

 Search
 A benchmark for datacenter and

 Cloud computing

USER’S MANUAL

October 7th 2011

Revision Sheet

i

Revision Sheet

Release No. Date Revision Description
Rev. 1.0 07/10/2011 Search v1.0 first packaging

Memu

ii

USER’S MANUAL

TABLE OF CONTENTS

CONTENTS

1. Introduction ... 1

1.1. Targeted Audience ... 1

1.2. Structure of the document .. 1

1.3. Further Readings .. 1

2. Search ... 2

2.1. Quick introduction ... 2

2.2. Available implementations .. 2

3. Getting started .. 3

3.1. Overview .. 3

3.2. Prerequisites ... 3

3.2.1. Linux Kernel Version .. 3

3.2.2. perf .. 4

3.2.3. Python ... 4

3.2.4. Numpy ... 4

3.2.5. Matplotlib .. 4

3.2.6. JAVA .. 4

3.2.7. CPU ... 4

3.2.8. SSH ... 4

3.2.9. Setup passphraseless ssh ... 5

3.2.10. Network ... 5

3.3. Deploying Search ... 6

3.3.1. Configuration .. 6

3.4. Running Benchmark .. 6

Memu

iii

3.4.1. Workload Preparation ... 6

3.4.2. Start benchmark test .. 6

3.4.3. Get result ... 7

4. Building your own Search ... 10

4.1. CPU .. 10

4.2. Make your search engine ... 11

4.3. Creating your own workload ... 11

Appendix A –Metrics collected by DCAngel 13

Appendix B – DCAngel database table structure 15

Appendix C— The workload transforming function 17

Appendix D— Request sequence and their definitions 18

1. Introduction

1

1. Introduction

Search is a search engine model, which is used to evaluate datacenter and cloud
computing systems.

Search v1.0 brings some simplicity in terms of installation, deployment and
monitoring. Within this version, we are offering Search with everything inside and
ready to go. Search consists of a search engine, a workload generator, and a
comprehensive workload characterization tool—DCAngel.

1.1. Targeted Audience

This document is targeting two types of audiences:

 People who just want to use Search as a benchmark tool for evaluating their
datacenter and cloud computing systems. This is for those who will directly use the
provided Search benchmark directly to deploy it on their cluster.

 People who would like to modify the sources to fit their particular needs. You
could use modified Search to do workloads characteristics analysis, add some
functionality, or replace a component with another one.

1.2. Structure of the document

This document goes on the following route:

 A detailed introduction will be given in Section 2, for people who have never
used Search before.

 How to install Search version 1.0 is introduced in Section 3, for people who
are not going to make any change to the provided Search.

 How to build an appliance on your own needs can be found in Section 4, for
people who are going to modify some components of Search.

1.3. Further Readings

The following links give more in-depth details about technologies used in Search
v1.0.

 Nutch : http://nutch.apache.org
 Perf : https://perf.wiki.kernel.org/index.php/Main_Page
 Tomcat: http://tomcat.apache.org/

 Sqlite3: http://www.sqlite.org/

http://nutch.apache.org/
https://perf.wiki.kernel.org/index.php/Main_Page
http://tomcat.apache.org/
http://www.sqlite.org/

1. Introduction

2

 Numpy: http://numpy.scipy.org/

 Matplotlib: http://matplotlib.sourceforge.net/

http://numpy.scipy.org/
http://matplotlib.sourceforge.net/

2. Search

2

2. Search

2.1. Quick introduction

Search is a search engine site benchmark that implements the core functionality of a
search engine site: providing indices and snapshot for a query term. It does not
implement complementary services like crawling and ranking. It only has one kind of
session – user’s session, via which users can query terms. Search consists of three
parts – a search engine, a workload generator and DCAngel.

The search engine is based on nutch which is an open source web-search software
project. For Search v1.0, we use nutch-1.1 as the search engine’s platform. The
indices and snapshot we used in Search are generated by nutch-1.1 with SoGou
Chinese corpus (http://www.sogou.com/labs/dl/t.html).

We get a real world search engine’s trace from a user’s log of SoGou
(http://www.sogou.com/labs/dl/q.html). The workload generator can transform the
real trace by specifying the query rate variation and terms’ situation. The workload
generator can also replay the real or synthetic traces.

DCAngel is a comprehensive workload characterization tool. It can collect
performance metrics and then write them into database for further analysis and
visualization. We use perf to collect performance counters’ data.

For further reading about Search, please look at the following site:
http://prof.ncic.ac.cn/DCBenchmarks .

2.2. Available implementations

You may find available information and descriptions about older Search versions at its
home page (http://prof.ncic.ac.cn/DCBenchmarks). If newer version implemented, it
will be appended.

If you find some bugs, please contact us via jiazhen@ncic.ac.cn.

If you successfully implement it on your own platform, please let us know.

If you have some novel ideas, you might share with us.

http://www.sogou.com/labs/dl/t.html
http://www.sogou.com/labs/dl/q.html
http://prof.ncic.ac.cn/DCBenchmarks
http://prof.ncic.ac.cn/DCBenchmarks
mailto:jiazhen@ncic.ac.cn

3. Getting started

3

3. Getting started

In this part, you will drive right into the configuration and running part, supposing
you don’t want to modify the provided Search.

3.1. Overview

Our experiment platform is based on Nutch’s distributed search engine which is a
typical two-tier web application. It offers the following architecture:

Figure 1 Architecture of Search

 Client: injecting the workload thanks to the workload generator (written in
python) and collecting metric results by DCAngel.

 Web Server: receiving HTTP requests from clients and dispatching them to
Search Servers. We use Apache Tomcat 6.0.26 as the front end and nutch-1.1 as the
search engine.

 Search Server: serving client requests transmitting by Web Server and the
return the results to Web Server

3.2. Prerequisites

The provided Search v1.0 relies on perf, JDK, Python and Numpy. In this part, we
focus on how you can use what is provided in the Search-v1.0 package, for deeper
information you may go over the Building part in section 4.

Tomcat 6.0.26 and nutch-1.1 are included in our package, so the user should
not prepare them.

3.2.1. Linux Kernel Version

For this step, you need to get the root privileges for your Linux servers.
We need to build a linux kernel whose version is 2.6.31 or newer for all the

Search Server nodes, because those kernels support perf_events port, which is used
by perf. When you compare the kernel, you should make sure that perf_events is build

3. Getting started

4

into your kernel.

3.2.2. perf

For perf , users should get a linux kernel source code whose version is 2.6.31 or
newer on all Search Server nodes and then enter the directory tools/perf. After that,
users should execute the following commands to install perf:

make
make install

3.2.3. Python

All the linux systems need Python whose version is 2.7. Older or newer versions
haven’t been verified in our system.

3.2.4. Numpy

The Client node needs Numpy (http://numpy.scipy.org/), which is the fundamental
package needed for scientific computing with Python. You may need the following
libraries or tools before installing Numpy:

atlas, python-nose, lapack, blas, libgfortran, python-dateutil, python-matplotlib,
python-tz, python-setuptools

3.2.5. Matplotlib

The Client node needs matplotlib(http://matplotlib.sourceforge.net/), which is a
python 2D plotting library.

3.2.6. JAVA

Java 1.6.x, preferably from Sun, must be installed in all linux systems except Client
node. You should also set JAVA_HOME to the ans42 user.

3.2.7. CPU

For this version, the Search Server nodes’ CPU type must be as below:
1. Intel Xeon processor 3000, 3200, 5100, 5300 series
2. Intel Core 2 duo processor
If you use other CPUs, you may go over the CPU part in section 4.

3.2.8. SSH

SSH must be installed and sshd must be running. To run the Search scripts that
manage remote daemons, please make sure that you can ssh on remote nodes without

http://numpy.scipy.org/
http://matplotlib.sourceforge.net/

3. Getting started

5

entering password

3.2.9. Setup passphraseless ssh

Client node must ssh to Web server and Search Server nodes without a passphrase,
Now check that.

$ ssh localhost
If you cannot ssh to nodes without a passphrase, execute the following commands at Client node:

$ ssh-keygen -t dsa -f $HOME/.ssh/id_dsa -P ''
This should result in two files, $HOME/.ssh/id_dsa (private key) and

$HOME/.ssh/id_dsa.pub (public key).
Copy $HOME/.ssh/id_dsa.pub to Web Server nodes and Search Server

nodes
On those nodes run the following commands:
$ cat id_dsa.pub >> $HOME/.ssh/authorized_keys2
$ chmod 0600 $HOME/.ssh/authorized_keys2
Depending on the version of OpenSSH the following commands may also be

required:
$ cat id_dsa.pub >> $HOME/.ssh/authorized_keys
$ chmod 0600 $HOME/.ssh/authorized_keys
An alternative is to create a link from authorized_keys2 to authorized_keys:
$ cd $HOME/.ssh && ln -s authorized_keys2 authorized_keys
On the Client node test the results by ssh'ing to other nodes:
$ ssh -i $HOME/.ssh/id_dsa server

This allows ssh access to the nodes without having to specify the path to the id_dsa
file as an argument to ssh each time.

3.2.10. Network

This should come as no surprise, but for the sake of completeness we have to
point out that all the machines must be able to reach each other over the network. The
easiest is to put all machines in the same network with regard to hardware and
software configuration, for example connect machines via a single hub or switch and
configure the network interfaces to use a common network such as 192.168.0.x/24.

To make it simple, we will access machines using their hostname, so you should
write the IP address and the corresponding hostname into /etc/hosts. The following is
an example.

#/etc/hosts
10.10.104.47 gd47
10.10.104.48 gd48
10.10.104.49 gd49
10.10.104.50 gd50

3. Getting started

6

3.3. Deploying Search

You’re suggested creating a new user for all Linux systems, and use the new user to
do the following. To make it simple, we just assume the new user you created for the
tool is ans42 with the password ‘a’.
The user should download the Search-v1.0 package to the Client node using the user
ans42. We assume that you put the decompressed package in the directory of $Search.
All the following operations should be done in Client node.

3.3.1. Configuration

To deploy Search, you should first configure the $Search/common.mk file as follow.

 uname = ans42 # the user’s name for the benchmark
 upwd = a # the corresponding password of the user
 Master = gd88 # the Web Server node’s hostname
 Node = gd48,gd49,gd88 # the hostname of Web Server node and Search

Server nodes

Do not change other configurations in this file.

At last, execute “make deploy” and “source ~/.bashrc”. Then Search will be
deployed on all nodes. The deployment time depends on the number of nodes and the
machine’s hardware configuration. It maybe needs tens of minutes.

Before you running the benchmark, please make sure that the Web Server node's port
9090 is available or the Web Server node's firewall has already been closed.

3.4. Running Benchmark

3.4.1. Workload Preparation

Enter the $Search/exp directory and edit the run-test.sh file.

11 #--------write your workload here--------------------------#
12 report search.example.head:100000-fixed:100@s?i2@reqs-SoGou

Here, we give an example of workload at line 12, which is also a default workload.
You can go over the workload part of session 4 if you want to create a new workload
yourself.

If you want to use the default workload, you should replace the “?” by the number of
Search Server nodes.

3.4.2. Start benchmark test

Under the $Search/exp/ directory you should run the following command to start the

3. Getting started

7

benchmark test.
$ make test

The information of the test can be seen at file ./nohup.out

3.4.3. Get result

We have integrated DCAngel, which is a comprehensive workload
characterization tool in our Search benchmark. Now we can use it to collect
performance date, aggregate data and visualize data.

Figure.2 shows the high-level diagram of DCAngel. It stores performance data in
a relational database managed by SQLite3 that supports the extended SQL statements.
Users can access those data through the extended SQL statements.

All the tests’ log and performance data collected by DCAngel can be find in the
$Search/exp/log/($workload) directory. The ($workload) here represents the workload
you use. For example, if you use the default workload, the log can be find at
exp/log/search.example.head:100000-fixed:100@s?i2@reqs-SoGou where “?”
represents the Search server nodes’ number. In that directory, there will be a file
named exp-report if the test of the workload finished. The file is an empty file, and the
only usage is to tell the user that workload replay has finished. The exp-log file
records the start time and end time of the workload. The search directory collect the
search log, the terms send to search engine and warm-up log. The hmon directory
collects performance data of Search Server nodes.

Log2

Log1

Log3

Extended SQL

Query Server

DataBase

Figure 2 High Level Diagram of DCAngel

Users can get data through a browser using DCAngel. For this version, the only
browser we supported is FireFox. First, you should start the service by executing the
following commands.

Enter the directory python-lib/fsh/:
$ cd python-lib/fsh
Start the service: ./psh.py port. For the port, we use 8002 as a example.
$./psh.py 8002

And then you can visit DCAngel’s browser port through the address (do not forget the
slash after “fsh”):

 http://Client node ip address: port/$Search/exp/cmds/fsh/

3. Getting started

8

The $Search above is the location of Search-v1.0 package.

Figure 3 snapshot of DCAngel’s GUI

Figure 3 shows the snapshot of DCAngel’s GUI. The GUI can be divided into three
parts. Part one is commands column. Each line in that column is a DCAngel command.
Users can execute the command by ctrl+ left mouse button click. Users can edit
those commands to meet your requirement. Part two is command input column; you
can input your command here and execute it by pressing Enter. Part three is a display
column, which displays the result of the command.
Now we will show you the DCAngel command’s grammar, so that you can writer
your own commands.
A DCAngel command has two parts—a fixed part and a SQL like part. Let us look at
the following command as an example.

self.py exps2 ‘select reqs,comment, netbytes from _all where app="search" ’
The fixed part is self.py exps2 and the SQL like part is 'select reqs,comment,
netbytes from _all where app="search" '. For the SQL like part, users can write any
statement that meets the sqlite3’s syntax.
DCAngel’s feedback may take a few seconds if it is your first time to execute a
DCAngel command after a test. That is because DCAngel needs time to write metrics
data it collected into database.
DCAngel also defines many extend SQL functions. Those functions usage are shown
as below.

std(arg1) : standard deviation of arg1
corrcoef(arg1, arg2) : correlation coefficient between arg1 and arg2
correlate(arg1,arg2) : cross correlation of arg1 and arg2
wavg(arg1,arg2): weighted average of arg1, and arg2 is weight
xplot(arg1, arg2, arg3, arg4) : draw the scatter figure of arg4. The x-axis of this

figure is time and the y-axis is arg4’s average value. arg1 and arg2 should be “path”
and “host” respective. arg3 is degree of data aggregation. If arg3 equals 100, each

3. Getting started

9

point in the figure represents the average value of 100 arg4.
xhist(arg1, arg2, arg3, arg4) : draw the histogram of arg4’s occurrence times. The

x-axis of this figure is occurrence times and the y-axis is arg4’s average value. arg1
and arg2 should be “path” and “host” respective. arg3 is degree of data aggregation. If
arg3 equals 100, each value on the x-axis represents the average value of 100 arg4.

xscatter(arg1,arg2,arg3,arg4,arg5) : draw bi-dimensional histogram of arg4 and
arg5. arg1 and arg2 should be “path” and “host” respective. arg3 is degree of data
aggregation. If arg3 equals 100, each value on x-axis and y-axis represents the
average value of 100 arg4 and arg5.

xcorr(arg1,arg2,arg3,arg4,arg5) : plot the cross correlation between arg4 and
arg5. arg1 and arg2 should be “path” and “host” respective. arg3 is degree of data
aggregation.

If you want to use xplot you must make sure that the following read color words
are not changed:

self.py exps2 'select reqs,comment,host, xplot(path, host, 1, $metric) from exps
natural join all_events

self.py exps2 'select reqs,comment,host, xhist(path, host, 1, $metric) from exps
natural join all_events

self.py exps2 'select reqs,comment,host, xscatter(path, host, 1, $metric,$metic)
from exps natural join all_events

self.py exps2 'select reqs,comment,host, xcorr(path, host, 1, $metric,$metric)
from exps natural join all_events

For $metric it can be any $metircs can be any field in Appendix B

We list the table structure of DCAngel’s database in Appendix A. Users can look up
Appendix A and write your own DCAngel command

Appendix B

10

4. Building your own Search

If you want to build your own Search, this part will give some advices. If following
introductions do not suffice for your approach, you may contact us via
jiazhen@ncic.ac.cn.

4.1. CPU

If your Search Server nodes do not own a CPU whose type is one of the types we
mentioned in section 3.2.6, you should modify line 167 to line 201 of file
$Search/hmon/hmon.py.

167 kperf_events_map = '''
168 CPU_CLK_UNHALTED.CORE 3c # cpu_cycles
169 CPU_CLK_UNHALTED.BUS 13c # bus cycles
170 INST_RETIRED.ANY c0 # insets
171 ITLB_MISS_RETIRED c9 # itlb_misses
172 DTLB_MISSES.ANY 108 # dtlb_misses
173 L1I_MISSES 81 # icache_misses
174 L1D_REPL f45 # dcache_misses
175 L2_LINES_IN.ANY f024 # l2cache_misses
176
177 PAGE_WALKS.CYCLES 20c # page_walks
178 CYCLES_L1I_MEM_STALLED 86 # icache_stalls
179
180 BR_INST_RETIRED.ANY c4 # br_insts
181 BR_INST_RETIRED.MISPRED c5 # br_misses
182
183 INST_RETIRED.LOADS 1c0 # load_insts
184 INST_RETIRED.STORES 2c0 # store_insts
185 INST_RETIRED.OTHER 4c0 # other_insts
186 SIMD_INST_RETIRED.ANY 1fc7 # simd_insts
187 FP_COMP_OPS_EXE 10 # fp_insts
188
189 RESOURCE_STALLS.ANY 1fdc # res_stalls
190 RESOURCE_STALLS.ROB_FULL 1dc # rob_stalls
191RESOURCE_STALLS.RS_FULL 2dc # rs_stalls
192 RESOURCE_STALLS.LD_ST 4dc # ldst_stalls
193 RESOURCE_STALLS.FPCW 8dc # fpcw_stalls
194 RESOURCE_STALLS.BR_MISS_CLEAR 10dc # br_miss_stalls
195
196 BUS_TRANS_ANY e070 # bus_trans

mailto:jiazhen@ncic.ac.cn

Appendix B

11

197 BUS_DRDY_CLOCKS 2062 # bus_drdy
198 BUS_BNR_DRV 2061 # bus_bnr
199 BUS_TRANS_BRD e065 # bus_trans_brd
200 BUS_TRANS_RFO e066 # bus_trans_rfo
201 '''

You should go over your CPU’s software design manual and change hexadecimal
number above to the corresponding CPU event number.

4.2. Make your search engine

For default Search, we just supply a SoGou corpus’s snapshot and indices and all
the Search Server nodes have the same indices and snapshot (it also called segments
in nutch). Your can use your corpus’s snapshot and indices. With your snapshot and
indices, you can separate the snapshot and index them by using the nutch command –
merge and index. You should put each part of snapshot and index into Search Server
nodes’ /home/ans42/crawl/combinations directory. The default Search gives you an
example of the indices and snapshot’s layout in each Search Server node’s directory:
/home/ans42/crawl/combinations. After that, you should modify the configuration file
s?i2.cfg in Cline node’s $Search/nutch where ‘?’ represents the number of Search
Server nodes. The content of that configuration file is as follows:

 1 server-list=gd87 gd88 gd89 gd90
 2 gd87-crawl-dir=01
 3 gd88-crawl-dir=23
 4 gd89-crawl-dir=45
 5 gd90-crawl-dir=67

The first line represents the Search Servers’ hostnames. From the second line,
each defines the directory name of corresponding Search Server node’s snapshot and
index.

4.3. Creating your own workload

Section 3.4.1 mentions you can create your own workload, and this section will
explains how to create a workload.

Now we will show how to create a workload by show the syntax and explaining a
given workload’s meaning. The given workload is as follows:

Syntax:
search.#anno.function1(:args)-function2(:args)@configfile@reqfile
An example:
search. instance.head:10000−poisson:20@s8i2@reqs−sogou

Appendix B

12

“search” means that a search engine is under evaluation. We use dot(.) to link
different parts.

“#anno” is the annotation of this workload; in the example we use “instance” to
indicate that this workload is an instance.

“function1(:args)-function2(:args)” indicates the functions we use to the real request
sequence. “function1” and “function2” is transforming function’s name. The function
can be found at Appendix C. “args” is the function’s parameters. we use “-” to link
transforming functions. In the example “head:10000” means that we use head
function in Appendix C, head function’s parameter is “10000”. “poisson:20” means
that we use poisson function in Appendix C and its parameter is “20”

“@configfile” indicates the configuration file we used for Search Server. The
configuration file is in Client node’s $Search/nutch directory.. In the example "@s8i2
" means that we use s8i2.cfg as Search Server nodes’ configuration file where
s8i2.cfg is in Client node’s $Search/nutch directory.

“@reqfile” indicates the original request sequence we use. The request sequence file
is in Client node’s $Search/search-engine/data directory. Appendix D lists the request
sequence we have provided, and users can use one of them or a new one. In the
example, “@reqs-sogou” means that we use sogou request and the request file is
$Search/search-engine/data/reqs-sogou.

You can use all the function in Appendix C to create your own workload, and adopt
your own Search Server nodes’ configuration file and request. For how to configure
Search Server nodes you can consult section 4.2

Appendix B

13

Appendix A –Metrics collected by DCAngel

variable Definition
Metrics from performance counters
cpu_cycles Core cycles when core is not halted
bus_cycles Bus cycles when core is not halted
insts Retired instructions
itlb_misses Retired instructions that missed the ITLB
dtlb_misses Memory accesses that missed the DTLB
icache_misses Instruction Fetch Unit misses
dcache_misses L1 data cache misses
page_walks Duration of page-walks in core cycles
icache_stalls Cycles during which instruction fetches stalled
br_insts Retired branch instructions
br_misses Retired mispredicted branch instructions.
load_insts Instructions retired, which contain a load
store_insts Instructions retired, which contain a store
other_insts Instructions retired, which no load or store operation
simd_insts Retired Streaming SIMD instructions
fp_insts Floating point computational micro-ops executed
res_stalls Resource related stalls
rob_stalls Cycles during which the reorder buffer full
rs_stalls Cycles during which the reserve station full
ldst_stalls Cycles during which the pipeline has exceeded load or store limit or

waiting to commit all stores
fpcw_stalls Cycles stalled due to floating-point unit control word writes
br_miss_stalls Cycles stalled due to branch misprediction
bus_trans All bus transactions
bus_drdy Bus cycles when data is sent on the bus
bus_bnr Number of Bus Not Ready signals asserted
bus_trans_brd Burst read bus transactions
bus_trans_rfo Read For Ownership bus transactions
Metrics from /proc filesystem
usr User mode CPU time
nice The CPU time of processes whose nice value is negative
sys Kernel mode CPU time
idle Idle time
iowait Iowait time
irq Hard interrupt time
softirq Soft interrupt time
intr The times of interrupt happened
ctx Context switch times
procs Process number

Appendix B

14

running The number of processes that is running
blocked The number of processes that is blocked
mem_total Total memory
free Memory that is not used
buffers Size memory in buffer cache
cached Memory that cache used
swap_cached Memory that once was swapped out, but still in the swapfile
active Memory that has been used more recently
inactive Memory that is not active
swap_total Total amount of physical swap memory
swap_free Total amount of free swap memory
pgin The number of pages that paged in from disk
pgout The number of pages that paged out to disk
pgfault The number of page fault
pgmajfault The number of major page faults
active_conn TCP active connection
passive_conn TCP passive connection
rbytes Received bytes
rpackets Received packets
rerrs Received error packets number
rdrop Number of packets dropped by native network adapter
sbytes Bytes sent
spackets Packets sent
serrs Number of error packets sent
sdrop Number of packets dropped by remote network adapter
read Times of disk reads
read_merged Times of disk merged reads
read_sectors Times of sectors read
read_time The total time disk read
write Times of disk writes
write_merged Times of merged disk writes
write_sectors Times of sectors write
write_time The total time of disk write

DCAngel collects those metrics per second and writes those values into exp/log/.

Appendix B

15

Appendix B – DCAngel database table structure

For the meaning of all following table’s abbreviations, users can go over Appendix A.
Table exps

field Definition
path The test performance data’s path under exp/ directory
app User used application’s name
comment The comment when user used to specify a
reqs Request name
duration The test’s duration
host Node’s host name

Table _all
Field Definition
path The test performance data’s path under exp/ directory
host Node’s host name
insts The mean value of instruction number
cpi Cycles per instruction
br_miss_ratio Branch miss ratio
br_stall_ratio Branch stall ratio
icache_stall_ratio Icache stall ratio
tlb_stall_ratio TLB stall ratio
dcaceh_stall_ratio Dcache stall ratio
l2cache_stall_ratio L2 Cache stall ratio
res_stall_ratio Resource related stall ratio
rob_stall_ratio Reorder buffer stall ratio
rs_stall_ratio Reserve station stall ratio
ldst_stall_ratio Load and store stall ratio
fpcw_stall_ratio Float point unit stall ratio
br_mix Branch instruction ratio
load_mix Load instruction ratio
store_mix Store instruction ratio
ldst_mix Load and store instruction ratio
simd_mix SIMD instruction ratio
fp_mix Float point instruction ratio
other_mix Instructions that except load and store ratio
bus_util Bus utilization
bus_d_util bus_drdy ratio（users can find bus_drdy and all the following

abbreviations’ meaning in Appendix A）
bus_bnr_ratio bus_bnr ratio
bus_brd_ratio bus_brd ratio
bus_rfo_ratio bus_rfo_ratio

Appendix B

16

cpu_usage CPU utilization
search_latency Average query latency
search_start Test start time
duration The test’s duration
netbytes rnetbytes+snetbytes
netpackets rnetpacket+snetpacket

The meaning of following field is the same as it in Appendix A. So we will not
explain them here.

iowait
ctx
active
pgfault
pgmajfault
active_conn
passive_conn
read
write
read_sectors
write_sectors
For table _all, we also define some macro which you can use to simplify your
inputting.
Fro example you can write a DCAngel command self.py exps2 'select $prim from _all
', which has the same function with self.py exps2 'select app, comment, reqs, host
from _all’

Macros and their definitions
macros definition

$prim app, comment, reqs, host
$hpc_basic insts, cpi, br_miss_ratio
$stall_breakdown br_stall_ratio, icache_stall_ratio, tlb_stall_ratio,

dcache_stall_ratio, l2cache_stall_ratio, res_stall_ratio,
rob_stall_ratio, rs_stall_ratio, ldst_stall_ratio, fpcw_stall_ratio

$inst_mix br_mix, load_mix, store_mix, ldst_mix, simd_mix, fp_mix,
other_mix

$cache itlb_miss_ratio, dtlb_miss_ratio, icache_miss_ratio,
dcache_miss_ratio, l2cache_miss_ratio

$bus bus_util, bus_d_util, bus_bnr_ratio, bus_brd_ratio, bus_rfo_ratio
$proc_basic cpu_usage, iowait, ctx, active, pgfault, pgmajfault
$net active_conn, passive_conn, netbytes, netpackets,
$disk read, write, read_sectors, write_sectors
$proc_selected cpu_usage,iowait,ctx,active,pgmajfault,read_sectors
$hpc_all $hpc_basic, $cache, $bus, $inst_mix
$proc_all $proc_basic,$net,$disk

Appendix C

17

Appendix C— The workload transforming function

In the following table, we use qs and ts represent query sequence and time sequence
respectively.
Function
name

parameters Definition

head $Total: $start Get qs and ts from the sequence number of
$start, and the total entry number of qs and
ts is $Total, e.g.
search.#anno.head:100:0@cf@req
If $start is 0 then is can be leaved out, e.g.
search,#anno,head:100@cf@req

uniq NULL Get the unique query terms out of qs e.g.
search.#anno.uniq@cf@req

random $Total Randomly get query terms from qs and the
total number of queried terms is $Total,e.g.
search.#anno.random:1000@cf@req

shuffle NULL Shuffle the terms in qs, e.g.
search.#anno.shuffle@cf@req

hot NULL Sort the qs according to the frequency of
terms’ occurrence, e.g.
search.#anno.hot@cf@req

lens NULL Sort the qs according to terms’ length.
blockreq $Blocksize:$repeatCount Repeat every $Blocksize terms in qs

$RepeatCount times. e.g.
search.#anno.blockreq:10:2@cf@req

fixed $Rate Generate ts and set the query rate to be
$Rate queries per second. e.g.
search.#anno.fixed:20@cf@req

burst $Rate:$K Generate ts and let ts be i*$K*$K/$Rate,
where i=1…len(qs) e.g.
search.#anno.burst:20:2@cf@req

scale $Rate Compress or amplify original ts by setting
the query rate to be $Rate queries per
second. e.g. search.#anno.scale:20@cf@req

poisson $Rate Generate ts and make the query rate
variation fit poisson distribution, and set the
average rate to be $Rate queries per second,
e.g. search.#anno.poisson:40@cf@req

ratestep $Init:$step:$K Generate ts and set the initial query rate to
be $Init. The rate will increase for ($K-1)
times. Each time it will increase the value of

Appendix C

18

$step. Finally ,it will be stable at the rate of
“$Init + $step * ($K-1)” e.g.
search.#anno.ratestep:20:5:20@cf@req

Appendix D— Request sequence and their definitions

Request sequence name Definition
warmup.reqs A warmup request sequence for benchmark ramp-up
reqs-SoGou A real world request sequence from SoGou search engine
reqs-Abc A real world request sequence
reqs-Xyz A real world request sequence
reqs-by-freqs-SoGou Sorting reqs-SoGou according to request term’s query

frequency.
reqs-by-freqs-Abc Sorting reqs-Abc according to request term’s query

frequency.
reqs-by-freqs-Xyz Sorting reqs-Xyz according to request term’s query

frequency.
reqs-by-lens-SoGou Sorting reqs-SoGou according to request term’s length.
reqs-by-lens-Abc Sorting reqs-Abc according to request term’s length.
reqs-by-lens-Xyz Sorting reqs-Xyz according to request term’s length.
All the request sequence file above can be found in $Search/search-engine/data/
directory.

	Search
	USER’S MANUAL
	October 7th 2011
	USER’S MANUAL
	TABLE OF CONTENTS
	CONTENTS
	1. Introduction
	1.1. Targeted Audience
	1.2. Structure of the document
	1.3. Further Readings

	2. Search
	2.1. Quick introduction
	2.2. Available implementations

	3. Getting started
	3.1. Overview
	3.2. Prerequisites
	3.2.1. Linux Kernel Version
	3.2.2. perf
	3.2.3. Python
	3.2.4. Numpy
	3.2.5. Matplotlib
	3.2.6. JAVA
	3.2.7. CPU
	3.2.8. SSH
	3.2.9. Setup passphraseless ssh
	3.2.10. Network

	3.3. Deploying Search
	3.3.1. Configuration

	3.4. Running Benchmark
	3.4.1. Workload Preparation
	3.4.2. Start benchmark test
	3.4.3. Get result

	4. Building your own Search
	4.1. CPU
	4.2. Make your search engine
	4.3. Creating your own workload

	Appendix A –Metrics collected by DCAngel
	Appendix B – DCAngel database table structure
	Appendix C— The workload transforming function
	Appendix D— Request sequence and their definitions

