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Chapter 9:  Don’t Mind the Interruptions 

We have a great foundation for our embedded system set up now, and you could already write a bunch 

of programs to do some neat things.  However, we want to have a fully enabled system that will provide 

a solid platform on which we can build bigger and better programs.  One of the most fundamental parts 

of an embedded system revolves around interrupts, and it is something you must be comfortable with if 

you are going to be serious about embedded design.  

 

Chapter 1 provided an overview of the concept of an interrupt in a system. The idea itself is simple: any 

event that needs immediate attention grabs the program counter to execute a special function called an 

interrupt service routine (ISR), runs the ISR, then returns the program counter to the location where it 

was  interrupted from in the first place. The program then continues its linear progression through the 

code in flash as if nothing ever happened.   

 

The interrupt capability of a processor is very much like any other peripheral on the microcontroller.  It 

has bits and bytes for configuration and status, and will provide signals to the MCU about events that 

occur.  Solid understanding of the interrupt system on a processor is absolutely critical to creating 

successful designs. The embedded Engineer can define an entire system driven by interrupts and 

optimize system performance and power consumption by using interrupts.  Though each processor core 

will have a unique set of rules that define how the interrupt hardware operates, the fundamentals can 

be easily carried across all platforms.  Once you get past the syntax and understand the critical aspects 

of the interrupt engine, then you are free to build a great system. 

9.1 Interrupts on the LPC214x 
Every microcontroller and microprocessor will have at least a few interrupt sources that provide 

powerful control to the firmware system.  Not only do interrupts allow signals to be prioritized to ensure 

that critical signals are handled in a timely fashion, but they also allow access to unique capabilities of 

the processor and its peripherals.  When we say “interrupt source” we are referring to simple binary 

inputs from different peripherals that the processor can detect, stop what it is currently working on, 

address the single source, and then resume what it was doing.  Interrupts can come from the GPIO 

peripheral (like a button press), from timers when they expire, from communication peripherals that let 

you know when new data has arrived, and many other sources.  The key concepts surrounding 

interrupts on any processor are quite general – this is what we looked at in Chapter 1.  The points are 

reviewed and expanded here since they are so important: 

1. An interrupt source must be configured and enabled in order to provide an interrupt signal that 

the interrupt controller will recognize.  If the interrupt is not enabled, the interrupt signal (flag) 

will still be asserted with the event, but the signal will be ignored by the interrupt controller and 

will thus not cause the processor to branch.  This signal can be polled instead. 

2. There is usually some sort of global interrupt enable (GIE) bit that must also be set to allow any 

interrupts to be active.  If the GIE is disabled, the individual interrupt signal will still be present 

and an interrupt will be triggered if the GIE is later enabled (as long as the interrupt flag has not 

been cleared). 
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3. When an interrupt occurs, an ISR is called automatically based on the source of the interrupt.  

Note that “called” is not the best term to use.  A more correct explanation is that the program 

counter moves to the address of the ISR based on flags and configuration of the interrupt 

controller.  Generally every interrupt source that is enabled will have its own unique ISR. 

4. On the LPC214x processors, two hardware priority groups are available.  The high priority 

interrupt is referred to as FIQ and the low priority interrupt is the IRQ.  The low priority ISR can 

be interrupted by the higher priority interrupt.  Another way to say that is that a high-priority 

interrupt can pre-empt a low-priority interrupt.  Multiple interrupt sources can be assigned to 

either of the two groups using configuration registers. 

5. Active interrupts of the same hardware priority can be prioritized in firmware, so even if two 

interrupts occur simultaneously, the higher priority interrupt can be serviced first. 

6. An interrupt source can occur even if its ISR is already executing.  Since interrupts of the same 

priority level are disabled while an ISR runs, the new interrupt event will not have any impact 

until the current ISR exits.  The interrupt signal will trigger another call to the ISR as soon as the 

interrupts are re-enabled as the ISR exits, unless the ISR has cleared the new source event flag. 

7. An interrupt can occur at any time and in any place in the code (as long as the required interrupt 

enable bits are set).  This means the program must be able to survive being interrupted at any 

point.  If there are places where the program simply cannot survive if it is interrupted, then 

interrupts must be disabled during that part of the code – a handy use of the GIE bit. 

8. When an interrupt occurs, the program “context” is saved so that resources can be used to 

execute the ISR code without destroying values in locations that maybe overwritten during the 

ISR.  The PC, CPSR, LR and other registers need to be saved and are done so automatically by the 

LPC214x (other processors do not automatically save registers for you, and leave it up to you to 

decide what needs to be saved).  If you use other resources that are shared in the main code 

and ISR, then those resources must be saved as well.  For example, say you have a scratch 

register “temp” that you use all the time for temporary storage.  If the ISR uses “temp” as well, 

then it must be saved first and restored on exit.  If you have global variables that are accessed in 

interrupt service routines, you need to be very careful on how these are managed. 

9. An ISR should execute as quickly as possible. When complete, the system context must be 

restored (the LPC214x does this for you as well) and the ISR returns and re-enables interrupts. 

 

There are many different interrupt sources on the LPC family of processors.  Each can be enabled 

individually, and you can have many different interrupt sources active.  No matter what interrupt source 

you are working with, the above rules apply to the behavior of that source.  In this chapter we will look 

at two of the interrupt sources that will be used on the development board: GPIO and Timer.  There are 

many others that we will take a quick look at here before diving into some greater detail. 

9.1.1 GPIO Interrupts 

Interrupts that come from sources external to the microcontroller are very powerful and are often a key 

element in low-power design since the processor can be in sleep mode until it is woken up by an 

external event.  Buttons are a great example.  Using a button interrupt source saves you polling for the 

button signal and allows user input to be sensed instantly without wasting any time.  It also essentially 

eliminates the chance of missing an input signal since the signal is detected in hardware and not cleared 

until the processor sees it and acknowledges it (even if the original signal source has long-since 

vanished).  Input sources can be extended beyond buttons to things like encoders, where fast signals can 

be read from other circuits.  Other devices in the system can provide wake-up signals as well on GPIOs. 
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9.1.2.1 Spurious Interrupts 

A problem that sometimes crops up with external interrupts extends from the very nature of an 

interrupt in that they are not determ

sources local to your microcontroller, when they are coming from external sources through GPIOs

are at the mercy of the real world, or worse, at the mercy of other embedded designers

circuits that interface to your system

that can impact digital signal quality.  The real world also contains a lot of mistakes that can send signals 

when there should not be any signals present.  Though communication protocols can be designed and 

implemented carefully, there is nothing that guarantees that everything works the way it should.

 

Spurious interrupts are those that occur when they should not, or at least when you 

to occur.  If you are trying to do something in your code and interrupts are happening so fast that your 

processor cannot devote any time to its main task, then you can have problems.  Connecting and 

disconnecting external lines, electrost

potential sources of spurious interrupts.  In many embedded systems, you either do not have problems 

like this, or if you do, you do not actually care.  If you have problems and you do care, t

either figure out how to stop them, or at least figure out how to deal with them in firmware.  You should 

not have to worry about spurious interrupts for the duration of this course, but it was a good time to 

plant the seed in your mind so you can look out for it in the future.

system, you can get some truly bizarre behavior.

 

Once interrupts are active on the development board, you might find that the J

trouble finding the processor when you start the debugger.  If you see the message shown in Figure 

9.1.2.1.1 pop up when you try to load your code

Take this as a reminder to put your development board in “boot loader” mode 

while pressing and releasing the reset button so that the processor resets but does not start running 

interrupt code.  This is an irritating “f

Figure 9.1.2.1.1: Error message when debugger is launched and dev board is running interrupt code

9.1.2 Timer Interrupts 

Timer peripherals can be interrupt sources and cause interrupts for various reasons. 

use is signaling the core when the timer overflows. 

interrupts enable some of the most powerful features of an embedded system. 

interrupt can provide a system tick 

the system.  Even if the system does not use real time (as in the exact month, day, hour, second, etc.) a 

system tick can be relative to the time when the device is first activated. 

system tick is usually given the highest possible priority

 

Release 1.0 

A problem that sometimes crops up with external interrupts extends from the very nature of an 

interrupt in that they are not deterministic.  While you can generally predict and account for interrupt 

sources local to your microcontroller, when they are coming from external sources through GPIOs

are at the mercy of the real world, or worse, at the mercy of other embedded designers

circuits that interface to your system.  Even if a system is built very well, the world is full of nasty things 

that can impact digital signal quality.  The real world also contains a lot of mistakes that can send signals 

any signals present.  Though communication protocols can be designed and 

implemented carefully, there is nothing that guarantees that everything works the way it should.

Spurious interrupts are those that occur when they should not, or at least when you do not want them 

.  If you are trying to do something in your code and interrupts are happening so fast that your 

processor cannot devote any time to its main task, then you can have problems.  Connecting and 

disconnecting external lines, electrostatic discharge (ESD) or power supply noise / transients are all 

potential sources of spurious interrupts.  In many embedded systems, you either do not have problems 

you do not actually care.  If you have problems and you do care, t

either figure out how to stop them, or at least figure out how to deal with them in firmware.  You should 

not have to worry about spurious interrupts for the duration of this course, but it was a good time to 

you can look out for it in the future.  Once you enable interrupts in your 

system, you can get some truly bizarre behavior. 

Once interrupts are active on the development board, you might find that the J-Link debugger has 

n you start the debugger.  If you see the message shown in Figure 

when you try to load your code, you need to click “Abort” and let the debugger crash.  

Take this as a reminder to put your development board in “boot loader” mode i.e. hold

while pressing and releasing the reset button so that the processor resets but does not start running 

code.  This is an irritating “feature” of IAR / ARM / J-Link (not sure whose fault it actually is). 

 

ge when debugger is launched and dev board is running interrupt code

imer peripherals can be interrupt sources and cause interrupts for various reasons.  The most common 

use is signaling the core when the timer overflows.  Though that might not sound like a big deal, timer 

interrupts enable some of the most powerful features of an embedded system.  For example, a

 that will maintain a very accurate reconciliation of elapsed time in 

Even if the system does not use real time (as in the exact month, day, hour, second, etc.) a 

system tick can be relative to the time when the device is first activated.  If priorities are available, the 

given the highest possible priority to ensure the most accurate period. 
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A problem that sometimes crops up with external interrupts extends from the very nature of an 

inistic.  While you can generally predict and account for interrupt 

sources local to your microcontroller, when they are coming from external sources through GPIOs you 

are at the mercy of the real world, or worse, at the mercy of other embedded designers who built 

he world is full of nasty things 

that can impact digital signal quality.  The real world also contains a lot of mistakes that can send signals 

any signals present.  Though communication protocols can be designed and 

implemented carefully, there is nothing that guarantees that everything works the way it should. 

do not want them 

.  If you are trying to do something in your code and interrupts are happening so fast that your 

processor cannot devote any time to its main task, then you can have problems.  Connecting and 

atic discharge (ESD) or power supply noise / transients are all 

potential sources of spurious interrupts.  In many embedded systems, you either do not have problems 

you do not actually care.  If you have problems and you do care, then you have to 

either figure out how to stop them, or at least figure out how to deal with them in firmware.  You should 

not have to worry about spurious interrupts for the duration of this course, but it was a good time to 

Once you enable interrupts in your 

Link debugger has 

n you start the debugger.  If you see the message shown in Figure 

, you need to click “Abort” and let the debugger crash.  

i.e. holding BUTTON1 

while pressing and releasing the reset button so that the processor resets but does not start running 

Link (not sure whose fault it actually is).  

ge when debugger is launched and dev board is running interrupt code 

The most common 

at might not sound like a big deal, timer 

For example, a timer 

that will maintain a very accurate reconciliation of elapsed time in 

Even if the system does not use real time (as in the exact month, day, hour, second, etc.) a 

If priorities are available, the 

to ensure the most accurate period.  
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In addition to keeping great time, timer interrupts facilitate low power operation of embedded systems.

Many embedded systems spend most of their time doing nothing.

core can go to sleep and consume very little

from the core and by itself consume much less power. 

program, a processor could be sleeping for 499,990 instruction cycles, be wo

toggle the LED, then go back to sleep. 

interrupt is going to cure our variable 1ms system tick problem and allow us to sleep the 

microcontroller.   

9.1.3 Communication Peripheral Interrupts

Communication peripherals usually provide a bunch of 

when receive buffers are full or transmit buffers are empty. 

warnings that the system can respond to and

its own interrupts, so multiple communications peripherals can be wired in to provide a very nice 

interrupt-driven system that will manage many data streams in and out of the processo

high data rates to be maintained without ever missing a byte (in these cases, it becomes important to 

ensure ISRs execute very quickly and are properly prioritized to handle the highest speed data). 

something that would be potentially impossible to manage by polling 

9.1.4 Other Peripheral Interrupts

There are many other interrupt sources available on the LPC214

timers, communications and GPIO typically make up most interrupt sources, there

unique interrupts available on microcontrollers that can come in handy. 

with a microcontroller that you have not had experience with, reading and understanding the available 

interrupts and how the processor mana

9.2 Interrupt Configuration
Now that you have the basic understanding of interrupts, we will take a detailed look at getting them up 

and running on the LPC214x processor. 

when compared to more simple 8-bit and 16

based microcontroller is put together because the interrupt controller is part of the core, yet the 

microcontroller vendor will have a number of peripheral interrupts that they want to use.  I

make sense once you have gained some experience with it. 

 

The hardest part is learning some of the syntax to make a program in C properly configure and respond 

to interrupts – that will all be detailed carefully here.

should start by reading the appropriate section in the datasheet,

guide.  Take a look at that now, even if you do not understand

designer, this is the approach that you typically have to take when learning. 

user guide open to the relevant section of the processor that you are working on.

 

The whole interrupt mechanism on the LPC214x is called the Vectored Interrupt 

short.  Basically that means that the interrupt controller works by branching 

 

Release 1.0 

In addition to keeping great time, timer interrupts facilitate low power operation of embedded systems.

Many embedded systems spend most of their time doing nothing.  If there is nothing to be done, the 

very little power.  Often a timer peripheral can run independently 

from the core and by itself consume much less power.  Going back to a simple 1-Hz LED blinking 

program, a processor could be sleeping for 499,990 instruction cycles, be woken up by the timer to 

toggle the LED, then go back to sleep.  This can drastically reduce overall power consumption.

interrupt is going to cure our variable 1ms system tick problem and allow us to sleep the 

Peripheral Interrupts 

Communication peripherals usually provide a bunch of interrupt signals to do things like let you know 

when receive buffers are full or transmit buffers are empty.  They may also indicate various errors or 

respond to and make sure data flows properly.  Each peripheral will have 

its own interrupts, so multiple communications peripherals can be wired in to provide a very nice 

driven system that will manage many data streams in and out of the processo

without ever missing a byte (in these cases, it becomes important to 

ensure ISRs execute very quickly and are properly prioritized to handle the highest speed data). 

lly impossible to manage by polling for data. 

9.1.4 Other Peripheral Interrupts 

There are many other interrupt sources available on the LPC214x and on other processors. 

timers, communications and GPIO typically make up most interrupt sources, there are always a few 

unique interrupts available on microcontrollers that can come in handy.  Whenever you begin working 

with a microcontroller that you have not had experience with, reading and understanding the available 

interrupts and how the processor manages those interrupts is extremely important. 

9.2 Interrupt Configuration 
Now that you have the basic understanding of interrupts, we will take a detailed look at getting them up 

and running on the LPC214x processor.  Admittedly, the ARM7 interrupt structure is fairly

bit and 16-bit architectures.  This is partially due to the way an ARM

based microcontroller is put together because the interrupt controller is part of the core, yet the 

ve a number of peripheral interrupts that they want to use.  I

make sense once you have gained some experience with it.   

The hardest part is learning some of the syntax to make a program in C properly configure and respond 

will all be detailed carefully here.  As with any new peripheral you want to learn, you 

should start by reading the appropriate section in the datasheet, which is Chapter 7 of the LPC21

Take a look at that now, even if you do not understand everything you read.  As an embedded 

designer, this is the approach that you typically have to take when learning.  You should always have the 

user guide open to the relevant section of the processor that you are working on. 

on the LPC214x is called the Vectored Interrupt Controller

Basically that means that the interrupt controller works by branching (“vectoring”) 
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In addition to keeping great time, timer interrupts facilitate low power operation of embedded systems. 

If there is nothing to be done, the 

Often a timer peripheral can run independently 

Hz LED blinking 

ken up by the timer to 

This can drastically reduce overall power consumption.  A timer 

interrupt is going to cure our variable 1ms system tick problem and allow us to sleep the 

to do things like let you know 

They may also indicate various errors or 

Each peripheral will have 

its own interrupts, so multiple communications peripherals can be wired in to provide a very nice 

driven system that will manage many data streams in and out of the processor.  This allows 

without ever missing a byte (in these cases, it becomes important to 

ensure ISRs execute very quickly and are properly prioritized to handle the highest speed data).  This is 

and on other processors.  Though 

are always a few 

Whenever you begin working 

with a microcontroller that you have not had experience with, reading and understanding the available 

Now that you have the basic understanding of interrupts, we will take a detailed look at getting them up 

fairly complicated 

This is partially due to the way an ARM-

based microcontroller is put together because the interrupt controller is part of the core, yet the 

ve a number of peripheral interrupts that they want to use.  It will all 

The hardest part is learning some of the syntax to make a program in C properly configure and respond 

As with any new peripheral you want to learn, you 

which is Chapter 7 of the LPC214x user 

As an embedded 

You should always have the 

Controller or VIC for 

(“vectoring”) to different 
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addresses depending on what source caused the interrupt.  To make it do this, interrupt configuration 

requires you to do the following (roughly in this order): 

1. Identify the interrupt sources you want to use in the design 

2. Setup the VIC registers to tell the VIC what interrupts you want to use and their priorities 

3. Enable the selected interrupts 

4. Write interrupt service routines to handle the enabled interrupts 

 

If the VIC is completely set up and the rest of the relevant processor functionality is configured, only 

then should you enable the global interrupt bits to let the system start responding to and servicing 

interrupt requests. Typically this is done just before the main program loop is entered and every other 

setup register is loaded. 

9.2.1 Interrupt Types 

When the user guide introduces the VIC, it classifies them into three types: 

1. Fast Interrupt reQuest (FIQ) 

2. Vectored Interrupt ReQuest (IRQ) 

3. Non-vectored interrupt 

 

However, as you read on in the user guide you can see that there are really only two types of interrupts 

– FIQ and IRQ – since the non-vectored interrupts are a subset of the IRQ classification.  The guide also 

says that the VIC provides 17 levels of prioritization – this is sort of true.  One might argue that interrupt 

priority means that if any ISR is running and a higher interrupt priority occurs, then the current 

ISR will be pre-empted and the ISR of the higher priority interrupt will be launched.  This is true between 

FIQ and IRQ interrupts.  If any IRQ ISR is running and an enabled FIQ occurs, the IRQ ISR is stopped while 

the FIQ ISR runs.  Once the FIQ is finished, the IRQ resumes.  When the IRQ is done, the main program is 

resumed. 

 

If an IRQ ISR is running and another IRQ interrupt occurs of higher priority, the current ISR finishes 

before the next one starts – there is no pre-emption.  That being said, if more than one IRQ occurs 

simultaneously, or if IRQ interrupts are temporarily disabled and several sources have generated 

interrupts during that time, then hardware will prioritize the execution of ISRs when interrupts are re-

enabled.  In this sense, IRQ interrupts have multiple hardware levels of priority. 

 

If you remember looking at the status register on the LPC processor, there is an enable bit for FIQ and 

another enable bit for IRQ interrupts.  This gives hardware global control over the two groups of 

interrupts (in other words, this processor has two GIE bits).  When an IRQ interrupt is active, the IRQ bit 

is clear so no other IRQs can interrupt an IRQ ISR.  However, the FIQ GIE is still set which allows an FIQ 

interrupt to occur during an IRQ ISR.  If the processor is running normally and an FIQ occurs, both the 

FIQ and IRQ bits are cleared while the FIQ ISR executes so that an IRQ cannot interrupt the processor.  

Once the FIQ ISR completes, both GIE bits are set.  If no interrupt sources have fired during the FIQ, the 

processor goes back to normal operation.  If an IRQ had occurred during the FIQ, then the processor will 

jump to the IRQ ISR as soon as the FIQ ISR exits. 
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9.2.2 LPC2142 Interrupt Sources 

The LPC214x processor architecture supports up to 32 different interrupt sources, though only 23 of 

them are used on the LPC214x family. Table 9.1 shows all of the sources available. 

 

Table 9.1 LPC214x Family Interrupts   

Source # 

(Decimal) 

Source # 

(Binary) 
Hex Mask Description 

0 00000 0x00000001 Watchdog Timer 

1 00001 0x00000002 Reserved 

2 00010 0x00000004 ARM Core0 

3 00011 0x00000008 ARM Core1 

4 00100 0x00000010 TIMER0 

5 00101 0x00000020 TIMER1 

6 00110 0x00000040 UART0 

7 00111 0x00000080 UART1 

8 01000 0x00000100 PWM0 

9 01001 0x00000200 I2C0 

10 01010 0x00000400 SPI0 

11 01011 0x00000800 SPI1 / SSP 

12 01100 0x00001000 Phase Lock Loop 

13 01101 0x00002000 Real time clock 

14 01110 0x00004000 External Interrupt 0 

15 01111 0x00008000 External Interrupt 1 

16 10000 0x00010000 External Interrupt 2 

17 10001 0x00020000 External Interrupt 3 

18 10010 0x00040000 Analog 0 

19 10011 0x00080000 I2C1 

20 10100 0x00100000 Brownout Detector 

21 10101 0x00200000 Analog 1 

22 10110 0x00400000 USB 

 

The number of each source is important as this number corresponds to its physical connection in 

hardware.  The value has nothing to do with the priority of the interrupt source.  Each source from the 

table above can be assigned as an FIQ or IRQ and will have its own ISR.  Where the interrupt is assigned 

in the interrupt vector control registers determines its priority.  Once interrupt functionality is setup, 

hardware takes care of the rest.  The table also shows the hexadecimal mask of the interrupt.  Each of 

the 32 possible sources has a flag bit associated with it.  These flag bits are used for certain VIC 

functionality that we will look at shortly. 

 

It is also important to note that each of these interrupt sources can be triggered from a variety of 

different signals in a peripheral, so there can be multiple flags that the ISR needs to check to determine 

the source.  This is up to the programmer to take care of.  For example, the UART0 interrupt source can 
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be triggered from the transmit hardware, the receive hardware, or two other signals from the 

peripheral.  Therefore, we will see that any ISR written to handle a particular interrupt source must 

include code to determine how the interrupt was triggered if multiple trigger sources are enabled.

9.2.3 Interrupt Registers 

There are 43 registers associated with the VIC, though 33 of t

each of the various IRQ interrupt sources. 

description of the purpose of the register, a bit map, and description of what each bit does. 

information will not be repeated here, but we will discuss a few of the most important registers that will 

be used. 

 

Now would be a good time to download the Chapter 9 start code so you can look at the interrupt code 

as it is being discussed.  All the interrupt 

information to explain and to do at the same time, especially if you are new to interrupts in general.  

You will have the opportunity to write some ISRs in this chapter, and in later chapters we 

more interrupts in the system. 

9.2.3.1 Interrupt Enable Register

Each interrupt source must be individually enabled before the VIC will use the signal to interrupt the 

processor.  There is one enable bit for

hexadecimal bit mask value that was shown in Table 9.1. 

interrupts, then you would OR the hex value

some point you wanted to disable the UART0 interrupt, you would write 

clear register.  The registers are detailed on page 68 and 69 in the reference manual.

9.2.3.2 Interrupt Select Register

The Select register is used to assign an interrupt source to either the FIQ group (bit is set) or the IRQ 

group (bit is clear).  Again, the bit numbers correspond to the interrupt numbers in Table 9.1.

The designer should be careful to make this distinction and use the high

that MUST be serviced with very little latency.

9.2.3.4 Vector Control Registers

There are 16 “slots” available in the IRQ group of interrupts where each slot can hold the add

(vector) of an interrupt service routine. 

slot it should look at to find the address of the interrupt service routine for a given 

lower the slot, the higher the priorit

following assignments to setup the button interrupts

VICVectCntl0 = VICVectCntl0_INIT;

VICVectCntl1 = VICVectCntl1_INIT;

VICVectCntl2 = VICVectCntl2_INIT;

VICVectCntl3 = VICVectCntl3_IN

 

where the INIT values are defined as:

 
#define VICVectCntl0_INIT (VIC_EINT0 | 0x20)

#define VICVectCntl1_INIT (VIC_EINT1 | 0x20)
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be triggered from the transmit hardware, the receive hardware, or two other signals from the 

that any ISR written to handle a particular interrupt source must 

include code to determine how the interrupt was triggered if multiple trigger sources are enabled.

There are 43 registers associated with the VIC, though 33 of them have the same functionality applied to 

each of the various IRQ interrupt sources.  The datasheet looks at each one in detail giving you a 

description of the purpose of the register, a bit map, and description of what each bit does. 

tion will not be repeated here, but we will discuss a few of the most important registers that will 

Now would be a good time to download the Chapter 9 start code so you can look at the interrupt code 

as it is being discussed.  All the interrupt setup code is in place for you as it would be a bit too much 

information to explain and to do at the same time, especially if you are new to interrupts in general.  

You will have the opportunity to write some ISRs in this chapter, and in later chapters we 

9.2.3.1 Interrupt Enable Registers (VICIntEnable and VICIntEnClear) 

Each interrupt source must be individually enabled before the VIC will use the signal to interrupt the 

bit for every interrupt source, and the bit corresponds to the 

hexadecimal bit mask value that was shown in Table 9.1.  For example, if you wanted to enable UART0 

the hex value 0x40 to the Interrupt Enable Register to set bit 6. 

some point you wanted to disable the UART0 interrupt, you would write 0x40 to the interrupt enable 

The registers are detailed on page 68 and 69 in the reference manual. 

9.2.3.2 Interrupt Select Register (VICIntSelect) 

r is used to assign an interrupt source to either the FIQ group (bit is set) or the IRQ 

group (bit is clear).  Again, the bit numbers correspond to the interrupt numbers in Table 9.1.

The designer should be careful to make this distinction and use the high priority interrupts for signals 

that MUST be serviced with very little latency.  See page 70 in the user guide. 

9.2.3.4 Vector Control Registers (VICVectCntlx) 

There are 16 “slots” available in the IRQ group of interrupts where each slot can hold the add

of an interrupt service routine.  The control registers are used to tell the VIC hardware 

slot it should look at to find the address of the interrupt service routine for a given IRQ 

lower the slot, the higher the priority of the interrupt.  For example, the code for this chapter makes the 

to setup the button interrupts: 

VICVectCntl0 = VICVectCntl0_INIT; 

VICVectCntl1 = VICVectCntl1_INIT; 

VICVectCntl2 = VICVectCntl2_INIT; 

VICVectCntl3 = VICVectCntl3_INIT;  

where the INIT values are defined as: 

#define VICVectCntl0_INIT (VIC_EINT0 | 0x20) 

#define VICVectCntl1_INIT (VIC_EINT1 | 0x20) 
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be triggered from the transmit hardware, the receive hardware, or two other signals from the 

that any ISR written to handle a particular interrupt source must 

include code to determine how the interrupt was triggered if multiple trigger sources are enabled.   

hem have the same functionality applied to 

The datasheet looks at each one in detail giving you a 

description of the purpose of the register, a bit map, and description of what each bit does.  That 

tion will not be repeated here, but we will discuss a few of the most important registers that will 

Now would be a good time to download the Chapter 9 start code so you can look at the interrupt code 

setup code is in place for you as it would be a bit too much 

information to explain and to do at the same time, especially if you are new to interrupts in general.  

You will have the opportunity to write some ISRs in this chapter, and in later chapters we will configure 

Each interrupt source must be individually enabled before the VIC will use the signal to interrupt the 

every interrupt source, and the bit corresponds to the 

For example, if you wanted to enable UART0 

0x40 to the Interrupt Enable Register to set bit 6.  If at 

to the interrupt enable 

r is used to assign an interrupt source to either the FIQ group (bit is set) or the IRQ 

group (bit is clear).  Again, the bit numbers correspond to the interrupt numbers in Table 9.1. 

priority interrupts for signals 

There are 16 “slots” available in the IRQ group of interrupts where each slot can hold the address 

hardware which 

IRQ interrupt.  The 

For example, the code for this chapter makes the 
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#define VICVectCntl2_INIT (VIC_EINT2 | 0x20) 

#define VICVectCntl3_INIT (VIC_EINT3 | 0x20) 

 

VIC_EINTx is a constant for the interrupt source’s number from Table 9.1.  The ORed value of 0x20 sets a 

flag to enable that slot.  Figure 9.2.3.4.1 shows the bit description from the data sheet.   

 

 

Figure 9.2.3.4.1: Bit description table for VICVectCntrl registers 

Source: LPC214x User manual Rev. 3 – 4 October 2010, UM10139, NXP Semiconductors, pg. 71 

 

So given those assignments, if the EINT0 (external interrupt 0) signal is enabled as an interrupt source 

and the interrupt occurs because BUTTON0 was pressed, the VIC will look at all the VICVectCntl registers 

for EINT0.  When it finds it (in slot 0) it knows that the address of the ISR for EINT0 will be in a 

corresponding slot 0 address register.   

 

If BUTTON0 and BUTTON1 are pressed at exactly the same time, the EINT0 ISR will run first because it 

has a higher priority.  What the ISR is done, it will exit and start to return to the main program, but then 

immediately repeat the interrupt process to handle the BUTTON1 interrupt.  Though it technically 

handles each button press individually, a user would never be able to tell that BUTTON0 is handled first 

since it would be only a few microseconds of time between the ISR processing.  You can test this later on 

in the chapter when we will make LEDs turn on when buttons are pressed (actually, it is all a moot point 

because you will never be able to press the buttons at exactly the same time!). 

 

The last thing to note about the control registers is that if an enabled IRQ has not been given a slot, then 

the program counter will be loaded with the default ISR address (VicDefVectAddr).  We have not yet 

identified any of these address registers yet, so we will do that next. 

9.2.3.3 Vector Address Registers (VICVectAddrx) 

Directly related to the Vector Control registers are the Vector Address registers.  These are the “slots” in 

the IRQ that must be loaded with the addresses of the ISRs for the interrupts configured in the control 

registers.  The setup code for this chapter loads the first 4 slots with the addresses for the button 

interrupt service routines: 
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VICVectAddr0 = (u32)&Button0ISR; 

VICVectAddr1 = (u32)&Button1ISR; 

VICVectAddr2 = (u32)&Button2ISR; 

VICVectAddr3 = (u32)&Button3ISR; 

 

The Vector Address registers are simply memory locations that hold function addresses that are loaded 

to the program counter to cause it to jump and start executing that function very much like a regular 

function call.  Since we have already seen how to call functions with pointers, the concept of using these 

registers should not be too foreign.  The code above is taking the address of the ISR function (i.e. the 

function’s starting address in Flash memory), and loading that address to the vector address registers.  

To make the C compiler happy about this, the function addresses have to be cast to (u32) to match the 

type of the vector address (the default type of a function address is something like void(*)void which 

does not match the type of VICVectAddrx which is just u32). 

 

That covers virtually all of the setup required to configure interrupts in the system.  All of the register 

initialization is done for you in interrupts.c in the function InterruptSetup().  There are a few registers 

that are configured that we have not discussed yet, but we will get there shortly.  All that remains is to 

write the ISR functions and enable interrupts! 

9.3 Interrupt Service Routines 
Once the interrupts configuration registers have been configured, you must write interrupt service 

routines for all of the ISRs you have identified.  There are two things that must be done:  

1. Write the FIQ and IRQ main handlers 

2. Write the individual ISRs 

 

9.3.1 FIQ and IRQ Handlers 

If you look back at the vector table in cstartup.s, you will see mention of the IRQ and FIQ handler 

vectors.  Consider these as the starting point for all interrupts that occur.  The microcontroller hardware 

is physically set to move the program counter to a certain flash address when an FIQ or IRQ occurs, just 

like it is physically set to go to address 0x0000 on reset (“Reset” is actually considered an interrupt of 

the absolute highest priority and is “non-maskable” which means you cannot disable it).  Way back 

when we first looked at firmware you saw how the line of code at 0x0000 loaded the PC with the 

address of __iar_program_start.   

 
__vector: 

   LDR     PC,Reset_Addr  ; Address is 0x0000 – sets PC to Reset_Addr 

   ... 

  

Reset_Addr:  DCD  __iar_program_start  ; Puts the address of __iar_program_start 

                                       ; in memory and assigns the symbol Reset_Addr 

The process of a reset is two-step: first, the program counter is loaded to the fixed address 0x0000; 

second, the line of code at address 0x0000 loads the program to the dynamic address of the start of 

code wherever that happens to be when you build the code.  The process is the same for interrupts.  If 
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an FIQ occurs, the hardware always goes to 0x001C.  Here, the dynamic address of FIQ_Handler is 

loaded to the program counter so it jumps to that function.  The process is similar for the IRQ_Hanlder 

(no matter what the source of the IRQ was – the processor will figure that out later). 

 

The two handler functions themselves are written just like any other function except special syntax is 

used to flag them to the compiler as being the FIQ and IRQ handlers.  This makes the compiler treat the 

routines as their respective interrupt types which means that extra context saving and restoration 

(among other things) will be done.  The syntax is strange and will likely be different on any processor or 

IDE you use even though it effectively accomplishes the same thing.  It is not something you would “just 

know” how to do – you would have to find a description of the notation or an example that works and 

copy it. 

 

The FIQ handler looks like this: 

__fiq __arm void FIQ_Handler(void) 

{ 

} /* end FIQ_Handler */ 

 

The IRQ handler looks like this: 

__irq __arm void IRQ_Handler(void) 

{ 

} /* end IRQ_Handler */ 

 

The source code inside the IRQ handler is a bit wacky from a syntax perspective, but if you look at the 

comments it should make perfect sense.  The IRQ_Handler code is as follows: 
{ 

  /* Parse the interrupt and call the correct IRQ ISR. Interrupts remain off, though 

  FIQ can interrupt this function */ 

  void (*interrupt_task)(); 

  u32 u32Vector; 

   

  /* Get interrupt vector and acknowledge it */ 

  u32Vector = VICVectAddr; 

  VICVectAddr = 0; 

 

  /* Execute the task associated with this interrupt */ 

  interrupt_task = (void(*)())u32Vector; 

  (*interrupt_task)(); 

 

} /* end IRQ_Handler */ 

 

The code comes directly from an IAR example program, though the comments were added to help 

clarify what is happening.  Essentially the address of the interrupt is provided by hardware (thanks to all 

of the configuration that was done already in the VIC registers) and the ISR is then called using the 

function’s address.  The line that writes 0 to VICVectAddr is critical to acknowledge the IRQ interrupt.  

Again, there is nothing that would allow you to just know that, although from your general knowledge of 

interrupts you might suspect there must be a flag to clear somewhere to acknowledge the interrupt.  
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The VIC documentation describes this on page 78 (and it is admittedly hard to find!).  After that, a call-

by-function-pointer takes place.  Though the function pointer syntax looks a bit different then what was 

used in Chapter 8, it does the same thing. 

 

The FIQ handler is much simpler because it does not have control and address registers to deal with.  In 

general, you only have one FIQ source because you probably only need one interrupt source to be the 

absolute highest priority (like a system tick).  Therefore, the entire ISR code is written inside 

FIQ_Handler.  We will look at that code once we implement the system tick.  If you wanted a few FIQ 

interrupt sources, it would be up to you to prioritize them within FIQ_Handler. 

9.4 GPIO Interrupts 

The individual ISRs are by far the easiest part of all of this.  There is no crazy syntax since these functions 

are wrapped inside the FIQ or IRQ handlers.  The only critical thing to remember is to clear the 

peripheral interrupt bit that caused the interrupt or else you will be stuck servicing the interrupt forever.  

GPIO interrupts are a good place for us to start because you will be in control of the interrupt events. 

The LPC214x processor supports external interrupts on four pins, so we will use all of them for button 

inputs.  The signals are named EINT0 thru EINT3.  Once again we reference the user manual for 

information on how to correctly configure the external interrupt sources.  Of course, this was first done 

a long, long time ago during the design of the development board to make sure that we correctly put 

the buttons on the proper pins. 

Table 13 on page 27 in the reference manual summarizes the registers that we will need to setup to use 

the external interrupt capabilities of the processor.  A copy of the table is shown in Figure 9.4.1.  

 

Figure 9.4.1: External Interrupt Registers 

Source: LPC214x User manual Rev. 3 – 4 October 2010, UM10139, NXP Semiconductors, pg. 27 
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All of the interrupt-related code is kept in interrupts.c and interrupts.h, and you will find the 

initialization values for three EINT configuration registers at the bottom of the interrupt header file.  

Note that IAR calls the “INTWAKE” register “EXTWAKE” instead, so that is the name that the code uses.   

• EXTWAKE: controls what external signals can wake the processor up from sleep mode.  We want 

any button to be able to do this, so all EINT input bits are set 

• EXTMODE: edge sensitive vs. level sensitive is a common choice you will come across in 

embedded systems.  If you trigger on an “edge”, you are looking for a transition from either low 

to high or high to low and will get a single trigger from the transition.  If you use level-sensitive 

triggers, you will keep trigger as long as a particular level is present.  Edge-triggered is what we 

want for buttons so we can catch the transitions. 

• EXTPOLAR: “polarization” in digital systems equates to high and low levels or rising-edge 

(transition from low to high) or falling-edge (transition from high-to-low) signals.  Since all of the 

buttons are active-low, we want to interrupt on the falling edge. 

Pay extra attention to the EXTINT register – this is the flag register with bits corresponding to each of the 

EINT inputs.  When a button is pressed, the falling-edge will be detected in hardware and cause the 

corresponding bit in EXTINT to be set.  Even if interrupts were not enabled, these bits would still be set 

(another concept from the general rules).  You could poll this register to detect if a button had been 

pressed if you did not want to use interrupts.  These flag bits must be manually cleared, which is the 

only thing that the current EINT interrupt service routines do.  EXTINT should be initialized to 0 to clear 

all the flags at the start of the program as there is a very good chance that when the board powers up, 

the interrupt detection hardware could accidentally detect that a button was pressed.  Note that to 

clear bits in EXTINT, you must write a one to the corresponding bit location. 

void Button0ISR(void) 

{ 

  /* Clear the interrupt flag */ 

  EXTINT_bit.EINT0 = 1; 

 

} /* end Button0ISR() */ 

 

The IAR IDE works with a syntax that allows individual bits within a register to be accessed directly.  The 

syntax is REGISTER_bit.BITNAME and uses the register names and corresponding bit names directly from 

the data sheet. 

 

The simplicity of the ISR might stand out to you.  In fact, right now this interrupt is essentially useless 

because it does not perform any function other than clearing the interrupt flag.   However, it is a good 

starting point to demonstrate the interrupt action nicely, and is a great opportunity to emphasize small 

ISRs.  As a rule, ISRs should be as simple as possible because you want to spend as little time as possible 

in them since they are disrupting the rest of your program.  At the very least, you must clear the 

interrupt flag.  There should be some other simple functionality that the ISR does as well, like adjust a 

variable, or set a system flag so the main program knows that the interrupt occurred.  You could have 

designs with literally hundreds of thousands of interrupts happening every second, so if you write 

complicated service routines, you are going to completely neglect your main program, or even start to 

miss interrupt events entirely because you cannot service them fast enough. 
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Build the code and run it on the development board.  Pu

pressing the BUTTON0 while the code is running. 

interrupt occurred – most of the time, you will end up back in the sleep 

the program spends most of its time.

 

Interrupt functionality generally does not work very well if you are single

catching an interrupt on the way in to the ISR (stepping out of an ISR usuall

better on version 8 J-Links, but you still may get some bizarre behavior or crash the system if you try it

older J-Link hardware.  There are ways to use breakpoints and other variables to debug interrupts if 

necessary.  Remember this point if you are trying to debug interrupts and single

 

Add a Local Global debug counter in interrupts.c and then 

Build the code and run it on the development board

sure you can see that the counter is 0 in a watch window, then resume running the code.  As

program is running, press and release the

pushes – in any case, make sure you hear the button click each time you press it.  After 10 pushes, 

the code and look at the button counter in a watch window 

counter will be 10 as you would expect since you pressed the button 10 times.  Howe

that it is more than 10 by a few or even by many more.  Why?  

 

The extra increments are caused by “bouncing” 

connections as the button is being pressed and released.  On a typical me

manufacturer will specify a “debounce” time for the button.  This spec is the amount of time you should 

allow the button to stabilize before deciding its final state.  

every little bounce will be a low-to-

This should make it obvious then that

that a button press has occurred because you will get a ton of false signals.  

mechanical inputs and this is the first reason 

do that, though, we need another tool.

9.4 System Timing 
Up to this point, any timing that has been done in our system has r

cycles and wasting power doing nothing but running long loops to kill cycles.  

choice because the processor core is the only resource we have available so far and it must be running 

with the system clock all the time to keep 

keep track of time automatically – even when the processor core is not running.  Peripherals like this are 

simply called “timers.” 

 

It is safe to say that every microcontroller will have at le

every embedded system you work with will use at least one timer.

TIMER0 and TIMER1.  The importance of timers in embedded systems is highlighted by the fact that 

most new micros have at least five timers, and some 
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nd run it on the development board.  Put a breakpoint inside Button0IS

pressing the BUTTON0 while the code is running.  Try single-stepping out of the ISR to see where the 

most of the time, you will end up back in the sleep function because that is where 

the program spends most of its time. 

Interrupt functionality generally does not work very well if you are single-stepping in code

catching an interrupt on the way in to the ISR (stepping out of an ISR usually works).  It seems to be 

Links, but you still may get some bizarre behavior or crash the system if you try it

.  There are ways to use breakpoints and other variables to debug interrupts if 

r this point if you are trying to debug interrupts and single-stepping in code.

in interrupts.c and then increment the counter inside Button0ISR()

Build the code and run it on the development board without any breakpoints.  Halt the code and make 

the counter is 0 in a watch window, then resume running the code.  As

program is running, press and release the button 10 times.  Try quick taps, normal presses and longer 

e you hear the button click each time you press it.  After 10 pushes, 

ook at the button counter in a watch window – what do you see?  In some cases, the 

counter will be 10 as you would expect since you pressed the button 10 times.  However, you might see 

that it is more than 10 by a few or even by many more.  Why?   

The extra increments are caused by “bouncing” – mechanical imperfections that cause multiple on

connections as the button is being pressed and released.  On a typical mechanical button, the 

manufacturer will specify a “debounce” time for the button.  This spec is the amount of time you should 

allow the button to stabilize before deciding its final state.  The processor is running so quickly, that 

-high transition that will be detected and cause another interrupt.  

then that you cannot simply set a flag in your button ISR to tell the system 

that a button press has occurred because you will get a ton of false signals.  You must always debounce 

his is the first reason why we need to write a button application.  Just before we 

we need another tool. 

Up to this point, any timing that has been done in our system has required keeping track of instru

cycles and wasting power doing nothing but running long loops to kill cycles.  You do not really have a 

choice because the processor core is the only resource we have available so far and it must be running 

with the system clock all the time to keep track of time.  What we need is a separate peripheral that will 

even when the processor core is not running.  Peripherals like this are 

It is safe to say that every microcontroller will have at least one built-in timer peripheral, and probably 

every embedded system you work with will use at least one timer.  The LPC214x family has two timers, 

.  The importance of timers in embedded systems is highlighted by the fact that 

icros have at least five timers, and some have many more than that!  
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t a breakpoint inside Button0ISR() and try 

stepping out of the ISR to see where the 

function because that is where 

stepping in code, especially for 

.  It seems to be 

Links, but you still may get some bizarre behavior or crash the system if you try it on 

.  There are ways to use breakpoints and other variables to debug interrupts if 

stepping in code. 

inside Button0ISR().  

Halt the code and make 

the counter is 0 in a watch window, then resume running the code.  As the 

button 10 times.  Try quick taps, normal presses and longer 

e you hear the button click each time you press it.  After 10 pushes,  halt 

what do you see?  In some cases, the 

ver, you might see 

mechanical imperfections that cause multiple on-off 

chanical button, the 

manufacturer will specify a “debounce” time for the button.  This spec is the amount of time you should 

The processor is running so quickly, that 

detected and cause another interrupt.  

you cannot simply set a flag in your button ISR to tell the system 

You must always debounce 

to write a button application.  Just before we 

equired keeping track of instruction 

You do not really have a 

choice because the processor core is the only resource we have available so far and it must be running 

track of time.  What we need is a separate peripheral that will 

even when the processor core is not running.  Peripherals like this are 

in timer peripheral, and probably 

The LPC214x family has two timers, 

.  The importance of timers in embedded systems is highlighted by the fact that 
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Timer peripherals are just hardware counters.  Like any other peripherals, they have configuration 

registers to govern their behavior and status registers to report things like the current count.  Do not 

confuse a timer peripheral with a real time clock – they are much different.  A timer peripheral has no 

idea what day of the week it is or if you are getting close to lunch.  It really is just a counter that usually 

starts at 0 when the system powers on and will eventually overflow at a maximum value.  On a 32-bit 

processor, timers are usually 32-bits so they will count to over 4 billion before overflowing back to 0. 

 

Some general statements can be made about timers to describe characteristics that are likely to be 

found with any timer peripheral: 

1. Timers have to be configured and enabled. 

2. Timers are clocked by some clock source that the programmer can select.  This may be the main 

processor clock (i.e. the crystal or RC oscillator that runs the core’s clock), a dedicated crystal 

that just clocks the timer (very often a low power circuit with a 32.768kHz watch crystal), or 

some other oscillator. 

3. Most timer peripherals can run in “counter mode” where an external logic signal will increment 

the timer instead of a regular clock source.  This is usually called “capture” mode. 

4. Timers can be preset or configured to count to an arbitrary maximum value instead of the full 

range. 

5. Timers can fire interrupts and sometimes do other things when they overflow or reach certain 

values. 

 

We will see all of these things in action as we setup TIMER0 to provide the 1ms system tick and allow us 

to move away from inaccurately and inefficiently trying to count cycles.  Once this is in place, not only 

will the system tick be precisely 1ms regardless of what code is running in the super loop, but we will be 

able to put the core to sleep to save power when it is doing nothing but waiting for the current 1ms 

period to tick by. 

9.4.1 TIMER0 Configuration 

Getting a timer peripheral to work is fairly straight forward.  Open up the processor user guide to 

Chapter 15 that explains how the timer peripherals work.  Notice that TIMER0 and TIMER1 are identical, 

so once you learn one, you can easily configure the other one.  The user guide covers all of the different 

things that the timer can do, but we want to focus on just the parts that will give us a 1ms time base.  

Looking at the register map and register descriptions, we can conclude that we need to work with the 

following registers: 

• TxTCR – Timer control register: manages when the timer is on and if it is reset back to 0 

• TxCTCR – Count control register: determines if the peripheral is in timer mode (clocked from an 

internal clock source) or in counter mode (clocked from an external digital signal). 

• TxPR – Prescale register: a clock divider that will slow down the effective incrementing of the 

peripheral.  This is helpful if the reference clock is very fast yet you want the timer peripheral to 

be counting very long periods of time.   

• TxMRx – Match registers: hold numbers that are compared to the current timer count.  When 

the two are equal, different events can be set to occur. 

• TxMCR – Match control register: configures events that occur when the timer value matches 

specific match registers. 
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From these register descriptions, the initialization values are built.  

will be written in the deva7-ehdw source files.  

01.h to see the configuration values.  Notice th

code so anyone can see how and why the choices were made.  In this case, the timer will be clocked by 

the same 12MHz oscillator as the core, so we need to set the value that the timer counts to at 12,0

This is done in the first match register, MR0.  Since we want 

interrupt each 1ms, the match control register is setup accordingly.  The other match registers are not 

needed so they will be left in their defaul

 

Loading the TIMER0 registers with the initialization values will be done inside the DEVA7RazorSetup() 

function.  Almost all of the code is written except the last step to turn the timer on (configuration is 

done with the timer turned off and in

a single line of code to turn the timer on and 

9.4.2 TIMER0 Interrupt and System Tick

Next we integrate the timer’s interrupt

accurate timing possible, TIMER0 should be the highest priority interrupt so we will assign it as the one 

and only FIQ interrupt.  The assignment is made in the VICIntSelect register, so checkout 

VICIntSelect_INIT and notice that TIMER0 is 

only the FIQ_Handler function needs to be written.  The main part of the handler is done for you already

that simply clears the interrupt flag in the TIMER0 peripheral

will be explained in the next section

 
__fiq __arm void FIQ_Handler(void)

{ 

  /* Clear the interrupt flag (write a one to the flag register) */

  T0IR_bit.MR0INT = 1;  

      

  /* Bring the system out of sleep */

  GGu32SystemFlags &= ~_SYSTEM_

 

} /* end FIQ_Handler */ 

 

The above code is enough to provide the loop timing, but we want to keep track of the amount of time 

that has elapsed.  The GGu32SysTime1ms

FIQ handler and incremented each time the interrupt occurs.  We calculated that a 32

increments every millisecond would take almost 50 days before it rolled over.  This is probably enough 

for most of the applications that the development board would run, 

applications that run for longer periods of time.  For example, if you decided to use your development 

board to control an irrigation system in your house, it would need to run continuously for years.

 

A nice way to implement longer timing 

like the one we already have and another 

locations allow a system to track millisecond periods across 49 days and seconds ac

very simple to add a 1-second counter inside the FIQ_Handler that takes care of this.  The Global Global 

variable GGu32SysTime1s has already been defined in deva7
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m these register descriptions, the initialization values are built.  This is processor-specific, so the 

ehdw source files.  Search for the ##### Timer bookmark in deva7

01.h to see the configuration values.  Notice that the timing calculations are documented right in the 

why the choices were made.  In this case, the timer will be clocked by 

the same 12MHz oscillator as the core, so we need to set the value that the timer counts to at 12,0

This is done in the first match register, MR0.  Since we want TIMER0 to continuously count and queue an 

interrupt each 1ms, the match control register is setup accordingly.  The other match registers are not 

needed so they will be left in their default states. 

registers with the initialization values will be done inside the DEVA7RazorSetup() 

function.  Almost all of the code is written except the last step to turn the timer on (configuration is 

done with the timer turned off and in reset so that strange events are not occurring during setup).  Add 

a single line of code to turn the timer on and take it out of reset. 

Interrupt and System Tick 

Next we integrate the timer’s interrupt and manage the system tick counters.  To keep the most 

accurate timing possible, TIMER0 should be the highest priority interrupt so we will assign it as the one 

and only FIQ interrupt.  The assignment is made in the VICIntSelect register, so checkout 

and notice that TIMER0 is flagged as FIQ.  The FIQ interrupts require no further setup 

only the FIQ_Handler function needs to be written.  The main part of the handler is done for you already

simply clears the interrupt flag in the TIMER0 peripheral and manages another bit w

will be explained in the next section: 

__fiq __arm void FIQ_Handler(void) 

/* Clear the interrupt flag (write a one to the flag register) */ 

/* Bring the system out of sleep */ 

GGu32SystemFlags &= ~_SYSTEM_FLAGS_SLEEP; 

The above code is enough to provide the loop timing, but we want to keep track of the amount of time 

GGu32SysTime1ms counter that was added in Chapter 8 should be put into the 

incremented each time the interrupt occurs.  We calculated that a 32-

increments every millisecond would take almost 50 days before it rolled over.  This is probably enough 

for most of the applications that the development board would run, but it might not be enough for 

applications that run for longer periods of time.  For example, if you decided to use your development 

board to control an irrigation system in your house, it would need to run continuously for years.

longer timing is to have two system tick timers: one that tracks milliseconds 

another one that tracks seconds.  Together, these two memory 

locations allow a system to track millisecond periods across 49 days and seconds across 136 years!

second counter inside the FIQ_Handler that takes care of this.  The Global Global 

has already been defined in deva7-ehdw-01.c and referenced in interrupts.c 
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specific, so the code 

the ##### Timer bookmark in deva7-ehdw-

at the timing calculations are documented right in the 

why the choices were made.  In this case, the timer will be clocked by 

the same 12MHz oscillator as the core, so we need to set the value that the timer counts to at 12,000.  

to continuously count and queue an 

interrupt each 1ms, the match control register is setup accordingly.  The other match registers are not 

registers with the initialization values will be done inside the DEVA7RazorSetup() 

function.  Almost all of the code is written except the last step to turn the timer on (configuration is 

reset so that strange events are not occurring during setup).  Add 

o keep the most 

accurate timing possible, TIMER0 should be the highest priority interrupt so we will assign it as the one 

and only FIQ interrupt.  The assignment is made in the VICIntSelect register, so checkout 

flagged as FIQ.  The FIQ interrupts require no further setup – 

only the FIQ_Handler function needs to be written.  The main part of the handler is done for you already 

and manages another bit whose purpose 

The above code is enough to provide the loop timing, but we want to keep track of the amount of time 

should be put into the 

-bit counter that 

increments every millisecond would take almost 50 days before it rolled over.  This is probably enough 

but it might not be enough for 

applications that run for longer periods of time.  For example, if you decided to use your development 

board to control an irrigation system in your house, it would need to run continuously for years. 

is to have two system tick timers: one that tracks milliseconds 

Together, these two memory 

ross 136 years!  It is 

second counter inside the FIQ_Handler that takes care of this.  The Global Global 

and referenced in interrupts.c . 
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Do the following in FIQ_Handler to complete the system time tracking:

1. Increment GGu32SysTime1ms

2. Add a 16-bit static counter variable

3. Increment the counter variable 

GGu32SysTime1s and reset the counter variable back to 0.

 

Build the code and run it.  Let it run for a few second

in a watch window so you can see their values and not

should always match the 1 millisecond count / 1000.  S

seconds in your head and then halt the code again 

incremented as you would expect (you do not have to check them that closely).

 

Figure 9.4.2.1: Veri

9.4.3 Sleep Modes 

The last thing to do is take advantage of the processor’s ability to power down to save power.  

modes in an embedded system are critical, especially for battery

milliamp (if not microamp) of current that can be saved should be saved.  As global energy resources are 

used up, engineers will have a growing burden of finding ways to save every ounce of power possible 

you might as well be proactive and start designing w

stupid. 

 

The ARM7 is quite an old processor, so the 

More modern processors tend to have additional power savings modes that provide more options on 

what parts of the microcontroller can stay running.  The ARM7 has just 

as described in section 4.9 of the user guide.  

1. Idle mode: core clock is turned off, but peripherals still operate

2. Power down: the main oscillator is shut down

Power is still applied to the chip to keep memory, but the chip is not doing any work.  An 

external signal (like a button press) is required to wake up the processor.  You can also use the 

real time clock to wake the processor up b

that will keep it running. 

 

The development board will use Idle mode during the main loop to shut down the core and save power 

but still allow the peripherals to run.  

another iteration of the main loop.  The PCON register holds the bits that select the current power 

mode.  Setting the IDL bit puts the processor to sleep.

automatically cleared so the processor will resume full power operation.
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ndler to complete the system time tracking: 

GGu32SysTime1ms 

static counter variable 

variable every iteration until it reaches 1000, then increment 

and reset the counter variable back to 0. 

the code and run it.  Let it run for a few seconds and halt the code.  Put both of the system timers 

in a watch window so you can see their values and note what their count is.  The 1 second timer count 

should always match the 1 millisecond count / 1000.  Start the code again and count out about 5 

seconds in your head and then halt the code again – make sure both of the timer values have 

incremented as you would expect (you do not have to check them that closely).  See Figure 9.4.2.1.

Figure 9.4.2.1: Verification of 1ms and 1s timers 

The last thing to do is take advantage of the processor’s ability to power down to save power.  

modes in an embedded system are critical, especially for battery-powered devices where literally every 

of current that can be saved should be saved.  As global energy resources are 

used up, engineers will have a growing burden of finding ways to save every ounce of power possible 

you might as well be proactive and start designing with power saving in mind.  Frankly, wasting power is 

The ARM7 is quite an old processor, so the power-saving modes available are actually not that great.  

More modern processors tend to have additional power savings modes that provide more options on 

er can stay running.  The ARM7 has just two low-power states available 

as described in section 4.9 of the user guide.   

Idle mode: core clock is turned off, but peripherals still operate.   

Power down: the main oscillator is shut down so the core and all peripherals are stopped.  

Power is still applied to the chip to keep memory, but the chip is not doing any work.  An 

external signal (like a button press) is required to wake up the processor.  You can also use the 

real time clock to wake the processor up because it has its own very low power own oscillator 

Idle mode during the main loop to shut down the core and save power 

but still allow the peripherals to run.  TIMER0 will provide the wake-up signal to exit Idle mode and start 

another iteration of the main loop.  The PCON register holds the bits that select the current power 

mode.  Setting the IDL bit puts the processor to sleep.  When a wake-up signal occurs, the IDL bit is 

o the processor will resume full power operation. 
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every iteration until it reaches 1000, then increment 

the code.  Put both of the system timers 

what their count is.  The 1 second timer count 

tart the code again and count out about 5 

make sure both of the timer values have 

See Figure 9.4.2.1. 

 

The last thing to do is take advantage of the processor’s ability to power down to save power.  Sleep 

powered devices where literally every 

of current that can be saved should be saved.  As global energy resources are 

used up, engineers will have a growing burden of finding ways to save every ounce of power possible – 

Frankly, wasting power is 

not that great.  

More modern processors tend to have additional power savings modes that provide more options on 

power states available 

eripherals are stopped.  

Power is still applied to the chip to keep memory, but the chip is not doing any work.  An 

external signal (like a button press) is required to wake up the processor.  You can also use the 

ecause it has its own very low power own oscillator 

Idle mode during the main loop to shut down the core and save power 

al to exit Idle mode and start 

another iteration of the main loop.  The PCON register holds the bits that select the current power 

up signal occurs, the IDL bit is 
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Since we want to be able to respond to external interrupts like buttons but still only execute the super 

loop every 1ms, we have to add some more logic to manage when the processor continues after it has 

reached the end of the main loop.  

GGu32SystemFlags that will be set when the processor is supposed to be sleeping.  

interrupts and the TIMER0 interrupt can wake up the processor, 

allowed to clear the sleep bit is the 

button press, it will respond to the interrupt but go back to sleep immediately after.  

 

The code looks like this: 

 
    /* Sleep the processor -- 

  GGu32SystemFlags |= _SYSTEM_FLAGS_SLEEP;

   while(GGu32SystemFlags & _SYSTEM_FLAGS_SLEEP)

    { 

      PCON_bit.IDL = 1;        

    } 

 

Copy the above code and replace this code in ma

    /* $$$$ Replace this with sleep mode */

    kill_x_cycles(12000); 

 

At last we have everything together for the complete main system timing that will be used for the 

remainder of the course.  Build the code and make sure it works.  Use an oscillosco

heartbeat on the red LED and see that it is precisely 1ms

sync.  As you start to add application code, you can 

consistent 1ms periods.  If your code breaks the 1ms loop

start to stretch out so you know you have a problem.

be accurate because it increments on the FI

9.4.4 IsTimeUp 

Since there is only one other TIMER peripheral on the microcontroller and it is very likely that a bunch of 

different events and processes will need timing capability, let us write a utility function that provides an 

easy way to quickly check if a certain amount of time has passed

resources.  Since this function is not targeted at any particular application, we will use a “utilities” 

source file for the code.  In the future, other generic functions can be added to these files as well.

 

The function is called IsTimeUp() and returns a Boolean answer to tell the system if a certain amount of 

time has elapsed or not.  The premise is simple: all you need i

Global variable) to capture the current system time when you want to start timing an event.  IsTimeUp() 

takes arguments of which timer you are using (1ms or 1s), the starting time value, the period of time 

you want to track, and an option of whether or not you want to update your saved time (if you 

continually wanted to time a certain period, you might want to do this; if you wanted to check if 

multiple intervals had passed, you may not want to do this).

arbitrary time, it handles rollover of the system reference timer so even if you call the function on day 

49 using the 1ms timer (that will roll after 49 days) and you want to time 2 days, the function will 

behave correctly. 
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Since we want to be able to respond to external interrupts like buttons but still only execute the super 

loop every 1ms, we have to add some more logic to manage when the processor continues after it has 

eached the end of the main loop.  There is a bit defined as _SYSTEM_FLAGS_SLEEP in 

that will be set when the processor is supposed to be sleeping.  Both the button 

interrupts and the TIMER0 interrupt can wake up the processor, but the only function that will be 

is the TIMER0  interrupt service routine.  If the processor wakes up from a 

button press, it will respond to the interrupt but go back to sleep immediately after.   

 only TIMER0 can wake the processor back up */

GGu32SystemFlags |= _SYSTEM_FLAGS_SLEEP; 

while(GGu32SystemFlags & _SYSTEM_FLAGS_SLEEP) 

PCON_bit.IDL = 1;             

and replace this code in main: 

/* $$$$ Replace this with sleep mode */ 

At last we have everything together for the complete main system timing that will be used for the 

Build the code and make sure it works.  Use an oscilloscope to look at the 

and see that it is precisely 1ms and verify that the 1 second timer is still in 

As you start to add application code, you can always check the heartbeat to ensure that you see 

consistent 1ms periods.  If your code breaks the 1ms loop timing rule, you will see the heartbeat signal 

start to stretch out so you know you have a problem.  Even if that happens, the 1ms counter value will 

it increments on the FIQ_Interrupt. 

Since there is only one other TIMER peripheral on the microcontroller and it is very likely that a bunch of 

s will need timing capability, let us write a utility function that provides an 

easy way to quickly check if a certain amount of time has passed without using any additional timer 

.  Since this function is not targeted at any particular application, we will use a “utilities” 

the code.  In the future, other generic functions can be added to these files as well.

The function is called IsTimeUp() and returns a Boolean answer to tell the system if a certain amount of 

time has elapsed or not.  The premise is simple: all you need is a static variable (or Local Global / Global 

Global variable) to capture the current system time when you want to start timing an event.  IsTimeUp() 

takes arguments of which timer you are using (1ms or 1s), the starting time value, the period of time 

want to track, and an option of whether or not you want to update your saved time (if you 

continually wanted to time a certain period, you might want to do this; if you wanted to check if 

multiple intervals had passed, you may not want to do this).  Since the functionality can be used at any 

arbitrary time, it handles rollover of the system reference timer so even if you call the function on day 

49 using the 1ms timer (that will roll after 49 days) and you want to time 2 days, the function will 
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Since we want to be able to respond to external interrupts like buttons but still only execute the super 

loop every 1ms, we have to add some more logic to manage when the processor continues after it has 

the Global Global 

oth the button 

function that will be 

If the processor wakes up from a 

 

can wake the processor back up */ 

At last we have everything together for the complete main system timing that will be used for the 

pe to look at the 

the 1 second timer is still in 

check the heartbeat to ensure that you see 

timing rule, you will see the heartbeat signal 

if that happens, the 1ms counter value will 

Since there is only one other TIMER peripheral on the microcontroller and it is very likely that a bunch of 

s will need timing capability, let us write a utility function that provides an 

ng any additional timer 

.  Since this function is not targeted at any particular application, we will use a “utilities” 

the code.  In the future, other generic functions can be added to these files as well. 

The function is called IsTimeUp() and returns a Boolean answer to tell the system if a certain amount of 

s a static variable (or Local Global / Global 

Global variable) to capture the current system time when you want to start timing an event.  IsTimeUp() 

takes arguments of which timer you are using (1ms or 1s), the starting time value, the period of time 

want to track, and an option of whether or not you want to update your saved time (if you 

continually wanted to time a certain period, you might want to do this; if you wanted to check if 

the functionality can be used at any 

arbitrary time, it handles rollover of the system reference timer so even if you call the function on day 

49 using the 1ms timer (that will roll after 49 days) and you want to time 2 days, the function will 
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Check out the code in utilities.c to understand the usage of the function – it will likely come in handy in 

some future applications you write.  The button application that will be written in the next section will 

make use of IsTimeUp() to help with button debouncing. 

9.5 Button Application 
All of the services are ready to let us build a button application that can be used for the remainder of the 

course firmware.  Just like the LED API that was defined in Chapter 8, we will write a button API and the 

associated functions to provide key services for the buttons.  The button app will be a bit more involved 

than the LED application, and will make use of many of the concepts and tools you have learned in the 

last two chapters. 

 

If you are wondering what sort of services are required beyond what the button interrupts provide, take 

a moment to consider what additional features would be handy. 

1. Debouncing – how are you going to time out a debounce period and verify that a button has 

been pressed or released? 

2. Button held – the ISR tells you when a button is first pressed, but what if you need to determine 

if the button is being held down?  What if you have special (secret?) functionality that only 

works if a button is held for 10 seconds or some other period of time? 

3. Button history – if you have a long state in your program or just a really fast button press, it 

would be nice to be able to check if a button had been pressed even if it is no longer pressed. 

 

While you can manage a lot of those features directly with flag bits, timers and various polling 

techniques, having an application running that automatically handles all of that is infinitely beneficial 

(try writing code for a project where you are managing the buttons manually and you will quickly see!).  

It would also be nice to write a fairly generic and modular button application that could be ported to 

other systems in the future. 

9.5.1 ButtonConfigType 

Parameters of buttons are very much like parameters of LEDs.  Buttons are at various GPIO locations and 

could be either active high or active low.  For now we will assume that they are all on the same port, 

though they could be at any bit location.  It is also assumed that all buttons are interrupt sources.  At 

any given time, a button could be pressed or released, and we want to be able to time how long a 

button is held for.  So to start off, we will create a structure type in buttons.h that will hold all of the 

information necessary for a particular button. 

 
typedef struct  

{ 

  u32 u32Location;               /* Bit location of the button on Port 0 */ 

  DeviceActiveType eActiveState; /* Active-high or active-low */ 

  u32 u32IntFlagLocation;        /* Bit location of the button's interrupt flag */ 

  ButtonStateType eCurrentState; /* Current state (RELEASED/PRESSED) of the button */ 

  ButtonStateType eNewState;     /* New state of the button after a debounce period */ 

  u32 u32HoldTimeStart;          /* Time stamp of the button press */ 

} ButtonConfigType; 
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Not only does ButtonConfigType hold configuration information, it also holds status information.  Using 

a struct like this allows all the data to be passed in function calls with just a single pointer.  The intent is 

that each button in the system will have an instance of ButtonConfigType to keep track of it.  The 

typedef for ButtonStateType used as part of ButtonConfigType is in button.h as well.  

 

The button application will setup an array of ButtonConfigTypes for all of the buttons in the system.  

Since the information will be needed throughout the button application code, the array itself will be a 

Local Global in buttons.c.  It is easiest to initialize the array when it is defined. 

 
/* Button configuration for the current board. */        

ButtonConfigType LGasButtons[TOTAL_BUTTONS] =  

/*     PIN         HIGH/LOW          EINT#         CURRENT   NEW       HOLD START */ 

{ {P0_16_BUTTON0, ACTIVE_LOW, (u32)1 << VIC_EINT0, RELEASED, RELEASED, 0}, 

  {P0_14_BUTTON1, ACTIVE_LOW, (u32)1 << VIC_EINT1, RELEASED, RELEASED, 0}, 

  {P0_15_BUTTON2, ACTIVE_LOW, (u32)1 << VIC_EINT2, RELEASED, RELEASED, 0}, 

  {P0_30_BUTTON3, ACTIVE_LOW, (u32)1 << VIC_EINT3, RELEASED, RELEASED, 0} 

}; 

 

Comments in the definition tell you what each field is referring to, and the code is formatted to be as 

clear as possible to anyone looking at it.  You will often see code where the author has made obvious 

effort to be clear either by adding special comments or adjusting formatting and white space to make 

the code look better.  Clarity like this is an essential part of being a great firmware author! 

 

Note the syntax (u32)1 << VIC_EINTx used to write the EINTx bit location.  The constant VIC_ENITx is 

literally the bit number of an  EINTx bit (i.e. EINT0 is 14).  So taking the number 1 (which is a 32-bit 

number with bit 0 set) and shifting it left 14 times gives a 32 bit number with only bit 14 set.  You will see 

this notation more frequently in IAR documentation and in some of the course source code. 

 

To provide quick access to determining when a new button press has occurred, a Boolean array called 

LGabButtonNewPress is also defined in buttons.c.  This information could have been added to 

ButtonConfigType, but was kept as its own array (for no particular reason).  It is initialized in 

ButtonInitialize() along with GGabButtonDebounceActive. 

9.5.2 Button Operation 

We know all the services that we want to provide with the button application, now we must design the 

firmware to do it.  Since this code will be one of the foundational drivers of the development board, we 

want to have a good design that not only works, but is also efficient and consumes as little memory 

resources as possible.  Any piece of firmware you write should be carefully designed and thought out 

long before you ever start writing code.  That design process has already begun with the definition of 

the data structures that the application will use, so now we implement the algorithm that will use the 

data. 

 

Figure 9.5.2.1 is a flow chart that shows how the button application will work for each button in the 

system.  The code that implements this system is all in the function ButtonUpdate() in buttons.c along 

with some updates in each of the button ISRs that you will need to add.  ButtonUpdate() is called in 

main on each iteration of the system loop. 
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Figure 9.5.2.1: Button application flow chart 

In words, the button system works like this: 

1. Assume that buttons always start off.  Even if a button is held when the system starts up, the 

application will work as soon as the button is released and pressed again.  During this time, the 

button interrupts are enabled waiting to see the falling edge when a button press occurs. 

2. As soon as a button is pressed and the interrupt occurs, the interrupt is disabled so bouncing 

does not cause multiple interrupts and the system time is captured for the particular button. 

3. The button application waits for the debounce time to expire. 
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4. The state of the button is checked again by reading the GPIO line associated with the button.  If 

it is still low after the debounce time, then we conclude that a valid button press 

The button state is changed in memory so we know it is currently pressed, the current sys

time is logged so we know when th

new button press has occurred is set.

button press, so we go back to state 1.

5. The button application then polls the button every cycl

particular button’s interrupt is also still off at this time.

change, then this state is held.  

6. If a pressed button is released, then a new button debounce period is st

7. When the debounce period has expired, the state of the button is checked.  If it has

released, then the state of the button

state 1.  Otherwise, the system returns to polling the button waiting

 

When there are no buttons pressed, the button application code executes quite quickly

buttons get pressed, the application will need to do more work to monitor all of the buttons, though it is 

still relatively efficient in the way it is coded.  The whole purpose of using an array to maintain all of the 

button information was to minimize the amount of code that had to 

The same code is used to check each button with the var

 

There are many ways that the button application could be written, and t

disadvantages.  For the purpose of this chapter, you should be

code in ButtonUpdate() and be comfortable with the way it works.  The part

updates that take place in each of the button interrupt service routines.  

 

Add three lines of code to each button

1. Disable the interrupt 

2. Set the button’s debounce active flag to TRUE

3. Save the current 1ms system tick 

button can be tracked. 

 

Build and test your code to make sure you see 

LGasButtons array of ButtonConfigType da

LGasButtons to a watch window and IAR will automatically 

only thing you might need to do is change the display type for 

u32Location as it will default to decimal display that is not very helpful.  

enumerated types for things like ACTIVE_LOW or PRESSED is also

eCurrentState are shown in plain English (from the enum definition).  Figure 

from the test code. 
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The state of the button is checked again by reading the GPIO line associated with the button.  If 

debounce time, then we conclude that a valid button press 

The button state is changed in memory so we know it is currently pressed, the current sys

time is logged so we know when the button press started, and the Boolean flag to indicate a 

new button press has occurred is set.  If the button state is high, that means it was not a 

button press, so we go back to state 1. 

The button application then polls the button every cycle to ensure that it is still 

s interrupt is also still off at this time.  As long as the button state does no

change, then this state is held.   

s released, then a new button debounce period is started. 

When the debounce period has expired, the state of the button is checked.  If it has

released, then the state of the button is changed, the interrupt is re-enabled, and we return to 

state 1.  Otherwise, the system returns to polling the button waiting for it to be released.

When there are no buttons pressed, the button application code executes quite quickly

buttons get pressed, the application will need to do more work to monitor all of the buttons, though it is 

tively efficient in the way it is coded.  The whole purpose of using an array to maintain all of the 

inimize the amount of code that had to be written to check each button.  

The same code is used to check each button with the varying information managed with a loop index.

There are many ways that the button application could be written, and this design has 

disadvantages.  For the purpose of this chapter, you should be able to compare the flow chart with the 

code in ButtonUpdate() and be comfortable with the way it works.  The part left for you to write are the 

each of the button interrupt service routines.   

button ISR to finish the button application: 

s debounce active flag to TRUE 

t 1ms system tick in the button’s data structure so the debounce period for the 

Build and test your code to make sure you see the correct information being updated.  

array of ButtonConfigType data structures can be viewed in a watch window.  Simple ad 

to a watch window and IAR will automatically name and display the array elements.  The 

only thing you might need to do is change the display type for the Values of certain fields like 

u32Location as it will default to decimal display that is not very helpful.  One of the benefits of 

s for things like ACTIVE_LOW or PRESSED is also shown here values for fields like 

are shown in plain English (from the enum definition).  Figure 9.5.2.2 shows a snapshot 
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The state of the button is checked again by reading the GPIO line associated with the button.  If 

debounce time, then we conclude that a valid button press has occurred.  

The button state is changed in memory so we know it is currently pressed, the current system 

flag to indicate a 

If the button state is high, that means it was not a valid 

that it is still pressed.  The 

button state does not 

 

When the debounce period has expired, the state of the button is checked.  If it has truly been 

enabled, and we return to 

for it to be released. 

When there are no buttons pressed, the button application code executes quite quickly.  As more 

buttons get pressed, the application will need to do more work to monitor all of the buttons, though it is 

tively efficient in the way it is coded.  The whole purpose of using an array to maintain all of the 

be written to check each button.  

ying information managed with a loop index. 

his design has advantages and 

flow chart with the 

left for you to write are the 

so the debounce period for the 

.  The entire 

ta structures can be viewed in a watch window.  Simple ad 

the array elements.  The 

Values of certain fields like 

One of the benefits of using 

shown here values for fields like 

9.5.2.2 shows a snapshot 
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Figure 9.5.2.2: Snapshot of LGasButtons

 

9.5.3 Button API 

Now that the button application is working, API functions must be provided so that other applications 

can use the button app.  We want a 

1. IsButtonPressed(): returns TRUE if

2. WasButtonPressed(): returns TRUE 

if the button is no longer pressed at that mome

that we have received the informatio

3. IsButtonHeld() – returns TRUE 

 

IsButtonPressed() is already complete and 

functions are written for you.  It is up

just a few lines of code each.  Use existing 

correct Boolean value where applicable.  You do not need to write any code outside of the

but you do need to understand the button flow chart and how button information is stored

your code builds without errors.  Yo
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Figure 9.5.2.2: Snapshot of LGasButtons with some of the data fields shown

Now that the button application is working, API functions must be provided so that other applications 

a few simple functions: 

returns TRUE if a button is currently pressed 

: returns TRUE if a button was pressed since last time it was checked, even 

if the button is no longer pressed at that moment.  If so, we need a function to acknowledge 

that we have received the information – ButtonAcknolwedge(). 

TRUE if a button has been held for a certain amount of time.

IsButtonPressed() is already complete and the function declarations and shells for the other three 

It is up to you to implement the other three functions.  They will 

existing parameters of the button data structures and return the 

where applicable.  You do not need to write any code outside of the

but you do need to understand the button flow chart and how button information is stored

ou will test your functions in the Chapter Exercise. 
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data fields shown 

Now that the button application is working, API functions must be provided so that other applications 

it was checked, even 

a function to acknowledge 

certain amount of time. 

for the other three 

.  They will require 

and return the 

where applicable.  You do not need to write any code outside of these functions, 

but you do need to understand the button flow chart and how button information is stored.  Make sure 
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9.6 Chapter Exercise 
The chapter exercise is all about using the 

the functionality that is available on the development board at th

will continue to use these functions so 

or you will struggle as we continue.

 

Source files chapter9.c and chapter9.h are already included in 

written for you, but you will need to add calls in main

chapter9 application itself.  Only the

you.  Add and test the following functionality

before moving on: 

 

1. BUTTON0 thru BUTTON3 correspond to WHITE, PURPLE, BLUE, CYAN LEDs 

pressed, the corresponding LED is lit.

2. If BUTTON0 is held for 3 seconds or more, the green LED will turn on

is released. 

3. When button 1 is pressed, the yellow LED starts to blink at 4Hz.  If pressed again,

stops blinking. 

BUTTON2 cycles the yellow LED blink rate between 1Hz, 2Hz, 4Hz and 8Hz but onl

LED is currently on. 

4. BUTTON3 toggles the heartbeat LED output on

 

Release 1.0 

about using the button and LED applications to solidify your understanding of 

lable on the development board at this point.  As the course progresses, it 

will continue to use these functions so you must be comfortable with what has been covered up to now

you will struggle as we continue. 

Source files chapter9.c and chapter9.h are already included in the project.  The initialization function is 

you will need to add calls in main.c to run the initialization function

the Idle state is necessary and the framework is already 

est the following functionality – do one piece at a time and ensure it is working correctly 

BUTTON0 thru BUTTON3 correspond to WHITE, PURPLE, BLUE, CYAN LEDs -- when the

pressed, the corresponding LED is lit. 

If BUTTON0 is held for 3 seconds or more, the green LED will turn on and stay on until BUTTON0 

When button 1 is pressed, the yellow LED starts to blink at 4Hz.  If pressed again,

cycles the yellow LED blink rate between 1Hz, 2Hz, 4Hz and 8Hz but onl

BUTTON3 toggles the heartbeat LED output on and off. 
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button and LED applications to solidify your understanding of 

course progresses, it 

at has been covered up to now 

The initialization function is 

the initialization function and the 

already in place for 

and ensure it is working correctly 

when the button is 

and stay on until BUTTON0 

When button 1 is pressed, the yellow LED starts to blink at 4Hz.  If pressed again, the yellow LED 

cycles the yellow LED blink rate between 1Hz, 2Hz, 4Hz and 8Hz but only when the 


