
MPE IRTC Forth for the ATMEL AVR series

User Manual

MPE IRTC Forth for the ATMEL AVR series

User Manual
Manual revision 1.100

Date 22 September 1999

Software
Software version 1.100

Package Number:

For technical support
Please contact your supplier

For further information
MicroProcessor Engineering Limited
133 Hill Lane
Southampton SO15 5AF
UK
Tel: +44 (0)2380 631441
Fax: +44 (0)2380 339691

e-mail: mpe@mpeltd.demon.co.uk
tech-support@mpeltd.demon.co.uk

web: www.mpeltd.demon.co.uk

4

Acknowledgements
The source code for this product was licensed from:

 RAM Technology Limited

It has been modied and enhanced for use on MPE’s ProForth VFX for Windows which is the
host Forth, and for use with MPE’s AIDE development environment.

MPE Forth 6 for the ATMEL AVR series
Copyright ©
RAM Technology Limited
MicroProcessor Engineering Limited
1998, 1999

i

Licence terms

Notice
RAM Technology Systems and MicroProcessor Engineering MAKE NO WARRANTY OF
ANY KIND WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. RAM Technology Systems shall not be liable for errors
contained herein or for incidental consequential damages in connection with the furnishing,
performance, or use of this material.

This document contains proprietary information which is protected by copyright. All rights
are reserved. No part of this document may be photocopied, reproduced, or translated to
another language without the prior written consent of RAM Technology Systems and
MicroProcessor Engineering.

The information contained in this document is subject to change without notice.

Distribution of application programs
Binary code produced with this compiler and tools may be freely distributed without royalty.
No source code provided by MPE or RAM Technology may be distributed without written
permission first being granted.

Warranties and support
We try to make our products as reliable and bug free as we possibly can. We support our
products. If you find a bug in this product and its associated programs we will do our best to
fix it. Please check first by fax or email to see if the problem has already been fixed. Please
send us enough information including source code on disc or by email to us, so that we can
replicate the problem and then fix it. Please also let us know the serial number of your system
and its version number. We will then send you an update when we have fixed the problem.
The level of technical support that we can offer may depend on the Support Policy bought
with the product.

Technical support will only be available on the current version of the product.

Make as many copies as you need for backup and security. The issue discs or CD are not
copy protected. The code is copyrighted material and only ONE copy of it should be use at
any one time. Contact MPE or your vendor for details of multiple copy terms and site
licensing.

As this copy is sold direct and through dealers and purchasing departments, we cannot keep
track of all our users. If you fill out the registration form enclosed and send it back to us, we
will put you on our mailing list. This way we will be able to keep you informed of updates
and new extensions, as they become available. If you need technical support from us we will
need these details in order to respond to you. You will find the serial number of the system on
the original issue discs.

iii

Contents

Licence terms i
Notice i
Distribution of application programs i
Warranties and support i

1 Introduction 1
Introduction 1

2 Installation and Configuration 3
System Requirements 3
Hard Disk Installation 3
Configuration 3

3 Overview 5
Selecting the right AVR CPU 5
Loading your AVR with a TLM 5
Host and Remote modes 6
Running the DEMO application 6
Saving a target image 7

4 Memory and AVR Registers 9
RAM 9
ROM 9
Separate Code and Data 9
AVR Working Registers 9

5 Target Configuration files 11

6 Optimisation 13

7 Quick Forth Guide 15
First words 15
Interactive 15
The Stack 16
Stack Nomenclature and Documentation 16
AVR Forth 17
Data Stack Size 17
Return Stack 17
Data Stack Operators 17
Memory Operators 17
Logical Operators, AND OR XOR NOT 18
Bit Control, ON OFF CHECK 18
Maths, + - UM* UM/MOD 18
Increment and Decrement, 1+ 2+ 1- 2- 2* 2/ 19
Constants and Variables 19
Control Structures 19
IF ... THEN 20
IF ... ELSE ... THEN 20
BEGIN ... AGAIN 20
BEGIN ... UNTIL 20

Licence terms

iv

BEGIN ... WHILE ... REPEAT 20
CASE ... OF ... ENDOF ... ENDCASE 20
FOR ... NEXT 21
DO ... LOOP 21

Conditional Tests 21
Seeing is believing 21
Controlling a Port 21
Comments 22

Displaying Comments 22
Loading a File 22
Vocabularies 23
CREATE ... DOES> 24
Demo Application 24

Loading the Demo 24
Running the Demo 25
Viewing the Demo 26

Inside the AVR TLM-Forth 26
Inside Forth 26
NEXT 26
NEST 26
EXIT 26
Data Stack 26
Code and Variable Space 27

8 Meta Compiling and the TLM 29
Meta Compiling 29
Unresolved References 29
Remote Target - TLM 30

9 Library 31
Number Conversion 31

10 Multi-tasking 33
USER Area 33
Running Tasks 33
Semaphores 34

11 Pipes 35

12 Host Programs 37

13 Exceptions CATCH and THROW 39

14 Turnkey Operation 41

15 AVR Assembler 43
Introduction 43
Conditional Flags 43
Register Use 43
Macros 43
PUSH and POP 44
Addressing modes 44

Register Syntax 44
Immediate 45

Licence terms

v

Register Direct 45
Data Indirect 45
Data Indirect with Displacement 45
Data Indirect Post-Increment 46
Data Indirect Pre-Decrement 46
Direct Bit 46
Data Direct 46
Code Memory Indirect 46
Direct Program 46
Indirect Program Addressing 47
Relative Program Addressing 47

New Conditional Opcodes 47
Code Definitions 47
In-Line Code 48
CODE Stubs 48
Interrupts 48
Dumps 49

Register File Dump 49
I/O File Dump 49
Data Memory Dump 49
E2PROM Memory Dump 49

16 Interactive Serial Programmer 51
Circuit 51
Header Signal Connector 5+5 way 52
Checking the fuses 52
Signatures 52
Commands 52

17 Object Save and Load 55

18 External Programmers 57

19 Errors 59
Address NOT in the ROM 59
Address NOT in the File 59
Address NOT in the E2PROM 59
Already a GOTO! 59
Already Resolved 59
Conditionals Wrong 59
Definition out of range! 59
Not enough Parameters 59
NOT Erased 59
NOT Compiling! 59
NOT an 8 bit number 59
NOT in Remote! 59
NOT Resolved!! 59
is NOT a Library Definition! 60
is NOT yet Defined or is In-Line! 60
Could NOT enter Program Mode! 60
Prog. Error! 60
.... Unresolved Word(s) 60
Error: <word> is undefined 60

Licence terms

vi

20 Suggested Reading 61

21 Further Information 63

Introduction

1

1 Introduction

Introduction
Welcome to the world of the Interactive Remote Target Compiler (IRTC) and the Target Link
Monitor (TLM) for the ATMEL AVR series of processors. This package is optimised for use
with the RAM Technology In-System programmer (ISP), which is supplied as part of the
package.

These products are designed to give fast and efficient turn-round of ATMEL AVR based
microcomputer products written in ANS Forth. IRTC is simple to use but very powerful. It is
fast in compilation and allows good product documentation from the keyboard without the
need for large manuals.

For those not familiar with Forth we would advise you start with one of the books in the
Appendix.

Via the TLM and ISP, IRTC provides a seamless integration of the Host PC and the Target
hardware. This provides for the interactive testing of programs and hardware from the PC
keyboard. Test routines may be compiled and immediately run in the Target. Memory may be
viewed, variables modified, and the source code or help of any compiled word displayed.

As a consequence of the low cost of the IRTC and TLM we regret that is not possible to offer
a voice Technical Hot Line. We are, however, able to offer e-mail for your enquires. These
will be dealt with as soon as possible.

Our E-mail is: tech-support@mpeltd.demon.co.uk

Web Page http://www.mpeltd.demon.co.uk

Installation and Configuration

3

2 Installation and Configuration

System Requirements
IBM-PC with Windows95/98 or NT

- 16Mb of RAM

- COM1: Serial Port

- Hard Disk

- Mouse

- ISP Programmer (supplied)

- Target system

- +5V power source of at least 50 mA capability to power the ISP serial programmer.

The ISP must be connected to a serial port before running IRTC.

Hard Disk Installation
Place the IRTC CD in the CD drive and run the Setup. The setup wizard will install the
software on to your hard drive in the directory of your choice. The default is C:\XAVR.

The compiler and tools are run from the MPE development shell, AIDE. Make a short cut to
AIDE on your desktop.

Configuration
Run AIDE from the file AIDE.EXE in XAVR\AIDE. There is a separate manual for AIDE.

In IDE -> MacroManagement set the AVRBASE macro to C:\XAVR or the directory
where you have put the system.

In IDE -> MacroManagement set the ACROBAT macro to the full path name of the
PDF file viewer (normally Adobe Acrobat), for example:
 C:\APPS\ACROBAT\ACRORD32.EXE.

Edit the macros in the file XAVR\DEMO\DEMO.CTL to reflect the directories you are
actually using.

Test that the system is working by clicking on the AVR icon on the top left toolbar.

The ISP is connected to your IBM® compatible computers serial port, COM1 to COM4.
IRTC sets the port configuration to 38400 baud 8 bits one-stop-bit and no-parity. The ISP 25
way D-type connector is then plugged into your computer port or via a cable.

If the ISP is not connected to COM1, edit the KERNEL*.INI files to use SET-COMx
where xis 1..4.

The header on the 10 way strip cable is plugged into a pin header on your Target hardware.
The Target powers the ISP through the strip cable via the power pins from your Target. See
the ISP description.

Now read the rest of the manual, or go to the DEMO chapter.

Installation and Configuration

4

Overview

5

3 Overview

The philosophy behind IRTC is that of a high level interactive de-bugger. Through TLM the
AVR is made into a stack machine with three functions.

• Data may be transferred from the Host-PC to the TLM stack.

• Data may be transferred from the TLM stack to the Host-PC.

• The TLM may execute code at an address placed on its stack.

These three functions are all that is required to test individual Forth words or assembly
subroutines. Then words or subroutines are added to the TLM code to extend it into an
application. With the C@, file fetch, and C!, file store, routines added the TLM may test the
hardware external to the AVR, as we then have the capability to change any file space
location, ports and registers included. The TLM may be seen as a server to the Host and
programs may be written to exercise the Target hardware without any further AVR code
being compiled. This ability to test the hardware, before any application specific software is
written, is one of the main advantages of IRTC. Being Forth based, this process is interactive
with direct hardware operation from the command line.

XAVR.EXE is the base compiler that incorporates IRTC and AVR generic facilities. To
produce an an application, load a CPU specific INI file that defines processor specific
features, and then load the application code. This is normally done by loading a file we call a
control file, usually with a CTL extension.

You can run XAVR.EXE from the command line or a short cut:
 XAVR.EXE GET DEMO.CTL
However, we recommend running it from the AIDE environment which gives additional
useful features.

Selecting the right AVR CPU
For AVR Target configuration in AVR xxxx.INI, see Target Configuration.

If your application is not going to use the Mega103, change the XAVR\DEMO\DEMO.CTL
file to select the correct INI file from the XAVR\KERNEL directory. IRTC is modified by
the .INI file to reflect the properties of the AVR device chosen.

Once loaded it is NOT possible to change the AVR type selection without restarting IRTC
with another .INI file.

New AVR xxxx.INI files may be produced to specify new devices as they become available.
Existing .INI files may be used as a template to produce your own.

Loading your AVR with a TLM
IRTC runs the ISP in two modes, Programming and Interactive Communication. The serial
programming mode is as described in the Atmel databook, the interactive communications
uses the same pins, MISO, MOSI and serial communication at the ISP baud rate, 38400 baud.
For the interactive mode to operate a small program, the Target Link Monitor, must first be
programmed into the AVR Flash code space. An image of this is created by xxx.INI at load
time and this must first be programmed into your device before development may begin.

You may program the TLM with REPROGRAM. The ISP and Target must be powered and
connected to a selected serial port. No external connection , except the ISP, should be made to
the Reset pin on the Target device or to the MISO, MOSI and SCK pins. REPROGRAM erases

Overview

6

the AVR Flash before programming the code image from $0000 to HERE (the end of the
image).

When successful the AVR will now be ready for development.

Host and Remote modes
When the compiler is running, it is in one of two modes, Host or Remote.

Host mode is used when you wish to use the PC and its resources without any communication
with the Remote Target. You may wish to perform some inspection of the Target image
memory for example. All references to Forth kernel words, like @, !, + etc., will be from the
Host definitions. That is those definitions that relate to the 80X86 processor in the PC.

After you type ?REM, Remote mode will be announced. This indicates that where applicable
IRTC will use the Remote Target for execution of the Target word definitions. This means
that you now have two Forth systems running together. The Host controls everything through
IRTC but execution occurs in the Remote Target. When you type on the PC keyboard the
Host parses your input and performs the necessary actions to instruct the Remote Target what
to do. The Target is a slave, but does execute the run-time code in real time.

This bit is for Forth techies, and don’t worry if you don’t understand it yet. The Vocabularies
that will be searched are modified by the mode selection. When in the Host mode the first two
will be METAAVR. This is the IRTC main vocabulary. When in the Remote mode the first two
will be METAAVR and TARGET. The TARGET vocabulary holds all the AVR Forth
definitions for the Remote Target. This will be the first vocabulary searched, so @, !, + etc.
will now be the Remote versions in the AVR.

The following Forth words are useful for switching modes.

?REM switches to REMOTE mode if not already there

HOST switches to Host mode.

REPROGRAM programs the target AVR with the code compiled so far. This must be done
before switching to Remote mode. Once in Remote mode, the compiler will automatically
update the target memory.

VERIFY checks the target Flash image against the compiler’s image.

.STATISTICS tells you useful things such as how much of your code space has been used
up.

Running the DEMO application
Run AIDE.

Configure the macros and IDE as described earlier.

Click the AVR icon. The compiler will run, and when it finishes type

REPROGRAM \ sets up the Flash
?REM \ switch to remote mode
GO \ the main application word
 \ ignore the NO Ack! Message
TTY \ Start the simple terminal emulator
 \ press ESC to finish

What you should see is:

ABCDEFGHIJ 123456789 ABCDEFGHIJ
ABCDEFGHIJ 123456789 ABCDEFGHIJ

Overview

7

ABCDEFGHIJ 123456789 ABCDEFGHIJ
ABCDEFGHIJ 123456789 ABCDEFGHIJ
…

Done

The screen should clear and the above appears and runs until you stop it by pressing the
<ESC> key. The result is not too impressive but what is happening is quite interesting. TTY
is just a Dumb Terminal. It accepts serial input and puts it on the screen. There are three
tasks, described later, that result in these characters appearing.

The first is called LETTERS, sends the string 'ABCDEFGHIJ' to a 'pipe' (See Pipes). The
second NUMBERS, sends the converted number string '123456789' CRLF to the same pipe.
The third UART, takes one character at a time out of the pipe and sends it back to the Host.
The rate at which the characters come back is controlled by a Timer interrupt running every
111mSecs.

So you see the Target is quite busy. The tasks LETTERS and NUMBERS are endless, they
just run and run. UART only runs once and then STOPs. The Timer interrupt AWAKENs
UART and it runs once again. So the characters occur at a 111mSec rate.

The funny thing is why do the letters and numbers, that are being put in the same pipe, not get
jumbled up and why two sets of letters and only one of numbers with the CRLF after letters
and not numbers?

The answers to these and other questions come later. (see Semaphores)

Saving a target image
You can save the target image in image (straight binary) or Intel Hex format using:

SAVEIMG <filename>
SAVEHEX <filename>

Note that Intel Hex files can be loaded into the standard AVRDEBUG.EXE program for
disassembly and simulation.

Memory and AVR Registers

9

4 Memory and AVR Registers

RAM

ROM

Separate Code and Data
The AVR has separate code and data spaces.

The following words operate on DATA space.
 C@ C! @ ! 2@ 2! FILL ERASE BLANK CMOVE ACQUIRE RELINQUISH

But the code memory space uses:
MC@ M@ ,-T C,-T.

AVR Working Registers
AVR Reg name AVR Reg number(s) Forth use Other Function

Z, ZH, ZL R31:30 Scratch Used for IJMP

Y, YH, YL R29:28 Data Stack Pointer

X, XH, XL R27:26 TOS (top of data stack)

Memory and AVR Registers

10

R25:24 SEC (intermediate)

R23:22 UP (user pointer)

R21:20 N+5:N+4 (scratch)

R19:18 N+3:N+2 (scratch)

R17:16 N+1:N (scratch)

Target Configuration files

11

5 Target Configuration files

The way the Target AVR is used is defined bye the file xxxx.INI.

This is loaded by IRTC and extends XAVR.EXE by compiling the AVR set-up words and the
talker, TLM, code. The positions and size of the memory spaces and stack positions are set.

Below is the source for MEGA103.INI;

\ Initialisation File for MegaAVR

38400 8 NOPARITY ONESTOPBIT SET-COM1
META IN-META
SET-FF
IN-META
$0060 VALUE RAM-VEC
$00A0 VALUE RAM-START
$0FFF VALUE RAM-END
$0000 VALUE ROM-START
$FFFF VALUE ROM-END
$0000 VALUE EPROM-START
$0FFF VALUE EPROM-END

\ Vectors

$0000 CONSTANT RESET
$0002 CONSTANT EXT-INT0
$0004 CONSTANT EXT-INT1
$0006 CONSTANT EXT-INT2
$0008 CONSTANT EXT-INT3
$000A CONSTANT EXT-INT4
$000C CONSTANT EXT-INT5
$000E CONSTANT EXT-INT6
$0010 CONSTANT EXT-INT7
$0012 CONSTANT TIM2-COMP
$0014 CONSTANT TIM2-OVF
$0016 CONSTANT TIM1-CAPT
$0018 CONSTANT TIM1-COMPA
$001A CONSTANT TIM1-COMPB
$001C CONSTANT TIM1-OVF
$001E CONSTANT TIM0-COMP
$0020 CONSTANT TIM0-OVF
$0022 CONSTANT SPI-STC
$0024 CONSTANT UART-RXC
$0026 CONSTANT UART-DRE
$0028 CONSTANT UART-TXC
$002A CONSTANT ADC-INT
$002C CONSTANT EE-RDY
$002E CONSTANT ANA-COMP

multi-tasking [if]
 GET MTMEGA \ Multi tasking taker
[else]
 GET STMEGA \ Single tasking taker
[then]

FORTH ' (PAGED-DOWNLOAD) IS (DOWNLOAD)

H: "MEGA S" Mega103 " ;

Target Configuration files

12

FORTH ' "MEGA IS AVR-TYPE

IN-META

HOST

.STATISTICS

CR CR .(IRTC for Mega103 Running in HOST mode)

The start and end of the file space, code space and EEPROM space are set. These are used to
warn if exceeded during compilation. The programming algorithm is set for a paged Flash
device and the TLM object code is loaded into the PC Target image.

The baud rate for the TLM may be modified in the talker startup code, but this must be done
along with a similar modification to the ISP code if the baud rate value is to be changed

Optimisation

13

6 Optimisation

By default, the IRTC compiler creates subroutine threaded code with optimisation. The
following directives can be used to control the optimiser:

FAST-CODE \ enable optimiser
COMPACT-CODE \ disable optimisier

As the compiler generates machine code it is possible for it to scan the code as it is compiled
and to optimise the result. This process operates in a single pass, so the optimisation is
limited, but is very useful.

Forth requires parameters on the stack before executing the function. If these parameters are
literals it is often possible to reduce the code e.g..

 : TST $03 PORTA C! ;

This would require the following code;

PUSHT \ Make room
LDI TOSL,03 \ literal 03
LDI TOSH,0
PUSHT \ Make room
LDI TOSL,PORTA \ literal PORTA
LDI TOSH,0
CALL C! \ CALL C! routine
RET \ finished

However, the optimizer produces:

LDI SECL,03 \ literal 03
STS PORTA,SECL \ Store to portA
RET \ finished

This has saved 6 words of storage and several micro seconds of execution time. It would be
unusual to make this simple code a definition and so this would normally become in-line code
within a larger definition. Also in this example, if the literal 03 was computed at run-time the
result is already in TOS so the compiler just saves TOSL into PORTA and then cleans the
stack.

Quick Forth Guide

15

7 Quick Forth Guide

First words
Good organisation and effective communication require us to:

• define and name useful tasks or operations

• group these into larger related ones.

This is how Forth works. It consists of a dictionary of words grouped into vocabularies.
Each word is an operation and words are defined in terms of those that went before. This
dictionary defines Forth itself and is added to by your application to grow into a new Forth
that solves your problem.

Let us look at an example of how this works for a simple FAX machine.

: send ring read transmit hang-up ;

The : in Forth indicates the start of a new definition. The space delimited text following will
be the name of the next entry in the dictionary. These names are called "words" in Forth. The
other words already exist in the dictionary and are the functions performed by this new
definition. The ; terminates the new dictionary addition. This process is called compilation
and the finding of the words in the dictionary interpretation.

The words ring, read, transmit and hang-up are defined in terms of other words, for
example the word read:

: Read BEGIN scan-line page-end UNTIL ;

Here we see read defined in terms of other words, this time with a looping structure that
terminates at the page end. Notice that the definitions are short and the word names relevant.
Also we have shown the definitions in a top-down style, which is how you might consider the
problem, but they would be implemented in a bottom-up fashion. This means that the
simplest task is defined and tested first, building up to the final function send.

The words in read may well consist of what are called Forth primitives as are the
BEGIN...UNTIL structure in read itself. These primitives are the fundamental functions
of Forth and are the starting point from where the Forth grows or extends. Hence the Forth
language is termed "extensible".

To recap, Forth is an extensible language that consists of a dictionary of words each defined
in terms of other words.

Interactive
One of the many advantages of Forth is it's ability to execute a word from the dictionary by
name. Once a colon definition has been entered it may be run, or executed, just be typing the
word name and pressing the RETURN key.

Forth is thus called an interactive language because it carries out your commands as soon as
you enter them at the keyboard.

When the RETURN key is pressed Forth tries to run all the words on the command line and
at the end prints:

ok

Quick Forth Guide

16

This is true providing no problem was found. For instance if a word is not in the dictionary
Forth will say:

Error: <word> is undefined

Or one of the words may not have enough parameters and you may see:

stack underflow

The Stack
Forth is a stack based language. This means that all the parameters used during operations or
calculations are held on a stack. The stack is a Last-in-First-Out, LIFO, structure in the re-
writable area of computer memory. If we put a value on the stack we say we are 'pushing' it
onto the stack. If we retrieve it we say we are 'popping' it off the stack.

This stack operation is very useful but leads to some differences. Suppose we wish to add two
numbers:

PRINT 1 + 2 3

This is how we might look at the problem in Basic. In Forth we would write:

1 2 + . 3 ok

Here the values are put first and the operator last. This is called 'post-fix' or Reverse Polish
Notation (RPN), we normally use 'pre-fix'. The . word outputs the top stack item converted to
an ASCII number string to the PC screen.

The advantage to the computer is that it can only handle postfix order as it does everything
sequentially. It must have the values before it can do the addition. In Forth the entry of the
two numbers pushes them onto the stack. The 2 was last so it is on the top of the stack with
the 1 underneath it. When Forth executes the + code it only knows that it must add the top
two stack values together and leave the answer on top of the stack. The + code does not need
a location for the two numbers it just uses whatever is on the stack. If we performed:

1 2 + 5 - . -2 ok

The answer of -2 would be left on top of the stack. No intermediate storage of the 1+2 is
required. This requires less memory and is dynamic with no need to 'garbage-collect' as there
is no 'garbage'.

Stack Nomenclature and Documentation
All Forth functions operate with the stack for parameter passing. Any number of stack values
may be input and output from a definition so we show the stack use of a word when we define
it. To do this (--) and (S --) are used as stack comments.

(S n1 n2 -- n3)
(n1 n2 – n3)

Would mean that two values were required on entry and one value is left on exit from the
word. Operands of differing sizes and types are shown below.

n1 n2 16 bit signed numbers
d1 d2 32 bit signed numbers
u1 u2 16 bit unsigned numbers
a1 a2 16 bit addresses
fa1 fa2 8 bit file addresses
b1 b2 8 bit bytes

Quick Forth Guide

17

c1 c2 ASCII characters
f 8 bit flag; 0 = false, 255 = true

AVR Forth
After the general discussion of Forth we may now look at the Forth implementation used for
the AVR. IRTC creates subroutine threaded code with optimisation if the FAST-CODE
directive is used. Many Forth words are compiled as in-line code to further improve execution
speed.

Data Stack Size
The Forth Data stack size is 16 bits. Eight bit byte values are represented as a 16 bit value
with the upper 8 bits set to zero. 32 bit, double, values are represented by two stack values,
the top value the most significant. The top stack value is always in the TOSL, TOSH registers,
R26 and 27, the X register. The Y register, R28, DPL and R29, DPH, holds the pointer to the
rest of the data stack. Macros PUSHT and POPT push and pop the top stack item on and off
the external stack. Also R24 and R25 are used as a temporary second stack item, SECL and
SECH, that has macros PUSHS and POPS.

Return Stack
The return stack for the Forth word calls is controlled by the stack pointer SPL and SPH in
the AVR I/O space. The PUSH and POP mnemonics control the stack along with CALL and
RET.

Data Stack Operators
DUP SWAP OVER ROT DROP NIP TUCK

As all the parameters are passed on the stack Forth has several words to manipulate the stack
contents.

DUP (S s1 - s1 s1) will duplicate the top stack item, leaving two identical values.

SWAP (S s1 s2 - s2 s1) exchanges the top two stack items.

OVER (S s1 s2 - s1 s2 s1) copies the second stack item onto the top of the stack, pushing
down the first.

ROT (S s1 s2 s3 - s2 s3 s1) brings the third stack item to the top of the stack and the top and
second are pushed down.

DROP (S s1 -) removes the top stack item, opposite to duplicate.

NIP (S s1 s2 - s2) removes the second stack item.

TUCK (S s1 s2 - s2 s1 s2) copies the top stack item beneath the second stack item.

These operators allow us to use the stack for local storage during words and re-ordering the
results to pass on to the next word.

Memory Operators
C@ C! @ ! MC@ M@

Quick Forth Guide

18

The AVR has two memory areas to which it has access, code and RAM. C@ and C! fetch
from and store to a single 8 bit RAM location. These two words are optimised during
compilation if fixed values, literals, are used as the operands. By using I/O before an I/O
register C@ and C! may be used to access the I/O locations as though they are RAM. The
words @ and ! are 16 bit RAM operators. All these use a 16 bit address to access the location.

The code space in the AVR is only accessible indirectly via the Z register and the LPM
instruction. Tables may be made using CREATE to construct lists of values in the code space
with C,-T and ,-T, which are words the compiler uses to store bytes and words into the
code space. When the table name is later executed it leaves a 16 bit address on top of the
stack that points to the beginning of the list. MC@ and M@ may then use this address to return
the stored values.

Note: The address used by MC@ and M@ is a byte address not a word address. CREATE leaves
a word address and this must be doubled.

CREATE 7-SEG.DIGITS (S - a)
(0) $3F C,-T (1) $06 C,-T (2) $5B C,-T (3) $4F C,-T
(4) $66 C,-T (5) $6D C,-T (6) $7D C,-T (7) $07 C,-T
(8) $7F C,-T (9) $6F C,-T

 : GET-DIGIT (S b - b') 7-SEG.DIGITS 2* + MC@ ;

Here the table returns an address which is doubled by 2* and added to the offset of the digit
required by +. MC@ uses the new byte address to fetch the value to the stack.

Logical Operators, AND OR XOR NOT
In embedded controllers the need for logical operators is paramount for the bit control
necessary.

AND (S s1 s2 - s3) creates the logical AND of the top two stack items.

OR (S s1 s2 - s3) creates the logical OR of the top two stack items.

XOR (S s1 s2 - s3) creates the logical XOR of the top two stack items.

INVERT (S s1 - s1) inverts all the bits of the top stack item.

The code produced is in-line and optimised.

Bit Control, ON OFF CHECK
These are TRANSITIONal definitions that do not appear in the Library. Their Library
counterparts are SET-BITS, RES-BITS and TEST-BITS.

ON (S m fa -) takes an 8 bit mask and address and sets all the bits set in the mask high at the
address leaving the rest unchanged.

OFF (S m fa -) takes an 8 bit mask and address and clears all the bits set in the mask low at
the address leaving the rest unchanged.

CHECK (S m fa - m') returns the logical AND of the 8 bit mask and the contents of the
address.

These are only 8 bit functions and operate on any file address. They may be used to
manipulate flags, registers or ports producing tight code.

Maths, + - UM* UM/MOD
+ (S s1 s2 - s3) adds the top two stack items leaving the result on top of the stack.

Quick Forth Guide

19

- (S s1 s2 - s3) subtracts the top stack item from the second leaving the result on top of the
stack.

UM* (S s1 s2 - s3 s4) multiplies the top two stack items to leave a double result on top of the
stack i.e. 8*8=16, 16*16=32 bits.

UM/MOD (S s1 s2 s3 - s4 s5) divides the double value under the top stack item by the top
stack item leaving two values, remainder second and quotient on top i.e. 16/8=8+8.
32/16=16+16 bits.

Increment and Decrement, 1+ 2+ 1- 2- 2* 2/
1+ (S s1 - s2) increments the top stack item by one.

2+ (S s1 - s2) increments the top stack item by two.

1- (S s1 - s2) decrements the top stack item by one.

2- (S s1 - s2) decrements the top stack item by two.

2* (S s1 - s2) arithmetic left shift of the top stack item by one.

2/ (S s1 - s2) arithmetic right shift of the top stack item by one.

Constants and Variables
Often we require a value that is fixed and used throughout our application, for example the bit
on a port. This may be compiled as a CONSTANT;

2 CONSTANT PUMP

IRTC will cause this to be compiled as an in-line literal whenever the word PUMP is
encountered. If the COMPACT-CODE directive is set, a subroutine will be compiled
immediately and all references will be via calls. This may save code space but does not allow
the optimiser to reduce code.

When the value required needs to be changed during execution a VARIABLE is defined;

VARIABLE COUNTER

Here VARIABLE compiles an in-line literal of the address of a 16 bit, two byte, location in
the file. These locations start at the address in RAM-START and an error is generated if too
many variables are declared resulting in the pointer going above the value in RAM-END.
The variable allocation pointer is incremented automatically by each variable declaration. The
pointer may be set absolutely by VORG. VARIABLE allots two bytes and CVARIABLE one
byte. @ and C@ may be used to access the contents, ! and C! to change the value.

Note: The contents of a variable location are undefined at compile time. It is necessary to
initialise the contents at the start of your application if not implicitly done so by your code.

Control Structures
The flow of control in a program is normally sequential; control structures allow you to alter
this by a branch or loop. The change is often brought about by a piece of (runtime) data. This
gives the program the ability to choose which direction it will take.

Control structures must be used inside a : definition and may not start in one definition and
finish in another. They cannot be used directly from the command line. But they may be
nested inside one another as long as they do not overlap.

Quick Forth Guide

20

IF ... THEN

Use: flag IF true words THEN

The 16 bit flag controls the outcome and is consumed by IF. If the flag is non-zero the true
words are executed, otherwise they are not.

If the flag is required again it may be duplicated by DUP. If the flag value is only required
between IF .. THEN it may be conditionally duplicated by ?DUP.

IF ... ELSE ... THEN

 Use: flag IF true words ELSE false words THEN

This is similar to IF ... THEN above but with execution phrases for both true and false
(zero) values of the flag.

BEGIN ... AGAIN
Use: BEGIN words AGAIN

This structure forms an endless loop that is only terminated by a AVR reset. This is often the
structure used in your application run word.

BEGIN ... UNTIL
Use: BEGIN words flag UNTIL

This structure forms a loop that is always executed at least once. The loop will return to
BEGIN as long as the 16 bit flag is false (zero) when tested by UNTIL. As soon as flag is true
(non-zero) the loop is terminated. The flag is consumed by UNTIL in both cases.

BEGIN ... WHILE ... REPEAT
Use: BEGIN words flag WHILE words REPEAT

This is perhaps the most powerful of the Forth control structures. The loop starts at BEGIN
and executes all the words as far as WHILE. If the 16 bit flag on the data stack is true (non-
zero) the words between WHILE and REPEAT are executed, and the cycle returns to BEGIN.
If the flag tested by WHILE is false (zero) the loop is terminated. WHILE consumes the flag.

CASE ... OF ... ENDOF ... ENDCASE
Use:

CASE (S b --)
 value1 OF words ENDOF
 value2 OF words ENDOF
 ...
 default words (otherwise clause)
ENDCASE

The case statement used in IRTC is the result of a competition run by the Forth Interest Group
(FIG) in the USA. It was invented by Dr. Charles E. Eaker, and was first published in Forth
Dimensions, Vol. II No. 3.

CASE exists to replace large and unwieldy chains of IF ... ELSE ... THEN
statements.

The function of CASE is to execute one action dependent on the 16 bit value passed to it on
the stack. The OF words compare value1,2 etc. to the stack value and if equal the words
between OF and ENDOF are executed, the structure is then exited. If no match is found the

Quick Forth Guide

21

words between the last ENDOF and ENDCASE are executed with the input stack value still on
the data stack.

FOR ... NEXT
Use: index FOR words NEXT

This is the simplest counted loop in IRTC. The index is transferred to the Return Stack and
the words between FOR and NEXT executed. NEXT decrements the index and if true (non-
zero) returns to FOR. If the index decrements to zero, false, it is removed from the Return
Stack and the loop terminates.

DO ... LOOP
Use: limit index DO words LOOP

DO transfers the 16 bit values of the loop limit and the start index to the Return Stack. The
words between DO and LOOP are executed at least once. LOOP increments the index and tests
it against the limit. If the index is still less than the limit the loop executes again. If not the
Return Stack is cleared and the loop exits.

To leave the loop early use LEAVE. This forces the index to be the same as the limit so that
the loop will exit when LOOP is next run.

Conditional Tests
0= (S s1 - f) the flag is true if the top stack item is zero.

0< (S s1 - f) the flag is true if the top stack item is less than zero.

0> (S s1 - f) the flag is true if the top stack item is positive, greater than zero.

= (S s1 s2 - f) the flag is true if the top two stack items are equal.

<> (S s1 s2 - f) the flag is true if the top two stack items are not equal.

< (S s1 s2 - f) the flag is true if s1 is less than s2.

> (S s1 s2 - f) the flag is true if s1 is greater than s2.

U< (S s1 s2 - f) the flag is true if s1 is logically less than s2.

U> (S s1 s2 - f) the flag is true if s1 is logically greater than s2.

Seeing is believing
As IRTC creates AVR machine code and optimises it as it goes it may be reassuring to see
the result. At the moment there is no de-compiler in IRTC. However, it is possible to create a
HEX file of your code with;

0 HERE-T HEX-SAVE TEST

We may view the code by using the Atmel Studio debugger and step through the code with it.

Controlling a Port
Now we have communication we may modify any of the RAM locations, hence the ports.
The command FDUMP will list all the file locations and C@ will return the value of a single
location.

Quick Forth Guide

22

To read from PortA all we need is:

I/O PORTA C@ H.

This returns the value of PortA.

all the registers and flags are known to IRTC, if you use one from a device other than the one
chosen an error will be issued.

To write to PortA, first DDRA must be set to an output on the port pin we wish to use. Say
we are using bit 0, then we could set this to an output with:

$01 I/O DDRA C!

The port bit may then be set high with:

1 I/O PORTA C!

or low with:

0 I/O PORTA C!

The same applies to any other port timer or internal function.

Comments
Comments may be incorporated into your source in three ways:

COMMENT: … COMMENT; or ((…))

\ to end of line

(…) or (S …)

COMMENT: to COMMENT; is used to enclose several lines of comment.

The \ ignores any further text on that line only. Starting a block of lines with \ may be used
instead of COMMENT:.

The (or (S ignore all text until the) is encountered. This is used for the stack comments.

Displaying Comments
if you wish to print out a remark or comment while a file is being interpreted or compiled use:

CR .(Comment string)

This will issue a Return and then print out the string on the Host terminal.

Loading a File
Once a file has been edited it may be compiled to produce the AVR runtime code with:

FLOAD <filename>
INCLUDE <filename>
GET <filename>

If the file has a .FTH extension, the default, no extension need be added to <filename>.
FLOAD scans the file from beginning to end and interprets the contents from the dictionary. If
you are in the Host mode the Target image only is updated. If in Remote the code is also
programmed into the AVR for immediate execution.

Quick Forth Guide

23

INCLUDE and GET are aliases for FLOAD and may be used instead if you prefer. This reads
better when used to load, include, a file from within a file.

Vocabularies
The Forth dictionary is divided up into sections called vocabularies. Each contains words that
are related and this subdivision means that only a part of the dictionary need be searched to
find a function.

The Forth word ORDER shows a list of vocabularies that represent the current search order.
The one at the top of the list, highlighted, is called the CURRENT vocabulary and is the one
that new definitions will be entered into. The list below starts with the CONTEXT vocabulary
which is the first one to be searched to find a word being parsed. If the word is not found the
next vocabulary in the list will be searched, and so on until the word is found or the list
expires. IRTCis set to remove the necessity for you to need to modify this order during
normal operation. Only is you wish to modify the compiler or do special operations to create
new Library definitions will this order need to be changed.

You will notice that the Host and Remote modes have different vocabularies selected. Below
is a list of the functions and their vocabularies.

ROOT
This is the root vocabulary and is always present. It contains words that allow the search
order to be changed and the other vocabularies to be selected.

FORTH
This is the main vocabulary that contains the usual Forth words. These are the Host
definitions that run IRTC and relate to the PC processor.

METAAVR
Here are the meta-compiler functions that make up IRTC.

XASM
The AVR assembler mnemonics, registers and flags are in here. This is only searched if a
CODE or C[…]C definition is being compiled.

TRANSITION
Many of the words in here are replicas of those in FORTH. These are the optimisers for IRTC
and this vocabulary is the first to be searched during a Target : definition.

LIBRARY
These are the Library macros that compile the Target code and create the Target vocabulary
entries.

TARGET
The Target vocabulary contains the words that exist in the AVR code space. These words
may be interactively executed. All Target : definition words go here together with any Library
definitions used during compilation.

When changing from Host to Remote or back the vocabulary order is also changed. This
order is re-established whenever the <cr> key is pressed. If you change the order it will only
last for one command line of input.

When entering CODE definitions from the command line, each new line should start with
XASM. : definitions may only be one line in length.

A list of words available in each vocabulary may be seen with:

 <vocabulary-name> WORDS

Quick Forth Guide

24

CREATE ... DOES>
This construct is what makes Forth somewhat unique. It allows the compiler to be extended.
In fact the assembler is written using this construct to define words that will create others of
the same mould. Let us explain by example:

H: CONSTANT CREATE ,-T DOES> @ ;

The H: tells the Host that this definition is for it and not the Target. All the words between H:
and DOES> will be compiled into the Host as a Host definition. All the words after DOES>
will be Target words defined in the Target. So what are we doing?

[guru warning]
CONSTANT is the new name that we are adding to our compiler. CREATE will create a header
in the Host when CONSTANT is run at Target compile time. The word ,-T will save any
value on the Host stack into the next available space in the Target dictionary when
CONSTANT is executed. DOES> will terminate the Host definition of CONSTANT and enter
the compile state for the Target. DOES>starts by compiling into the Target a CALL
DODOES. The code following DOES> will then be compiled into the Target dictionary. The
address where this compilation takes place is patched into the definition of CONSTANT in the
Host.

So when we invoke CONSTANT in our program, the address of the code compiled by DOES>
will be compiled into the Target, followed by the value on the Host stack. So when the
resulting constant is run in the Target it runs CALL DODOES. This leaves the address of the
value that was on the Host stack at compile time on the Target stack. The code compiled after
DOES> is then run. This results in the fetching of the compiled value from the code space
onto the Target stack.

The word CONSTANT will now create as many more words as we wish, all with the same
resultant run-time action, but each with it's own result. Those who know of the Object
Oriented Programming style, OOPs, may recognise this construct For more insight into this
you may wish to refer to the Appendix.

Note: The example shown here for a constant is not that used by TLM. It is only a simple
demonstration of the CREATE...DOES> structure.
[end of guru warning]

Demo Application

Loading the Demo
Now we have communication with the TLM we may see what can be achieved. Try the
following:

 1 2 + . (cr) Error: + is undefined

As this is the start we do not have many Forth words loaded yet. To help with interactive
development any word in the Library may be loaded from the keyboard with REQUIRED, e.g.

REQUIRED + (cr) ok

1 2 + . (cr) 3 ok

Which shows that the TLM can add 1 and 2 to get 3, providing that the necessary resources
have been supplied to it.

All seems to be working so let us jump up to the real thing and try a multi-tasked program
with timer driven interrupts.

Quick Forth Guide

25

Type: FLOAD LDEMO (cr)

Unresolved references:

*** No words Unresolved ***

Statistics:

Last Host Address: $4AE54

Last Target Code Address: $4B2

Last Variable Address: $2E3

Last EEPROM Address: $0 ok

What happened? First we input FLOAD LDEMO. FLOAD is the Forth word for File Load. It
takes the next space-delimited word in the input string as a file name and tries to interpret the
contents. It has the same effect as you typing the file contents at the keyboard. These are
ASCII text files. You will notice that no file extension was used, FLOAD assumes .FTH if no
extension is given. So if you use .FTH for all your files then you may refer to them by name
only.

The file LDEMO.FTH asks for other files to be loaded to make up the demo program. As
each one loads it's path and name appear at the top of the screen.

Running the Demo
Now you have loaded the demo, let's run it. Type:

GO (cr)
TTY (cr)
ABCDEFGHIJ 123456789 ABCDEFGHIJ
ABCDEFGHIJ 123456789 ABCDEFGHIJ
ABCDEFGHIJ 123456789 ABCDEFGHIJ
ABCDEFGHIJ 123456789 ABCDEFGHIJ
…
Done

The screen should clear and the following appear forever. The result is not too impressive but
what is happening is quite interesting. TTY is just a simple terminal emulator. It accepts serial
input and puts it on the screen. There are three tasks, described later, that result in these
characters appearing.

The first is called LETTERS, sends the string 'ABCDEFGHIJ' to a 'pipe' (See Pipes). The
second NUMBERS, sends the converted number string '123456789' CRLF to the same pipe.
The third UART, takes one character at a time out of the pipe and sends it back to the Host.
The rate at which the characters come back is controlled by a Timer interrupt running every
111mSecs.

So you see the Target is quite busy. The tasks LETTERS and NUMBERS are endless, they just
run and run. UART only runs once and then STOPs. The Timer interrupt AWAKENs UART and
it runs once again. So the characters occur at a 111mSec rate.

The funny thing is why do the letters and numbers, that are being put in the same pipe, not get
jumbled up and why two sets of letters and only one of numbers with the CRLF after letters
and not numbers?

The answers to these and other questions come later. (see Semaphores)

Quick Forth Guide

26

Viewing the Demo
To stop the demo press the ESC key on the PC. Type:

?REM (cr)
<- Mega103 Stack Empty ok

you should see something like this. We now are back to before running the demo.

We have loaded several new words, the only one you have used of so far is GO. IRTC can
show you them all in two ways.

The first is to use the ForthEd editor in AIDE. Type:

ED DEMO.CTL (cr)

The editor screen should appear with the contents of the file DEMO.CTL displayed. This is
the so called control file for the demo program.

The DEMO.CTL file does not give us much information about the program, only the files that
go to make it up. So open another file to brose that one.

Inside the AVR TLM-Forth
Forth has been used much more widely that many people think. The reason that it is not
recognised is that the applications are embedded into products. This package, it is hoped, will
continue this tradition.

Inside Forth
A detailed description of the TLM Forth is given here to assist those wishing to use code
definitions in particular. The so called Forth inner interpreter, NEXT, and the associated call,
NEST, and return, UNNEST, definitions make up the Forth machine.

NEXT
This is the heart of a Forth machine. In a subroutine threaded Forth NEXT is a CALL
instruction. The return address is placed on the return stack by the processor, the address
called is called the Code Field Address, CFA.

NEST
Every high level Forth word is a subroutine. It is called and the CFA points to the code. The
IRTC compiler keeps track of the Forth words and compiles CALL or RCALL instructions
to call each word used within a definition.

Each Forth word starts with a :

EXIT
Every NEST must EXIT, as every Jump to Subroutine must Return from Subroutine. The
value on top of the System Stack is popped by a RET instruction that is compiled by the ; at
the end of each Forth word definition.

Data Stack
Forth is a stack based language. The Return Stack used for calls and returns has been
described above. The Data that is to be manipulated is placed on the Data Stack. The
processor's YREG is used to control this stack. The TLM does however, have an unusual
feature. The top Data Stack item is always in the XREG. The Data Stack controlled by YREG

Quick Forth Guide

27

containing any items below this. In a machine code definition the X and Y registers must be
saved if they are required by the definition, and restored if the definition itself does not affect
the Data Stack. This is most easily done by pushing out onto the Return Stack at the
beginning of the definition. For use by the tasks, a USER location, SP0, is reserved for saving
the Return Stack pointer, the Data Stack pointer is saved on the Return Stack.

Code and Variable Space
In an AVR embedded system the Code space is in Flash memory. The Variables must
therefore have a RAM area for their contents. These two spaces are controlled by different
words.

The Code space is set by ORG. This is similar to the construct in assemblers.

 Use: $0060 ORG

The address $0060 is set in AVR xxxx.INI. It is the beginning of the Target development
code space.

The Variable space is set by VORG.

 Use: $0060 VORG

Tests on the validity of the memory spaces are done at compile time. The following VALUEs
may be altered to reflect your memory by editing AVR xxxx.INI:

ROM-START set to $0000

ROM-END set to $FFFF

RAM-START set to $0060

RAM-END set to $03FF

Meta Compiling and the TLM

29

8 Meta Compiling and the TLM

Meta Compiling
Meta Compiling, as its name implies, is the creation of something from itself. IRTC generates
a Forth for the Remote Target from the host Forth running on the PC. Meta Compiling is
often also called Cross Compiling, as the host and target CPUs are different.

When in the Host mode we Meta compile and create a Target image inside the PC. This
image cannot be executed here as the code is for the AVR processor. However, the resultant
code may be transferred, Downloaded, to the Target or to an programmer. In both cases the
result is code generation that may be run in the Target.

When in the Remote mode we compile and create a Target image in the Host and in the
Target. This is slower, as we have two things to do and one is via a serial link. But the result
is instant code that may be executed.

Which approach is used depends on the position you are in with your application. To begin
with you would experiment in the Remote mode until a section of code was written and
debugged. Later you may compile and download the known code and then continue in the
Remote mode to debug more.

What happens when we Meta Compile is quite simple, deceptively so. IRTC parses the
ASCII text, from a file or the keyboard, and interprets the result. That is every space
delimited word is searched for in the vocabularies shown in the right corner of the screen. If
found the word is executed in the Host-PC. What happens as a result depends on the mode,
Host or Remote, and on a variable STATE-T.

If we are in Host and STATE-T is false the word, if found, will execute in the Host-PC
leaving its result on the Host stack if necessary. Any Target words will not be found in this
state so will result in the message:

Error: word is undefined

If we are in Remote and STATE-T is false, the word will execute in the Host-PC and, if a
Target definition, its Code Field Address (CFA), will be sent to the Remote Target for
execution there also. Any stack result will be left on the Remote Target stack.

If we are in Remote and STATE-T is true, the word executes in the Host-PC, and if a Target
definition, its CFA is sent to the ISP to be placed in the next Target dictionary location. This
is the Remote compile mode, set by encountering a : or].

As can be seen the Host executes everything it finds in the Target vocabulary. If STATE-T
is false the Remote Target executes the resulting CFA, if not it compiles it for execution later
when the new definition is run.

Any definition found by IRTC that is not Target related just executes in the Host-PC and
leaves its result there.

During Target CODE definitions all the Assembler words are executed. The object code
generated is placed in the Target image in the PC and sent to the ISP for storage in the
Remote Target, if in the Remote mode. The execution of these words by the Host causing this
result

Unresolved References
The statistics from our DEMO load displayed a line for Unresolved References when we ran
.STATISTICS. None were shown for our demo as all the references, words, could be found

Meta Compiling and the TLM

30

when compiling. If this is not the case, say because a word was incorrectly spelled, the word
name would appear under the Unresolved Reference heading. IRTC differs from many Forth
implementations in that forward references are allowed and are automatically resolved. This
applies to Forth kernel words as these are contained in the Library. Any forward reference
made in your application code will be resolved when the definition is compiled later from the
source. In IRTC it is therefore not usually necessary to explicitly define forward references,
although you may with FORWARD:. This is true for your Target application code only.
Library extensions do require special conditions for forward referencing and will cause
compile exceptions if they occur.

Remote Target - TLM
The Target Link Monitor is a small, 712 byte, program that allows the communication with
the Host PC and implements multitasking. This small program is however self contained. It
requires no further code to allow full modification and inspection of all the AVRs resources.

This is all carried out by the word SERVER which is defined as follows:

: SERVER (S -) BEGIN ADDR@ EXECUTE $A5 CHAR-OUT AGAIN ;

We must thank the University of Rostock (Germany) for this deceptively simple idea. The
words ADDR@ waits for the Host to send two bytes of data, LSB first, to the Target stack. This
16 bit value must be a valid CFA, Code Field Address, of an existing Target definition. The
word EXECUTE performs a IJMP to this address. The $A5 CHAR-OUT is used as an
acknowledgement for the communications.

The basic TLM words are:

ADDR@ C@ C! EXECUTE PAUSE @ ! SERVER SP0 STOP WORD>

With only these it is possible for SERVER to interrogate the AVR internals.

For example, if we wish to look at the current value of the SREG register, we need to perform
a C@ on file address $3F and send the result to the Host for display. This is what happens:

 I/O SREG C@ H. <cr>

Host sends CFA of ADDR@, EXECUTE runs it.

Host sends $3F (SREG adds) which ADDR@ puts on Target stack.

Host sends CFA of C@, EXECUTE runs it and C@ fetches the value.

Host sends CFA of WORD>, EXECUTE runs it and sends result to Host.

Host displays the 8 bit value in Hex.

SP@ puts the value of the stack pointer, DP ,on the stack so using WORD> and C@ the Host
may display the current Target stack contents. When in the Remote mode, .S does this
function.

With C! the Host may modify AVR resources. This allows you to write Host programs that
require no further Target code but that will exercise hardware external to the AVR. This is
very useful in development and production, to do initial testing

Library

31

9 Library

To make best use of the code space of the AVR we do not compile a Forth kernel with all the
standard Forth words, and then compile our application. Instead we use a Library. All the
Forth definitions are compiled into the LIBRARY vocabulary and executed by the compiler as
they are found in the input stream. The definitions in the Library are special but the words L:
and L; allow you to create your own functions to extend these definitions.

Library words are required to perform two differing functions depending on their use. If a
word is encountered when compiling a : definition in the Target, it is made into what is called
a Forward reference, if it has not been previously compiled. When the compiler reaches the
end of the current definition it tests the TARGET vocabulary for any such references. These
are then looked up in the LIBRARY vocabulary to see if they exist. If so the Library
definition is executed. This will generate the Target code necessary and resolve the
references. If, however, the Library definition contains other Library words their execution
must create a forward reference, for now, that will be resolved later. This entire process
continues until no more unresolved references exist in the TARGET vocabulary that have
equivalents in the Library . As Library words may contain other Library words it is necessary
that no forward references exist in the Library. The compiler will give an exception to any
word it finds that has not been previously defined.

You may add to the Library both assembler and Forth definitions. These are defined as
follows:

High Level:

 L: <name>
 word1 word2 word3
 EXIT
 L;

Code:

 L: <name>
 M[ADIW TOS , # 2
 INC TOSL
 PUSHT
 RET]M
 L;

In the High Level definition, word1,2 and 3 must exist in the Library prior to compiling this
new definition. M[and]M must start and end any code fragments.

Note: High Level code must end with the EXIT and Code Routines end with RET or a JMP
to code ending in RET.

Also: If you wish to use a Forth word from the Nucleus like, BRANCH, ?BRANCH, PAUSE,
STOP, STATUS, BASE, PTR or PAD, these must be preceded by [TARGET] in the Library
definition. This is because they do not have a Library version. Also any fixed value must be
followed by LITERAL or DLITERAL to give the correct compilation.

Number Conversion
The AVR Library contains the fundamentals of number conversion. That is, ASCII string to a
number on the stack and a number on the stack to an ASCII string.

Library

32

The strings are held in an area called PAD. This traditionally has been 64 bytes beyond the
current end of the dictionary. In embedded systems this is not practical for two reasons:

• Dictionary is in memory when running.

• Not re-entrant for tasks.

To overcome these PAD has been defined as a USER variable. It is 11 bytes above it's nearest
partner PTR. This is to allow for the number to ASCII string to be converted down from PAD,
the largest double number is 2,147,483,648 or 10 characters plus a sign makes 11. The string
for conversion to a number is traditionally from PAD up, so enough space above is also
required.

The definitions in the Library are only the conversions. NUMBER takes the address of an
ASCII string and returns a double number and a true flag if sucessfull. (D.) takes a double
number and returns the address and length of the converted string. Both require the USER
variable BASE to be loaded with the radix required for the conversion. These are then used by
application dependant code to input and output the strings.

These conversions are for double numbers, you may use them as such, dropping the top item
for 16 bit, or modify then for different applications.

Multi-tasking

33

10 Multi-tasking

Multi-tasking is a function that until recently was not so generally known. The Forth
community have been using it for many years, indeed Charles Moore's first Forth's used it.
Once used you will wonder how you did without it. The version in the TLM, there are many,
is the simplest and called a Round Robin tasker. Basically each task is a separate program that
is often self contained. The tasks run until they reach a point where they have to wait for
something, at this point a task PAUSEs and the next runs. If the task does not have a natural
wait then a PAUSE must be added at some convenient point, or the task STOPped. These
tasks are said to be co-operative, that is they must relinquish control of the processor to allow
others to have a go. Each task has it's own stack space and an area called USER. Here resides
the links to the tasks memory plus variables that may be used only by that task. One example
of these is BASE used by the numbers, described elsewhere. A task is given a name and the
sizes of the Data stack, Return stack and User area these are then allocated to it by TASK:.
The stacks work down from their tops and the user area goes up, as shown below.:

USER Area
The USER area starts with the address of the next task area to link to and is called STATUS.
The other bytes defined by IRTC are show below:

Name Location Function

STATUS UP+0 The link to other tasks and the RESTing, AWAKEN
flag.

DP0 UP+2 The address of the bottom of the Data stack.

HANDLER UP+4 The exception return address for CATCH and
THROW.

VFLAG UP+6 The TO variable flag.

BASE UP+8 The radix for number conversion.

PTR UP+10 The pointer for number to ASCII conversion.

PAD UP+24 General area used by number conversion.

UP+34 Next available USER address.

Running Tasks
The Task areas allocated by TASK: which is preceded by three values to set the task data,
return and user stack areas. Then we must chaine the tasks together at runtime. To do this we
LINK the tasks.

task-name LINK

The LINK process adds a task to the chain but sets the task as RESTing. To make a task run
the application we wish, the USER area and the task's stacks must be set to run whatever word
we select. The task must be ACTIVATEd.

Multi-tasking

34

task-name ACTIVATE <word>

This must be inside a : definition. <word> must be an endless loop or terminate with STOP.

Semaphores
To keep tasks synchronised we use semaphores. These are global variables that are loaded
with a unique value relating to the task that wishes to take control. This value is the Task's
USER area address. A semaphore is initialised to zero. At this point any task may take
control. When a task wishes a resource it ACQUIREs the semaphore. From now on no other
task may acquire this resource as the semaphore is non zero. To allow others access the task it
must RELINQUISH the resource and reset the semaphore. This mechanism provides for
simple inter-task communication, provided the tasks do not hog any given resource. Tasks
must co-operate.

If you refer to GLOBAL.FTH from our earlier demo, you will see (STREAM) is used as a
semaphore for the 'pipe' <STREAM>. Each task acquires the pipe in turn to place it's ASCII
string. As the pipe is shorter than the strings the semaphore is necessary to stop the strings
getting intertwined. Only when (STREAM) is zero may a task ACQUIRE the pipe. From
then on only that task may use the resource.

35

11 Pipes

An extension to TO variables has been added to the TLM. These are byte pipes, or byte
oriented First In First Out, FIFO, structures. These are particularly useful when using tasks,
refer to the demo. These pipes may be up to 256 bytes long and are used as TO variables.
Values sent TO the pipe are placed in the next available byte. If the pipe is full the task is
PAUSEd until the pipe is free. If a task tries to take a byte from an empty pipe, the task is
PAUSEd until there is a byte to take.

If a pipe only links two tasks there is no need for a semaphore. Only if more that one task
takes or puts data into a pipe is the semaphore required.

To define a pipe use:

10 BYTE-PIPE <name> <cr>

Before a pipe may be used it must be initialised. The size of the pipe and it's address in the
variable space are saved when it is defined. To initialise it the address of the definition is
required. A ', or ['] if in a colon definition, will provide the address for INIT-PIPE.

' <name> INIT-PIPE <cr>

or within a colon definition

['] <name> INIT-PIPE

Host Programs

37

12 Host Programs

It is possible to automate the interactive command line testing. The TLM is a slave to IRTC
and as such we may send a sequence of operations to it provided each will execute before a
communication timeout occurs.

If we wish to test the Target hardware before embarking on the software we may set port bits
and read port bits from Host programs e.g.

ONLY META DEFINITIONS ALSO FORTH ALSO

H: TEST (S --)
 $01 I/O DDRA [TARGET] C!
 BEGIN
 10 MS 1 I/O PORTA [TARGET] C!
 10 MS $FE I/O PORTA [TARGET] C!
 KEY? UNTIL
 KEY DROP
;

IN-META

This routine will toggle PORTA bit 0 approximately every 10 milliseconds until a key is
pressed on the Host PC. [TARGET] is required to compile the Host address of C! as this is a
Target definition.

The TEST word above only exists in the Host. It uses the code in the TLM to operate but
does not add any extra. It is possible to incorporate Target definitions with the Host ones and
then refer to them from within the Host words.

The Host program should be compiled in and run from the Remote mode after
communication with the ISP is established.

Exceptions CATCH and THROW

39

13 Exceptions CATCH and THROW

Like many high level languages Forth does not have an explicit GOTO. This means that it is
often necessary to create proprietary solutions to errors that occur in running embedded code.
To help with this the CATCH and THROW words have been added to the AVR Forth to
assist with error conditions.

CATCH
The CATCH word takes a CFA from the data stack and executes it after first placing its
position and the current stack depths onto the return stack. The word HANDLER records the
position of this stack frame for later use by THROW and its previous value is also saved to
allow nested CATCH and THROW structures.

' <word> CATCH ERROR !

CATCH allows a value to be returned to show the error condition. If no errors are encountered
<word> finishes normally and returns to after CATCH.

THROW
When an error is encountered in the word run by CATCH a non-zero value is placed on the
data stack and THROW executed. THROW takes the value in HANDLER and restores the stacks
to where they were when CATCH was executed except for the addition of the non-zero value
given to THROW.

?DUP IF THROW THEN

HANDLER is a USER variable in multi-tasking systems and so the error recovery may be used
within each task.

Turnkey Operation

41

14 Turnkey Operation

At some point in your application development it is necessary to run the code directly from
Reset. There are two ways this may be done;

Reset Vector - Compile a JMP to your application at address $0000.

EEPROM Vector - Use RUN <name> to set the EEPROM start vector and run the code.

The first is the way that a final system should be compiled. The second is useful in testing as
the vector may be reset to $FFFF with;

END-RUN

after the operation has been tested but without having to REPROGRAM. Also RUN <name>
may be used to test an individual section of your code. The word used by RUN would be
compiled to set any variables, ports, etc. and would then execute your code. RUN places the
address of this test routine into $01,$02 of the EEPROM, tri-states the SCK, MOSI and
MISO pins from the programmed and Resets the Target CPU. When reset the TLM initialises
the Target and runs the test routine from the vector placed in the EEPROM. The RUN
command invites you to press the ESC key to exit. This resets the EEPROM vector and does
a ?REM to get back to interactive development. Any other key will exit without resetting,
which will leave the code in a turnkey mode. Any ?REM or reset will run the test code until
the EEPROM vector is reset.

IS-APPLICATION performs the same function as RUN but also creates a JMP to the
application code address at code address $0000.

' <application> IS-APPLICATION

This should be placed at the end of your code to create a turnkey system.

NOTE: It is necessary for the application code start to set up the MAIN-TASK and Forth
registers before running the high level code. See MAIN in TLM.

NOTE: It is possibe to get into a lock-out situation if your test or application code uses the
development UART port, as with the muli-tasking demo. Here the ISP will not enter the
program mode because there are characters being sent back by the running application. To fix
this use the following;

Select the HOST mode, Ctrl+Shift+H.

Type DESELECT

Type TTY

any characters in the buffer will be displayed and the ENTER key should produce a ?. Exit
TTY with the Esc key.

Type ASCII e PCH CR? SELECT

This will erase the Target device and you may recover by REPROGRAMing the TLM only.

AVR Assembler

43

15 AVR Assembler

Introduction
The AVR assembler in the IRTC will allow you to do most that a conventional assembler
will, and something's that it may not. It is a single pass interpreted assembler with conditional
statements, such as

 IF … THEN
 IF...ELSE...THEN
 BEGIN...UNTIL
 BEGIN...WHILE...REPEAT
 BEGIN...AGAIN

The syntax of the assembler is not that of Forth, Reverse Polish or Postfix notation but
standard Prefix. This means that the source looks like standard assembly but with space
delimiters. e.g.

 LDI R26,0x01 becomes LDI TOSL , $01

As with all assemblers this checks the validity of the addressing mode for the instruction, and
the size of the data. This is accomplished by flags that are set to indicate the various
addressing modes.

Note: The only forward referencing available in the assembler is with the structures above
and the skip instructions of the AVR

Conditional Flags
The conditionals require a flag test, CS, 0=, 0<, 0>, >=, HS, TS, OV or IE before their use.
Each may be followed by a NOT to produce the inverse of the test. e.g.

 0= IF \ branch if non zero.
 0= NOT IF \ branch if zero.

Register Use
The AVR register use is described in the TLM-Forth section. Here is a résumé of that usage:

YReg - Data Stack Pointer
XReg - Top of the Data Stack
SP - Return Stack Pointer
R22,23 - UP, Task Area
R16-21 - N, ScratchFile Use

Macros
Because of the way Forth and the Assembler work it is possible to define Macros for use in
the assembly process. If we make a Host definition which contains assembler words, when
interpreted at compile time, the definition will execute these words. This will place the
assembler code directly into the Target. An example of this technique is:

XASM DEFINITIONS

MACRO: PUSHT
 ST Y+ , TOSL
 ST Y+ , TOSH
MACRO;

AVR Assembler

44

IN-META

Using this technique it is possible to construct repetitive code for insertion in your machine
code programs

Note: You may also produce the same result with an H: definition and M[..]M e.g.

H: PUSHT
 M[ST Y+ , TOSL ST Y+ , TOSH]M
;

PUSH and POP
Four other macros are pre-compiled to assist with stack control.

PUSHT places the TOS contents onto the data stack with the following code;

 ST -Y , TOSL
 ST -Y , TOSH

POPT gets the data stack into TOS whith the following;

 LD TOSH , Y+
 LD TOSL , Y+ ;

PUSHS places the SEC contents onto the data stack with the following code;

 ST -Y , SECL
 ST -Y , SECH

POPS gets the data stack into TOS whith the following;

 LD SECH , Y+
 LD SECL , Y+

If you wish to manipulate the stack you should do so with these macros. If you write in-line
code and use these macros the optimiser will try to elliminate unnecessary stack use.

Addressing modes
The AVR has many and varied addressing modes. By no means all are used in the TLM, but
many are. To understand their use it is strongly recommended that you read the ATMEL data
book for a full explanation. Here we will consider the addressing mnemonic used in the IRTC
assembler.

Register Syntax
The same syntax that appears in the ATMEL data book has been used for register
identification. A upper case 'R' for a register, 0-31, and a upper case 'P' for a I/O register, 0-
63. Register pairs are indicated by 'RR' and only apply to R24, 26, 28 and 30. For
convenience and improved readability the registers, register pairs and I/O registers are pre-
defined, R4, X, Z+, -Y, Z+#, BIT0 and SREG etc. These may all be constructed but with
Forth space delimited format e.g.

 4 R 26 RR 0 BIT 63 P

The pre-defined versions are much more readable. Also all the I/O registers and the flags
within them are predefined by name e.g.

 SIB UCR , RXEN \ Will enable the UART reciever.

Note: When using the I/O Registers in a high level definition they must be preceeded by I/O.
e.g.

AVR Assembler

45

 $51 I/O PORTB C!

Note: When using the Register flags in a high level definition they must be preceeded by
FLAG to generate a mask e.g.

 FLAG CS00 I/O TCCR0 ON

To differentiate between destination and source operands a space delimited comma is used
e.g.

 ADIW TOS , 2

BEWARE: of the use of a Forth , while in the assembler as very odd results will occur.

Immediate
The operand value used by the instruction is the value supplied by the operand field itself.
The hashmark (#), optional, is used to distinguish data from an absolute address and may only
be in the source field.

 Examples:

LDI R26 , # 04 \ Adds 4 to the value originally
\ contained in register R26.

SBIW TOS , # 3 \ Subtracts 3 from the top stack item.

Register Direct
In this mode a register is be addressed by using its absolute address in the register file.

Example:

ROL R4 \ Rotates the contents of
\ register number 4 left one bit.

Data Indirect
In this mode the address of the data does not appear in the instruction, but is located in a
register pair, X, Y or Z.

Example:

LD TOSL , X
CLR TOSH

This is equivalent to a C@ in Forth, X being the top stack item holds the address of the data
byte.

Data Indirect with Displacement
The indirect working register acts as a base or starting value to which is added an immediate
offset, 0-63, to point to the data. The offset value is the immediate value given in the
instruction while the index value is given by the contents of a register pair.

Example:

LDD R10 , Y+# 5 \ If Y contains 55 then the
\ contents of 60 (55+5) will
\ be loaded into register 10.

AVR Assembler

46

Data Indirect Post-Increment
Here the destination or source addresses are given by the contents of a register pair, X, Y or
Z, which are then post-incremented.

Example:

LD TOSH , Y+
LD TOSL , Y+

In IRTC Y contains the Data Stack pointer, DP. The above example is equivalent to a DROP.

Data Indirect Pre-Decrement
This is similar to Data Indirect with Post Increment, except that the indirect register pair is
decremented BEFORE the data is accessed.

Example:

LD R7 , -Z

Direct Bit
In the Direct Bit addressing mode, any bit in any register or I/O can be addressed and
potentially modified.

Examples:

SBR R7 , BIT3 \ sets bit 3 in working register 7.
CBI PORTC , BIT4 \ clears bit4 in I/O portc.

Data Direct
This mode addresses the specific location within the data memory directly. It only needs the
absolute address value.

Example:

STS COUNTER , R9 \ location COUNTER is loaded with
\ the contents of the register 9.

LDS R9 , COUNTER \ R9 is loaded with the contents
\ of the data memory location COUNTER.

Code Memory Indirect
This mode uses the Z register pair to hold the absolute code memory address.

Example:

LPM \ The code memory addressed by Z
\ is loaded into R0 only.

Note: The address is the byte address, the LSB specifies the high or low byte.

Direct Program
The program execution continues at the address contained in the instruction.

Example:

 JMP ' PAUSE

AVR Assembler

47

Jumps directly to PAUSE. The ' is used in Forth to find the CFA of the following word. If the
word was created by a LABEL the ' is not required.

 CALL ' STOP \ calls the subroutine STOP.

Indirect Program Addressing
The program execution is continued at the address contained in Z.

Examples:

IJMP \ Jumps to the address in Z.
ICALL \ Calls the address in Z.

Relative Program Addressing
The offset, -2048 to 2047, is held in the instruction causing the execution to continue from the
Program Counter plus the signed offset.

Example:

RJMP ' TEST \ Jumps to TEST relative
RCALL ' TEST \ Calls TEST relative

New Conditional Opcodes
The AVR instruction set has four skip instructions for bit testing in the register and I/O space.
New opcodes have been created to make use of these to reduce code and increase speed in
conditional assembly. The new opcodes are;

IF-BRS - Skips one instruction if bit in register set

IF-BRC - Skips one instruction if bit in register clear

IF-BIS - Skips one instruction if bit in I/O set

IF-BIC - Skips one instruction if bit in I/O clear

SBAK - Skips back one instruction

The IF- instructions are combined with ELSE and THEN to create conditional assembly. They
may also be used instead of WHILE in a BEGIN...WHILE...REPEAT structure. The SBAK
may be used to create a fast loop waiting for a bit to set or clear. See (OUT) in the
AVRPROG3 file.

Code Definitions
To define a Forth code word the assembler must be invoked to allow the instruction words to
be found. Three words will do this; CODE, LABEL and INTERRUPT.

CODE creates a Header for the word following and causes the assembled machine code to be
run when the word is executed. This is just like a Forth : definition only in code.

LABEL creates a Header for the following word, that only leaves the address of the assembled
machine code on the Host stack when the word is executed. This is often used as a reference
for jumps or branches within a CODE definition.

All assembler definitions must end with END-CODE or C;. These words terminate the
assembler and test the Host stack for irregularities. CODE definitions will usually end with
RET.

AVR Assembler

48

In-Line Code
As AVR Forth is subroutine threaded and produces machine code, it is possible to put code
fragments into a high level definition. The code is encompassed with C[and]C, for example;

: TEST C[ADIW TOS , 4]C ;

This adds 4 to the item on top of the stack.

CODE Stubs
If you are only using assembler code you may still use TLM to test your routines.

TLM expects the CFA it receives to be that of a subroutine. If you have used CODE
definitions for your routines these may be executed by name from the command line. If they
are defined by LABELs then a stub is required e.g.

CODE TST JMP ' <name> C;

This assumes <name> is a routine ending in a return opcode and that it does not corrupt the
TLM file space or stack.

To test parts of your code it may be necessary to insert return opcodes into the code at
strategic points and then create stubs to test that section.

Interrupts
Interrupts in the AVR are done via vectors in the first 48 bytes of the program memory space.
To enable these vectors to be changed during development the TLM has 96 locations
programmed to jump indirectly to locations at the start of the development code RAM. These
RAM locations may then be programmed with an absolute jump address to the interrupt
routine. This adds about 3.5uSecs to the interrupt latency at 6MHz. The Forth word
VECTOR! takes a vector number, 1-24, and the interrupt address to automatically create the
jump in the RAM location.

To return from a RAM vectored interrupt you should use the VEC-RETURN function that
pops the N, ZL, ZH, and SREG that were saved as part of the (VECTOR) execution.

Note: This is only possible in the larger AVR devices with JMP instructions, that allocate 4
bytes for the interrupt vectors from $0000. In the smaller devices it is necessary to change the
interrupt vector and REPROGRAM.

The word INTERRUPT may be used to define an interrupt routine instead of CODE or
LABEL. The associated interrupt vector address must preceed INTERRUPT and it will create
a JMP or RJMP to the routine in the code vectors. This will only take effect when the whole
image is REPROGRAMed. The function VEC-SAVE may be used to push N, ZL, ZH, and
SREG registers so that the VEC-RETURN may pop correctly.

 TIM0-OVF INTERRUPT <name>
 VEC-SAVE
 ... interrupt code …
 JMP VEC-RETURN
 C;

Or

 END-INTERRUPT

During development the above interrupt would be coded as;

CODE <name>
\ TIM0-OVF INTERRUPT <name>

AVR Assembler

49

\ VEC-SAVE
 ... interrupt code ...
 JMP VEC-RETURN
C; \ or END-INTERRUPT

: SET-TIM0-OVF-INT
 [XASM 17 ' <name>] LITERAL LITERAL
 VECTOR!
;

The SET-TIM0-OVF-INT is run during the initialisation to set the RAM vector. The
interrupt may then be tested and when operational the CODE <name> replaced by the
TIM0-OVF INTERRUPT <name> and VEC-SAVE . If your interrupt code may be coded
with only the use of the N, ZL, ZH, and SREG registers you do not need to save any other
resourses.

Dumps
To assist with code definitions in particular, memory dump utilities DUMP, RDUMP, IDUMP,
FDUMP and EEDUMP are available. DUMP, FDUMP and EEDUMP require a start address and
the number of bytes to dump.

DUMP is for the code memory e.g.

 $0000 50 DUMP

Register File Dump
The register file space may also be dumped by using REG-DUMP.

This shows the contents of all the file registers from R0 to R31.

I/O File Dump
The I/O file space may also be dumped by using IO-DUMP.

This shows the contents of all the I/O registers from 0 to 63.

Data Memory Dump
The Data memory may be dumped by FDUMP. As the registers and I/O are also in the Data
Memory you may use this to do part of the dumps shown by REG-DUMP and IO-DUMP.

E2PROM Memory Dump
The data in the E2PROM may be dumped using EEDUMP.

Interactive Serial Programmer

51

16 Interactive Serial Programmer

Circuit

The IRTC ISP is similar to the Atmel serial programmer explained in their application note.
However, a tri-state buffer has been added to the IRTC ISP to enable the programmer to be
used for both programming and development.

The control codes are the same as in the Atmel application note with the exception of Z. This
leaves the ISP in the program mode but tri-states the SCK, MOSI and MISO lines and sets
RESET high to enable the target CPU to run stand-alone.

The DTR line on the serial port controls the ISP operation, switching between program and
development mode. In the program mode the 90S2313 on the programmer accepts ASCII
commands to control the program functions. These functions are the same as the Atmel ISP.
In the development mode the 2313 is switched off and the buffers enabled allowing the Rx
and Tx signals to pass through to the MOSI and MISO lines. The TLM receives the serial
data and enables development.

Interactive Serial Programmer

52

Header Signal Connector 5+5 way
The ISP is powered from the target system and requires the following connections to the
target processor;

Pin1 - Black - GND 0 Volts
Pin2 - Red - VCC +5 Volts
Pin3 - Blue - MOSI Master Out Slave In
Pin5 - Green - MISO Master In Slave Out
Pin7 - Black - SCK Serial Clock
Pin9 - White - RESET Target CPU Reset

The ISP must also be connected to the host computers serial port, COM1-4. It may be
necessary to use a 25Way to 9Way convertor or cable to enable proper connection.

The Target and the ISP should be powered up together to ensure they reset properly. It is also
important that the ISP is connected to an operating serial port with PC running prior to
power-up.

Checking the fuses
It is possible to get the Target CPU out of step with the ISP. This may be caused by noise,
especially on the SCK line or bad earthing of the PC and power supplies. In some cases the
signature bytes may read as $FF. If this occures check the fuses with ?FUSES, this should
return $0F. If not use;

 $0F FUSE!

to correct. ?REM should now return the proper signature bytes.

Signatures
The AVR chips all have a 3 byte signature. For example the 90S8515 is $01 $93 $1E. These
are set in the value SIGNATURE in the .INI file. When you do a ?REM the Target chip
signature is checked against the set value. If they do not agree IRTC will not allow remote
access. In the case of the Mega103 the bytes should be $01 $97 $1E but in some devices they
are $01 $01 $1E. If you have some of these you may correct for this by editing the
Mega103.INI file.

Commands
 A SET-ADDRESS - Sets the address to be programmed next.

 C WRITE-PROGH - Write a code byte high.

 c WRITE-PROGL - Write a code byte low.

 D WRITE-DATA - Wite a byte to EEPROM at address set.

 d READ-DATA - Read a byte from EEPROM.

 e CHIP-ERASE - Erase the Code and Lock bits.

 F READ-F&L - Read the Fuses or Lock bits.

 f WRITE-FUSE - Write the Fuses.

 L DEV - Put the programmer in the Development mode, RS232 pass thru.

 l WRITE-LOCK - Write the Lock bits.

Interactive Serial Programmer

53

 m WRITE-PAGE - Write a 256 byte page, Mega103/603 only.

 P PROG-ENABLE - Enable the program mode, returns $53 if successful

 p PROG-TYPE - Returns 'S' to show a serial programmer.

 R READ-PROG - Reads the Code memory at the address set.

 S IDENTIFIER - Returns 'RAM ISP' to show programmer.

 s READ-SIGNATURE - Returns the signature byte at the address specified.

 T GET-DEVICE - Sets the device code for AVR to be programmed.

 V SOFT-VER# - Returns the software version.

 v HARD-VER# - Returns the hardware version.

 Z TRI-STATE - Tri-states the programmer pins and sets reset high to run the Target.

 : GENERAL - Sends the byte received out of SPI and returns the SPI byte clocked back.

Object Save and Load

55

17 Object Save and Load

IRTC, when in the Host mode, will compile an application very quickly. However, when it
has been written and debugged, it may be desirable to save the resultant code.

This may be done with HEX-SAVE.

The start and end addresses are calculated and given to HEX-SAVE with a filename. The file
extension .HEX is automatically appended to the filename.

Use: $0000 $0FFF HEX-SAVE APPL

The code is saved in the INTELLEC format, and may be copied to a programmer.

Saved code may be re-loaded into the Host Target image with HEX-LOAD. Again no file
extension is required.

A * is shown for every 1k of code loaded, and a checksum of the code is given at the end.

Note: The addresses used by HEX-LOAD and HEX-SAVE are byte addresses not word. To
save your total application use;

 0 HERE-T HEX-SAVE APPL

Also the word CODE-FILE will create a .HEX file called with the code range 0 to HERE-T.
This may be viewed by the Atmel Studio debugger AvrDebug.exe. The word SEE will try to
find the following word in the Target and if compiled shows the CFA of the word, creates
CODETEST and runs AvrDebug. For this to work it is necessary to copy AvrDebug.exe into
the COMPILER directory.

External Programmers

57

18 External Programmers

There are three methods of transferring code to an EPROM programmer for Production code
generation.

From within IRTC two words BIN>PROG and HEX>PROG allow a binary or an ASCII Hex
download via COM1:. Both these require the code start address and end address.

COMMS 1 8 NONE 9600 BAUD
$0000 $03FF BIN>PROG
$0000 $03FF HEX>PROG

The Binary has no checksum or address, it is just a dump of the code at the addresses from
the Target image in the Host.

Similarly the Hex is just a code dump, again with no checksum or address transmitted.

Both give a checksum, on the screen, for the bytes sent for comparison with that generated
manually in the programmer.

The last method is to use the INTELLEC file appl.HEX. This contains records with address
and checksum. To download this to the programmer MS-DOS COPY may be used. This may
be from the command line of DOS or from within IRTC with:

SHELL COPY appl.OBJ COM1: /B <cr>

The word SHELL may be used to send any combination of DOS commands from within
IRTC. SHELL alone will shell out, returning via EXIT.

Errors

59

19 Errors

Address NOT in the ROM
The dictionary pointer DP-T has exceeded the value in ROM-END.

Address NOT in the File
The variable pointer VP-T has exceeded the value in RAM-END.

Address NOT in the E2PROM
The E2PROM pointer has exceeded the value in EEPROM-END.

Already a GOTO!
Compiler was converting a call to a goto and found it was already.

Already Resolved
The word being resolved is already resolved. Maybe a duplication.

Conditionals Wrong
The compiler has detected that the conditionals are not matched. An IF may not have a THEN
or a value may have been left on the Host stack during compilation.

Definition out of range!
This only applies to devices with more than 2K of code space. A jump within an IF..THEN,
BEGIN..UNTIL etc. is more than a relative jump.

Not enough Parameters
The word being executed by the Host did not have enough parameters on the data stack to
run.

NOT Erased
The address shown is not $3FFF.

NOT Compiling!
The compiler is interpreting and should be compiling.

NOT an 8 bit number
The value on the Host stack is greater than 255.

NOT in Remote!
IRTC is not in the Remote mode and should be.

NOT Resolved!!
The word is not yet resolved and still has forward references.

Errors

60

is NOT a Library Definition!
The word could not be found in the Library vocabulary.

is NOT yet Defined or is In-Line!
The word does not have a header in the Target vocabulary so it may have been used but only
produced in-line code.

Could NOT enter Program Mode!
The ISP could not establish contact with the Target CPU. Reset and try again.

Prog. Error!
The ISP did not respond to the command properly.

.... Unresolved Word(s)
Shows the words that are unresolved.

Error: <word> is undefined
The word could not be found in the current search order

61

20 Suggested Reading

A range of Forth books is stocked by MicroProcessor Engineering. Among them, these are
suitable introductory books.

Starting Forth - Leo Brodie - ISBN 0-13-842922-7

Object-Oriented Forth - Dick Pountain - ISBN 0-12-563570-2

Thinking Forth - Leo Brodie - ISBN 0-13-917568-7

Further Information

63

21 Further Information

Forth Interest Group UK http://www.users.zetnet.co.uk/aborigine/forth.htm

Forth Interest Group USA http://www.forth.org/fig.html

