

SUSI

®
 Library

Software API

Version 3.02

User’s Manual

Advantech Co. Ltd.

No. 1, Alley 20, Lane 26,

Rueiguang Road, Neihu District,

Taipei 114, Taiwan, R. O. C.

www.advantech.com

 Susi Library Reference

2 of 107

Copyright Notice
This document is copyrighted, 20011, by Advantech Co., Ltd. All rights reserved.

Advantech Co., Ltd. Reserves the right to make improvements to the products

described in this manual at any time. Specifications are thus subject to change without

notice.

No part of this manual may be reproduced, copied, translated, or transmitted in any

form or by any means without prior written permission of Advantech Co., Ltd.

Information provided in this manual is intended to be accurate and reliable. However,

Advantech Co., Ltd., assumes no responsibility for its use, or for any infringements

upon the rights of third parties which may result from its use.

All the trade marks of products and companies mentioned in this data sheet belong to

their respective owners.

Copyright © 1983-20011 Advantech Co., Ltd. All Rights Reserved

Part No.

Version: 3.02

Printed in Taiwan 2011-10-312011-08-29

 Susi Library Reference

3 of 107

Version History

Date Version Part no Remark

2006-7-27 1.0 New release

2006-9-29 1.1 Added hardware monitoring support for

SOM-4472/SOM-4475/SOM-4481/SOM-4486

2007-6-27 1.2 Added many new functions over

Control APIs

Programmable GPIO, SMBus Enhanced

Protocols

Monitoring APIs

Boot Counter and Running Timer, H/W

Control

Display APIs
Auto-Brightness, Hotkey VGA Control

Debug API

Get last error code

About new SUSI-enabled platforms, please refer

to Appendix A

2007-10-01 2.0 Added Embedded BIOS interface

Added Power Saving API: CPU Speed, System

Throttling & Smart Hibernation

Add Security API for AIMB-440 onboard

FPGA: SRAM, AES, RNG, 72 bit GPIO

2008-05-01 3.0 Added Embedded BIOS interface for Linux

Added SUSI Manager for central control of

SUSI

Added utilities for Monitoring, PowerSaving,
HotKey manager, Brightness Control,

Security ID, ePlatformFlash

2009-05-01 3.02 Added API for PowerSaving,,

Added New Platform of AIMB, ESBC and

COM

2011-04-07 3.02 Remove VGA Control Hotkey description

Modified UI figures to SUSIDemo V2

Modified OS support list

Added Power Saving program tab page

Modified definition of HWM

Modified throttling API, removed 4 old API and

added 9 new APIs.

Fixed some API remarks.

2011-07-29 3.02 Modified SUSI AP icons
Added new APIs description

Removed Appendix A – GPIO was to old

 Susi Library Reference

4 of 107

Table of Contents
INTRODUCTION ... 7

SUSI Functions ... 7

Benefits ...10

ENVIRONMENTS ...10
PACKAGE CONTENTS ..12

ADDITIONAL PROGRAMS ...13
DEMO PROGRAM ... 13
SusiDemo.exe ..13

i. Boot Logger ..14
ii. Watchdog ..15

iii. GPIO ..16

iv. Programmable GPIO ...18
v. SMBus ...20

vi. Multibyte IIC ..21

vii. VGA Control ..22

viii. Hardware Monitor ...23
ix. Power Saving ..24

x. About ...25

PROGRAMMING OVERVIEW ...26
Driver independent functions ..27

Core functions ..27

Watchdog (WD) functions ...27
GPIO (IO) functions ...28

SMBus functions ..28

IIC functions ..29
VGA Control (VC) functions ..29

Hardware Monitoring (HWM) functions ..30

SUSI API PROGRAMMER’S DOCUMENTATION ...31
SusiDllInit ..31

SusiDllUnInit ...32
SusiDllGetVersion ..33

SusiDllGetLastError ...34
SusiCoreAvailable ..35

SusiCoreGetBIOSVersion ...36
SusiCoreGetPlatformName ...37

SusiCoreAccessBootCounter ..38
SusiCoreAccessRunTimer ..39

SSCORE_RUNTIMER...40
SUSIPlusCpuSetThrottling ...41

SUSIPlusCpuGetThrottling...42
SUSIPlusCpuSetOnDemandThrottling ...43

SUSIPlusCpuGetOnDemandThrottling ...44
SUSIPlusSpeedIsActive ..45

SUSIPlusSpeedSetActive..46
SUSIPlusSpeedSetInactive ...47

SUSIPlusSpeedWrite ..48

 Susi Library Reference

5 of 107

SUSIPlusSpeedRead ...49

SusiCoreGetMaxCpuSpeed...50
SusiCoreGetCpuVendor ..51

SusiWDAvailable ...52
SusiWDGetRange ...53

SusiWDSetConfig ..54
SusiWDSetConfigEx ..55

SusiWDTrigger ...56
SusiWDTriggerEx ..57

SusiWDDisable ..58
SusiWDDisableEx ..59

SusiIOAvailable ..60
SusiIOCountEx ...61
SusiIOQueryMask ..62

SusiIOSetDirection ...63
SusiIOSetDirectionMulti ..64

SusiIOReadEx ..65
SusiIOReadMultiEx ..66

SusiIOWriteEx..67
SusiIOWriteMultiEx ...68

SusiSMBusAvailable ..69
SusiSMBusScanDevice...70

SusiSMBusReadQuick ..71
SusiSMBusWriteQuick ...72

SusiSMBusReceiveByte ...73
SusiSMBusSendByte ..74

SusiSMBusReadByte ..75
SusiSMBusWriteByte ...76

SusiSMBusReadWord...77
SusiSMBusWriteWord ..78

SusiSMBusReadBlock ..79
SusiSMBusWriteBlock ...80

SusiSMBusI2CReadBlock ..81
SusiSMBusI2CWriteBlock ...82

SusiIICAvailable ...83
SusiIICRead ...84

SusiIICWrite ...85
SusiIICWriteReadCombine ...86

SusiVCAvailable ..87
SusiVCGetBrightRange ..88

SusiVCGetBright ..89
SusiVCSetBright ..90

SusiVCScreenOn ..91
SusiVCScreenOff ...92

SusiHWMAvailable ..93
SusiHWMGetFanSpeed ..94

SusiHWMGetTemperature ..95
SusiHWMGetVoltage ...96

 Susi Library Reference

6 of 107

SusiHWMSetFanSpeed...97

APPENDIX A – PROGRAMMING FLAGS OVERVIEW98
APPENDIX B - API ERROR CODES ... 101

FUNCTION INDEX CODE ... 101
LIBRARY ERROR CODE .. 104

DRIVER ERROR CODE ... 106

 Susi Library Reference

7 of 107

Introduction

SUSI – A Bridge to Simplify & Enhance H/W & Application

Implementation Efficiency

When developers want to write an application that involves hardware access, they

have to study the specifications to write the drivers. This is a time-consuming job and

requires lots of expertise.

Advantech has done all the hard work for our customers with the release of a suite of

Software APIs (Application Programming Interfaces), called Secured & Unified

Smart Interface (SUSI).

SUSI provides not only the underlying drivers required but also a rich set of

user-friendly, intelligent and integrated interfaces, which speeds development,

enhances security and offers add-on value for Advantech platforms. SUSI plays the

role of catalyst between developer and solution, and makes Advantech embedded

platforms easier and simpler to adopt and operate with customer applications.

SUSI Functions

Control
 GPIO

 (icon-1)

General Purpose Input/Output is a flexible parallel interface that allows a variety

of custom connections. It supports various Digital I/O devices – input devices

like buttons, switches; output devices such as cash drawers, LED lights…etc.

And, allows users to monitor the level of signal input or set the output status to

switch on/off the device. Our API also provide Programmable GPIO, allows

developers to dynamically set the GPIO input or output status

 SMBus

 (icon-2)

 Susi Library Reference

8 of 107

SMBus is the System Management Bus defined by Intel® Corporation in 1995.

It is used in personal computers and servers for low-speed system management

communications. Today, SMBus is used in all types of embedded systems.

The SMBus API allows a developer to interface a Windows XP or CE PC to a

downstream embedded system environment and transfer serial messages using

the SMBus protocols, allowing multiple simultaneous device control.

 I2C

 (icon-2)

I
2
C is a bi-directional two wire bus that was developed by Philips for use in their

televisions in the 1980s. Today, I
2
C is used in all types of embedded systems.

The I
2
C API allows a developer to interface a Windows XP or CE PC to a

downstream embedded system environment and transfer serial messages using

the I
2
C protocols, allowing multiple simultaneous device control.

Monitor
 Watchdog

 (icon-3)

A watchdog timer (WDT) is a device or electronic card that performs a specific

operation after a certain period of time if something goes wrong with an

electronic system and the system does not recover on its own.
A watchdog timer can be programmed to perform a warm boot (restarting the

system) after a certain number of seconds during which a program or computer

fails to respond following the most recent mouse click or keyboard action.

 Hardware Monitor

 (icon-4)

The Hardware Monitor (HWM) API is a system health supervision API that

inspects certain condition indexes, such as fan speed, temperature and voltage.

 Hardware Control

 Susi Library Reference

9 of 107

 (icon-5)

The Hardware Control API allows developers to set the PWM (Pulse Width

Modulation) value to adjust Fan Speed or other devices; can also be used to

adjust the LCD brightness.

Display
 Brightness Control

 (icon-6)

The Brightness Control API allows a developer to interface Windows XP and

Windows CE PC to easily control brightness.

 Backlight

 (icon-7)

The Backlight API allows a developer to control the backlight (screen) on/off in

Windows XP and Windows CE.

Power Saving
 CPU Speed

 (icon-8)

Makes use of Intel SpeedStep technology to save the power consumption

(Windows XP only). The system will automatically adjust the CPU Speed

depending on the system loading.

 System Throttling

 Susi Library Reference

10 of 107

 (icon-9)

Refers to a series of methods for reducing power consumption in computers by

lowering the clock frequency. These API allow a user to lower the clock from

87.5% to 12.5%.

Benefits

 Faster Time to Market
SUSI's unified API helps developers write applications to control the hardware

without knowing the hardware specs of the chipsets and driver architecture.

 Reduced Project Effort
When customers have their own devices connected to the onboard bus, they can

either: study the data sheet and write the driver & API from scratch, or they can

use SUSI to start the integration with a 50% head start. Developers can reference

the sample program on the CD to see and learn more about the software

development environment.

 Enhances Hardware Platform Reliability
SUSI provides a trusted custom ready solution which combines chipset and

library function support, controlling application development through SUSI

enhances reliability and brings peace of mind.

 Flexible Upgrade Possibilities
 SUSI supports an easy upgrade solution for customers. Customers just need to

install the new version SUSI that supports the new functions.

Environments

Operating Systems that SUSI supports include:

 Windows XP Embedded

 Windows XP Pro or Home Edition 32-bit

 Windows 7 (x86 and x64)

 WES7 (x86 and x64)

 Linux (Project based, request from your local FAE)

 QNX (Project based, request from your local FAE)

 VxWorks (Project based, request from your local FAE)

 Susi Library Reference

11 of 107

Note that the list may be changed without notice. For the latest support list, please

check: http://www.advantech.com.tw/embcore/software_apis.aspx

For any Questions feel free to contact your local Advantech representative.

 Susi Library Reference

12 of 107

Package Contents

SUSI currently supports Windows XP and Windows 7. Contents listed below:

Operating System Location Installation

Windows XP(e),

Windows 7, WES7
C:\ProgramFiles\Advantech\SUSIV30 Setup.exe

Directory Contents

User Manual SUSI.pdf

Library Files

 Susi.lib

Function export

 Susi.dll
Dynamic link library

Include Files

 REL_Susi.h

 REL_Debug.h / REL_Errdrv.h / REL_Errlib.h

SusiDemo

 SusiDemo.exe
Demo program execution file

 Susi.dll
Dynamic link library

Driver Installation

 *.sys and *.inf

Driver files

 devcon.exe

For Remove.bat

 SUSInst.exe

For Install.bat

 Install.bat

Batch for install drivers

 Remove.bat

Batch for remove drivers

SusiDemo\Source Code\ Source code of SusiDemo program in C#, VS2005

%System32%
 Susi.dll

Dynamic link library

 Susi Library Reference

13 of 107

Additional Programs

Demo Program
The SUSI demo program demonstrates how to incorporate SUSI library into user‟s

own applications. The program is written in C# programming language and based

upon .NET Compact Framework 2.0, Visual Studio 2005. If you plan to write your

own application you can refer to the source code of the Demo program. If you want to

write a application for Windows 7 x64 but use our SUSI standard you need to set your

application to „Platform Target = x86‟ at build options. If you have received a custom

x64 SUSI version this is not necessary. Ask your local FAE if you are not sure about

this.

SusiDemo.exe

The execution file, SusiDemo.exe, released with source code can be run on both

Windows XP and Windows CE. It is written to demonstrate how to access all the

functions provided by Advantech SUSI. It also allows you a first test after installing if

the functions you want to use are working. Advantech SusiDemo.exe is made for

demonstration and testing. Engineers can use it for evaluation too. Keep in mind:

SusiDemo.exe is not made as a Consumer product and it‟s not made for production.

The following pages are a detailed introduction to the SusiDemo.exe program. It will

explain how to use all the functions with Advantech SusiDemo.exe program.

Note: The following sections explain all possible settings for SUSI. Depending on

your Hardware you may have not have all these options available.

 Susi Library Reference

14 of 107

i. Boot Logger

(Figure-1)

This part belongs to the feature Core in SUSI APIs.

 Select or clear the check box to select the information to get or set in its text

box.
In Boot Counter

 To enable the Bootcounter write „true‟ and click set

To disable the Bootcounter write „false‟ and click set

 To reset the BootTimes parameter to 0, just type 0 in the BootTimes text box

with its check box selected, and then click the “Set” button.

In Run Timer

 Set the Running text box to 1 to start the timer, or 0 to stop the timer.

 Set the Autorun text box to 1 to start the timer when the system restarts.

 Susi Library Reference

15 of 107

ii. Watchdog

(Figure-2)

When the SusiDemo program executes, it shows watchdog information in the

“Timeout Information” fields - “Min”, “Max”, and “Step” in milliseconds. For

example, for a range of 1 ~ 255 seconds, 1000 appears in the “Min” text box, 255000

appears in the “Max” text box, and 1000 appears in the “Step” text box.

Here is an example of how to use the watchdog timer:

 Type 3000 (3 sec.) in the “Timeout” text box and optionally type 2000 (2 sec.) in

the “Delay” text box. Click the “Start” button. The “Left” text box will show

the approximate countdown value the watchdog timer. (This is a software timer

in the demo program, not the actual watchdog hardware timer so it is not very

accurate.)

 Before the timer counts down to zero, you may reset the timer by clicking the

“Refresh” button, stop it by clicking the “Stop” button.

 Susi Library Reference

16 of 107

iii. GPIO

(Figure-3)

This page is only for backward compatibility with previous APIs that are bidirectional.

In new GPIO supported platforms, this page will not be shown. We highly

recommend you use the new Programmable GPIO.

When the SusiDemo program executes, it displays the fixed numbers of input pins

and output pins in “Pin Information” field. You can click the “Single-pin” or

“Multi-pins” radio button to choose single or multiple pins. For GPIO pinout

information for each platform, please refer to the Appendix.

Read Single Input Pin

 Click “Single-Pin” radio button.

 Type the input pin number to read the status from. Pins are numbered from 0 to

the total number of input pins minus 1.

 Click “Read” button and the status of the GPIO pin appears in “(R/W) Result”.

 Susi Library Reference

17 of 107

Read Multiple Input Pins

 Click “Multiple-Pins” radio button.

 Type a pin number from „0x01‟ to „0x0F‟ to read the status of the input pins.

The pin numbers are bitwise-ORed, i.e. bit 0 stands for input pin 0, bit 1 stands

for input pin 1, etc. For example, to read input pins 0, 1, and 3, type „0x0B‟ into

the “Multi-Pins” text box.

 Click the “Read” button and the status of the GPIO pins appears in the “(R/W)

Result” text box.

Write Single Output Pin

 Click the “Single-Pin” radio button.
 Type the output pin number to write the status to. Pins are numbered from 0 to

the total number of input pins minus 1.

 Type either '0' or '1' in “(R/W) Result” to set the output status as low or high.

 Click “Write” button to perform the operation.

Write Multiple Output Pins

 Click the “Multi-Pins” radio button.

 Type a pin number from „0x01‟ to „0x0F‟ to choose the output pins to write. The

pin numbers are bitwise-ORed, i.e. bit 0 stands for output pin 0, bit 1 stands for

output pin 1, etc. For example, to write input pins 0, 1, and 3, type „0x0B‟ into

the “Multi-Pins” text box.

 Type a value from „0x01‟ to „0x0F‟ into the “(R/W) Result” text box to set the

status of the output pins. Again, the pin statuses are bitwise-ordered, i.e. bit 0

stands for the desired status of output pin 0, bit 1 for output pin 1, etc. For

example, if you want to set pin 0 and 1 high, 3 to low, the value given in text

box of “(R/W) Result” should be „0x0A‟.

 Click “Write” button to perform the operation.

 Susi Library Reference

18 of 107

iv. Programmable GPIO

(Figure-4)

Pin Number

 Get the numbers of input pins and output pins respectively. Each number may

vary with the direction of current pins, but the sum remains the same.

MASK

 Choose the mask of interest by selecting or clearing its check box, then clicking

“Get Mask”.

Direction Change / RW Access

 Choose either “Single Pin” or “Multiple Pin”.

 The possible values that the “Single Pin” text box can be set to ranges from 0 to

the total number of GPIO pins minus 1.

 Susi Library Reference

19 of 107

Single Pin Operation – “IO Write” / “Set Direction”

 Give a value of „1‟ (output status high / input direction) or „0‟ (output status low

/ output direction) to set the pin then click the “IO Write” or “Set Direction”

button.

Single Pin Operation – “IO Read”

 Click “IO Read” to get the pin input status.

Multiple Pin Operation – “IO Write” / “Set Direction”

If there are 8 GPIO pins:

 To write the status of GPIO output pins 0, 1, 6 and 7, give the “Multiple Pin”

text box the value 11000011. Bit 0 stand for GPIO 0, bit 1 stand for GPIO 1, and

so on.

To set pin 0 as high, pin 1 as low, pin 6 as high and pin 7 as low, give the “Value”

text box the value 01XXXX01, where X stands for a don‟t care pin.

Please simply assign a 0 for don‟t care pins, e.g. 10000001.

 To set the direction of GPIO pins 0, 1, 6 and 7, give the “Multiple Pin” text box

the value 11000011. Again bit 0 stands for GPIO 0, bit 1 stands for GPIO 1, and

so on. To set pin 0 as an input, pin 1 as an output, pin 6 as an input and pin 7 as

an output, give the “Value” text box with 01XXXX01, where X is for don‟t care

Please simply assign a 0 for don‟t care pins, e.g. 10000001.

Multiple Pin Operation – “IO Read”
 For example, if you want to read the status of GPIO pins 0, 1, 6 and 7, give the

“Multiple Pin” text box the value 11000011. Bit 0 stands for GPIO 0, bit 1

stands for GPIO 1, and so on. Again, if the pin is in status high, the value in the

relevant bit of the “Value” text box will be 1. If the pin status is low, the “Value”

text box will be 0.

[Note]

1. “IO Write” can only be performed on pins in the output direction.

2. “Set Direction” can only be performed on bidirectional pins.

3. “IO Read” can get the status of both input and output pins.

Please get the information first in the “MASK” field.

 Susi Library Reference

20 of 107

v. SMBus

(Figure-5)

Protocols

 Choose one of the protocol operations by selecting a radio button.

 Give the proper value to the “Slave address” and “Register offset” text boxes.

Some protocol operations don‟t have register offsets. Slave addresses must be

converted from 7-bit to 8-bit (e.g. Datasheet say device has 7-bit address 0x20,

then you have to type in 0x40)

 Click the “Read” button for read/receive operations, and the “Write” button for

write/send operations. Slave addresses must be converted from 7-bit to 8-bit (e.g.

Datasheet say device has 7-bit address 0x20, then you have to type in 0x40)

 The values read or to be written are in the “Result (Hex)” text box.

“Scan” Button (Scan Address Occupancy)
 Click this button to get the addresses currently used by slave devices connected

to the SMBus.

 The occupied addresses will be shown in the “Result (Hex)” text box. The

addresses are already in an 8-bit format (that means if your device has the

address 0x20 it will show 0x40).

 Susi Library Reference

21 of 107

vi. Multi-byte IIC

(Figure-6)

 Select the “Primary” or “SMBus-IIC” radio button. If one of them is not

supported, its radio button will be unavailable.

Primary

 Connect the IIC devices to the IIC connector.

 Type in the data bytes to be written in the “Input Data” text box.

 The bytes read will be shown in the “Result” text box.

SMBus-IIC

 Connect the IIC devices to the SMBus connector.

 In AMD platforms, all the IIC functions are fully supported.

 In Intel or VIA platforms, only Read and Write with “Read num” = 1 or “Write

num” = 1 are supported. “WR Combine” is not supported.

 Susi Library Reference

22 of 107

vii. VGA Control

(Figure-7)

You may control VGA functions from the “Display” tab or directly by hotkey.

If the brightness control is not supported, the control parts are unavailable

(grayed-out).

 Susi Library Reference

23 of 107

viii. Hardware Monitor

(Figure-8)

Click “Monitor” to get and display the hardware monitor values. If a data value is not

supported on the platform, its text box will be unavailable (grayed-out).

The Fan Speed Control function includes Pulse Width Modulation (PWM) control.

With Speed you determinate the duty cycle. Higher value means longer duty cycle and

therefore higher speed.

Note: Some FAN‟s are going to operate at full speed if the input signal is too low. This

is a security feature of the FAN‟s. You can slowly decrease FAN speed to find out

what the minimum FAN speed for your system is.

 Susi Library Reference

24 of 107

ix. Power Saving

(Figure-9)

There are two methods to control the throttling configuration: South bridge and CPU

on-demand.

Speed control uses windows XP internal scheme for power management

configuration.

 Susi Library Reference

25 of 107

x. About

(Figure-10)

This page contains the platform name, the BIOS version etc., i.e. the information

retrieved by the SUSI APIs. You can use this page to check if your installation is okay.

If there is not a valid product name, contact your local FAE.

SUSI demo versions show you the major SUSI version (here 3.0) and the minor

revision. The minor revision (here 110701) is also the compiling date of your

SUSI.DLL in the format YY/MM/DD.

If you have any problems, it is recommended to send your local FAE a screenshot of

this site or at least the data which are shown here.

 Susi Library Reference

26 of 107

Programming Overview

Header Files

 REL_SUSI.H includes API declaration, constants and flags that are

required for programming.

 REL_DEBUG.H / REL_ERRDRV.H / REL_ERRLIB.H are for debug code

definitions.

REL_DEBUG.H – Function index codes

REL_ERRLIB.H – Library error codes

REL_ERRDRV.H – Driver error codes

Library Files

 Susi.lib is for library import and Susi.dll is a dynamic link library that exports

all the API functions.

Demo Program
 The SusiDemo program, released with source code, demonstrates how to fully

use SUSI APIs. The program is written in the latest programming language C#.

Drivers
There are seven drivers for SUSI: CORE, WDT, GPIO, SMBus, IIC, VC and HWM.

E.g. Driver CORE is for SusiCore- prefixed APIs, and so on.

A driver will be loaded only if its corresponding function set is supported by a

platform.

Installation File

In Windows XP, you have to run Setup.exe for installation. To avoid double

installation, please make sure you have removed any existing SUSI drivers, either by

using Setup.exe or by manually removing them in Device Manger.

Dll functions
There are 4 functions which are driver-independent. These 4 functions have the prefix

SusiDLL. All other functions depending on the correlating driver. After drivers

having been installed, users have to call SusiDllInit for initialization before

using any other APIs that are not SusiDll- prefixed. Before the application

terminates, call SusiDllUnInit to free allocated system resources.

When an API call fails, use SusiDLLGetLastError to get an error report. An

error value will be either

 Function Index Code + Library Error Code, or

Function Index Code + Driver Error Code

 Susi Library Reference

27 of 107

The Function Index Code indicates which API the error came from and the library /

Driver Error Code indicates the actual error type, i.e. whether it was an error in a

library or driver. For a complete list of error codes, please refer to the Appendix

Driver independent functions
 SusiDllInit

 SusiDllUnInit

 SusiDllGetLastError

 SusiDllGetVersion

Core functions
SusiCore- APIs are available for all Advantech SUSI-enabled platforms to provide

board information such as the platform name and BIOS version. New

SusiCoreAccessBootCounter and SusiCoreAccessRunTimer APIs are

Boot Logger features that enable monitoring of system reboot times, total OS run

time and continual run time. SUSIPlus APIs are CPU features.
 SusiCoreGetPlatformName

 SusiCoreGetBIOSVersion

 SusiCoreAccessBootCounter

 SusiCoreAccessRunTimer

 SusiCoreGetCpuVendor

 SusiCoreGetCpuMaxSpeed

 SUSIPlusCpuSetThrottling

 SUSIPlusCpuGetThrottling

 SUSIPlusCpuSetOnDemandThrottling

 SUSIPlusCpuGetOnDemandThrottling

 SusiPlusSpeedIsActive

 SusiPlusSpeedSetActive

 SusiPlusSpeedSetInactive

 SusiPlusSpeedWrite

 SusiPlusSpeedRead

Watchdog (WD) functions
The hardware watchdog timer is a common feature among all Advantech platforms. In

user applications, call SusiWDSetConfig with specific timeout values to start the

watchdog timer countdown, meanwhile create a thread or timer to periodically refresh

the timer with SusiWDTrigger before it expires. If the application ever hangs, it

will fail to refresh the timer and the watchdog reset will cause a system reboot.

 SusiWDAvailable

 SusiWDGetRange

 SusiWDSetConfig

 SusiWDTrigger

 SusiWDDisable
 SusiWDSetConfigEx

 SusiWDTriggerEx

 Susi Library Reference

28 of 107

 SusiWDDisableEx

GPIO (IO) functions
There are two sets of GPIO functions. It is highly recommended to use the new one.

With pin read and write, more flexibility has been added to allow easy pin direction

change as needed, as well as the capability of reading output pin status.

New programmable GPIO function set:
 SusiIOAvailable

 SusiIOCountEx

 SusiIOQueryMask

 SusiIOSetDirection

 SusiIOSetDirectionMulti

 SusiIOReadEx

 SusiIOReadMultiEx

 SusiIOWriteEx

 SusiIOWriteMultiEx

Previous function set:
 SusiIOCount

 SusiIOInitial

 SusiIORead

 SusiIOReadMulti;

 SusiIOWrite

 SusiIOWriteMulti

Refer to Appendix for pin allocation and their default direction.

SMBus functions
We support the SMBus 2.0 compliant protocols in SusiSMBus- APIs :

 SusiSMBusAvailable

 Quick Command – SusiSMBusReadQuick /SusiSMBusWriteQuick

 Byte Receive/Send – SusiSMBusReceiveByte /SusiSMBusSendByte

 Byte Data Read/Write – SusiSMBusReadByte /SusiSMBusWriteByte

 Word Data Read/Write – SusiSMBusReadWord /SusiSMBusWriteWord

 Block Read/Write – SusiSMBusReadBlock /SusiSMBusWriteBlock

 I
2
C Block Read/Write –

SusiSMBusI2CReadBlock / SusiSMBusI2CWriteBlock

We also support an additional API for probing:
 SusiSMBusScanDevice

The slave address is expressed as a 7-bit hex number between 0x00 to 0x7F, however

the actual addresses used for R/W are

8-bit write address = 7-bit address << 1 (left shift one) with LSB 0 (for

write)

8-bit read address = 7-bit address << 1 (left shift one) with LSB 1 (for read)

 Susi Library Reference

29 of 107

E.g. Given a 7-bit slave address 0x20, the write address is 0x40 and the read address

is 0x41.

Here in all APIs (except for SusiSMBusScanDevice), parameter

SlaveAddress is the 8-bit address and users don‟t need to care about giving it as a

read or write address, since the actual R/W is taken care by the API itself, i.e. you

could even use a write address, say 0x41 for APIs with write operation and get the

right result, and vice versa.

SusiSMBusScanDevice is used to probe whether an address is currently used by

certain devices on a platform and uses SMBus Quick Command to do so. You can

find out which addresses are occupied by scanning from 0x00 to 0x7f. For example,

you could scan for occupied addresses and avoid them when connecting a new device;

or by probing before and after connecting a new device to quickly know their

addresses. The SlaveAddress_7 parameter given in this API is a 7-bit address.

IIC functions
The APIs here cover IIC standard mode operations with a 7-bit device address:
 SusiIICAvailable

 SusiIICRead

 SusiIICWrite

 SusiIICWriteReadCombine

IIC versus SMBus - compatibility
On platforms that do not have IIC but do have SMBus, a call to

SusiIICAvailable returns SUSI_IIC_TYPE_SMBUS (2). Users might be able

to use SMBus as a substitute; however, whether it‟s with fully or partially supported

depends on the SMBus controller type.

On AMD platforms, we have implemented the SMBus driver to be totally IIC

standard mode compatible; users could use the IIC APIs implemented by the SMBus

controller with IICType = SUSI_IIC_TYPE_SMBUS to communicate with all

kinds of IIC devices.

In Intel and VIA’s platforms, the currently compatible protocols are

 SusiIICRead with ReadLen = 1

 SusiIICWrite with WriteLen = 1

IIC devices with 7-bit slave addresses can also be scanned by

SusiSMBusScanDevice on all platforms that have SMBus support.

VGA Control (VC) functions

SusiVC- functions support VGA signal ON/OFF on all SUSI-enabled platforms and

also LCD brightness adjustment.

 SusiVCAvailable

 SusiVCScreenOn

 SusiVCScreenOff

 SusiVCGetBrightRange

 SusiVCGetBright

 SusiVCSetBright

 Susi Library Reference

30 of 107

One application of SusiVCScreenOn and SusiVCScreenOff is to have the

display signal disabled when a system idles after certain period of time to expand the

LCD panel‟s life.

Hardware Monitoring (HWM) functions
SusiHWM- functions support system health supervision by retrieving the values of

voltage, temperature and fan sensors. In some platforms, it is possible to control the

CPU/System fan speed. Use these functions cautiously.

 SusiHWMAvailable

 SusiHWMGetFanSpeed

 SusiHWMGetTemperature

 SusiHWMGetVoltage

 SusiHWMSetFanSpeed

 Susi Library Reference

31 of 107

 SUSI API Programmer’s Documentation

All APIs return the BOOL data type except Susi*Available and some special

cases that are of type int. If any function call fails, i.e. a BOOL value of FALSE, or

an int value of -1, the error code can always be retrieved by an immediate call to

SusiGetLastError.

SusiDllInit

Initialize the Susi Library.

BOOL SusiDllInit(void)

Parameters

None.

Return Value

TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks

An application must call SusiDllInit before calling any other non SusiDll-

functions.

 Susi Library Reference

32 of 107

SusiDllUnInit

Uninitialize the Susi Library.

BOOL SusiDllUnInit(void)

Parameters

None.

Return Value

TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks

Before an application terminates, it must call SusiDllUnInit if it has

successfully called SusiDllInit. Calls to SusiDllInit and

SusiDllUnInit can be nested but must be paired.

.

 Susi Library Reference

33 of 107

SusiDllGetVersion

Retrieve the version numbers of SUSI Library.

void SusiDllGetVersion(DWORD *major, DWORD *minor)

Parameters
major

[out] Pointer to a variable containing the major version number.

minor

[out] Pointer to a variable containing the minor version number. Minor

version is the compiling date of Library in format YYMMDD

Return Value

None.

Remarks

This function returns the version numbers of SUSI. It‟s suggested to call this

function first and compare the numbers with the constants SUSI_LIB_VER_MJ

and SUSI_LIB_VER_MR in header file SUSI.H to insure the library compatibility.

 Susi Library Reference

34 of 107

SusiDllGetLastError

This function returns the last error code value.

int SusiDllGetLastError(void)

Parameters
None

Return Value

The code of error reason for the last function call with failure.

Remarks

You should call the SusiDllGetLastError immediately when a function's

return value indicates failure.

The return error code will be either

 Function Index Code + Library Error Code or

Function Index Code + Driver Error Code

The Function Index Code distinguishes which API the error resulted from and the

library / Driver Error Code indicates the actual error type, i.e. if it is an error in a

library or driver. For a complete list of error codes, please refer to the Appendix.

 Susi Library Reference

35 of 107

SusiCoreAvailable

Check if Core driver is available.

int SusiCoreAvailable (void)

Parameters

 None.

Return Value

Value Meaning

-1 The function fails.

0 The function succeeds; the platform does not support

SusiCore- APIs.

1 The function succeeds; the platform supports Core.

Remarks

After calling SusiDllInit successfully, all Susi*Available functions are

used to check if the corresponding features are supported by the platform or not. So

it is suggested to call Susi*Available before using any Susi*- functions.

 Susi Library Reference

36 of 107

SusiCoreGetBIOSVersion

Get the current BIOS version.

BOOL SusiCoreGetBIOSVersion(TCHAR *BIOSVersion, DWORD

*size)

Parameters
BIOSVersion

[out] Pointer to an array in which the BIOS version string is returned.
size

[in/out]

Pointer to a variable that specifies the size, in TCHAR, of the array

pointed to by the BIOSVersion parameter.

If BIOSVersion is given as NULL, when the function returns, the

variable will contain the array size required for the BIOS version.

Return Value

TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks

Call the function twice, first by giving BIOSVersion as NULL to get the array

size required for the BIOS string back in size. Then allocate a TCHAR array with

the size required and give the array with its size as parameters to get the BIOS

version. Note that the BIOS version cannot be correctly retrieved if it‟s a release

version.

 Susi Library Reference

37 of 107

SusiCoreGetPlatformName

Get the current platform name.

BOOL SusiCoreGetPlatformName(TCHAR *PlatformName, DWORD

*size)

Parameters
PlatformName

[out] Pointer to an array in which the platform name string is returned.
size

[in/out]

Pointer to a variable that specifies the size, in TCHAR, of the array

pointed to by the PlatformName parameter.

If PlatformName is given as NULL, when the function returns, the

variable will contain the array size required for the platform name.

Return Value

TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks

Call the function twice, first by giving PlatformName as NULL to get the array

size required for the string. Then allocate a TCHAR array with the size required

and give the array with its size as parameters to get the platform name. Note that

the platform name cannot be correctly retrieved if the BIOS is a release version.

 Susi Library Reference

38 of 107

SusiCoreAccessBootCounter

Access the boot counter. A boot counter is used to count the number of boot times.

BOOL SusiCoreAccessBootCounter(DWORD mode, DWORD OPFlag,

BOOL *enable, DWORD *value)

Parameters
mode

[in] The value can be either

ESCORE_BOOTCOUNTER_MODE_GET (0)

- To get information from counter.

ESCORE_BOOTCOUNTER_MODE_SET (1)

- To set information to counter.
OPFlag

[in] The operation flag can be the combination of

ESCORE_BOOTCOUNTER_STATUS (1)

- The operation is on the parameter enable

ESCORE_BOOTCOUNTER_VALUE (2)

- The operation is on the parameter value

enable

[in/out]

 If OPFlag contains ESCORE_BOOTCOUNTER_STATUS (1):

When mode equals ESCORE_BOOTCOUNTER_MODE_GET(0),

after the function returns, enable will contain the status of the

counter: TRUE (enabled) or FALSE (disabled).

When mode equals ESCORE_BOOTCOUNTER_MODE_SET(1),

enable is a pointer to a variable that contains the status to set. Use

TRUE to start the counter or FALSE to stop.
value

[in/out]

If OPFlag contains ESCORE_BOOTCOUNTER_VALUE (2):

When mode equals ESCORE_BOOTCOUNTER_MODE_GET(0),

after the function returns, value will contain the reboot count.

When mode equals ESCORE_BOOTCOUNTER_MODE_SET(1),

value is a pointer to a variable that contains the reboot count to set.

Give a value 0 to clear the count or any other value to start from.

Return Value

TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks

In windows XP, the boot counter information is stored in the following registry

values:
HKEY_LOCAL_MACHINE \SYSTEM\ Advantech\SUSI \BootCounter\Enable

HKEY_LOCAL_MACHINE \SYSTEM\ Advantech\SUSI \BootCounter\BootTimes

 Susi Library Reference

39 of 107

SusiCoreAccessRunTimer

Access the run timer. A run timer is used to count the system running time.

BOOL SusiCoreAccessRunTimer(DWORD mode, PSSCORE_RUNTIMER

pRunTimer)

Parameters
mode

[in] The value can be either

ESCORE_BOOTCOUNTER_MODE_GET (0)

- Get the counter.

ESCORE_BOOTCOUNTER_MODE_SET (1)

- Set the counter.
pRunTimer

[in/out]

Pointer to a SSCORE_RUNTIMER structure to set or get the timer.

Please see next page for details of this structure.

Return Value

TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks

In windows XP, the information is stored in the following registry values:
HKEY_LOCAL_MACHINE\SYSTEM\Advantech\SUSI\RunTimer\Running

HKEY_LOCAL_MACHINE\SYSTEM\ Advantech\SUSI\RunTimer\Autorun
HKEY_LOCAL_MACHINE\SYSTEM\ Advantech\SUSI\RunTimer\ContinualOnTime

HKEY_LOCAL_MACHINE\SYSTEM\ Advantech\SUSI\RunTimer\TotalOnTime

The information will be lost only if the registry values have been wiped out.

For a detailed definition of the SSCORE_RUNTIMER structure, please refer to

next page.

 Susi Library Reference

40 of 107

SSCORE_RUNTIMER

This structure represents the run timer information.

typedef struct {

 DWORD dwOPFlag;

 BOOL isRunning;

 BOOL isAutorun;

 DWORD dwTimeContinual;

 DWORD dwTimeTotal;

} SSCORE_RUNTIMER, *PSSCORE_RUNTIMER;

Members
dwOPFlag

The operation flag can be a combination of:

ESCORE_RUNTIMER_STATUS_RUNNING (1)

- The operation is on the member isRunning

ESCORE_RUNTIMER_STATUS_AUTORUN (2)

- The operation is on the member isAutorun

 ESCORE_RUNTIMER_VALUE_CONTINUALON(4)

 - The operation is on the member dwTimeContinual
 ESCORE_RUNTIMER_VALUE_TOTALON(8)

- The operation is on the member dwTimeTotal

isRunning

TURE indicates the timer is running now, FALSE indicates not.
isAutorun

 TRUE states the timer will start automatically upon startup, i.e. it will be running

each time when the system reboots.
dwTimeContinual

 Specify the system continual-on time in minutes, i.e. the OS running time

without a system reboot. At reboot, it will be reset to 0.
dwTimeTotal

 Specify the system total-on time in minutes, i.e. the total time accumulated while

the OS has been running.

 Susi Library Reference

41 of 107

SUSIPlusCpuSetThrottling

Set the CPU throttling by South Bridge

BOOL SUSIPlusCpuSetThrottling(unsigned char step)

Parameters
value

[in] CPU Throttling value, range is 0~7.

Return Value

TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks

Step value 0 means FULL speed, pre increase one reduce 12.5%, maximum value is

7.

 Susi Library Reference

42 of 107

SUSIPlusCpuGetThrottling

Get the CPU throttling from South Bridge

BOOL SUSIPlusCpuGetThrottling(unsigned char *step)

Parameters
value

[out] Get the CPU Throttling value, range is 0~7.

Return Value

TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks

Step value 0 means FULL speed, pre increase one reduce 12.5%, maximum value is

7.

 Susi Library Reference

43 of 107

SUSIPlusCpuSetOnDemandThrottling

Set the CPU throttling by CPU On-Demand

BOOL SUSIPlusCpuSetOnDemandThrottling(HANDLE proc_handler,

unsigned char cpu_index, unsigned char step)

Parameters
proc_handler

[in] Processor‟s handle

cpu_index

[in] Select core which want to control

step

[in] CPU throttling value, range is 0~7.

Return Value

TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks

Step value 0 means FULL speed, pre increase one reduce 12.5%, maximum value is

7.

 Susi Library Reference

44 of 107

SUSIPlusCpuGetOnDemandThrottling

Get the CPU throttling from CPU On-Demand

BOOL SUSIPlusCpuGetOnDemandThrottling(HANDLE proc_handler,

unsigned char cpu_index, unsigned char *step)

Parameters
proc_handler

[in] Processor‟s handle

cpu_index

[in] Select core which want to control

step

[out] CPU throttling value, range is 0~7.

Return Value

TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks

Step value 0 means FULL speed, pre increase one reduce 12.5%, maximum value is

7.

 Susi Library Reference

45 of 107

SUSIPlusSpeedIsActive

Check if power scheme of windows XP is active

BOOL SUSIPlusSpeedIsActive(void)

Parameters

None.

Return Value

TRUE (1) indicates active; FALSE (0) indicates inactive.

Remarks

This power scheme is a customized scheme, named Susi Speed Control.

 Susi Library Reference

46 of 107

SUSIPlusSpeedSetActive

Create a customized scheme named Susi Speed Control.

int SUSIPlusSpeedSetActive(void)

Parameters

None.

Return Value

value Meaning

-1 SUSI doesn‟t initial.

-2 Cannot use power scheme.

-4 Create power scheme failed.

-5 Delete power scheme failed.

-6 Read power scheme failed.

-7 Set power scheme failed.

0 Succeed

Remarks

Support Windows XP Series only.

 Susi Library Reference

47 of 107

SUSIPlusSpeedSetInactive

Delete power scheme that named Susi Speed Control.

int SUSIPlusSpeedSetInactive(void)

Parameters

None.

Return Value

value Meaning

-1 SUSI doesn‟t initial.

-2 Cannot use power scheme.

-3 Set power scheme failed.

-4 Delete power scheme failed.

0 Succeed

Remarks

Support Windows XP Series only.

 Susi Library Reference

48 of 107

SUSIPlusSpeedWrite

It can change settings of power scheme.

int SUSIPlusSpeedWrite(BYTE ACPolicy, BYTE DCPolicy)

Parameters
ACPolicy

[in] Specifies processor power policy on AC mode

DCPolicy

[in] Specifies processor power policy on DC mode

Return Value

value Meaning

-1 SUSI doesn‟t initial.

-2 SUSI speed control is invalid.

-3 Write power scheme failed.

-4 Set power scheme failed.

0 Succeed

Remarks

Processor power policy value as following:

Policy Value

Maximum 0

Minimum 1

Dynamic 3

 Susi Library Reference

49 of 107

SUSIPlusSpeedRead

It can read settings of power scheme.

int SUSIPlusSpeedRead(BYTE *ACPolicy, BYTE *DCPolicy)

Parameters
ACPolicy

[out] Processor power policy on AC mode

DCPolicy

[out] Processor power policy on DC mode

Return Value

value Meaning

-1 SUSI doesn‟t initial.

-2 SUSI speed control is invalid.

-3 Read power scheme failed.

0 Succeed

Remarks

Processor power policy value as following:

Policy Value

Maximum 0

Minimum 1

Dynamic 3

 Susi Library Reference

50 of 107

SusiCoreGetMaxCpuSpeed

Get max CPU speed

BOOL SusiCoreGetCpuMaxSpeed(DWORD &Value)

Parameters
value

[out] Get the CPU Max CPU Speed value

Return Value

TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks

N/A

 Susi Library Reference

51 of 107

SusiCoreGetCpuVendor

Get the CPU Vendor type

BOOL SusiCoreGetCpuVendor(DWORD &Value)

Parameters
value

[out] Get the CPU vendor type

 // Vendor

#define INTEL 1 << 0

#define VIA 1 << 1

#define SIS 1 << 2

#define NVIDIA 1 << 3

#define AMD 1 << 4

#define RDC 1 << 5

Return Value

TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks

N/A

 Susi Library Reference

52 of 107

SusiWDAvailable

Check if the watchdog driver is available.

int SusiWDAvailable(void)

Parameters

None.

Return Value

value Meaning

-1 The function fails.

0 The function succeeds; the platform does not support

SusiWD- APIs.

1 The function succeeds; the platform supports Watchdog.

Remarks

After calling SusiDllInit successfully, all Susi*Available functions are

used to check if the corresponding features are supported by the platform or not.

We suggest Susi*Available is called before using any Susi*- functions.

 Susi Library Reference

53 of 107

SusiWDGetRange

Get the step, minimum and maximum values of the watchdog timer.

BOOL SusiWDGetRange(DWORD *minimum, DWORD *maximum,

DWORD *stepping)

Parameters
minimum

[out] Pointer to a variable containing the minimum timeout value in

milliseconds.
maximum

[out] Pointer to a variable containing the maximum timeout value in

milliseconds.
stepping

[out] Pointer to a variable containing the resolution of the timer in

milliseconds.

Return Value

TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks

The values may vary from platform to platform; depending on the hardware

implementation of the watchdog timer. For example, if the minimum timeout is

1000, the maximum timeout is 63000, and the step is 1000, it means the watchdog

timeout will count 1, 2, 3 … 63 seconds.

 Susi Library Reference

54 of 107

SusiWDSetConfig

Start watchdog timer with specified timeout value.

BOOL SusiWDSetConfig(DWORD delay, DWORD timeout)

Parameters
delay

[in] Specifies a value in milliseconds which will be added to “the first”

timeout period. This allows the application to have sufficient time to do

initialization before the first call to SusiWDTrigger and still be

protected by the watchdog.
timeout

[in] Specifies a value in milliseconds for the watchdog timeout.

Return Value

TRUE (1) indicates success; FALSE (0) indicates failure

Remarks

Once the watchdog has been activated, its timer begins to count down. The

application has to periodically call SusiWDTrigger to refresh the timer before it

expires, i.e. reload the watchdog timer within the specified timeout or the system

will reboot when it counts down to 0.

Actually a subsequent call to SusiWDTrigger equals a call to

SusiWDSetConfig with delay 0 and the original timeout value, so if you

want to change the timeout value, call SusiWDSetConfig with new timeout

value instead of SusiWDTrigger.

Use SusiWDGetRange to get the acceptable timeout values.

 Susi Library Reference

55 of 107

SusiWDSetConfigEx

Extend watchdog timer set configuration function for multi-WDT. Start watchdog

timer with specified timeout value.

BOOL SusiWDSetConfigEx(int group_number, DWORD delay,

DWORD timeout)

Parameters
group_number

[in] Specifies the number of watchdog timer, 0 is first WDT.
delay

[in] Specifies a value in milliseconds which will be added to “the first”

timeout period. This allows the application to have sufficient time to do

initialization before the first call to SusiWDTrigger and still be

protected by the watchdog.
timeout

[in] Specifies a value in milliseconds for the watchdog timeout.

Return Value

TRUE (1) indicates success; FALSE (0) indicates failure

Remarks

Once the watchdog has been activated, its timer begins to count down. The

application has to periodically call SusiWDTriggerEx to refresh the timer

before it expires, i.e. reload the watchdog timer within the specified timeout or the

system will reboot when it counts down to 0.

Actually a subsequent call to SusiWDTriggerEx equals a call to

SusiWDSetConfigEx with delay 0 and the original timeout value, so if

you want to change the timeout value, call SusiWDSetConfigEx with new

timeout value instead of SusiWDTriggerEx.

Use SusiWDGetRange to get the acceptable timeout values.

 Susi Library Reference

56 of 107

SusiWDTrigger

Reload the watchdog timer to the timeout value given in SusiWDSetConfig to

prevent the system from rebooting.

BOOL SusiWDTrigger(void)

Parameters

None

Return Value

TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks

A watchdog protected application has to call SusiWDTrigger continuously to

indicate that it is still working properly and prevent a system restart. The first call

to SusiWDTrigger in the middle of a delay resulting from a previous call to

SusiWDSetConfig causes the delay timer to be canceled immediately and starts

the watchdog timer countdown from the timeout value. It is always a good choice

for users to have a longer delay time in SusiWDSetConfig.

 Susi Library Reference

57 of 107

SusiWDTriggerEx

Extend watchdog timer trigger function for multi-WDT. Reload the watchdog timer

to the timeout value given in SusiWDSetConfigEx to prevent the system from

rebooting.

BOOL SusiWDTriggerEx(int group_number)

Parameters
group_number

[in] Specifies the number of watchdog timer, 0 is first WDT.

Return Value

TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks

A watchdog protected application has to call SusiWDTriggerEx continuously to

indicate that it is still working properly and prevent a system restart. The first call

to SusiWDTriggerEx in the middle of a delay resulting from a previous call to

SusiWDSetConfigEx causes the delay timer to be canceled immediately and

starts the watchdog timer countdown from the timeout value. It is always a good

choice for users to have a longer delay time in SusiWDSetConfigEx.

 Susi Library Reference

58 of 107

SusiWDDisable

Disable the watchdog and stop its timer countdown.

BOOL SusiWDDisable(void)

Parameters

None

Return Value

TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks

If watchdog protection is no longer required by an application, it can call

SusiWDDisable to disable the watchdog. A call to SusiWDDisable in the

middle of a delay resulting from a previous call to SusiWDSetConfig causes the

delay timer to be canceled immediately and stops watchdog timer countdown. Only

a few hardware implementations in which the watchdog timer cannot be stopped

once it has been activated, will return with FALSE.

 Susi Library Reference

59 of 107

SusiWDDisableEx

Extend watchdog timer disable function for multi-WDT.

BOOL SusiWDDisableEx(int group_number)

Parameters
group_number

[in] Specifies the number of watchdog timer, 0 is first WDT.

Return Value

TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks

If watchdog protection is no longer required by an application, it can call

SusiWDDisableEx to disable the watchdog. A call to SusiWDDisableEx in

the middle of a delay resulting from a previous call to SusiWDSetConfigEx

causes the delay timer to be canceled immediately and stops watchdog timer

countdown. Only a few hardware implementation in which the watchdog timer

cannot be stopped once it has been activated, will return with FALSE.

 Susi Library Reference

60 of 107

 SusiIOAvailable

Check if GPIO driver is available.

int SusiCoreAvailable(void)

Parameters

 None.

Return Value

value Meaning

-1 The function fails.

0 The function succeeds; the platform does not support

SusiIO- APIs.

1 The function succeeds; the platform supports GPIO.

Remarks

After calling SusiDllInit successfully, all Susi*Available functions are

used to check if the corresponding features are supported by the platform or not. It

is suggested to call Susi*Available before using any Susi*- functions.

 Susi Library Reference

61 of 107

SusiIOCountEx

Query the current number of input and output pins.

BOOL SusiIOCountEx(DWORD *inCount, DWORD *outCount)

Parameters
inCount

[out] Pointer to a variable in which this function returns the count of input

pins.
outCount

[out] Pointer to a variable in which this function returns the count of output

pins.

Return Value

TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks

The number of GPIO pins equals the number of input pins plus the number of

output pins. The number of input and output pins may vary in accordance with the

current pin direction.

 Susi Library Reference

62 of 107

SusiIOQueryMask

Query the GPIO mask information.

BOOL SusiIOQueryMask(DWORD flag, DWORD *Mask)

Parameters
flag

[in] The value given to indicate the type of mask to retrieve can be one of

the following values:

 Static masks
 ESIO_SMASK_PIN_FULL (1)
 ESIO_SMASK_CONFIGURABLE (2)

 Dynamic masks
 ESIO_DMASK_DIRECTION (0x20)

Mask

[out] Pointer to a variable in which this function returns the queried mask.

Return Value

TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks

A mask is expressed as a series of binary digits. Each bit corresponds to a pin (bit 0

for pin 0, bit 1 for pin 1, bit 2 for pin 2 …), depending on the mask type:

A bit value 1 stands for a pin with

1. Input direction

2. Status HIGH

3. Direction changeable.

Or a bit value 0 stands for a pin with

1. Output direction

2. Status LOW

3. Direction unchangeable

Here are the definitions for masks:
 ESIO_SMASK_PIN_FULL

- If there are total 8 GPIO pins (GPIO 0 ~ 7) in a platform, the full pin mask

is 0xFF, or in binary 11111111, i.e. the number of 1s corresponds to the

number of pins.
 ESIO_SMASK_CONFIGURABLE

- This is the mask to indicate which pins have changeable directions. If all

the 8 pins are changeable, the mask would be 0xFF.
 ESIO_DMASK_DIRECTION

- The current direction of pins. If the mask is 0xAA, or in binary 10101010,

it means the even pins are output pins and the odd pins are input pins.

 Susi Library Reference

63 of 107

SusiIOSetDirection

Set direction of one GPIO pin as input or output.

BOOL SusiIOSetDirection(BYTE PinNum, BYTE IO, DWORD

*PinDirMask)

Parameters
PinNum

[in] Specifies the GPIO pin to be changed, ranging from 0 ~ (total number of

GPIO pins minus 1).
IO

[in] Specifies the pin direction to be set.

PinDirMask

[out] Pointer to a variable in which the function returns the latest direction

mask after the pin direction is set.

Return Value

TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks

Use an IO value of 1 to set a pin as an input or 0 to set a pin as an output.

The function can only set the direction of one of the pins that are direction

configurable. If the pin number specified is an invalid pin or a pin that can only be

configured as an input, the function call will fail and return FALSE.

 Susi Library Reference

64 of 107

SusiIOSetDirectionMulti

Set directions of multiple pins at once.

BOOL SusiIOSetDirectionMulti(DWORD TargetPinMask, DWORD

*PinDirMask)

Parameters
TargetPinMask

[in] Specifies the mask of GPIO output pins to be written.

PinDirMask

[in/out]

Specifies the directions of pins to be set in a bitwise-ORed manner.

After the function call returns TRUE, it contains the latest direction

mask after set.

Return Value

TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks

For example, if you set to the directions of GPIO pin 0, 1, 6, 7. Give parameter

TargetPinMask with a value 11000011, or 0xC3. Bit 0 stand for GPIO 0, bit 1

stand for GPIO 1, and so on.

If you want to set pin 0 as input, pin 1 as output, pin 6 as input and pin 7 as output.

Give value in parameter PinDirMask as 01XXXX01, X is for don‟t care, you

could simply assign a 0 for it, i.e. 0x41.

 Susi Library Reference

65 of 107

SusiIOReadEx

Read current status of one GPIO input or output pin.

BOOL SusiIOReadEx(BYTE PinNum, BOOL *status)

Parameters
PinNum

[in] Specifies the GPIO pin demanded to be read, ranging from 0 ~ (total

number of GPIO pins minus 1).
status

[out] Pointer to a variable in which the pin status returns.

Return Value

TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks

If the pin is in status high, the value got in status will be 1. If the pin is in status

low, it will be zero. The function is capable of reading the status of either an input

pin or an output pin.

 Susi Library Reference

66 of 107

SusiIOReadMultiEx

Read current statuses of multiple pins at once regardless of the pin directions.

BOOL SusiIOReadMultiEx(DWORD TargetPinMask, DWORD

*StatusMask)

Parameters
TargetPinMask

[in] Specifies the mask of GPIO pins demanded to be read.

StatusMask

[out] Statuses of pins in Bitwise-ORed. For pins that are not specified in

TargetPinMask, the related bit value is invalid.

Return Value

TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks

For example, if you want to read the statuses of GPIO pin 0, 1, 6, 7. Give

parameter TargetPinMask with a value 11000011, or 0xC3. Bit 0 stand for

GPIO 0, bit 1 stand for GPIO 1, and so on. Again, if the pin is in status high, the

value got in relevant bit of StatusMask will be 1. If the pin is in status low, it

will be zero.

 Susi Library Reference

67 of 107

SusiIOWriteEx

Set one GPIO output pin as status high or low.

BOOL SusiIOWriteEx(BYTE PinNum, BOOL status)

Parameters
PinNum

[in] Specifies the GPIO pin demanded to be written, ranging from 0 ~ (total

number of GPIO pins minus 1).
status

[in] Specifies the GPIO status to be written.

Return Value

TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks

The function can only set the status of one of the output pins. If the pin number

specified is an input pin or an invalid pin, the function call will fail and return

with FALSE. A status with 1 to set the pin as output high, 0 to set the pin as

output low.

 Susi Library Reference

68 of 107

SusiIOWriteMultiEx

Set statuses of multiple output pins at once.

BOOL SusiIOWriteMultiEx(DWORD TargetPinMask, DWORD

StatusMask)

Parameters
TargetPinMask

[in] Specifies the mask of GPIO output pins demanded to be written.

StatusMask

[in] Statuses of pins to be set in Bitwise-ORed. For pins that are not

specified in TargetPinMask, the related bit value is invalid.

Return Value

TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks

For example, if you want to write the statuses of GPIO output pin 0, 1, 6, 7. Give

parameter TargetPinMask with a value 11000011, or 0xC3. Bit 0 stand for

GPIO 0, bit 1 stand for GPIO 1, and so on.

If you want to set pin 0 as high, pin 1 as low, pin 6 as high and pin 7 as low. Give

parameter StatusMask with a value 01XXXX01, X is for don‟t care pin, you

could simply assign a 0 for it, i.e. 0x41.

 Susi Library Reference

69 of 107

SusiSMBusAvailable

Check if SMBus driver is available.

int SusiSMBusAvailable(void)

Parameters

 None.

Return Value

value Meaning

-1 The function fails.

0 The function succeeds; the platform does not support

SusiSMbus- APIs.

1 The function succeeds; the platform supports SMBus.

Remarks

After calling SusiDllInit successfully, all Susi*Available functions are

use to check if the corresponding features are supported by the platform or not. So

it is suggested to call Susi*Available before using any Susi*- functions.

 Susi Library Reference

70 of 107

SusiSMBusScanDevice

Scan if the address is taken by one of the slave devices currently connected to the

SMBus.

int SusiSMBusScanDevice(BYTE SlaveAddress_7)

Parameters
SlaveAddress

[in] Specifies the 7-bit device address, ranging from 0x00 – 0x7F.

Return Value

value Meaning

-1 The function fails.

0 The function succeeds; the address is not occupied.

1 The function succeeds; there is a device to this address.

Remarks

 There could be as much as 128 devices connected to a single SMBus. For more

information about how to use this API, please refer to “Programming Overview”,

part “SMBus functions”.

 Susi Library Reference

71 of 107

SusiSMBusReadQuick

Turn a SMBus device function on (off) or enable (disable) a specific device mode.

BOOL SusiSMBusReadQuick(BYTE SlaveAddress)

Parameters
SlaveAddress

[in] Specifies the 8-bit device address, ranging from 0x00 – 0xFF.

 Whether to give a 1 (read) or 0 (write) to the LSB of SlaveAddress

could be ignored.

Return Value

TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks

For more information about how to use this API, please refer to “Programming

Overview”, part “SMBus functions”.

 Susi Library Reference

72 of 107

SusiSMBusWriteQuick

Turn a SMBus device function off (on) or disable (enable) a specific device mode.

BOOL SusiSMBusWriteQuick(BYTE SlaveAddress)

Parameters
SlaveAddress

[in] Specifies the 8-bit device address, ranging from 0x00 – 0xFF.

 Whether to give a 1 (read) or 0 (write) to the LSB of SlaveAddress

could be ignored.

Return Value

TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks

For more information about how to use this API, please refer to “Programming

Overview”, part “SMBus functions”.

 Susi Library Reference

73 of 107

SusiSMBusReceiveByte

Receive information in a byte from the target slave device in the SMBus.

BOOL SusiSMBusReceiveByte(BYTE SlaveAddress, BYTE *Result)

Parameters
SlaveAddress

[in] Specifies the 8-bit device address, ranging from 0x00 – 0xFF.

 Whether to give a 1 (read) or 0 (write) to the LSB of SlaveAddress

could be ignored.
Result

[out] Pointer to a variable in which the function receives the byte

information.

Return Value

TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks
A simple device may have information that the host needs to be received in the

parameter Result.

For more information about how to use this API, please refer to “Programming

Overview”, part “SMBus functions”.

 Susi Library Reference

74 of 107

SusiSMBusSendByte

Send information in a byte to the target slave device in the SMBus.

BOOL SusiSMBusSendByte(BYTE SlaveAddress, BYTE Result)

Parameters
SlaveAddress

[in] Specifies the 8-bit device address, ranging from 0x00 – 0xFF.

 Whether to give a 1 (read) or 0 (write) to the LSB of SlaveAddress

could be ignored.
Result

[in] Specifies the byte information to be sent.

Return Value

TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks

A simple device may recognize its own slave address and accept up to 256 possible

encoded commands in the form of a byte given in the parameter Result.

For more information about how to use this API, please refer to “Programming

Overview”, part “SMBus functions”.

 Susi Library Reference

75 of 107

SusiSMBusReadByte

Read a byte of data from the target slave device in the SMBus.

BOOL SusiSMBusReadByte(BYTE SlaveAddress, BYTE

RegisterOffset, BYTE *Result)

Parameters
SlaveAddress

[in] Specifies the 8-bit device address, ranging from 0x00 – 0xFF.

 Whether to give a 1 (read) or 0 (write) to the LSB of SlaveAddress

could be ignored.
RegisterOffset

[in] Specifies the offset of the device register to read data from.

Result

[out] Pointer to a variable in which the function reads the byte data.

Return Value

TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks

For more information about how to use this API, please refer to “Programming

Overview”, part “SMBus functions”.

 Susi Library Reference

76 of 107

SusiSMBusWriteByte

Write a byte of data to the target slave device in the SMBus.

BOOL SusiSMBusWriteByte(BYTE SlaveAddress, BYTE

RegisterOffset, BYTE Result)

Parameters
SlaveAddress

[in] Specifies the 8-bit device address, ranging from 0x00 – 0xFF.

 Whether to give a 1 (read) or 0 (write) to the LSB of SlaveAddress

could be ignored.
RegisterOffset

[in] Specifies the offset of the device register to write data to.

Result

[in] Specifies the byte data to be written .

Return Value

TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks

For more information about how to use this API, please refer to “Programming

Overview”, part “SMBus functions”.

 Susi Library Reference

77 of 107

SusiSMBusReadWord

Read a word (2 bytes) of data from the target slave device in the SMBus.

BOOL SusiSMBusReadWord(BYTE SlaveAddress, BYTE

RegisterOffset, WORD *Result)

Parameters
SlaveAddress

[in] Specifies the 8-bit device address, ranging from 0x00 – 0xFF.

 Whether to give a 1 (read) or 0 (write) to the LSB of SlaveAddress

could be ignored.
RegisterOffset

[in] Specifies the offset of the device register to read data from.

Result

[out] Pointer to a variable in which the function reads the word data.

Return Value

TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks

The first byte read from slave device will be placed in the low byte of Result,

and the second byte read will be placed in the high byte.

For more information about how to use this API, please refer to “Programming

Overview”, part “SMBus functions”.

 Susi Library Reference

78 of 107

SusiSMBusWriteWord

Write a word (2 bytes) of data to the target slave device in the SMBus.

BOOL SusiSMBusWriteWord(BYTE SlaveAddress, BYTE

RegisterOffset, WORD Result)

Parameters
SlaveAddress

[in] Specifies the 8-bit device address, ranging from 0x00 – 0xFF.

 Whether to give a 1 (read) or 0 (write) to the LSB of SlaveAddress

could be ignored.
RegisterOffset

[in] Specifies the offset of the device register to write data to.

Result

[in] Specifies the word data to be written .

Return Value

TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks

The low byte of Result will be send to the slave device first and then the high

byte. For more information about how to use this API, please refer to

“Programming Overview”, part “SMBus functions”

 Susi Library Reference

79 of 107

SusiSMBusReadBlock

Read multi-data from the target slave device in the SMBus.

BOOL SusiSMBusReadBlock(BYTE SlaveAddress, BYTE

RegisterOffset, BYTE *Result, BYTE *ByteCount)

Parameters
SlaveAddress

[in] Specifies the 8-bit device address, ranging from 0x00 – 0xFF.

 Whether to give a 1 (read) or 0 (write) to the LSB of SlaveAddress

could be ignored.
RegisterOffset

[in] Specifies the offset of the device register to read data from.

Result

[out] Pointer to a byte array in which the function reads the block data.

ByteCount

[in] Pointer to a byte in which specifies the number of bytes to be read and

also return succeed bytes.

Return Value

TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks

None.

 Susi Library Reference

80 of 107

SusiSMBusWriteBlock

Write multi-data to the target slave device in the SMBus.

BOOL SusiSMBusWriteBlock(BYTE SlaveAddress, BYTE

RegisterOffset, BYTE *Result, BYTE ByteCount)

Parameters
SlaveAddress

[in] Specifies the 8-bit device address, ranging from 0x00 – 0xFF.

 Whether to give a 1 (read) or 0 (write) to the LSB of SlaveAddress

could be ignored.
RegisterOffset

[in] Specifies the offset of the device register to write data to.

Result

[out] Pointer to a byte array in which the function writes the block data.

ByteCount

[in] Specifies the number of bytes to be read.

Return Value

TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks

None.

 Susi Library Reference

81 of 107

SusiSMBusI2CReadBlock

Read multi-data from the target slave device by I

2
C block read protocol in the

SMBus.

BOOL SusiSMBusI2CReadBlock(BYTE SlaveAddress, BYTE

RegisterOffset, BYTE *Result, BYTE *ByteCount)

Parameters
SlaveAddress

[in] Specifies the 8-bit device address, ranging from 0x00 – 0xFF.

 Whether to give a 1 (read) or 0 (write) to the LSB of SlaveAddress

could be ignored.
RegisterOffset

[in] Specifies the offset of the device register to read data from.
Result

[out] Pointer to a byte array in which the function reads the block data.

ByteCount

[in] Pointer to a byte in which specifies the number of bytes to be read and

also return succeed bytes.

Return Value

TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks

None.

 Susi Library Reference

82 of 107

SusiSMBusI2CWriteBlock

Write multi-data to the target slave device by I

2
C block write protocol in the

SMBus.

BOOL SusiSMBusI2CWriteBlock(BYTE SlaveAddress, BYTE

RegisterOffset, BYTE *Result, BYTE ByteCount)

Parameters
SlaveAddress

[in] Specifies the 8-bit device address, ranging from 0x00 – 0xFF.

 Whether to give a 1 (read) or 0 (write) to the LSB of SlaveAddress

could be ignored.
RegisterOffset

[in] Specifies the offset of the device register to write data to.
Result

[out] Pointer to a byte array in which the function writes the block data.

ByteCount

[in] Specifies the number of bytes to be read.

Return Value

TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks

None.

 Susi Library Reference

83 of 107

SusiIICAvailable

Check if I

2
C driver is available and also get the IIC type supported.

int SusiIICAvailable()

Parameters

 None.

Return Value

value Meaning

-1 The function fails.

0 The function succeeds; the platform does not

support any SusiIIC - APIs.

SUSI_IIC_TYPE_PRIMARY (1) The function succeeds; the platform supports

only primary IIC.

SUSI_IIC_TYPE_SMBUS (2) The function succeeds; the platform supports

only SMBus implemented IIC.

SUSI_IIC_TYPE_BOTH (3) The function succeeds; the platform supports

both primary IIC and SMBus IIC.

Remarks

After calling SusiDllInit successfully, all Susi*Available functions are

use to check if the corresponding features are supported by the platform or not. So

it is suggested to call Susi*Available before using any Susi*- functions.

 Susi Library Reference

84 of 107

SusiIICRead

Read bytes of data from the target slave device in the I

2
C bus.

SUSI_API BOOL SusiIICRead(DWORD IICType, BYTE SlaveAddress,

BYTE *ReadBuf, DWORD ReadLen)

Parameters
IICType

[in] Specifies the I
2
C type, the value can either be

 SUSI_IIC_TYPE_PRIMARY (1)

 SUSI_IIC_TYPE_SMBUS (2)

SlaveAddress

[in] Specifies the 8-bit device address, ranging from 0x00 – 0xFF.

 Whether to give a 1 (read) or 0 (write) to the LSB of SlaveAddress

could be ignored.
ReadBuf

[out] Pointer to a variable in which the function reads the bytes of data.
ReadLen

[in] Specifies the number of bytes to be read.

Return Value

TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks

Call SusiIICAvailable first to make sure the support I
2
C type. For more

information about how to use this API, and the relationship between IIC and

SMBus, please refer to “Programming Overview”, parts “SMBus functions” to

“IIC versus SMBus – compatibility”

 Susi Library Reference

85 of 107

SusiIICWrite

Write bytes of data to the target slave device in the I

2
C bus.

BOOL SusiIICWrite(DWORD IICType, BYTE SlaveAddress, BYTE

*WriteBuf, DWORD WriteLen)

Parameters
IICType

[in] Specifies the I
2
C type, the value can either be

 SUSI_IIC_TYPE_PRIMARY (1)

 SUSI_IIC_TYPE_SMBUS (2)

SlaveAddress

[in] Specifies the 8-bit device address, ranging from 0x00 – 0xFF.

 Whether to give a 1 (read) or 0 (write) to the LSB of SlaveAddress

could be ignored.
WriteBuf

[in] Pointer to a byte array which contains the bytes of data to be written.
WriteLen

[in] Specifies the number of bytes to be written.

Return Value

TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks

Call SusiIICAvailable first to make sure the support I
2
C type. For more

information about how to use this API, and the relationship between IIC and

SMBus, please refer to “Programming Overview”, parts “SMBus functions” to

“IIC versus SMBus – compatibility”.

 Susi Library Reference

86 of 107

SusiIICWriteReadCombine

A sequential operation to write bytes of data followed by bytes read from the target

slave device in the I
2
C bus.

BOOL SusiIICWriteReadCombine(DWORD IICType, BYTE

SlaveAddress, BYTE *WriteBuf, DWORD WriteLen, BYTE *ReadBuf,

DWORD ReadLen)

Parameters
IICType

[in] Specifies the I
2
C type, the value can either be

 SUSI_IIC_TYPE_PRIMARY (1)

 SUSI_IIC_TYPE_SMBUS (2)

SlaveAddress

[in] Specifies the 8-bit device address, ranging from 0x00 – 0xFF.

 Whether to give a 1 (read) or 0 (write) to the LSB of SlaveAddress

could be ignored.
WriteBuf

[in] Pointer to a byte array which contains the bytes of data to be written.

WriteLen

[in] Specifies the number of bytes to be written.

ReadBuf

[out] Pointer to a variable in which the function reads the bytes of data.
ReadLen

[in] Specifies the number of bytes to be read.

Return Value

TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks

The function is mainly for EEPROM I
2
C devices - the bytes written first are used to

locate to a certain address in ROM, and the following bytes read will retrieve the

data bytes starting from this address.

Call SusiIICAvailable first to make sure the support I
2
C type. For more

information about how to use this API, and the relationship between IIC and

SMBus, please refer to “Programming Overview”, parts “SMBus functions” to

“IIC versus SMBus – compatibility”

 Susi Library Reference

87 of 107

SusiVCAvailable

Check if VC driver is available and also get the feature support information.

BOOL SusiVCAvailable(void)

Parameters

 None.

Return Value

value Meaning

-1 The function fails.

0 The function succeeds; the platform

does not support any SusiVC- APIs.

1 The function succeeds; the platform

supports only brightness APIs.

2 The function succeeds; the platform

supports only screen on/off APIs.

3 The function succeeds; the platform

supports all SusiVC- APIs.

Remarks

After calling SusiDllInit successfully, all Susi*Available functions are

use to check if the corresponding features are supported by the platform or not. So

it is suggested to call Susi*Available before using any Susi*-

functions.

 Susi Library Reference

88 of 107

SusiVCGetBrightRange

Get the step, minimum and maximum values in brightness adjustment.

BOOL SusiVCGetBrightRange(BYTE *minimum, BYTE *maximum,

BYTE *stepping)

Parameters
minimum

[out] Pointer to a variable to get the minimum brightness value.

maximum

[out] Pointer to a variable to get the maximum brightness value.

stepping

[out] Pointer to a variable to get the step of brightness up and down

Return Value

TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks

Call SusiVCAvailable first to make sure if the brightness control is available.

The values may vary from platform to platform; depend on the hardware

implementations of brightness control. For example, if minimum is 0, maximum is

255, and stepping is 5, it means the brightness can be 0, 5, 10, …, 255.

 Susi Library Reference

89 of 107

SusiVCGetBright

Get the current panel brightness.

BOOL SusiVCGetBright(BYTE *brightness)

Parameters
brightness

[out] Pointer to a variable in which this function returns the brightness.

Return Value

TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks

Call SusiVCAvailable first to make sure if the brightness control is available.

 Susi Library Reference

90 of 107

SusiVCSetBright

Set current panel brightness.

BOOL SusiVCSetBright(BYTE brightness)

Parameters
brightness

[in] Specifies the brightness value to be set.

Return Value

TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks

Call SusiVCAvailable first to make sure if the brightness control is available.

In some implementations, the higher the brightness value, the higher the voltage fed

to the panel. So please make sure the voltage toleration of your panel prior to the

API use.

 Susi Library Reference

91 of 107

SusiVCScreenOn

Turn on VGA display signal.

BOOL SusiVCScreenOn(void)

Parameters

None.

Return Value

TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks

The function enables both the LCD and CRT display signals.

 Susi Library Reference

92 of 107

SusiVCScreenOff

Turn off VGA display signal.

BOOL SusiVCScreenOff(void)

Parameters

None.

Return Value

TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks

 The function disables both the LCD and CRT display signals.

 Susi Library Reference

93 of 107

SusiHWMAvailable

Check if the hardware monitor driver is available.

int SusiHWMAvailable()

Parameters

 None.

Return Value

value Meaning

-1 The function fails.

0 The function succeeds; the platform does not support

SusiHWM- APIs.

1 The function succeeds; the platform supports HWM.

Remarks

After calling SusiDllInit successfully, all Susi*Available functions are

use to check if the corresponding features are supported by the platform or not. So

it is suggested to call Susi*Available before using any Susi*- functions.

 Susi Library Reference

94 of 107

SusiHWMGetFanSpeed

Read the current value of one of the fan speed sensors, or get the types of available

sensors.

BOOL SusiHWMGetFanSpeed(WORD fanType, WORD *retval, WORD

*typeSupport = NULL)

Parameters
fantype

[in] Specifies a fan speed sensor to get value from. It can be one of the

flags

The flags refer “Appendix A - Hardware Monitor Flags - Fan”
retval

[out] Point to a variable in which this function returns the fan speed in RPM

Typesupport

[out]

If the value is specified as a pointer (non-NULL) to a variable, it will

return the types of available sensors in flags bitwise-ORed

Return Value

TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks

Call the function first with a non-NULL typesupport to know the available fan

sensors and a following call to get the fan speed required.

 Susi Library Reference

95 of 107

SusiHWMGetTemperature

Read the current value of one of the temperature sensors, or get the types of

available sensors.

BOOL SusiHWMGetTemperature(WORD tempType, float *retval,

WORD *typeSupport = NULL)

Parameters
tempType

[in] Specifies a temperature sensor to get value from. It can be one of the

flags

The flags refer “Appendix A - Hardware Monitor Flags - Temperature”
retval

[out] Point to a variable in which this function returns the temperature in

Celsius.
Typesupport

[out]

If the value is specified as a pointer (non-NULL) to a variable, it will

return the types of available sensors in flags bitwise-ORed

Return Value

TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks

Call the function first with a non-NULL typesupport to know the available

temperature sensors and a following call to get the temperature required.

 Susi Library Reference

96 of 107

SusiHWMGetVoltage

Read the current value of one of the voltage sensors, or get the types of available

sensors.

BOOL SusiHWMGetVoltage(DWORD voltType, float *retval,

DWORD *typeSupport = NULL)

Parameters
voltType

[in] Specifies a voltage sensor to get value from. It can be one of the flags

The flags refer “Appendix A - Hardware Monitor Flags - Voltage”

[out] Point to a variable in which this function returns the voltage in Volt.
Typesupport

[out]

If the value is specified as a pointer (non-NULL) to a variable, it will

return the types of available sensors in flags bitwise-ORed

Return Value

TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks

Call the function first with a non-NULL typesupport to know the available fan

sensors and a following call to get the voltage required.

 Susi Library Reference

97 of 107

SusiHWMSetFanSpeed

Control the speed of one of the fans, or get the types of available fans.

BOOL SusiHWMSetFanSpeed(WORD fanType, BYTE setval, WORD

*typeSupport = NULL)

Parameters
fantype

[in] Specifies a fan to be controlled. It can be one of the flags

The flags refer “Appendix A - Hardware Monitor Flags - Fan”
setval

[in] Specifies the value to set, ranging from 0 to 255.

Typesupport

[out]

If the value is specified as a pointer (non-NULL) to a variable, it will

return the types of available fans in flags bitwise-ORed

Return Value

TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks

The fan speed is controlled by Pulse Width Modulation (PWM):

Duty cycle (%) = (setval/ 255) * 100%

And the default duty cycle is set to 100%, i.e. the maximal fan speed.

Call the function first with a non-NULL typesupport to know the available fan

sensors and a following call to set the fan speed.

 Susi Library Reference

98 of 107

Appendix A – Programming Flags Overview

Hardware Monitor Flags

 Fan

Flag Value Description

FCPU 0x0001 CPU FAN

FSYS 0x0002 System FAN

F2ND 0x0004 3rd FAN

FCPU2 0x0008 CPU 2 FAN

FAUX2 0x0010 3rd FAN 2

 Temperature

Flag Value Description

TCPU 0x0001 CPU Temperature

TSYS 0x0002 System Temperature

TAUX 0x0004 3rd Temperature

TCPU2 0x0008 CPU 2 Temperature

 Voltage

Flag Value Description
VCORE 0x0001 Vcore

V25 0x0002 2.5V

V33 0x0004 3.3V

V50 0x0008 5V

V120 0x0010 12V

V5SB 0x0020 Voltage of standby 5V
V3SB 0x0040 Voltage of standby 3V

VBAT 0x0080 VBAT

VN50 0x0100 -5V

VN120 0x0200 -12V

VTT 0x0400 VTT

VCORE2 0x0800 Vcore 2

V105 0x1000 1.05V

V15 0x2000 1.5V

V18 0x4000 1.8V

 Susi Library Reference

99 of 107

Boot Logger Flags
 Bootcounter

Mode Flag Value Description
ESCORE_BOOTCOUNTER_MODE_GET 0x0001 Read Operation
ESCORE_BOOTCOUNTER_MODE_SET 0x0002 Write Operation

Element Flag Value Description

ESCORE_BOOTCOUNTER_STATUS 0x0001
Current Status

(Is Enabled or Disabled?)

 Runtimer

Mode Flag Value Description
ESCORE_RUNTIMER_MODE_GET 0x0001 Read Operation
ESCORE_RUNTIMER_MODE_SET 0x0002 Write Operation

Element Flag Val. Description

ESCORE_RUNTIMER_STATUS_RUNNING 0x01
Current Status

(Is Enabled or Disabled?)
ESCORE_RUNTIMER_STATUS_AUTORUN 0x02 Is AutoRun upon Startup?
ESCORE_RUNTIMER_VALUE_CONTINUALON

0x04
OS continual run time

(reset to 0 after a reboot)
ESCORE_RUNTIMER_VALUE_TOTALON 0x08 Sum of OS total run time

 Susi Library Reference

100 of 107

GPIO Mask Flags
Flag Value Description

ESIO_SMASK_PIN_FULL 0x01
Series of binary 1s for the number

of total pins
ESIO_SMASK_CONFIGURABLE 0x02 Direction Changeable Pins
ESIO_DMASK_DIRECTION 0x20 Current Direction of Pins

 Susi Library Reference

101 of 107

Appendix B - API Error Codes

An error value will be either

 Function Index Code + Library Error Code, or

 Function Index Code + Driver Error Code.
If you call an API and returns with fail. The Function Index Code in its error

code combination does not necessarily equal to the index code of the API. This is

because the API may make a call to another API.

Function Index Code

Index Code Function Index

DLL
00100000 ESusiInit

00200000 ESusiUnInit

00300000 ESusiGetVersion

00400000 ESusiDllInit

00500000 ESusiDllUnInit

00600000 ESusiDllGetVersion

00700000 ESusiDllGetLastError

Core
10100000 ESusiCoreInit

10200000 ESusiCoreAvailable

10300000 ESusiCoreGetBIOSVersion

10400000 ESusiCoreGetPlatformName

10500000 ESusiCoreAccessBootCounter

10600000 ESusiCoreAccessRunTimer

10700000 ESusiCoreRebootSystem

10800000 ESusiCoreReadMemory

10900000 ESusiCoreWriteMemory

11000000 ESusiCoreReadIO

11100000 ESusiCoreWriteIO

11200000 ESusiCoreReadULongIO

11300000 ESusiCoreWriteULongIO

11400000 ESusiCorePciBusSetULong

11500000 ESusiCorePciBusGetULong

11600000 ESusiCoreGetCpuMaxSpeed

11700000 ESusiCoreGetCpuVendor

12000000 ESusiCoreEnableBootfail

12100000 ESusiCoreDisableBootfail

12200000 ESusiCoreRefreshBootfail

 Susi Library Reference

102 of 107

12300000 ESusiPlusSetThrottlingfail

12500000 ESusiPlusGetThrottlingfail

12700000 ESusiPlusGetOnDemandThrottlingfail

12800000 ESusiPlusSetOnDemandThrottlingfail

13000000 ESusiPlusSpeedIsActive

13100000 ESusiPlusSpeedSetActive

13200000 ESusiPlusSpeedSetInactive

13300000 ESusiPlusSpeedWrite

13400000 ESusiPlusSpeedRead

Watchdog
20100000 ESusiWDInit

20200000 ESusiWDAvailable

20300000 ESusiWDDisable

20400000 ESusiWDGetRange

20500000 ESusiWDSetConfig

20600000 ESusiWDTrigger

20800000 ESusiWDTriggerEx

20900000 ESusiWDDisableEx

21000000 ESusiWDSetConfigEx

GPIO
30100000 ESusiIOInit

30200000 ESusiIOAvailable

30300000 ESusiIOCount

30400000 ESusiIOInitial

30500000 ESusiIORead

30600000 ESusiIOReadMulti

30700000 ESusiIOWrite

30800000 ESusiIOWriteMulti

30900000 ESusiIOCountEx

31000000 ESusiIOQueryMask

31100000 ESusiIOSetDirection

31200000 ESusiIOSetDirectionMulti

31300000 ESusiIOReadEx

31400000 ESusiIOReadMultiEx

31500000 ESusiIOWriteEx

31600000 ESusiIOWriteMultiEx

SMBus
40100000 ESusiSMBusInit

40200000 ESusiSMBusAvailable

40300000 ESusiSMBusReadByte

40400000 ESusiSMBusReadByteMulti

40500000 ESusiSMBusReadWord

40600000 ESusiSMBusWriteByte

40700000 ESusiSMBusWriteByteMulti

40800000 ESusiSMBusWriteWord

40900000 ESusiSMBusReceiveByte

 Susi Library Reference

103 of 107

41000000 ESusiSMBusSendByte

41100000 ESusiSMBusWriteQuick

41200000 ESusiSMBusReadQuick

41300000 ESusiSMBusScanDevice

41400000 ESusiSMBusWriteBlock

41500000 ESusiSMBusReadBlock

41600000 ESusiSMBusI2CReadBlock

41700000 ESusiSMBusI2CWriteBlock

41800000 ESusiSMBusReset

IIC
50100000 ESusiIICInit

50200000 ESusiIICAvailable

50300000 ESusiIICReadByte

50400000 ESusiIICWriteByte

50500000 ESusiIICWriteReadCombine

50600000 ESusiIICRead

50700000 ESusiIICWrite

VGA Control
60100000 ESusiVCInit

60200000 ESusiVCAvailable

60300000 ESusiVCGetBright

60400000 ESusiVCGetBrightRange

60500000 ESusiVCScreenOff

60600000 ESusiVCScreenOn

60700000 ESusiVCSetBright

Hardware Monitor
70100000 ESusiHWMInit

70200000 ESusiHWMAvailable

70300000 ESusiHWMGetFanSpeed

70400000 ESusiHWMGetTemperature

70500000 ESusiHWMGetVoltage

70600000 ESusiHWMSetFanSpeed

 Susi Library Reference

104 of 107

Library Error Code

Error Code Error Type

Driver Open Errors
00000001 ERRLIB_CORE_OPEN_FAIL

00000002 ERRLIB_WDT_OPEN_FAIL

00000004 ERRLIB_GPIO_OPEN_FAIL

00000008 ERRLIB_SMB_OPEN_FAIL

00000016 ERRLIB_VC_OPEN_FAIL

00000032 ERRLIB_HWM_OPEN_FAIL

DLL Functions
00000000 ERRLIB_SUCCESS

00000001 ERRLIB_RESERVED1

00000002 ERRLIB_RESERVED2

00000003 ERRLIB_LOGIC

00000004 ERRLIB_RESERVED4

00000005 ERRLIB_SUSIDLL_NOT_INIT

00000006 ERRLIB_PLATFORM_UNSUPPORT

00000007 ERRLIB_API_UNSUPPORT

00000008 ERRLIB_RESERVED8

00000009 ERRLIB_API_CURRENT_UNSUPPORT

00000010 ERRLIB_LIB_INIT_FAIL

00000011 ERRLIB_DRIVER_CONTROL_FAIL

00000012 ERRLIB_INVALID_PARAMETER

00000013 ERRLIB_INVALID_ID

00000014 ERRLIB_CREATEMUTEX_FAIL

00000015 ERRLIB_OUTBUF_RETURN_SIZE_INCORRECT

00000016 ERRLIB_RESERVED16

00000017 ERRLIB_ARRAY_LENGTH_INSUFFICIENT

00000032 ERRLIB_RESERVED32

00000050 ERRLIB_BRIGHT_CONTROL_FAIL

00000051 ERRLIB_BRIGHT_OUT_OF_RANGE

00000064 ERRLIB_RESERVED64

00000128 ERRLIB_RESERVED128

00000256 ERRLIB_RESERVED256

Core Functions
00000500 ERRLIB_CORE_BIOS_STRING_NOT_FOUND

00000512 ERRLIB_RESERVED512

00000520 ERRLIB_CORE_CAN_NOT_WRITE_PWR_SCHEME

00000521 ERRLIB_CORE_GET_PWR_SCHEME_FAILED

00000522 ERRLIB_CORE_SET_PWR_SCHEME_FAILED

00000523 ERRLIB_CORE_DETECT_PWR_PROFILE_FAILED

00000524 ERRLIB_CORE_DELETE_PWR_PROFILE_FAILED

00000525 ERRLIB_CORE_CREATE_PWR_PROFILE_FAILED

00000526 ERRLIB_CORE_PWR_PROFILE_INVALID

 Susi Library Reference

105 of 107

00000527 ERRLIB_CORE_WRITE_PWR_SCHEME_FAILED

00000528 ERRLIB_CORE_READ_PWR_SCHEME_FAILED

Watchdog Functions
00001024 ERRLIB_RESERVED1024

GPIO Functions
00001200 ERRLIB_GPIO_DEVICE_INIT_FAIL

00001201 ERRLIB_GPIO_DEVICE_SETDIR_FAIL

00001202 ERRLIB_GPIO_DEVICE_GETDIR_FAIL

00001203 ERRLIB_GPIO_DEVICE_SETIO_FAIL

00001204 ERRLIB_GPIO_DEVICE_GETIO_FAIL

00001205 ERRLIB_GPIO_DEVICE_FUNC_INIT_FAIL

SMBus Functions
00001400 ERRLIB_SMB_MAX_BLOCK_SIZE_MUST_WITHIN_32

IIC Functions
00001600 ERRLIB_IIC_GETCPUFREQ_FAIL

VGA Control Functions (N/A)

Hardware Monitor Functions
00002000 ERRLIB_HWM_CHECKCPUTYPE_FAIL

00002001 ERRLIB_HWM_FUNCTION_UNSUPPORT

00002002 ERRLIB_HWM_FUNCTION_CURRENT_UNSUPPORT

00002003 ERRLIB_HWM_FANDIVISOR_INVALID

00002048 ERRLIB_RESERVED2048

Reserved Functions
00004096 ERRLIB_RESERVED4096

00008192 ERRLIB_RESERVED8192

 Susi Library Reference

106 of 107

Driver Error Code

Error Code Error Type

00000000 ERRDRV_SUCCESS

Common to all Drivers
00010000 ERRDRV_CTRLCODE

00010001 ERRDRV_LOGIC

00010002 ERRDRV_INBUF_INSUFFICIENT

00010003 ERRDRV_OUTBUF_INSUFFICIENT

00010004 ERRDRV_STOPTIMER_FAILED

00010005 ERRDRV_STARTTIMER_FAILED

00010006 ERRDRV_CREATEREG_FAILED

00010007 ERRDRV_OPENREG_FAILED

00010008 ERRDRV_SETREGVALUE_FAILED

00010009 ERRDRV_GETREGVALUE_FAILED

00010010 ERRDRV_FLUSHREG_FAILED

00010011 ERRDRV_MEMMAP_FAILED

Core Driver (N/A)

Watchdog Driver (N/A)

GPIO Driver
00011200 ERRDRV_GPIO_PIN_DIR_CHANGED

00011201 ERRDRV_GPIO_PIN_INCONFIGURABLE

00011202 ERRDRV_GPIO_PIN_OUTPUT_UNREADABLE

00011203 ERRDRV_GPIO_PIN_INPUT_UNWRITTABLE

00011204 ERRDRV_GPIO_INITIAL_FAILED

00011205 ERRDRV_GPIO_GETINPUT_FAILED

00011206 ERRDRV_GPIO_SETOUTPUT_FAILED

00011207 ERRDRV_GPIO_GETSTATUS_IO_FAILED

00011208 ERRDRV_GPIO_SETSTATUS_OUT_FAILED

00011209 ERRDRV_GPIO_SETDIR_FAILED

SMBus Driver
00011400 ERRDRV_SMB_RESETDEV_FAILED

00011401 ERRDRV_SMB_TIMEOUT

00011402 ERRDRV_SMB_BUSTRANSACTION_FAILED

00011403 ERRDRV_SMB_BUSCOLLISION

00011404 ERRDRV_SMB_CLIENTDEV_NORESPONSE

00011405 ERRDRV_SMB_REQUESTMASTERMODE_FAILED

00011406 ERRDRV_SMB_NOT_MASTERMODE

00011407 ERRDRV_SMB_BUS_ERROR

00011408 ERRDRV_SMB_BUS_STALLED

00011409 ERRDRV_SMB_NEGACK_DETECTED

00011410 ERRDRV_SMB_TRANSMITMODE_ACTIVE

00011411 ERRDRV_SMB_TRANSMITMODE_INACTIVE

00011412 ERRDRV_SMB_STATE_UNKNOWN

IIC Driver

 Susi Library Reference

107 of 107

00011600 ERRDRV_IIC_RESETDEV_FAILED

00011601 ERRDRV_IIC_TIMEOUT

00011602 ERRDRV_IIC_BUSTRANSACTION_FAILED

00011603 ERRDRV_IIC_BUSCOLLISION

00011604 ERRDRV_IIC_CLIENTDEV_NORESPONSE

00011605 ERRDRV_IIC_REQUESTMASTERMODE_FAILED

00011606 ERRDRV_IIC_NOT_MASTERMODE

00011607 ERRDRV_IIC_BUS_ERROR

00011608 ERRDRV_IIC_BUS_STALLED

00011609 ERRDRV_IIC_NEGACK_DETECTED

00011610 ERRDRV_IIC_TRANSMITMODE_ACTIVE

00011611 ERRDRV_IIC_TRANSMITMODE_INACTIVE

00011612 ERRDRV_IIC_STATE_UNKNOWN

VGA Control Driver
00011800 ERRDRV_VC_FINDVGA_FAILED

00011801 ERRDRV_VC_FINDBRIGHTDEV_FAILED

00011802 ERRDRV_VC_VGA_UNSUPPORTED

00011803 ERRDRV_VC_BRIGHTDEV_UNSUPPORTED

Hardware Monitor Driver (N/A)

