®

B TECHNOSOFT

User Manual

© Technosoft 2009

TECHNOSOFT

TML_LIB

v2.0
User Manual

P091.040.v20.UM.0609

Technosoft S.A.

Rue de Buchaux 38
CH-2022 BEVAIX
Switzerland
Tel.: +41 (0) 32 732 5500
Fax: +41 (0) 32 732 5504
contact@technosoftmotion.com
www.technosoftmotion.com/

http://www.technosoftmotion.com/�

Read This First

Whilst Technosoft believes that the information and guidance given in this manual is correct, all
parties must rely upon their own skill and judgment when making use of it. Technosoft does not
assume any liability to anyone for any loss or damage caused by any error or omission in the
work, whether such error or omission is the result of negligence or any other cause. Any and all
such liability is disclaimed.

All rights reserved. No part or parts of this document may be reproduced or transmitted in any
form or by any means, electrical or mechanical including photocopying, recording or by any
information-retrieval system without permission in writing from Technosoft S.A.

About This Manual

This book describes the motion library TML_LIB v2.0. The book is common for Microsoft
Windows and Linux x86 versions of the library. The TML_LIB is a collection of functions, which
can be integrated in a PC application. For Microsoft Windows version of the TML_LIB you can
write the application in C#, C/C++, Delphi Pascal or Visual Basic. For Linux platforms the
application for TML_LIB must be written in C/C++. With TML_LIB motion library, you can quickly
program the desired motion and control the Technosoft intelligent drives and motors (with the
drive integrated in the motor case) from a PC. The TML_LIB allows you to communicate with
Technosoft drive/motors via serial RS-232, RS-485, CAN-bus or Ethernet protocols.

Scope of This Manual

This manual applies to the following Technosoft intelligent drives and motors:

e IDM240 / IDM640 (all models), with firmware FOOOH/F250A/F251A or later (revision letter
must be equal or after Hi.e. |, J, etc.)

e IDM680 (all models), with firmware F500A/F501A or later

e |DM3000 (all models), with firmware FO37K/F256A or later

e ISD720/1SD860 (all models) with firmware FOOOI/F250A or later

e ISCM4805 / ISCMB8005 (all models), with firmware FOOOH/F250A/F251A or later
e ISM4803 (all models), with firmware F024l or later

e IBL3605/PIM3605 (all models), with firmware FO20K/F253A/F254A or later
o IBL2403/ PIM2403 (all models), with firmware FO20H/F253A/F254A or later
e IBL2401/PIM2401 (all models), with firmware FO20H/F253A/F254A or later
e IPS110 (all models), with firmware FOO5H/F255A or later

e IPS210 (all models), with firmware FOO5H/F255A or later

e |M23x (models IS and MA), with firmware FO0O0OH/F252A or later

e 1S23x (models MA), with firmware FOO3H/F261A or later

© Technosoft 2009 I TML_LIB — User Manual

IMPORTANT! For correct operation, these drives/motors must be programmed with one of the
firmware revision listed above. EasySetUp* - Technosoft IDE for drives/motors setup, includes a
firmware programmer with which you can check your drive/motor firmware version and revision
and if needed, update your drive/motor firmware to revision H.

Notational Conventions

This document uses the following conventions:

Q

o0 DD

Drive/motor - an intelligent drive or an intelligent motor having the drive part integrated
in the motor case

TML — Technosoft Motion Language

IU — drive/motor internal units

ACR.5 - bit 5 of ACR data

FAxx — firmware versions FOOOH, FO20H, F024I, FOO5H, FO00H, F250A, F251A or later
FBxx — firmware versions F500A, F501A or later

Related Documentation

Help of the EasyMotion Studio software platform — describes how to use the
EasyMotion Studio, which support all new features added to revision H of
firmware. It includes: motion system setup & tuning wizard, motion sequence
programming wizard, testing and debugging tools like: data logging, watch,
control panels, on-line viewers of TML registers, parameters and variables, etc.

MotionChip™ 1I TML Programming (part no. P091.055.MCII. TML.UM.xxxx)
describes in detail TML basic concepts, motion programming, functional
description of TML instructions for high level or low level motion programming,
communication channels and protocols. Also give a detailed description of each
TML instruction including syntax, binary code and examples.

MotionChip 1l Configuration Setup (part no. P091.055.MCIl.STP.UM.xxxx)
describes the MotionChip Il operation and how to setup its registers and
parameters starting from the user application data. This is a technical reference
manual for all the MotionChip Il registers, parameters and variables.

' EasySetUp is included in TML_LIB installation package as a component of EasyMotion Studio
Demo version. It can also be downloaded free of charge from Technosoft web page

© Technosoft 2009 v TML_LIB — User Manual

If you Need Assistance ...

If you want to ... Contact Technosoft at ...

Visit Technosoft online World Wide Web: http://www.technosoftmotion.com/

Receive general information World Wide Web: http://www.technosoftmotion.com/
or assistance Email: contact@technosoftmotion.com

Ask questions about
product operation or report
suspected problems Fax: (41) 32 732 55 04
Email: hotline@technosoftmotion.com

Make suggestions about or
report errors in
documentation

© Technosoft 2009 \% TML_LIB — User Manual

http://www.technosoftmotion.com/�
http://www.technosoftmotion.com/�
mailto:hotline@technosoftmotion.com�

Contents

R [o1 o Lo 1U o4 £ oY o PP PPP 1
P €Tt] Lo IR - T (=T o D PO PP PPP PP 3
21 Hardware installation 3
2.2 Software installation on Microsoft Windows platforms ... 3
221 INStalling EaSySEIUD.....ooo i 3
222 Installing TML_LIB IDFaryccooueeeiiieee et 3
2.3 Software installation on Linux x86 architeCturesccccocoeveiiiiei i 3
231 Installing Microsoft Windows emulator ... 3
2.3.2 INStalling EaSYSEIUP....coci it 3
2.3.3 Installing TML_LIB lDrary ..ot 4
2.4 Build the host application with TML_Iib........cccooooiiii 4
241 Drive/MOLOr SEIUP .. 4
242 Build your application with TML_LIB ... 5

3 TML_LIB d@SCIIPTION .cciittitie ittt ettt ettt et e e et e e sttt e e e bt e e e e e sbbeeeesnabneeens 7
3.1 =T [o oo g Uo7 =T o | PSR 7
3.2 Multithread and multiprocess applications with TML_LIBccooiiiiiiiiiis 8
3.3 FUuNClioNS deSCrIPHONScoiiiiii e e e e e e e e e e e e e e eanes 12
3.31 CommUNICAtION SELUPuuiiiiiiie e e e e e e e e e e e s 13
3.3.11 TS _OPENCRANNEL.......uieiiiieiee e e 13
3.3.1.2 TS_SelectChannelcc.ueiiiie e 16
3.3.1.3 TS _ClOSECNANNELoveiiiiiiceee e 17
3.3.2 DIFIVE SEIUD ...t e e e n e e 18
3.3.21 ST 1= 1o ST=] (8] o J SRR 18
3.3.2.2 SIS =10 oY - T SRR 19
3.3.2.3 SRS 1= (0] o1 €1 o 18] o J PR 20
3.3.24 TS _SetupBroadcCastccoocuiiiiiiiii e 21
3.3.25 TS_Drivelnitialization...........cooiiiiiii e 22
3.3.2.6 LS TS = V= USSR 23
3.3.3 Drive adminiStrationo 24
3.3.31 TS _SEIBCLAXIS ..veeeee ittt 24
3.3.3.2 BRI S 121 (=3 (] o U o SRR 25
3.3.3.3 TS_SeleCtBroadCast........ccuuviiiiiiiiiiiie e 26

© Technosoft 2009 Vil TML_LIB — User Manual

3.34 Drive/motor MONITOMINGeiiiie i e e e eae s 27

3.3.41 TS ReAASIATUS ...t e e 27
3.34.2 TS _SendDataTOHOScocooiiie e 28
3.34.3 TS_CheckForUnrequestedDriveMeSSagesceevvveiieeiiiieeeiiiieeeeiiee e 29
3.34.4 TS_RegisterHandlerForUnrequestedDriveMessagescccoecveeeevcveeeesennnenn. 30
3.345 TS_ONlNECNECKSUMoiiiiiiiiieiiiie ettt e e e e e e e e neeas 31
3.3.5 Error Nandling ..o 32
3.3.51 TS _RESEIFAUIL......co e 32
3.3.5.2 TS _RESEL. ..o 33
3.3.5.3 TS _GetLastErrorTextoo i 34
3.3.6 MOtION PrOGramMINGccoiuieiiiiiiie e e e 35
3.3.6.1 TS_MOVEADSOIULE ... 35
3.3.6.2 TS_MOVEREIGLVE ... 37
3.3.6.3 TS_MoVEeSCUNVEADSOIULE ... 39
3.3.6.4 TS_MoveSCUrveRelatiVeeeiii e 40
3.3.6.5 TS_MOVEVEIOCIEY ...t 41
3.3.6.6 TS_SetAnalogueMoveEXternaloooiiiiiiiiiiiii e 43
3.3.6.7 TS_SetDigitalMoveEXternal ... 45
3.3.6.8 TS_SetOnlineMoveEXternal ... 46
3.3.6.9 TS_VoltageTestMOdE.oiiiiiiiee e 48
3.3.6.10 TS _TorqueTeSIMOEcooiiiiiiiiiiiii e 49
TG TG 0 e B S T Y IS 7= (1 o SRS 50
3.3.6.12 TS_SendPVTFirstPOINtcccouiiiiiieiiie et 52
3.3.6.13 TS_SeNAPVTPOINEccueiieiiieiiee ettt e e e e 53
TR TG 0 S S T ST (U o J SRR 54
3.3.6.15 TS_SendPTFirstPOINt.........cooiiiiiie e 56
3.3.6.16 TS_SeNdPTPOINt......ciiiiiiiie ettt see e sneee e 57
3.3.6.17 TS_SetGearingMaster..........ooiiiiii e 58
3.3.6.18 TS_SetGearingSIave. ..o 59
3.3.6.19 TS_SetCammingMAaSter.........c.ciiiiiiiiiiiiie e 61
3.3.6.20 TS_SetCammingSlaveRelative ..o 62
3.3.6.21 TS_SetCammingSIaveAbSOIULEccoiiiiiiiiiiii e 64
3.3.6.22 TS_CamDOWNIOAdeoiiiiiiiiiiiiie e 66
3.3.6.23 TS_CamlInitializationcooouiiiiiiiiii e 67
3.3.6.24 TS_SetMasterResolUtioncoooiiiiiiiii e 68
3.3.6.25 TS_SendSynchronization..............ooceeeiiiiiiii e 69
3.3.7 Y[} (] oo 010 1 =1 o o [SR 70
3.3.71 LIRS T 01 USRI 70
3.3.7.2 TS_Updatelmmediate ... 71
3.3.7.3 TS _UpdateOnEVENt ... e 72
3.3.74 IS TS (o o TS 73
3.3.7.5 TS SetPOSIHION ... 74
3.3.7.6 TS_SetTargetPositionTOACIUALc.eeiiiiiiiii e 75
3.3.7.7 LIRS TS 1= (O =Y o | USSR 76
3.3.7.8 TS_QuickStopDecelerationRatecoooiiiiiiiiiiii e 77
3.3.8 EVBNES e 78
3.3.8.1 TS _ChECKEVENT.... ...t e e e e e eaaaes 78
© Technosoft 2009 Vil TML_LIB — User Manual

3.3.8.2 TS_SetEventOnMotionCompletecoccuvviiiiieii i 79

3.3.8.3 TS_SetEventOnMOtorPOSItioNccooiciiiiiiiieec e 81
3.3.84 TS_SetEventOnLoadPosition.............cooiiiiiiiiiiiie e 82
3.3.8.5 TS_SetEventOnMOtOrSPEEd.......cceviiiiiiiiiieeee e 83
3.3.8.6 TS_SetEventOnLoadSpeed..........ooviiiiiiiiiiiiieee e 84
3.3.8.7 TS _SetEventONTIME ..ooooiieei e 85
3.3.8.8 TS_SetEventOnPositionRESooviiiiii e 86
3.3.8.9 TS_SetEventOnSpeedReEf ... 87
3.3.8.10 TS _SetEventOnTorqUERETeeiiiiiiiie e 88
3.3.8.11 TS_SetEventOnENCOAErINAEXcceiiiiiiiiiiiiieiiiee e 89
3.3.8.12 TS_SetEventOnLimitSWItChevviiiiiiii e 90
3.3.8.13 TS_SetEventOnDigitallnputoooviiiiiiiiec e 91
3.3.8.14 TS _SetEventOnHOMEINPUL.........c.oviiiiiiieei e 92
3.3.9 TML jumps and function CallSccuueiiiiiiiiii e 93
3.3.9.1 LS T C1O 2 1@ SO OUP PP 93
3.3.9.2 TS _GOTO _LADEI ...ttt e 94
3.3.9.3 TS CALL ettt e e e aarae s 95
3.3.94 TS _CALL _LADEI ..ottt 96
3.3.95 TS_CancelableCALL...........ooi e 97
3.3.9.6 TS_CancelableCALL_Label ... 98
3.3.9.7 TS ABORT .ttt et e e et e e e st e e e s e e e s e e e e e e e anrees 99
3.3.98 TS_DownloadProgram ... 100
3.3.9.9 TS_DoWNIOadSWFIlEoeviiiiiiie e 101
R TR 0 I [o =T T |1 o PSSP 102
3.3.10.1 TS _SetUPINPUL. ..o e e e e e 102
3.3.10.2 TS _GELNPUL ...ttt e e e e e e e e 103
3.3.10.3 TS_SetupOutPUL..... ... e e e 104
3.3.10.4 TS_SEtOUIPUL....eiiiiiiiiiee ittt e e rae e e e ee e e e enre e e e enees 105
3.3.10.5 TS _GetHOMEINPULoeie e e e 106
3.3.10.6 TS_GetMURIPIEINPULSoooiiiee e 107
3.3.10.7 TS_SetMultipleOUIPULSoooiiiee e 108
3.3.10.8 TS_SetMultipleOUIPULS2 ... 109
3.3.11 Data tranSTer ... e 110
3.3.11.1 TS _SetIntVariableooooiiiiiiie e 110
3.3.11.2 TS _GetintVariableoooooiiiiiieee e 111
3.3.11.3 TS_SetlongVariableooiiiiiiiiiiiiie e 112
3.3.11.4 TS_GetLongVariable...........cooiiiiiiiiiiie e 113
3.3.11.5 TS _SetFixedVariablecooouiiiiiiiiiiieee e 114
3.3.11.6 TS _GetFixedVariablecoocuiiiiiiiiiieee e 115
3.3.11.7 TS _GetVariableAddress........ooouuuiiiiiiii e 116
3.311.8 TS _SetBUMEI ..cciii i 117
3.3.11.9 TS GOIBUTEI...ccii e e 118
3.3.12 MISCEIIANEOUScoeie ettt ettt e e e e e e st e e e e e e e e s ntnteeeeeeeeeannnnneees 119
3.3.12.1 TS _EXECULE ettt 119
3.3.12.2 TS _EXECULESCIIPL.....ueiiiiiiiiie et a e e e e 120
3.3.12.3 TS_GetOUutpUtOfEXECULEcoiiiiiiiiiiiiie e 121
TR R G T B = = (oo o = PRSP PP PP 122

© Technosoft 2009 IX TML_LIB — User Manual

3.3.13.1 TS _SetUPLOGUET ... et a e 122

3.3.13.2 TS _SHArtLOQUET et a e a e e e e e 123
3.3.13.3 TS _CheckLoggerStatuscccuuriiiieei it ee e e e e 124
3.3.13.4 TS _UploadLoggerRESUILSeeeeieiiiiiiiiiiieie et 125

I G 1141 1 1= S PPR 127
o B - 11 A U] o SO PPR 128
N B [V=] - | 11 3OS 129
4.3 Error Randlingoooo e 130
N = 7= 1 o3 0o 1Y/ S 131
S T o (o 0111 T T SRR 132
T = (=Y g F= =Y =Y = o TS 133
A |V U1 1= =Y SR 134
4.8 PVT —mMUITArEading ...cooouveiie e 135
e T oo o[PRSP 136
4.10 EVeNt Nandling.......cooo i 137
411 7(@ 3 F=T g Vo [T Vo R PSPPSR 138
4.12 Distributed taSKScee e 139
Appendix A AXiS IdeNTIfICALIONcueiiiiiiee e 141
Appendix B Internal units and scaling faCtors. ... 143
Appendix C CAM fIl@S fOIMAL.......uuuiiiii i e e e e e s ereaeeeean 145
Appendix D Package contents of TML_LIB for Microsoft Windows..........cccceevviieeeiiiiiiennns 147
Appendix E Package contents of TML_LIB fOr LINUX......ccooiuiiiiiiiiiiiiiiiieeiiieee i 149
APPENAIX F TML_LIB.N fIlE ciiiiiiiii ettt e e et e et e e e s nae e e e s nnrneae e 151

© Technosoft 2009 X TML_LIB — User Manual

1 Introduction

The programming of Technosoft intelligent drives/motors involves 2 steps:

1) Drive/motor setup
2) Motion programming

For Step 1 — drive/motor setup, Technosoft provides EasySetUp. EasySetUp is an integrated
development environment for the setup of Technosoft drives/motors. The output of EasySetUp is
a set of setup data, which can be downloaded to the drive/motor non-volatile memory (EEPROM)
or saved on your PC for later use. The setup data is copied at power-on into the RAM memory of
the drive/motor and is used during runtime. The reciprocal is also possible i.e. to retrieve the
complete setup data from a drive/motor non-volatile memory previously programmed. EasySetUp
can be downloaded free of charge from Technosoft web page. It is also provided on the TML_LIB
installation CD.

For Step 2 — motion programming, Technosoft offers multiple options, like:

1) Use the drives/motors embedded motion controller and do the motion programming in
Technosoft Motion Language (TML). For this operation Technosoft provides EasyMotion
Studio, an IDE for both drives setup and motion programming. The output of EasyMotion
Studio is a set of setup data and a TML program to download and execute on the drive/motor.

2) Use a .DLL with high-level motion functions which can be integrated in a host application
written in C#, C/C++, Delphi Pascal, Visual Basic or LabVIEW

3) Use a PLCopen compatible library with motion function blocks which can be integrated in a
PLC application based on one of the IEC 61136 standard languages

4) Combine option 1) with options 2) or 3) to really distribute the intelligence between the
master/host and the drives/motors in complex multi-axis applications. Thus, instead of trying
to command each step of an axis movement, you can program the drives/motors using TML
to execute complex tasks and inform the master when these are done.

The TML_LIB library is part of option 2) — a collection of functions allowing you to implement
motion control applications on a PC computer. The link between the Technosoft drives/motors
and the PC can be done via serial link, via CAN-bus using a CAN interface or via Ethernet using
an adapter/bridge between Ethernet and RS-232. Realized as a collection of high-level functions,
the library allows you to focus on the main aspects related to your application specific
implementation, and to simply use the drive and execute motion commands by calling appropriate
functions from the library.

This manual presents how to install and use the components of the TML_LIB library.

Remarks:

e Option 4) requires using EasyMotion Studio instead of EasySetUp. With EasyMotion
Studio you can create high-level motion functions in TML, to be called from your PC

e EasyMotion Studio is also recommended if your application includes a homing as it
comes with 32 predefined homing procedures to select from, with possibility to adapt
them

© Technosoft 2009 1 TML_LIB — User Manual

MyCode.C

TS_SelectAxis(5);

TS_MoveVelocity(12.5,, MOVE_IMMEDIATE, FROM_REFERENCE);
TS_SetEventOnTime(200, WAIT_EVENT, NO_STOP);

Int InValue = 0;

While(InValue == 0) TS_GetInput(INPUT5, &InValue);

TS_Stop();
A\

TML LIB

TS MoveVelocity (...)

CSPD=12.5;

MODE SP; o

UPD; Communication
channel

Figure 1.1. Using TML_LIB to control a Technosoft intelligent drive from the PC computer

© Technosoft 2009 2 TML_LIB — User Manual

2 Getting started

2.1 Hardware installation
For the hardware installation of the Technosoft drives/motors see their user manual.

For drives/motors setup, you can connect your PC to any drive/motor using an RS232 serial link.
Through this serial link you can access all the drives/motors from the network. Alternately, you
can connect your PC directly on the CAN bus network if it is equipped with one of the CAN
interfaces supported by EasySetUp.

2.2 Software installation on Microsoft Windows platforms

In order to perform successfully the following software installations, make sure that you have the
“Administrator” rights.

2.2.1 Installing EasySetUp

On the TML_LIB installation CD you'll find the setup for EasyMotion Studio Demo version. This
application includes a fully functional version of EasySetUp and a demo version of EasyMotion
Studio. Start the setup and follow the installation instructions.

2.2.2 Installing TML_LIB library

Start the TML_LIB setup and follow the installation instructions. The package contents of the
TML_LIB for Microsoft Windows is described in Appendix A.

Remark: The Delphi application and the TML_lib.dll file must be in the same directory at run time.
Hence, you have to copy the TML_lib.dll file in the Delphi project’s folder (by default
examples/DELPHIDemo) before running the application.

2.3 Software installation on Linux x86 architectures

In order to perform successfully the following software installations, make sure that you have the
“Root” rights and the following programs installed: tar, gzip and sed. Also, the TML_LIB library
requires the GNU C library version 2 (gcclib-2.*) and GNU Compiler Collection release 3 (gcc-
3.%).

2.3.1 Installing Microsoft Windows emulator

EasyMotion Studio and EasySetUp are applications build for Microsoft Windows operating
systems. Hence to use the applications you must install an emulator for Microsoft Windows, for
example Wine.

2.3.2 Installing EasySetUp

On the TML_LIB installation CD you'll find the setup for EasyMotion Studio Demo version. This
application includes a fully functional version of EasySetUp and a demo version of EasyMotion
Studio. Start the setup using the Microsoft Windows emulator and follow the installation
instructions.

© Technosoft 2009 3 TML_LIB — User Manual

2.3.3 Installing TML_LIB library

From the TML_LIB installation CD copy the file TML_lib_linux_x86.run. Change the file’s access
permissions with the command chmod ugo +x TML_lib_linux_x86.run and launch it. After you
fill the registration information the library files will be automatically saved in the appropriate
directories.

2.4 Build the host application with TML_lib

2.4.1 Drive/motor setup

Before starting to send motion commands from the PC, you need to do the drive/motor setup
according with your application needs. For this operation you have to use EasySetUp, the
integrated development environment for the configuration of the Technosoft drives and motors.

The output of EasySetUp is the setup table with all the information needed to configure and
parameterize a Technosoft drive/motor. It must be downloaded to the drive/motor non-volatile
memory. The setup table is copied at power-on into the RAM memory of the drive/motor and is
used during runtime.

Steps for commissioning a Technosoft drive/motor
Step 1. Start EasySetUp

For Microsoft Windows platforms execute: “Start | Programs | EasySetUp | EasySetUp” or “Start |
Programs | EasyMotion Studio | EasySetUp” depending on which installation package you have
used. On Linux platforms use the Microsoft Windows emulator to start EasySetUp.

Step 2. Establish communication

Use the Communication | Setup command to check/change your PC communication settings. In
the Communication Setup dialog select and configure the communication channel between the
PC and the drive/motor. Press the Help button to find detailed information on how to setup the
communication channels supported. Power on the drive/motor and then press the OK button to
close the Communication | Setup dialog.

If the communication is established, then EasySetUp will display in the status bar (the bottom line)
the text “Online” plus the axis ID of your drive/motor and its firmware version. Otherwise the text
displayed is “Offline” and a communication error message informs you the error type. In this
case, return to the Communication | Setup dialog, press the Help button and check troubleshoots.

Remark: When first started, EasySetUp tries to communicate with your drive/motor via RS-232
and COM1 (default communication settings). If your drive/motor is powered and connected to
your PC port COM1 via an RS-232 cable, the communication can be automatically established.

Step 3. Setup drive/motor

Press New button and select your drive/motor type. Depending on the product chosen, the
selection may continue with the motor technology (for example: brushless motor, brushed motor)
or the control mode (for example stepper — open-loop or stepper — closed-loop) and type of
feedback device (for example: incremental encoder, SSI encoder)

© Technosoft 2009 4 TML_LIB — User Manual

This opens 2 setup dialogues: for Motor Setup and for Drive setup through which you can
configure and parameterize a Technosoft drive/motor, plus several predefined control panels
customized for the product selected.

In the Motor setup dialogue you can introduce the data of your motor and the associated
sensors. Data introduction is accompanied by a series of tests having as goal to check the
connections to the drive and/or to determine or validate a part of the motor and sensors
parameters. In the Drive setup dialogue you can configure and parameterize the drive for your
application. In each dialogue you will find a Guideline Assistant, which will guide you through the
whole process of introducing and/or checking your data. Close the Drive setup dialogue with OK
to keep all the changes regarding the motor and the drive setup.

Step 4. Download setup table to drive/motor

Press the Download to Drive/Motor button to download your setup data in the drive/motor non-
volatile memory in the setup table. From now on, at each power-on, the setup data is copied into
the drive/motor RAM memory that is used during runtime.

Step 5. Reset the drive/motor to activate the drive setup data

Step 6. Create the setup data for TML_LIB. The TML_LIB requires drive/motor setup
information for the proper execution of the application. The setup data is generated with the
Setup | Export to TML_LIB... command if you are in EasySetUp, or the Application | Export to
TML_LIB... command if you are using EasyMotion Studio. The information is generated in the
form of an archive file with the .t.zip extension and is saved in the Archives folder from
EasySetUp/EasyMotion Studio installation folder (by default C:\Program Files\Technosoft\ESM\).

2.4.2 Build your application with TML_LIB

TML_LIB is a collection of high level functions, grouped in several categories and provided as the
TML_LIB.dII file.

Most of these functions are of Boolean type, and return a ‘True’ value if the execution of the
function performed without any error (at PC level). If the function returns a ‘False’ value, you can
retrieve the error description by calling the function TS_GetLastErrorText.

Steps to build the host application with TML_LIB:

1. Create the PC application’s project. Launch your development environment and create
a new project. For details read the development environment online help.

Remark: For Borland C++ projects the user must define a WINDOWS or WIN32 symbol
in order to compile the C/C++ application.

2. Setup the communication. The host application is based on the communication
between PC and Technosoft drives/motors thus it should begin with the communication
channel setup. The communication channel is opened with the TS OpenChannel
function. At the end of the application you must close the communication channel with
function TS_CloseChannel.

3. Load setup configurations. The setup information is required by the library functions in
order to check if there are incompatibilities between the drive and the operation to be
executed (as an example, avoiding issuing an “Output port” command to a port which is
an input port on that drive). The setup data is generated by EasySetUp/EasyMotion

© Technosoft 2009 5 TML_LIB — User Manual

Studio based on your actual configuration. The setup information is in the form of archive
files with the .t.zip extension. The .t.zip files are saved in the Archives folder from
EasyMotion Studio/EasySetUp installation folder. The setup data of the drive/motor are
declared using the TS_LoadSetup function in the PC application. The TS_LoadSetup
has as argument the *.t.zip file. The function must be called for each axis controlled
through TML_lib.

4. Setup axis. Each axis defined at PC level requires the setup information. The
configuration setup is associated to an axis with function TS_SetupAxis.

5. Select the active axis/group. The messages sent from the PC address to one axis. Use
function TS_SelectAxis to choose the messages destination. All further function calls,
which send TML messages on the communication channel, will address the messages to
this active axis.

6. Program the motion for current axis. Use the TML_LIB functions to program the
motions required.

© Technosoft 2009 6 TML_LIB — User Manual

3 TML_LIB description

3.1 Basic concept

The Technosoft intelligent drives are programmable using the Technosoft Motion Language
(TML). TML consists of a high-level set of codes allowing the user to parameterize and execute
specific motion operations.

TML allows to:

Configure the motion mode (profiles, contouring, gearing in multiple axes structures, etc.)
Detect / specifically treat external signals as limit switches, captures

Execute homing sequences

Setup / start specific action on pre-defined motion events

Synchronize multiple axes structures, by sending group commands

etc.

The TML_LIB library is the tool that helps you to handle the process of motion control application
implementation on a PC computer, at a high level, without the need to write / compile TML code.

A central element of the library is the communication kernel, which is responsible of correct
opening of the communication channel (serial RS-232 or RS-485, CAN-bus or Ethernet), as well
as of TML messages handling. This includes handling of the specific communication protocol, for
each of these channels.

Consequently, each application you'll develop starts with the opening of the communication
channel, i.e. calling the TS_OpenChannel function. The application must end with the
TS_CloseChannel function call.

You'll be able to handle multiple-axis applications from the PC. Besides the drive/motor setup with
EasySetUp or EasyMotion Studio, you'll also need to indicate some basic drive information for
correct usage of the library functions. Thus, for each drive that is installed in the system, you'll
need to execute the TS_SetupAxis function, indicating the axis ID and configuration setup. Such
information will be used for some functions of the library, in order to check if there are
incompatibilities between the drive and the operation to be executed (as an example, avoiding
issuing an “Output port” command to a port which is an input port on that drive).

Note that besides setting-up individual axes, it is also possible to setup groups of axes (with the
TS_SetupGroup function). This allows you to issue commands which will be received and
executed simultaneously on all the axes initialized as belonging to that group.

Once all the axes are defined, the library allows you to select the active axis or group, using the
TS_SelectAxis, or TS_SelectGroup function respectively. Consequently, all future commands
that you’ll execute after the selection of one axis or group will be addressed to that axis or group.
You can change at any time in your program the active axis/group. Also, a command can be sent
to all the axes fom the newtwork, by selecting the destination with the TS_SelectBroadcast
function.

© Technosoft 2009 7 TML_LIB — User Manual

3.2 Multithread and multiprocess applications with TML_LIB

The TML_LIB library supports multithread applications developed under C/C++ and Delphi. Each
thread created in your application has to setup the communication, the axes and program the
motion commands. For details about threads see the documentation of your development
environment.

Remarks:

1. For multithread applications created for Microsoft Windows, under Visual C++, the
communication module of TML_LIB library, the tmlcomm.dll, must be dynamically linked
at load-time.

2. The examples included in the package use the single thread variant of the library with the
exception of Ex08_PVT. The example Ex08_PVT is available only for C/C++ and Delphi.

3. Applications developed under Visual Basic must use the single thread variant of the
TML_lib.

The following example presents the basic steps for creating a multithread application using C run-
time library and the Win32 API:

1. Include the header <windows.h> for all the Win32 specific thread information

2. Define an array of handles and an array of thread id’s.

3. Declare structures for passing to the controlling functions of each thread (define here the

parameters you might be interested on).

Define global pointers to the structures required.

Declare the control functions for each thread. In Win32, thread functions MUST be

declared like this: DWORD WINAPI <name>(LPVOID)

6. In the main body of your application call the function to create and start thread (in our
example CreateThread function that actually creates and begins the execution of the
thread).See the documentation of your development enviroment for more details.

7. Wait until all threads are done. Use WaitForMultipleObjects function. Read the help
associated to the API call "WaitForMultipleObjects".

8. Close the handles of the threads with the function: CloseHandle.

o s

These steps where followed to create the Example 43. The example commands 2 Technosoft
drives/motors to execute a 2-D motion profile described by several linear and circular segments.
The application uses 2 separate threads for each axis, in which computes the necessary
commands for the associated drive. The application requires the multithread variant of the
TML_lib, installed by default in the “C:\Program Files\Technosoft\TML_LIB\lib-multithread” folder.

//You must include <windows.h> for all the Win32 specific thread
//information.

#include <windows.h>
//BAn array of handles to threads and of thread id’s must be defined

HANDLE hThread[2];
DWORD dwThreadId X, dwThreadId Y;

//Structure for passing to the controlling function

typedef struct PVT data Y {

© Technosoft 2009 8 TML_LIB — User Manual

long trace_ y[N_MAX];
//You can add here other parameters you might be interested on

} PVT_DATA_Y, *P_PVT DATA V:
typedef struct _PVT_data X {

long trace_x[N_MAX];
//You can add here other parameters you might be interested on

} PVT_DATA_X, *P_PVT_DATA_X;

//Global definitions (pointers to the structures defined above)
PVT_DATA X p_PVT_X;
PVT_DATA Y p_PVT_Y;

//In Win32, thread functions MUST be declared like this:
//DWORD WINAPI <name> (LPVOID)
//The first thread function

DWORD WINAPI ThreadProc X(LPVOID lpParam)
//Local definitions for functions parameters

//Cast to pointer to the structure specific to this controlling
function

P _PVT DATA X p PVT X;

p PVT X = (P_PVT DATA X)lpParam;

/*Write your specific code for the second thread (first open the
communication channel, load the setup file from the directory
created by Easy Setup or Easy Motion, make the setup of the Axis 001
based on the file previously loaded, make the setup of the Group n,
make the setup of the broadcast) .Be careful in using the same global
variable in the bought threads */

//Close the communication channel

return TRUE;

//The second thread function

DWORD WINAPI ThreadProc_Y(LPVOID lpParam)

//Cast to pointer to the structure specific to this controlling
function

P PVT DATA Y p PVT Y;

p PVT Y = (P_PVT DATA Y)lpParam;

return TRUE;

int main ()

© Technosoft 2009 9 TML_LIB — User Manual

/*The thread is created and its execution begin by calling the
CreateThread Win32 API Function. Please read your help files for
more details. */

hThread[0] = CreateThread (

NULL, //default security attributes

0, //use default stack size
ThreadProc_ X, // thread function

pp_ PVT X, // argument to thread function
0, // use default creation flags
&dwThreadId X) ; // returns the thread identifier

if (hThread[0] == NULL)

{

ExitProcess (0) ;

hThread[1] = CreateThread (NULL, 0, ThreadProc_Y,pp PVT Y, 0,
&dwThreadId_Y)
if (hThread[l] == NULL)

ExitProcess (1) ;

//Wait until all threads have terminated.
WaitForMultipleObjects (2, hThread, TRUE, INFINITE) ;
//Close all thread handles upon completion.
CloseHandle (hThread[0]) ;

CloseHandle (hThread[1]) ;

return O;

/*You must include <windows.h> for all the Win32 specific thread
information.*/

#include <windows.h>
//An array of handles to threads and of thread id’s must be defined

HANDLE hThread([2];
DWORD dwThreadId X, dwThreadId Y;

//Structure for passing to the controlling function
typedef struct PVT data Y {

long trace_y[N_MAX];
//You can add here other parameters you might be interested on

} PVT_DATA_Y, *P_PVT DATA_Y:
typedef struct PVT data X {

long trace_ Xx[N_MAX];
//You can add here other parameters you might be interested on

© Technosoft 2009 10 TML_LIB — User Manual

} PVT_DATA_X, *P_PVT DATA X:

//Global definitions (pointers to the structures defined above)
PVT_DATA_X p_PVT_X;
PVT_DATA Y p_PVT_Y;

/*In Win32, thread functions MUST be declared like this:
DWORD WINAPI <name> (LPVOID)

The first thread function*/

DWORD WINAPI ThreadProc_ X(LPVOID lpParam)

//Local definitions for functions parameters

//Cast to pointer to the structure specific to this controlling
function

P _PVT DATA X p PVT X;
p PVT X = (P_PVT DATA X)lpParam;

/*Write your specific code for the second thread (first open the
communication channel, load the setup file from the directory
created by Easy Setup or Easy Motion, make the setup of the Axis 001
based on the file previously loaded, make the setup of the Group n,
make the setup of the broadcast) .Be careful in using the same global
variable in the bought threads x/

//Close the communication channel

return TRUE;

}

//The second thread function
DWORD WINAPI ThreadProc Y(LPVOID lpParam)

//Cast to pointer to the structure specific to this controlling
function

P_PVT DATA Y p PVT Y;
p PVT Y = (P_PVT DATA Y)lpParam;

return TRUE;

}

Depending on the communication channel used, the TML_LIB can share the communication
resources enabling you to build multiprocess application. The communication devices suited for
multiprocess applications are the serial interfaces (RS232 and RS485) and the CAN interfaces:

e from the Electronic System Design (ESD) — under Linux and Microsoft Windows

e from Peak System — under Linux

© Technosoft 2009 11 TML_LIB — User Manual

3.3 Functions descriptions

The section presents the functions implemented in the TML_LIB library. The functions are
classified as follows:

Communication setup — functions that manage the PC communication channel

Drive setup — functions for axis setup in the PC application

Drive administration — functions that control the destination axis of the messages sent
from the host

Drive/motor monitoring — functions for monitoring the drive/motor status

Error handling — functions for FAULT state reset and drive reset

Motion programming — functions for motion programming on the selected axis.

Motor commands — functions to enable/disable the motor power stage, start/stop the
motion, change the value of the motor position and current

Events — functions for events programming and test

TML jumps and function calls — functions which allows you to execute code
downloaded in the drive/motor memory

1/0 handling — functions for read/write operations with drive/motor I/O ports

Data transfer — functions for read/write operations from/to the drive/motor memory
Miscellaneous — functions to send individual TML commands and to view the binary
code of a TML command

Data logger — functions for logger setup and data upload

For each function you will find the following information:

The C prototype

Description of the arguments

A functional description

Name of related functions

Examples reference. The examples are listed in chapter 4.

© Technosoft 2009 12 TML_LIB — User Manual

3.3.1 Communication setup

3.3.1.1 TS_OpenChannel

Prototype:

INT TML_EXPORT TS_OpenChannel(LPCSTR pszDevName, BYTE btType, BYTE nHostID,
DWORD baudrate);

Arguments:
Name Description
pszDevName The communication channel to be opened
btT The type of the communication channel and the CAN-bus

Input ype communication protocol
nHostID Axis ID for the PC
Baudrate Communication baud rate
Output | Return The file descriptor of the or -1 if error
Description: The function opens the communication channel specified with parameter
pszDevName.

The btType parameter specifies the communication channel type and the CAN-bus
communication protocol used by the application. btType = ChannelType | ProtocolType.

The TML_LIB supports the following types of communication channels:

e serial RS-232
0 ChannelType = CHANNEL_RS232 for PC serial port

0 ChannelType

CHANNEL_VIRTUAL_SERIAL for communication through a

user implemented serial driver. To properly interface the serial driver with the
tmlcomm.dll, the user must follow the next steps:

a. initialize the communication channel with the serial settings implemented
on the Technosoft drives/motors: 8 data bits, 2 stop bits, no parity, no
flow control and one of the following baud rates: 9600 (default after
reset), 19200, 38400, 56600 and 115200.

b. Implement the functions for interfacing the custom communication driver
with the tmlcomm.dll. See the virtRS232.cpp file from the virtRS232
example project.

c. Export the functions from the communication driver using a module-
definition (.DEF) file. See the virtRS232.def file from the virtRS232
example project.

e serial RS-485
0 ChannelType = CHANNEL_RS485 for an RS-485 interface board or an RS-
232/RS-485 converter

e CAN-bus devices supported by TML_LIB for Microsoft Windows
0 ChannelType = CHANNEL_IXXAT_CAN for IXXAT PC to CAN interface
0 ChannelType = CHANNEL_SYS TEC USBCAN for Sys Tec USB to CAN

interface

© Technosoft 2009

13 TML_LIB — User Manual

0 ChannelType = CHANNEL_ESD_CAN for ESD CAN interfaces

0 ChannelType = CHANNEL_LAWICEL_USBCAN for Lawicel CAN interface

0 ChannelType = CHANNEL_PEAK_SYS PCAN_PCI for PEAK System PC-PCI
to CAN interface

0 ChannelType = CHANNEL_PEAK_SYS PCAN_ISA for PEAK System PCAN-
ISA

0 ChannelType = CHANNEL_PEAK_SYS PCAN_PC104 for PEAK System
PC/104

0 ChannelType = CHANNEL_PEAK_SYS PCAN_USB for PEAK System USB to
CAN interface

0 ChannelType = CHANNEL_PEAK_SYS PCAN_DONGLE for PEAK System
Dongle interfaces

e CAN-bus devices supported by TML_LIB for Linux

0 ChannelType = CHANNEL_ IXXAT _CAN for IXXAT CAN interfaces supported
by the Basic CAN interface from IXXAT

0 ChannelType = CHANNEL_ESD_CAN for ESD CAN interfaces

0 ChannelType = CHANNEL_PEAK_SYS PCAN_ISA for PEAK System PCAN-
ISA

0 ChannelType = CHANNEL_PEAK_SYS PCAN_PC104 for PEAK System
PC/104

Remark: The TML_lib for Linux package contains a patch for drivers of the CAN-bus interfaces
from PEAK System which enables the hardware filtering of the CAN messages. After TML_LIB
installation, apply the patch, compile and install the driver using the drivers’ documentation.

e Ethernet’
0 ChannelType = CHANNEL_XPORT_IP for Technosoft Ethernet to RS232
adapter

The CAN-bus communication protocols supported by the TML_LIB are:

e ProtocolType = PROTOCOL_TMLCAN — 29-bit CAN identifier
e ProtocolType = PROTOCOL_TECHNOCAN — 11-bit CAN identifier

Remarks:

1. By default the TML_LIB uses the TMLCAN communication protocol, thus if your drive/
motor supports only TMLCAN protocol then the btType = ChannelType.

2. The specification of CAN-bus protocol is required when the PC is connected directly to
the CAN-bus through a PC to CAN interface or in the cases when the drive/motor
connected to the PC via RS232/Ethernet acts as a retransmission relay between the PC
and the CAN-bus network. More details about the retransmission relay concept can be
found in EasyMotion Studio on line help.

Depending on the communication channel type, the parameter pszDevName can be:

e For serial communication:
o ‘COMT, ‘COM2’, ‘COM3'.... for Microsoft Windows version
o ‘/dev/ttySQ’, ‘/dev/ttyS1’, ‘/dev/ttyS3’ for Linux version
e For virtual serial interface is the name of the dll file that implements the serial interface

! Supported only in the TML_LIB for Microsoft Windows

© Technosoft 2009 14 TML_LIB — User Manual

e For CAN-bus communication:
o ‘“1,2,'3... for Microsoft Windows version
o0 ‘/dev/pcan(Q’, ‘/dev/pcan8’ for Linux version
e For Ethernet communication: “192.168.19.52’, ‘technosoft.masterdrive.ch’...

The nHostID parameter represents the Axis ID of the PC in the system. The value of nHostld is
set as follows:

e For serial RS-232 the nHostID is equal with the axis ID of the drive connected to the PC
serial port

e For serial RS-485 and CAN-bus the nHostld must be a unique value. Attention! Make
sure that all the drives/motors from the network have a different address

e For Ethernet communication the nHostID is equal with the axis ID of the drive connected
to the serial port of the Ethernet adapter.

Set the communication speed with the BaudRate parameter. The accepted values are:

e For serial communication and Ethernet: 9600, 19200, 38400, 56000 or 115200 bps.
e For CAN-bus: 125000, 250000, 500000, 1000000 bps

Remark: You can open several communication channels but only one can be active in an
application at one moment. You can switch between the communication channels with function
TS_SelectChannel.

Related functions: TS_CloseChannel, TS_SelectChannel

Associated examples: all

© Technosoft 2009 15 TML_LIB — User Manual

3.3.1.2 TS _SelectChannel
Prototype:

BOOL TML_EXPORT TS_SelectChannel(INT fd);

Arguments:
Name Description
Input | fd The communication channel file descriptor
Output | return TRUE if no error, FALSE if error

Description: The function selects as active the communication channel described by parameter
fd. All commands send towards the drives/motors will use the selected communication channel.

Remarks:

1. Use function TS_OpenChannel to open the communication channels
2. The function TS_SelectChannel is not required in applications with only one
communication channel

Related functions: TS_OpenChannel, TS_CloseChannel

Associated examples: —

© Technosoft 2009 16 TML_LIB — User Manual

3.3.1.3 TS _CloseChannel
Prototype:

void TML_EXPORT TS_CloseChannel(INT fd);

Arguments:
Name Description
Input | fd The communication channel file descriptor
Output | — —

Description: The function closes the communication channel described by parameter fd. With fd
= -1 the function closes the channel previously selected with function TS_SelectChannel. This
function must be called at the end of the application. It will release the communication channel
resources, as it was allocated to the program when the TS_OpenChannel function was called.

Related functions: TS_OpenChannel, TS_SelectChannel

Associated examples: all

© Technosoft 2009 17 TML_LIB — User Manual

3.3.2 Drive setup
3.3.2.1 TS_LoadSetup

Prototype:

INT TML_EXPORT TS_LoadSetup(LPCSTR setupDirectory);

Arguments:

Name

Description

Input | setupDirectory

Name of the directory where are the setup files

Output | return

The index associated to the setup

Description: The function loads a drive/motor configuration setup in the PC application. The
configuration setup is generated from EasyMotion Studio or EasySetUp and stored in two files:
setup.cfg and variables.cfg. With string setupDirectory you specify the absolute or relative path
of the directory with the setup files. The function returns an index associated to the configuration
setup. Use the value returned to associate the configuration setup with the corresponding axis.

Remark: The function must be called for each configuration setup only once in your program, in

the initialization part.

Related functions: TS_SetupAxis, TS_SetupGroup, TS SetupBroadcast

Associated examples: all

© Technosoft 2009

18 TML_LIB — User Manual

3.3.2.2 TS_SetupAxis
Prototype:

BOOL TML_EXPORT TS_SetupAxis(BYTE axisID, INT idxSetup);

Arguments:
Name Description
Input axisID AxislID of the drive/motor
idxSetup Configuration index generated by TS LoadSetup
Output | return TRUE if no error, FALSE if error

Description: The function associates a configuration setup to the drive/motor having axisID. The
configuration setup is identified through idxSetup.

The function must be called for each axis of the motion system, only once in your program, in the
initialization part, before any attempt to send messages to that axis.

Remarks:

1. The axisID parameter must be identical with the value set during drive/motor setup.
2. Use function TS_LoadSetup to obtain the configuration setup identifier.

Related functions: TS _LoadSetup, TS_SetupGroup, TS _SetupBroadcast

Associated examples: all

© Technosoft 2009 19 TML_LIB — User Manual

3.3.2.3 TS_SetupGroup
Prototype:

BOOL TML_EXPORT TS_SetupGroup(BYTE grouplID, INT idxSetup);

Arguments:
Name Description
Input grouplD Group ID number. It must be a value between 1 and 8
idxSetup Name of the data file storing the setup axis information
Output | return TRUE if no error, FALSE if error

Description: The function associates to the group of drives/motors a configuration setup
identified through idxSetup. The configuration setup is used by TML_LIB when sends group
commands.

The function must be called for each group defined in the motion system, only once in your
program, in the initialization part, before any attempt to send messages to that group.

Remarks: Use function TS _LoadSetup to obtain the configuration setup identifier.
Related functions: TS_LoadSetup, TS_SetupAxis, TS_SetupBroadcast

Associated examples: —

© Technosoft 2009 20 TML_LIB — User Manual

3.3.24 TS_SetupBroadcast

Prototype:

BOOL TML_EXPORT TS_SetupBroadcast(INT idxSetup);

Arguments:

Name

Description

Input | idxSetup

Name of the data file storing the setup axis information

Output | return

TRUE if no error, FALSE if error

Description: The function sets the configuration setup used by TML_LIB when issuing broadcast
commands. The configuration setup is identified through idxSetup.

Remarks: Use function TS_LoadSetup to obtain the configuration setup identifier.
Related functions: TS_LoadSetup, TS_SetupAxis, TS_SetupGroup

Associated examples: Ex07_MultiAxes

© Technosoft 2009

21 TML_LIB — User Manual

3.3.2.5 TS Drivelnitialization
Prototype:

BOOL TML_EXPORT TS_Drivelnitialization(void);

Arguments:
Name Description
Input | - -
Output | Return TRUE if no error, FALSE if error

Description: The function initializes the active axis. It must be executed when the drive/motor is
powered or after a reset with function TS_Reset. The function call should be placed after the
functions TS_SetupAxis and TS_SelectAxis and before any functions that send messages to the
axis.

If the setup table is invalid then use the EasySetUp or EasyMotion Studio to download a valid
setup. After setup table download the drive must be reset in order to activate the setup data.

Related functions: TS_LoadSetup, TS_SetupAxis, TS_SelectAxis

Associated examples: all

© Technosoft 2009 22 TML_LIB — User Manual

3.3.26 TS_Save
Prototype:

BOOL TML_EXPORT TS_Save(void);

Arguments:
Name Description
Input | — —
Output | return TRUE if no error; FALSE if error

Description: The function saves the actual values of all the TML parameters with setup data from
the active data RAM memory into the non-volatile memory, in the setup table. Through this
command, you can save all the setup modifications done after the power on initialization.

Related functions: TS _Reset, TS_Save

Associated examples: —

© Technosoft 2009 23 TML_LIB — User Manual

3.3.3 Drive administration

3.3.3.1 TS_SelectAxis
Prototype:

BOOL TML_EXPORT TS_SelectAxis(BYTE axisID);

Arguments:
Name Description
Input | axisID The axis ID where the commands are sent
Output | return TRUE if no error, FALSE if error

Description: The function selects the currently active axis. All further function calls, which send
TML messages on the communication channel, will address the messages to this active axis.

Call the function only after the setup of the axis (after calling the TS_SetupAxis function) for the
same axis (with the same AxisID).

In a single axis motion system, call this function only once in your program. In a multiple axis
configuration, call this function each time you want to redirect the communication to another axis
of the system.

Related functions: TS_SelectGroup, TS_SelectBroadcast

Associated examples: all

© Technosoft 2009 24 TML_LIB — User Manual

3.3.3.2 TS_SelectGroup
Prototype:

BOOL TML_EXPORT TS_SelectGroup(BYTE grouplD);

Arguments:
Name Description
Input | groupID The group ID where the commands are sent
Output | return TRUE if no error, FALSE if error

Description: The function selects the currently active group. All further function calls, which send
TML messages on the communication channel, will address these messages to this active group.
The active group is set with parameter grouplD. It must be a value between 1 and 8.

Remark: The function must be called after the group setup i.e. after calling the TS_SetupGroup
function.

Related functions: TS_SelectAxis, TS_SelectBroadcast
Associated examples: Ex08 PVT

© Technosoft 2009 25 TML_LIB — User Manual

3.3.3.3 TS _SelectBroadcast
Prototype:

BOOL TML_EXPORT TS_SelectBroadcast(void);

Arguments:
Name Description
Input | - -
Output | return TRUE if no error, FALSE if error

Description: The function enables TML_LIB to issue the broadcast messages, i.e. all further
function calls, which send TML messages on the communication channel, will address these
messages to all the axes.

Remark: The function must be called after the broadcast setup i.e. after calling the
TS_SetupBroadcast function.

Related functions: TS_SelectAxis, TS_SelectGroup

Associated examples: Ex07_MultiAxes

© Technosoft 2009 26 TML_LIB — User Manual

3.3.4 Drive/motor monitoring

3.3.4.1 TS_ReadStatus
Prototype:

BOOL TML_EXPORT TS_ReadStatus(SHORT Sellndex, WORD& Status);

Arguments:
Name Description
Input | Sellndex Registers selection index
Status Pointer of the variable where the status is saved
Output | return TRUE if no error; FALSE if error

Description: The function returns drive/motor status information. Depending on the value of
Sellndex parameter, you can examine the contents of the Motion Control Register (Sellndex =
REG_MCR), Motion Status Register (Sellndex = REG_MSR), Interrupt Status Register (Sellndex
= REG_ISR), Status Register Low (Sellndex = REG_SRL), Status Register High (Selindex =
REG_SRH) or Motion Error Register (Sellndex = REG_MER) of the drive/motor.

Related functions: —

Associated examples: Ex02_DriveStatus, Ex03_ErrorHandling

© Technosoft 2009 27 TML_LIB — User Manual

3.3.4.2 TS SendDataToHost
Prototype:

BOOL TML_EXPORT TS_SendDataToHost(BYTE HostAddress, DWORD StatusRegMask
WORD ErrorRegMask);

Arguments:
Name Description
Input | HostAddress The Axis ID of the host where the messages are sent
StatusRegMask Specifies the bits from status register that trigger the message
ErrorRegMask Specifies the bits from error register that trigger the message
Output | return TRUE if no error, FALSE if error

Description: The function enables the active axis to send messages automatically to a host. The
messages are triggered by conditions that change the drive/motor status or error register. The
conditions are set trough parameters StatusRegMask and ErrorRegMask. The host Axis ID is
set with parameter HostAddress.

Related functions: TS_RegisterHandlerForUnrequestedDriveMessages,
TS_CheckForUnrequestedDriveMessages

Associated examples: Ex02_DriveStatus

© Technosoft 2009 28 TML_LIB — User Manual

3.3.4.3 TS_CheckForUnrequestedDriveMessages
Prototype:

BOOL TML_EXPORT TS_CheckForUnrequestedDriveMessages(void);

Arguments:
Name Description
Input | — —
Output | return TRUE if no error, FALSE if error

Description: The function checks if there are new unrequested messages received from the
drive/motor. If the communication buffer contains an urequested message then it calls the user
function that handles this type of messages. The function should be called periodically to have
updated information.

Related functions: TS_RegisterHandlerForUnrequestedDriveMessages, TS_SendDataToHost

Associated examples: Ex02_DriveStatus

© Technosoft 2009 29 TML_LIB — User Manual

3.3.4.4 TS_RegisterHandlerForUnrequestedDriveMessages
Prototype:

void TML_EXPORT TS_RegisterHandlerForUnrequestedDriveMessages
(pfnCallbackRecvDriveMsg handler);

Arguments:
Name Description
Input | pfnCallbackRecvDriveMsg Pointer to the user function
Output | — —

Description: The function registers the user callback function that handles the unrequested
messages sent by the drive/motor.

Related functions: TS_CheckForUnrequestedDriveMessages, TS_SendDataToHost

Associated examples: Ex02_DriveStatus

© Technosoft 2009 30 TML_LIB — User Manual

3.3.45 TS OnlineChecksum
Prototype:

BOOL TML_EXPORT TS OnlineChecksum(WORD startAddress, WORD endAddress
WORD &checksum);

Arguments:
Name Description
Input | startAddress The memory range start address
endAddress The memory range end address
checksum Pointer to the variable where the checksum is stored
Output | return TRUE if no error, FALSE if error

Description: The function requests from the active axis the checksum of a memory range. The
memory range is defined with parameters startAddress and endAddress. The function stores
the checksum received from the drive in variable checksum.

With function TS_OnlineChecksum you can check the integrity of the data saved in a drive/motor
non-volatile or RAM memory. The memory type is selected automatically function of the
startAddress and the endAddresses.

Related functions: TS_SetBuffer

Associated examples: —

© Technosoft 2009 31 TML_LIB — User Manual

3.3.5 Error handling

3.3.5.1 TS_ResetFault

Prototype:

BOOL TML_EXPORT TS_ResetFault(void);

Arguments:
Name Description
Input | — —
Output | return TRUE if no error; FALSE if error
Description: The function gets out the active axis from the FAULT status. A drive/motor enters in

fault when an error occurs. After a TS_ResetFault execution, most of the errors bits from Motion
Error Register are cleared (set to 0), the Ready output (if present) is set to the ready level, the
Error output (if present) is set to the no error level and the drive/motor returns to normal operation.

Remarks:

e The TS ResetFault execution does not change the status of MER.15 (enable input on
disabled level), MER.7 (negative limit switch input active), MER.6 (positive limit switch
input active) and MER.2 (invalid setup table)

e The drive/motor will return to FAULT status if there are errors when the function is
executed

Related functions: TS _Power, TS _ReadStatus

Associated examples: Ex03_ErrorHandling

© Technosoft 2009

32 TML_LIB — User Manual

3.3.5.2 TS_Reset
Prototype:

BOOL TML_EXPORT TS_Reset(void);

Arguments:
Name Description
Input | — —
Output | return TRUE if no error; FALSE if error

Description: The function resets the active axis. After reset the drive/motor will load the values of
the TML parameters set during setup phase. If the drive/motor is configured to run in the
‘Autorun’ mode, after reset, it will automatically execute the TML code stored in the E2ROM
memory (if there is such a program).

Remark: If during drive/motor operation you have changed the setup parameters and want to use
them after the reset, call function TS_Save prior TS_Reset. The function TS_Save stores the
actual values of all TML parameters in the drive’s/motor’s non-volatile memory.

Related functions: TS_Drivelnitialization, TS Power, TS DownloadProgram, TS _GOTO,
TS Save

Associated examples: Ex03_ErrorHandling.

© Technosoft 2009 33 TML_LIB — User Manual

3.3.5.3 TS_GetLastErrorText
Prototype:

LPCSTR TML_EXPORT TS_GetLastErrorText(void);

Arguments:
Name Description
Input | - —
Output | return A text related to the last occurred error

Description: The function returns the description of the last error occurred during the execution
of a TML_LIB function.

Related functions: —

Associated examples: all

© Technosoft 2009 34 TML_LIB — User Manual

3.3.6 Motion programming
3.3.6.1 TS_MoveAbsolute
Prototype:

BOOL TML_EXPORT TS_MoveAbsolute(LONG AbsPosition, DOUBLE Speed, double
Acceleration, SHORT MoveMoment, SHORT ReferenceBase);

Arguments:

Name Description

AbsPosition Position to reached expressed in TML position units

s Slew speed expressed in TML speed units. If the value is zero the

peed) . ;
drive/motor will use the previously value set for speed
Acceleration/deceleration rate expressed in TML acceleration units. If its
Input Acceleration value is zero the drive/motor will use the previously value set for

acceleration

MoveMoment Defines the moment when the motion is started
Specifies how the motion reference is computed: from actual values of

ReferenceBase position and speed reference or from actual values of load/motor
position and speed

Output | return TRUE if no error, FALSE if error

Description: The function programs an absolute positioning with trapezoidal speed profile. The
motion is described through AbsPosition parameter for position to reach, Speed for slew speed
and Acceleration for acceleration/deceleration rate. The position to reach can be positive or
negative. The Speed and Acceleration can be only positive.

Once set, the motion parameters are memorized on the drive/motor. If you intend to use values
previously defined for the acceleration rate and/or the velocity you don’t need to send their values
again in the following trapezoidal profiles. Set to zero the value of speed and/or acceleration and
the drive/motor will use the values previously defined (this option reduces the TML code
generated by this function).

The motion is executed:

e Immediately when MoveMoment = UPDATE_IMMEDIATE

e When a programmed event occurs if MoveMoment = UPDATE_ON_EVENT

e If you select MoveMoment = UPDATE_NONE, the movement is parameterized, but does
not execute. You'll need to issue an update command to determine the execution of the
movement. Use the TS_Updateimmediate or the TS_UpdateOnEvent functions in order
to activate the movement.

Set ReferenceBase = FROM_REFERENCE if you want the reference generator to compute the
motion profile starting from the actual values of the position and speed reference. Set
ReferenceBase = FROM_MEASURE if you want the reference generator to compute the motion
profile starting from the actual values of the load/motor position and speed. When this option is
used, at the beginning of each new motion profile, the position and speed reference are updated
with the actual values of the load/motor position and speed.

© Technosoft 2009 35 TML_LIB — User Manual

Remark: In open loop control of steppers, this option is ignored because there is no position
and/or speed feedback.

Related functions: TS_MoveRelative, TS_MoveSCurveAbsolute, TS MoveSCurveRelative,
TS_MoveVelocity.

Associated examples: Ex05 Homing, Ex07_MultiAxes, Ex11_IOHandling

© Technosoft 2009 36 TML_LIB — User Manual

3.3.6.2 TS MoveRelative
Prototype:

BOOL TML_EXPORT TS_MoveRelative(LONG RelPosition, DOUBLE Speed, DOUBLE
Acceleration, BOOL IsAdditive, SHORT MoveMoment, SHORT ReferenceBase);

Arguments:

Name Description

RelPosition Position increment expressed in TML position units

s Slew speed expressed in TML speed units. If its value is zero the

peed) . .

drive/motor will use the previously value set for speed
Acceleration/deceleration rate expressed in the TML acceleration units.

Acceleration If its value is zero the drive/motor will use the previously value set for

Input acceleration

IsAdditive Specifies how is computed the position to reach

MoveMoment Defines the moment when the motion is started
Specifies how the motion reference is computed: from actual values of

ReferenceBase position and speed reference or from actual values of load/motor
position and speed

Output | return TRUE if no error, FALSE if error

Description: The function programs a relative positioning with trapezoidal speed profile. The
motion is described through RelPosition for position increment, Acceleration for
acceleration/deceleration rate and Speed for slew speed. The position increment can be positive
or negative; the sign gives the motion direction. The speed and acceleration can be only positive.

Once set, the motion parameters are memorized on the drive/motor. If you intend to use values
previously defined for the acceleration rate and/or the velocity you don’t need to send their values
again in the following trapezoidal profiles. Set to zero the value of speed and/or acceleration if you
want the drive/motor to use the values previously defined with other commands (this option
reduces the TML code generated by this function).

The position to reach can be computed in 2 ways: standard (default) or additive. In standard
mode, the position to reach is computed by adding the position increment to the instantaneous
position in the moment when the command is executed. In the additive mode, the position to
reach is computed by adding the position increment to the previous position to reach,
independently of the moment when the command was issued. The additive mode is activated with
IsAdditive = TRUE.

The motion is executed:

e Immediately when MoveMoment = UPDATE_IMMEDIATE

e When a programmed event occurs if MoveMoment = UPDATE_ON_EVENT

e If you select MoveMoment = UPDATE_NONE, the movement is parameterized, but does
not execute. You'll need to issue an update command to determine the execution of the
movement. Use the TS _Updateimmediate or the TS_UpdateOnEvent functions in order
to activate the movement.

Set ReferenceBase = FROM_REFERENCE if you want the reference generator to compute the
motion profile starting from the actual values of the position and speed reference. Use this option

© Technosoft 2009 37 TML_LIB — User Manual

for example if successive standard relative moves must be executed and the final target position
should represent exactly the sum of the individual commands. Set ReferenceBase =
FROM_MEASURE if you want the reference generator to compute the motion profile starting from
the actual values of the load/motor position and speed. When this option is used, at the beginning
of each new motion profile, the position and speed reference are updated with the actual values
of the load/motor position and speed.

Remark: In open loop control of steppers, this option is ignored because there is no position
and/or speed feedback.

Related functions: TS_ MoveAbsolute, TS MoveSCurveAbsolute, TS MoveSCurveRelative,
TS_MoveVelocity

Associated examples: Ex02_DriveStatus, Ex04_BasicMove, Ex05 Homing, Ex09_Logger,
Ex10_EventHandling, Ex11_IOHandling

© Technosoft 2009 38 TML_LIB — User Manual

3.3.6.3 TS _MoveSCurveAbsolute
Prototype:

BOOL TML_EXPORT TS _MoveSCurveAbsolute(LONG AbsPosition, DOUBLE Speed,
DOUBLE Acceleration, LONG JerkTime, SHORT MoveMoment, SHORT DecelerationType);

Arguments:
Name Description
AbsPosition Position to reach expressed in TML position units
Speed The slew speed expressed in TML speed units.
Acceleration Acceleration/deceleration rate expressed in TML acceleration units.

Represents the time interval for acceleration to reach the programmed

| .
nput | JerkTime value. It is expressed in TML time units.

MoveMoment Defines the moment when the motion is started
DecelerationType Specifies the speed profile used when the motion is stopped with
TS Stop
Output | return TRUE if no error, FALSE if error

Description: The function block programs an absolute positioning with an S-curve shape of the
speed. This shape is due to the jerk limitation, leading to a trapezoidal or triangular profile for the
acceleration and an S-curve profile for the speed. The motion is described through AbsPosition
parameter for position to reach, Speed for slew speed, Acceleration for
acceleration/deceleration rate and JerkTime. The position to reach can be positive or negative.
The Speed, Acceleration and JerkTime can be only positive.

An S-curve profile must begin when load/motor is not moving. During motion the parameters
should not be changed. Therefore when executing successive S-curve commands, you should
wait for the previous motion to end before setting the new motion parameters and starting next
motion.

When the motion is stopped with function TS Stop, the deceleration phase can be done in 2
ways:
e Smooth, wusing an S-curve speed profile, when DecelerationType
S_CURVE_SPEED_PROFILE
e Fast, wusing a trapezoidal speed profile, when DecelerationType
TRAPEZOIDAL_SPEED_PROFILE
The motion can be executed:

e Immediately when MoveMoment = UPDATE_IMMEDIATE

e When a programmed event occurs if MoveMoment = UPDATE_ON_EVENT

e If you select MoveMoment = UPDATE_NONE, the movement is parameterized, but does
not execute. You'll need to issue an update command to determine the execution of the
movement. Use the TS_Updatelmmediate or the TS_UpdateOnEvent functions in order
to activate the movement.

Related functions: TS_MoveAbsolute, TS _MoveRelative, TS MoveSCurveRelative
TS_MoveVelocity, TS_QuikStopDecelerationRate

Associated examples: Ex04_BasicMove

© Technosoft 2009 39 TML_LIB — User Manual

3.3.6.4 TS MoveSCurveRelative
Prototype:

BOOL TML_EXPORT TS MoveSCurveRelative(LONG RelPosition, DOUBLE Speed,
DOUBLE Acceleration, LONG JerkTime, SHORT MoveMoment, SHORT DecelerationType);

Arguments:
Name Description
RelPosition Position increment expressed in TML position units
Speed Slew speed expressed in TML speed units.
Acceleration Acceleration/deceleration rate expressed in TML acceleration units.

Represents the time interval for acceleration to reach the programmed

Input | JerkTime value. It is expressed in TML time units.

MoveMoment Defines the moment when the motion is started
DecelerationType _Srge(;fles the speed profile used when the motion is stopped with
_Stop
Output return TRUE if no error, FALSE if error

Description: The function block programs a relative positioning with an S-curve shape of the
speed. This shape is due to the jerk limitation, leading to a trapezoidal or triangular profile for the
acceleration and an S-curve profile for the speed. The motion is described through RelPosition
parameter for position increment, Speed for slew speed, Acceleration for
acceleration/deceleration rate and JerkTime. The position to reach can be positive or negative.
The Speed, Acceleration and JerkTime can be only positive.

An S-curve profile must begin when load/motor is not moving. During motion the parameters
should not be changed. Therefore when executing successive S-curve commands, you should
wait for the previous motion to end before setting the new motion parameters and starting next
motion.

When the motion is stopped with function TS_Stop, the deceleration phase can be done in 2
ways:
e Smooth, wusing an S-curve speed profile, when DecelerationType
S_CURVE_SPEED_PROFILE
e Fast, wusing a ftrapezoidal speed profile, when DecelerationType
TRAPEZOIDAL_SPEED_PROFILE

The motion can be executed:
¢ Immediately when MoveMoment = UPDATE_IMMEDIATE
e When a programmed event occurs if MoveMoment = UPDATE_ON_EVENT
e If you select MoveMoment = UPDATE_NONE, the movement is parameterized, but does
not execute. You'll need to issue an update command to determine the execution of the
movement. Use the TS_UpdatelImmediate or the TS_UpdateOnEvent functions in order
to activate the movement.

Related functions: TS MoveAbsolute, TS MoveRelative, TS MoveSCurveAbsolute
TS_MoveVelocity

Associated examples: Ex05_ BasicMove

© Technosoft 2009 40 TML_LIB — User Manual

3.3.6.5 TS_MoveVelocity
Prototype:

BOOL TML_EXPORT TS_MoveVelocity(DOUBLE Speed, DOUBLE Acceleration, SHORT
MoveMoment, SHORT ReferenceBase);

Arguments:

Name Description

Speed Jog speed expressed in TML speed units

A . Acceleration rate expressed in TML acceleration units. If the value is

cceleration . . . -
zero the drive/motor will use the previously value set for acceleration.
Input | MoveMoment Defines the moment when the motion is started

Specifies how the motion reference is computed: from actual values of

ReferenceBase position and speed reference or from actual values of load/motor
position and speed

Output | return TRUE if no error, FALSE if error

Description: The function programs a trapezoidal speed profile. You specify the jog Speed. The
load/motor accelerates until the jog speed is reached. The jog speed can be positive or negative;
the sign gives the direction. The Acceleration can be only positive.

Once set, the motion parameters are memorized on the drive/motor. If you intend to use values
previously defined for the acceleration rate you don’t need to send its value again in the following
speed profiles. Set to zero the value of acceleration if you want the drive/motor to use the value
previously defined with other commands (this option reduces the TML code generated by this
function).

The motion is executed:

e Immediately when MoveMoment = UPDATE_IMMEDIATE

e When a programmed event occurs if MoveMoment = UPDATE_ON_EVENT

e If you select MoveMoment = UPDATE_NONE, the movement is parameterized, but does
not execute. You'll need to issue an update command to determine the execution of the
movement. Use the TS_Updateimmediate or the TS_UpdateOnEvent functions in order
to activate the movement.

Set ReferenceBase = FROM_REFERENCE if you want the reference generator to compute the
motion profile starting from the actual values of the position and speed reference. Use this option
for example if successive standard relative moves must be executed and the final target position
should represent exactly the sum of the individual commands. Set ReferenceBase =
FROM_MEASURE if you want the reference generator to compute the motion profile starting from
the actual values of the load/motor position and speed. When this option is used, at the beginning
of each new motion profile, the position and speed reference are updated with the actual values
of the load/motor position and speed.

Remark: In open loop control of steppers, this option is ignored because there is no position
and/or speed feedback.

Related functions: TS _MoveRelative, TS MoveAbsolute, TS MoveSCurveAbsolute,
TS_MoveSCurveRelative

© Technosoft 2009 41 TML_LIB — User Manual

Associated examples: Ex04_BasicMove, Ex06_ExternalReference, Ex07_MultiAxes,
Ex10_EventHandling, Ex11_IOHandling

© Technosoft 2009 42 TML_LIB — User Manual

3.3.6.6 TS_SetAnalogueMoveExternal
Prototype:

BOOL TML_EXPORT TS_SetAnalogueMoveExternal(SHORT ReferenceType, BOOL
UpdateFast, DOUBLE LimitVariation, SHORT MoveMoment);

Arguments:
Name Description
ReferenceType Specifies how the analogue signal is interpreted
Specifies how often the analogue reference is read when torque control
UpdateFast)
| is performed
nput — — -
o o Speed/acceleration limit value for position/speed control expressed in
LimitVariation) .
TML internal units
MoveMoment Defines the moment when the motion is started
Output | return TRUE if no error, FALSE if error

Description: The function block programs the drive/motor to work with an external analogue
reference read via a dedicated analogue input (10-bit resolution). The analogue signal can be
interpreted as a position, speed or torque analogue reference. Through parameter
ReferenceType you specify how the analogue signal is interpreted:

e Position reference when ReferenceType = REFERENCE_POSITION. The drive/motor
performs position control.

e Speed reference when ReferenceType = REFERENCE_SPEED. The drive/motor
performs speed control.

e Torque reference when ReferenceType = REFERENCE_TORQUE. The drive/motor
performs torque control.

Remark: During the drive/motor setup, in the Drive setup dialogue, you have to:

1. Select the appropriate control type for your application at Control Mode.

2. Perform the tuning of controllers associated with the selected control mode.

3. Setup the analogue reference. You specify the reference values corresponding to the
upper and lower limits of the analogue input. In addition, a dead-band symmetrical
interval and its center point inside the analogue input range may be defined.

In position control you can limit the maximum speed at sudden changes of the position reference
and thus to reduce the mechanical shocks. In speed control you can limit the maximum
acceleration at sudden changes of the speed reference and thus to get a smoother transition.
These features are activated by setting the LimitVariation parameter to a positive value and
disabled when the LimitVariation is zero.

In torque control you can choose how often to read the analogue input: at each slow loop
sampling period (UpdateFast = TRUE) or at each fast loop sampling period (UpdateFast =
FALSE).

The motion is executed:

e Immediately when MoveMoment = UPDATE_IMMEDIATE
e When a programmed event occurs if MoveMoment = UPDATE_ON_EVENT

© Technosoft 2009 43 TML_LIB — User Manual

If you select MoveMoment = UPDATE_NONE, the motion parameters are set, but does
not execute. You'll need to issue an update command to determine the execution of the
movement. Use the TS_UpdatelImmediate or the TS_UpdateOnEvent functions in order

to activate the movement.
Related functions: TS_SetDigitalMoveExternal, TS_SetOnlineMoveExternal

Associated examples: Ex06_ExternalReference

© Technosoft 2009 44 TML_LIB — User Manual

3.3.6.7 TS_SetDigitalMoveExternal
Prototype:

BOOL TML_EXPORT TS_SetDigitalMoveExternal(BOOL SetGearRatio, SHORT
Denominator, SHORT Numerator, DOUBLE LimitVariation, SHORT MoveMoment);

Arguments:
Name Description
SetGearRatio Specifies if the digital reference is followed by the drive with a gear ratio
Denominator Gear ratio denominator
Input | Numerator Gear ratio numerator
LimitVariation Acceleration limit value
MoveMoment Defines the moment when the motion is started
Output | return TRUE if no error, FALSE if error

Description: The function block programs the drive/motor to work with an external digital
reference provided as pulse & direction or quadrature encoder signals. In either case, the
drive/motor performs a position control with the reference computed from the external signals.

Remarks: The option for the input signals: pulse & direction or quadrature encoder is established
during the drive/motor setup.

The drive/motor follows the external reference with a gear ratio different than 1:1 when
SetGearRatio = TRUE. The gear ratio is specified as a ratio of 2 integer values: Numerator /
Denominator. The Numerator value is signed, while the Denominator is unsigned. The sign
indicates the direction of movement: positive — same as the external reference, negative —
reversed to the external reference.

You can limit the maximum acceleration at sudden changes of the external reference and thus to
get a smoother transition. This feature is activated when the parameter LimitValue has a positive
value and disabled when its value is zero.

The motion is executed:

e Immediately when MoveMoment = UPDATE_IMMEDIATE

e When a programmed event occurs if MoveMoment = UPDATE_ON_EVENT

e If you select MoveMoment = UPDATE_NONE, the motion parameters are set, but the
motion is not activated. You'll need to issue an update command to determine the
execution of the movement. Use the TS_Updatelmmediate or the TS_UpdateOnEvent
functions in order to activate the movement.

Related functions: TS_SetAnalogueMoveExternal, TS_SetOnlineMoveExternal

Associated examples: Ex06_ExternalReference

© Technosoft 2009 45 TML_LIB — User Manual

3.3.6.8 TS_SetOnlineMoveExternal
Prototype:

BOOL TML_EXPORT TS_SetOnlineMoveExternal(SHORT ReferenceType, DOUBLE
LimitVariation, DOUBLE InitialvValue, SHORT MoveMoment);

Arguments:
Name Description
ReferenceType Specifies how the analogue signal is interpreted
. . Speed/acceleration limit value for position/speed control expressed in
Input LimitVariation TML internal units
InitialValue The initial value of the reference received on-line
MoveMoment Defines the moment when the motion is started
Output | return TRUE if no error, FALSE if error

Description: The function programs the drive/motor to work with a reference received via a
communication channel from an external device. Depending on the control mode chosen, the
external reference is saved in one of the TML variables:

e EREFP, which becomes the position reference if the ReferenceType
REFERENCE_POSITION

e EREFS, which becomes the speed reference if the ReferenceType =
REFERENCE_SPEED

e EREFT, which becomes the torque reference if the ReferenceType =
REFERENCE_TORQUE

e EREFV, which becomes \voltage reference if the ReferenceType =
REFERENCE_VOLTAGE

Remark: During the drive/motor setup, in the Drive setup dialogue, you have to:

1. Select the appropriate control type for your application in Drive Setup dialogue.
2. Perform the tuning of controllers associated with the selected control mode.

In position control you can limit the maximum speed at sudden changes of the position reference
and thus to reduce the mechanical shocks. In speed control you can limit the maximum
acceleration at sudden changes of the speed reference and thus to get a smoother transition.
These features are activated by setting the LimitVariation parameter to a positive value and
disabled when the LimitVariation is zero.

The motion is executed:

e Immediately when MoveMoment = UPDATE_IMMEDIATE

e When a programmed event occurs if MoveMoment = UPDATE_ON_EVENT

e If you select MoveMoment = UPDATE_NONE, the movement is parameterized, but does
not execute. You'll need to issue an update command to determine the execution of the
movement. Use the TS_Updatelmmediate or the TS_UpdateOnEvent functions in order
to activate the movement.

© Technosoft 2009 46 TML_LIB — User Manual

If the external device starts sending the reference AFTER the motion mode is activated, it may be
necessary to initialize EREFP, EREFS, EREFT or EREFV. The desired starting value is set
through InitialValue parameter.

Related functions: TS_SetAnalogueMoveExternal, TS_SetDigitalMoveExternal

Associated examples: Ex06_ExternalReference

© Technosoft 2009 47 TML_LIB — User Manual

3.3.6.9 TS_VoltageTestMode
Prototype:

BOOL TML_EXPORT TS VoltageTestMode(SHORT MaxVoltage, SHORT IncrVoltage,
SHORT Theta0, SHORT Dtheta, SHORT MoveMoment);

Arguments:

Name Description
MaxVoltage Maximum test voltage expressed in TML voltage command units
IncrVoltage Voltage increment expressed in TML internal units

Input ThetaO Initial value of electrical angle expressed in TML electrical angle units
Dtheta Electric angle increment expressed in TML electrical angle increment

units
MoveMoment Defines the moment when the motion is started
Output | return TRUE if no error, FALSE if error

Description: The function allows you to set the drives/motors in voltage test mode. In the test
mode a saturated ramp voltage is applied to the motor, i.e. the voltage will increase with the
IncrVoltage increment at each slow sampling period up to the MaxVoltage value.

Remark: This is a test mode to be used only in some special cases for drives setup. The test
mode is not supposed to be used during normal operation

For AC motors (like for example the brushless motors), you have the possibility to rotate a voltage
reference vector with a programmable speed. As a result, these motors can be moved in an
“open-loop” mode without using the position sensor. The main advantage of this test mode is the
possibility to conduct in a safe way a series of tests, which can offer important information about
the motor parameters, drive status and the integrity of the its connections.

The voltage reference vector initial position is set through parameter ThetaO and its speed
through Dtheta. For DC motors set these parameters to zero.

The motion is executed:

e Immediately when MoveMoment = UPDATE_IMMEDIATE

e When a programmed event occurs if MoveMoment = UPDATE_ON_EVENT

e If you select MoveMoment = UPDATE_NONE, the movement is parameterized, but does
not execute. You'll need to issue an update command to determine the execution of the
movement. Use the TS_UpdatelImmediate or the TS_UpdateOnEvent functions in order
to activate the movement.

Related functions: TS_TorqueTestMode

Associated examples: —

© Technosoft 2009 48 TML_LIB — User Manual

3.3.6.10 TS_TorqueTestMode
Prototype:

BOOL TML_EXPORT TS_TorqueTestMode(SHORT MaxTorque, SHORT IncrTorque, SHORT
Theta0, SHORT Dtheta, SHORT MoveMoment);

Arguments:

Name Description

| MaxTorque Maximum test torque expressed in TML current units

nput - - - -
IncrTorque Torque increment expressed in TML internal units
ThetaO Initial value of electrical angle expressed in TML electrical angle units
Dtheta Electric angle increment expressed in TML electrical angle increment units
MoveMoment Defines the moment when the motion is started

Output | return TRUE if no error, FALSE if error

Description: The function allows you to set the drives/motors in torque test mode. In the test
mode a saturated ramp current is applied to the motor, i.e. the current will increase with the
IncrTorque increment at each slow sampling period up to the MaxTorque value.

Remark: This is a test mode to be used only in some special cases for drives setup. The test
mode is not supposed to be used during normal operation

For AC motors (like for example the brushless motors), you have the possibility to rotate a current
reference vector with a programmable speed. As a result, these motors can be moved in an
“open-loop” mode without using the position sensor. The main advantage of this test mode is the
possibility to conduct in a safe way a series of tests, which can offer important information about
the motor parameters, drive status and the integrity of the its connections.

The current reference vector initial position is set through parameter ThetaO and its speed
through Dtheta. For DC motors set these parameters to zero.

The motion is executed:

e Immediately when MoveMoment = UPDATE_IMMEDIATE

e When a programmed event occurs if MoveMoment = UPDATE_ON_EVENT

e If you select MoveMoment = UPDATE_NONE, the movement is parameterized, but does
not execute. You'll need to issue an update command to determine the execution of the
movement. Use the TS_UpdateImmediate or the TS_UpdateOnEvent functions in order
to activate the movement.

Related functions: TS_VoltageTestMode

Associated examples: —

© Technosoft 2009 49 TML_LIB — User Manual

3.3.6.11 TS_PVTSetup
Prototype:
BOOL TML_EXPORT TS_PVTSetup(SHORT ClearBuffer, SHORT IntegrityChecking, SHORT

ChangePVTCounter, SHORT AbsolutePositionSource, SHORT ChangeLowLevel, SHORT
PVTCounterValue, SHORT LowLevelValue);

Arguments:
Name Description
ClearBuffer Specifies if the PVT buffer is cleared
IntegrityChecking Enable/disable PVT counter integrity checking
ChangePVTCounter Specifies if the integrity counter is updated with the value of

PVTCounterValue parameter

Input | AbsolutePositionSource Selects the source for initial position for absolute PVT mode

Specifies if the level for BufferLow signaling is updated with the

ChangelLowLevel
value of LowLevelValue parameter
PVTCounterValue The new value for the drive/motor PVT integrity counter
LowLevelValue The new value for the level of the BufferLow signal
Output | return TRUE if no error, FALSE if error

Description: The function programs a drive/motor to work in PVT motion mode. In PVT motion
mode the drive/motor performs a positioning path described through a series of points. Each point
specifies the desired Position, Velocity and Time, i.e. contains a PVT data. Between the points
the built-in reference generator performs a 3rd order interpolation.

Remark: The function block just programs the drive/motor for PVT mode. The motion mode is
activated with function TS_SendPVTFirstPoint and the PVT points are sent to the drive with
function TS_SendPVTPoint.

A key factor for getting a correct positioning path in PVT mode is to set correctly the distance in
time between the points. Typically this is 10-20ms, the shorter the better. If the distance in time
between the PVT points is too big, the 3rd order interpolation may lead to important variations
compared with the desired path.

The PVT motion mode can be started only when the previous motion is complete. However, you
can switch at any moment to another motion mode.

The PVT mode can be relative or absolute. In the absolute mode, each PVT point specifies the
position to reach. The initial position may be either the current position reference TML variable
TPOS (AbsolutePositionSource = TRUE) or a preset value read from the TML parameter
PVTPOSO (AbsolutePositionSource = FALSE). In the relative mode, each PVT point specifies
the position increment relative to the previous point. In both cases, the time is relative to the
previous point i.e. represents the duration of a PVT segment. For the first PVT point, the time is
measured from the starting of the PVT mode.

Remark: The PVT mode, absolute or relative, is set with function TS_SendPVTFirstPoint.

Each time when the drive receives a new PVT point, it is saved into the PVT buffer. The reference
generator empties the buffer as the PVT points are executed. The PVT buffer is of type FIFO (first
in, first out). The default length of the PVT buffer is 7 PVT points. Each entry in the buffer is made
up of 9 words, so the default length of the PVT buffer in terms of how much memory space is

© Technosoft 2009 50 TML_LIB — User Manual

reserved is 63 (3Fh) words. The drive/motor automatically sends messages to the host when the
buffer is full, low or empty. The messages contain the PVT status (TML variable PVTSTS). The
buffer full condition occurs when the number of PVT points in the buffer is equal with the buffer
size. The buffer low condition occurs when the number of PVT points in the buffer is less or equal
with a programmable value. The level for BufferLow signaling is updated when ChangeLowLevel
= TRUE with the value of parameter LowLevelValue. The buffer empty condition occurs when
the buffer is empty and the execution of the last PVT point is over.

When the PVT buffer becomes empty the drive/motor:

e Remains in PVT mode if the velocity of last PVT point executed is zero and waits for new
points to receive
e Enters in quick stop mode if the velocity of last PVT point executed is not zero

Therefore, a correct PVT sequence must always end with a last PVT point having velocity zero.
Remarks:

1. The PVT and PT modes share the same buffer. Therefore the TML parameters and
variables associated with the buffer management are the same.

2. Both the PVT buffer size and its start address are programmable via TML parameters
PVTBUFBEGIN(int@0x0864) and PVTBUFLEN (int@0x0865). Therefore if needed, the
PVT buffer size can be substantially increased. Use TS_SetintegerVariable to change the
PVT buffer parameters.

Each PVT point also includes a 7-bit integrity counter. The integrity counter value must be
incremented by the host by one, each time a new PVT point is sent to the drive/motor. If the
integrity counter error checking is activated (IntegrityChecking = TRUE), the drive compares its
integrity counter value with the one sent with the PVT point. This comparison is done every time a
PVT point is received. If the values of the two integrity counters do not match, the integrity check
error is triggered, the drive/motor sends messages with PVTSTS to the host and the received
PVT point is discarded. Each time a PVT point is accepted (the integrity counters match or the
integrity counter error checking is disabled), the drive automatically increments its internal
integrity counter.

The default value of the internal integrity counter after power up is 0. Set ChangePVTCounter =
TRUE to change its value with PVTCounterValue parameter. The integrity counter checking is
disabled when parameter IntegrityChecking = FALSE.

Related functions: TS _SendPVTFirstPoint, TS _SendPVTPoint
Associated examples: Ex08 PVT

© Technosoft 2009 51 TML_LIB — User Manual

3.3.6.12 TS_SendPVTFirstPoint
Prototype:
BOOL TML_EXPORT TS_SendPVTFirstPoint(LONG Position, DOUBLE Velocity, WORD

Time, SHORT PVTCounter, SHORT PositionType, LONG InitialPosition, SHORT
MoveMoment SHORT ReferenceBase);

Arguments:
Name Description
Position Position value for first PVT point expressed in TML position units
. Speed at the end of the first PVT segment expressed in TML speed
Velocity units
Ti Represents the time interval of the PVT segment expressed in TML
ime . ; . S .
time units. The maximum time interval is 511 1U.
Input PVTCounter Integrity counter for first PVT point.
PositionType Specifies the type of PVT mode
InitialPosition The initial position at the start of an absolute PVT movement
MoveMoment Defines the moment when the motion is started
Specifies how the motion reference is computed: from actual values of
ReferenceBase position and speed reference or from actual values of load/motor
position and speed
Output | return TRUE if no error, FALSE if error

Description: The function sends the first PVT point and activates the PVT motion mode.

Parameter PositionType sets the PVT mode: absolute or relative. In the absolute mode
(PositionType = ABSOLUTE_POSITION), each PVT point specifies the position to reach. The
initial position may be either the current position reference TML variable TPOS or a preset value
read from the TML parameter PVTPOSO0. In the relative mode (PositionType =
RELATIVE_POSITION), each PVT point specifies the position increment relative to the previous
point.

Remark: The source for initial position, TPOS or PVTPOSO, is set with function TS_PVTSetup.
The motion is executed:

e Immediately when MoveMoment = UPDATE_IMMEDIATE

e When a programmed event occurs if MoveMoment = UPDATE_ON_EVENT

e If you select MoveMoment = UPDATE_NONE, the movement is parameterized, but does
not execute. You'll need to issue an update command to determine the execution of the
movement. Use the TS_UpdatelImmediate or the TS_UpdateOnEvent functions in order
to activate the movement.

Related functions: TS _PVTSetup, TS_SendPVTPoint
Associated examples: Ex08_PVT

© Technosoft 2009 52 TML_LIB — User Manual

3.3.6.13 TS_SendPVTPoint
Prototype:

BOOL TML_EXPORT TS_SendPVTPoint(LONG Position, DOUBLE Velocity, WORD Time,
SHORT PVTCounter);

Arguments:
Name Description
Input Position Position at the end of the PVT segment expressed in TML position units
Velocity Velocity at the end of the PVT segment expressed in TML speed units
Time Time interval for the current PVT segment expressed in TML time units
PVTCounter The integrity counter for the current PVT point
Output | return TRUE if no error, FALSE if error

Description: The function sends a PVT point to the drive/motor. Each point specifies the desired
Position, Velocity and Time, i.e. contains a PVT data. Between the PVT points the reference
generator performs a 3" order interpolation. The PVT point also includes a 7-bit integrity counter.
The integrity counter value must be incremented by the host by one, each time a new PVT point
is sent to the drive/motor.

Related functions: TS _PVTSetup, TS_SendPVTFirstPoint
Associated examples: Ex08_PVT

© Technosoft 2009 53 TML_LIB — User Manual

3.3.6.14 TS_PTSetup
Prototype:
BOOL TML_EXPORT TS_PTSetup(SHORT ClearBuffer, SHORT IntegrityChecking, SHORT

ChangePTCounter, SHORT AbsolutePositionSource, SHORT ChangeLowlLevel, SHORT
PTCounterValue, SHORT LowLevelValue);

Arguments:
Name Description
ClearBuffer When TRUE the PT buffer is cleared
IntegrityChecking Enable/disable PT counter integrity checking
ChangePTCounter Specifies if the integrity counter is updated with the value of

PTCounterValue parameter

Input | AbsolutePositionSource Selects the source for initial position for absolute PT mode

Specifies if the level for BufferLow signaling is updated with the

ChangelLowLevel
value of LowLevelValue parameter
PTCounterValue The new value for the drive/motor PT integrity counter
LowLevelValue The new value for the level of the BufferLow signal
Output | return TRUE if no error, FALSE if error

Description: The function programs a drive/motor to work in PT motion mode. In PT motion
mode the drive/motor performs a positioning path described through a series of points. Each point
specifies the desired Position and Time, i.e. contains a PT data. Between the points the built-in
reference generator performs a linear interpolation.

Remark: The function block just programs the drive/motor for PT mode. The motion mode is
activated with function TS_SendPTFirstPoint and the PT points are sent to the drive with function
TS_SendPTPoint.

The PT motion mode can be started only when the previous motion is complete. However, you
can switch at any moment to another motion mode.

The PT mode can be relative or absolute. In the absolute mode, each PT point specifies the
position to reach. The initial position may be either the current position reference TML variable
TPOS (AbsolutePositionSource = TRUE) or a preset value read from the TML parameter
PVTPOSO (AbsolutePositionSource = FALSE). In the relative mode, each PT point specifies
the position increment relative to the previous point. In both cases, the time is relative to the
previous point i.e. represents the duration of a PT segment. For the first PT point, the time is
measured from the starting of the PT mode.

Remark: The PT mode, absolute or relative, is set with function TS_SendPTFirstPoint.

Each time when the drive receives a new PT point, it is saved into the PT buffer. The reference
generator empties the buffer as the PT points are executed. The PT buffer is of type FIFO (first in,
first out). The default length of the PT buffer is 7 PT points. The drive/motor automatically sends
messages to the host when the buffer is full, low or empty. The messages contain the PT status
(TML variable PVTSTS). The buffer full condition occurs when the number of PT points in the
buffer is equal with the buffer size. The buffer low condition occurs when the number of PT points
in the buffer is less or equal with a programmable value. Set ChangeLowLevel = TRUE to
change the level for BufferLow signaling with the value of parameter LowLevelValue. The buffer

© Technosoft 2009 54 TML_LIB — User Manual

empty condition occurs when the buffer is empty and the execution of the last PT point is over.
When the PT buffer becomes empty the drive/motor keeps the position reference unchanged.

Remarks:

3. The PT and PVT modes share the same buffer. Therefore the TML parameters and
variables associated with the buffer management are the same.

4. Both the PT buffer size and its start address are programmable via TML parameters
PVTBUFBEGIN(int@0x0864) and PVTBUFLEN (int@0x0865). Therefore if needed, the
PT buffer size can be substantially increased. Use TS_SetIntegerVariabler to change the
PT buffer parameters.

Each PT point also includes a 7-bit integrity counter. The integrity counter value must be
incremented by the host by one, each time a new PT point is sent to the drive/motor. If the
integrity counter error checking is activated (IntegrityChecking = FALSE), the drive compares its
integrity counter value with the one sent with the PT point. This comparison is done every time a
PT point is received. If the values of the two integrity counters do not match, the integrity check
error is triggered, the drive/motor sends messages with PVTSTS to the host and the received PT
point is discarded. Each time a PT point is accepted (the integrity counters match or the integrity
counter error checking is disabled), the drive automatically increments its internal integrity
counter.

The default value of the internal integrity counter after power up is 0. Set ChangePTCounter =
TRUE to change the value of integrity counter with PTCounterValue parameter. The integrity
counter checking is disabled when parameter IntegrityChecking = TRUE.

Related functions: TS_SendPTFirstPoint, TS_SendPTPoint

Associated examples: —

© Technosoft 2009 55 TML_LIB — User Manual

3.3.6.15 TS_SendPTFirstPoint
Prototype:
BOOL TML_EXPORT TS_SendPTFirstPoint(LONG Position, WORD Time, SHORT

PTCounter, SHORT PositionType, LONG InitialPosition, SHORT MoveMoment SHORT
ReferenceBase);

Arguments:
Name Description
Position Position value for first PT point expressed in TML position units
Time Time interval of the PT segment expressed in TML time units.
PTCounter Integrity counter for first PT point.
PositionType Specifies the type of PT mode
Input InitialPosition The initial position at the start of an absolute PT movement
MoveMoment Defines the moment when the motion is started
Specifies how the motion reference is computed: from actual values of
ReferenceBase position and speed reference or from actual values of load/motor
position and speed
Output return TRUE if no error, FALSE if error

Description: The function sends the first PT point and activates the PT motion mode.

Parameter PositionType sets the PT mode: absolute or relative. In the absolute mode
(PositionType = ABSOLUTE_POSITION), each PT point specifies the position to reach. The
initial position may be either the current position reference TML variable TPOS or a preset value
read from the TML parameter PVTPOSO0. In the relative mode (PositionType =
RELATIVE_POSITION), each PT point specifies the position increment relative to the previous
point.

Remark: The initial position source, TPOS or PVTPOSO, is set with function TS_PTSetup.
The motion is executed:

e Immediately when MoveMoment = UPDATE_IMMEDIATE

e When a programmed event occurs if MoveMoment = UPDATE_ON_EVENT

e If you select MoveMoment = UPDATE_NONE, the movement is parameterized, but does
not execute. You'll need to issue an update command to determine the execution of the
movement. Use the TS_UpdatelImmediate or the TS_UpdateOnEvent functions in order
to activate the movement.

Related functions: TS _PTSetup, TS_SendPTPoint

Associated examples: —

© Technosoft 2009 56 TML_LIB — User Manual

3.3.6.16 TS_SendPTPoint
Prototype:

BOOL TML_EXPORT TS_SendPTPoint(LONG Position, WORD Time, SHORT PTCounter);

Arguments:
Name Description
Input | Position Position at the end of the PT segment expressed in TML position units
Time Time interval for the current PT segment expressed in TML time units
PTCounter The integrity counter for the current PT point
Output | return TRUE if no error, FALSE if error

Description: The function sends a PT point to the drive/motor. Each point specifies the desired
Position, and Time. Between the PT points the reference generator performs a linear
interpolation. The PT point also includes a 7-bit integrity counter. The integrity counter value must
be incremented by the host by one, each time a new PT point is sent to the drive/motor.

Related functions: TS _PTSetup, TS_SendPTFirstPoint

Associated examples: —

© Technosoft 2009 57 TML_LIB — User Manual

3.3.6.17 TS_SetGearingMaster
Prototype:

BOOL TML_EXPORT TS_SetGearingMaster(BOOL Group, BYTE SlavelD, SHORT
ReferenceBase, BOOL Enable, BOOL SetSlavePos, SHORT MoveMoment);

Arguments:
Name Description
G Specifies if the master sends its position to one slave or a group of
roup
slaves
SlavelD The axis ID of the slave or group ID of group of slaves
Input | ReferenceBase Specifies if the master sends its load position or its position reference
Enable Enable/disables the master in electronic gearing
SetSlavePos Specify if the master is initializing the slave(s)
MoveMoment Defines the moment when the settings are activated
Output | return TRUE if no error, FALSE if error

Description: The function programs the active axis as master in electronic gearing. Once at each
slow loop sampling time interval, the master sends either its load position APOS (ReferenceBase
= FROM_MEASURE) or its position reference TPOS (ReferenceBase = FROM_REFERENCE)
to the axis or the group of axes specified in the parameter SlavelD.

Remark: The ReferenceBase = FROM_MEASURE option is not valid if the master operates in
open loop. It is meaningless if the master drive has no position sensor.

The SlavelD is interpreted either as the Axis ID of one slave (Group = FALSE) or the value of a
Group ID i.e. the group of slaves to which the master should send its data (Group = TRUE).

The master operation is enabled with Enable = TRUE and is disabled when Enable = FALSE. In
both cases, these operations have no effect on the motion executed by the master.

If the master activation is done AFTER the slaves are set in electronic gearing mode, set
SetSlavePos = TRUE to determine the master to send an initialization message to the slaves.

The commands are executed:

¢ Immediately when MoveMoment = UPDATE_IMMEDIATE

e When a programmed event occurs if MoveMoment = UPDATE_ON_EVENT

e If you select MoveMoment = UPDATE_NONE, the movement is parameterized, but does
not execute. You'll need to issue an update command to determine the execution of the
movement. Use the TS_UpdatelImmediate or the TS _UpdateOnEvent functions in order
to activate the movement.

Related functions: TS_SetGearingSlave, TS_SendSynchronization

Associated examples: Ex07_MultiAxes

© Technosoft 2009 58 TML_LIB — User Manual

3.3.6.18 TS_SetGearingSlave
Prototype:
BOOL TML_EXPORT TS SetGearingSlave(SHORT Denominator, SHORT Numerator,

SHORT ReferenceBase, SHORT EnableSlave, DOUBLE LimitVariation, SHORT
MoveMoment);

Arguments:
Name Description
Denominator Gear ratio denominator (always positive)
Numerator Gear ratio numerator (positive or negative)
Specifies how the motion reference is computed: from actual
ReferenceBase values of position and speed reference or from actual values of
Input load/motor position and speed
EnableSlave Enables the electronic gearing slave mode
EnableSuperposition Enables/disables motion superposition
LimitVariation Acceleration limit when the slave is coupling
MoveMoment Defines the moment when the settings are activated
Output | return TRUE if no error, FALSE if error

Description: The function programs the active axis to operate as slave in electronic gearing. In
electronic gearing slave mode the drive/motor performs a position control. At each slow loop
sampling period, the slave computes the master’s position increment and multiplies it with its
programmed gear ratio. The result is the slave’s position reference increment, which added to the
previous slave position reference gives the new slave position reference.

The gear ratio is the result of the division Numerator / Denominator. Numerator is a signed
integer, while the Denominator is unsigned integer. The Numerator sign indicates the direction
of movement: positive — same as the master, negative — reversed to the master. Numerator and
Denominator are used by an automatic compensation procedure that eliminates the round off
errors, which occur when the gear ratio is an irrational number like: 1/3 (Slave = 1, Master = 3).

The slave can get the master position in two ways:

1. Via a communication channel (EnableSlave = SLAVE_COMMUNICATION_CHANNEL),
from a drive/motor set as master with function block TS_SetGearingMaster

2. Via an external digital reference of type pulse & direction or quadrature encoder
(EnableSlave = SLAVE_2ND_ENCODER)

Remark: Set EnableSlave = SLAVE_NONE if you want to program the motion mode parameters
without enabling it.

When master position is provided via the external digital interface, the slave computes the master
position by counting the pulse & direction or quadrature encoder signals. The initial value of the
master position is set by default to 0. Use function TS_SetLongVariable to change its value by
writing the desired value in the TML variable APOS2.

You can smooth the slave coupling with the master, by limiting the maximum acceleration on the
slave. This is particularly useful when the slave must couple with a master running at high speed.
This feature is activated when the parameter LimitVariation has a positive value and disabled
when its value is zero.

© Technosoft 2009 59 TML_LIB — User Manual

Set ReferenceBase = FROM_REFERENCE if you want the reference generator to compute the
slave position starting from the actual values of the position and speed reference. Set
ReferenceBase = FROM_MEASURE if you want the reference generator to compute the slave
position starting from the actual values of the load/motor position and speed. When this option is
used, at the beginning of each new motion profile, the position and speed reference are updated
with the actual values of the load/motor position and speed.

Remarks:

1. The function requires drive/motor position loop to be closed. During the drive/motor setup
select Position at Control Mode and perform the position controller tuning.

2. Use function block TS_SetGearingMaster to program a drive/motor as master in
electronic gearing

3. When the reference is read from second encoder or pulse & direction inputs you don’t
need to program a drive/motor as master in electronic gearing

Related functions: TS_SetGearingMaster, TS_SetMasterResolution

Associated examples: Ex07_MultiAxes

© Technosoft 2009 60 TML_LIB — User Manual

3.3.6.19 TS_SetCammingMaster
Prototype:

BOOL TML_EXPORT TS _SetCammingMaster(BOOL Group, BYTE SlavelD, SHORT
ReferenceBase, BOOL Enable, SHORT MoveMoment);

Arguments:
Name Description
G Specifies if the master sends its position to one slave or a group of
roup
slaves
Input SlavelD The axis ID of the slave or group ID of group of slaves
ReferenceBase Specifies if the master sends its load position or its position reference
Enable Enable/disables the master in electronic camming
MoveMoment Defines the moment when the settings are activated
Output | return TRUE if no error, FALSE if error

Description: The function programs the active axis as master in electronic camming. Once at
each slow loop sampling time interval, the master sends either its load position APOS
(ReferenceBase = FROM_MEASURE) or its position reference TPOS (ReferenceBase =
FROM_REFERENCE) to the axis or the group of axes specified in the parameter SlavelD.

Remark: The ReferenceBase = FROM_MEASURE option is not valid if the master operates in
open loop. It is meaningless if the master drive has no position sensor.

The SlavelD is interpreted either as the Axis ID of one slave (Group = FALSE) or the value of a
Group ID i.e. the group of slaves to which the master should send its data (Group = TRUE).

The master operation is enabled with Enable = TRUE and is disabled when Enable = FALSE. In
both cases, these operations have no effect on the motion executed by the master.

The commands are executed:

e Immediately when MoveMoment = UPDATE_IMMEDIATE

e When a programmed event occurs if MoveMoment = UPDATE_ON_EVENT

e If you select MoveMoment = UPDATE_NONE, the movement is parameterized, but does
not execute. You'll need to issue an update command to determine the execution of the
movement. Use the TS_UpdatelImmediate or the TS_UpdateOnEvent functions in order
to activate the movement.

Related functions: TS_CamDownload, TS Caminitialization TS_SetCammingSlaveRelative,
TS_SetCammingSlaveAbsolute, TS _SendSynchronization

Associated examples: Ex07_MultiAxes

© Technosoft 2009 61 TML_LIB — User Manual

3.3.6.20 TS_SetCammingSlaveRelative
Prototype:
BOOL TML_EXPORT TS SetCammingSlaveRelative(WORD RunAddress, SHORT

ReferenceBase, SHORT EnableSlave, SHORT MoveMoment, LONG OffsetFromMaster,
DOUBLE MultinputFactor, DOUBLE MultOutputFactor);

Arguments:
Name Description
R Drive/motor RAM address where the cam table is copied with
unAddress . A
function TS _Camlnitialization
Specifies how the motion reference is computed: from actual
ReferenceBase values of position and speed reference or from actual values of
Input load/motor position and speed
EnableSlave Enable the electronic camming slave mode
MoveMoment Defines the moment when the settings are activated
OffsetFromMaster Cam table offset expressed in TML position units
MultinputFactor CAM table input scaling factor
MultOutputFactor CAM table output scaling factor
Output | return TRUE if no error, FALSE if error

Description: The function block programs the active axis to operate as slave in electronic
camming relative mode. The slave drive/motor executes a cam profile function of the master
drive/motor position. The cam profile is defined by a cam table — a set of (X, Y) points, where X is
cam table input i.e. the master position and Y is the cam table output i.e. the corresponding slave
position. Between the points the drive/motor performs a linear interpolation. In electronic camming
relative mode the output of the cam table is added to the slave actual position.

The cam tables are previously stored in drive/motor non-volatile memory with function
TS_CambDownload. After download, previously starting the camming slave, you have to initialize
the cam table, i.e. to copy it from non-volatile memory to RAM memory. Use function
TS_Camlinitialization to initialize a cam table. The active cam table is selected through
parameter RunAddress. The RunAddress must contain the drive/motor RAM address where the
cam table was copied.

The slave can get the master position in two ways:

1. Via a communication channel (EnableSlave = SLAVE_COMMUNICATION_CHANNEL),
from a drive/motor set as master with function block TS_SetGearingMaster

2. Via an external digital reference of type pulse & direction or quadrature encoder
(EnableSlave = SLAVE_2ND_ENCODER)

Remark:

1. Set EnableSlave = SLAVE_NONE if you want to program the motion mode parameters
without enabling it.

2. Use function block TS_SetCammingMaster to program a drive/motor as master in
electronic camming. When the reference is read from second encoder or pulse &
direction inputs you don’t need to program a drive/motor as master in electronic camming

© Technosoft 2009 62 TML_LIB — User Manual

When master position is provided via the external digital interface, the slave computes the master
position by counting the pulse & direction or quadrature encoder signals. The initial value of the
master position is set by default to 0. Use function block TS_SetlLongVariable to change its value
by writing the desired value in the TML variable APOS2.

With parameter OffsetFromMaster you can shift the cam profile versus the master position, by
setting an offset for the slave. The cam table input is computed as the master position minus the
cam offset. For example, if a cam table is defined between angles 100 to 250 degrees, a cam
offset of 50 degrees will make the cam table to execute between master angles 150 and 300
degrees.

You can compress/extend the cam table input. Set the parameter MultinputFactor with the
correction factor by which the cam table input is multiplied. For example, an input correction factor
of 2, combined with a cam offset of 180 degrees, will make possible to execute a cam table
defined for 360 degrees of the master in the last 180 degrees.

You can also compress/extend the cam table output. Specify through input MultOutputFactor the
correction factor by which the cam table output is multiplied. This feature addresses the
applications where the slaves must execute different position commands at each master cycle, all
having the same profile defined through a cam table. In this case, the drive/motor is programmed
with a unique normalized cam profile and the cam table output is multiplied with the relative
position command updated at each master cycle.

Remark: If the OffsetFromMaster, MultinputFactor and/or MultOutputFactor are set to zero the
drive/motor will use the value previously set for the parameter or the default value. With this
option the TML code generated by this function is reduced.

Related functions: TS_CamDownload, TS Caminitialization, TS_SetCammingSlaveAbsolute,
TS_SetCammingMaster, TS_SetMasterResolution,

Associated examples: Ex07_MultiAxes

© Technosoft 2009 63 TML_LIB — User Manual

3.3.6.21 TS_SetCammingSlaveAbsolute
Prototype:
BOOL TML_EXPORT TS_SetCammingSlaveAbsolute(WORD RunAddress, DOUBLE

LimitVariation, SHORT ReferenceBase, SHORT EnableSlave, SHORT MoveMoment, LONG
OffsetFromMaster, DOUBLE MultinputFactor, DOUBLE MultOutputFactor);

Arguments:
Name Description
R Drive/motor RAM address where the cam table is copied with
unAddress . A
function TS _Camlnitialization
LimitVariation Slave speed limit value expressed in TML speed units
Specifies how the motion reference is computed: from actual
Input ReferenceBase values of position and speed reference or from actual values of
load/motor position and speed
EnableSlave Enable the electronic camming slave mode
MoveMoment Defines the moment when the settings are activated
OffsetFromMaster Cam table offset expressed in TML position units
MultinputFactor CAM table input scaling factor
MultOutputFactor CAM table output scaling factor
Output | return TRUE if no error, FALSE if error

Description: The function block programs the active axis to operate as slave in electronic
camming absolute mode. The slave drive/motor executes a cam profile function of the master
drive/motor position. The cam profile is defined by a cam table — a set of (X, Y) points, where X is
cam table input i.e. the master position and Y is the cam table output i.e. the corresponding slave
position. Between the points the drive/motor performs a linear interpolation. In electronic camming
absolute mode the output of the cam table represents the position to reach.

The electronic camming absolute mode may generate abrupt variations on the slave position
reference, mainly at entry in the camming mode. Set parameter LimitVariation to limit the speed
of the slave during travel towards the position to reach. The limitation is disabled if the
LimitVariation is set to zero.

The cam tables are previously stored in drive/motor non-volatile memory with function
TS_CamDownload. After download, previously starting the camming slave, you have to initialize
the cam table, i.e. to copy it from non-volatie memory to RAM memory. Use function
TS_Camlnitialization to initialize a cam table. The active cam table is selected through parameter
RunAddress. The RunAddress must contain the drive/motor RAM address where the cam table
was copied.

The slave can get the master position in two ways:

1. Via a communication channel (EnableSlave = SLAVE_COMMUNICATION_CHANNEL),
from a drive/motor set as master with function block TS_SetGearingMaster

2. Via an external digital reference of type pulse & direction or quadrature encoder
(EnableSlave = SLAVE_2ND_ENCODER)

Remark:

© Technosoft 2009 64 TML_LIB — User Manual

1. Set EnableSlave = SLAVE_NONE if you want to program the motion mode parameters
without enabling it.

2. Use function block TS SetCammingMaster to program a drive/motor as master in
electronic camming. When the reference is read from second encoder or pulse &
direction inputs you don’t need to program a drive/motor as master in electronic camming

When master position is provided via the external digital interface, the slave computes the master
position by counting the pulse & direction or quadrature encoder signals. The initial value of the
master position is set by default to 0. Use function block TS_SetLongVariable to change its value
by writing the desired value in the TML variable APOS2.

Set the parameter OffsetFromMaster to shift the cam profile versus the master position, by
setting an offset for the slave. The cam table input is computed as the master position minus the
cam offset. For example, if a cam table is defined between angles 100 to 250 degrees, a cam
offset of 50 degrees will make the cam table to execute between master angles 150 and 300
degrees.

You can compress/extend the cam table input. Set the parameter MultinputFactor with the
correction factor by which the cam table input is multiplied. For example, an input correction factor
of 2, combined with a cam offset of 180 degrees, will make possible to execute a cam table
defined for 360 degrees of the master in the last 180 degrees.

You can also compress/extend the cam table output. Specify through input MultOutputFactor the
correction factor by which the cam table output is multiplied. This feature addresses the
applications where the slaves must execute different position commands at each master cycle, all
having the same profile defined through a cam table. In this case, the drive/motor is programmed
with a unique normalized cam profile and the cam table output is multiplied with the relative
position command updated at each master cycle.

Remark: If the OffsetFromMaster, MultinputFactor and/or MultOutputFactor are set to zero the
drive/motor will use the value previously set for the parameter or the default value. With this
option the TML code generated by this function is reduced.

Related functions: TS_CamDownload, TS_Camlinitialization, TS_SetCammingSlaveRelative,
TS_SetCammingMaster, TS_SetMasterResolution,

Associated examples: —

© Technosoft 2009 65 TML_LIB — User Manual

3.3.6.22 TS CambDownload
Prototype:

BOOL TML_EXPORT TS_CamDownload(LPCSTR pszCamFile, WORD LoadAddress, WORD
RunAddress, WORD& wNextLoadAddr, WORD& wNexLoadAddr);

Arguments:

Name Description

pszCamFile The name of the file containing the cam table description

The non-volatile memory (EEPROM) address where the cam table

Input | LoadAddress is downloaded

RunAddress The RAM address where the cam table is copied at initialization
Next available EEPROM address from where a cam table can be
wNextLoadAddr
Output downloaded
wNextRunAddr Next available RAM address where a cam table can be copied
return TRUE if no error, FALSE if error

Description: The function downloads a cam table in the drive/motor non-volatile memory
(EEPROM) starting with address LoadAddress. The RunAddress parameter is required to
compute the wNextRunAddr. The function returns the next valid memory addresses for cam
tables trough output parameters wNextLoadAddr respectively wNextRunAddr. If the values
returned by the function are 0 then there is no memory available.

The LoadAddress and RunAddress for the first cam table downloaded are computed by
EasyMotion Studio and displayed in the dialogue Memory Settings. To open the dialogue
Memory Settings select the appropriate TML application and in Application General
Information press the button Memory Settings. For the next cam tables, if available, the
LoadAddress and RunAddress are the values returned by the previous call of function
TS_CamDownload (parameters wNextLoadAddr and wNextRunAddr).

The cam table description is read from the file pszCamkFile. The file is generated from
EasyMotion Studio and has the extension *.cam.

Steps to follow when using cam tables:

1. Create or import a cam table in EasyMotion Studio. The cam table is saved by
EasyMotion Studio as a *.cam file in the application directory.

2. Download the cam table in the drive/motor non-volatile memory with TS_CamDownload

3. Initialize the cam table with TS_Caminitialization function

4. Program the drive/motor to operate as slave in electronic camming mode with
TS_SetCammingSlaveAbsolute or TS _SetCammingSlaveRelative. Select the cam
table used with the parameter RunAddress.

Related functions: TS_SetCammingSlaveRelative, TS_SetCammingSlaveAbsolute,
TS Caminitialization

Associated examples: Ex07_Multiaxes

© Technosoft 2009 66 TML_LIB — User Manual

3.3.6.23 TS _Camlnitialization
Prototype:

BOOL TML_EXPORT TS_Camlnitialization(WORD LoadAddress, WORD RunAddress);

Arguments:
Name Description
LoadAddress Non-volatile memory (EEPROM) address where the cam table is
Input downloaded
RunAddress RAM address where the cam table is copied at run time
Output | return TRUE if no error, FALSE if error

Description: The function copies a cam table from drive/motor non-volatile memory in the RAM
memory at address RunAddress. The cam table was previously downloaded with function
TS_CambDownload at non-volatile memory address LoadAddress.

The function must be called for each cam table used by the application.

Related functions: TS_SetCammingSlaveRelative, TS_SetCammingSlaveAbsolute,
TS _CamDownload

Associated examples: Ex07_MultiAxes

© Technosoft 2009 67 TML_LIB — User Manual

3.3.6.24 TS SetMasterResolution
Prototype:
BOOL TML_EXPORT TS_SetMasterResolution(LONG MasterResolution);

Arguments:

Name Description

Number of encoder counts per one revolution of the master

Input | MasterResolution o
position sensor.

Output | return TRUE if no error, FALSE if error

Description: The function sets the TML parameter MASTERRES with the value
MasterResolution.

The master resolution is needed by the electronic gearing or camming slaves to compute
correctly the master position and speed (i.e. the position increment). If master position is not
cyclic (i.e. the resolution is equal with the whole 32-bit range of position), set master resolution to
0x80000001.

Remark: Call function TS_SetMasterResolution before activating the electronic gearing or
camming slave mode with function TS_SetGearingSlave respectively
TS_SetCammingSlaveAbsolute/Relative.

Related functions: TS_SetGearingSlave, TS_SetCammingSlaveAbsolute,
TS_SetCammingSlaveRelative

Associated examples: Ex07_MultiAxes

© Technosoft 2009 68 TML_LIB — User Manual

3.3.6.25 TS_SendSynchronization
Prototype:

BOOL TML_EXPORT TS_SendSynchronization(LONG Period);

Arguments:
Name Description
. Time period between two synchronization messages. It is
Input | Period : . .
expressed in TML time units
Output | return TRUE if no error, FALSE if error

Description: The function enables/disables the synchronization procedure between axes. The
synchronization process is activated when the parameter Period has a non-zero value. The
active axis is set as the synchronization master and the other axes become synchronization
slaves. To disable the synchronization procedure set the Period to zero.

The synchronization process is performed in two steps. First, the master sends a synchronization
message to all axes, including to itself. When this message is received, all the axes read their
own internal time. Next, the master sends its internal time to all the slaves, which compare it with
their own internal time. If there are differences, the slaves correct slightly their sampling periods in
order to keep them synchronized with those of the master. As effect, when synchronization
procedure is active, the execution of the control loops on the slaves is synchronized with those of
the master within a 10us time interval. Due to this powerful feature, drifts between master and
slave axes are eliminated. The Period represents the time interval in internal units between the
synchronization messages sent by the master. Recommended value is 20ms.

Related functions: TS_SetGearingMaster, TS_SetGearingSlave TS _SetCammingMaster,
TS_SetCammingSlave

Associated examples: —

© Technosoft 2009 69 TML_LIB — User Manual

3.3.7 Motor commands

3.3.7.1 TS_Power
Prototype:

BOOL TML_EXPORT TS_Power(BOOL Enable);

Arguments:
Name Description
Input | Enable Enables/disables the power stage of the active axis
Output | return TRUE if no error; FALSE if error

Description: The function enables/disables the power stage of the active axis. If Enable = TRUE
the power stage is enabled (executes the TML command AxisON). The power stage is disabled
(executes the TML command AxisOFF) when Enable = FALSE.

Related functions: TS _ResetFault, TS _Reset

Associated examples: All

© Technosoft 2009 70 TML_LIB — User Manual

3.3.7.2 TS_Updateimmediate
Prototype:

BOOL TML_EXPORT TS_Updateimmediate(void);

Arguments:
Name Description
Input | - —
Output | return TRUE if no error, FALSE if error

Description: The function updates the motion mode immediately. It allows you to start a motion
previously programmed. This can be useful for example if you already defined a motion and you
want to start it in a specific context (after testing a condition, event, input port, etc.). The
command can also be useful to repeat the last motion that was already defined and eventually
executed (as for example a relative move).

Related functions: TS_UpdateOnEvent
Associated examples: Ex08_PVT

© Technosoft 2009 71 TML_LIB — User Manual

3.3.7.3 TS_UpdateOnEvent
Prototype:

BOOL TML_EXPORT TS_UpdateOnEvent(void);

Arguments:
Name Description
Input | — -
Output | return TRUE if no error, FALSE if error

Description: The function updates the motion mode on next event occurrence. It allows you to
start a motion that was previously programmed at the occurrence of the active event. This can be
useful for example if you already defined a motion and you want to start it when an event occurs.
The command can also be used to repeat the last motion that was already defined and eventually
executed (as for example a relative move), when the event will occur.

Related functions: TS_Updatelmmediate

Associated examples: [J

© Technosoft 2009 72 TML_LIB — User Manual

3.3.74 TS_Stop
Prototype:

BOOL TML_EXPORT TS_Stop(void);

Arguments:
Name Description
Input | — —
Output | return TRUE if no error, FALSE if error

Description: The functions stops the motor with the deceleration rate set in TML parameter
CACC. The drive/motor decelerates following a trapezoidal speed profile. If the function is called
during the execution of an S-curve profile, the deceleration profile may be chosen between a
trapezoidal or an S-curve profile. You can detect when the motor has stopped by setting a motion
complete event with function TS_SetEventOnMotionComplete and waiting until the event occurs
(WaitEvent = TRUE). When the drive performs torque control the drive is set in torque external
mode with current reference = 0.

Remarks:

e In order to restart after a TS_Stop call you need to set again the motion mode. This
operation disables the stop mode and allows the motor to move

e When TS_Stop is executed it will automatically stop any TML program execution, to avoid
overwriting the command from the TML program

e During abrupt stops an important energy may be generated. If the power supply can’t
absorb the energy generated by the motor, it is necessary to foresee an adequate surge
capacitor in parallel with the drive supply to limit the over voltage.

Related functions: TS_QuickStopDecelerationRate

Associated examples: Ex02_DriveStatus, Ex04_ BasicMove, Ex05_Homing,
Ex06_ExternalReference

© Technosoft 2009 73 TML_LIB — User Manual

3.3.7.5 TS SetPosition
Prototype:

BOOL TML_EXPORT TS_SetPosition(long PosValue);

Arguments:
Name Description
Input | PosValue The value used to set the position, expressed in TML position units
Output | return TRUE if no error, FALSE if error

Description: The function sets/changes the referential for position measurement by changing
simultaneously the load position (TML variable APOS) and the target position values (TML
variable APOS), while keeping the same position error. Future motion commands will then be
related to the absolute value, as updated at this point to PosValue.

Related functions: —

Associated examples: Ex04_BasicMove, Ex05 Homing, Ex07_MultiAxes,
Ex09_Logger,Ex11_IOHandling

© Technosoft 2009 74 TML_LIB — User Manual

3.3.7.6 TS_SetTargetPositionToActual
Prototype:

BOOL TML_EXPORT TS_SetTargetPositionToActual(void);

Arguments:
Name Description
Input | - —
Output | return TRUE if no error, FALSE if error

Description: The function sets the value of the target position (the position reference) to the
value of the actual load position i.e. TPOS = APOS_LD. The command may be used in closed
loop systems when the load/motor is still following a hard stop, to reposition the target position to
the actual load position.

Remark: The command is automatically done if the next motion mode is set with ReferenceBase
= FROM_MEASURE. In this case the target position and speed are both updated with the actual
values of the load position and respectively load speed: TPOS = APOS_LD and TSPD =
ASPD_LD.

Related functions: —

Associated examples: —

© Technosoft 2009 75 TML_LIB — User Manual

3.3.7.7 TS_SetCurrent

Prototype:

BOOL TML_EXPORT TS_SetCurrent(short CrtValue);

Arguments:
Name Description
Value at which the motor current reference is set expressed in TML current
Input | CrtValue units
Output | Return TRUE if no error, FALSE if error
Description: The function sets the motor run current with CrtValue. The run current is used by

the drive to control the step motor in open loop.

Remark: The command is valid only for configurations with step motor operating in open loop.

Related functions: —

Associated examples: —

© Technosoft 2009

76 TML_LIB — User Manual

3.3.7.8 TS_QuickStopDecelerationRate
Prototype:

BOOL TML_EXPORT TS_QuickStopDecelerationRate(DOUBLE Deceleration);

Arguments:
Name Description
Input | Deceleration The value written in TML parameter CDEC
Output | return TRUE if no error, FALSE if error

Description: The function sets on the active axis the TML parameter CDEC with the value
Deceleration. The drive/motor uses the deceleration rate when:

e The function TS Stop is executed during a positioning set with
TS_MoveSCurveRelative/Absolute and option DecelerationType =
TRAPEZOIDAL_SPEED_PROFILE

e Enters in quick stop mode. The drive enters in quick stop mode if an error requiring the
immediate stop of the motion occurs (like triggering a limit switch or following a command
error), the drive/motor enters automatically

Related functions: TS_Stop, TS_MoveSCurveRelative, TS MoveSCurveAbsolute
Associated examples: Ex05_Homing, Ex11_IOHanding

© Technosoft 2009 7 TML_LIB — User Manual

3.3.8 Events
3.3.8.1 TS_CheckEvent

Prototype:

BOOL TML_EXPORT TS_CheckEvent(BOOL &event);

Arguments:
Name Description
Input | — —
Event Signal if event occurred
Output " -
return TRUE if no error, FALSE if error

Description: The function checks if the actually active event occurred. If an event was defined
using one of the SetEvent... functions with WaitEvent = FALSE then you can check if the event
occurred using the TS_CheckEvent function.

This is an interesting alternative to the case when WaitEvent parameter was set to TRUE in one
of the SetEvent... functions. In that case, if the event will not occur, due to some unexpected
problems, the program will hang-up in an internal loop of the SetEvent... function, waiting for the
event to occur.

Thus, in order to avoid such a problem, set the WaitEvent parameter to FALSE, in the
SetEvent... function, and then call the TS_CheckEvent function from your application. In this
way, you can detect if the event does not occur and eventually exit from the test loop after a given
time period.

Related functions: all SetEvent... functions

Associated examples: Ex10_EventHandling

© Technosoft 2009 78 TML_LIB — User Manual

3.3.8.2 TS_SetEventOnMotionComplete
Prototype:

BOOL TML_EXPORT TS_SetEventOnMotionComplete(BOOL WaitEvent, BOOL
EnableStop);

Arguments:
Name Description
Input WaitEvent -
EnableStop On motion complete stop the motion
Output | return TRUE if no error, FALSE if error

Description: The function sets an event when the motion is completed. You can use, for
example, this event to start your next move only after the actual move is finalized.

The motion complete condition is set in the following conditions:
e During position control:

o If UPGRADE.11=1, when the position reference arrives at the position to reach
(commanded position) and the position error remains inside a settle band for a
preset stabilize time interval. The settle band is set with TML parameter
POSOKLIM and the stabilize time with TML parameter TONPOSOK. This is the
default condition.

o If UPGRADE.11=0, when the position reference arrives at the position to reach
(commanded position)

¢ During speed control, when the speed reference arrives at the commanded speed

The motion complete condition is reset when a new motion is started i.e. when the update
command — UPD is executed.

Remark:

1. Use function TS_SetIntVariable to change the settle band and/or the stabilize time.

2. In case of steppers controlled open-loop, the motion complete condition for positioning is
always set when the position reference arrives at the position to reach independently of
the UPGRADE.11 status.

If the WaitEvent = TRUE, the function will continuously test the status of the drive event, and will
wait until the event occurs. There is a drawback of this situation, if the event will not occur, due to
some unexpected problems. In such a case, the program hangs-up in an internal loop of the
TS_SetEventOnMotionComplete waiting for the event to occur.

If the parameter WaitEvent = FALSE you can check if the event occurred using the
TS_CheckEvent function. In this way, you can detect if the event does not occur and eventually
exit from the test loop after a given time period.

At event occurrence the motion is stopped if the parameter EnableStop = TRUE. Set
EnableStop = FALSE if you do not want to stop the motion at event occurrence.

Related functions: TS_CheckEvent, and all other SetEvent... functions

© Technosoft 2009 79 TML_LIB — User Manual

Associated examples: Ex04_BasicMove, Ex05_Homing, Ex07_MultiAxes, Ex09_Logger,
Ex11_IOHandling

© Technosoft 2009 80 TML_LIB — User Manual

3.3.8.3 TS _SetEventOnMotorPosition
Prototype:

BOOL TML_EXPORT TS_SetEventOnMotorPosition(SHORT PositionType, LONG Position,
BOOL Over, BOOL WaitEvent, BOOL EnableStop);

Arguments:
Name Description
PositionType Specifies the motor position type: absolute or relative
Positi The position value that triggers the event expressed in TML
osition o .
Input posm.o'n units. _
Over Specifies the condition tested
WaitEvent Specifies if the function waits the event occurrence
EnableStop Stop the motion when at event occurrence
Output | return TRUE if no error, FALSE if error

Description: It allows you to program an event function of motor position. The events can be:
when the absolute (PositionType = ABSOLUTE_POSITION) or relative (PositionType =
ABSOLUTE_RELATIVE) motor position is equal or over/under Position.

The absolute motor position is the measured position of the motor. The relative position is the
load displacement from the beginning of the actual movement. For example if a position profile
was started with the absolute load position 50 revolutions, when the absolute load position
reaches 60 revolutions, the relative motor position is 10 revolutions.

The condition monitored for the event is set with parameter Over. For Over = TRUE the event is
set when the motor position is equal or over the Position. When Over = FALSE the event is set if
the motor position becomes equal or under Position.

If the WaitEvent = TRUE, the function tests continuously the event status, and waits until the
event occurs. There is a drawback of this situation, if the event will not occur, due to some
unexpected problems. In such a case, the program hangs-up in an internal loop of the
TS_SetEventOnMotorPosition waiting for the event to occur.

If the parameter WaitEvent = FALSE you can check if the event occurred using the
TS_CheckEvent function. In this way, you can detect if the event does not occur and eventually
exit from the test loop after a given time period.

At event occurrence the motion is stopped if the parameter EnableStop = TRUE. Set
EnableStop = FALSE if you do not want to stop the motion at event occurrence.

Related functions: TS _CheckEvent, and all other SetEvent... functions

Associated examples: Ex10_EventHandling

© Technosoft 2009 81 TML_LIB — User Manual

3.3.8.4 TS SetEventOnLoadPosition
Prototype:

BOOL TML_EXPORT TS_SetEventOnLoadPosition(LONG Position, BOOL Over, BOOL
WaitEvent, SHORT EnableStop);

Arguments:

Name Description

PositionType Specifies the load position type: absolute or relative

Positi The position value that triggers the event expressed in TML
osition i .

Input posm.o.n units. _

Over Specifies the condition tested

WaitEvent Specifies if the function waits the event occurrence

EnableStop Stop the motion when at event occurrence

Output | return TRUE if no error, FALSE if error

Description: It allows you to program an event function of load position. The events can be:
when the absolute (PositionType = ABSOLUTE_POSITION) or relative (PositionType =
ABSOLUTE_RELATIVE) load position is equal or over/under Position.

The absolute load position is the measured position of the load. The relative position is the load
displacement from the beginning of the actual movement.

The condition monitored for the event is set with parameter Over. For Over = TRUE the event is
set when the load position is equal or over the Position. When Over = FALSE the event is set if
the load position becomes equal or under Position.

If the WaitEvent = TRUE, the function tests continuously the event status, and waits until the
event occurs. There is a drawback of this situation, if the event will not occur, due to some
unexpected problems. In such a case, the program hangs-up in an internal loop of the
TS _SetEventOnLoadPosition waiting for the event to occur.

If the parameter WaitEvent = FALSE you can check if the event occurred using the
TS _CheckEvent function. In this way, you can detect if the event does not occur and eventually
exit from the test loop after a given time period.

At event occurrence the motion is stopped if the parameter EnableStop = TRUE. Set
EnableStop = FALSE if you do not want to stop the motion at event occurrence.

Related functions: TS_CheckEvent, and all other SetEvent... functions

Associated examples: [J

© Technosoft 2009 82 TML_LIB — User Manual

3.3.8.5 TS_SetEventOnMotorSpeed
Prototype:

BOOL TML_EXPORT TS_SetEventOnMotorSpeed(DOUBLE Speed, BOOL Over, BOOL
WaitEvent, BOOL EnableStop);

Arguments:
Name Description
Speed The speed value that triggers the event expressed in TML speed
units.
Input Over Specifies the condition tested
WaitEvent Specifies if the function waits the event occurrence
EnableStop Stop the motion when at event occurrence
Output Return TRUE if no error, FALSE if error

Description: It allows you to program an event function of motor speed. The events can be: when
the motor speed is over (Over = TRUE) or under (Over = FALSE) the Speed parameter.

If the WaitEvent = TRUE, the function tests continuously the event status, and waits until the
event occurs. There is a drawback of this situation, if the event will not occur, due to some
unexpected problems. In such a case, the program hangs-up in an internal loop of the
TS_SetEventOnMotionComplete waiting for the event to occur.

If the parameter WaitEvent = FALSE you can check if the event occurred using the
TS_CheckEvent function. In this way, you can detect if the event does not occur and eventually
exit from the test loop after a given time period.

At event occurrence the motion is stopped if the parameter EnableStop = TRUE. Set
EnableStop = FALSE if you do not want to stop the motion at event occurrence.

Related functions: TS_CheckEvent, and all other SetEvent... functions

Associated examples: Ex04_BasicMove, Ex10_EventHandling

© Technosoft 2009 83 TML_LIB — User Manual

3.3.8.6 TS_SetEventOnlLoadSpeed
Prototype:

BOOL TML_EXPORT TS_SetEventOnlLoadSpeed(DOUBLE Speed, BOOL Over, BOOL
WaitEvent, BOOL EnableStop);

Arguments:
Name Description
Speed The speed value that triggers the event expressed in TML speed
units.
Input | Over Specifies the condition tested
WaitEvent Specifies if the function waits the event occurrence
EnableStop Stop the motion when at event occurrence
Output | return TRUE if no error, FALSE if error

Description: It allows you to program an event function of load speed. The events can be: when
the load speed is over (Over = TRUE) or under (Over = FALSE) the Speed parameter.

If the WaitEvent = TRUE, the function tests continuously the event status, and waits until the
event occurs. There is a drawback of this situation, if the event will not occur, due to some
unexpected problems. In such a case, the program hangs-up in an internal loop of the
TS_SetEventOnLoadSpeed waiting for the event to occur.

If the parameter WaitEvent = FALSE you can check if the event occurred using the
TS_CheckEvent function. In this way, you can detect if the event does not occur and eventually
exit from the test loop after a given time period.

At event occurrence the motion is stopped if the parameter EnableStop = TRUE. Set
EnableStop = FALSE if you do not want to stop the motion at event occurrence.

Related functions: TS_CheckEvent, and all other SetEvent... functions

Associated examples:

© Technosoft 2009 84 TML_LIB — User Manual

3.3.8.7 TS _SetEventOnTime
Prototype:

BOOL TML_EXPORT TS_SetEventOnTime(WORD Time, BOOL WaitEvent, BOOL
EnableStop);

Arguments:
Name Description
Time Time delay expressed in TML time units
Input | WaitEvent Specifies if the function waits the event occurrence
EnableStop On event stop the motion
Output | return TRUE if no error, FALSE if error

Description: The function programs an event after a time period equal to the value of the Time
parameter.

If the parameter WaitEvent = TRUE the function tests continuously the event status, and waits
until the event occurs. There is a drawback of this situation, if the event will not occur, due to
some unexpected problems. In such a case, the program hangs-up in an internal loop of the
TS_SetEventOnTime function, waiting for the event to occur.

If the parameter WaitEvent = FALSE you can check if the event occurred using the
TS_CheckEvent function. In this way, you can detect if the event does not occur and eventually
exit from the test loop after a given time period.

At the event occurrence the motion is stopped if the parameter EnableStop = TRUE. Set
EnableStop = FALSE if you do not want to stop the motion at event occurrence.

Remark: The timers start ONLY after the execution of the ENDINIT (end of initialization)
command. Therefore you should not set wait events before calling the TS_Drivelnitialization
function..

Related functions: TS _CheckEvent, and all other SetEvent... functions

Associated examples: Ex04_ BasicMove, Ex06_ExternalReference

© Technosoft 2009 85 TML_LIB — User Manual

3.3.8.8 TS _SetEventOnPositionRef
Prototype:

BOOL TML_EXPORT TS_SetEventOnPositionRef(LONG Position, BOOL Over, BOOL
WaitEvent, BOOL EnableStop);

Arguments:
Name Description
Position The posit.ign refe_rence value that triggers the event expressed in
TML position units.
Input | Over Specifies the condition tested
WaitEvent Specifies if the function waits the event occurrence
EnableStop Stop the motion when at event occurrence
Output | return TRUE if no error, FALSE if error

Description: It allows you to program an event function of position reference. Setting this event
you can detect when the position reference is over (Over = TRUE) or under (Over = FALSE) the
value of parameter Position.

If the parameter WaitEvent = TRUE the function tests continuously the event status, and waits
until the event occurs. There is a drawback of this situation, if the event will not occur, due to
some unexpected problems. In such a case, the program hangs-up in an internal loop of the
TS_SetEventOnPositionRef function, waiting for the event to occur.

If the parameter WaitEvent = FALSE you can check if the event occurred using the
TS_CheckEvent function. In this way, you can detect if the event does not occur and eventually
exit from the test loop after a given time period.

At the event occurrence the motion is stopped if the parameter EnableStop = TRUE. Set
EnableStop = FALSE if you do not want to stop the motion at event occurrence.

Related functions: TS_CheckEvent, and all other SetEvent... functions

Associated examples: Ex07_MultiAxes

© Technosoft 2009 86 TML_LIB — User Manual

3.3.8.9 TS_SetEventOnSpeedRef
Prototype:

BOOL TML_EXPORT TS SetEventOnSpeedRef(DOUBLE Speed, BOOL Over, BOOL
WaitEvent, BOOL EnableStop);

Arguments:
Name Description
Speed The speed reference value that triggers the event expressed in
TML speed units.
Input | Over Specifies the condition tested
WaitEvent Specifies if the function waits the event occurrence
EnableStop Stop the motion when at event occurrence
Output | return TRUE if no error, FALSE if error

Description: It allows you to program an event function of speed reference. Setting this event
you can detect when the speed reference is over (Over = TRUE) or under (Over = FALSE) the
value of parameter Speed.

If the parameter WaitEvent = TRUE the function tests continuously the event status, and waits
until the event occurs. There is a drawback of this situation, if the event will not occur, due to
some unexpected problems. In such a case, the program hangs-up in an internal loop of the
TS_SetEventOnSpeedRef function, waiting for the event to occur.

If the parameter WaitEvent = FALSE you can check if the event occurred using the
TS_CheckEvent function. In this way, you can detect if the event does not occur and eventually
exit from the test loop after a given time period.

At the event occurrence the motion is stopped if the parameter EnableStop = TRUE. Set
EnableStop = FALSE if you do not want to stop the motion at event occurrence.

Related functions: TS_CheckEvent, and all other SetEvent... functions

Associated examples: [

© Technosoft 2009 87 TML_LIB — User Manual

3.3.8.10 TS_SetEventOnTorqueRef
Prototype:

BOOL TML_EXPORT TS_SetkEventOnTorqueRef(DOUBLE Torque, BOOL Over, BOOL
WaitEvent, BOOL EnableStop);

Arguments:
Name Description
Torque The torque reference value that triggers the event expressed in
TML current units.
Input | Over Specifies the condition tested
WaitEvent Specifies if the function waits the event occurrence
EnableStop Stop the motion when at event occurrence
Output | return TRUE if no error, FALSE if error

Description: It allows you to program an event function of torque reference. Setting this event
you can detect when the torque reference is over (Over = TRUE) or under (Over = FALSE) the
value of parameter Torque.

If the parameter WaitEvent = TRUE the function tests continuously the event status, and waits
until the event occurs. There is a drawback of this situation, if the event will not occur, due to
some unexpected problems. In such a case, the program hangs-up in an internal loop of the
TS_SetEventOnTorqueRef function, waiting for the event to occur.

If the parameter WaitEvent = FALSE you can check if the event occurred using the
TS_CheckEvent function. In this way, you can detect if the event does not occur and eventually
exit from the test loop after a given time period.

At the event occurrence the motion is stopped if the parameter EnableStop = TRUE. Set
EnableStop = FALSE if you do not want to stop the motion at event occurrence.

Related functions: TS_CheckEvent, and all other SetEvent... functions

Associated examples: [

© Technosoft 2009 88 TML_LIB — User Manual

3.3.8.11 TS SetEventOnEncoderindex
Prototype:

BOOL TML_EXPORT TS _SetkEventOnEncoderindex(SHORT IndexType, SHORT
TransitionType, BOOL WaitEvent, BOOL EnableStop);

Arguments:
Name Description
IndexType Specifies the index monitored for transition
Input TransitionType Specifies the input transition monitored
WaitEvent Specifies if the function waits the event occurrence
EnableStop Stop the motion when at event occurrence
Output | return TRUE if no error, FALSE if error

Description: It allows you to program an event function of drive/motor encoder index inputs. You
can monitor the first encoder index (IndexType = Index_1) or the second encoder index
(IndexType = Index_2). The event is trigger by encoder index transition low to high when
TransitionType = TRANSITION_LOW_TO_HIGH or by the transition high to low when
TransitionType = TRANSITION_ HIGH_TO_LOW.

If the parameter WaitEvent = TRUE the function tests continuously the event status, and waits
until the event occurs. There is a drawback of this situation, if the event will not occur, due to
some unexpected problems. In such a case, the program hangs-up in an internal loop of the
TS_SetEventOnEncoderindex function, waiting for the event to occur.

If the parameter WaitEvent = FALSE you can check if the event occurred using the
TS_CheckEvent function. In this way, you can detect if the event does not occur and eventually
exit from the test loop after a given time period.

At the event occurrence the motion is stopped if the parameter EnableStop = TRUE. Set
EnableStop = FALSE if you do not want to stop the motion at event occurrence.

Related functions: TS _CheckEvent, and all other SetEvent... functions

Associated examples: [J

© Technosoft 2009 89 TML_LIB — User Manual

3.3.8.12 TS SetEventOnLimitSwitch

Prototype:
BOOL TML_EXPORT TS_SetEventOnLimitSwitch(SHORT LSWType, SHORT
TransitionType, BOOL WaitEvent, BOOL EnableStop);
Arguments:
Name Description
LSWType Specifies the limit switch monitored for transition
Input TransitionType Specifies the input transition monitored
WaitEvent Specifies if the function waits the event occurrence
EnableStop Stop the motion when at event occurrence
Output | return TRUE if no error, FALSE if error

Description: It allows you to program an event function of drive/motor limit switch inputs. The
event is set:

e when a ftransition occurs on limit switch negative if parameter LSWType
LSW_NEGATIVE

e when a ftransition occurs on limit switch negative if parameter LSWType
LSW_POSITIVE

You can monitor the limit switch transition low to high when TransitionType
TRANSITION_LOW_TO HIGH or the transition high to low when TransitionType
TRANSITION_ HIGH_TO_LOW.

If the parameter WaitEvent = TRUE the function tests continuously the event status, and waits
until the event occurs. There is a drawback of this situation, if the event will not occur, due to
some unexpected problems. In such a case, the program hangs-up in an internal loop of the
TS_SetEventOnLimitSwitch function, waiting for the event to occur.

If the parameter WaitEvent = FALSE you can check if the event occurred using the
TS_CheckEvent function. In this way, you can detect if the event does not occur and eventually
exit from the test loop after a given time period.

At the event occurrence the motion is stopped if the parameter EnableStop = TRUE. Set
EnableStop = FALSE if you do not want to stop the motion at event occurrence.

Related functions: TS_CheckEvent and all other SetEvent... functions

Associated examples: Ex05_Homing

© Technosoft 2009 90 TML_LIB — User Manual

3.3.8.13 TS_SetEventOnDigitallnput
Prototype:

BOOL TML_EXPORT TS_SetEventOnDigitallnput(BYTE InputPort, SHORT IOState BOOL
WaitEvent, BOOL EnableStop);

Arguments:
Name Description
InputPort Specifies the digital input monitored
Input IOState The ip.put.state that t.rigger.the event
WaitEvent Specifies if the function waits the event occurrence
EnableStop Stop the motion when at event occurrence
Output | return TRUE if no error, FALSE if error

Description: It allows you to program an event function of drive/motor general purpose digital
inputs. The event is set when a transition occurs on digital input InputPort.

You can monitor when the digital input goes high (IOState = I0_HIGH) or the digital input goes
low (IOState = 10_LOW).

If the parameter WaitEvent = TRUE the function tests continuously the event status, and waits
until the event occurs. There is a drawback of this situation, if the event will not occur, due to
some unexpected problems. In such a case, the program hangs-up in an internal loop of the
TS_SetEventOnDigitallnput function, waiting for the event to occur.

If the parameter WaitEvent = FALSE you can check if the event occurred using the
TS_CheckEvent function. In this way, you can detect if the event does not occur and eventually
exit from the test loop after a given time period.

At the event occurrence the motion is stopped if the parameter EnableStop = TRUE. Set
EnableStop = FALSE if you do not want to stop the motion at event occurrence.

Related functions: TS_CheckEvent and all other SetEvent... functions

Associated examples: [J

© Technosoft 2009 91 TML_LIB — User Manual

3.3.8.14 TS_SetEventOnHomelnput
Prototype:

BOOL TML_EXPORT TS_SetEventOnHomelnput(SHORT |OState BOOL WaitEvent, BOOL
EnableStop);

Arguments:
Name Description
IOState Input port state (High/low)
Input | WaitEvent Specifies if the function waits the event occurrence
EnableStop Stop the motion when at event occurrence
Output | return TRUE if no error, FALSE if error

Description: It allows you to program an event function of drive/motor general purpose digital
input assigned as home input. The home input is specific for each product and based on the
setup data. The event is set when a transition occurs on home input.

You can monitor when the home input goes high (I0OState = IO_HIGH) or the home input goes
low (IOState = 10_LOW).

If the parameter WaitEvent = TRUE the function tests continuously the event status, and waits
until the event occurs. There is a drawback of this situation, if the event will not occur, due to
some unexpected problems. In such a case, the program hangs-up in an internal loop of the
TS_SetEventOnHomelnput function, waiting for the event to occur.

If the parameter WaitEvent = FALSE you can check if the event occurred using the
TS_CheckEvent function. In this way, you can detect if the event does not occur and eventually
exit from the test loop after a given time period.

At the event occurrence the motion is stopped if the parameter EnableStop = TRUE. Set
EnableStop = FALSE if you do not want to stop the motion at event occurrence.

Related functions: TS_CheckEvent and all other SetEvent... functions

Associated examples: [J

© Technosoft 2009 92 TML_LIB — User Manual

3.3.9 TML jumps and function calls
3.3.9.1 TS GOTO

Prototype:

BOOL TML_EXPORT TS_GOTO(WORD address);

Arguments:
Name Description
Input | address The memory address where the jump is made
Output | return TRUE if no error, FALSE if error

Description: The function commands the active axis to execute the TML code beginning from the
address until TML instruction END is encountered. The TML code can be stored in the
drive/motor non-volatile memory (EEPROM) or in the TML program memory.

Prior calling the TS_GOTO function you have to:

e Create a TML sequence using EasyMotion Studio

e Create the executable file (*.out) with the menu command Application | Motion | Build

e Download the TML code in the drive/motor memory with EasyMotion Studio or function
TS_DownloadProgram

e Make sure that a valid instruction is found at address. Otherwise, unpredictable effects
can occur, which can affect to correct operation of the drive/motor.

Remark:

1. For more details about drive/motor memory structure see the “Memory Map” topic from
EasyMotion Studio help.

2. During the execution of a local TML program on the drive, any TML command sent on-
line from the PC is treated with higher priority, and will be executed before executing the
local TML code.

Related functions: TS _DownloadProgram, TS_GOTO_Label, TS_CALL, TS _CALL_Label
Associated examples: Ex08 PVT, Ex12_DistributedTasks

© Technosoft 2009 93 TML_LIB — User Manual

3.3.9.2 TS _GOTO_Label
Prototype:

BOOL TML_EXPORT TS_GOTO_Label(LPCSTR pszLabel);

Arguments:
Name Description
Input | pszLabel TML program label where the jump is made
Output | return TRUE if no error, FALSE if error

Description: The function commands the active axis to execute the TML code beginning from
label pszLabel until TML instruction END is encountered. The TML code can be stored in the
drive/motor non-volatile memory (EEPROM) or in the TML program memory.

The string pszLabel must be a valid TML label, defined in EasyMotion Studio prior generating the
setup information.

Prior calling the TS_GOTO_Label function you have to:

e Create a TML motion sequence using EasyMotion Studio. The commands sequence
must start with pszLabel declaration.

e Create the executable file (*.out) with the menu command Application | Motion | Build

e Download the TML code in the drive/motor memory with EasyMotion Studio or function
TS_DownloadProgram

e Generate the setup data (*.t.zip) for TML_lib using the menu command Application |
Export to TML_lib... to include the new pszLabel

Remark:

1. For more details about drive/motor memory structure see the “Memory Map” topic from
EasyMotion Studio help.

2. During the execution of a local TML program on the drive, any TML command sent on-
line from the PC is treated with higher priority, and will be executed before executing the
local TML code.

Related functions: TS_DownloadProgram, TS_GOTO, TS_CALL, TS_CALL_Label,
TS_CancelableCALL, TS_CancelableCALL_Label

Associated examples: [J

© Technosoft 2009 94 TML_LIB — User Manual

3.393 TS_CALL

Prototype:

BOOL TML_EXPORT TS_CALL (WORD address);

Arguments:
Name Description
Input | address The memory address where the jump is made
Output | return TRUE if no error, FALSE if error

Description: The function commands the active axis to execute the TML function stored at
address. The TML functions can be stored in the drive/motor non-volatile memory or in the TML
program memory. The function execution ends when the TML instruction RET is encountered.

Prior calling the TS_CALL function you have to:

Create at least one TML function using EasyMotion Studio

Select, in the Memory Setting dialogue, from where you want to run the TML program:
TML program or non-volatile memory.

Create the executable file (*.out) with the menu command Application | Motion | Build
In the Command Interpreter type the command ?Function_name to retrieve the
memory address where the Function_name is stored. Repeat the above procedure for
all the functions defined in EasyMotion Studio

Download the TML code in the drive/motor memory with EasyMotion Studio or function
TS_DownloadProgram

Make sure that a valid TML code subroutine begins at address. Otherwise, unpredictable
effects can occur, which can affect to correct operation of the drive/motor.

Remark:

1. For more details about drive/motor memory structure see the “Memory Map” topic from
EasyMotion Studio help.

2. During the execution of a local TML program on the drive, any TML command sent on-
line from the PC is treated with higher priority, and will be executed before executing the
local TML code.

Related functions: TS_DownloadProgram, TS _CALL_Label, TS_CancelableCALL,

TS_CancelableCALL_Label, TS GOTO, TS _GOTO_label

Associated examples: [J

© Technosoft 2009 95 TML_LIB — User Manual

3.3.9.4 TS_CALL_Label

Prototype:

BOOL TML_EXPORT TS_CALL_Label (LPCSTR pszFunctionName);

Arguments:
Name Description
Input | pszFunctionName Name of the TML function
Output | return TRUE if no error, FALSE if error

Description: The function commands the active axis to execute the TML function
pszFunctionName. The TML functions can be stored in the drive/motor non-volatile memory or in
the TML program memory. The function execution ends when the TML instruction RET is
encountered.

The string pszFunctionName must be a valid TML function name, defined in EasyMotion Studio
prior generating the setup information.

Prior calling the TS_CALL_Label function you have to:

Create a TML function having the name pszFunctionName using EasyMotion Studio
Select, in the Memory Setting dialogue, from where you want to run the TML program:
TML program or non-volatile memory (EEPROM).

Create the executable file (*.out) with the menu command Application | Motion | Build
Generate the setup data (*.t.zip) for TML_lib using the menu command Application |
Export to TML_lib... to include the new pszFunctionName

Download the TML code in the drive/motor memory with EasyMotion Studio or function
TS_DownloadProgram

Remark:

1.

2.

For more details about drive/motor memory structure see the “Memory Map” topic from
EasyMotion Studio help.

During the execution of a local TML program on the drive, any TML command sent on-
line from the PC is treated with higher priority, and will be executed before executing the
local TML code.

Related functions: TS _DownloadProgram, TS_CALL, TS_GOTO, TS_GOTO_Label,

TS_CancelableCALL, TS_CancelableCALL_Label

Associated examples: []

© Technosoft 2009 96 TML_LIB — User Manual

3.3.9.5 TS_CancelableCALL

Prototype:

BOOL TML_EXPORT TS_CancelableCALL(WORD address);

Arguments:

Input | address

Name Description

The TML program memory address from where the TML
function is stored

Output | return TRUE if no error, FALSE if error

Description: The function commands the active axis to execute the TML function stored at
address. Use this command if the exit from the called TML function depends on conditions that
may not be reached. In this case, using function TS_Abort you can terminate the function
execution and return to the next instruction after the call. The TML functions can be stored in the
drive/motor non-volatile memory or in the TML program memory. The execution of a function
called with TS_CancelableCALL is signaled with bit SRL.8, when the function execution ends the
bit is reset.

Prior calling the TS_CancelableCALL function you have to:

Create at least one TML function using EasyMotion Studio

Select, in the Memory Setting dialogue, from where you want to run the TML program:
TML program or non-volatile memory.

Create the executable file (*.out) with the menu command Application | Motion | Build
Download the TML code in the drive/motor memory with EasyMotion Studio or function
TS_DownloadProgram

In the Command Interpreter type the command ?Function_name to retrieve the
memory address where the Function_name is stored. Repeat the procedure above for
all the functions defined in EasyMotion Studio.

Make sure that a valid TML code subroutine begins at address. Otherwise, unpredictable
effects can occur, which can affect to correct operation of the drive/motor.

Remark:

1. You can call only one function at a time using the TS_CancelableCALL. Any cancelable

call issued during the execution of a function called with TS_CancelableCALL is ignored.
This situation is signaled with bit SRL.7.

For more details about drive/motor memory structure see the “Memory Map” topic from
EasyMotion Studio help.

During the execution of a local TML program on the drive, any TML command sent on-
line from the PC is treated with higher priority, and will be executed before executing the
local TML code.

Related functions: TS_DownloadProgram, TS _CALL, TS_CALL_Label,

TS_CancelableCALL_Label

Associated examples: [J

© Technosoft 2009 97 TML_LIB — User Manual

3.3.9.6 TS CancelableCALL_Label

Prototype:

BOOL TML_EXPORT TS_CancelableCALL_Label (LPCSTR pszFunctionName);

Arguments:
Name Description
Input | pszFunctionName Name of the TML function
Output | return TRUE if no error, FALSE if error

Description: The function commands the active axis to execute the TML function stored at
pszFunctionName. Use this command if the exit from the called TML function depends on
conditions that may not be reached. In this case, using function TS_Abort you can terminate the
TML function execution and return to the next instruction after the call. The execution of a function
called with TS_CancelableCALL_Label is signaled with bit SRL.8, when the function execution
ends the bit is reset.

Prior calling the TS_CancelableCALL_Label function you have to:

Create a TML function having the name pszFunctionName using EasyMotion Studio
Select, in the Memory Setting dialogue, from where you want to run the TML program:
TML program or non-volatile.

Create the executable file (*.out) with the menu command Application | Motion | Build
Generate the setup data (*.t.zip) for TML_lib using the menu command Application |
Export to TML_lib... to include the new pszFunctionName

Download the TML code in the drive/motor memory with EasyMotion Studio or function
TS_DownloadProgram

Remarks:
1. You can call only one function at a time using the TS_CancelableCALL. Any cancelable
call issued during the execution of a function called with TS_CancelableCALL is ignored.
This situation is signaled with bit SRL.7.
2. For more details about drive/motor memory structure see the “Memory Map” topic from
EasyMotion Studio help.
3. During the execution of a local TML program on the drive, any TML command sent on-

line from the PC is treated with higher priority, and will be executed before executing the
local TML code.

Related functions: TS_DownloadProgram, TS_CALL, TS_CALL_Label, TS_CancelableCALL
Associated examples: Ex05_Homing, Ex12_DistributedTasks

© Technosoft 2009 98 TML_LIB — User Manual

3.3.9.7 TS_ABORT
Prototype:

BOOL TML_EXPORT TS_Abort(void);

Arguments:
Name Description
Input | — —
Output | return TRUE if no error, FALSE if error

Description: The function aborts the execution of a TML function launched with a cancelable call.
The aborted function is selected with parameter pszFunctionName. The functions labels for a
setup configuration are listed in the variables.cfg file.

Remark: The TML functions must be created with EasyMotion Studio prior generating the setup
information.

Related functions: TS_DownloadProgram, TS_CancelableCALL, TS CancelableCALL_Label

Associated examples: Ex05_Homing, Ex12_DistributedTasks

© Technosoft 2009 99 TML_LIB — User Manual

3.3.9.8 TS_DownloadProgram
Prototype:

BOOL TML_EXPORT TS_DownloadProgram(LPCSTR pszOutFile, WORD& wEntryPoint);

Arguments:
Name Description
Input | pszOutFile The name of the out file generated with EasyMotion Studio
Output | wEntryPoint Start address of downloaded file
return TRUE if no error, FALSE if error

Description: The function downloads a COFF formatted file to the drive/motor, and returns the
entry point of that file. Parameter pszOutFile specifies the name of the object file to be
downloaded. If the operation is successful, the function will return the entry point (start address)
of the downloaded code in the wEntryPoint parameter. You can use this address to launch the
execution of the downloaded code, by using it as the input argument of the TS_GOTO or
TS_CALL functions.

The COFF file (*.out) is generated from EasyMotion Studio with the Application | Motion | Build
menu command and is saved in the application directory. You can download several such
applications in different locations of the drive internal memory, and execute them according to
your application status, with the TS_GOTO or TS_CALL functions.

Related functions: TS_GOTO, TS_CALL

Associated examples: Ex12_DistributedTasks

© Technosoft 2009 100 TML_LIB — User Manual

3.3.9.9 TS DownloadSwFile

Prototype:

BOOL TML_EXPORT TS_DownloadSwFile(LPCSTR pszSwFile);

Arguments:

Name

Description

Input | pszSwrFile

The path to the SW file generated with EasyMotion Studio

Output | return

TRUE if no error, FALSE if error

Description: The function downloads a software file (*.sw) to the non-volatile memory of

drive/motor.

The software file (*.sw) contains the TML program and/or setup table and is generated from
EasyMotion Studio with the Application | Create EEPROM Programmer File menu command.
You can download several TML programs in different locations of the drive internal memory, and
execute them according to your application structure, with the TS_GOTO or TS_CALL functions.

Remark: If a setup table is downloaded through a software file, it will become active after drive

reset.

Related functions: TS _GOTO, TS_CALL

Associated examples: —

© Technosoft 2009

101 TML_LIB — User Manual

3.3.10 10 handling
3.3.10.1 TS_Setuplnput

Prototype: BOOL TML_EXPORT TS_Setuplnput(BYTE nlO);

Arguments:
Name Description
Input | nlO Port number to be set as input
Output | return TRUE if no error, FALSE if error

Description: The function sets the 1/O port with number nlO of the drive/motor as an input port.

Use the function only if the input selected may also be used as an output. Check the drive/motor
user manual to find what inputs are available. Do this operation only once, first time when you
use the input. If the drive/motor has the inputs separated from the outputs (i.e. none of the input
line can be used as output) you don’t have to use the function.

Remark: Depending on the firmware version programmed on the drive/motor, FAxx or FBxx, the
digital inputs and outputs are numbered as follows:

e from #0 to #39 for firmware FAxx'. The list is unordered, for example, a product with 4
inputs and 4 outputs can use the inputs: #36, #37, #38 and #39 and the outputs #28, #29,
#30 and #31.

e From O to 15 for firmware version FBxx?. The list is ordered, for example, a product with
5 inputs and 3 outputs can use the inputs: 0, 1, 2, 3 and 4 and the outputs 0, 1, and 2.

Each intelligent drive/motor has a specific number of inputs and outputs, therefore only a part of
the maximum number of 1/Os is used.

Related functions: TS Getlnput, TS_SetupOutput, TS _SetOutput

Associated examples: Ex06_ExternalReference, Ex11_IOHandling, Ex12_DistributedTasks

! Represents the firmware versions: FOOOH, FO20H, FOO5H, FO00H or later on Technosoft drives/motors:
IDM240/IDM640, IDS240/IDS640, ISCM4805/ISCM8005, IBL2403, IM23x (models IS and MA)

2 Represents the firmware versions F500A or later on Technosoft drives: IDM240 CANopen/IDM640
CANopen, IDS640 CANopen

© Technosoft 2009 102 TML_LIB — User Manual

3.3.10.2 TS_Getlnput
Prototype:

BOOL TML_EXPORT TS_Getlnput(BYTE nlO, BYTE& InValue);

Arguments:
Name Description
Input nlO Input port number read
InValue Pointer to the variable where the port status is stored
Output | return TRUE if no error, FALSE if error

Description: The function returns the status of digital input port nlO. When the function is
executed, the variable InValue, where the input line status is saved, becomes:

e Zero if the input line was low
¢ Non-zero if the input line was high

If the 10 port selected can be used as input or an output then prior calling TS_GetInput you need
to call TS_Setuplnput and configure IO port as input. Check the drive/motor user manual to
find what inputs are available.

Remark: Depending on the firmware version programmed on the drive/motor, FAxx or FBxx, the
digital inputs and outputs are numbered as follows:

e From #0 to #39 for firmware FAxx". The list is unordered, for example, a product with 4
inputs and 4 outputs can use the inputs: #36, #37, #38 and #39 and the outputs #28, #29,
#30 and #31.

e From 0 to 15 for firmware version FBxx?2. The list is ordered, for example, a product with
5 inputs and 3 outputs can use the inputs: 0, 1, 2, 3 and 4 and the outputs 0, 1, and 2.

Each intelligent drive/motor has a specific number of inputs and outputs, therefore only a part of
the maximum number of 1/Os is used.

Related functions: TS_Setuplnput, TS_SetupOutput, TS SetOutput

Associated examples: Ex06_ExternalReference, Ex11_IOHandling, Ex12_DistributedTasks

! Represents the firmware versions: FOOOH, FO20H, FOO5H, FO00H or later on Technosoft drives/motors:
IDM240/IDM640, IDS240/IDS640, ISCM4805/ISCM8005, IBL2403, IM23x (models IS and MA)

2 Represents the firmware versions F500A or later on Technosoft drives: IDM240 CANopen/IDM640
CANopen, IDS640 CANopen

© Technosoft 2009 103 TML_LIB — User Manual

3.3.10.3 TS_SetupOutput
Prototype:

BOOL TML_EXPORT TS_SetupOutput(BYTE nlO);

Arguments:
Name Description
Input | nlO Port number to be set as output
Output | return TRUE if no error, FALSE if error

Description: The function configures the digital /O port with number nlO of the drive/motor as an
output port.

Use the function only if the output selected may also be used as an input. Check the drive/motor
user manual to find what outputs are available. Do this operation only once, first time when
you use the output. If the drive/motor has the outputs separated from the inputs (i.e. none of the
output line can be used as an input) you don’t have to use the function.

Remark: Depending on the firmware version programmed on the drive/motor, FAxx or FBxx, the
digital inputs and outputs are numbered as follows:

e from #0 to #39 for firmware FAxx'. The list is unordered, for example, a product with 4
inputs and 4 outputs can use the inputs: #36, #37, #38 and #39 and the outputs #28, #29,
#30 and #31

e From 0 to 15 for firmware version FBxx?. The list is ordered, for example, a product with
5 inputs and 3 outputs can use the inputs: 0, 1, 2, 3 and 4 and the outputs 0, 1, and 2.

Each intelligent drive/motor has a specific number of inputs and outputs, therefore only a part of
the maximum number of 1/Os is used.

Related functions: TS_Getlnput, TS_SetupOutput, TS_SetOutput

Associated examples: [

! Represents the firmware versions: FOOOH, FO20H, FOO5H, FOOOH or later on Technosoft drives/motors:
IDM240/IDM640, IDS240/IDS640, ISCM4805/ISCM8005, IBL2403, IM23x (models IS and MA)

2 Represents the firmware versions F500A or later on Technosoft drives: IDM240 CANopen/IDM640
CANopen, IDS640 CANopen

© Technosoft 2009 104 TML_LIB — User Manual

3.3.10.4 TS_SetOutput
Prototype:

BOOL TML_EXPORT TS_SetOutput(BYTE nlO, BYTE OutValue);

Arguments:
Name Description
Input nlO Output port number to be written
QutValue Output status value to be set
Output | return TRUE if no error, FALSE if error

Description: The function set/resets the status of digital output port nlO of the drive/motor.

The port status IO_LOW or I0_HIGH is set corresponding to the value of the OutValue
parameter.

If the 10 port selected may also be used as input or an output then prior calling TS_SetOutput
you need to call TS_SetupOutput and configure IO port as output.

Remark: Depending on the firmware version programmed on the drive/motor, FAxx or FBxx, the
digital inputs and outputs are numbered as follows:

e from #0 to #39 for firmware FAxx'. The list is unordered, for example, a product with 4
inputs and 4 outputs can use the inputs: #36, #37, #38 and #39 and the outputs #28, #29,
#30 and #31

e From 0 to 15 for firmware version FBxx?. The list is ordered, for example, a product with
5 inputs and 3 outputs can use the inputs: 0, 1, 2, 3 and 4 and the outputs 0, 1 and 2.

Each intelligent drive/motor has a specific number of inputs and outputs, therefore only a part of
the maximum number of 1/Os is used.

Related functions: TS_SetupOutput, TS_Setuplnput, TS_Getlnput

Associated examples: Ex11_IOHandling

! Represents the firmware versions: FOOOH, FO20H, FOO5H, FO00H or later on Technosoft drives/motors:
IDM240/IDM640, IDS240/IDS640, ISCM4805/ISCM8005, IBL2403, IM23x (models IS and MA)

2 Represents the firmware versions F500A or later on Technosoft drives: IDM240 CANopen/IDM640
CANopen, IDS640 CANopen

© Technosoft 2009 105 TML_LIB — User Manual

3.3.10.5 TS_GetHomelnput
Prototype:

BOOL TML_EXPORT TS_GetHomelnput(BYTE& InValue);

Arguments:
Name Description
Input | InValue Pointer to the variable where the port status is stored
Output | return TRUE if no error, FALSE if error

Description: The function returns the status of the general purpose digital input assigned as
home input. Check the drive/motor user manual to find the 10 configuration.

When the function is executed, the variable InValue where the input line status is saved
becomes:

e Zero if the input line was low
¢ Non-zero if the input line was high

If the input port may also be used as output then prior calling TS_GetHomelnput you need to call
TS_Setuplnput and configure it as input.

Related functions: TS_Setuplnput, TS_Getlnput

Associated examples: Ex07_MultipleAxes

© Technosoft 2009 106 TML_LIB — User Manual

3.3.10.6 TS_GetMultiplelnputs
Prototype:

BOOL TML_EXPORT TS_GetMultiplelnputs(PCSTR pszVarName, SHORT& Status);

Arguments:
Name Description
Input | pszVarName TML variable where the inputs status is saved
Output Status Pointer to variable where the value of pszVarName is stored
Return TRUE if no error, FALSE if error

Description: The function reads simultaneously the status of more inputs and save their status in
TML variable pszVarName on the drive/motor. The value of pszVarName is then uploaded from
the drive and stored in Status variable.

For drives/motors programmed with firmware version FAxx" the digital inputs read are:

Enable input — saved in bit 15 of pszVarName

Limit switch input for negative direction (LSN) — saved in bit 14 of pszVarName

Limit switch input for positive direction (LSP) — saved in bit 13 of pszVarName
General-purpose inputs #39, #38, #37 and #36 — saved in bits 3, 2, 1 and 0 of
pszVarName

If the drive/motor is programmed with firmware version FBxx? then the function reads all the input
lines available of the drive/motor. The digital inputs are numbered from 0 to 15. The input’s
number represents also the position of the corresponding bit from the pszVarName, i.e. input
number x has associated bit x from the pszVarName.

The Status bits corresponding to these inputs are set as follows: 0 if the input is low and 1 if the
input is high. The other bits of the variable are set to 0.

Remark: If one of these inputs is inverted inside the drive/motor, the corresponding bit from the
variable is inverted too. Hence, these bits always show the inputs status at connectors level (O if
input is low and 1 if input is high) even when the inputs are inverted.

The variable pszVarName is of type integer and must be defined with EasyMotion Studio before
generating the setup data for TML_lib.

Related functions: TS_Setlnput, TS_Getlnput

Associated examples: Ex11_IOHandling

! Represents the firmware versions: FOOOH, FO20H, FOO5H, FO00H or later on Technosoft drives/motors:
IDM240/IDM640, IDS240/IDS640, ISCM4805/ISCM8005, IBL2403, IM23x (models IS and MA)

2 Represents the firmware versions F500A or later on Technosoft drives: IDM240 CANopen/IDM640
CANopen, IDS640 CANopen

© Technosoft 2009 107 TML_LIB — User Manual

3.3.10.7 TS_SetMultipleOutputs
Prototype:

BOOL TML_EXPORT TS_SetMultipleOutputs(LPCSTR pszVarName, SHORT &Status);

Arguments:
Name Description
Intermediary TML variable necessary to store the outputs status to
Input pszVarName be set on the drive/motor
Status Parameter containing the outputs status to be set
Output | return TRUE if no error, FALSE if error

Description: The function sets simultaneously more digital outputs of the drive/motor using the
value of parameter Status. Its value is transferred and stored on the drive in pszvarName TML
variable and from there is used to set the outputs.

Remark: The function is designed for drives/motors programmed with firmware version FAxx®.
For drives/motors programmed with firmware version FBxx® use the TS_SetMultipleOutputs2
function.

The digital outputs are:

e Ready output — set by bit 15 of pszVarName
e Error output — set by bit 14 of pszVarName
e General-purpose outputs: #31, #30, #29, #28 — set by bits 3, 2, 1, and 0 of pszVarName

The outputs are set as follows: low if the corresponding bit in the variable is 0 and high if the
corresponding bit in the variable is 1. The other bits of the variable are not used.

Remarks:

1. If one of these outputs is inverted inside the drive/motor, its command is inverted. Hence,
the outputs are always set at connectors level according with the bits values (low if bit is 0
and high if bit is 1) even when the outputs are inverted.

2. The variable pszVarName must be declared with EasyMotion Studio prior generating the
setup information

CAUTION: Do not use TS_SetMultipleOututs if any of the 6 outputs mentioned is not on the list
of available outputs of your drive/motor. There are products that use some of these outputs
internally for other purposes. Attempting to change these lines status may harm your product.

Related functions: TS_SetupOutput, TS_SetOutput

Associated examples: Ex11_IOHandling

! Represents the firmware versions: FOOOH, FO20H, FOO5H, FOOOH or later on Technosoft drives/motors:
IDM240/IDM640, IDS240/IDS640, ISCM4805/ISCM8005, IBL2403, IM23x (models IS and MA)

2 Represents the firmware versions F500A or later on Technosoft drives: IDM240 CANopen/IDM640
CANopen, IDS640 CANopen

© Technosoft 2009 108 TML_LIB — User Manual

3.3.10.8 TS_SetMultipleOutputs2
Prototype:

BOOL TML_EXPORT TS_SetMultipleOutputs2(SHORT SelectedPorts, SHORT &Status);

Arguments:
Name Description
SelectedPorts Mask for selecting the outputs controlled. Each bit of the
Input parameter represents an output port.
Status Parameter containing the outputs status to be set
Output | Return TRUE if no error, FALSE if error

Description: The function sets simultaneously the digital outputs selected with the
SelectedPorts mask using the value of the Status parameter.

Remark: The function is designed for drives/motors programmed with firmware version FBxx".
For drives/motors programmed with firmware version FAxx” use the TS_SetMultipleOutputs
function.

The digital outputs are numbered from 0 to 15 and they form an ordered list, for example, a
product with 3 outputs will have 0, 1 and 2. The input’'s number represents also the position of the
corresponding bit from the SelectedPorts mask, i.e. input number x has associated bit x from the
SelectedPorts.

The outputs are set as follows:

e low if the corresponding bit from the SelectedPorts is 1 and the corresponding bit from
Status variable is 0.

e high if it's the corresponding bit from SelectedPorts is 1 and the corresponding bit from
SelectedPorts is 1.

Remarks: If one of these outputs is inverted inside the drive/motor, its command is inverted.
Hence, the outputs are always set at connectors level according with the bits values (low if bit is O
and high if bit is 1) even when the outputs are inverted.

Related functions: TS_SetupOutput, TS_SetOutput

Associated examples: —

! Represents the firmware versions F500A or later on Technosoft drives: IDM240 CANopen/IDM640

CANopen, IDS640 CANopen
2 Represents the firmware versions: FOOOH, FO20H, FOO5H, F900H or later on Technosoft drives/motors:
IDM240/IDM640, IDS240/IDS640, ISCM4805/ISCM8005, IBL2403, IM23x (models IS and MA)

© Technosoft 2009 109 TML_LIB — User Manual

3.3.11 Data transfer

3.3.11.1 TS_SetIntVariable
Prototype:

BOOL TML_EXPORT TS_SetIntVariable(LPCSTR pszName, SHORT value);

Arguments:
Name Description
Input | pszZName Parameter name
value Parameter value
Output | return TRUE if no error; FALSE if error

Description: The function writes the value in the TML data pszName on the active axis. The
TML data (parameter, variable or user defined variable) is of type long (16-bit).

Remarks:

1. The available TML data is configuration dependent and is listed in the variables.cfg file
2. The user defined variables are set with EasyMotion Studio prior generating the setup
information

Related functions: TS_GetIntVariable, TS_SetlLongVariable, TS_GetLongVariable,
TS_SetFixedVariable, TS_GetFixedVariable

Associated examples: Ex03_ErrorHandling, Ex06_ExternalReference, Ex12DistributedTasks

© Technosoft 2009 110 TML_LIB — User Manual

3.3.11.2 TS_GetIntVariable
Prototype:

BOOL TML_EXPORT TS_GetIntVariable(LPCSTR pszName, short& value);

Arguments:
Name Description
Input pszName Name of the TML parameter, variable or used defined variable
value Pointer to the variable where the value is stored
Output | return TRUE if no error, FALSE if error

Description: The function reads the value of TML data pszName. The TML data (parameter,
variable or user defined variable) is of type integer (16-bit). The value read is saved in the variable
pointed by value.

Remarks:

1. The available TML data is configuration dependent and is listed in the variables.cfg file.
2. The user defined variables are set with EasyMotion Studio prior generating the setup
information

Related functions: TS_SetIntVariable, TS_SetLongVariable, TS SetFixedVariable,
TS_GetlLongVariable, TS GetFixedVariable

Associated examples: Ex03_ErrorHandling, Ex06_ExternalReference

© Technosoft 2009 111 TML_LIB — User Manual

3.3.11.3 TS_SetLongVariable
Prototype:

BOOL TML_EXPORT TS_SetLongVariable(LPCSTR pszName, long value);

Arguments:
Name Description
Input pszName Name of the parameter
value The value to be written
Output | return TRUE if no error, FALSE if error

Description: The function writes the value in the TML data pszName on the active axis. The
TML data (parameter, variable or user defined variable) is of type long (32-bit).

Remarks:

1. The available TML data is configuration dependent and is listed in the variables.cfg file
2. The user defined variables are set with EasyMotion Studio prior generating the setup
information

Related functions: TS_GetIntVariable, TS_SetIntVariable, TS_GetlLongVariable,
TS_SetFixedVariable, TS_GetFixedVariable

Associated examples: Ex05 Homing

© Technosoft 2009 112 TML_LIB — User Manual

3.3.11.4 TS_GetLongVariable
Prototype:

BOOL TML_EXPORT TS_GetLongVariable(LPCSTR pszName, long& value);

Arguments:
Name Description
Input pszName Name of the parameter
value Pointer to the variable where the parameter value is stored
Output | return TRUE if no error, FALSE if error

Description: The function reads the value of TML data pszName. The TML data (parameter,
variable or user defined variable) is of type long (32-bit). The value read is saved in the variable
pointed by value.

Remarks:

1. The available TML data is configuration dependent and is listed in the variables.cfg file.
2. The user defined variables are set with EasyMotion Studio prior generating the setup
information

Related functions: TS_SetIntVariable, TS_SetLongVariable, TS SetFixedVariable,
TS_GetintVariable, TS_GetFixedVariable

Associated examples: Ex04_BasicMove, Ex05 Homing, Ex10_EventHandling

© Technosoft 2009 113 TML_LIB — User Manual

3.3.11.5 TS SetFixedVariable
Prototype:

BOOL TML_EXPORT TS_SetFixedVariable(LPCSTR pszName, DOUBLE value);

Arguments:
Name Description
Input pszName Name of the parameter
value The value to be written
Output | return TRUE if no error, FALSE if error

Description: The function converts the value to type fixed and writes it in the TML data
pszName on the active axis. The TML data (parameter, variable or user defined variable) is of
type fixed (16 bits integer part, 16 bits fractional part).

Remarks:

1. The available TML data is configuration dependent and is listed in the variables.cfg file.
2. The user defined variables are set with EasyMotion Studio prior generating the setup
information

Related functions: TS_SetIntVariable, TS_GetIntVariable, TS_SetlLongVariable,
TS_GetlLongVariable, TS GetFixedVariable

Associated examples: Ex04_BasicMove, Ex05 Homing

© Technosoft 2009 114 TML_LIB — User Manual

3.3.11.6 TS GetFixedVariable
Prototype:

BOOL TML_EXPORT TS_GetFixedVariable(LPCSTR pszName, double& value);

Arguments:
Name Description
Input pszName Name of the parameter
value Pointer where the parameter value is stored
Output | return TRUE if no error, FALSE if error

Description: The function reads the value of TML data pszName from the active axis. The TML
data (parameter, variable or user defined variable) is of type fixed (16 bits integer part, 16 bits
fractional part). The value read is converted to double and saved in the variable pointed by value.

Remarks:

1. The available TML data is configuration dependent and is listed in the variables.cfg file.
2. The user defined variables are set with EasyMotion Studio prior generating the setup
information

Related functions: TS_SetIntVariable, TS_SetLongVariable, TS SetFixedVariable,
TS_GetIntVariable, TS_GetLongVariable

Associated examples: [J

© Technosoft 2009 115 TML_LIB — User Manual

3.3.11.7 TS GetVariableAddress
Prototype:

BOOL TML_EXPORT TS_GetVariableAddress(LPCSTR pszName, WORD& value);

Arguments:
Name Description
Input pszName Name of the parameter
value Pointer where the parameter value is stored
Output | return TRUE if no error, FALSE if error

Description: The function returns the address of pszName variable. The variable address is read
from the setup data (*.t.zip) generated from EasyMotion Studio.

Related functions: TS_SetiIntVariable, TS_SetLongVariable, TS_SetFixedVariable,
TS_GetIntVariable, TS_GetLongVariable, TS_GetFixedVariable,

Associated examples:

© Technosoft 2009 116 TML_LIB — User Manual

3.3.11.8 TS_SetBuffer
Prototype:

BOOL TML_EXPORT TS_SetBuffer(WORD address, WORD* arrayValues, WORD nSize);

Arguments:
Name Description
Input address Sta'lrt address where tp download the data buffer
arrayValues Pointer to the array with data to be downloaded
nSize The number of words to download
Output | return TRUE if no error, FALSE if error

Description: The function downloads a data buffer on the active axis. The parameter
arrayValues points to the beginning of the array from where the data will be downloaded. The
length of the buffer is set with parameter nSize. The data is stored on the drive/motor starting with
address. The address can belong to drive/motor non-volatile memory or TML data memory.

Remark: For details about drive/motor memory structure see the “Memory Map” topic from
EasyMotion Studio on line help.

Related functions: TS_GetBuffer

Associated examples: [J

© Technosoft 2009 117 TML_LIB — User Manual

3.3.11.9 TS_GetBuffer
Prototype:

BOOL TML_EXPORT TS_GetBuffer(WORD address, WORD* arrayValues, WORD nSize);

Arguments:
Name Description
Input address Stgrt address from where the data will be uploa.ded
arrayValues Pointer to the array where the uploaded data will be stored
nSize The number of words to upload
Output | return TRUE if no error, FALSE if error

Description: The function uploads a data buffer from the active axis. The start address of the
buffer is set with parameter address and its length is nSize. The address can belong to
drive/motor non-volatile memory or TML data memory. The parameter arrayValues points to the
beginning of the array where the uploaded data is stored.

Remark: For details about drive/motor memory structure see the “Memory Map” topic from
EasyMotion Studio on line help.

Related functions: TS_SetBuffer

Associated examples: [J

© Technosoft 2009 118 TML_LIB — User Manual

3.3.12 Miscellaneous

3.3.12.1 TS_Execute

Prototype:

BOOL TML_EXPORT TS_Execute(LPCSTR pszCommands);

Arguments:

Name

Description

Input | pszCommands

String containing the TML source code to be executed.

Output | return

TRUE if no error, FALSE if error

Description: The function executes the TML commands entered in TML source code format (as
is send from the Command Interpreter, in EasyMotion Studio/EasySetUp), from a string
containing that code. Use this function if you want to send a specific motion sequence, directly

written in TML language.

Build a string pszCommands containing the source TML code and then call the TS Execute
function in order to compile the code and to send on-line the associated TML object commands.

If a compile error occurs, the function returns a FALSE, otherwise it returns TRUE.

Related functions:

Associated examples:

TS_ExecuteScript
Ex02_DriveStatus, Ex06_ExternalReference, Ex08 PVT

© Technosoft 2009

119 TML_LIB — User Manual

3.3.12.2 TS_ExecuteScript
Prototype:

BOOL TML_EXPORT TS_ExecuteScript(LPCSTR pszFileName);

Arguments:
Name Description
inout | pszFileName The name of the file containing the TML source code to be
P P executed.
Output | return TRUE if no error, FALSE if error

Description: The function executes TML commands entered in TML source code format (as is
sent from the Command Interpreter in EasyMotion Studio/EasySetUp) from a script file. Use this
function if you want to send a specific motion sequence, directly written in TML language.

Define a data file pszFileName containing the source TML code you want to send to the drive
and then call the TS_ExecuteScript function in order to compile the code and to send on-line the
associated TML object commands.

If a compile error occurs, the function returns a FALSE, otherwise it returns TRUE.
Related functions: TS_Execute

Associated examples: []

© Technosoft 2009 120 TML_LIB — User Manual

3.3.12.3 TS_GetOutputOfExecute
Prototype:
BOOL TML_EXPORT TS_GetOutputOfExecute(LPSTR pszOutput, int nMaxChars);

Arguments:

Name Description

String containing the TML source code generated at the last

Input | pszOutput library function call.

Output | return TRUE if no error, FALSE if error

Description: The function returns the TML output source code of the last previously executed
TML_LIB library function call. Use this function if you want to examine the binary code of the TML
commands that are generated when you call one of the functions of the TML_LIB library.

The binary code is returned in the pszOutput string. Set the maximum number of characters to
be returned as the value of the nMaxChars parameter.

Related functions: TS_Execute

Associated examples: [J

© Technosoft 2009 121 TML_LIB — User Manual

3.3.13 Data logger
3.3.13.1 TS_SetupLogger

Prototype:

BOOL TML_EXPORT TS_SetupLogger(WORD wLogBufferAddr, WORD wLogBufferLen,
WORD* arrayAddresses, WORD countAddr, WORD period);

Arguments:

Name Description

The address of the logger buffer in drive/motor memory, where

wl.ogBufferAddr data will be stored during logging
wLogBufferLen The length in words of the logger buffer
Input | arrayAddresses ::’ointer to the array containing the drive/motor memory addresses
0 be logged
countAddr The number of memory addresses to be logged
iod Time interval between two consecutive data logging expressed in
perio TML time units
Output | return TRUE if no error, FALSE if error

Description: The function sets the parameters of the data logger on the active axis. Use this
function if you want to perform data logging on the drive/motor during the motion execution and
analyze it in the PC application.

Set the wLogBufferAddress parameter with the starting address of the drive RAM memory data
buffer where a number of wLogBufferLenlength data points of logged data will be stored.

The addresses of TML data logged are stored in an array of length countAddr. Parameter
arrayAddresses points to the beginning of the array with.

Remark The number of data sets which can be stored will be determined as the integer part of
the ratio [length / countAddr].

The parameter period sets how often the TML data is logged. The period can have any value
between 1 and 7FFF.

Remark: Be careful when using the data logger functions! Incorrect settings related to data logger
buffer location and size may lead to improper operation of the drive, with unpredictable results.

Related functions: TS_StartLogger, TS_UploadLoggerResults, TS_CheckLoggerStatus

Associated examples: Ex09_Logger

© Technosoft 2009 122 TML_LIB — User Manual

3.3.13.2 TS_StartLogger
Prototype:

BOOL TML_EXPORT TS_StartLogger(WORD wLogBufferAddr, BYTE type);

Arguments:
Name Description
The address of the logger buffer in drive/motor memory, where
Input wlogBufferAddr data will be stored during logging
type Specifies when the logging occurs
Output | return TRUE if no error, FALSE if error

Description: The function starts the data logger on the active axis. The function may be called
only after the initialization of the data logger with the TS_SetupLogger function.

Use the parameter type to set if the data logging process must be done in the slow control loop
(type = LOGGER_SLOW), or in the fast control loop (type = LOGGER_FAST).

Related functions: TS_SetupLogger, TS_UploadLoggerResults, TS_CheckLoggerStatus

Associated examples: Ex09_Logger

© Technosoft 2009 123 TML_LIB — User Manual

3.3.13.3 TS_CheckLoggerStatus
Prototype:
BOOL TML_EXPORT TS_CheckLoggerStatus(WORD& status);

Arguments:

Name Description

The address of the logger buffer in drive/motor memory, where

Input | wlogBufferAddr data will be stored during logging

status Number of points still remaining to capture; if it is 0, the logging is
Output completed

return TRUE if no error, FALSE if error

Description: The function checks the data logger status on the active axis. Use this function in
order to check if the data logging process is still running, or if the data logging process was
ended. The function returns the status parameter, whose value indicates how many points are
still to be captured. If status = 0 the data logging process is finished.

The function may be called only after the start of the logging process with the TS_StartLogger
function.

Related functions: TS_ SetuplLogger, TS_StartLogger, TS _UploadLoggerResults

Associated examples: Ex09 Logger

© Technosoft 2009 124 TML_LIB — User Manual

3.3.13.4 TS_UploadLoggerResults
Prototype:

BOOL TML_EXPORT TS UploadLoggerResults(WORD wLogBufferAddr, = WORD*
arrayValues, WORD& countValues);

Arguments:
Name Description
wLogBufferAddr The anress of the Iog_ger buff_er in drive/motor memory, where
Input dat.a will be stored during logging .
arrayValues Pointer to the array where the uploaded data is stored on the PC
countValues The size of arrayValues, expressed in WORDs
Output countValues The number of uploaded data
P return TRUE if no error, FALSE if error

Description: The function uploads the data logged from the active axis. Use this function to
upload the data stored during the data logger execution. Before calling the function, you must
declare a data buffer in the PC program, starting at the arrayValues address, with a size equal to
the countValues parameter.

The TS UploadLoggerResults function will fill the arrayValues data buffer with the data
transferred from the drive, and will also return the actual number of transferred data words, in the
countValues parameter. Once the data is transferred, you can use it for data analysis, graphical
representation.

Remark:
1. Prior uploading the data logged, call function TS_CheckLoggerStatus to test the end of
data logging.
2. The number of data sets which were stored will be determined as the integer part of the
ratio [length / countAddr] where length and countAddr are setup parameters defined
when calling the TS_SetupLogger function

The uploaded data is stored in consecutive data sets, i.e. the first set of countAddr words will
contain the first logged point for the selected variables, the second set of countAddr words will
contain the second logged point for the selected variables, and so on. The following table
illustrates this data structure for an example of 4 logged variables.

Data WORD Meaning
Variable 1, point 1
Variable 2, point 1
Variable 3, point 1
Variable 4, point 1
Variable 1, point 2
Variable 2, point 2
Variable 3, point 2

N0 |WIN|F

Related functions: TS SetupLogger, TS_StartLogger, TS _ CheckLoggerStatus

Associated examples: Ex09 Logger

© Technosoft 2009 125 TML_LIB — User Manual

This page is empty

© Technosoft 2009 126 TML_LIB — User Manual

4 Examples

This chapter presents a collection of applications which use the functions of the TML_LIB library
to provide you a first, basic insight about using the TML_LIB library to implement your motion
control applications.

Note that most of these examples contain function calls to TML_LIB functions, and are based on
the hypothesis that the setup data is already downloaded into the non-volatile memory of the drive
so that you'll directly start sending motion commands from the PC to the drive.

The examples are built for configurations with Technosoft drive IBL2403-CAN with brushless
motor.

Remarks:

1. Prior running the examples, generate the setup data and modify the examples to
accommodate the 10 configuration of your drive/motor. Also, the examples are switching
between position control and speed control, therefore during the Drive Setup phase
enable all 3 control loops, current, speed and position, and tune the controllers.

2. The examples for Microsoft Windows platform, require the Working Directory to be set to
the examples folder of the TML_lib, by default C:\Program
Files\Technosoft\TML_LIB\examples\. For details about setting the Working Directory
read the development environment online help.

3. For projects developed under Delphi and C#, the TML_lib.dll and tmlcomm.dIl must be
preset in the Output Directory of the project.

4. Most TML_LIB functions return a Boolean TRUE if the function executed correctly, and a
FALSE if any error occurred (incorrect parameters, failed operation at the PC level).
Normally, you must check after each function call if there was an error or not. In case of
error use function TS_GetLastTextError to obtain a description of the error occurred.

© Technosoft 2009 127 TML_LIB — User Manual

4.1 Start Up

The example details the steps required to build the host application based on TML_lib. Before
starting to build the host application you must setup the drive/motor accordingly with your
application. The drive/motor setup is done using EasySetUp/EasyMotion Studio. When the setup
is finished the host application must include the basic functionality:

1.

Open communication channel using the TS _OpenChannel. The TML_lib library supports
RS232, RS485, CAN and Ethernet communication.

Load the setup data for each axis controlled from the host with TS_LoadSetup function.
The setup data must be generated from EasySetUp/EasyMotion Studio. The setup
information is included in a *.t.zip file and is used by the library to validate your commands;
it doesn’t contain the setup data downloaded in the drive non volatile memory.

Associate each axis with the setup information using the TS_SetupAxis. An axis is defined
by its Axis ID and the setup information. The Axis ID is assigned to a drive/motor in the
Drive setup dialog.

Select the destination of the commands sent from the host. For single axis applications the
selection of the destination must be done once, after the axis setup. In multiaxis
applications the TS_SelectAxis must be called every time the messages’ destination is
changed.

Call TS_Drivelnitialization function to check the integrity of the setup data downloaded in
the non volatile memory of the drive. The setup data validation is performed automatically
by the drive when it is powered. The TS_Drivelnitialization function also signals the end of
the drive initialization.

Enable the power stage of the drive with TS_Power function.

Send the motion commands required by your application using the functions included in the
TML_lib.

When the application is finished, disable the power stage of the drive by calling the
TS_Power function.

Close the communication channels using the TS_CloseChannel function. To close the
current communication channel pass -1 to the TS_CloseChannel.

© Technosoft 2009 128 TML_LIB — User Manual

4.2 Drive status

The drive’s/motor’s key information is grouped in 2 status registers: Status Register (32-bit) and
Motion Error Register (16-bit). The host can monitor the status of the drive/motor by:

e Requesting periodically the values of the status registers (SRL, SRH and MER) using the
TS_ReadStatus function.

e Enable the drive to send automatically its status. The message transmission is triggered
by conditions which change the status registers or the error register. The host selects the
bits from the registers that will trigger a message, via 3 masks one for each register:
SRL_MASK, SRH_MASK and MER_MASK.

The host analyse the message content in the user callback function, called automatically
by the TML_lib when the host receives a message from the host.

© Technosoft 2009 129 TML_LIB — User Manual

4.3 Error handling

When an error occurs, the drive enters in the fault status. In the fault status the power stage is
disabled, the the MER register signals the erros occurred and bit 15 from the SRH is set high to
signal the fault state.

The normal operation of the drive can be restored by:

e calling the TS_ResetFault function. The function call must be followed by the TS Power
in order to enable the power stage of the drive. If the error persists then the drive will
return to the faulte state.

e reseting the drive using the TS_Reset function when the application depends on special
routines to be executed, i.e homing routines. After a reset command the communication
with the drive is disabled until the reset routines end. Hence the host application should
add a delay before restoring the communication with the drive/motor. After the reset the
drive communicates using the default baudrate, i.e. 9600bps for serial communication
and 500kbps for CAN communication. If the host application was using a different
baudrate before the reset then use MSK_SetBaudRate function to first set baudrate to
the default values and then set it to the initial value.

© Technosoft 2009 130 TML_LIB — User Manual

4.4 Basic move

Technosoft drives/motors can execute a broad range of motion profiles. The example covers only
the basic motion profiles like

e positionings with trapezoidal speed profile

e positionings with Scurve speed profiles

o velocity profiles

Remark: The example requires all control loops to be enabled. The control scheme is selected in
the Drive Setup dialog. To enable all control loops first select Position in the Control mode, then
open the Advanced dialog. In the Advanced dialog select the Close position, speed and
current loop option and press the OK button.

© Technosoft 2009 131 TML_LIB — User Manual

4.5 Homing

Some application required a well defined starting point. This condition is achieved by calling a
homing routine before beginning the main motion. The homing routine can be built:

e in the host application, the host calling the TML_lib functions required, or
e in EasyMotion Studio, using the TML language, then downloaded in the drive’s memory
and launched from the host application.

The first part of the example calls a homing routine developed in EasyMotion Studio and
downloaded in the drive’s non volatile memory. Before running the example:

o start EasyMotion Studio and establish the communication with the drive/motor
o restore the TML_lib_examples project from the TML_lib_examples.m.zip archive using
the Project | Restore... menu command
e select the Ex05 _Homing application and use the Application | Motion | Download
Program menu command to download the homing routine in the non volatile memory of
the drive/motor
After downloading the homing routine you can call it from the host application using the
TS_CancelableCALL_Label.

Remark: When a TML function is called with the TS_CancelableCALL_Label function, the SRL.8
bit is set. The bit is reset when the function is finished. You should monitor the value of this bit to
check the status of the homing routine.

In the second part of the example, a similar routine is executed by calling the functions included in
the TML_lib library.

© Technosoft 2009 132 TML_LIB — User Manual

4.6 External reference

Thechnosoft drives/motors are capable to use external reference signals provided by other
devices. There are 3 types of external references:

e Analogue — read by the drive/motor via a dedicated analogue input (10-bit resolution)
¢ Digital — computed by the drive/motor from:

= Pulse & direction signals
= Quadrature signals like A, B signals of an incremental encoder
e Online — received online via a communication channel from a host and saved in a
dedicated TML variable

The example is split in 4 parts, one for each type of external reference and in the fourt the analog
reference is used to compute a speed command.

© Technosoft 2009 133 TML_LIB — User Manual

4.7 Multiaxes

In multiaxes mode one of the drives acts as master providing the reference for the other drives.
The drives/motors can operate in electronic gearing or electronic camming.

When set as master, in electronic gearing, the drive/motor sends its position via a multi-axis
communication channel, like the CANbus. When set as slave, the drive/motor follows the master
position with a programmable gear ratio.

In electronic camming the drive/motor set as master, sends its position via a multi-axis
communication channel, and the drive/motor set as slave executes a cam profile function of the
master position. The cam profile is defined by a cam table — a set of (X, Y) points, where X is cam
table input i.e. the master position and Y is the cam table output i.e. the corresponding slave
position. Between the points the drive/motor performs a linear interpolation.

The first part of the example presents the steps required to set 2 drives in electronic gearing
mode, one as master and the other as slave. The second part of the example illustrates the use of
the cam table files and the phases required to set the electronic camming mode.

© Technosoft 2009 134 TML_LIB — User Manual

4.8 PVT — multithreading

In the PVT motion mode the built-in reference generator computes a positioning path using a
series of points. Each point specifies the desired Position, Velocity and Time, i.e. contains a PVT
data. Between the PVT points the reference generator performs a 3" order interpolation.

The example walks through the steps required to set the PVT mode and use separates threads
for each axis. The drives follow a complex path composed from lines and circles. The main thread
computes the PVT points, then creates a thread for each axis. In the treads the host sends the
PVT points and handles the PVT status received from the drives. When the trajectory is
completed each thread closes the communication channel.

© Technosoft 2009 135 TML_LIB — User Manual

4.9 Logger

The Data Logger is an advanced graphical analysis tool, allowing you to do data acquisitions on
any variable of your drive / motor and plot the results.

Please note that the uploaded data is stored alternatively. Also you have to take in consideration
the type of the data received (integer, long, fixed) especially for fixed (16bit integer part. 16 bit
fixed part) variables which must be converted from a 32-bit integer to float.

© Technosoft 2009 136 TML_LIB — User Manual

4.10 Event handling

An event is a programmable condition, which once set, is monitored for occurrence. Only a single
event can be programmed at a time. You can do the following actions in relation with an event:

e Change the motion mode and/or the motion parameters, when the event occurs
e Stop the motion when the event occurs
e Wait for the programmed event to occur

The host application can:

e tests continuously the event status, and waits until the event occurs. There is a drawback
of this situation, if the event will not occur, due to some unexpected conditions the
program hangs-up in an internal loop waiting for the event to occur.

e Check periodically if the event occurred using the TS_CheckEvent function. In this way,
you can detect if the event does not occur and eventually exit from the test loop after a
given time period.

© Technosoft 2009 137 TML_LIB — User Manual

4.11 1/0 handling

Each Technosoft drive/motor has a specific number of digital inputs and outputs. Some
drives/motors include I/O lines that may be used either as inputs or as outputs. In these cases
before using these lines, you need to specify how you want to use them by calling the
TS_Setuplnput and TS_SetupOutput functions.

Remarks:

e Read carefully the drive/motor user manual to find which 1/O lines are available.
e You need to set an I/O line as input or output, only once, after power on

The 1/0O lines can be controlled individually or simultaneously; the example covers both cases.

© Technosoft 2009 138 TML_LIB — User Manual

4.12 Distributed tasks

The emebeded intelligence of the drive/motor allows you to distribute the application between the
host and the drives/motors in complex multi-axis applications. Thus, the host, instead of sending
commands for each step of an axis movement, it can simply trigger the execution of a TML
function, stored on the drive, and monitor the drive status. This approach allows the host to focus
on system functionality, leaving the drive to handle the motion tasks.

The steps for building a distributed application are:

1.
2.

implement the TML functions using EasyMotion Studio
download the TML code on the drive:

a. from EasyMotion Studio in the non volatile memory

b. from the host application using the executable file (COFF) resulted after compiling the
TML code. The COFF file can be downloaded with TS_DownloadProgram function.

c. from the host application using the software file (sw) generated from EasyMotion
Studio.

export the setup data for TML_lib . The setup data generated for TML_lib will contain the

name of the TML functions created in EasyMotion Studio.

trigger, from the host, the execution of the TML functions by calling the

TS_CancelableCALL_Lable function.

monitor the function execution status by requesting periodically the status registers or by

enabling the drive to send its status automatically.

The example shows 2 possible ways of executing TML code developed using the EasyMotion

Studio.

© Technosoft 2009 139 TML_LIB — User Manual

This page is empty

© Technosoft 2009 140 TML_LIB — User Manual

Appendix A Axis identification

The data exchanged on the communication channel is done using messages. Each message
contains one TML instruction to be executed by the receiver of the message. Apart from the
binary code of the TML instruction attached, any message includes information about its
destination: an axis (drive/motor) or group of axes. Each drive/motor has its own 8-bit Axis ID and
Group ID. This information is stored in TML variable AAR.

Remarks:

1. The Axis ID of a drive/motor must be unique and is set during the drive/motor setup
phase with EasySetUp/EasyMotion Studio. The possible values for Axis ID are between
1 and 255.

2. Inthe TechnoCAN communication protocol the Axis ID is interpreted as modulo 32.

3. Use TS_GetIntVariable to read the value of the Axis ID and Group ID from the AAR
(uint@0x030C) TML variable.

The Group ID represents a way to identify a group of axes, for a multicast transmission. This
feature allows sending a command simultaneously to several axes, for example to start or stop
the axes motion in the same time. When a function block sends a command to a group, all the
axes members of this group will receive the command. For example, if the axis is member of
group 1 and group 3, it will receive all the messages that in the group ID include group 1 and
group 3.

Remarks:

1. A drive/motor belongs, by default, to the group ID = 1.
2. The TechnoCAN protocols supports up to 5 groups, possible Group ID values: 1 to 5

Each axis can be programmed to be member of one or several of the 8 possible groups.

Table 4.1Definition of the groups

Group No. Group ID value

1 (0000 0001b)
2 (0000 0010b)
4 (0000 0100b)
8 (0000 1000b)
16 (0001 0000b)
32 (0010 0000b)
64 (0100 0000b)
128 (1000 0000b)

ON[O|N|BR|WIN|—

© Technosoft 2009 141 TML_LIB — User Manual

This page is empty

© Technosoft 2009 142 TML_LIB — User Manual

Appendix B Internal units and scaling factors

Technosoft drives/motors work with parameters and variables represented in internal units (1U).
The parameters and variables may represent various signals: position, speed, current, voltage,
etc. Each type of signal has its own internal representation in IU and a specific scaling factor. In
order to easily identify each type of IU, these have been named after the associated signals. For
example the position units are the internal units for position, the speed units are the internal
units for speed, etc.

The scaling factor of each internal unit shows the correspondence with the international standard
units (Sl). The scaling factors are dependent on the product, motor and sensor type. Put in other
words, the scaling factors depend on the setup configuration.

In order to find the internal units and the scaling factors for a specific configuration, use:

e Help | Help Topics | Setup Data Management | Internal Units and Scaling Factors
menu command in EasySetUp

e Help | Help Topics | Application Programming Internal Units and Scaling Factors
menu command in EasyMotion Studio

Important: The Internal Units and Scaling Factors topic provides customized information,
function of the application setup. If you change the drive, the motor technology or the feedback
device, check again the scaling factors with this command. It may show you other relations!

© Technosoft 2009 143 TML_LIB — User Manual

This page is empty

© Technosoft 2009 144 TML_LIB — User Manual

Appendix C CAM files format

The cam tables are arrays of X, Y points, where X is the cam input i.e. the master position and Y
is the cam output i.e. the slave position. The X points are expressed in the master internal
position units, while the Y points are expressed in the slave internal position units. Both X and Y
points 32-bit long integer values. The X points must be positive (including 0) and equally spaced
at: 1, 2, 4, 8, 16, 32, 64 or 128 i.e. having the interpolation step a power of 2 between 0 and 7.
The maximum number of points for one cam table is 8192.

As cam table X points are equally spaced, they are completely defined by two data: the Master
start value or the first X point and the Interpolation step providing the distance between the X
points. This offers the possibility to minimize the cam size, which is saved in the drive/motor in the
following format:

1st word (1 word = 16-bit data)

Bits 15-13 - the power of 2 of the interpolation step. For example, if these bits have the
binary value 010 (2), the interpolation step is 22 = 4, hence the master X values are
spaced from 4 to 4: 0, 4, 8, 12, etc.

Bits 12-0 - the length -1 of the table. The length represents the number of points

2nd and 3rd words: the Master start value (long), expressed in master position units. 2nd
word contains the low part, 3rd word the high part

4th and 5th words: Reserved. Must be setto 0

Next pairs of 2 words: the slave Y positions (long), expressed in position units. The 1st
word from the pair contains the low part and the 2nd word from the pair the high part

Last word: the cam table checksum, representing the sum modulo 65536 of all the cam
table data except the checksum word itself

© Technosoft 2009 145 TML_LIB — User Manual

This page is empty

© Technosoft 2009 146 TML_LIB — User Manual

Appendix D Package contents of TML_LIB for Microsoft

Windows

Details the package contents of TML_LIB for Microsoft Windows.

Directory Files Description
The PDF file of the TML_LIB user manual (this
Root directory P091.040.UM.PDF document)

Changelog.ixt

Contains the release information

lib

TML lib.dll TML_LIB DLL library file
tmlcomm.dll TML lib communication module file
TML lib.lib Import library of TML_LIB
tmlcomm.lib Import library of tmicomm

TML_lib-borlandc.lib

import library variant of TML_LIB for Borland C++
linker projects

tmlcomm-borlandc.lib

import library of tmlcomm for Borland C++ projects

lib-multithread

TML_lib.DLL

DLL variant with multithread capabilities

tmlcomm.DLL

communication module variant with multithread

capabilities
TML lib.lib lib fllle”for TML_lib variant with multithread
— capabilities
tmlcomm.lib lib file for tmlcomm.dll with multithread

TML_lib-borlandc.lib

import library of TML_lib variant with multithread
capabilities for Borland C++

tmlcomm-borlandc.lib

import library of tmlcomm.dll with multithread for
Borland C++

TML lib.h Header file for VC++ applications
include TML lib.bas Header file for VB applications
TML _lib.pas Header file for Pascal applications
TML_lib.cs TML _lib classes for C#
Ex05_Homing.t.zip Setup data used in example Ex05_Homing
. . Setup data used in example
Ex12_cmd_variable.t.zip Ex12 DistributedTasks
. Executable file (COFF) wused in example
Ex12_cmd_variable.out Ex12 DistributedTasks
. Setup data used in example
Ex12_COFF2RAM.LZIp | £y12 DistributedTasks
Executable file (COFF) wused in example
examples Ex12_COFF2RAM.out Ex12 DistributedTasks
Exx_setup file_ID1.t.zip Setup data used in the rest of the examples
Exx_setup_file_ID2.t.zip Setup data used in example Ex07_MultiAxes
ExampleCam.cam Cam table generated from EasyMotion Studio. The
P) cam table is used in example Ex07 Multiaxes
ExampleCam.cam Cam table in text format. Can be imported in
P) EasyMotion Studio to generate the *.cam file
TML lib examples Archive of TML project used for examples
— = P Ex05 Homing and Ex12_DistributedTasks.
© Technosoft 2009 147 TML_LIB — User Manual

examples\Cdemo1

C projects with all the

examples

Complete projects for Visual C++ and Borland C++
Builder implementing the examples from Chapter
4.

examples\C#demo1

C# projects with all the
examples

Complete projects for C# the

examples from Chapter 4.

implementing

examples\VBdemo2

VB project and all
examples in Visual Basic

A complete Visual Basic project implementing
equivalent examples of the examples presented
Chapter 4. The example requires the single
thread variant of the TML_lib.

examples\DELPHIdemo

2

Delphi project and all
examples in Pascal

A complete Delphi project implementing equivalent
examples of those presented in Chapter 4.

examples\VCvirtRS232

Visual C project of the
virtual serial driver

A complete Visual C project of a communication
driver example for the virtual serial communication

' The examples are available for 32-bit and 64-bit versions of the TML_lib for Microsoft Windows

latforms

The examples are available only for the 32-bit version of the TML_lib for Microsoft Windows

platforms

© Technosoft 2009

148

TML_LIB — User Manual

Appendix E Package contents of TML_LIB for Linux

Details the package contents for TML_LIB for Linux.

Directory Files Description
. TML _lib.h Header file for TML _lib library
Jusrfinclude tmlcomm.h Header file for tmlcomm library
Jusr/lib libTML _lib.so TML_LIB library file
libtmlcomm.so TML communication library file
Changelog Contains the release information

lusr/share/doc/TML_lib/

Check-for-updates_linux_x86

Web page which facilitates the update of
the library via Internet

License

License agreement for TML_LIB

P091.040.UM.xxxx.PDF

The PDF file of the TML_LIB user manual
(this document)

lusr/share/doc/TML_lib/examp
les/src/

Complete C projects implementing the

lusr/share/doc/TML_lib/examp
les/TML_LIB_User/

C examples examples from Chapter 4.
Ex05_Homing.t.zip gi(t)lgp Hon?i?wt; used n example
Setup_ data used in example

Ex12_cmd_variable.t.zip

Ex12 DistributedTasks

Ex12_cmd_variable.out

Executable file (COFF) used in example
Ex12_ DistributedTasks

Ex12_COFF2RAM.t.zip

Setup data used in example

Ex12 DistributedTasks

Ex12_COFF2RAM.out

Executable file (COFF) used in example
Ex12_ DistributedTasks

Exx_setup_file_ID1.t.zip Sf;l:r?pl edsata used in the rest of the
Setup data used in example

Exx_setup_file ID2.t.zip

Ex07_MultiAxes

ExampleCam.cam

Cam table generated from EasyMotion
Studio. The cam table is used in example
Ex07_Multiaxes

ExampleCam.cam

Cam table in text format. Can be imported
in EasyMotion Studio to generate the
*.cam file

TML_lib_examples

Archive of TML project used for examples
Ex05_Homing and
Ex12 DistributedTasks.

lusr/share/doc/TML_lib/peak-
linux-drivers-patches

Patches for Peak System CAN-bus devices drivers versions 3.17 and 4.3

© Technosoft 2009

149

TML_LIB — User Manual

This page is empty

© Technosoft 2009 150 TML_LIB — User Manual

Appendix F TML_LIB.h file

The TML_LIB.h file is the header file containing the prototypes of all TML_LIB functions, as well
as all the constants needed to call functions of the library.

This file must be included in any C file that refers functions from TML_LIB. Use the TML_LIB.lib
and the TML_LIB.dII to build the corresponding executable file.

#ifndef __TML_LIB H__
#define _ TML _LIB H__

#iT defined(WINDOWS) || defined(WIN32)

ifdef TMLDLL

define TML_EXPORT __ declspec(dllexport) _ stdcall
else

define TML_EXPORT _ declspec(dllimport) _ stdcall
endif

#else

define TML_EXPORT

#endif

#undef BYTE

#undef WORD

#undef DWORD

#undef BOOL

#iT defined(WINDOWS) || defined(WIN32)
typedef unsigned char BYTE;
typedef unsigned short WORD;
typedef unsigned long DWORD;

#else
typedef u_int8_t BYTE;
typedef u_intl6_t WORD;
typedef u_int32_t DWORD;
#endif

typedef int BOOL;
#ifndef FALSE

#define FALSE O
#endi T
#ifndef TRUE

#define TRUE 1
#endif

typedef const char* LPCSTR;
typedef char* LPSTR;

//supported CAN protocols
#define PROTOCOL_TMLCAN 0x00 /*use TMLCAN protocol (default, 29-
bit identifiers)*/

© Technosoft 2009 151 TML_LIB — User Manual

#define PROTOCOL_TECHNOCAN 0x80 /* use
TechnoCAN protocol (11-bit identifiers)*/

#define PROTOCOL_MASK 0x80 /*this bits
are used for specifying CAN protocol through nChannelType param of
MSK_OpenComm function*/

CHANNEL_ IXXAT_CAN - see http://www.ixxat.com
CHANNEL_SYS TEC USBCAN - see www.systec-electronic.com
CHANNEL_ESD_CAN - see http://www._esd-electronics.com
CHANNEL_PEAK_SYS PCAN_* - see http://www.peak-system.com
CHANNEL_LAWICEL_USBCAN - see http://www.canusb.com

/*Constants used as values for "OpenChannel® parameters*/
#define CHANNEL RS232

#define CHANNEL_ RS485

#define CHANNEL_IXXAT_CAN

#define CHANNEL_SYS_TEC_USBCAN
#define CHANNEL_ PEAK_SYS PCAN_PCI
#define CHANNEL ESD CAN

#define CHANNEL_PEAK_SYS PCAN_ISA
#define CHANNEL_PEAK_SYS_PCAN_PC104
with PCAN_ISA*/

#define CHANNEL_PEAK_SYS_PCAN_USB
#define CHANNEL_PEAK_SYS_PCAN_DONGLE
#define CHANNEL LAWICEL_ USBCAN
#define CHANNEL_VIRTUAL_SERIAL
#define CHANNEL_XPORT_IP

ook~ wWNEFO

HANNEL_PEAK_SYS_PCAN_ISA /* Same

2= O 00~
oo

/*Constant used for host ID*/

#define HOST _ID 1

/*Constants used as values for "Logger" parameters*/
#define LOGGER_SLOW 1

#define LOGGER_FAST 2

/*Constants used as values for “MoveMoment® parameters*/
#define UPDATE_NONE -1

#define UPDATE_ON_EVENT 0

#define UPDATE_IMMEDIATE 1

/*Constants used for "ReferenceType® parameters*/
#define REFERENCE_POSITION

#define REFERENCE_SPEED 1
#define REFERENCE_TORQUE 2
#defTine REFERENCE_VOLTAGE 3

/*Constants used for EnableSuperposition*/
#define SUPERPOS_DISABLE -1

© Technosoft 2009 152 TML_LIB — User Manual

#define SUPERPOS_NONE 0
#define SUPERPOS_ENABLE

/*Constants used for PositionType*/
#define ABSOLUTE_POSITION 0
#define RELATIVE_POSITION 1

/*Constants used for EnableSlave*/
#define SLAVE_NONE

#define SLAVE COMMUNICATION_CHANNEL
#define SLAVE 2ND ENCODER

/*Constants used for ReferenceBase*/
#define FROM_MEASURE 0
#define FROM_REFERENCE 1

/*Constants used for DecelerationType*/

#define S_CURVE_SPEED PROFILE
#define TRAPEZOIDAL SPEED PROFILE

/*Constants used for 10State*/
#define 10 _HIGH 1
#define 10_LOW 0

/*Constants used for TransitionType*/
#define TRANSITION_HIGH_TO_LOW
#define TRANSITION_DISABLE

#define TRANSITION_LOW_TO_HIGH

/*Constants used for IndexType*/
#define INDEX_1 1
#define INDEX 2 2

/*Constants used for LSWType*/
#define LSW_NEGATIVE -1
#define LSW_POSITIVE 1

/*Constants used for TS Power; to activate/deactivate teh PWM commands*/

#define POWER_ON 1
#define POWER_OFF 0

/*Constants used as inputs parameters of the 1/0 functions*/

#define INPUT_O
#define INPUT_1
#define INPUT 2
#define INPUT_3
#define INPUT 4
#define INPUT_5
#define INPUT_6
#define INPUT 7
#define INPUT_8

o~NOOUThhWNEO

© Technosoft 2009 153

TML_LIB — User Manual

#define INPUT_9
#define INPUT_10
#define INPUT_11
#define INPUT_12
#define INPUT_13
#define INPUT_ 14
#define INPUT_15
#define INPUT_16
#define INPUT_17
#define INPUT_18
#define INPUT_19
#define INPUT_20
#define INPUT_ 21
#define INPUT_22
#define INPUT_23
#define INPUT_24
#define INPUT_25
#define INPUT_26
#define INPUT_27
#define INPUT_28
#define INPUT_29
#define INPUT_30
#define INPUT_31
#define INPUT_32
#define INPUT_33
#define INPUT_ 34
#define INPUT_35
#define INPUT_36
#define INPUT_37
#define INPUT_38
#define INPUT_39

#define OUTPUT_O
#define OUTPUT 1
#define OUTPUT_2
#define OUTPUT_3
#define OUTPUT 4
#define OUTPUT_5
#define OUTPUT_6
#define OUTPUT_7
#define OUTPUT_8
#define OUTPUT_9
#define OUTPUT_10
#define OUTPUT_11
#define OUTPUT_ 12
#define OUTPUT_13
#define OUTPUT_ 14
#define OUTPUT_15
#define OUTPUT_16
#define OUTPUT_ 17

9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

ooo~NoOOaM~MWNEO

© Technosoft 2009

154

TML_LIB — User Manual

#define OUTPUT_18 18

#define OUTPUT 19 19
#define OUTPUT_20 20
#define OUTPUT_21 21
#define OUTPUT_22 22
#define OUTPUT_23 23
#define OUTPUT_24 24
#define OUTPUT_25 25
#define OUTPUT_26 26
#define OUTPUT_27 27
#define OUTPUT_28 28
#define OUTPUT_29 29
#define OUTPUT_30 30
#define OUTPUT_31 31
#define OUTPUT 32 32
#define OUTPUT_33 33
#define OUTPUT_34 34
#define OUTPUT_35 35
#define OUTPUT_36 36
#define OUTPUT_37 37
#define OUTPUT_38 38
#define OUTPUT_39 39

/*Constants used for the register for function TS ReadStatus*/
#define REG_MCR
#define REG_MSR
#define REG_ISR
#define REG_SRL
#define REG_SRH
#define REG_MER

arwWNEFLO

/*Constants used to select or set the group*/
#define GROUP_O
#define GROUP_1
#define GROUP_2
#define GROUP_3
#define GROUP_4
#define GROUP_5
#define GROUP_6
#define GROUP_7
#define GROUP_8

oOo~NOOUTAWNEFO

/*Special parameter values*/
#define FULL_RANGE 0
#define NO_VARIATION O

/***

Callback function used by client application for handling unsolicited
messages which this driver receives in unexpected places

© Technosoft 2009 155 TML_LIB — User Manual

#iT defined(WINDOWS) || defined(WIN32)

typedef void (__stdcall *pfnCallbackRecvDriveMsg) (WORD wAxisID, WORD
wAddress, long Value);
#else

typedef void (*pfnCallbackRecvDriveMsg) (WORD wAxislID, WORD wAddress,
long Value);
#endif

#ifdef _ cplusplus
extern "C" {
#endif

LPCSTR TML_EXPORT TS _GetLastErrorText(void);

Function: Returns a text related to the last occurred error when one of
the library functions
was called.
Input arguments:
Output arguments:
return: A text related to the last occurred error

[FFeFFe Koo e e e e e ek ek ok /

/***l

int TML_EXPORT TS_LoadSetup(LPCSTR setupPath);
/**
Function: Load setup information from a zip archive or a directory
containing setup.cfg and variables.cfg files.
Input arguments:
setupPath: path to the zip archive or directory that
contains setup.cfg and variables.cfg of the given setup
Output arguments:
return: >=0 index of the loaded setup; -1 if error

***/

/***/

[FFFRFIETIL XKL I ILXIAX Communication channels /
/xzsx /

int TML_EXPORT TS_OpenChannel (LPCSTR pszDevName, BYTE btType, BYTE
nHostlD, DWORD baudrate);
/***
Function: Open a communication channel.
Input arguments:

pszDevName: communication device name
RS232, RS485 and CHANNEL_ LAWICEL_ USBCAN: COM
port number or COM port name (*'1","2","3"... -> "COM1', "COM2",
"COM3™"...)
CHANNEL_IXXAT_CAN: "1™ __. "4"

© Technosoft 2009 156 TML_LIB — User Manual

CHANNEL_SYS_TEC_USBCAN and CHANNEL_ESD CAN: "0
"10"
CHANNEL_PEAK_SYS_PCAN_PCI: "1 or "2"
CHANNEL_LAWICEL_USBCAN: "' for the First device
found or the serial number of the device
CHANNEL_XPORT_IP: "IP" or "hostname"
btType: channel type (CHANNEL_ *) with an optional protocol
(PROTOCOL_*, default is PROTOCOL_TMLCAN)
nHostlID: Is the address of your PC computer. A value between 1
and 255
For RS232: axis ID of the drive connected to the
PC serial port (usually 255)
For RS485 or CAN devices: must be an unused axis
ID! It is the address of your PC computer on
the RS485 network.
For XPORT: "I1P:port"
BaudRate: Baud rate
serial ports: 9600, 19200, 38400, 56000 or
115200
CAN devices: 125000, 250000, 500000, 1000000
Output arguments:
return: channel"s file descriptor or -1 if error

BOOL TML_EXPORT TS_SelectChannel(int fd);
/***
Function: Select active communication channel. If you use only one
channel there is no need to call this function.
Input arguments:
fd: channel file descriptor (-1 means selected communication
channel)
Output arguments:
return: TRUE if no error; FALSE if error

***l

#ifdef _ cplusplus
void TML_EXPORT TS CloseChannel(int fd = -1);
#else
void TML_EXPORT TS_CloseChannel(int fd);
#endif
/***
Function: Close the communication channel.
Input arguments:
fd: channel file descriptor (-1 means selected communication channel)

***/

/***l

/ Drive Administration **xkkkkdkbktkbkkkdktkdtkdtktx /
/ xxxxxxxxxxxxxxxxxxxxx /

BOOL TML_EXPORT TS_SetupAxis(BYTE axislD, int idxSetup);
/ nnnnnnnnnnnn

© Technosoft 2009 157 TML_LIB — User Manual

Function: Select setup configuration for the drive with axis ID.
Input arguments:

axislID: axis ID. It must be a value between 1 and 255;
idxSetup: Index of previously loaded setup,

Output arguments:
return: TRUE if no error; FALSE if error

BOOL TML_EXPORT TS_SelectAxis(BYTE axisliD);
/***
Function: Selects the active axis.
Input arguments:
axislD: The ID of the axis to become the active one. It
must be a value between 1 and 255;
For RS485/CAN communication,
this value must be different than nHostlD parameter
defined at TS_OpenChannel
function call.
Output arguments:

return: TRUE iFf no error; FALSE i1f error
***/

BOOL TML_EXPORT TS_SetupGroup(BYTE grouplD, int idxSetup);

Function: Select setup configuration for the drives within group.
Input arguments:

grouplD: group ID. It must be a value between 1
and 8;

idxSetup: Index of previously loaded setup,
Output arguments:

return: TRUE if no error; FALSE if error

BOOL TML_EXPORT TS_SelectGroup(BYTE groupliD);
/

Function: Selects the active group.
Input arguments:
grouplD: The 1D of the group of axes to become the
active ones. It must be a value
between 1 and 8.
Output arguments:
return: TRUE if no error; FALSE if error

BOOL TML_EXPORT TS_SetupBroadcast(int idxSetup);

Function: Select setup configuration for all drives on the active
channel.
Input arguments:

idxSetup: Index of previously loaded setup,
Output arguments:
return: TRUE if no error; FALSE if error

© Technosoft 2009 158 TML_LIB — User Manual

***/

BOOL TML_EXPORT TS_SelectBroadcast(void);
/ nnnnnnnnnnnnnnnn
Function: Selects all axis on the active channel.
return: TRUE if no error; FALSE if error

BOOL TML_EXPORT TS Reset(void);
/***
Function: Resets selected drives.

return: TRUE if no error; FALSE if error
***/

BOOL TML_EXPORT TS_ResetFault(void);
/ xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
Function: This function clears most of the errors bits from Motion
Error Register (MER).
return: TRUE if no error; FALSE if error

BOOL TML_EXPORT TS_Power(BOOL Enable);

/ nnnnnnnnnnnnn
Function: Controls the power stage (ON/OFF).
Input arguments:

Enable: TRUE -> Power ON the drive; FALSE -> Power OFF
the drive
Output arguments:

return: TRUE if no error; FALSE if error

***/

#ifdef _ cplusplus
BOOL TML_EXPORT TS_ReadStatus(short Sellndex, WORD& Status);
#else
BOOL TML_EXPORT TS_ReadStatus(short Sellndex, WORD* Status);
Function: Returns drive status information.
Input arguments:
Sellndex:
REG_MCR -> read MCR register
REG_MSR -> read MSR register
REG_ISR -> read ISR register
REG_SRL -> read SRL register
REG_SRH -> read SRH register
REG_MER -> read MER register
Output arguments:
Status:drive status information (value of the selected register)
return: TRUE if no error; FALSE if error

BOOL TML_EXPORT TS_Save(void);

© Technosoft 2009 159 TML_LIB — User Manual

/***

Function: Saves actual values of all the parameters from the
drive/motor working memory into
the EEPROM setup table.
Output arguments:
return: TRUE if no error; FALSE if error

BOOL TML_EXPORT TS_Updatelmmediate(void);
/***
Function: Update the motion mode immediately.
Output arguments:
return: TRUE if no error; FALSE if error

***/

BOOL TML_EXPORT TS_UpdateOnEvent(void);
/***
Function: Update the motion mode on next event occurence.
Output arguments:

return: TRUE iFf no error; FALSE if error
***/

BOOL TML_EXPORT TS_SetPosition(long PosValue);

Y i i

Function: Set actual position value.
Input arguments:

Posvalue: Value at which the position is set
Output arguments:
return: TRUE if no error; FALSE if error

***l

BOOL TML_EXPORT TS_SetCurrent(short CrtValue);
/***
Function: Set actual current value.
Input arguments:
Crtvalue: Value at which the motor current is set
REMARK: this command can be used
only for step motor drives
Output arguments:
return: TRUE iFf no error; FALSE if error

***/

BOOL TML_EXPORT TS_SetTargetPositionToActual(void);
/***
Function: Set the target position value equal to the actual position
value.
Output arguments:
return: TRUE if no error; FALSE if error

***/

BOOL TML_EXPORT TS_SetIntVariable(LPCSTR pszName, short value);

© Technosoft 2009 160 TML_LIB — User Manual

/***

Function: Writes an integer type variable to the drive.
Input arguments:

pszName: Name of the variable

value: Variable value
Output arguments:

return: TRUE if no error; FALSE if error

#ifdef _ cplusplus
BOOL TML_EXPORT TS_GetIntVariable(LPCSTR pszName, short& value);
#else
BOOL TML_EXPORT TS_GetIntVariable(LPCSTR pszName, short* value);
#endif
/ nnnnnnn
Function: Reads an integer type variable from the drive.
Input arguments:
pszName: Name of the variable
Output arguments:
value: Variable value
return: TRUE if no error; FALSE if error

***l

BOOL TML_EXPORT TS_SetLongVariable(LPCSTR pszName, long value);
/***
Function: Writes a long integer type variable to the drive.
Input arguments:
pszName: Name of the variable
value: Variable value
Output arguments:

return: TRUE if no error; FALSE if error
***/

#ifdef _ cplusplus
BOOL TML_EXPORT TS_GetLongVariable(LPCSTR pszName, long& value);
#else
BOOL TML_EXPORT TS_GetLongVariable(LPCSTR pszName, long* value);
#endif
/ xxxxxx
Function: Reads a long integer type variable from the drive.
Input arguments:
pszName: Name of the variable
Output arguments:
value: Variable value
return: TRUE if no error; FALSE if error

BOOL TML_EXPORT TS_SetFixedVariable(LPCSTR pszName, double value);
/***
Function: Writes a fixed point type variable to the drive.
Input arguments:
pszName: Name of the variable

© Technosoft 2009 161 TML_LIB — User Manual

value: Variable value
Output arguments:
return: TRUE if no error; FALSE if error

#ifdef _ cplusplus

BOOL TML_EXPORT TS_GetFixedVariable(LPCSTR pszName, double& value);
#else

BOOL TML_EXPORT TS_GetFixedVariable(LPCSTR pszName, double* value);
#endif

Function: Reads a fixed point type variable from the drive.
Input arguments:

pszName: Name of the variable
Output arguments:

value: Variable value

return: TRUE if no error; FALSE if error

***/

BOOL TML_EXPORT TS_SetBuffer(WORD address, WORD* arrayValues, WORD
nSize);

Function: Download a data buffer to the drive®s memory.

Input arguments:
address: Start address where to download the data buffer
arrayValues: Buffer containing the data to be downloaded
nSize: the number of words to download

Output arguments:

return: TRUE if no error; FALSE if error
***/

BOOL TML_EXPORT TS_GetBuffer(WORD address, WORD* arrayValues, WORD
Function: Upload a data buffer from the drive (get it from motion
chip®s memory).
Input arguments:
address: Start address where from to upload the data
buffer
arrayValues: Buffer address where the uploaded data will be
stored
nSize: the number of words to upload
Output arguments:

arrayValues: the uploaded data

return: TRUE if no error; FALSE if error
AA /
V Asiaisiaiaiaisiaisiasiasiaaiaaisiaisiaiaciaiasiuiaiaiaiaiaiaiaiaiale /

/***/

© Technosoft 2009 162 TML_LIB — User Manual

BOOL TML_EXPORT TS_MoveAbsolute(long AbsPosition, double Speed, double
Acceleration, short MoveMoment, short ReferenceBase);
/***
Function: Move Absolute with trapezoidal speed profile. This function
allows you to program a position profile
with a trapezoidal shape of the speed.
Input arguments:
AbsPosition: Absolute position reference value
Speed: Slew speed; if 0, use previously defined value
Acceleration: Acceleration decceleration; if 0, use previously
defined value
MoveMoment:
UPDATE_NONE -> setup motion parameters, movement will
start latter (on an Update command)
UPDATE_IMMEDIATE -> start moving immediate
UPDATE_ON_EVENT -> start moving on event
ReferenceBase:
FROM_MEASURE -> the position reference starts from the
actual measured position value
FROM_REFERENCE -> the position reference starts from the
actual reference position value
Output arguments:

return: TRUE if no error; FALSE if error
***/

BOOL TML_EXPORT TS_MoveRelative(long RelPosition, double Speed, double
Acceleration, BOOL IsAdditive, short MoveMoment, short ReferenceBase);
/***
Function: Move Relative with trapezoidal speed profile. This function
allows you to program a position profile
with a trapezoidal shape of the speed.
Input arguments:
RelPosition: Relative position reference value
Speed: Slew speed; if 0, use previously defined value
Acceleration: Acceleration decceleration; if 0, use previously
defined value
MoveMoment:
UPDATE_NONE -> setup motion parameters, movement will
start latter (on an Update command)
UPDATE_IMMEDIATE -> start moving immediate
UPDATE_ON_EVENT -> start moving on event
IsAdditive:
TRUE -> Add the position increment to the position to
reach set by the previous motion command
FALSE -> No position increment is added to the target
position
ReferenceBase:
FROM_MEASURE -> the position reference starts from the
actual measured position value
FROM_REFERENCE -> the position reference starts from the
actual reference position value
Output arguments:

© Technosoft 2009 163 TML_LIB — User Manual

return: TRUE 1Ff no error; FALSE i1f error

***/

BOOL TML_EXPORT TS_MoveVelocity(double Speed, double Acceleration, short

MoveMoment, short ReferenceBase);
/

Function: Move at a given speed, with acceleration profile.
Input arguments:
Speed: Jogging speed
Acceleration: Acceleration decceleration; it 0, use previously
defined value
MoveMoment:
UPDATE_NONE -> setup motion parameters, movement will
start latter (on an Update command)
UPDATE_IMMEDIATE -> start moving immediate
UPDATE_ON_EVENT -> start moving on event
ReferenceBase:
FROM_MEASURE -> the position reference starts from the
actual measured position value
FROM_REFERENCE -> the position reference starts from the
actual reference position value
Output arguments:
return: TRUE if no error; FALSE if error

***l

BOOL TML_EXPORT TS_SetAnalogueMoveExternal (short ReferenceType, BOOL
UpdateFast, double Limitvariation, short MoveMoment);
/***
Function: Set Motion type as using an analogue external reference.
Input arguments:
ReferenceType:
REFERENCE_POSITION -> external position reference
REFERENCE_SPEED -> external speed reference
REFERENCE_TORQUE -> external torque reference
REFERENCE_VOLTAGE -> external voltage reference
UpdateFast:
TRUE -> generate the torque reference in the fast
control loop
FALSE -> generate the torque reference in the slow
control loop
LimitVariation:
NO_VARIATION (0) -> the external reference is limited at
the value set in the Drive Setup
A value which can be an acceleration or speed in
function of the reference type.
MoveMoment:
UPDATE_NONE -> setup motion parameters, movement will
start latter (on an Update command)
UPDATE_IMMEDIATE -> start moving immediate
UPDATE_ON_EVENT -> start moving on event
Output arguments:
return: TRUE if no error; FALSE if error

© Technosoft 2009 164 TML_LIB — User Manual

***/

#ifdef _ cplusplus
BOOL TML_EXPORT TS_SetDigitalMoveExternal (BOOL SetGearRatio = FALSE,
short Denominator = 1, short Numerator = 1, double LimitVariation = O,
short MoveMoment = 1);
#else
BOOL TML_EXPORT TS_SetDigitalMoveExternal (BOOL SetGearRatio, short
Denominator, short Numerator, double LimitVariation, short MoveMoment);
iiQg7I\‘I**
Function: Set Motion type as using a digital external reference. This
function is used only for Positioning.
Input arguments:
MoveMoment:
UPDATE_NONE -> setup motion parameters, movement will
start latter (on an Update command)
UPDATE_IMMEDIATE -> start moving immediate
UPDATE_ON_EVENT -> start moving on event
LimitVariation:
NO_VARIATION (0) -> the external reference is limited at
the value set in the Drive Setup
A value which can be an acceleration or speed in
function of the reference type.
SetGearRatio: Set the gear parameters; if TRUE, following
parameters are needed
Denumerator: Gear master ratio
Numerator: Gear slave ratio
Output arguments:
return: TRUE if no error; FALSE if error

***/

#ifdef _ cplusplus
BOOL TML_EXPORT TS_SetOnlineMoveExternal (short ReferenceType, double
Limitvariation = 0, double InitialvValue = 0., short MoveMoment = 1);
#else
BOOL TML_EXPORT TS_SetOnlineMoveExternal (short ReferenceType, double
LimitVariation, double Initialvalue, short MoveMoment);
#endif
/ nnnnnnnnnnnnnn
Function: Set Motion type as using an analogue external reference.
Input arguments:
ReferenceType:
REFERENCE_POSITION -> external position reference
REFERENCE_SPEED -> external speed reference
REFERENCE_TORQUE -> external torque reference
REFERENCE_VOLTAGE -> external voltage reference
LimitVariation:
NO_VARIATION (0) -> the external reference is limited at
the value set in the Drive Setup
A value which can be an acceleration or speed in
function of the reference type.

© Technosoft 2009 165 TML_LIB — User Manual

MoveMoment:
UPDATE_NONE -> setup motion parameters, movement will
start latter (on an Update command)
UPDATE_IMMEDIATE -> start moving immediate
UPDATE_ON_EVENT -> start moving on event
Initialvalue: 1f non zero, set initial value of EREF
Output arguments:

return: TRUE if no error; FALSE if error
***/

BOOL TML_EXPORT TS_VoltageTestMode(short MaxVoltage, short IncrVoltage,
short ThetaO, short Dtheta, short MoveMoment);

Function: Use voltage test mode.
Input arguments:

MaxVoltage: Maximum test voltage value

IncrVoltage: Voltage increment on each slow sampling period

ThetaO: Initial value of electrical angle value

Remark: used only for AC motors; set to O

otherwise

Dtheta: Electric angle increment on each slow sampling
period

MoveMoment:

UPDATE_NONE -> setup motion parameters, movement will
start latter (on an Update command)
UPDATE_IMMEDIATE -> start moving immediate
UPDATE_ON_EVENT -> start moving on event
Output arguments:
return: TRUE if no error; FALSE if error

BOOL TML_EXPORT TS_TorqueTestMode(short MaxTorque, short IncrTorque,
short ThetaO, short Dtheta, short MoveMoment);
/***
Function: Use torque test mode.
Input arguments:

MaxTorque: Maximum test torque value

IncrTorque: Torque increment on each slow sampling period

ThetaO: Initial value of electrical angle value

Remark: used only for AC motors; set to O

otherwise

Dtheta: Electric angle increment on each slow sampling
period

MoveMoment:

UPDATE_NONE -> setup motion parameters, movement will
start latter (on an Update command)
UPDATE_IMMEDIATE -> start moving immediate
UPDATE_ON_EVENT -> start moving on event
Output arguments:
return: TRUE if no error; FALSE if error

© Technosoft 2009 166 TML_LIB — User Manual

BOOL TML_EXPORT TS_SetGearingMaster(BOOL Group, BYTE SlavelD, short
ReferenceBase, BOOL Enable,
BOOL SetSlavePos, short MoveMoment);
/***
Function: Setup master parameters in gearing mode.
Input arguments:

Group
TRUE -> set slave group ID with value;
FALSE-> set slave axis ID with SlavelD value;
SlavelD: Axis ID in the case that Group is FALSE or a
Group ID when Group is TRUE
ReferenceBase:
FROM_MEASURE -> send position feedback
FROM_REFERENCE -> send position reference
Enable: TRUE -> enable gearing operation; FALSE ->
disable gearing operation
SetSlavePos: TRUE -> initialize slave(s) with master position
MoveMoment:

UPDATE_NONE -> setup motion parameters, movement will
start latter (on an Update command)
UPDATE_IMMEDIATE -> start moving immediate
UPDATE_ON_EVENT -> start moving on event
Output arguments:

return: TRUE if no error; FALSE if error
""""""""""" /
BOOL TML_EXPORT TS_SetGearingSlave(short Denominator, short Numerator,
short ReferenceBase,
short

EnableSlave, double LimitVariation, short MoveMoment);

/ nnnnnnnn
Function: Setup slave parameters in gearing mode.
Input arguments:

Denominator: Master gear ratio value
Numerator: Slave gear ratio value
ReferenceBase:

FROM_MEASURE -> the position reference starts from the
actual measured position value
FROM_REFERENCE -> the position reference starts from the
actual reference position value
EnableSlave:
SLAVE_NONE -> do not enable slave operation
SLAVE_COMMUNICATION_CHANNEL -> enable operation got via
a communication channel
SLAVE_2ND_ENCODER -> enable operation read from 2nd
encoder or P&D inputs
LimitVariation:
NO_VARIATION (0) -> the external reference is limited at
the value set in the Drive Setup
A value which can be an acceleration or speed in
function of the reference type.
MoveMoment:

© Technosoft 2009 167 TML_LIB — User Manual

UPDATE_NONE -> setup motion parameters, movement will
start latter (on an Update command)
UPDATE_IMMEDIATE -> start moving immediate
UPDATE_ON_EVENT -> start moving on event
Output arguments:
return: TRUE if no error; FALSE if error

BOOL TML_EXPORT TS_MotionSuperposition(short Enable, short Update);
/***
Function: enable or disable the superposition of the electronic gearing
mode with a second
motion mode
Input arguments:
Enable: if 0, disable the Superposition mode
if 1, enable the Superposition mode
Update: if 0, doesn®t send UPD command to the drive, in order to
take into account the
Superposition mode
if 1, sends UPD command to the drive, in order
to take into account the
Superposition mode
Output arguments:

return: TRUE i1Ff no error; FALSE i1f error
***/

BOOL TML_EXPORT TS_SetCammingMaster(BOOL Group, BYTE SlavelD, short

ReferenceBase, BOOL Enable, short MoveMoment);

/x
Function: Setup master parameters in camming mode.
Input arguments:

Group
TRUE -> set slave group ID with (SlavelD + 256) value;
FALSE-> set slave axis ID with SlavelD value;
SlavelD: Axis ID iIn case Group is FALSE, or group mask
otherwise (0 means broadcast)
ReferenceBase:
FROM_MEASURE -> send position feedback
FROM_REFERENCE -> send position reference
Enable: TRUE -> enable camming operation; FALSE ->
disable camming operation
MoveMoment:

UPDATE_NONE -> setup motion parameters, movement will
start latter (on an Update command)
UPDATE_IMMEDIATE -> start moving immediate
UPDATE_ON_EVENT -> start moving on event
Output arguments:
return: TRUE if no error; FALSE if error

#ifdef _ cplusplus

© Technosoft 2009 168 TML_LIB — User Manual

BOOL TML_EXPORT TS_CamDownload(LPCSTR pszCamFile, WORD wLoadAddress,
WORD wRunAddress, WORD& wNextLoadAddr, WORD& wNexRunAddr);
#else
BOOL TML_EXPORT TS_CambDownload(LPCSTR pszCamFile, WORD wLoadAddress,
WORD wRunAddress, WORD* wNextLoadAddr, WORD* wNexRunAddr);
#endif
/ nnn
Function: Download a CAM file to the drive, at a specified address.
Input arguments:
pszCamFile: the name of the file containing the CAM information
wLoadAddress: memory address where the CAM is loaded
wRunAddress: memory where the actual CAM table is transfered and
executed at run time
Output arguments:
wNextLoadAddr: memory address available for the next CAM file;
if O there is no memory left
wNextRunAddress: memory where the next CAM table is transfered
and executed at run time;
return: TRUE if no error; FALSE if error

BOOL TML_EXPORT TS_Camlnitialization(WORD LoadAddress, WORD RunAddress);
/ nnnnnnnnnnnnn

Function: Copies a CAM file from E2ROM to RAM memory. You should
not use this if you download CAMs directly to RAM memory
(load address == run address)

Input arguments:
LoadAddress: memory address in E2ROM where the CAM is already
loaded
RunAddress: memory address in RAM where the CAM is copied.
Output arguments:

return: TRUE if no error; FALSE if error
***/

#ifdef _ cplusplus
BOOL TML_EXPORT TS_SetCammingSlaveRelative(WORD RunAddress, short
ReferenceBase, short EnableSlave, short MoveMoment,

long OffsetFromMaster = 0, double MultlnputFactor = O,
double MultOutputFactor = 0);
#else
BOOL TML_EXPORT TS_SetCammingSlaveRelative(WORD RunAddress, short
ReferenceBase, short EnableSlave, short MoveMoment,

long OffsetFromMaster, double MultlnputFactor, double

MultOutputFactor);
#endif
/***

Function: Setup slave parameters in relative camming mode.

Input arguments:

RunAddress: memory addresses where the CAM is executed at run

time. IT any of them is O it means that no start address is set

© Technosoft 2009 169 TML_LIB — User Manual

ReferenceBase:
FROM_MEASURE -> the position reference starts from the
actual measured position value
FROM_REFERENCE -> the position reference starts from the
actual reference position value
EnableSlave:
SLAVE_NONE -> do not enable slave operation
SLAVE_COMMUNICATION_CHANNEL -> enable operation got via
a communication channel
SLAVE_2ND_ENCODER -> enable operation read from 2nd
encoder or P&D inputs
MoveMoment:
UPDATE_NONE -> setup motion parameters, movement will
start latter (on an Update command)
UPDATE_IMMEDIATE -> start moving immediate
UPDATE_ON_EVENT -> start moving on event
nOffsetFromMaster, nMultlinputFactor, nMultOutputFactor: if non-
zero, set the correspondent parameter
Output arguments:

return: TRUE iFf no error; FALSE i1f error
***/

#ifdef _ cplusplus

BOOL TML_EXPORT TS_SetCammingSlaveAbsolute(WORD RunAddress, double
LimitVariation, short ReferenceBase, short EnableSlave, short
MoveMoment,

long OffsetFromMaster = 0, double MultlnputFactor = O,
double MultOutputFactor = 0);
#else
BOOL TML_EXPORT TS_SetCammingSlaveAbsolute(WORD RunAddress, double
LimitVariation, short ReferenceBase, short EnableSlave, short
MoveMoment,

long OffsetFromMaster, double MultlnputFactor, double
MultOutputFactor);
#endif

Function: Setup slave parameters in absolute camming mode.
Input arguments:
RunAddress: memory addresses where the CAM is executed at run
time. ITf any of them is 0 it means that no start address is set
LimitVariation:
NO_VARIATION (0) -> no limitation on speed value at the
value set iIn the Drive Setup
A value which can be an acceleration or speed in
function of the reference type.
ReferenceBase:
FROM_MEASURE -> the position reference starts from the
actual measured position value
FROM_REFERENCE -> the position reference starts from the
actual reference position value

© Technosoft 2009 170 TML_LIB — User Manual

EnableSlave:
SLAVE_NONE -> do not enable slave operation
SLAVE_COMMUNICATION_CHANNEL -> enable operation got via
a communication channel
SLAVE_2ND_ENCODER -> enable operation read from 2nd
encoder or P&D inputs
MoveMoment:
UPDATE_NONE -> setup motion parameters, movement will
start latter (on an Update command)
UPDATE_IMMEDIATE -> start moving immediate
UPDATE_ON_EVENT -> start moving on event
nOffsetFromMaster, nMultlnputFactor, nMultOutputFactor: 1If non-
zero, set the correspondent parameter
Output arguments:
return: TRUE if no error; FALSE if error

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

/

BOOL TML_EXPORT TS_SetMasterResolution(long MasterResolution);
/ xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

Function: Setup the resolution for the master encoder connected on the
second encoder input of the drive.

Input arguments:

MasterResolution:
FULL_RANGE (0) -> select this option if the master
position is not cyclic. (e.g. the resolution is equal with the whole
32-bit

range of position)

Value that reprezents the number of lines of the 2nd
master encoder
Output arguments:

return: TRUE if no error; FALSE if error
***l

BOOL TML_EXPORT TS_SendSynchronization (long Period);
/***
Function: Setup drives to send synchronization messages.
Input arguments:
Period: the time period between 2 sends
Output arguments:
return: TRUE if no error; FALSE if error

BOOL TML_EXPORT TS_Stop(void);
/***
Function: Stop the motion.
Output arguments:
return: TRUE if no error; FALSE if error

***/

BOOL TML_EXPORT TS_QuickStopDecelerationRate(double Deceleration);

/***

© Technosoft 2009 171 TML_LIB — User Manual

Function: Set the deceleration rate used for QuickStop or SCurve
positioning profile.
Input Argumernts:
Deceleration: the value of the deceleration rate
Output arguments:
return: TRUE if no error; FALSE if error
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa /

BOOL TML_EXPORT TS_SendPVTPoint(long Position, double Velocity, unsigned
int Time, short PVTCounter);

/***

Function: Sends a PVT point to the drive.
Input arguments:

Position: drive position for the desired point
Velocity: desired velocity of the drive at the point
Time: amount of time for the segment

PVTCounter: integrity counter for current PVT point
Output arguments:
return: TRUE if no error; FALSE if error

***/

BOOL TML_EXPORT TS_SendPVTFirstPoint(long Position,double
Velocity,unsigned int Time, short PVTCounter,
short

PositionType, long InitialPosition, short MoveMoment, short
ReferenceBase);
/***

Function: Sends the first point from a series of PVT points and sets
the PVT motion mode.

Input arguments:

Position: drive position for the desired point
Velocity: desired velocity of the drive at the point
Time: amount of time for the segment

PVTCounter: integrity counter for current PVT point
PositionType: ABSOLUTE_POSITION or RELATIVE_POSITION
InitialPosition: drive initial position at the start of an
absolute PVT movement.
It is taken into
consideration only if an absolute movement is requested
MoveMoment:
UPDATE_NONE -> setup motion parameters, movement will
start latter (on an Update command)
UPDATE_IMMEDIATE -> start moving immediate
UPDATE_ON_EVENT -> start moving on event
ReferenceBase:
FROM_MEASURE -> the position reference starts from the
actual measured position value
FROM_REFERENCE -> the position reference starts from the
actual reference position value
Output arguments:
return: TRUE if no error; FALSE if error

© Technosoft 2009 172 TML_LIB — User Manual

BOOL TML_EXPORT TS_PVTSetup(short ClearBuffer, short IntegrityChecking,
short ChangePVTCounter,
short
AbsolutePositionSource, short ChangeLowLevel, short PVTCounterValue,
short LowLevelValue);
/ nnn
Function: For PVT motion mode parametrization and setup.
Input arguments:
ClearBuffer: 0 -> nothing
1 -> clears the PVT buffer
IntegrityChecking: 0 -> PVT integrity counter checking is active
(default)

1 -> PVT integrity counter checking is inactive
ChangePVTCounter: 0 -> nothing
1 -> drive internal PVT integrity counter is
changed with the value specified PVTCounterValue
AbsolutePositionSource: specifies the source for the initial
position in case the PVT motion mode will be absolute
0 -> initial position read from PVTPOSO
1 -> initial position read from current
value of target positio (TPOS)
ChangeLowLevel : 0 -> nothing
1 -> the parameter for BufferLow signaling
is changed with the value specified LowLevelValue

PVTCounterValue: New value for the drive internal PVT integrity
counter
LowLevelValue: New value for the level of the BufferLow signal
Output arguments:
return: TRUE if no error; FALSE if error

BOOL TML_EXPORT TS_SendPTPoint(long Position, unsigned int Time, short
PTCounter);
/***
Function: Sends a PT point to the drive.
Input arguments:
Position: drive position for the desired point
Time: amount of time for the segment
PTCounter: integrity counter for current PT point
Output arguments:
return: TRUE if no error; FALSE if error

***/

BOOL TML_EXPORT TS_SendPTFirstPoint(long Position, unsigned int Time,
short PTCounter,

short
PositionType, long InitialPosition, short MoveMoment, short

ReferenceBase);
/***

Function: Sends the first point from a series of PT points and sets the
PT motion mode.

© Technosoft 2009 173 TML_LIB — User Manual

Input arguments:

Position: drive position for the desired point

Time: amount of time for the segment

PTCounter: integrity counter for current PT point
PositionType: ABSOLUTE_POSITION or RELATIVE_POSITION
InitialPosition: drive initial position at the start of an

absolute PT movement. It is taken into consideration only if an absolute
movement is requested
MoveMoment:
UPDATE_NONE -> setup motion parameters, movement will
start latter (on an Update command)
UPDATE_IMMEDIATE -> start moving immediate
UPDATE_ON_EVENT -> start moving on event
ReferenceBase:
FROM_MEASURE -> the position reference starts from the
actual measured position value
FROM_REFERENCE -> the position reference starts from the
actual reference position value
Output arguments:
return: TRUE 1f no error; FALSE if error
***/
BOOL TML_EXPORT TS_PTSetup(short ClearBuffer, short IntegrityChecking,
short ChangePTCounter,
short
AbsolutePositionSource, short ChangeLowLevel, short PTCounterValue,
short LowLevelValue);
/***
Function: For PT motion mode parametrization and setup.
Input arguments:
ClearBuffer:0 -> nothing
1 -> clears the PT buffer
IntegrityChecking: 0 -> PT integrity counter checking is active
(default)
1 -> PT integrity counter checking is inactive
ChangePVTCounter: 0 -> nothing
1 -> drive internal PT integrity counter is
changed with the value specified PTCounterValue
AbsolutePositionSource: specifies the source for the initial
position in case the PT motion mode will be absolute
0 -> initial position read from PVTPOSO
1 -> initial position read from current value
of target positio (TPOS)
ChangeLowLevel: 0 -> nothing
1 -> the parameter for BufferLow signaling is
changed with the value specified LowLevelValue

PTCounterValue: New value for the drive internal PT integrity
counter
LowLevelValue: New value for the level of the BufferLow signal
Output arguments:
return: TRUE if no error; FALSE if error

***/

© Technosoft 2009 174 TML_LIB — User Manual

BOOL TML_EXPORT TS_MoveSCurveRelative(long RelPosition, double Speed,
double Acceleration, long JerkTime, short MoveMoment, short

DecelerationType);
/***

Function: For relative S-Curve motion mode.
Input arguments:

RelPosition: Relative position reference value

Speed: Slew speed

Acceleration: Acceleration decceleration

JerkTime: The time after the acceleration reaches the
desired value.

MoveMoment:

UPDATE_NONE -> setup motion parameters, movement will
start latter (on an Update command)
UPDATE_IMMEDIATE -> start moving immediate
UPDATE_ON_EVENT -> start moving on event
DecelerationType:
S_CURVE_SPEED PROFILE -> s-curve speed profile
TRAPEZOIDAL_SPEED_PROFILE -> trapezoidal speed profile
Output arguments:
return: TRUE if no error; FALSE if error

BOOL TML_EXPORT TS_MoveSCurveAbsolute(long AbsPosition, double Speed,
double Acceleration, long JerkTime, short MoveMoment, short

DecelerationType);
/***

Function: For absolute S-Curve motion mode.
Input arguments:

AbsPosition: Absolute position reference value

Speed: Slew speed

Acceleration: Acceleration decceleration

JerkTime: The time after wich the acceleration reaches the
desired value.

MoveMoment:

UPDATE_NONE -> setup motion parameters, movement will
start latter (on an Update command)
UPDATE_IMMEDIATE -> start moving immediate
UPDATE_ON_EVENT -> start moving on event
DecelerationType:
S_CURVE_SPEED_PROFILE -> s-curve speed profile
TRAPEZOIDAL_SPEED PROFILE -> trapezoidal speed profile
Output arguments:
return: TRUE if no error; FALSE if error

[dede oo e e o e e e e e e e e e sk e sk e sk ek e sk e ke e ke e ke e ke e ke e ke ke ke sk ke sk sk sk ke sk ek e ke e ke e ke e ke e ke e ok /

AEEAXAAAAAAAAAAAAAXAAAAAAAXAAAAAAAXAAAAAAAXAAAAAAAXAAAAAAAXAAAAAAAXAAAXAAK
/ /

#ifdef _ cplusplus
BOOL TML_EXPORT TS_CheckEvent(BOOL& event);

© Technosoft 2009 175 TML_LIB — User Manual

#else
BOOL TML_EXPORT TS_CheckEvent(BOOL* event);
#endif
/***
Function: Check if the actually active event occured.
Output arguments:
event: TRUE on event detected
return: TRUE if no error; FALSE if error

BOOL TML_EXPORT TS_SetEventOnMotionComplete(BOOL WaitEvent, BOOL
EnableStop);
/***
Function: Setup event when the motion is complete.
Input arguments:
WaitEvent: TRUE -> Wait until event occurs; FALSE ->
Continue
EnableStop: TRUE -> On motion complete, stop the motion,
FALSE -> Don"t stop the motion
Output arguments:
return: TRUE if no error; FALSE if error

***/

BOOL TML_EXPORT TS_SetEventOnMotorPosition(short PositionType, long
Position, BOOL Over, BOOL WaitEvent, BOOL EnableStop);

Function: Setup event when motor position is over/under imposed value.
Input arguments:
PositionType: ABSOLUTE_POSITION or RELATIVE_POSITION

Position: Position value to be reached

Over: TRUE -> Look for position over; FALSE -> Look for
position below

WaitEvent: TRUE -> Wait until event occurs; FALSE ->
Continue

EnableStop: TRUE -> On event, stop the motion, FALSE -> Don"t

stop the motion
Output arguments:

return: TRUE iFf no error; FALSE if error
***/

BOOL TML_EXPORT TS_SetEventOnLoadPosition(short PositionType, long
Position, BOOL Over, BOOL WaitEvent, BOOL EnableStop);

Function: Setup event when load position is over/under imposed value.
Input arguments:
PositionType: ABSOLUTE_POSITION or RELATIVE_POSITION

Position: Position value to be reached

Over: TRUE -> Look for position over; FALSE -> Look for
position below

WaitEvent: TRUE -> Wait until event occurs; FALSE ->
Continue

© Technosoft 2009 176 TML_LIB — User Manual

EnableStop: TRUE -> On event, stop the motion, FALSE -> Don"t
stop the motion
Output arguments:

return: TRUE if no error; FALSE if error
***/

BOOL TML_EXPORT TS_SetEventOnMotorSpeed(double Speed, BOOL Over, BOOL

WaitEvent, BOOL EnableStop);

/ nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn
Function: Setup event when motor speed is over/under imposed value.
Input arguments:

Speed: Speed value to be reached

Over: TRUE -> Look for speed over; FALSE -> Look for
speed below

WaitEvent: TRUE -> Wait until event occurs; FALSE ->
Continue

EnableStop: TRUE -> On event, stop the motion, FALSE -> Don"t

stop the motion
Output arguments:
return: TRUE if no error; FALSE if error

BOOL TML_EXPORT TS_SetEventOnLoadSpeed(double Speed, BOOL Over, BOOL

WaitEvent, BOOL EnableStop);

/***
Function: Setup event when load speed is over/under imposed value.
Input arguments:

Speed: Speed value to be reached

Over: TRUE -> Look for speed over; FALSE -> Look for
speed below

WaitEvent: TRUE -> Wait until event occurs; FALSE ->
Continue

EnableStop: TRUE -> On event, stop the motion, FALSE -> Don"t

stop the motion
Output arguments:

return: TRUE iFf no error; FALSE if error
***/

BOOL TML_EXPORT TS_SetEventOnTime(WORD Time, BOOL WaitEvent, BOOL
EnableStop);
/

Function: Setup event after a time interval.
Input arguments:

Time: Time after which the event will be set

WaitEvent: TRUE -> Wait until event occurs; FALSE ->
Continue

EnableStop: TRUE -> On event, stop the motion, FALSE -> Don"t

stop the motion
Output arguments:
return: TRUE if no error; FALSE if error

***/

© Technosoft 2009 177 TML_LIB — User Manual

BOOL TML_EXPORT TS_SetEventOnPositionRef(long Position, BOOL Over, BOOL
WaitEvent, BOOL EnableStop);

Function: Setup event when position reference is over/under imposed
value.
Input arguments:

Position: Position value to be reached

Over: TRUE -> Look for speed over; FALSE -> Look for
speed below

WaitEvent: TRUE -> Wait until event occurs; FALSE ->
Continue

EnableStop: TRUE -> On event, stop the motion, FALSE -> Don"t

stop the motion
Output arguments:
return: TRUE if no error; FALSE if error

BOOL TML_EXPORT TS_SetEventOnSpeedRef(double Speed, BOOL Over, BOOL

WaitEvent, BOOL EnableStop);

/***
Function: Setup event when speed reference is over/under imposed value.
Input arguments:

Speed: Speed value to be reached

Over: TRUE -> Look for speed over; FALSE -> Look for
speed below

WaitEvent: TRUE -> Wait until event occurs; FALSE ->
Continue

EnableStop: TRUE -> On event, stop the motion, FALSE -> Don"t

stop the motion
Output arguments:
return: TRUE if no error; FALSE if error

***l

BOOL TML_EXPORT TS_SetEventOnTorqueRef(int Torque, BOOL Over, BOOL
WaitEvent, BOOL EnableStop);
/***
Function: Setup event when torque reference is over/under imposed
value.
Input arguments:

Torque: Torque value to be reached

Over: TRUE -> Look for speed over; FALSE -> Look for
speed below

WaitEvent: TRUE -> Wait until event occurs; FALSE ->
Continue

EnableStop: TRUE -> On event, stop the motion, FALSE -> Don"t

stop the motion
Output arguments:
return: TRUE if no error; FALSE if error

***/

BOOL TML_EXPORT TS_SetEventOnEncoderIndex(short IndexType, short
TransitionType, BOOL WaitEvent, BOOL EnableStop);

© Technosoft 2009 178 TML_LIB — User Manual

/***

Function: Setup event when encoder index is triggered.
Input arguments:

IndexType: INDEX_1 or INDEX_ 2

TransitionType: TRANSITION _HIGH _TO_LOW or
TRANSITION_LOW_TO_HIGH

WaitEvent: TRUE -> Wait until event occurs; FALSE ->
Continue

EnableStop: TRUE -> On event, stop the motion, FALSE -> Don"t

stop the motion
Output arguments:
return: TRUE if no error; FALSE if error

***/

BOOL TML_EXPORT TS_SetEventOnLimitSwitch(short LSWType, short
TransitionType, BOOL WaitEvent, BOOL EnableStop);
/ nnnnnnnnnnnnnnnnnnnnnnnnnnnn
Function: Setup event when selected limit switch is triggered.
Input arguments:

LSWType: LSW_NEGATIVE or LSW_POSITIVE

TransitionType: TRANSITION_HIGH_TO _LOW or
TRANSITION_LOW_TO_HIGH

WaitEvent: TRUE -> Wait until event occurs; FALSE ->
Continue

EnableStop: TRUE -> On event, stop the motion, FALSE -> Don"t

stop the motion
Output arguments:
return: TRUE if no error; FALSE if error

*xKK f

BOOL TML_EXPORT TS_SetEventOnDigital Input(BYTE InputPort, short 10State,
BOOL WaitEvent, BOOL EnableStop);
/***
Function: Setup event when selected input port status is I0State.
Input arguments:

InputPort: Input port number

I0State: 10_LOW or 10_HIGH

WaitEvent: TRUE -> Wait until event occurs; FALSE ->
Continue

EnableStop: TRUE -> On event, stop the motion, FALSE

-> Don"t stop the motion
Output arguments:
return: TRUE if no error; FALSE if error

***/

BOOL TML_EXPORT TS_SetEventOnHomelnput(short 10State, BOOL WaitEvent,
BOOL EnableStop);
/ nnnnnnnnnnnnnnnnnnnnnnnnn
Function: Setup event when selected input port status is 10State.
Input arguments:
I0State: 10_LOW or 10_HIGH

© Technosoft 2009 179 TML_LIB — User Manual

WaitEvent: TRUE -> Wait until event occurs; FALSE ->
Continue

EnableStop: TRUE -> On event, stop the motion, FALSE
-> Don"t stop the motion
Output arguments:

return: TRUE if no error; FALSE if error

Y Saialaiaiaiaiaiaiaiaiaialaialaialaialaialaialaiabaialaialaaie /
/ INPUT / OUTPUT functions /

/***/

BOOL TML_EXPORT TS_Setuplnput(BYTE nl0O);

Function: Setup 10 port as input.
Input arguments:

nlo: Port number to be set as input
Output arguments:
return: TRUE if no error; FALSE if error

***/

#ifdef _ cplusplus

BOOL TML_EXPORT TS_Getlnput(BYTE nlO, BYTE& InValue);

#else

BOOL TML_EXPORT TS Getlnput(BYTE nlO, BYTE* InValue);

#endif

/***
Function: Get input port status.
Input arguments:

nlo: Input port number to be read

Output arguments:
Invalue: the input port status value (0 or 1)
return: TRUE if no error; FALSE if error

***/

#ifdef _ cplusplus

BOOL TML_EXPORT TS_GetHomelnput(BYTE& Invalue);
#else

BOOL TML_EXPORT TS_GetHomelnput(BYTE* InValue);
#endif
/xxzs

Function: Get home input port status.

Output arguments:
Invalue: the input port status value (0 or 1)
return: TRUE if no error; FALSE if error

***/

BOOL TML_EXPORT TS_SetupOutput(BYTE nl0);

/***

Function: Setup 10 port as output.
Input arguments:

© Technosoft 2009 180 TML_LIB — User Manual

nlO: Port number to be set as output
Output arguments:

return: TRUE if no error; FALSE if error
nnnnnnnnnnnnnn /
BOOL TML_EXPORT TS_SetOutput(BYTE nlO, BYTE OutValue);
/ nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn
Function: Set output port status.
Input arguments:
nlo: Output port number to be written
OutValue: Output port status value to be set (0 or
1)
Output arguments:
return: TRUE if no error; FALSE if error
nnnnnnnnnnnnnnnnnnnnn /

#ifdef _ cplusplus
BOOL TML_EXPORT TS_GetMultiplelnputs(LPCSTR pszVarName, short& Status);
#else
BOOL TML_EXPORT TS_GetMultiplelnputs(LPCSTR pszVarName, short* Status);
#endif
/***
Function: Read multiple inputs.
Input arguments:
pszVarName: temporary variable name used to read input status
Output arguments:
Status: value of multiple Input status.
return: TRUE if no error; FALSE if error

***/

BOOL TML_EXPORT TS_SetMultipleOutputs(LPCSTR pszVarName, short Status);
/***
Function: Set multiple outputs (for Firmware versions FAXX).
pszVarName: temporary variable name used to set output status
Status: value to be set
Output arguments:

return: TRUE if no error; FALSE if error
nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn /
BOOL TML_EXPORT TS_SetMultipleOutputs2(short SelectedPorts, short
Status);
/*****2***
Function: Set multiple outputs (for Firmware versions FBxx).
SelectedPorts: port mask. Set bit n to 1 if you want to update
the status of port n.
Status: value to be set
Output arguments:
return: TRUE if no error; FALSE if error
xxxxxxxxxxxxxxxx /
Y faieiaiaiaiaiaiaioiaiofaiaiaiaieiaiaiaiaiaiaiofaiaiaiaialaiaiafoliaiaialale /

© Technosoft 2009 181 TML_LIB — User Manual

/***/

BOOL TML_EXPORT TS_SendDataToHost(BYTE HostAddress, DWORD StatusRegMask,
WORD ErrorRegMask);
/***
Function: Send status and error registers to host.
Input arguments:
HostAddress: axis ID of host
StatusRegMask: bit mask for status register
ErrorRegMask: bit mask for error register
Output arguments:
return: TRUE if no error; FALSE if error

#ifdef _ cplusplus
BOOL TML_EXPORT TS_OnlineChecksum(WORD startAddress, WORD endAddress,
WORD& checksum);
#else
BOOL TML_EXPORT TS_OnlineChecksum(WORD startAddress, WORD endAddress,
WORD* checksum) ;
#endif
/***
Function: Get checksum of a memory range.
startAddress: start memory address
endAddress: end memory address
Output arguments:
checksum: checksum (sum modulo OxFFFF) of a memory range
returned by the active drive/motor

return: TRUE if no error; FALSE if error
***/

#ifdef _ cplusplus
BOOL TML_EXPORT TS_DownloadProgram(LPCSTR pszOutFile, WORD&
wEntryPoint);
#else
BOOL TML_EXPORT TS_DownloadProgram(LPCSTR pszOutFile, WORD*
wEntryPoint);
#endif
/***
Function: Download a COFF formatted file to the drive, and return the
entry point of that file.
Input arguments:
pszOutFile: Name of the output TML object file
Output arguments:
wEntryPoint: the entry point (start address) of the downloaded

return: TRUE if no error; FALSE if error

BOOL TML_EXPORT TS_GOTO(WORD address);

/***

Function: Execute a GOTO instruction on the drive.

© Technosoft 2009 182 TML_LIB — User Manual

Input arguments:
address: program memory address of the instruction
Output arguments:

return: TRUE if no error; FALSE if error
***/

BOOL TML_EXPORT TS_GOTO_Label (LPCSTR pszlLabel);
/ nnnnnnnnnnnnnnnnnnnnnn
Function: Execute a GOTO instruction on the drive.
Input arguments:
pszLabel: label of the instruction
Output arguments:
return: TRUE if no error; FALSE if error

***/

BOOL TML_EXPORT TS_CALL(WORD address);
/***
Function: Execute a CALL instruction on the drive.
Input arguments:
address: address of the procedure
Output arguments:
return: TRUE if no error; FALSE if error

BOOL TML_EXPORT TS_CALL_Label (LPCSTR pszFunctionName);
/***
Function: Execute a CALL instruction on the drive.
Input arguments:
pszFunctionName: name of the procedure to be executed
Output arguments:

return: TRUE if no error; FALSE if error
***/

BOOL TML_EXPORT TS_CancelableCALL(WORD address);

/ * X
Function: Execute a cancelable call (CALLS) instruction on the drive.
Input arguments:

address: address of the procedure
Output arguments:
return: TRUE if no error; FALSE if error

***/

BOOL TML_EXPORT TS_CancelableCALL_Label (LPCSTR pszFunctionName);
/***
Function: Execute a cancelable call (CALLS) instruction on the drive.
Input arguments:
pszFunctionName: name of the procedure to be executed
Output arguments:
return: TRUE if no error; FALSE if error

BOOL TML_EXPORT TS_ABORT(void);

© Technosoft 2009 183 TML_LIB — User Manual

/***

Function: Execute ABORT instruction on the drive (aborts execution of
a procedure called
with cancelable call instruction).
Output arguments:
return: TRUE if no error; FALSE if error

BOOL TML_EXPORT TS_Execute(LPCSTR pszCommands);
/***
Function: Execute TML commands entered in TML source code format (as is
entered in Command Interpreter).
Input arguments:
pszCommands: String containing the TML source code to be
executed. Multiple lines are allowed.
Output arguments:
return: TRUE if no error; FALSE if error

***/

BOOL TML_EXPORT TS_ExecuteScript(LPCSTR pszFileName);
/***
Function: Execute TML commands in TML source code, from a script file
(as is entered in Command Interpreter).

Input arguments:

pszFileName: The name of the file containing the TML source code

to be executed.

Output arguments:

return: TRUE iFf no error; FALSE if error
***/

BOOL TML_EXPORT TS_GetOutputOfExecute(LPSTR pszOutput, int nMaxChars);
/ xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx *
Function: Return the TML output code of the last previously executed
library function call.
Input arguments:
pszOutput: String containing the TML source code generated at
the last library function call.
nMaxChars: maximum number of characters to return in the string
Output arguments:
return: TRUE 1f no error; FALSE if error

***/

BOOL TML_EXPORT TS_SetupLogger (WORD wLogBufferAddr, WORD wLogBufferLen,
WORD* arrayAddresses, WORD countAddr, WORD period);
/x
Function: Setup logger parameters (could be set up on a group/broadcast
destination).
Input arguments:
wLogBufferAddr: The address of logger buffer in drive memory,
where data will be stored during logging
wLogBufferLen: The length in WORDs of the logger buffer

© Technosoft 2009 184 TML_LIB — User Manual

arrayAddresses: An array containing the drive memory addresses
to be logged

countAddr: The number of memory addresses to be logged

period: How offen to log the data: a value between 1 and 7FFF
(useful only for new generation drives).

IT it is different than 1, one set of data will be

stored at every "period"” samplings.
Output arguments:

return: TRUE if no error; FALSE if error

***/

BOOL TML_EXPORT TS_StartLogger(WORD wLogBufferAddr, BYTE LogType);
/***
Function: Start the logger on a drive (could be started on a
group/broadcast destination).
Input arguments:
wLogBufferAddr: address of logger buffer (previously set by
TS SetuplLogger)
LogType:
LOGGER_FAST: logging occurs iIn fast sampling
control loop (current loop)
LOGGER_SLOW: logging occurs in slow sampling
control loop (position/speed loop)
Output arguments:
return: TRUE if no error; FALSE if error

***l

#ifdef _ cplusplus
BOOL TML_EXPORT TS_CheckLoggerStatus(WORD wLogBufferAddr, WORD& status);
#else
BOOL TML_EXPORT TS_CheckLoggerStatus(WORD wLogBufferAddr, WORD* status);
#endif
/***
Function: Check logger status. (destination must be a single axis).
Input arguments:
wLogBufferAddr: address of logger buffer (previously set by
TS_SetuplLogger)
Output arguments:
status: Number of points still remaining to capture; if it is O,
the logging is completed
return: TRUE if no error; FALSE if error

#ifdef _ cplusplus

BOOL TML_EXPORT TS_UploadLoggerResults(WORD wLogBufferAddr, WORD*
arrayValues, WORD& countValues);

#else

BOOL TML_EXPORT TS_UploadLoggerResults(WORD wLogBufferAddr, WORD*
arrayValues, WORD* countValues);

#endif

/ xxxxxxxxxxxxxxxxxxxxxxx

© Technosoft 2009 185 TML_LIB — User Manual

Function: Upload logged data from the drive (destination must be a
single axis).
Input arguments:
wLogBufferAddr: address of logger buffer (previously set by
TS_SetuplLogger)

arrayValues: Pointer to the array where the uploaded data is
stored on the PC

countValues: The size of arrayValues
Output arguments:

arrayValues: uploaded logger data

countValues: The size of actualized data (lower or equal with
countValues input value)

return: TRUE if no error; FALSE if error

***/

void TML_EXPORT
TS _RegisterHandlerForUnrequestedDriveMessages(pfnCal lbackRecvDriveMsg

handler);
/ xxxxxxxxx

Function: Register application®s handler for unrequested drive
messages.

Input arguments:

pfnCal IbackRecvDriveMsg: pointer to handler

Output arguments:
***/

BOOL TML_EXPORT TS_CheckForUnrequestedDriveMessages(void);

Function: Check if there are new unrequested drive messages and call
handler for every message received.
Input arguments:
Output arguments:
return: TRUE if no error; FALSE if error
aaa nn/

BOOL TML_EXPORT TS_Drivelnitialisation(void);
/***

Function: Execute ENDINIT command and verify if the setup table is
valid. This function

must be called only after TS_LoadSetup & TS_SetupAxis

& TS _SelectAxis are called.

Input arguments:

Output arguments:

return: TRUE if no error; FALSE if error

***/

#ifdeft _ _cplusplus
}
#endif

#endift //__TML_LIB_H__

© Technosoft 2009 186 TML_LIB — User Manual

®

TECHNOSOTFT

	Read This First
	About This Manual
	Scope of This Manual
	Notational Conventions
	Related Documentation
	If you Need Assistance …

	Contents
	1 Introduction
	2 Getting started
	2.1 Hardware installation
	2.2 Software installation on Microsoft Windows platforms
	2.2.1 Installing EasySetUp
	2.2.2 Installing TML_LIB library

	2.3 Software installation on Linux x86 architectures
	2.3.1 Installing Microsoft Windows emulator
	2.3.2 Installing EasySetUp
	2.3.3 Installing TML_LIB library

	2.4 Build the host application with TML_lib
	2.4.1 Drive/motor setup
	2.4.2 Build your application with TML_LIB

	3 TML_LIB description
	3.1 Basic concept
	3.2 Multithread and multiprocess applications with TML_LIB
	3.3 Functions descriptions
	3.3.1 Communication setup
	3.3.1.1 TS_OpenChannel
	3.3.1.2 TS_SelectChannel
	3.3.1.3 TS_CloseChannel

	3.3.2 Drive setup
	3.3.2.1 TS_LoadSetup
	3.3.2.2 TS_SetupAxis
	3.3.2.3 TS_SetupGroup
	3.3.2.4 TS_SetupBroadcast
	3.3.2.5 TS_DriveInitialization
	3.3.2.6 TS_Save

	3.3.3 Drive administration
	3.3.3.1 TS_SelectAxis
	3.3.3.2 TS_SelectGroup
	3.3.3.3 TS_SelectBroadcast

	3.3.4 Drive/motor monitoring
	3.3.4.1 TS_ReadStatus
	3.3.4.2 TS_SendDataToHost
	3.3.4.3 TS_CheckForUnrequestedDriveMessages
	3.3.4.4 TS_RegisterHandlerForUnrequestedDriveMessages
	3.3.4.5 TS_OnlineChecksum

	3.3.5 Error handling
	3.3.5.1 TS_ResetFault
	3.3.5.2 TS_Reset
	3.3.5.3 TS_GetLastErrorText

	3.3.6 Motion programming
	3.3.6.1 TS_MoveAbsolute
	3.3.6.2 TS_MoveRelative
	3.3.6.3 TS_MoveSCurveAbsolute
	3.3.6.4 TS_MoveSCurveRelative
	3.3.6.5 TS_MoveVelocity
	3.3.6.6 TS_SetAnalogueMoveExternal
	3.3.6.7 TS_SetDigitalMoveExternal
	3.3.6.8 TS_SetOnlineMoveExternal
	3.3.6.9 TS_VoltageTestMode
	3.3.6.10 TS_TorqueTestMode
	3.3.6.11 TS_PVTSetup
	3.3.6.12 TS_SendPVTFirstPoint
	3.3.6.13 TS_SendPVTPoint
	3.3.6.14 TS_PTSetup
	3.3.6.15 TS_SendPTFirstPoint
	3.3.6.16 TS_SendPTPoint
	3.3.6.17 TS_SetGearingMaster
	3.3.6.18 TS_SetGearingSlave
	3.3.6.19 TS_SetCammingMaster
	3.3.6.20 TS_SetCammingSlaveRelative
	3.3.6.21 TS_SetCammingSlaveAbsolute
	3.3.6.22 TS_CamDownload
	3.3.6.23 TS_CamInitialization
	3.3.6.24 TS_SetMasterResolution
	3.3.6.25 TS_SendSynchronization

	3.3.7 Motor commands
	3.3.7.1 TS_Power
	3.3.7.2 TS_UpdateImmediate
	3.3.7.3 TS_UpdateOnEvent
	3.3.7.4 TS_Stop
	3.3.7.5 TS_SetPosition
	3.3.7.6 TS_SetTargetPositionToActual
	3.3.7.7 TS_SetCurrent
	3.3.7.8 TS_QuickStopDecelerationRate

	3.3.8 Events
	3.3.8.1 TS_CheckEvent
	3.3.8.2 TS_SetEventOnMotionComplete
	3.3.8.3 TS_SetEventOnMotorPosition
	3.3.8.4 TS_SetEventOnLoadPosition
	3.3.8.5 TS_SetEventOnMotorSpeed
	3.3.8.6 TS_SetEventOnLoadSpeed
	3.3.8.7 TS_SetEventOnTime
	3.3.8.8 TS_SetEventOnPositionRef
	3.3.8.9 TS_SetEventOnSpeedRef
	3.3.8.10 TS_SetEventOnTorqueRef
	3.3.8.11 TS_SetEventOnEncoderIndex
	3.3.8.12 TS_SetEventOnLimitSwitch
	3.3.8.13 TS_SetEventOnDigitalInput
	3.3.8.14 TS_SetEventOnHomeInput

	3.3.9 TML jumps and function calls
	3.3.9.1 TS_GOTO
	3.3.9.2 TS_GOTO_Label
	3.3.9.3 TS_CALL
	3.3.9.4 TS_CALL_Label
	3.3.9.5 TS_CancelableCALL
	3.3.9.6 TS_CancelableCALL_Label
	3.3.9.7 TS_ABORT
	3.3.9.8 TS_DownloadProgram
	3.3.9.9 TS_DownloadSwFile

	3.3.10 IO handling
	3.3.10.1 TS_SetupInput
	3.3.10.2 TS_GetInput
	3.3.10.3 TS_SetupOutput
	3.3.10.4 TS_SetOutput
	3.3.10.5 TS_GetHomeInput
	3.3.10.6 TS_GetMultipleInputs
	3.3.10.7 TS_SetMultipleOutputs
	3.3.10.8 TS_SetMultipleOutputs2

	3.3.11 Data transfer
	3.3.11.1 TS_SetIntVariable
	3.3.11.2 TS_GetIntVariable
	3.3.11.3 TS_SetLongVariable
	3.3.11.4 TS_GetLongVariable
	3.3.11.5 TS_SetFixedVariable
	3.3.11.6 TS_GetFixedVariable
	3.3.11.7 TS_GetVariableAddress
	3.3.11.8 TS_SetBuffer
	3.3.11.9 TS_GetBuffer

	3.3.12 Miscellaneous
	3.3.12.1 TS_Execute
	3.3.12.2 TS_ExecuteScript
	3.3.12.3 TS_GetOutputOfExecute

	3.3.13 Data logger
	3.3.13.1 TS_SetupLogger
	3.3.13.2 TS_StartLogger
	3.3.13.3 TS_CheckLoggerStatus
	3.3.13.4 TS_UploadLoggerResults

	4 Examples
	4.1 Start Up
	4.2 Drive status
	4.3 Error handling
	4.4 Basic move
	4.5 Homing
	4.6 External reference
	4.7 Multiaxes
	4.8 PVT – multithreading
	4.9 Logger
	4.10 Event handling
	4.11 I/O handling
	4.12 Distributed tasks

