
* Layer 3 headers:

* Source and destination IP addresses

* Source and destination port numbers

* |P protocol

* Type of Service (ToS) value

* In the case of TCP flows, the union of all TCP flags observed thelife of the flow.

Table 3.1: The values given by NetFlow

This is pretty much the same as we are doing with our IXP carlh#ve not tried NetFlow,
or even seen a router equipped with it, so we can not tell hamoiks. We believe that you
can only get it on Cisco routers and not on their switches. ddta is received from the router
using User Datagram Protocol (UDP) or Stream Control Trassion Protocol (SCTP) by a
NetFlow collector, which runs on a regular PC.

17

3.1.2 Fluke

Fluke has gigabit and 10 gigabit network analyzers [23].iT@pt | Vi ew Li nk Anal yzer

is described as: “OptiView Link Analyzer provides compraetige visibility for network and
application performance troubleshooting on Ethernet netg; all in an ASIC architecture for
real-time monitoring and packet capture up to line rate Gilgspeeds. Link Analyzer is rack
mountable and provides 10/100 and full duplex Gigabit Eteenetwork monitoring and trou-
bleshooting.” We found a price for it on Internet [24], it welese to $30 000. This model has
two interfaces for monitoring, both can be 1Gb/s.

They also have a 10Gb/s model call¥di nk Anal yzer [25]. “XLink Analyzer is a
solution for high speed enterprise data centers. XLink s the means to simultaneously
analyze multiple 10Gigabit or 1Gigabit Ethernet links waith the risk of missing a packet. This
performance helps solve network and application problesmssef, while maintaining higher
uptime and performance for end users.” This one is more esipenA interface card with two
10Gb/s interfaces runs around $72 000 [26], a card with f@igls interfaces cost around $46
000 [27], and you need a chassis, the least expensivBiisgl e Sl ot XLi nk Chassi s
that costs $7 600 [28].

3.1.3 Wildpackets

According to WildPacket, their Gigabit network solutior9] provides real-time capture and
analysis of traffic, capturing high volumes of traffic withalropping any packets and provide
expert diagnostics and rich graphical data that accelématdleshooting. They have solutions
for 1Gb/s and 10Gb/s network analysis. WildPacket's GigAbialyzer Cards are hardware
designed to handle Gigabit traffic analysis. When captupackets at full line rate, the card
merges both streams of the full-duplex traffic using synoleed timestamps. The card can
also slice and filter packets at full line rate speed to givetteb analysis.

3.1.4 Netscout

This company has 10/100/1000 Ethernet and 10 Gigabit Etheapture and analysis solu-
tions [30]: “The nGenius InfiniStream, when combined witht8lout analysis and reporting
solutions, utilizes packet/flow analysis, data mining astlospective analysis to quickly and
efficiently detect, diagnose and verify the resolution ofsale and intermittent IT service prob-
lems.” They can capture data at 10Gb/s and have impressivagst configurations ranging
from 2TB to 15TB. We did not find any prices for these systenus e do not think they are

cheap.

3.1.5 Summary

The proprietary gigabit analyzers are expensive, whicheasakinteresting to see what can be
done with a regular computer and an IXP card. Another reasaisé network processors are
that we can program them to do what we want. If your analyzenidSIC, you can not change
too much of it, since it is hardware. Our card can be prograthtoedo new and very special
packet inspections. In the next section, we will look at ofhegpers about network processors.

18

3.2 Network Processors

In this section, we are going to look at some examples ofedlatork that has been done with
network processors. We will see that there are many pogibjland that network processors
have a great potential to reduce the load on their host cognpnd increase throughput.

3.2.1 Pipelining vs. Multiprocessors - Choosing the Right Bkwork Pro-
cessor System Topology

The author of [31] try to see how to best organize the next ggioa’'s network processors.
Do we want to parallelize the work over many processors, pemtin a long pipeline, or a
combination of both?

The new network processors will have a dozen of embedde@gsoc cores. Routers have a
lot of new requirements, e.qg. firewalls, web server loadmaley, network storage, and TCP/IP
offloading. To make this work fast enough, routers have toeraway from hard-wired ASIC
to programmable network processors (NPs). Since not aklgiaén the network traffic depend
on each other, network processors can parallelize the psotg You can arrange processing
engines in two ways, parallel or pipeline, or you can choosase a combination. Figure 3.1
shows first a pipeline, secondly a multiprocessor approacti lastly a hybrid. One important
result in the paper is that the systems’ performance canlwagyfactor of 2-3 from the best to
the worst configuration of the CPUSs.

|N——>| |——->| |—>| |———>| |——> ouT a) Pipeline

IN ouT b) Parallel

" <E:E> OUT () Hybrid

Figure 3.1: Pipelining vs multiprocessors

The author used a program called "PacketBench" to emulatersg with different config-
urations. As workload they chose some common applications:

* |Pv4-radix. An application that does RFC1812-compliaatiket forwarding and uses a
radix tree structure to store entries in the routing tab®.[3

* |Pv4-trie. Similar to IPv4-radix, but uses a trie struauwvith combined level and path
compression for the route table lookup [33].

* Flow classification. Classifies the packets passing thinoiing network processor into
flows.

* |IPSec Encryption. An implementation of the IP Security teoml.

19

To analyze the tradeoffs of the different arrangements di§;Rhey randomly placed the jobs
to find the best balanced pipeline possible, so that theyatilawe one pipeline stage that is too
slow. That would have made the whole pipeline slow. To getibbest throughput, they had
to consider the processing time on each element on the systarmd, the memory contention
on the memory interfaces, and the communication betweestdges [31].

They found that many configurations was slow compared to #s¢ tne. The throughput
scaled good with respect to pipeline depth, which is how n@RYs you have in a pipeline. It
was roughly proportional to the number of processors. Fpelpie width, which is how many
CPUs you have in parallel, it increases in the beginningy&athes a ceiling fast around 4 to
6 CPUs. This is because they all try to access the same memterfaces. If you add more
memory interfaces, you can get more performance, each nyemterface can handle about
two processing elements before it starts to slow things down

Memory contention is the main bottleneck. Even if they iased to 4 memory channels,
the memory access time is still the part that takes most tmee pipeline stage. To get the
memory access time comparable to communication and synidatmn, the service time needs
to be low. Processor power is not the limiting factor in thegetems. After memory delay, they
have communication and synchronization to wait for. To gegpams to run fast on network
processors, they learned that they need to have fast merystgnss. The more interfaces, the
better. One nice thing about the 1XP2400 is that there areyraaparate memory systems, the
SRAM, each microengines memory, the scratchpad, and thenconS$DRAM. The ability to
use more threads, so another thread can run then a threadldesit for memory access,
improves throughput.

One important remark they made is that they do not take rhdt#ding into account. They
admit that this is a powerful way to hide memory latency. TRE2400 card has 4 or 8 context
for each microengine. However, this will not increase thtaltmemory bandwidth, just make it
utilized better. E.g. a context stops when it has to wait fenmry, and an other context takes
over the processing unit. Context switches are really faghe IXP system, it is the same time
as a branch [12].

They do only simulate general purpose CPUs, the IXP carddras $iardware implemented
solutions, e.g., hash functions, rings, registers to tix¢ mécroengine, and more, which should
make things faster, and may save some memory access.

3.2.2 Building a Robust Software-Based Router Using NetwérProces-
sors

In [34], the goal is to show how an inexpensive router can bkl lbfrom a regular PC and an
IXP1200 development board. One other point is that a rouaset on network processors is
very easy to change, when new protocols or services are de&tle authors managed to make
it close to 10 times faster than a router based on a PC witHaeiuCs.

The PC they are using is a Pentium Il 733MHz with an IXP120&@ation board contain-
ing one StrongARM and six microengines all at 200MHz. Therb@dso has 32MB DRAM,
2MB SRAM, and 4KB Scratch memory, and 8x100Mbps Ethernasp@ne important advan-
tage with this setup is that the packets in the data planeshwikithe lowest level of packets is
processed by the microengines, and the ones in the con#moépthat needs more processing,
can be handled by the XScale or the host CPU. This way they ti&euhe power of the mi-
croengines to do the simple processing fast at line speedh@more demanding packets can

20

be processed by a more general purpose CPU.

As Figure 3.2 shows, when a packet arrives, a classifier ioid at it to select a forwarder
to send itto. The forwarder is a program that processes ttlegpand/or determines where it is
going to be routed to. The forwarder takes the packet fronmgat queue, and when it is done
processing the packet, it puts the packet in an output quéeearan output scheduler transmits
the packet to the network again. One advantage of this modethway is that it is easy to
make new forwarders and install them. Forwarders can runisroengines, the StrongARM,
or the CPU(s) in the host computer.

In queue

Out queue

Figure 3.2: Classifying, forwarding, and scheduling paske

They tested the microengines performance in forwardindg@@c and they found that they
are able to handle packets from all eight network interfackna speed. The packets were
minimum sized, 64 byte. This gives a forwarding rate of 1 NIpgs(Mega packets per second).
The StrongARM was able to forward packets at 526Kpps polforgnew packets. It was
significantly slower using interrupts. To use the host corapsiCPU, they had the StrongARM
send packets to it. This method used all the StrongARMSs syblét they get 500 cycles to use
on each packet on the Pentium. This way they could forwardKpp4. Keep in mind that they
can not use the Pentium and the StrongARM at full speed attine sime, since they are using
the StrongARM to feed the Pentium. At a forwarding rate o2BMpps, each microengine has
the following resources to use to process a 64 byte MAC-R4btke):

* Access to 8 general purpose 32-bit registers.
* Execute 240 cycles of instructions.
* Perform 24 SRAM transfers.

* Do 3 hashes from the hardware hashing unit.

This evaluation is based on worst case load, since they amafding minimum sized packets at
line speed. Their approach was able to get a forwarding f&el@Mpps between ring buffers.
This is much faster than the 1.128Mpps that is the maximundWwatth for all eight 200Mbps
network ports. They also showed that new forwarders coulthjeeted into the router without
degrading its robustness. This group also states that thedxot an easy thing to program.

Spalink et. al. [34] wrote a good paper, just too bad it wasdwote on the new IXP2xxx
chipset. We found their comparison of the microengines,StrengARM and the Pentium
useful. One interesting contradiction is that Spalinklef3%] do not consider memory to be
a big bottleneck, while the emulation in the "Pipelining Multiprocessors” [31] paper states
memory as the primary bottleneck. So either the memory tgtéiding techniques works well,
or the paper did not take the IXP’s different kinds of memanpiaccount. The authors also did
some calculations of what could be done on the card, and ipnasising. The new 1XP2400
has even more resources and faster processors, so itisetten b

21

3.2.3 Offloading Multimedia Proxies using Network Processs

The paper “Offloading Multimedia Proxies using Network FRresors” [35] looks at the ben-
efits of offloading a multimedia proxy cache with network pssors doing networking and
application level processing. The authors have implenteael evaluated a simple RTSP con-
trol/signaling server and an RTP forwarder. All the procegss done by the IXP card.

The Radisys ENP2505 is a fourth generation network proce#isoas four 100Mbps Eth-
ernet interfaces, one general purpose 232MHz StrongARMeassor, six network processors
called microengines, and three types of memory: 256MB SDRiaMpacket store, 8MB
SRAM for tables, and 8MB scratch for rings and fast memoris the same IXP chipset as the
previous article but put on a different board. It is a coniw@mdl Linux running on the Stron-
gARM. On traditional routers, all packets have to be sentftbe NIC up to the host computer
for processing. This takes time due to copying, interrupss transfers, and checksumming.
Instead, they are doing all of this on the IXP card to get thenley down.

To cache data, they need to send the data up to the host canuitéhey can still improve
upon a regular PC based router. They can queue many pack#éts oard, and when they do
have enough, they can have fewer and more efficient caradgotransfers and disk operations.

A Darwin streaming server and a client to get a QuickTime raovas used to test the router
which was in between the server and client. If a packet wag timtwarded, the microengines
did that themselves. If it needed more processing, it wasteethe StrongARM. The results
are promising, a data item can be forwarded in a fraction eftitme used by a traditional PC
based router.

We needed to get PCI transfer to work or find someone who hasitit;mget the cache and
other things to work. The paper gives us another proof thatork processors are very useful
in handling different network traffic.

3.2.4 SpliceNP: A TCP Splicer using A Network Processor

Here, we have an article [36] that teaches us that TCP sglwam reduce the latency tremen-
dously in a router. To make even more reductions, this paymks| at use network processors.
More specific, the authors are using the Intel IXP2400.

You can make a content aware router by having an applicatiatfirst gets a request from
a client, and then the application chooses a server. Therrbas then two connections, one to
the server and one to the client, and need to copy data betiwesnso the client gets the data
from the server. TCP splicing is a technique that removesésel to copy data by splicing the
two connections together, so that the forwarding is donaen®P layer.

However, switches based on regular PCs have performangssisisie to interrupts, moving
packets over the PCI bus, and large protocol stack overhd&IC based switches are not
programmable enough although they have very high procgssipacity. Network processors
combine good flexibility with processing capacity. For [36]e authors are using the XScale
to create connections to servers and clients. After thatdéta packets can be processed by
the microengines, so that no data needs to be copied oveheud. There are four ways in
which the IXP card can make TCP splicing faster than a Lintseldasoftware splicer:

* First, the microengines use polling instead of interrdds a regular PC does.

* Second, all processing is done at the card, so there is reotdaopy over the PCI bus.

22

* Third, on a regular PC, the OS has overhead like contextchie# and the network pro-
cessors are optimized for packet processing which prosgssekets more efficiently.

* Fourth, IXP cards have eight microengines and an XScal®ngocan do a lot of things
in parallel to increase throughput.

The splicing is done with one microengine to process padkets clients and one for servers,
more microengines might get better throughput. All PCs wereing Linux 2.4.20. Linux
based switches had a 2.5GHz P4 with two 1Gbps NICs. The semwemn Apache web server
on dual 3GHz Xeons and 1GB RAM. The client was another P4 &2zand was running
hffperf.

Compared to a Linux based switch the latency is reduced 82830.6ms to 0.1ms) with
a file of 1KB. For larger files this is is even better. At 1024Ki& tatency is reduced by 89.5%.
Throughput is increased by 5.7x for a 1KB file and 1024KB filis 2.2x.

This is another example that network processors are usaiklso see that they are using
the XScale to do the setup of connections and more compl&g,tasd use the microengines
for packets that are common and simple to handle. It is alsrasting to see the computing
power of this card. You can get a lot of things done with onlgwa bf the microengines.

3.3 Thoughts/Discussion

As the papers above show, network processors can really spewys up. Computers are get-
ting faster, but much of the increased speed is in the CPUWydhdwidth to the PCI bus grows
a lot slower. In addition, you still got user and kernel legehtext switches and have to wait
for PCI transfers. Simultaneously, the bandwidth of netwaards get higher, 1Gbps is normal,
and 10Gbps cards are available [37] [38]. As for the soundscand graphics cards hardware
acceleration came a long time ago. We do believe that thegfutil bring more hardware ac-
celerated network cards. We already have NICs that computdlP/TCP checksums, collect
multiple packets before they send an interrupt to the hostprder. Some even have TCP/IP
stacks onboard [15] p.107-109, so the host computer getoftis¢ network work done by the
network card itself, and the network card is able to do itdasThe host CPU can then spend
its time to do other tasks.

Network processors have a lot of potential. They are a fiitlieky to program, and there
are a lot of things that need to be figured out. However, thgin throughput and low latency
capabilities make them really interesting as the Internatvg. There will always be more need
for more bandwidth.

One neat thing about IXP network processor is that it runsixiand boots from Dynamic
Host Configuration Protocol (DHCP) and Trivial File TransiRrotocol (TFTP). Thus, you get
a Linux system running on your network card. This is greatal$b makes a known, open,
and good platform to develop on. The fact that the CPUs argraromable makes it easy to
change the router’'s behavior, add a new protocol or othéufes. 1t might be hard to make it
as efficient as possible on the microengines, but it can be dotihout soldering, flashing of
BIOS, or other inconvenient ways. Some things may even begdom other Linux projects.

It is important to make some good libraries for the card, sd #rach developer does not
have to implement all things from scratch, for example, R@tsfer and functions to make and
send various packets. It would be nice to have the TCP Sls&dras a program or kernel

23

module. There should also be agreement on some standards/tto mame things and where
to access modules/files/handles, so that we do not end uwlifferent system at each place
incompatible with all other.

In the next chapter, we will present our project: A real tinogder using the IXP card
as a hardware accelerator. It is not easy to look at each paoke gigabit link with a regular
computer. We will use the IXP card to look at the individuatkets and just send the data about
the finished streams to the host computer. This is somethenthimk is possible after reading
the reports in this chapter. Our main concern is transfgrdata over the PCI bus. This was
something no one at our university had done. After some reBege found some information
on a mailinglist [39]. Another issue was if we could make alfts to work together and fast
enough.

24

Chapter 4

Design and Implementation of a Real-time
Packet Logger

We are going to see if we can build a real time packet loggeat i8ha system that can be put on
a network connection and log every stream or connectiongbas through it. With stream or
connection we mean a TCP connection, an UDP datastream dea eEICMP packets, e.g.,
generated by a ping command. There is no problem logging stheams, but it takes time to
program it all. The idea is that an administrator can useleg@QL queries to monitor network
traffic on his network. If someone is trying to get unauthedzaccess we can look at where
the packets come from and the port numbers that are used. Wgetvbne entry in an SQL
database for each such stream. The stream entries will betegbdegularly by setting some
variables. Another thing is monitoring. What kind of trafio we have? Could it be smart to
move a server to a different place? There might come goveanhlaes that require companies
or ISPs to store all their streams for a period of time [1] [@]hich is a challenge with a high
bandwidth network connection.

4.1 Overview

Figure 4.1 shows how the packet logger can be used in a netiatkas a switch that is able
to mirror a port. A mirror port is a port on the switch that ig s@ to get whatever packets that
goes through another port, this is called SPAN in Cisco laggu If the network does not have
such a switch, we can use the Logger to forward each packeebatthe networks as shown
in figure 4.2. We recommend the first version. It gives no ebetancy, and our system can not
affect the traffic. The second version can be used if you ddvae¢ a switch with a mirror port.
From figure 4.3, you see how the data is going through the sysiée microengines get
each packet, read the headers and determine what kind afrsitas. Each stream has its
own entry in the SRAM hash tables. When a stream is finisheceds to be updated in the
database, the XScale copies the entry from the SRAM hasé tatihe SDRAM ring buffer.
For each 10 copied entries, or after a timeout, the XScaldss#re host computer an interrupt
via the 21555 bridge. The host kernel turns the interrumt a8IGUSR1 signal that the client
application gets. The application uses the gtxip [5] ked®slice driver to copy the entries from
the IXP SDRAM ring buffer to itself and uses SQL queries toeernt into the SQL database.
First we will take a overview of what each part does, and therake a closer look at the parts.

25

IXP Logger

Mirror/SPAN port

108
)

A network Switch with mirror/SPAN A network

Figure 4.1: Setup of Logger and switch in a network

> 8 >

A network A network
IXP Logger

Figure 4.2: Setup of Logger forwarding packets in a network

Network interfaces

@ SRAM hash tables SDRAM ring buffer
Microengines
RX
ME
Scratch ring
R = S
Logger ME
XScale | SetIRQreg| 21'555 IRQ\ Host [Signa| Client MySQL
» Bridge » Kernel Program Database
Scratch ring L1 L <:> <:> <:> E>
Y
X
ME
Database
@ Reader
Network interfaces

Figure 4.3: Overview of components and data flow

4.1.1 SRAM hash tables

We have two SRAM memory areas. They contain stream tableesnrhe stream table entries
are stored in the hash tables, see figure 4.6, and contaihealhformation we have about a
stream. We have written more about the SRAM hash tables troset.4.

26

4.1.2 SDRAM ring buffer

The SDRAM shared memory is used to copy data to the host oed?@i bus. It is also used
for synchronizing time and let the client know the XScalead. We have written more about
the SDRAM ring buffer in section 4.5.

4.1.3 RX microengine

The RX, or receive, part is the one that gets the packets frenmtedia switch fabric’'s (MSF)
physical ports. In the forwarding version, the RX then assaghandle to them, and puts the
handle in a scratch ring so the logger microengine can psoteswhole network packet. This
version of the RX is made by Intel and is a part of the SDK [16].

In the mirror version of the logger, the RX just sends the @3tbit of the receive status
word (RSW) [11] from the MSF to the logger microengine oves Htratch ring. This enables
the logger to read the first 64 bytes of the network packettirérom the MSF. This RX block
is made by us. Read more about this in section 4.2.5.

4.1.4 Logger microengine

The Logger microengine is reading the headers of each paBkeheader we mean IP, TCP,
ICMP and UDP headers. There is no problem adding more healderfor more high-level pro-
tocols, it is just to write the code. However, this is not soggd to be a complete packetlogger,
just some basic stuff to see if it could be done in real time.

The microengine first gets the handle from the RX block, thesecks if it has an entry for
the stream, if not it makes one. Next it takes a mutex to makestbat not two or more contexts
are updating the same entry at the same time. It updates thevath the bytes sent and the
time of the last packet. (Except for TCP since we know fronsttgte when it is closed, and
sets the time for the last packet then.) We use one microengih eight contexts for this. The
reason for not using more is that one microengine is enougge ¢ection 5.4.2 for the test.)
We use signals to make sure all the packets are processedein @he signals we use are sent
from one context to the next, this is hardware supportedt sallibe more complicated over
two microengines. Read more about the program flow in sedtior®.

4.1.5 TX microengines

The TX is the microengine that transmits the packets out ¢onistwork again if we are for-
warding packets. Our logger microengine puts the handle seratch ring that the TX block
reads. It reads the packet from SDRAM and makes the mediats¥abric (MSF) transmit it
on the network again. The TX block also frees the buffer(a) the packet uses so that they can
be reused. We use the TX block from the Intel SDK [16]. We dokmatw so much about this
block, we have just used it and it seems to work. If we receipaeket on port 0, we send it
to port 1, and if we get one on port 1, we transmit it on port 0. denot have any tables over
addresses for computers.

If we use our mirror version of the logger, the TX block is nsed.

27

4.1.6 XScale

The XScale loops through the SRAM hash tables and sees if @Ryehtries are done, for the
stateless streams we look at the time for the last seen pdtitet stateless stream is older than
a certain value, we consider the stream as ended and cophé 8DRAM ring buffer. We also
send an interrupt to the host computer when it is time for tretapplication to read from the
SDRAM ring.

To make this a real time logger, we can also update stream@tbanot ended yet. We
check if starttime for the stream is over a limit and send taedo the host. Later, when we
read through the hash tables, we update the ones that ararsting. This is useful for streams
that are longer than minutes, so the data from the databdsbeervismooth” and not jump
whenever a long stream with many megabytes is terminatirggh&ve written more about the
program for the XScale in section 4.6.

4.1.7 Intel 21555 bridge

The Intel 21555 bridge is a part of the Radisys ENP-2611 &rd{fis a non-transparent PCI to
PCI bridge that connects the internal 64bit PCI bus to thel®Glthat the card is inserted in in
the host computer. The PCI bus on the IXP card is initializgthie IXP card, and the PCI bus
on the host computer is initialized by the host computers#ipThe 21555 bridge is needed to
be able to translate PCI addresses between the two PCI bUsesslation is needed since we
can have a device on one bus with the same physical addresdifeeyent device on the other
bus. When the XScale decides that the client needs to copg®rnit writes to a register in the
Intel 21555 non transparent bridge (see section 2.3), d4atikabridge makes an interrupt on
the host side PCI bus. It also needs to be set up for the PQGatc#nns to work. Read section
4.8 for more about setting up the 21555 bridge.

4.1.8 Host computer kernel

A device driver is a program that runs in the kernel itselidtially makes the operating system
able to communicate with a piece of hardware. In this caseddvice driver makes the host
talk to the IXP card. The kernel device driver module of thethmmputer gets the interrupts
that come from the 21555 bridge and sends a signal to thet giegram that runs on the host
computer. The device driver module also copies the data trenSDRAM shared ring buffer
to the client when the client asks for it. Read section 4.&1ore about setting up the 21555
bridge.

4.1.9 Client program

The client program reads the data of ended connections fnerstiared SDRAM buffer in the
IXP card. It then makes SQL queries that it sends to the MySADI $erver, so the data gets
stored there. The program waits for a signal from the XSdadétells it that there is data ready
to be processed. The client program gets the signal fromakedomputer kernel whenever the
kernel gets an interrupt from the XScale. We can read manyesrdt the same time to utilize
the PCI bandwidth better, get fewer interrupts and make tbegssors spend more time at one
place instead of jumping back and forth all the time. We haeeenabout the client program in
section 4.10.

28

4.1.10 MySQL database

The client then writes the information into a vanilla MySQ40] database. Since this is a
very common way of storing data, all possible combinatiohgueries about the data can be
answered, using normal SQL queries. Read more about the My&@base in section 4.10.2.

4.1.11 Database reader

A database reader would be a program that just sends SQLeguerthe database to see what
is going on. Since the system is real time, we can use it to toothie network. We can see the
IP addresses that talked together, the ports that are ubedransferred most bytes or packets,
etc. Atwhat time did those connections find place. We canrseethe IP addresses that started
the transactions if anybody runs a server locally.

This program is not written though. We just use thesql d program that are a part of
MySQL [40] to do some testing. This is a regular SQL clientgyeon and is not very important
for this project.

4.2 Design and implementation choices

4.2.1 Programming language

We choose to write the code for the microengines comprigiedR®X and the Logger in assem-
bler. First and most important, it is the coolest way of peoging. With assembler you have
control of what is going on and where things get done and wdata is kept. Knowing this
you can set up your structs and registers so that you canlgaealata you want to read into
one read operation. It is much easier to utilize the hardwaaits best with assembler. The IXP
assembler is pretty smart for an assembler. You have vinammles for the registers you use, and
the assembler assigns them to physical registers. Thatsiakeich easier to read the code,
and you do not have to worry about the registers being on the $mnk. (See section 2.2.2.)
The assembler also gives you a count of minimum free regist¥ou can get software that
prints a graph over free registers and signals over time,idv@at use this though. That is nice
for final optimizations where you can use the free registersald constants. We could have
used C, but the C compiler has issues. It gets really confwbeah it gets too much code. You
can insert { } around some code to help it figure out what vddathat need to be in registers
at what time. In figure 4.4 we have two examples of the same.cdte code to the left is
“normal” C code, the one to the right has { and } around the fawd and has the variable
declared within it. This way the C compiler has a better idealwen the variableé needs to be
in a register and when it can be freed from one. If you are gtongake a large program in C
on the microengines, try to help the compiler as much as you ca

We thought that writing all in assembler would take more timeode in the beginning but
pay off in debugging time. We learned that changing assensblge is not too much fun, and
should have spent more time planning it all out before wetestiarFor example we had only
total bytes transferred and no account of which way they w&at we needed to rewrite the
assembler code so that we could see how many bytes that \aesderred each way. There
were a lot of bugs made when the code was changed.

29

#i ncl ude<st di 0. h> #i ncl ude<st di 0. h>

int nmain(void) { int nmain(void) {
int ab,i; int a,b;
a=0; a=0;
b=a; b=a;
printf("hei\n"); printf("hei\n");
for(i=0;i<10;i++) {
a=a+ti; int i;
printf("a=%\n", a); for(i=0;i<10;i ++)
b=bx2; a=a+i;
return O; }
} printf("a=%\n", a);
b=b*2;
return O;

}

Figure 4.4: How to help the C compiler to use less registers.

For a while, we had the microengine send an interrupt to thea¥Swhen a TCP stream
was done. This worked, but we think that it is better to chéthe TCP streams are done when
we are looping through the SRAM tables. First, we do not gebasy context swaps whenever
the XScale gets an interrupt. Secondly, we can get floodddintérrupts, and the scratch ring
we use to send the address of the TCP streams which are dahe peoflooded too. The third
reason is to try to avoid spikes of data sent to the host coenplitthe XScale reads a certain
amount of entries a second, a sudden spike of ended streathe oetwork will get evened
out, so the host application is less likely to get flooded wldita. A small drawback is that the
database is not updated right away when a TCP stream endsd@laly is adjustable, so you
can decide how much SRAM bandwidth the XScale can use to epdatdatabase. We have
written more about this delay and tested it in section 5.5.

4.2.2 Stream table memory

Since only SRAM and SDRAM are big enough to hold the streartefabhad to be one of
them. And since we are reading a few bytes each time, we werthé&SRAM. SRAM has
lower latency than SDRAM. (See section 2.2.3 for more abaerhiory types.) Since we have
two SRAM channels, it will be faster if we can use them botthatdame time. See section 4.4 to
see how this is done. And we put the ring buffer of ended stedarbe sent to the host computer
into SDRAM. The host computer is reading this in bulks, so ae atilize the bandwidth.

4.2.3 Processing of finished stream entries

For many connections per second, another way to store tlae idab use the third port on the
IXP card to send UDP packets to one or more dedicated SQLrsefde could pack 10 or more
streams in one UDP packet and send to the servers. If you h&@QLGervers, you could send
one UDP packet to each one in a round robin fashion. This wayggb 10 times the bandwidth
to the SQL databases. Another benefit is that this makesgcadisy. The user program to
get queries from the databases has to be a little more copgilee it has to get information

30

from many databases, but this is a small problem comparedridling many connections per
second on a single SQL server. This is not implemented. We BASQL installed on the host
computer to store the ended streams in, and use the RadisissR@l bus to copy the entries
to the database. To see benchmarks of this, see section 5.3.

4.2.4 Connection to the network

The best way to use the Logger is to putin on a mirror port orsthigéch that has the connection
you want to log. This way we do not introduce any delay, andiffprogram messes something
up, nobody else will notice. Another big benefit from thishat we do not have to care about
forwarding the packets. We can free microengines from sgnplackets, and use them for other
tasks. This allows us to avoid having the packets in SDRAMctvisaves a lot of SDRAM
access.

We ran into a problem though; We were loosing packets. Aftet af testing, rewriting the
RX blocktwice, and a lot of thinking, we realized that the 1Gbit/s link theg were monitoring
were duplex, that is that it can have 1Gbit/s each directamd, we were monitoring that over
one 1Gbit/s port. So if the traffic both ways exceeded 1Gtogether, we would loose packets
to our logger. However, the Cisco 2970 switch can be set uave bwo ports monitoring one
port. One port gives the IXP card the RX traffic of the monitbpert, and the other one the TX
traffic.

We also have a version that forwards packets. This can balubgbu do not have a switch
with a mirror port, or want to implement packet filtering. 8athis copies every bit that goes
through the network, it is easy to modify the logger to chaage IP addresses in packets.

425 RXblock

The RX block can work in two different ways. We can use the Lexgg forward packets from
one interface to another, or connect to a mirror port as desdrabove. We recommend the
last approach, copying just the headers of the packet tmtgel and drop packets instead of
forwarding them.

The forwarding RX code we use is from the Intel SDK [16], versB.5, and can run on
one or two microengines. It should run faster on two microees, but we could not get it to
work. The code consists of many macros, and is hard to uradetsT his code copies the whole
packet from the network into SDRAM and makes a handle thaitg pn a scratch ring so that
the logger microengine can process it.

In the mirror version of the logger we based our RX block on s@wmde written by Lennert
Buytenhek [9]. This code proved to be much easier to undesistéend modify. Instead of
making up a handle, we realized that all we need is contaméuki 32 first bits of the receive
status word (RSW) [11]. We just pass the first 32 bits of it gltmthe logger as a handle over
a scratch ring. This is also the fastest way of doing it, siweeonly send to the logger what
we need, and let the hardware make the handle for us. Whatallg li&e, is that we are not
copying anything to SDRAM. The logger reads the packet cardeectly from the MSF into
its registers.

31

4.2.6 SDK

In the class (inf5067?) that teaches about this card, we scdtel SDK [16]. It works, but has
some issues. No one we know has figured out how to restart treemgines without resetting
the IXP card. This is painful enough by itself, and when yod #tk fact that you can not reset
the card when you have the gtixp PCI driver loaded, you cailydasse a lot of hair...

The SDK is not well documented so it is hard to find out how totldogs. You will need
a lot of time to become familiar with it. One of our supervisan this project, gave us the
following magic to find functions in the SDK:

find . -name*.h -exec grep -i hash {} /dev/nul\;

This searches through all the header files and prints the dileenand the line that contains
hash. There are many files in the Intel SDK so it is not easy to figwiewhere the definition
is. Especially when you do not know what the function is chll¥ou have to try withhash,
and hope that the function’s name contain hash. We spentdd fimhe wondering if there was
a function, and where it might be.

The SDK has a meta packet structure that is big, we don’'t Ussnales, and we are not
sure what all of them are good for.

In defense of the Intel SDK, we do believe that it is fast arfidgieht code, they use a lot of
preprocessor statements to make the code fast. It is ppbaire tested and widely used than
Lennert Buytenhek’s code. There are a lot of options andrpogssor definitions that can be
set to tweak the code. It seems to be pretty generic and casdukiia lot of applications, as
you e.g. can see from all the entries in the meta packet steict

We found that Lennert Buytenhek has written what we needéad the microcode [9], stop
and start the microengines without resetting the IXP card.cdde has not too many comments,
but equipped with the Intel hardware documentation, we ble to understand it. The code is
very straightforward and does not have all the confusingroggoing everywhere as in the
Intel SDK. We do not use anything from the Intel SDK anymor@um mirror version of the
program, except for the microengine assembler. The forwgrdersion uses the RX and TX
block from the SDK and some definitions. With Lennert Buytekib code, we can just start the
XScale/microengine program again without any hasslescamnaode is easier to understand.
Since we can understand Lennerts Buytenhek’s code easertaw change it to do what we
need it to do. For example, we completely rewrote his RX blmckake it do what we needed
and nothing more. After the assembler is done with the sofilefeuc), it uses a perl script
to make a .ucode file. The perl scriptuengi ne-0. 0. 37/1i b/1ist_to_header. pl,
whereuengi ne- 0. 0. 37 is the root directory of Lennert Buytenhek’s code. We ineule
result from this operation in the Xscale code with a regé#lianc| ude statement. This gives
us the code needed to program the microengines. A code egarhfilis and how to load the
microcode, start and stop the microengines is shown in figlve

In figure 4.5 you see how the microcode that is generated fhensource files for the RX
block and logger is included. Next line is a reset of the neagines, then the microengines’
timestamp counters are set to 0 and started. The two nestliiae the microcode into the mi-
croenginesRXME andLOGGERME is just a preprocessor definition to make it easier change mi-
croengine numbet.ogger is defined in the filpacket _| ogger . ucode, andl ogger r x
is defined in the file xp2400_r x. ucode. i xp2000_uengi ne_st art _cont ext s starts
the microengines. The first argument is microengine nundoat, the other one is a mask to
which context to start.

32

#i ncl ude "1 oggerrx/ixp2400_rx. ucode"
#i ncl ude "1 ogger/ packet _| ogger. ucode"

i Xxp2000_uengi ne_reset (Oxffffffff);
i xp2000_uengi ne_init_ti nestanp_counters();

i xp2000_uengi ne_| oad(RXME, &l oggerrx);

i xp2000_uengi ne_| oad(LOGGERME, &l ogger);

i Xxp2000_uengi ne_st art_cont ext s(LOGGERME, Oxff);
i xp2000_uengi ne_start _cont ext s(RXME, 0xff);

Figure 4.5: Usage of Lennert Buytenheks code

4.3 How to start the system

Starting the system sounds easy, but it gave us problemsuliigve the gtixp [5] kernel device
driver loaded, you can not doreake reset. make reset makes therake program run

a little utility calledenpt ool with the argument eset . Lennert Buytenhek [9] has written
theenpt ool . Itis run from the host computer, and uses the PCI bus to thseiXP card.
Resetting the IXP card while the kernel device driver is kxdidhakes the host computer freeze
and you have to reboot. The DHCP server needs to be started aght time. If it starts up
when host computer boots with thet ¢/ i ni t system it will not work. If you wait too long,
the IXP card will time out. The XScale program gets time antedeom the client when it
starts. However, the XScale program just waits until it gestime, so there is no problem with
that. In order to make it work, we had to do:

* Reboot hostcomputer

* Manually start the DHCP server right after boot with:
[etc/init.d/ dhcpd start.

* Make sure the MySQL server is running.

* Load thegt i xp device driver with:
insnmod gtixp. ko

* Start the client program on the host computer. We namedl itent .

* Start the XScale program by logging into the IXP card andetyp wbunp for the
forwarding version or / | oadscri pt for the mirror version. We use minicom over a
serial cable to get a shell on the the card.

The gtixp device driver is described in section 4 .ni comis a Unix program that is used to
communicate over a serial port. We have a connection fronsé¢hial port on the IXP card and
one on the host computer.

4.4 SRAM hash tables

The SRAM hash tables contain all the information we have a@iream. The microengines
read each packet that the card receives, find out what streéelangs to, and update the

33

corresponding stream table entry. When a stream is endgéfdtcopied to SDRAM by the
XScale and the host computer can read it and update the My@@ibase.

We got 65536 entries on each SRAM channel. The bigger the tafthe easier it is to find
a free entry and we can have more entries at the same time.radlwbakck of a big table is that it
has to be read by the XScale to see if an entry needs to be fded&o the host application, so
the bigger the table, the more SRAM access do we need to goghiiball. Read more about
this in section 5.5. The reason for 65536 entries is that thekthat we aréND'ing with is the
number of entries - 1, which is call&@TREAM MASK, and gives the number OXFFFF. To use
AND is a fast way to make a large number point to an index withirstream table. In OXFFFF
all bits are set in the mask, we do not have zeroes betweemte dhe mask will be 1111
1111 1111 1111 written in binary. This requires the numbeerdfies to be a power of two,
e.g., 65536 or 32768. If yoAND with a mask with zeroes, you will get places in your table
that will not get used. Since we use a hash to find the entry, igatmot find the right entry
without some linear search, if another stream has the sasftevaue. With 131 072 entries,
since we have two channels, we should be able to have abo@®st@ams at the same time,
and only do one hash calculation and look at that entry anvidasneighbors to find the right
one on average.

For a TCP stream, it uses the destination and source IP ajg@snumbers and IP protocol
for TCP, that is 6, to calculate a hash. For a UDP stream, & tisesame, but 17 as protocol
number. For ICMP, we use the IP addresses and the ID field waoethe ICMP header in
thei pl ow_srcport field in the stream table struct. Fopl ow_dest port we simply put
0 since we do not have anything better. We need to have samyéiti the port, since we are
using it as an argument for the hash calculation. And itsquaitis 1 as it is in the IP header.
For bytes from iplow to iphigh, we do a trick. Since the ICMRket is of fixed size and we
can calculate the number of bytes transferred by multigiyanth the number of packets, we
can use this field for something else. We use one bit for eackepgpe, see table 4.1. This
way we can see from the database what kind of connection weehgd a “ping” stream will
have bits number 0 and 5 set.

Let us explain the fields in the stream_table struct showrgur& 4.6.i pl owis the lower
IP address of the destination and source IP. We sort the IRsskes so the lower number gets
calledi pl owand the higher phi gh. Itis our way to identify the stream.pl ow_sr cport
is the source port in the stream seen from the iplows viewla@dame for pl ow_dest port .
For ICMP, we use pl ow_srcport as ID field. In and out interfaces are the physical ports
on the card, where the fiber or copper cables gw.dlfi d is O, the entry is free, if it is 1, the
entry is in use, and 2 means that the stream is ended. Thisieewle look at to see if the entry
can be used to store a new stream. For stateless streams, vae kiwow if they are ended or
not, so such a stream can be over even if this bit isdd is the number of iterations through
the hash tables since the entry was updated to the datalsasienie. This field is only 4 bits
wide, which means that the longest update rate is each T@tide of the hash tables. This is
used as a tool to adjust how often the entries are updated. rRege about the update of entries
in 4.6.2. Ifi pl ow_st art is set, the lower IP address started this streaut. ex tells if this
entry is locked or not. We do not want two threads to updateséimee entry at the same time,
SO we use this mutex to prevent it.

Another thing is that the microengines and the XScale areebdjan, but the Intel CPU at
the host computer is a little endian. We quickly learned tplyapt ohl statements to convert
from big to little endian in the host application code, budrthwere more problems. The stream

34

ICMP packet types

Packet type: Bit number:
ECHO_REPLY 0
DESTINATION_UNREACHABLE 1
SOURCE_QUENCH 2
REDIRECT_MESSAGE 3
ALTERNATE_HOST_ADDRESS 4
ECHO_REQUEST 5
ROUTER_ADVERTISEMENT 6
ROUTER_SOLICITATION 7
TIME_EXCEEDED 8
PARAMETER_PROBLEM 9
TIMESTAMP 10
TIMESTAMP_REPLY 11
INFOMATION_REQUEST 12
INFOMATION_REPLY 13
ADDRESS_MASK_REQUEST 14
ADDRESS_MASK_REPLY 15
TRACEROUTE 16
DATAGRAM_CONV_ERROR 17
MOBILE_HOST_REDIRECT 18
MOBILE_REG_REQUEST 19
MOBILE_REG_REPLY 20
DOMAIN_NAME_REQUEST 21
DOMAIN_NAME_REPLY 22
SKIP 23
PHOTURIS 24

Table 4.1: The bit positions for the ICMP packet codes

table was OK as long as you read whole 32 bit entries, but thel8 & bit ones where messed
up. We made a little endian stream struct version for thd @EU so it could find the values
where the XScale and microengines had written them.

We use the hardware hash unit to get a hash value. Remembaidweeshave two SRAM
tables? We just use the least significant bit in the hash alhoose between them. We
rightshift the hash value to get rid of that bit. We then useAAID operation with (stream
entries - 1) to get the hash value within the stream table nWine multiply it with the size of
one entry to get the offset in memory from the start of thegaldince multiplication is weird
at best on the microengines [12], we choose to do two leftshiid an add instead. To leftshift
with 5 bits is the same as multiply with 32. To leftshift withb&s is to multiply with 8. Add
the two results together and you have multiplied the indek vo.

The line in figure 4.7 reads from SRAM infRent ry_wO regi st ers [12]. The nice
thing is thatst ream t abl e_base and of f set is added together to make up the final
address to read from, which makes it very simple to have airsggpoint in memory and an
index as offset. The microengines have 0x0 as start for SRAdhel 0 and 0x4000 0000 for

35

typedef struct streamtable_t {
unsi gned i nt i pl ow //Source ip address was ipsrc
unsi gned i nt i phi gh; //Dest ip address was i pdest
unsi gned short iplow srcport; //Source port nunber for tcp/udp, ID for |ICW
unsi gned short iplow destport; //Dest port nunmber for tcp/udp, 0 for | CW

unsi gned i nt pr ot ocol :8; //1p protocol

unsi gned i nt i pl ow_i nt :4; [/1In and out interface on | XP board. OxF is unknown
unsi gned i nt iphigh_int :4; //In and out interface on I XP board. OxF i s unknown
unsi gned i nt state :8; //State of TCP connecti on.

unsi gned int valid :2; //bit 0-1: Useage: 0:free 1:in use 2:ended
unsi gned int upd :4; //bit 2-5: How many iterations since |ast update

unsi gned int iplowstart :1; //bit 6: Iplow started stream O0:no 1:yes

unsi gned i nt mut ex :1;, //bit 7: Mitex: O:free 1: taken

unsi gned i nt byt es_i pl ow_t o_i phi gh; /1 Bytes transfered fromiplow to iphigh

unsi gned i nt byt es_i phigh_to_i pl ow; /1 Bytes transfered fromiphigh to iplow

unsi gned int packets_i pl ow_ to_i phigh; //Packets send fromiplow to iphigh, packet types in | CW
unsi gned int packets_i phigh_to_iplow, //Packets send fromiphigh to iplow, 0 for |CW

unsi gned i nt starttine; //Time stream started
unsi gned int endtime; [/ Time stream ended

} streamtable_t;
Streamtable

Figure 4.6: Stream table

sranfread, $entry_w0, streamtabl e_base, offset, 4], sig_done[sig_done]

Figure 4.7: SRAM read

channel 1 which makes it easy to use both SRAM channels indime £ode. The number 4
at the end tells the assembler that 4*4 Byte words will be rne&al four registers starting at
$entry_wo.

The SRAM hash tables are defined in thedilesyst em h for the forwarding version, and
| ogger _cf g. hinthe mirror version. This file contains many system defim# and memory
maps. In figure 4.8 we show how the definitions look like. HeISTREAM TABLE_SRAM -
BASE_CHO the address to the start of the hash table on SRAM channel thdéaXScale and
STREAM TABLE_SRAM BASE UE CHOis the same place for the microengin€3REAM -
TABLE_SRAM BASE CH1 the address to the start of the hash table on SRAM channetlidor
XScale andSTREAM TABLE_SRAM BASE UE_CHL1 is the same place for the microengines.

Using the Intel SDK [16], RX and TX block, as we do in the fordizug version, it is not
really obvious what memory that is used or not, so we movecesamound in thell syst em h
file and did some trial and error to find these areas. We alsaqatiout memory areas with the
XScale to see if they were zero, and hoped that it meant theg weused. This is not really
the way you should do it, but when you lack documentation,dowhat you have to!

The mirror port version does not have the problem of allogatnemory, since we have
written all the code, and we know all the memory that is usetiwhere it is used. It does not

36

/1 W use both channel s:

#defi ne STREAM TABLE_SRAM BASE_CHO 0x80065000

#def i ne STREAM TABLE_SRAM BASE_UE_CHO 0x65000

#defi ne STREAM TABLE_SRAM BASE_CH1 0x90065000

#def i ne STREAM TABLE_SRAM BASE_UE_CH1 0x40065000

#defi ne STREAM ENTRI ES 65536 //nust be power of 2
#defi ne STREAM MASK (STREAM ENTRI ES - 1)

#defi ne STREAM S| ZE 40 //bytes was 32

#defi ne STREAM ENTRY_SHI FT1 5 /] <<5 = %32

#defi ne STREAM ENTRY_SHI FT2 3 /] <<3 = %8

#def i ne STREAM TABLE_SRAM S| ZE (STREAM ENTRI ES * STREAM S| ZE)

Figure 4.8: Stream Table Definitions

depend on the SDK files.

4.5 SDRAM ring buffer and shared memory

The purpose for the SDRAM ring buffer and shared memory asda icopy thest r eam

_t abl e entries from the SRAM to the host client program. We couldehesad it directly
from the SRAM to the host, but chose this approach. Since \pg each entry to be sent to the
XScale to a ring buffer, we can read many entries at the sameedver the PCI bus. The more
data you can send at the same time the better, we show nunabpdhssfin section 5.2. You
utilize the hardware better and it take less resourcesstt mdakes it easier to reuse entries in
the SRAM table since we make a copy of them and mark them asleigid away.

Another reason for using a ring buffer is that we do not hawedory about mutexes since
when the data is written, the IXP card is done with it. We have shared variable$JOST_ -
LAST_WRI TTEN andHOST_LAST _READ which point to the last entry which is written by
the XScale and read by the client. The SDRAM variables ar@ééfindl syst em h for the
forwarding version, antlogger _cf g. h in the mirror version. See figure 4.9 for the section
of the file containing the SDRAM. The XScale read both to findevehto write next entry,
and writes onlyHOST _LAST_WRI TTEN. The client also reads both to see which one to read
first and writesHOST_LAST_READ o tell the XScale that it is done with the entries. Because
HOST_LAST_WRI TTENIs only written by the XScale and only after it has written dreries
to the shared memory amdDST_LAST_READIs only written by the client and only after it has
read the entries, we do not need to protect them with mute$®@GSALE LOADIs a variable in
which the XScale saves its system load so that the clientlcaw the load for both the local
system’s CPU and the IXP’s XScaldOST_DATETI ME is used by the client program to write
its time and date to, so the XScale can set its time when tsstde_ PRCS _CNT is the number
of logger contexts that are busy working on a packet at the embm\We add to the counter for
each packet we get from the RX block, and decrease when wetshithe TX block, or drop
the handle if we do not forward the packets. The SDRAM alss astan buffer, so if we get a
burst of connections, we can store them there so the cliehttenMySQL server do not have
to deal with them all at the same time.

Since thest r eam_t abl e entries are copied, itis easy for the microengines to knovelvh
entries are free or not. They just look at the valid fields kan@ 1. When the XScale considers
a stream as done, it copies it to the SDRAM and sets the bit tol@ee microengines can reuse
it.

37

We need one way or another to keep track of which entries tg tmfhe host, so we figured
this was the easiest one. We could have just stored the ind®mmewhere and used them to
copy right from the SRAM arrays. However, that would makesaitder to copy many entries at
the same time. We do believe that it is faster to copy the @nfrom SRAM to SDRAM and
then do a burst over the PCI bus than copy one and one entrley&CI bus. This is proven
in our test in section 5.2.

The array and variables are defineddinsyst em h or| ogger _cf g. h as memory ad-
dresses. Théogger _cf g. h version is a little bit different since it does not use the SDK
code.ENTRI ES_AT_ONCE tells the XScale how many entries it copies to the SDRAM gthare

#i f ndef HOST_SDRAM BASE
#def i ne HOST_LAST_WRI TTEN 0x1900000
#def i ne HOST_LAST_READ 0x1900004
#def i ne XSCALE_LCAD 0x1900008
#def i ne ME_PRCS_CNT 0x190000¢
#def i ne HOST_DATETI ME 0x1900010
#def i ne HOST_SDRAM BASE 0x1900014
#def i ne HOST_ENTRI ES 1000

// Same size as the streamentry
#def i ne HOST_ENTRI ES_SI ZE STREAM SI ZE

//How many entries we send at each interrupt
#defi ne ENTRI ES_AT_ONCE 10

#endi f

Figure 4.9: SDRAM settings idl system h

memory before it sends an interrupt to the host system. Wealgk tests in section 5.2 to see
what the best value isHOST_ENTRI ES is how many entries there are in the SDRAM ring
buffer.

The client also tries to read up ENTRI ES_AT_ONCE entries at the same time to use the
PCI bus efficiently. We have only one client, but if the cliecomes a bottleneck, we could
have more of them, e.g., in a quad CPU system we could havelter@scand two MySQL
threads run at the same time. If more clients run, they neédte a mutex so they do not read
the same entries and mess up H@&T _LAST_READvariable. The mutex can be local on the
host system though. The XScale does not care how data isTeéalmakes implementing the
mutex for the readers easier.

4.6 XScale program

4.6.1 Initialization

The XScale loads the microcode for the microengines, feettsthem and starts them. It is
important to verify the code before you start the microeeginf you give them something that
does not pass the verification, the card will freeze. And seté over the PCI bus will not help.
The host computer needs to be rebooted.

The IXP board does not remember the time and date after atrebbat can to be set with
the reguladat e Unix command in a shell running on the XScale. We use a shabdiA8/
variable to sync the time and date, see figure 4.9. The clieitésvthe epoc, which is the

38

number of seconds since 00:00:00 1970-01-01 UTC, to the D R&riable and the XScale
reads it and sets its time.

The XScale also turns on the Timestamp feature of the migioes. Each microengine
has its own timer. It is 64 bits long and counts up every 16a&y¢l2]. We need to stop the
counting before setting them to zero, and then turn them amag

We also use the XScale to initialize the hash unit. (See@eeti2.9.) It is implemented in
hardware so it is great to find the right index in hashtablaskiy

4.6.2 Normal operation

The main purposes of the XScale code is to copy streams frenSBAM hash tables to the
SDRAM ring buffer and tell the client program that there isvaata.

There are two kinds of data streams, stateful and statel&3SB. is stateful, it has a 3-way
handshake to start a connection and a similar one to end orga I@®MP and UDP on the
other hand, we do not know if a stream is done, e.g., we canmmot kf a Ping command is
terminated. To determine if a stateless stream is over, Wwa siener from last packet seen,
and wait. If we get another packet, the timer is reset. If wendbget another packet before
the timer expires, we consider the stream as ended. Thegiarerdefined il syst em h
or | ogger _cf g. h and are shown in table 4.2. The UDPTIMEOUT and ICMPTIMEOUT
timers are measured in seconds. With TCP, the microengingtardhe state, and when a

Constants for updating the database
Name: Value: | Description: Range:
LOOPDELAY 10000| Time to wait between reads in hash table| [0 - 23]
UDPTIMEOUT 30 | Time to end stream after last packet [0 - 232]
UDPUPDATERATE 10 | Update database for a running UDP streaniid,15]
ICMPTIMEOUT 30 | Time to end stream after last packet [0 - 237]
ICMPUPDATERATE 10 | Update database for running ICMP streamp1,15]
TCPUPDATERATE 10 | Update database for running TCP streams[-1,15]

Table 4.2: How we set the timers for updating the databasendnsth a stream is considered
done.

stream is termintated it sets its TCP state to closed. For aitPICMP, we need to check the
SRAM tables entries to see if any stream has its last packier ehan our limit. To spread
the load on the SRAM, we read some entries and wait some reicoosls before we read
again. We alternate between reading SRAM channel 0 and ehanBince the XScale and the
microengines share the same memory, the more we can disttheiSRAM access the better.

When a stream is considered done, we copy the entry to the SDRAg buffer so the
client program can read it. We send an interrupt to the hosteaénd of each loop through the
hash tables if there are new data, so the client program kitwatshere is new data ready. We
also send a interrupt if we are over a limit of new entries,rfow, we are using 10 entries, as
shown in figure 4.9. This gives us fewer interrupts, and P&igfers with more data for each
transfer.

Imagine a TCP stream that is going on for days. If we only updla¢ MySQL database
when the stream is terminated, we will not get a real timeesysif the TCPUPDATERATE is

39

-1 we do not write the TCP stream to the database before idscrA TCPUPDATERATE of
0, updates the database each time the XScale reads the biasiita CPUPDATERATE of 15,
updates the database only each 16. time the XScale readaghedble. ICMPUPDATERATE
and UDPUPDATERATE work the same way. How often, or how lomgetithe XScale uses
to read the hash tables are adjusted by the LOOPDELAY consiéme XScale code reads
10 entries from each hash table channel before it waits. A BOBLAY of 10000 makes the
XScale use around 1 second to read through all entries i rer32768 entries in each channel.
We have tested the system with different LOOPDELAYs and liakle sizes in section 5.5. If
we update the entry in the database, we copy the entry to tiRABxing in the same way as
we did with ended streams. We do not change the usage bit iratitEfield.

If we stop tracking TCP state, we do not need the packets todmegsed in order, and it
would be easier to use more microengines. However, it seeat®he microengine is enough
to process the packets from a duplex gigabit link, see sed&id.2. We could use another
microengine if we need deeper processing of the packetsexXample, if we want to analyze
some specific TCP packets, we use this block to find the packatisuse a scratch ring to send
the packets to another microengine that only processespaoiets.

This program has been rewritten many times. In the beginiiggt an interrupt from the
logger for each ended TCP stream and copied it to the SDRANIbuifer at once. Since the
XScale has to go through all the SRAM entries anyway, we leaallithe streams the same way.
We also save the context swaps that an interrupt would gneeywee are evening out spikes. Lets
say that 4000 TCP streams ended in a tenth of a second. If weeuserg interrupts, we would
get a lot of context swaps and copying at once, but with our agproach, the TCP streams
would just be marked as finished, and the Xscale would copy tlkeSDRAM ring buffer as it
got to them. This design combined with the SDRAM ring bufemeant to remove the spikes
in done streams as the data gets to the database. The papals[84oncludes that polling is
faster than interrupts.

4.7 Microengine program

4.7.1 Microengine assembly

There are 8 threads running the same code, so everythingbeusptimized to use as little
resources as possible. Read and write as little as posaitdeyhen you do, try to read all you
need in one operation. Additionally we must have mutexesawh&t r eam t abl e entry so
no more than one microengine is updating it at the same time.

Microengines have no stack, so you can not do recursion tiadtve miss recursion.) The
part we miss is return addresses for functions. With no syexkneed to store your return
address yourself in a register. We have a register calledethwhere we store the address
before we branch to the function, see figure 4.10.

| oad_addr[rtn_reg, TCPACK_found_entry#]
br[get _of f set #]
TCPACK_f ound_ent ry#:

Figure 4.10: How we store return address before we call atimmc

40

At the end of the function we use the assembly instruction[rt n_r eg] to return to the
address in the register.

This will make the microengine jump back T€PACK f ound_ent r y#: whenitis done
with theget _of f set function.

If you want to call a function in a function, you need to copeg tit n_r eg into another
register, put your new return address imton_r eg, call the function, and then after the func-
tion returns, copy the original address back tan_r eg. Itis not a problem when you get used
to it.

When a microengine needs to wait for another unit to com@dtesk, we can caltt x_-
ar b[si gnal nane] that swaps out the running context so another can run whielhiead
is waiting for the unit to complete. From section 2.2.2 wewribat they change contexts fast.

The microengines have a lot of registers. We are using 8 gtsfeer microengine. That
gives each context 32 general purpose registers, 16 SRAMXrneighbor registers and 16
DRAM transfer registers. If you run the microengine in 4 @xttmode, you get twice the
registers. We can save some instructions by keeping sonstasus in registers. We have for
example some masks, OxFF, OxFFFF, OxFFFFFF, and the numbetd@red in registers all the
time.

4.7.2 Macros

Macros are nice for code that gets used in more than one plabey can have their own
registers and can even take arguments. The macro in figuteigld simple macro that reads
the timestamp and puts it in a global register called timee We this when we need a new
timestamp for the first or the last packet in a stream. Macoosat need return addresses since
they are just copied into the code before assembly by the@repsor. We also avoid branch
and return code, that saves cycles, and the pipeline doegerdtto be flushed because of the
branches. The drawback is that if you use a macro 10 timesggb@0 times the code, while
a function only has its code written once, but at the cost peesive branching. We have an
example of a function in figure 4.17.

4.7.3 Memory access

SRAM and SDRAM can read or write many bytes in one instruciic), see section 2.2.3. We
are keeping IP addresses, port numbers, protocol and velits fin the start of thet r eam -
t abl e struct. This way, we can read all we need to know in one readatipe to see if the
entry is free when we make a new entry, or if this is the one wdaoking for when we search.
When we update an entry, we start by reading from the protminy. We could have started
with state, but since we need to read whole 32 bit, we stahtgribtocol. Since IP addresses and
port numbers do not change, we do not need to read or write timampdates. (Sest r eam -
t abl e in figure 4.6.) There are places we need to do two writes toevailtto SRAM, e.g.,
whenmake_ent r y writes the whole entry.
This is nice with assembler. You can make it do just what yontyand only that. And since
we have made the structs, we can save some SRAM accessesapyzorg thest r eam -
t abl e in this way.

41

NN NN NNy
/1 Name: get_tine
/] Does: Reads 64bit tine stamp and converts it to seconds since reset.
/1 1nput: None
// Qutput: Tinme in seconds since reset of time stanp in global register tiner
NN NN NNy
#macro get_time()
. begin

.reg tinestanp_high tinmestanp_| ow

//Read tine stanp registers, see |XP2400_| XP2800 3. 2. 37

| ocal _csr_rd[timestanp_| ow

i med[timestanp_| ow, O]

| ocal _csr_rd[tinestanp_high]
i mred[ti mestanp_hi gh, O]

//The tinestanp counts up one for each 16 cycles. That neans 37.5 million
//timestanps a second. W rightshift by 25 to get close to a second per
/lincerement. It is 33.554 nmillion cycles for our second. We fix the
//difference by multiplication in the XScale.

alu[timestamp_low, --, b, tinmestanp_| ow, >>25]
alu_shf[timer, tinestanp_low, OR tinmestanp_high, <<7]
.end
#endm

Figure 4.11: The macro for getting time from the microendimeestamp

4.7.4 Hash unit

The hardware hash unit is really fast and is described in@ge2t2.9. It needs to be initialized
before usage, and we do that on the XScale. After that it istjusopy the arguments you
want into its registers. We use the two IP addresses as théwmwsarguments. The 16 bit
portnumbers are combined into one 32 bit value that we usegasn@nt number 3. p_t ype

is protocol and becomes argument number 4. It is not 32 bityweucan still use it. The code
we use to make a hash value is in figure 4.12. After we calhtheh 128 instruction that
generates the hash value, we adlix_ar b, explained in section 4.7.1 When the hash value is
ready, it is in registeent ry_w0. So when we got the index for a entry, we need to check if

/+ hash | P address, port and protocol */

alu[$entry_wo, --, b, iplow

alu[$entry_wl, --, b, iphigh]

al u[hi ghl owport, iplow destport, or, iplowsrcport, <<16]
alu[$entry_w2, --, b, highlowport]

alu[$entry_w3, --, b, ip_type]

hash_128[$entry_w0, 1], sig_done[hash_done]

ct x_ar b[hash_done]

alu[fcnt, --, b, 0x0] //resets entry couter in search | oop
al u[hash, --, b, $entry_w0]

Figure 4.12: Code to calculate a hash value

this is the right one. The code for that is in figure 4.13. If va# the right entry, we continue, if
not we look at the next entry. When we make a new entry, we cii¢lo& entry we get from the
hash value is free, if it is not, we check the next one. We Iddk@next one until we find the
one we are looking for. But what if there is a new stream thatientry yet. Wouldn't that
make the search function search all entries with a lot of SRa#dgesses? Good question, glad
you asked. We made a shortcut. When we make a new entry we kbowntany entries we

42

//Read in the first 4 |ongwords from stream array.

sran{read, $entry_w0, streamtabl e_base, offset, 4], sig_done[sig_done]
ct x_arb[si g_done]

/1 Verify that values in the entry match the search keys
br_bclr[$entry_w3, 0, get_offset_search_start#] // Check valid bit
aluftmp, --, b, $entry_w3, >>24]

alu[--, tnmp, xor, ip_type] // Check protocol

bne[get _of fset _search_start#], defer[1]

alu[--, $entry_w2, xor, highlowport] // Check both ports at once
bne[get _of fset _search_start#], defer[1]

alu[--, $entry_wl, xor, iphigh] /* Check local IP x/

bne[get _of fset _search_start#], defer[1]

alu[--,%entry_w0, xor, iplow /* Check rempte |P */

bne[get _of f set _search_start#]

Figure 4.13: Code for searching for the right entry

skip to get to a free one, and we remember the largest numipgreskin a variable in scratch
memory. This value needs to be shared between all context imicroengines, and we use
scratch memory since it is the fastest memory type that cashbeed. See the code from the
make_ent ry function in figure 4.14cnt is the number of “skips” for this entryrax_cnt

is the global value read from scratch memory, e.qg., if theerekry function skipped 5 entries
at most for all entries made, we know that the search funcidyneeds to skip 5 entries before
it knows that the entry is not in thet r eam t abl e.

//First we need to read the max_cnt from scratch nenory
scratch[read, $scratch_cnt, scratch_base_reg, MAX_CNT_ADDR, 1], sig_done[sig_done]
ct x_arb[si g_done]
alu[max_cnt, --, b, $scratch_cnt]
make_entry_cnt_start#:
//Then we conpare it to the count fromthis insert
alu[--, max_cnt, -, cnt] /1 if cnt < max_cnt
bhs[make_entry_not _update_nmax_cnt#] // junp to |abel
//We wite the new max count back to scratch menory using atomic swap
al u[$scratch_cnt, --, b, cnt]
alu[max_cnt, --, b, cnt]
scratch[swap, $scratch_cnt, scratch_base_reg, MAX _CNT_ADDR], sig_done[sig_done]
ct x_arb[si g_done]
//Lastly we need to check if the value we got back fromswap is
//1ower than what we wote. To see if another ME wrote a higer value
//in the mddle of our update. W do a branch to the start for this.
alufcnt, --, b, $scratch_cnt]
br[make_entry_cnt _start#]
make_entry_not _updat e_max_cnt #:

Figure 4.14: Code for updating scratch max_cnt shared blaria

4.7.5 Interrupts and scratch rings

It is real easy to send an interrupt to the XScale Figure 4ebdls interrupt “a” to the XScale.

cap[fast_w, 0, xscale_int_a] //Sends XScal e interupt a.

Figure 4.15: Makes an interrupt to the XScale

43

To send an address to the XScale using the scratch ring, wdccas in figure 4.16. The
data we write to the scratch ring does not have to be an addmegS82 bit or shorter value can
be put in a scratch ring. Figure 4.16 puts the content of teg#out of f set in scratchring

scratch[put, $outoffset, ringnum O, 1], sig_done[sig_done]
ct x_arb[si g_done]

Figure 4.16: Sends an address to the XScale

number ringnum + 0. The last one is reference count. It is h@amynwegisters to read into the
ring starting from $outoffset [12].

4.7.6 Mutex

To be sure that only one thread updates an entry at the saregevienuse mutexes. It is the
mutex field in thest r eam t abl e entry. Since we have one mutex for each entry, we have
too many to fit in scratch memory, so we need to have them in SRAB already have the
hash tables in SRAM, so we put it in the hast table entry its&ifother benefit of this is that
we free the mutex as we are updating the hash table entry asmshdigure 4.18. So we do
not have to do a separate write to free the mutex. One otharsdéwe have one mutex cover
multiple entries, we can have them in scratch memory. Thitequire a separate write to free
the mutex. However, since the load on the SRAM is large, ilcbke faster. In figure 4.17,
we have the function that is used to acquire a mutex. It relaelsriutex, checks if it has the

NN NN RNy
/1 Name: get_entry_mutex
/1 Does: Waits until nmutex is free and takes it
/1 Input: offset to entry
/1 CQutput: None
N NN NN RNy
. subroutine
get _entry_nut ex#
.reg nyof fset
.reg $nutex
.sig nutex_sig
al u[nyof fset, offset, +, 12]
get _entry_nut ex_r ead#
i med[$nmut ex, 128] //Position of mutex in entry is bit 7
sran{test_and_set, $nutex, streamtable_base, myoffset], sig_done[nutex_sig]
ct x_ar b[mut ex_si g]
br_bset[$nmutex, 7, get_entry_nutex_read#] // Check nutex
rtn[rtn_reg]
.endsub // get_entry_nmutex

Figure 4.17: Code for getting a mutex

mutex and if it got the mutex, it just returns. If it did not gae mutex, it tries again until it
gets it. Since it swaps itself out and lets another threadwitinthect x_ar b[mut ex_si g]
instruction, we do not use a lot of microengine cycles. Theéaxis given back when the caller
is done with the entry. We use XOR to set the mutex bit to zetbvarite the entry back into
SRAM as you can see from figure 4.18.

We have another mutex for creating a TCP entry. We ran intcollpm that if the SYN
packet was retransmitted, our logger made one entry for eathem, which is not correct.

44

alu[tmp_w0, tnp_w0, XOR, 0x80] //Flips mutex to free.
alu[$entry_w0, --, b, tmp_w0] //protocol ... nutex

sranfwite, $entry_w0, streamtable_base, ouroffset, 7], sig_done[sig_done]
ct x_arb[si g_done]

Figure 4.18: Code for returning a mutex

So we made a mutex that assured that when one thread hadi $tagee if a TCP entry was
entered, no one else could start the procedure before theffiesvas done. This mutex is kept
in scratch memory, since it is faster.

4.7.7 Signals

We use signals between threads in the logger microengine gute that all packets are pro-
cessed in the order they are received. This is easy on theibXB there is hardware support for
signals. There is one signal making sure that all packetgetcbed in order, and another one
to make sure the TCP code for each packet is done in order. ilMesstthe mutex because the
signals just make sure that the TCP code is entered in theardlr. Two threads could access
the same entry with just signals and no mutex. The signal& Wwpthaving the threads stop at
a certain point and wait for a signal. The signal is given @/ phevious thread after it has got-
ten its signal. The mutexes allows two different TCP stretoise handled simultaneously by
two threads, but makes sure that only one thread works ontozems, while the signals makes
sure that the all packets are processed in order when they #at TCP code. If one context
“passes” the one before it, it can mess up a TCP handshakereAdltan “pass” another one
if both want to access some memory and the latter thread gadstia first. Or a thread has to
wait for a mutex, but the one after it does not. See figure it an example of our use of
signals.
This is one reason that we use only one microengine for tloiskblIf we use more, it gets

harder to make sure that everything is processed in order.

/Wit for signal
ctx_arb[sigl]

/1Signals the context that is one greater, (nodulo # of contexts)
//with signal sigl.
| ocal _csr_wr[SAME_ME_SI GNAL, (0x80 | (&sigl << 3))]

Figure 4.19: Code for making signals

The SAME_ME_SIGNAL control status register allows a thréadignal another context
in the same microengine. The data is used to select whiche®band signal number is set.
See [12] for more information about the signals.

4.7.8 Program Flow RX Block

The RX block is responsible for reading the mpackets frormtleelia switch fabric (MSF), and
send send the data to the Logger. We have two different RXbloc

45

The mirror version of the logger uses an RX block that is bagssh Lennert Buytenhek’s
RX block [9], but heavily modified by us. This RX block only skthe first 32 bit of the Receive
Status Word (RSW) [4] to the logger. An mpacket is a small paftom the MSF. Mpackets
put together forms a normal network packet. We have a taleisiy the RSW in table 4.3.
RBUF is the RAM that holds received packets in the MSF. Tha tastored in sub-blocks and

Receive Status Word

Bit: Desription:
Channel number from which the cell originated
Reserved
MPHY-32 Channel identifier
SOP Error, indication a protocol violation
Null receive. The Rx_Thread_Freelist timeout expired beefimy more data was received
RX Err. Receive Error.
11 Parity Error.
12 In-Band Address Parity Error. Used only in SPI-3 MPHY-4/MRBR to indicate that
a parity error was seen during the in-band address cycle.
13 Error. A receive error, parity error, or a protocol violatids detected.
14 EOP. End Of Packet
15 SOP. Start of packet.
16-23 | Byte Count. The number of data bytes from 1 to 256. 256 is c@de@ix00.
24-30 | Element. The element number in the RBUF that holds the data.
31 Reserved
32-47 | Checksum. Ones complement 16bit checksum for the mpacket.
48-63 | Reserved

iy U o

Table 4.3: The information in the Receive Status Word

called elements. We use Channel number to see from whictidneewe got the packet. This
program does just what we need and not much more. A TCP patketlte network can be
large, and a normal RX block, like the one in Intel's SDK [1@huld read it all into SDRAM
and put a handle to the packet on a scratch ring so that anaitiek can process it. Since the
mpackets that this program gets from the MSF are either 63, dr256 Bytes large, there can
be a lot of mpackets to make up one TCP packet. We are using &4 Bypackets. Our system
is just interested in the start of the packet where the heaaier. So we just read in the first
mpacket in each packet, that is the mpacket with the SOP odtpacket, bit set. We discard
the rest of the mpackets.

Our forwarding version of the logger uses Intel's RX bloctrfr the SDK. This copies the
whole network packet into SDRAM and sends a handle to thedoggcroengine. The handle
is described in section 2.2.3. When the packet is sent out@nétwork again, the packet has
to be read from SDRAM. This is a lot of memory access that we atchave with the mirror
version. However, if you do not have a switch with a mirror tpahis is what you have to
do. Another advantage with the forwarding version is thdét$ you add functionality, like
deeper inspection of packets or denying some packets fdmgr The mirror version can not
change the packets or stop some of them. Since we are supposa#le a network monitor and
are not supposed to change anything, we think the mirroiaelis to be preferred. Network
administrators like the idea that it can not change anytbimadd latency to their networks.

4.7.9 Program Flow Logger

The first thing this program does is to get a handle from thatshiring from the RX block. You
might want to read figure 4.3 again to get the big picture. &rthirror version of our logger we
get the RSW from the RX block. From the RSW, or handle, we firditilerface number that

46

the packet was received on. In the forwarding version, wagetcket handle, see section 2.2.3
from the SDK [16] RX block. Then we read in the headers of thekpg and see if it is an IP
packet, if so we start getting the information we need from it

We could have logged ARP packet too, but we chose not to beddd&< addresses are
only important for the local network. We identify computénstheir IP address.

First, we get the length of IP header, source and destind®@udresses and protocol from
the packet. The mirror version only doeseread from the MSF while processing the packet in
the logger, while the forwarding version only do&se read of packet data from the SDRAM.
To make this work, we need to get the length of the IP headeedorhich SDRAM transfer
registers the TCP, UDP or ICMP header starts. The code inefii20 reads in TCP source and
destination port and the flags field.

br!=byte[ip_header_lenght, 0, 5 TCP6#] // if |IP header lenght !=5 goto TCP6#
al u[iplow_srcport, $$dran¥, AND, nask4]
al u_shf[iplow destport, --, b, $$dranB, >>16]
alu[flags, $$draml0, AND, Ox3F]
TCP6#:
br!=byte[ip_header_lenght, 0, 6, TCP7#] // if |P header lenght != 6 goto TCP7#
al u[iplow_srcport, $$dranB8, AND, nask4]
al u_shf[iplow destport, --, b, $$dranmd, >>16]
alu[flags, $$dranll, AND, O0x3F]
br [TCP_done_r ead_header #]
TCP7#:
br!=byte[ip_header_lenght, 0, 7, TCP8#] // if |IP header lenght != 7 goto TCP8#
alu[iplow srcport, $$drand, AND, mask4]
al u_shf[iplow destport, --, b, $$dranl0, >>16]
alu[flags, $$draml2, AND, Ox3F]
br [TCP_done_r ead_header #]
TCP8#:
br!=byte[ip_header_lenght, 0, 8 TCP9#] // if |IP header |lenght != 8 goto TCP9#
al u[ipl ow_srcpor only do \textbf{one} read fromthet, $$dramlO, AND, mask4]
al u_shf[iplow destport, --, b, $$drantll, >>16]
alu[flags, $$dranl3, AND, O0x3F]
br [TCP_done_r ead_header #]
TCPO#:

Figure 4.20: Code for reading in TCP header

This makes more code, and does not look good, but it enables ardy access the MSF
RBUF or the SDRAM once. This code was written when we weregiiie SDK RX block
and the packets were stored in SDRAM. SDRAM has a good barnikwadt a long latency, so
it was important that we accessed it as little as we could.

Using the mirror version we do not think it is crucial to reaalyoonce from the RBUF, but
the code was already written and it works. We still think oade is faster than reading from
the RBUF two or more times, but we have not done any measutsmeéhere is similar code
for UDP and ICMP.

After we have read the headers of the packet, we search fattdam in the stream table.
If we can not find it, it is a new stream, and we make a new entou &an read more about
the hash unit and searching in section 4.7.4. If itis a TCReiagve need to look at the SYN,
ACK, RST, and FIN flags to see what kind of packet it is, and dessary, update the state field
in the stream table entry. We also need to add bytes sent arehse packets sent. We keep
track of bytes and packets sent in both directions. If it iSRU@ ICMP, we also need to update
the endtime field, which says when the last packet in therstrgas observed. For TCP we set

a7

the endtime when the connection is ended and set its statelemieso that the XScale knows
that it is done.

We also have to make sure that the packets are processeceinsaréhat we get the TCP
handshake right. This is done by signals, and is describsdation 4.7.7.

If we are using the mirror version, we can just drop the packétch is done by freeing the
RBUF element. We are actually freeing the RBUF element rédter we read in the packet.
When we are using the forwarding version, the last part iitp the packet out on the network
again.

4.8 XScale, Intel 21555 nontransparent bridge and host ker-
nel

4.8.1 Data transfer over PCI bus

To transfer data from the XScale SDRAM and to the client progover the PCI bus is a little

bit tricky. The XScale maps its SDRAM so that it can be acogdsethe PCI bus. It maps

SRAM and PCI CSR as well, but we do not use them. You can alde varthe OxEO000000..-

OxFFFFFFFF physical memory range, and you will make PClsahons. (See figure 2.3.)
First, we need to find the PCI address that the SDRAM is mapped t

* PCl _DRAM BAR, section 5.9.1.7 in [12]: “This register is used to speciig base ad-
dress of the PCI accessible DRAM when using a memory accksstir card, we have
PCl _DRAM BAR: 0x40000008. Which means that the memory is prefetchalulérethe
PCI bus at address 0x40000000. This is the number that ned&essritten into the DS2
register in the 21555 bridge, seen in the code in figure 4.23.

* PCI _DRAM BAR MASK, section 5.9.2.16 in [12]: “This register is used to spetifg
window size for the PCI_SRAM_BAR register.” In our card weva®@Cl _ DRAM -
BAR_MASK: 0xOFF00000. which means that SDRAM is enabled, prefetehatd has
256MB.

To read these registers, you first need to get the base addoesshe map over XScale
memory. (See figure 2.3, or section 4.1 in [12].) That is OxDB0OO0O for PCI Controller CSRs
(Control Status Register) and 0OxDEOO 0000 for IXP PCI Comfigan Registers. And you add
the offset address f&?Cl _ DRAM_BARfrom section 5.9.1 in [12], which is 0x18. Do the same
for PCI _DRAM BAR MASK and you get the XScale code in figure 4.21 to read the registers

unsi gned int xadr;

adr = (unsigned intx) hal Me_Get Vi r Xaddr (0xde000018, 0); //PC _DRAM BAR
printf("PC _DRAM BAR %\ n", =*adr);

adr = (unsigned int*) hal Me_Get VirXaddr (0xdf 000100, 0); //PCl _DRAM BAR MASK
printf("PCl _DRAM BAR MASK: 9%\ n", xadr);

Figure 4.21: Code for reading in PCI registers

The next step is to set up the 21555 bridge, see section 213e $bits registers are set
during host and/or IXP card boot, and there are some that weotloeed. We read the doc-
umentation about the 21555 [19], the IXP card [12], a bookualhiux device drivers [20],

48

and a mailinglist [39] until we got it to work. We did not try fgure out everything about the
21555.

In the output fromcat / proc/ pci seen in figure 4.22, we also find an entry for the
21555 bridge. It tells us that the CSRs are at 0XE0100000. &¥e mo know this since we

Bridge: PCl device 8086:b555 (Intel Corp.) (rev 3).
| RQ 41.
Mast er Capabl e. Latency=64. M n Gnt=4. Max Lat =48.
Non- prefetchable 32 bit menory at 0xe0100000 [Oxe0100fff].
I/ O at 0x100000 [O0x1000ff].
Prefetchable 32 bit menory at 0xe0200000 [OxeO2fffff].
Prefetchable 32 bit menory at 0xe0300000 [OxeO3fffff].
Prefetchable 32 bit nenory at 0xe4000000 [Oxe7ffffff].

Figure 4.22: Output from cat /proc/pci on the IXP card

mmap this memory to write to the 21555 registers to make arnmpt and to set up the PCI
translation. You can read the section about Address degadifi9] to find that the offset to
the Downstream Memory 2 (DS2) register is 0x70. Keep in mivad the 21555 is little endian
and the XScale is big endian. We write the address we got #68m_DRAM BAR here. The
code for initialization is shown in figure 4.23.

4.8.2 Irq

We also use the 21555 to make interrupts on the host compAti¢ie end of the InitHostlrqg
code in figure 4.23, you see that we clear an IRQ mask in a 2J&gSter. From section 11.3
in [19] we read: “The primary interrupt pin, p_inta_I, is as®d low whenever one or more
Primary Interrupt Request bits are set and their corresipgnérimary IRQ Mask bits are 0.
Whenever we need to make an interrupt we use the macro shofigune 4.24. This sets the
interrupt register and the 21555 makes an interrupt on tist $ide PCI bus. The interrupt
register is 16 bit wide. So, we can make the host device dtaler different actions according
to the value that it reads from the register. It is the hosh&kdevice driver’s duty to unset the
interrupt register.

4.9 Host kernel driver

4.9.1 Description

The gtixp [5]* device driver is the program that enables the “client” usegpam to read and
write to the IXP card’s SDRAM. The driver does this by mappthg IXP card’s resources
into host computer memory. The gtixp driver does not suppd#tA, so it is rather slow. (See
section 5.2 for a test of its bandwidth.) If you need to maprgdaportion of IXP memory, the
kernel has to be patched with a patch called “bigphys are#l; jdreserves physical memory
for drivers at boot time. The amount of SDRAM that is mapped loa set in themai n. c file.
You need to adthi gphysar ea=4096 to the argument line in the Linux loader you are using.

we did not write the gtixp driver [5], we found out that someaifellows at Georgia Tech had writ-
ten one. The authors according to the source code is HimaRsh«rhim@cc.gatech.edu> and lvan Ganev
<ganev@cc.gatech.edu>.

49

//Here we initialize the 21555 so we can use it to send data over the PCl bus
//and generate interrups on the host side PCl bus that will end up in the
/I host Kkernel.
int InitHostlrg(void) {
if ((memfd = open("/dev/nenf, ORDWR| OSYNC)) < 0) {
printf("open: can’t open /dev/mem\n");
return -1,

}

//We map the nmenory the addresses where the 21555 is | ocated.
/1 The address is assigned fromthe PCl systemat boot.
/1 Do |Ispci -vn or cat /proc/pci on the I XP card and | ook for:
//Bridge: PCl device 8086:b555 (Intel Corp.) (rev 3)
/11n that device | ook for:
/I Non-prefetchable 32 bit menory at 0xe0100000 [Oxe0100f ff]
/1 And you got the address that we need to map.
/1 Defined in | ogger_cfg.h or dl systemh as ADDRESS21555.
pci _io_mem = (unsigned char *)mmap((caddr_t) O,
PAGE_SI ZE,
PROT_READ| PROT_WRI TE,
MAP_SHARED| MAP_FI XED,
mem fd,
ADDRESS21555 //from cat /proc/pci
)

if ((long) pci_io_mem< 0) {
printf("mmap: mrap error: pci_io_memn");
return -1,

}
i 21555_regs = (vol atile unsigned char =*)pci_io_mem

/] Sets 21555 DS2 register.

//We need to wite 0x4000 0000 to the 32 bit register at address
/1121555_CSR _DS2. Since XScale is big endian and 21555 is little endian.
//\We wite Ox40 to byte nunmber 4 in the register.

i 21555_regs[| 21555_CSR_DS2+3] = 0x40;

//Clears the | RQ mask on the 21555 to its host side by witing

/la 1 to the bit for the interrupt in the

//Primary Clear | RQ Mask Register.

/1 To make an interrupt, the mask nmust be set and the interrupt register
/I needs to be clear.

i 21555_regs[| 21555_CSR_PRI MARY_CLEAR | RQ MASK] = 0x4; //(0xa0)

return O;

Figure 4.23: Code to initialize the Intel 21555 Bridge

/1 Makes the IRQ on the 21555 to its host side.
#define MakeHostlrqg (i21555_regs[l21555_CSR PRI MARY_SET_I RQ = 0x4)// (0x9c)

Figure 4.24: Macro to make an interrupt

This gives you 4096 4KB pages to use for device driver menibiy.a Linux kernel patch that
is not so easy to find, and you need the right one for your kemsion.

The gtixp driver seems to follow the normal procedures foirauk kernel driver [20]. It can
handle more than one IXP card, we have not tried though. kddbrough the card’s resources
and finds the 21555’s CSR memory region, IXP’'s CSR memonporegand IXP’'s SDRAM

50

memory region.

When you load the driver, keep an eye fonar / | og/ messages as the driver will tell
you if it succeeded or not. If all is good, ttys -1 h /proc/driver/ixp0O/ and you
should get the result given in figure 4.25. The driver usesn@p to allocate the SDRAM 1/O

total 50M

dr-xr-xr-x 2 root root 0 Apr 19 16:04 .

dr-xr-xr-x 3 root root 0 Apr 19 16:04 ..
-rwrwrw 1 root root 4.0K Apr 19 16: 04 bri dgeCsr
-rwrwrw 1 root root 1.0M Apr 19 16: 04 ixpCsr
-rwrwrw 1 root root 16M Apr 19 16: 04 nenpool
-rwrwrw 1 root root 0 Apr 19 16: 04 reset_bridge
-rwrwrw 1 root root 32M Apr 19 16: 04 sdram
-rwrwrw 1 root root 0 Apr 19 16: 04 signal

Figure 4.25: Directory listing of gtixp resources

memory region from a physical PCI address to virtual kerpelce. When the client is reading
or writing thesdr amfile, the driver usesrentpy [t o, from _i o to perform I/O on the
memory allocated by ioremap. So the client thinks it is ascesthe SDRAM as a file, but the
driver copies the data over the PCI bus in the background.

When the driver is loading, it scans the information from B! bus to see if it can find a
21555 Bridge in a PCl slot. If so, it reads its resources, éoegevhat addresses the resources are
kept. It also registers the IRQ of the 21555 Bridge so thdRE handler gets called whenever
there is an IRQ.

4.9.2 SDRAM PCI transfer

In figure 4.25,sdr amis the file that the client program reads and writes to whensfiexring
data between the IXP cards SDRAM and the host over the PClThesuser program on the
host computer that has tis gnal file open gets a SIGUSR1 signal from the driver, when
the driver gets an interrupt from the kerneleset _bri dge is to reset the PCI bridge after
resetting the card, we did not get it to work. We did not playhwthe other files, but the
bri gdeCsr is the CSRs for the 21555 anckpCsr is the CSR of the IXP card.

You can use thed command as in figure 4.26 to read the contents of SDRAM stpdin
26MB. See section 4.10.3 to see how we read the file in thetclien

od -x -Ax /proc/driver/ixp0/sdram-j0x01a00000

Figure 4.26: Example of reading from IXP's SDRAM

49.3 IRQ

The gtixp [5]driver also handles IRQ from the 21555. It régiis the interrupt that the 21555 is
assigned when the host computer boots. When that intesupggered, all drivers that have
that IRQ are called until one of them claims it. In x86, thereefaw interrupts, so some devices
have to share. The driver checks the 21555 interrupt redistsee if it is our interrupt. If it
is not, it returnd RQ_NONE, and the kernel asks the next device driver. If it is our intpt,

51

the driver clears the interrupt and sends a SIGUSRL1 sigriaktprogram having the signal file
open.

4.10 Client program at the Host

4.10.1 Driver hookup

The client runs on the host computer. It needs the gtixp [Bedito be loaded before it starts.
See section 4.3 for how to start the system. The client prograens the filg pr oc/ -
driver/ixp0/signal. The gtixp driver checks to see if any program has this filenope
when it gets an interrupt. If so, the driver sends a SIGUSRfadito that program. This is a
nice way of getting hardware interrupts to user level praggaThe client then just waits for a
signal that indicates that there is new data in the SDRAM buffer to be read. The way we
read the shared SDRAM on the IXP card is to open the fleoc/ dri ver /i xp0/ sdr am
that the gtixp driver made, as shown in figure 4.27.

//gtixp drivers napping of the | XP cards sdram
mem fd = open("/proc/driver/ixp0O/sdram, O RDAR | O SYNC);
if (memfd < 0) {
perror("open(\"/proc/driver/ixp0/sdram™")");
exit(-1);
}

Figure 4.27: How host application opens sdram file

4.10.2 MySQL

The client also connects to a MySQL database to store itgesntOur idea was that instead
of trying to come up with a smart idea to store the ended stseave can just use a normal
SQL database. With SQL, we can also make all kinds of datai@pie¥Ve could also move

the database to another computer. (See section 4.2.3). dbtvaore than one computer with
IXP cards that logged traffic and had a really fast SQL sewercould use that one. We do not
know much about databases. There might be other databasesdimore optimized for storing

a lot of entries fast. There are probably ways to tune MySQbhedaster for our application,

and maybe ways to set up the tables to make it work faster.ig B@mmething that must be given
a lot of thought if this logger is going to be used in the realidioWe are having this project

only to see if an IXP card can be used as a real time logger, stawenot used too much time
on the database part.

We are using version 4.1.10a of MySQL, it was the one that tlee&.inux configuration
program set up for us. We chose MySQL since it is free, was eaBystall on our Suse host
computer with its packet manager, and we have used it beidre table we are using has the
columns shown in table 4.4.

We need to have a lot of fields as key. The same IP can talk th@ansame IP address at
the same portnumbers at the same protocol, but we not at the tae. As portnumbers roll
around, time passes. The SQL server runs on the host compuiteh gives us no network
restrictions. The host has a regular IDE harddrive, whicprabably rather slow. We do not

52

Stream database table
Field Name: | Key | Description:
iplow y | Lowest IP address of stream
iphigh y | Highest IP address of stream
iplow_srcport | 'y | Src. port number of lowest IP address for TCP/UDP, ID for ICMP
iplow_destport] y | Dest. port number of lowest IP address tor TCP/UDP, O for ICMP
protocol y | Protocol for stream
iplow_int Physical interface of lowest IP
iphigh_int Physical interface of highest IP
stime y | Time that stream started
etime Time that stream ended
bytes_iplow Bytes from iplow to iphigh for TCP/UDP, packet types for ICMP
bytes_iphigh Bytes from iphigh to iplow, O for ICMP
packets_iplow Packets from iplow to iphigh
packets_iphigh Packets from iphigh to iplow
iplow_started Is one if lowest IP started stream

Table 4.4: The fields and keys in the SQL database

know if this is limits the performance for our applicatiorotigh. The default Storage Engine
was Myl SAMwhich claims to be: “Very fast, disk based storage enginéovuit support for
transactions. Offers fulltext search, packet keys, andhésdefault storage engine.” Sounds
good to us, so we kept it that way. If it should be slow, we caoose VEMORY(HEAP)
Storage Engine. It says it is faster but can loose data ifeéhess goes down.

4.10.3 Program flow

When we get a signal, we read first thi©ST_LAST_WRI TTEN and HOST_LAST_READ
variable, see section 4.9. From figure 4.28 we see how we @ah4evariables from IXP
SDRAM in one PCI transfer. From them we know the first entrygad and how many there
are to read. Knowing where from and how long to read, we read the entries and converts
int readin[4];
//\We read in last_witten, |ast_read, xscale_load and ME prcs_cnt in one pci read.

| seek(mem fd, HOST_LAST WRI TTEN , SEEK_ SET);
read(nem fd, readin, 16);

Figure 4.28: How host application reads shared SDRAM végab

them to little endian as we go. Remember that we also havéle dihdian version of the
st ream t abl e struct to help the little endian CPU get things right.

Done reading, we need to update tHeST_LAST_READ variable, so that we do not read
the same entries again, and the XScale knows that the cieshdne with the entries so we
can reuse them. Since the IXP card forgets its date and timseptogram helps it out. We
read the date and time on the host computer and write it ig&l@ST _DATETI ME variable in
SDRAM. (See section 4.9.)

53

For monitoring purposes, this program shows the load on tBea¥e and the host and the
number of disk 1/Os in progress. We also get the number of gtadk process by the micro-
engines. We can use it to monitor SRAM congestion. The idéaaisif the SRAM memory
channels are being overloaded, the microengines will natdbeto finish their packets, and the
counter will reach the number of available threads. We ddmak that this will be a problem.
We get the XScale load from tiSCALE_LOADvariable in SDRAM. This is just a tool to see
if there might be any congestion.

4.11 Summary

We see that the system has a lot of different parts. Each pgoks through the microengines
that make entries for each stream in the SRAM stream tabkksipdates them as new packets
arrive. The XScale goes through the stream tables perilbglita see if there are finished
streams or if there is too long since the data was updatedopies the finished entry to the
SDRAM ring buffer and interrupts the host computer when ¢heme enough done streams, or
entries that are due for an update. The host computer kagrells the client application when
it receives the interrupt from the IXP card. The client capike entries from the IXP card’s
SDRAM ring buffer over the PCI bus with help from the kernele driver. The client lastly
makes an SQL call to the MySQL database to record the infoomaf the stream.

We can alter the configuration some. We can use the forwand@ngjon, if we have to
forward the packets. There can be one or two microengineglimgnthe incoming packets if
we use this RX block. The other option is to use the mirror ieersif we have a switch with a
mirror port and do not want to alter the network traffic.

We can have multiple SQL servers that we use if that shoulddezfarmance problem. For
now we have the MySQL server on the host computer. If the hasiputer gets slow, we could
get a host with multiple CPUs. The host computer, a Dell Ogtiis X260 has 32bit 33MHz
PCI bus. It might help to get a host computer with 64bit, 66 MM bus, or better.

There are a lot of things to figure out to make it all to work, aindlso has to work fast
enough. In the next chapter, we will do some testing to seeitparforms.

54

Chapter 5

Evaluation

5.1 Overview

This is the chapter for testing our logging system. We hawge fasted the bandwidth over the
PCI bus for the gtixp [5] device driver. How many entries wailcowrite from the XScale
over the PCI bus and into the host computer's database pendes also tested. There are
also some tests to see how many contexts and microenginesegled. Section 5.5 describes
how the XScale program can be tuned for different scenawésstart with measuring the PCI
bandwidth. Thus, we first present some benchmarks lookitigealPClI transfer, database and
microengine performance before evaluating the systentisyatioi monitor gigabit traffic in real
time with a real live test.

5.2 PCltransfer

We measured the time it took the client program to transfea deer the PCI bus from the IXP
SDRAM to host computer memory. This test will tell us if thet@j@ath from the IXP card to
the host computer is fast enough for our purpose. If the ddltais too slow, we are unable to
store the information we collect, and we have a big problera.&¢ using the gtixp [5] driver
on the host computer to be able to communicate with the IXB.caince it is a 32 bit 33MHz
PCI interface, we do expect it to be fast enough. The codenthstused in the client program
for the tests is shown in figure 5.1. We also tried to use thenCtfanget t i meof day to read
the time, and the results were the same. Haerm of byt es is how many bytes we read in

unsi gned int readi n[100000];

u_inté4_t starttinme, endtine;

mem fd = open("/proc/driver/ixp0O/sdram, O RDAR | O SYNC);

/+ First, get start time */

__asm __volatile (".byte 0x0f, 0x31": "=A" (starttine));

| seek(nmem fd, O0x0 , SEEK SET);
read(nemfd, readin, num.of_bytes);

/+ Now get end time */
__asm__volatile (".byte 0x0f, 0x31": "=A" (endtine));

Figure 5.1: How we measured time on the host application

the different tests.

55

55

Microseconds

15 ‘ ‘ ‘ ‘
0 20 40 60 80 100

Bytes

Figure 5.2: Time for transferring small datasizes over té Bus

35000

30000 r 8

25000 r 8

20000 r 8

15000 r 1

Micro seonds

10000 r 1

5000 r §

o 1 1 1 1
0 20000 40000 60000 80000 100000

Bytes

Figure 5.3: Time for transferring large datasizes over tG¢ Ibus

We see from figure 5.2 that the time required to move 1 Bytenwat the same as for 10
Bytes. This is why we read tHeast _written,| ast_read, xscal e_| oad andME_-
prcs_cnt inone PCI read in the client program.

The time used to read one entry, or 40 Bytes, is 30 microses;aihe time to read 10
entries is 151 microseconds. The effect of reading 10 en&ie time is that we get twice the
throughput. If we read 20 entries, we save about 20 micrescoompared to two reads of 10
entries each. We are not saving so much time anymore. Thieissason we try to send an
interrupt to let the client read 10 entries each time. Fouealover 100 bytes it is not much to
save to read only one time, as you can see in figure 5.3.

We measured the time it took to read 100 000 Bytes. That wasOB4nficroseconds.

56

That gives a less than impressive bandwidth of 2.9MB/s. Titked R1555 Bridge is capable of
66MHz and 64bit, and the PCI bus in the host computer is 33Mitdlz32bit, so we doubt that
it can be the problem. We know that the gtixp [5] driver doesuse DMA, and we do believe
this is the reason for the poor bandwidth.

For our application, we can get around 6600 reads of 400 Bytw=cond. That is 66 000
entries a second. So even though the PCI throughput is veadt,stis big enough for us. The
bandwidth will be tested in the next section, too. There wiésge how many entries we can
transfer from the XScale to the MySQL database in a second.

5.3 Database bandwidth

This section is about testing how many entries we can writeeddySQL database in a second.
Testing this is important, since it will tell us how many sines a second the whole Logger will
handle. The whole system is not faster than its slowest ik know from section 5.2 that the
PCI bus is fast enough, but our concern now is the MySQL databarver. How many SQL
INSERT queries can it handle in a second? Does the MySQL isgetaslower if it has millions
of records in its database already?

Here, we modified the program running on the XScale to make twedend to the database.
It is just a simple for-loop that makes 1000 entries then svbdfore making 1000 new ones
and so on. This way we can test how many entries a second the wain@n from the XScale,
through the PCI bus, the kernel driver, the client prograich e MySQL database can handle.
We found that 4000 entries a second can work as long as thenmeocaother processes on the
host computer that need CPU. If e.g. the screensaver siartme loosing data. The load on the
host CPU was also quite high, it could be above 2. A load at Alegbat one program wanting
to use all the CPU power. At 2, it is the same workload for th&J@B 2 programs want to use
all its power at the same time. At 5000 entries a second, gdeanost of the data.

We also let it run for 21 hours and 45 minutes at a rate of 10@fesna second to see
if the Logger was affected by many entries in the databasés firhe should generate about
78.300.000 entries, because the program makes 1000 esmidethen waits a second. Since it
takes some time to make the entries, we will end up with less 900 entries a second. After
the 21 hours and 45 minutes the database had 76.413.74dseatd the load on the host was
around 0.5. This tells us that many entries do not slow dowrdttabase.

The performance of the database can probably be improvéuefuoy tuning the MySQL
database, or find another database that is more optimizestidong a lot of data fast. Another
fact is that the hostcomputer is not the fastest computematolt is a DELL Optiplex GX260
with 512MB RAM and a 2,0GHz Intel P4 with 512KB CPU cache. Hhgva faster computer
with more CPUs would probably make it all work faster. Maybiaster storage solution than
our IDE harddrive will help too.

We are now happy to know that all the system from the XScal@eadatabase can handle
1000 entries in a second for a long time, and bursts up to 4008 $hort time. The system is
not slowed down because of millions of entries in the datalegther. These results were better
than we expected. The programs that run on the microengies also to be tested. Next, we
will talk about analysis of the code on the IXP card.

57

5.4 Microengine program evaluation

Here, we are going to discuss memory usage and analyze tkee itaslvery important that we
access memory as little as possible. When we have to, we tsatball we need at one time.
This is especially important for SDRAM with its high latenagd good bandwidth. See section
2.2.3 for the memory latencies. SRAM is a little better, betstill need to plan all our access,
so we do not access it too much.

In our forwarding version of the packet logger code, we ordydhone SDRAM read, and
no write. If we disable the TX block, that will free more SDRAMCcess, since the TX block
will need to read the packet from SDRAM to send it.

In the mirror version of the logger, the RX block gets the pdkom the media switch
fabric (MSF) and then just sends the first 32 bit of the Rec8itagus Word (RSW) [4] to the
logger, and the logger gets the first 64 bytes of data from #oket directly from the MSF. So,
we have no SDRAM access in the RX or logger block, and we haveXnblock.

We can count the instructions and SRAM, DRAM, Scratch menaoy ring operations to
see how many cycles are needed to process one packet. Thate@8 contexts that run on one
microengine, and it can swap context in about the same tirtekasy a branch [4]. This makes
it harder to count instructions, since it is hard to know ét# is a context that can be swapped
in that does not wait for 10. (See section 2.2.2 for more albogtoengines). There are many
paths in our code a packet can follow based on its type. Evdh Jdckets have different paths
based on the flags they have. Some packets are sent seldonT,@&ghandshakes or reset
packets, while the packets that contain data are much megednt. That makes it even harder
to analyze how it will perform. Another thing that is hard teegdict is memory utilization. For
example, both XScale and the logger read and write to SRAN4, ot easy to know if the
SRAM will be a bottleneck or not. So we choose to just testritfiferent streams and see how
it performed instead of analyzing. In the next section, wi present our two friends, client
and server. Those are our test programs that we use to evalualogger.

5.4.1 Test programs

To test our system, we need something to test them with. TduSos is about those two
programs. The tests are performed with a pair of programs meno check TCP bandwidth
between different computers in different networks. It hasient part that just sends some data
that happens to be in the memory area it gets from malloc. €heesjust receives the data.
This way, we do not have to worry about disk access times, lagddata has to be processed
by some program before it is sent. The programs are also waples, and we know them well.
Their options are shown in table 5.1.

The server is without the -t option. For the client, you adel ttame or IP address of the
server at the end. The default port number is 5000. Receiffertsize is the receive buffer size
used by the operating system, and is set using#tesockopt function. Send buffer is the
send buffer size used by the operating system, and is alseitbed set sockopt function.
The defaults of these two buffers are set by the operatingsysand their size can vary. 10 size
is the number of bytes given as parameter to the write andfeerdions. Number of threads is
not a very good name, it is just how many parallel TCP conoestive establish between the
server and the client. Debug gives more information about the program works, useful for
debugging.

58

Name| Description
-p | Which portnumber to use
-r Receive buffer size
-s | Send buffer size
-l Message size in bytes for test
-i lo size, bytes on each write/write
-t Number of connections
-d | Turn on debug output

Table 5.1: The options for the client and server program

The server binds and listens to the given port number on §dt4d Bnd IPv6 if present, and
waits for connections. We use an endless loop with poll toebese latency, because it is crucial
to keep overhead to a minimum. When it gets a new connectiaogepts and sets the send and
receive buffer size and disables the TCP Nagle [42] so all dagent without waiting. The TCP
Nagle algorithm tries to pack many packets into one to sagentimber of packets that need
to be sent through the network. The server reads from albttgauntil it has gotten all bytes
of the message. When the server has read the first part of theage, we use the C function
get ti meof day to start a timer and when it has all bytes we gt t i meof day again to
get the endtime. From this time difference and message ®zsaleulate the bitrate. Since 10
size of data is received before we start the servers timerclient's measurement is probably
more accurate. However it is still interesting to have tisend bitrate in both server and client.
When we use poll, the kernel needs to parse through all entri¢he array sent to it. If the
entry is -1 it jumps to the next entry. If a thread “in the migflgets done first, we will get a
“hole” in the array which the kernel has to read and pass dauh tBut since our threads are
done sending data almost at the same time, we did not implszode to move the elements in
the struct to prevent this.

If more threads are specified, we send the same amount ofdry&esch one, except when it
does not add up. 50 bytes on 4 threads, for example, would ba 2ach of the 3 first ones and
14 on thread 5. We start the timers just before the main poj i@ get the time measurement
as correct as possible. The client has one timer for eachdraad stops it right after we sent
all bytes for that thread. An additional timer is used to nueashe time for all threads to finish.
Output is done after all bytes are sent, to keep overhead ddvile measuring. Parts of the
code is from the book [43]. Now that we are done with the inii@itbns, let us put the programs
to work in the next section.

5.4.2 How many contexts are needed?

Here we are going to look at how the number of microenginesaatide contexts in the logger
affects the forwarding rate. We are using the test progrartieduced in section 5.4.1, with
different numbers of threads. We do this test to see the nuoflmicroengines and contexts
that is needed to be able to forward packets at 1Gb/s.

The tests in this section are done with the Intel SDK [16] R¥chklwith the forwarding
version of the logger, see figure 5.5. The switch used is ao870. In the first test, we
hooked up the card to a mirror port on the switch and droppegéckets instead of forwarding

59

PC with IXP PC with IXP

L g

100000000)] s
/N
0] o iRE

Host 1 Host 2 Host 1 Host 2

Figure 5.4: IXP card setup on a mirror port. Figure 5.5: IXP card setup to forward packets.

them. The setup is shown in figure 5.4. The arrows are the mkivadles (Cat5e). In the second
test we had the same setup, but still ran the forwarding cade,there was no connection at
the forwarding port. In the third test, all data was trangdrthrough the IXP card using the
forwarding code and port, shown in figure 5.5.

This test was done early in our development. The logger catleat use signals for syn-
chronization at this time. (See section 4.7.7). That magessible to run the logger code over
many microengines. We configured the logger to run on 4 miggoees and on 4 contexts on
each microengine. (See table 5.2).

Additionally, we wanted to see how it would perform on onlydntext on 1 microengine,
that is the fourth test. We still run all packets through t&€ Icard. We have to admit that we
were a little surprised to see that it was the same throughputith all contexts. Each test ran
6 times, and we removed the lowest and highest number andhditterage of the remaining
4. This is not really precise statistics, but good enoughse® if there are big differences in
throughput if we change the number of contexts or threads.

Measuring throughput in Mbit/s
Test setup | MEs | contexts| 1 thread| 5 threads| 10 threads 20 threads
1.test 4 4 594 564 550 548
2.test 4 4 548 567 566 563
3.test 4 4 540 544 565 556
4 test 1 1 546 580 573 576

Table 5.2: What throughput we get from different setups

We can conclude that for up to 600Mbit/s over 20 streams Xlkedard forwards packets as
fast as the switch. It was not expected that only one contesthe microengine could forward
everything by itself.

60

In our mirror version of the Logger, we use 8 contexts on onerog@ngine for the RX block,
and 8 context on one microengine for the logger. Also, in timeanversion, the logger and RX
block do not copy the whole packet to SDRAM, as the system oiotbss test. This test shows
that we can implement our code for the RX block and the loggesree microengine each, and
also that we are able to handle higher bandwidths. In thesentton, we will start to see how
our mirror RX block is able to monitor a gigabit connectiortiseen two computers.

5.4.3 Sending data between two computers

When we test our system, we want to try to get as close to 1Gbpossible. From section
5.4.2, we know that one of our computers can not fill a 1Gb/s loy itself. In this test we

will have one computer send data to another. Our test sehoiwn in figure 5.6. This test is
done with the mirror version of the code, and gives us an ide#at we can expect when we
send data between four computers, which will be done in tix¢ test, to get closer to 1Gb/s.
We use the test programs from section 5.4.1 for this test. @tiee computers is running the
client, and the other the server. The names of the compu#és to the last number in their

PC with IXP

Rjal
0000 000000000, s, .
[\ RN
o] [g][T

Host 53 Host 55 Host 52 Host 46

Figure 5.6: Setup of test computers and switches

IP address. Host 53, or computer 53, is the computer with tPesd 192.168.2.53. We send
2210° bytes over 4 threads. Each box in the figures is the bytesfemad by one thread. The
number of bytes transferred is shown in figure 5.7, while tiieber of packets sent is in figure
5.8. Figure 5.9 shows the bit rate of each connection.

We see that different computers send different number okgiac More packets give more
overhead, that gives more total bytes sent. We also seeltbet aare not the same num-
ber of packets sent over each thread. Note that the resoits dfomputer 53 to 52 stand
out, it has the largest difference in sent packets. We do notvkthe reason for this. All
computers are Dell Optiplex GX260 using the onbolard el Cor porati on 82540EM

61

526
525
524
523
522
521
520
519
518
517

10° x Bytes

- 53->52 46->55 52->53 = 55->46
Figure 5.7: Bytes transferred. Each box is one thread

500000
480000
460000
440000
420000
400000
380000
360000
340000
320000

Packets

_ 53->52 46->55 52->53 = 55->46
Figure 5.8: Packets transferred. Each box is one thread

G gabit Ethernet Controller (rev 02) network interface. Computer 46 and 55
usethe?. 6. 18- 5- 686 kernel, while 52 use®. 6. 11bi gphys,and53isusing. 6. 11. 4- -
20a- def aul t . There might be some differences between the kernels. Weketlehe Cisco
switch using its serial interface, and it had not droppedzamgkets to the mirror ports.

Also note that all the threads had over 518 million bytes,sghich is reasonable for a 500
million bytes payload. Now that we have an idea of what to ekp@e move on. Next is the
tests that sends data between four computers.

62

850

800

750

Mbit/s

700

650

600

_ 55->46 = 52->53 46->55 53->52
Figure 5.9: Bandwidth of connections. Each box is one thread

5.4.4 Sending data between four computers

This section is comparing Intel's SDK [16] RX block and ourrrar RX block. We also look
at different configurations of communication between th@poters. To get closer to 1Gb/s in
bandwidth, we need more than two computers in our test, aawerssection 5.4.2. It is also
interesting to see what is happening when you get close tamuam theoretical bandwidth.
Testing with 2 computers senditg10° bytes each over 4 threads each to 2 other computers,
as shown in figure 5.6 gave us problems. This test should giveare than 500 million bytes
in each thread.

In the beginning, our Logger was loosing packets. First veaigint the Intel SDK RX block
was too slow, so we wrote a new one. We were still loosing pacle® we rewrote the RX
block to only send the first 64 bytes of each packet to the loglje did a test where computer
53 was sending data to computer 52, and at the same time, tengbuwvas sending to 46. We
werestill loosing packets as you can see in figure 5.10, and figure S 1ie &doxes labeled
m rrorport. Each box is the bytes or packets transferred by one thread.

Each thread should be over 500 million bytes, but we do nat ge¢ 400 million bytes. We
are measuring all bytes in the IP and TCP header as sent adata.séction 5.4.3 we see that we
should at least have 345000 packets. These packets withtd§ ioyiP and TCP headers give
13.800.000 extra bytes. This gives a total size of 513.8@DWYtes. However, there might be
some collisions, and the switch or network cards in the cdemsurop some packets since we
are close to the maximum bandwidth. It gets harder and h&odierd the source of missed or
extra packets the closer to maximum theoretical bandwidtlyet. However, we are not doing
good enough.

After some more thinking, it occurred to us that the port we @onitoring is full duplex.
This means that it can have 1Gb/s going both ways at the samaitid the connection from the
switch to our IXP card is only 1Gb/s. So we should loose pacikéhe port we were monitoring
had a throughput where the flows both ways were over 1Gbp/biceEd.

63

540
520 t
500 |
480
460
440 +
420 ¢
400
380

10° x Bytes

1 mirrorport 2 mirrorports
_ 53->52 55->46 53->52 = 55->46 _
Figure 5.10: Bytes transferred by threads. One and two npiords. Each box is one thread.

500000

450000

400000

Packets

350000

300000

250000

1 mirrorport 2 mirrorports
_ 53->52 55->46 53->52 = 55->46 _
Figure 5.11: Packets transferred by threads. One and twomparts. Each box is one thread.

We then set up the Cisco 2970 switch to monitor the port with perts, one that mirrored
the TX traffic and one for the RX traffic. This way we can monitoe port even if there is
1Gbit/s traffic both ways. Figure 5.10 and figure 5.11, shaat te are doing much better now,
at the boxes labele?2l mi rrorports,

Each thread or box in the figure, is over 500 million bytes.rfrigection 5.4.3, we see that
we are in the same range as then we are transferring betweerotwputers.

Since we wrote a new RX block, we wanted to see how it perfoongoared to Intel's SDK
RX block. To see if it makes any difference, we did the samieaie®oth. In this test, computer

64

53 was sending to computer 46, at the same time as computea$2emding to computer 55.
We have 4 threads in each connection, and $eri@® bytes. The results are shown in figure

5.12 and figure 5.13.

525.5

525.45

5254 ¢

525.35

10° x Bytes

525.3

525.25

525.2 Intel SDK RX Our mirror RX

_ 53->46 52->55 53->46 52->55
Figure 5.12: Bytes transferred by threads by the RX bloclkshibox is one thread.

488300

488250

488200

488150

Packets

488100

488050

488000

Intel SDK RX Our mirror RX
_ 53->46 52->55 53->46 52->55
Figure 5.13: Packets transferred by threads by the RX blde&sh box is one thread.

We see that they transfer approximately the same numbertesland packets. Still, one
box represents one thread. Well, the tests are not exaetlyaime. We believe the difference is
caused by the test computers. See section 5.4.3 where we abotit the test computers.

65

There are still some strange things though. If we swap 52 @&nih4he figure 5.6, so that
53 sends to 52 and 46 sends to 55, we get the results shownrie &idgi4 and 5.15. We wanted
to see if this is the case with the Intel SDK RX block as wellns&odid the same test with that
RX block as shown in the figure. The Intel SDK RX block gives shene result.

530
525
520
515
510

10° x Bytes

505
500

495

490 Intel SDK RX Our mirror RX

_ 53->52 46->55 53->52 46->55
Figure 5.14: Bytes transferred by threads by the RX blocleshBbox is one thread.

500000
450000
[%)]
o
X 400000
©
o
350000
300000

Intel SDK RX Our mirror RX
_ 53->52 46->55 53->52 46->55
Figure 5.15: Packets transferred by threads by the RX blde&sh box is one thread.

We see that we did not get all packets going from 46 to 55. OCognam is the same, and
the same switches were used. We only changed which compariedata to which. In both

66

tests, the data goes opposite ways. We do not know why thisemapor where the problem is.
We tried to swap the ports for 52 and 46 on the switch, but tlthhdt change anything.

We do not know the reason for this. The Cisco 2970 switch hadnopped packets accord-
ing to its statistics, however, we do not know about the CNetch, since it does not have a
management interface.

If both computers send the traffic the same way, we seem tdldsitas, but the difference
in observed packets is large. In this test 55 is sending t;m82538 to 46. This is shown in figure
5.16 and 5.17.

520

519.5
519

518.5
518

517.5

10° x Bytes

517
516.5
516

_ 55->52 53->46
Figure 5.16: Bytes transferred by threads. Each box is omath

Our IXP card gets the same packets if the traffic comes fromooieo interfaces, so that
all packets come from one interface, should not affect ougdes. Since both computers are
sending data the same way, they will try to send more data tiarine can transfer. This
might be the reason for the big difference in sent packete. et switch in figure 5.6 might
drop packets if its buffers are full, and the computers nea@transmit. The logger is running
on eight contexts in one microengine, and we know from sedid.2, that this is enough for
logging the packets.

The lesson learned from this section is that our mirror RX artel's SDK RX block both
perform well enough for line speed. Networks can behave igpswhat are hard to explain.
We also saw that when getting very close to line speed, we eais@mne strange behavior.
We swapped computer 52 and 46, and ended up with differenltsesvhich is strange. Most
important is that our system is able to monitor close to lipeesl. If we could have made
smaller packets, it would stress the system even more. Tigistrne an interesting test, but we
felt like these tests and the real live test in section 5.@@igh to show that the Logger works.
In the next section, we will see how much time the XScale us@sad through all the entries
in the hash table.

67

390000

380000

370000

360000

Packets

350000

340000

330000

_ 55->52 53->46
Figure 5.17: Packets transferred by threads. Each box ishoead.

5.5 Ability to monitor in real time

One important measure is whether our system is able to nraamid analyze the traffic in real
time, and therefore we will look at how long time it takes frevhen a stream is done until an
interrupt is sent to the host computer. A stream is any TCH?WDICMP connection that we
monitor. This time determines how much of a real time systeenldgger is. We need to read
through all of the hash tables to update all ended streanstyeams that needs to be updated
in the database. Our ability to monitor in real time depemi$iow fast we can read the hash
tables.

The XScale reads through the hash tables to see if there grsti@ams that are done or
need to be updated in the database. This time depends onitvgs,thhow big the tables are,
and how much delay we have in the procedure that reads thethllgs. We use this delay
so the XScale is not using too much of the SRAM bandwidth, witishares with the logger
microengine. If the XScale is reading from the SRAM memoryaat as possible, we might
use so much of the SRAM’s bandwidth that the logger micraeagian not get access to the
SRAM to update the entries. This is a tradeoff which couldriyestigated to see how often
we can read without influencing the monitoring itself. Asdeseffect, it also helps to even out
spikes of ended streams. If a lot of streams are done at the samg, this delay will help the
client program to process the entries over a longer time.

For our monitoring system to work, we need every packet toeggte an update in the
SRAM hash tables. This is not easy to test, since we do notrgetrar in the program if a
thread has to wait too long to get access to SRAM. Our curmgnitceach is to have the XScale
use as little as possible of the SRAM bandwidth. Our codesd@dentries from each channel
before it waits. If we read too many entries at once, we wi# teo much SRAM bandwidth,
too few entries will make the code inefficient and use a longetio read all the entries. We
choose 10 entries because we believe that it is a reasormablend

Our code without any delay uses 40ms to go through 65536esntrieach channel to see

68

if there are some entries that need to be updated. We firstttne C functionudel ay(n),
which waits for n microseconds, to stop the XScale from negdioo fast.
Figure 5.18 shows how much delay we get.

400 T T T T

350

300

250

200

Seconds

150

100

50 .

O 1 1 1 1
0 20000 40000 60000 80000 100000

udelay(n)

Figure 5.18: Time to read through a hash table with 32768e=niim each channel with udelay

This is not a good solution for us. Even witldel ay(0) we use over 50 seconds to
read through the table. We have not implementei@!| ay(n), so we do not know why
udel ay(0) gives a long delay. Maybe it makes the operating system @hangtext and
try to run another program.

Since there is only our program running on the XScale, wel @i active wait implemented
with thef or loop:
for(wait=0;wait<iterations;wait++) k=wait*243;

Here we can adjust the number of iterations to wait for a lomgehorter period. The number
of iterations can be set idl syst em h for the forwarding version, or ogger _cf g. h for
the mirror version, and is named LOOPDELAY=wai t * 243; does not do anything useful,
it just makes the XScale do something. If we do not have angthere, the compiler might
optimize away the whole loop.

This works much better as seen in figure 5.19 and 5.20. Thethatdhhas 32768 entries
in each channel in this test. With this code we can have a li@lay if there is little network
traffic to monitor and we want the results in the database Festere is a lot of network traffic,
and it is not important to update the database fast, we caa lesgger delay. One other way to
adjust the system is the number of entries in the streamdalvidigure 5.21, we have different
numbers of entries in each table. A small number of entriesbEauseful in a lab where the
system is logging a few streams, and you want the resultsid#tabase fast. If you monitor
a router or a switch with many users, a big hash table is nieceake sure that enough entries
are free, and you do not mind that the database is updated iongenafter the stream is done.
We use a hash function to assign a stream to an entry in thedlaleh See section 4.4 for more
about the stream tables, and section 4.7.4 to see how we eig@sh unit. Since the streams

69

14000 : : : : 60
12000 | 1 55 ¢
g 10000 | P S0 |
S 8000 | s M7
3 6000 3 40
= | S 35|
4000 | 1 30 |
2000 | 1 25 |

0 : : : : 20 : : : : :
0 20000 40000 60000 80000 100000 0 50 100 150 200 250 300
Iterations in for loop Iterations in for loop

Figure 5.19: Time to read through table with faFigure 5.20: Time to read through table with for
loop as delay. loop as delay. Zoomed in.

30 T T T T T T T

25 | 1

Seconds
=
(63
T

10 | T

O 1 1 1 1 1 1 1
8196 16392 24588 32784 40980 49176 57372 65568

Number of entries

Figure 5.21: Time to read through a hash table with the fop v@h 100000 iterations as delay

are placed pseudo-randomly in the hash table, and the X8zads from the beginning to the
end, the numbers in the tables are worst case. It can hapaeattread finishes just before the
XScale reads it, or it can finish just after it is read. On agerdhe time before a stream is done
until it is processed by the XScale is half of the time in tHaea.

Another factor is that we do not have to make an interrupt édibst for each finished entry.
The constanENTRI ES_AT_ONCE decides how many finished entries we write to the SDRAM
ring buffer before we send an interrupt. This can be adjystadently we have it set to 10.
However, we always send an interrupt if there are one or maishied streams after we are
done going through the hash table.

We have seen that the XScale’s program can be adjusted angdodwhat the logger is
used for. It can be used to give a fast update to the databasehandle many connections at
the same time. Furthermore, it seems to be able to handleattiees at line speed in the lab.

70

Our next test will show how our logger works in the “real wdrld

5.6 Live Test

We were allowed to test our system at the IFI (Department oh@ter Science) building at
UIO (University in Oslo). This is a very important test sinicavill show if our system will
work in the real world, and not only in theory.

We were connected to one SPAN port on a Cisco 2970 Switch,hndage us both in and
outgoing traffic at one port at the switch. All computer cteeim the building have to go through
that port to get to the servers in the building or to an outsielvork. Traffic was a little low
since some people were on winter vacation. There were ar@8rithished streams a second,
which is a lot less than our system can handle, as seen irosée8. We were connected for
35-40 minutes, there were no technical problems that ptedems from logging for a longer
time. However, the network administrators do not like triahgone gets a copy of all traffic for
along time.! We can get the number of finished streams from the databakeegtilar SQL:

SELECT COUNT(*) FROM stream;

The result is given as shown in figure 5.22.

oo +
| COUNT(*) |
oo +
[59305 |
o +

Figure 5.22: How many entries we got in the live test.

We have listed what the different fields are used for in tabde o see the 10 connection that
transferred the most bytes, we can use:

SELECT iplow,iphigh, iplow_srcport, iplow_destport, pocol, bytes_iplow,bytes_iphigh
FROM stream s order by bytes_iplow desc limit 10;

and:

SELECT iplow,iphigh, iplow_srcport, iplow_destport, pocol, bytes_iplow,bytes_iphigh
FROM stream s order by bytes_iphigh desc limit 10;

The results are shown in figure 5.23 and 5.24. One issue withmproach is thatpl owand
i phi gh can be the same IP address, but in different streams. Thigesnak little harder to
get the right information out of the database. The reasothisrdesign is that it makes it real
easy to find the right stream for the logger. There are probablys to make an SQL query get
just what you need, we do not have a lot of experience with S, it is not the main focus
of this project.

Our Logger is a computer at IFl. So we started Firefox to seeeifjet logged. We used the
SQL statement to get the information:

IFor example, if someone uses telnet, we have their passwanidin text. Our Logger does not log any data
from packets, so we are unable to get any passwords from g¢jse ldowever, it would not be hard to rewrite our
software to look for passwords.

71

dommmeeeeaaas dommmeeeeaaas LT T LT T T Focmmeeas T T T rommemeeeaaeas
| iplow | iphigh | iplow_srcport | iplow.destport | protocol | bytes_iplow | bytes_iphigh
S S S o e e e ok S B P B
| 2179992551 | 2180007566 | 445 | 49164 | 6 | 1763541651 | 9695834
| 2180006267 | 2180007120 | 445 | 1586 | 6 | 1029750941 | 21441516
| 2179992560 | 2180007566 | 1499 | 5979 | 17 | 203797294 | 4491456
| 2179990824 | 2180007120 | 445 | 1583 | 6 | 37858918 | 15138829
| 1357900961 | 2180007526 | 80 | 4701 | 6 | 37724969 | 475826
| 1123638704 | 2180007306 | 80 | 1519 | 6 | 20398463 | 291566
| 1249708627 | 2180007306 | 80 | 1488 | 6 | 19252130 | 268277
| 135055229 | 2180008869 | 80 | 2171 | 6 | 18178327 | 312663
| 1094080390 | 2180008868 | 80 | 3900 | 6 | 15851553 | 253819
| 2180006204 | 2180007018 | 445 | 1172 | 6 | 12126054 | 479799
S S S o e e e ok S B P B

10 rows in set (0.10 sec)

Figure 5.23: The 10 biggest senders of iplow

S S S o e e e ok S B P B
| iplow | iphigh | iplow.srcport | iplow.destport | protocol | bytes_iplow | bytes_iphigh
dommmeeeeaaas dommmeeeeaaas LT T LT T T Focmmeeas T T T rommemeeeaaeas
| 2180007461 | 2688837028 | 50705 | 1755 | 6 | 1396292 | 41804614
| 2180006267 | 2180007120 | 445 | 1586 | 6 | 1029750941 | 21441516
| 2179990824 | 2180007120 | 445 | 1583 | 6 | 37858918 | 15138829
| 2180006969 | 2180008932 | 34270 | 80 | 6 | 727847 | 13759126
| 2180008981 | 2253130755 | 51666 | 80 | 6 | 115190 | 13543570
| 2179992609 | 2180006955 | 2049 | 692 | 6 | 5689576 | 12272716
| 2180007237 | 2653321738 | 60939 | 80 | 6 | 135379 | 10582894
| 2180008981 | 3231061052 | 51660 | 80 | 6 | 160952 | 10238828
| 2180006969 | 2180008932 | 34292 | 80 | 6 | 528343 | 10224763
| 2179992551 | 2180007566 | 445 | 49164 | 6 | 1763541651 | 9695834
dommmeeeeaaas dommmeeeeaaas LT T L T T Focmmeeas T T T rommemeeeaaeas

10 rows in set (0.10 sec)

Figure 5.24: The 10 biggest senders of iphigh

SELECT * FROM stream s where iplow = 2180006452 or iphigh =@#452;

Where 2180006452 = 0x81F04234 which gives 129.240.66.6&hwis our IP address. Itis a
little work to get the IP address in a human form, but agaiis, &asy to write code for this in a
client program designed to get information from the database result is seen in figure 5.25.
We see that every line has our IP as eithpt owori phi gh. Since we were using Firefox,
which is a client tool, we are always the one starting a stré&mcan see this from figure 5.25,
if our IP is iplow, iplow_started is 1.Packet s_i phi gh andpacket s_i pl ow are the
number of packets sent by iphigh and iplow. We can see that are wn the webpages to
www.vg.no. They have the IP address 193.69.165.21 whicbsg®242566933 in our storage
system, That the protocol is 6 tells us that it is a TCP stresrd,since our destination port is
80 we know that itis a HTTP stream. This entry is on line nuniliein figure 5.251 pl ow_-

i nt andi phi gh_i nt are useless when we have a mirror from one switch going to orte p
in our IXP card. All will be on the same interface. If we arengsitwo mirrorports, one for
each direction of the mirrored port, like we did in sectiod.8, we can see the side of the
switch each host is on. If we mirror a port going to anotherntslwithe traffic going in to the
switch will be mirrored to one interface on the IXP card, ahd traffic going from the switch
will be on another interface. If the system is used withoutiaarport, and forwards packets,
i pl ow_i nt andi phi gh_i nt are also usefulst i me andet i nme are the times the stream
started and ended, this is encoded as seconds since the agoch is the time 00:00:00 on

72

I
I
I
I
I
I
I
I
I
I
+

January 1, 1970. Our entry to www.vg.no started 1203339&84rds since epoch, which is
Mon Feb 18 2008 13:53:14, and ended 1203339215, which iscbhds laterByt es_i pl ow
andbyt es_i phi gh is the number of bytes sent by the hosts. We seeitpht gh has sent
the most bytes, 340266 versus 33275, this makes sense siwve&gvno is server and iphigh of
this connection. A specially written client could have ledkup all the IP addresses and showed
them, the start and endtime could be in human form, and wel@al¢ulate the datarate of each
stream. But as we have said before, our objective was to findf @aulogger could be made
with the IXP card. To write the client application is not aliagcal problem, it is just another
program analyzing data from a regular SQL database.

o a s o a s B T L LT o o LT LT +->
| iplow | iphigh | iplow.srcport | iplow.destport | protocol | iplow.int | iphigh_int | stine |
B LT L E LT R B E T o o L R o +->
| 1177191948 | 2180006452 | 80 | 4209 | 6 | 0| 0 | 1203339026
| 2180005890 | 2180006452 | 53 | 1026 | 17 | 0| 0 | 1203339024
| 2180006452 | 2184774937 | 1242 | 80 | 6 | 0| 0 | 1203339024
| 2180006452 | 3242566941 | 1926 | 80 | 6 | 0] 0 | 1203339196
| 1359455993 | 2180006452 | 80 | 4642 | 6 | 0] 0 | 1203339196
| 2180006452 | 3242566941 | 1927 | 80 | 6 | 0] 0 | 1203339196
| 1044777771 | 2180006452 | 80 | 2992 | 6 | 0] 0 | 1203339196
| 2180006452 | 3242566941 | 1924 | 80 | 6 | 0] 0 | 1203339194
| 2180006452 | 3242566941 | 1925 | 80 | 6 | 0| 0 | 1203339194
| 2180006452 | 3242566933 | 1184 | 80 | 6 | 0] 0 | 1203339194
| 2180006452 | 3242566969 | 2377 | 80 | 6 | 0| 0 | 1203339200
| 1044777771 | 2180006452 | 80 | 2994 | 6 | 0| 0 | 1203339196
| 2180006452 | 3242566969 | 2378 | 80 | 6 | 0| 0 | 1203339200
| 2180006452 | 3242566941 | 1936 | 80 | 6 | 0| 0 | 1203339197
| 1359455993 | 2180006452 | 80 | 4677 | 6 | 0| 0 | 1203339231
| 2180006452 | 3243788195 | 4803 | 80 | 6 | 0| 0 | 1203339217
| 2180006452 | 3270339381 | 2890 | 80 | 6 | 0| 0 | 1203339197
| 1359455993 | 2180006452 | 80 | 4682 | 6 | 0| 0 | 1203339231
| 2180006452 | 3243788195 | 4804 | 80 | 6 | 0| 0 | 1203339217
P R R R L R I +
etinme | bytes_iplow | bytes_iphigh | packets_iplow | packets_iphigh | iplow started
Cememmcnmcnnn F e S E Feccccccnncanaan +

1203339036 | 692 | 1085 | 3| 4| 0

1203339026 | 988 | 386 | 6 | 6 | 0

1077531036 | 2161 | 17489 | 16 | 21 | 1

1203339196 | 873 | 8535 | 9| 8 | 1

1203339196 | 6343 | 1612 | 8 | 9 | 0

1203339196 | 927 | 939 | 5| 4 | 1

1203339196 | 599 | 668 | 3] 4 | 0

1203339194 | 1038 | 16772 | 15 | 14 | 1

1203339194 | 1077 | 16128 | 14 | 13 | 1

1203339215 | 33275 | 340266 | 218 | 266 | 1

1203339215 | 1310 | 5712 | 9 | 8 | 1

1203339196 | 1529 | 747 | 3 5| 0

1203339215 | 1310 | 4814 | 9 | 8 | 1

1203339197 | 956 | 1019 | 5| 4| 1

1203339231 | 4949 | 2017 | 7] 8 | 0

1203339217 | 773 | 708 | 5| 4| 1

1203339197 | 2468 | 48785 | 34 | 37 | 1

1203339231 | 19110 | 1954 | 16 | 17 | 0

1203339217 | 885 | 637 | 5| 4| 1

Figure 5.25: The log from the computer we used

The Live Test showed that our Logger system works in a realdvenvironment. The
network we tested on did not stress the system as it only haahdr23 finished streams a
second. It would have been fun to test our system in a monzedilnetwork, but we do not
know about anyone who will let us get a copy of all their netkvimaffic.

5.7 Discussion

We found a PCI driver [5] that works for our purpose. It lackMBA support, so it is really
slow, but fast enough for us. To make DMA support for this drj\or write a new one would

73

be important for future work with this card. To send an intigtrfrom the IXP card to the host
computer works well.

We were able to understand the hardware hash unit and usénttthe right entry in the
hash tables. Hardware hashing is a really fast way to looknties in a big table.

All the code for the microengines was written in assembletodk some time to get into
it, and even more time in debugging when we changed someimihg code. However, we do
believe it was worth the effort.

We were able to write the mirror version on the logger withoapyrighted code. As an
extra bonus, we could restart our program on the XScale awdosmngines without resetting
the IXP card like we did with the Intel SDK code.

The system works in the real world. We had it tested at ourersity. Even if this was the
test that stressed our card the least, we do think that ieisibst important one, since it shows
that the Logger does work.

We were surprised over how much a single context in one migjioe can do. (See section
5.4.2 for the test.) At the start of the project, we were plagno use 4 contexts on 4 micro-
engines. But because of this test, and the fact that it issh@éodsynchronize the contexts if they
are spread over multiple microengines, we settled with oreaangine and 8 contexts. If our
program needed more registers at the same time, we had toam#ekts, since the contexts
share the physical registers.

We were a little surprised of the results in section 5.4.3e Tihmber of transferred bytes
is almost the same, but the number of packets transferred basdifference. The logs from
the Cisco switch show that there are no dropped packets. Wwidknow the reason for this.
Maybe the TCP/IP stacks on the host computers do not do theférain the same way, or
choose different parameters. They had a different versidimeo2.6 kernel.

We can use the Logger under different scenarios. If you agh@osmall SRAM hash table
and a small delay, the Logger can act fast to ended streanesteghlts will be in the database
in a short time. This will limit the number of simultaneousestms that we can monitor, and the
XScale will use more of the SRAM bandwidth. To monitor a netewwith a heavy load, we
suggest that the delay is increased and the number of emtrgash SRAM hash table is set to
65536.

In a lab, where we do not have many connections at the samewienean use a small hash
table. This will make our logger give fast results. For a ognpany or a university, there will
be many connections at the same time, and they might not oeget the results immediately.
Here we can use a large hash table and large delay for the ¥&wathe logger can access the
SRAM without many interruptions.

The code in this project can be utilized in other projects a.\Whe way we used hardware
hashing and the SRAM is an easy thing to reuse. If someonesnh&dCl driver use DMA,
our way of transferring data to and from the host computeransed in scenarios like [35].

In our project, we used 2 microengines. One for the RX blockl ane for the logger. A
third microengine was used if we used the forwarding versidren we used the XScale and the
host CPU. Our data flowed through 4 CPUs in its way into thelzsa. This shows the power
of utilizing different CPUs. We used fast and simple networiicessors to process each packet
in the network, and more general purpose CPUs like the XSuadethe Intel CPU in the host
computer to process the finished streams. The real time ragggd not have worked without
network processors. This is another example that netwarkgssors are useful. The fact that
the network processors, the XScale, SRAM, and SDRAM are aieghe PCI card, makes the

74

IXP card very usable to do packet processing where everygpaaeds to be processed. Since
these network processors are on the network card, we do edttoecopy data over a PCI bus

to process it.
We have shown that a gigabit network analyzer can be madeanitiXP card in a regular

computer.

75

Chapter 6

Conclusion

6.1 Summary

Network monitoring is increasingly important. We get morelanore laws about monitoring
and storing data about phone and computer networks [1] 2im®nitor a 1Gb/s link and store
all network streams or connections is very hard on a reguarputer with a regular network
card. We wanted to show that a gigabit network analyzer cbalchade from a PCI card with
an Intel IXP chipset and a regular computer.

We got the packet logger to work at line speed, using a Ra@isy§&2611 card [3]. This card
includes the Intel XP2400 chip set [4]. The Intel IXP chip sewell suited for this purpose,
with hardware units like microengines, XScale, hash uiigred memory, etc. It is easy to
work with and gives great flexibility. Two microengines wergsed for the processing of each
packet, and the XScale was used to copy information aboutinished streams to a shared
SDRAM ring buffer. At last, the Intel CPU in the host computeads the packets from the ring
buffer and enters them into the MySQL database.

To get to this point, we had to overcome some problems. Fsteeded to understand the
hardware hash unit. Next, we needed to find a way to get thetdakee client program using
the PCI bus. We found that Georgia Tech had written a PCI dfbjehat worked for us.

All the code for the microengines was written in assembtdndk some time to get into it,
and even more time in debugging when we changed somethihg itode, but it was worth the
effort. The code could not have been so effective using tlygyp@C compiler, and we would
not have had the same control over what was being done. Wsgmaser, we know how many
bits are read and what registers are used to store them.

At the end, we ran some tests on the Logger. We tested how &sbuld transfer data over
the PCI bus, how many entries the XScale can send to the datalssecond, and the bandwidth
of the microengines. Lastly, we did a test in a real world rogkw

All the source code for the mirror version is open source. c8ithe Intel SDK [16] is
copyrighted, we wanted to try to avoid it, So we could give samrce code away. Instead of the
Intel SDK, we found, and modified some code made by Lennertdinek [9], so it worked
for our application.

76

6.2 Contributions

6.2.1 A working, line speed traffic analyzer

We showed that the Intel IXP chip set is able to be used as aonlet@gger. The system
was tested in a real world network at our university. It candia between 1000 - 4000 ended
streams a second and can store millions of entries in théasea

6.2.2 Intel SDK vs Lennert Buytenheks SDK

Lennert Buytenhek’s code [9] can be used instead of the 8D# [16] to load code into the

microengines, start and restart them without resettingXifiecard. We were able to write the
mirror version on the logger without any copy protected codennert Buytenhek has also
given examples of an RX and a TX block. We modified his RX blawkdur Logger.

6.2.3 Assembler code

Since we had problems with the C compiler, and wanted fultrabywe wanted to make the

programs for the microengines with assembler, which we hte éxperience with in the be-

ginning. With assembler we are able to control the microeegibetter, we can specify what
registers that are to be used, and how many bytes to readraAmogng in assembler was the
right choice for us.

6.2.4 Large tables and hash unit

Using the hardware hash unit and both SRAM channels, we weed@have 65536 entries in
each SRAM channel and find the right entry fast.

6.2.5 PCI

We gave an example of how to make interrupts on the host canpom the XScale over the
PCI bus. The gtixp IXP PCI driver [5] was used in this task. dtrchnded a recompilation of
the host computer kernel and some modifications of the ditiself to make it work. The client

program was able to read from a ring buffer in SDRAM on the D&dcwhen there was data
ready for it.

6.3 Future work

It would have been fun to test the Logger with a bigger netwthda our department network,
to see how it would perform under a larger load in a real nelkwdhe problem is that it is not
easy to find a large network that we are allowed to put our Logmevork. We do also believe
that our Logger does work, which makes this test not very irtgm. However, it would be very
fun. To log a real network for a longer time, would also be aertiest to see how it performs
over weeks or months.
The most important thing to be done, as we see it, is to makel @fR@r that uses DMA.

Using DMA, the driver would be able to transfer data a lotéasThe Georgia Tech. driver [5]

77

that we are using, performs good enough for our usage, buaystao slow, for example, if
other data should be transferred like in a scenario wherpdys cached. Since the Georgia
Tech. driver is open source, we could rewrite it. We are nog €ut is faster to rewrite it than
to start from scratch. It is a shame that we have a PCI cardlatsitof CPUs and memory and
are not able to communicate with it in a reasonable speed.

Another improvement could be deeper packet inspection. @udcread the beginning
of the TCP packets and figure out what kind of traffic it is. Tisisiot hard, it is only time
consuming to program the microengines to do some more watloangoal was to prove that
such a logger could be efficiently built on our equipment. @neroengine could be dedicated
to only work on deeper inspection of the TCP packets thatesadata. Another microengine
could handle UDP traffic. If we add some fields in the databaseyould be able to record our
results as well.

Depending on the switch, we might get packets with a VLAN feare could write code
so that we are able to read these packets as well. The palcketgdant through the port we were
monitoring in the Live Test had VLAN headers, but the Ciscatslwwsent us packets without
the VLAN header. We have not tested our logger on other se#chut they might have VLAN
headers on the mirror ports. If we want to use the forwardieigon of the logger, we will get
VLAN packets if the network has VLAN on our connection. If tepeed of the SQL server

SQL Server
Cos
/ ‘ ‘ ‘ ‘ SQL Server
EEEEEEERN

IXP Logger [C—J08 > e

m ‘ Switch \ 1111
Cos

. SQL Server
Mirror/SPAN port(s) ‘ ‘ ‘ ‘
) HEE EEEEENER N

A network Switch with mirror/SPAN A network

Figure 6.1: How we can use multiple SQL servers

limits our logger, we could use multiple SQL servers. One wagonnect to these could be
through one of the network ports on the IXP card. We can usetwts to get packets from the
switch and the third one to a cluster of SQL servers as shovigune 6.1.

If we use the XScale to make UDP packets with the data from i€hia streams, and send
them to the SQL servers in a round robin fashion, we would geally fast SQL server system.
It would be a little harder to get data from the SQL servem¢aithe same query needs to be
sent to each server. An alternative might be to hash eachnstre find which server to send it
to. We are not sure if this could be made efficient.

To make all our code open source, we need to write a new RX andldek, too. Lennert
Buytenhek has an example of an RX and a TX block that might @nded or modified to

78

work. Right now, only the mirror version is open source. Th¢ Block used in the mirror
version can not be used in a forwarding version.

Finally, to make it easier for the end user, we can write an $fi@nt application and a nice
GUI for presentation of the data. This application is usedyiiting information from the SQL

database. For now, we are just using the MyS@isql d program to access the data in the
database.

79

Bibliography

[1] http://www.nettavisen.nof/it/article1519916.ece®pl0, January 2008.
[2] http://sv.wikipedia.org/wiki/datalagringsdirekét, March 2008.

[3] Radisys ENP-2611 Hardware Reference. http://wwwsgslicom/service_support/
tech_solutions/techsupportlib_detail.cfm?productiBlE October 2004.

[4] Intel IXP2400 Network Processor. Hardware referencenad, July 2005.

[5] H. Raj and I. Ganev. http://www-static.cc.gatech.eguiev/gtixp/index.html, September
2007.

[6] http://vader.canet4.net/gigabit/gigabit.html.

[7] http://www.labs2.se/pr/press2004113001.htm.

[8] http://www.intel.com/design/network/products/apfily/ixp2400.htm.

[9] Lennert Buytenhek. http://svn.wantstofly.org/uerggtrunk/lib/.
[10] http://www.intel.com/design/network/productsfamily/ixp1200.htm.
[11] Intel. Intel IXP2400 Network Processor Hardware Reference Manual, November 2003.
[12] Intel IXP2400 and 2800 Network Processor. Programsraference manual, July 2005.
[13] Monta vista webpage: http://www.mvista.com/.
[14] http://en.wikipedia.org/wiki/vxworks, February @8.
[15] Douglas E. ComerThe Network Systems Design. Prentice Hall, 2006.

[16] http://www.intel.com/design/network/productsfamily/tools/ixp2400_tools.htm, Febru-
ary 2007.

[17] http://www.csix.org.
[18] Enp-2611 data sheet, 2005.
[19] Intel 21555 Non-Transparent PCI toPCI Bridge. User oenJuly 2001.

[20] Jonathan Corbet, Alessandro Rubini, and Greg Kroatirhn. Linux Device Drivers.
O’'Reilly, 2005.

80

[21] http://www.cisco.com/en/US/products/ps6645/pretd_ios_protocol_option_home.html,
February 2008.

[22] Wikipedia: http://en.wikipedia.org/wiki/Netflow,dbruary 2008.

[23] http://www.flukenetworks.com/fnet/en-us/produfamily.ntm?currentcategorycode=
INET&categorycode=LANH!, April 2008.

[24] http://pc.pcconnection.com/1/1/111525-fluke-nerive-optiview-link-analyzer-80gb-
hard-drive-opv-la2 hd.html, April 2008.

[25] http://www.flukenetworks.com/fnet/en-us/produstisink/Overview.htm?categorycode=
LANH&PID=53236, April 2008.

[26] http://www.pcconnection.com/IPA/Shop/Productt@ehtm?sku=8194727, April 2008.
[27] http://www.pcconnection.com/IPA/Shop/Productt@ehtm?sku=8194735, April 2008.
[28] http://www.pcconnection.com/IPA/Shop/Productt@ehtm?sku=8194698, April 2008.
[29] http://www.wildpackets.com/solutions/technoldgpgabit, April 2008.

[30] http://www.netscout.com/products/infinistreanp.a&pril 2008.

[31] Ning Weng and Tilman Wolf. Pipelining vs. multiprocess - choosing the right net-
work processor system topology. Rroc. of Advanced Networking and Communications
Hardware Workshop (ANCHOR 2004) in conjunction with The 31st Annual International
Symposium on Computer Architecture (ISCA 2004), page unknown, Munich, Germany,
June 2004.

[32] F. Baker. Requirements for ip version 4 routers rfc 18haNetwork Working Group, June
1995.

[33] S. Nilsson and G. Karlsson. Ip-address lookup usingiés. InlEEE Journal on Selected
Areasin Communications, 17(6), pages 1083-1092, June 1999.

[34] Tammo Spalink, Scott Karlin, Larry Peterson, and Yitzk Gottlieb. Building a robust
software-based router using network processorsPrirceedings of the 18th ACM sym-
posium on Operating systems principles (SOSP), pages 216—229, Banff, Alberta, Canada,
October 2001.

[35] @yvind Hvamstad, Carsten Griwodz, and Pal Halvorseriflo@ding multimedia prox-
ies using network processors. Rroceedings of the International Network Conference
(INC'05), pages 113-120, Samos Island, Greece, July 2005.

[36] LiZhao, LaxmiBhuyan, and Ravi lyer. Splicenp: A tcpispl using a network processor.
In ACM Symposium on Architectures for Network and Communications System, pages
135-143, Princeton, USA, October 2005.

[37] http://www.networkworld.com/news/2005/022805gearc.html, January 2008.
[38] http://www.deviceforge.com/news/NS331479323nihdanuary 2008.

81

[39] ixp2xxx IXP2400/1XP2800 Developer's List. httpsi#s.cs.princeton.edu/mailman/listinfo/ixp2xxx.
[40] http://www.mysql.com/, February 2008.

[41] http://wwwcs.uni-paderborn.de/cs/heiss/linugfiiiiysarea.html, March 2008.

[42] http://en.wikipedia.org/wiki/Nagle’s_algorithmypril 2008.

[43] W. Richard Stevens, Bill Fenner, and Andrew M. Ruddf#iNIX Network Programming.
The Sockets Networking API. Addison Wesley, third edition, 2004.

82

