
Applied Science Research
Dann
Christopher Rebert
5/10/08

Final Project Paper: Muon lifetimes

I. Abstract

In this project, the number of atmospheric muons was measured at day and night
using provided scintillators and a QuarkNet DAQ board. This entailed raw count
calibration, counter plateauing, and the creation of a Python program to more easily
interact with the QuarkNet board. Experimental results support the idea of solar muon
emission, with coincidence rates increasing until a noon peak of 62.64 Hz (when the Sun is
approximately overhead and closest to the Earth's surface) and then decreasing all the way
down to 32.46 Hz at 2AM the following morning with the Sun shining on the opposite side
of the Earth.

II. Motivation and History

Originally, I had intended to do an experiment proving relativity by showing a
discrepancy in the lifetimes of cosmic ray muons, which sounded particularly intriguing to
me.[1] It would also involve writing a program to communicate with the DAQ unit, and
being a programmer, this piqued my interest. However, once Dr. Dann had located the
exact paper outlining the experiment, we both concluded that it would not be feasible for a
high school student considering the limited time remaining in the course. However, having
already made significant progress on my computer program and finished initial calibration,
I decided to proceed with an alternate muon-related experiment. After consulting further
with Dr. Dann, it was decided that I would do a day-night comparison experiment, wherein
I would count the number of muons per hour during day and night and see if there was an
appreciable difference between the night and day numbers.

There have been a few fairly recent studies about atmospheric muon detection. In [2],
the experimenters used an underwater neutrino telescope and evaluated its performance as
well as that of their DAQ system. They also measured muon flux as a function of zenith
angle and found their data to be in line with previous measurements and predictions. [3]
was a similar experiment, measuring muon flux at the South Pole at 5 different zenith
angles using a unique scintillator compound. [4] examines muon flux at several altitudes
and uses the data to calculate the error in neutrino flux generated by a certain neutrino
interaction model, which they then go on to refine themselves. [5] uses cosmic ray energy
spectrum data from a balloon experiment to calculate cosmic ray muon flux at ground
level, and finds the results to be in keeping with those of similar experiments.

III. Theory of operation

To begin with, according to the Standard Model of particle physics, the muon
(symbol: μ) is an elementary particle with electric charge -1e and spin ½. It was discovered
by Carl D. Anderson, winner of the 1936 Nobel Prize in Physics, in 1936 at Caltech.[6]

When cosmic rays, high-energy particles from space, hit atoms in the atmosphere, they
react producing, among other things, pions, non-elementary particles that quickly decay
into muons and neutrinos via the following reaction:
π− → μ− + νμ

These muons then continue traveling along almost exactly the same path as their progenitor
pions. It is also theorized that the Sun could be producing muons as a result of its nuclear
reactions.[7]

When a muon hits a scintillator, the scintillator then absorbs the radiation and in
response fluoresces.[8] The light produced is then directed into a Photomultiplier Tube
(PMT). In the PMT, after being focused by a lens, the photons are converted into electrons
by a photocathode. These electrons go through a MicroChannel Plate (MCP), a plastic disc
with metal electrodes on each side and millions of microscopic holes in it. High-voltage
bursts that are constantly sent through the electrode pair accelerate the electrons through
the microchannels in the plate, causing cascaded secondary emission, drastically increasing
the number of electrons.[9]

These electrical impulses are then conveyed via Lemo signal cables to ports on the
QuarkNet DAQ board for processing . After being amplified by 10x, the signal is sent
through discriminators. The discriminators check whether the signal meets a specified
threshold level set by potentiometer. If it does, then this constitutes an incident and the
incident counter for that scintillator is incremented. And if at least a specified number of
incidents occur within a specified time interval, this constitutes a coincidence and the
coincidence counter is incremented. There are also 2 parameters, d and w, The incidence
and coincidence counts can then be read by computer over a serial cable connection.[10]

The interactive console-based Python[11] script communicates using the simple
ASCII-based commands defined in the user manual[10] while presenting a friendlier
menu-driven interface to users and not requiring them to know anything about the DAQ
board's command language. Note that the script should work on both Windows and unix
(including Mac) systems, but only Windows was used in this project due to the difficulty of
locating a Mac with a serial port or a serial port adapter. For further information on how the
script operates, see the heavily commented source in Appendix A.

IV. Design
Due to uncertainty as to their effect, d and w were left at their default values (d = 6 =

144ns, w = 10 = 240ns)[10] throughout the experiment. -0.3V was used as the threshold
voltage value throughout this experiment on the advice of Dr. Dann. All experiments took
place in the first-floor ASR classroom at Menlo School, approximately at ground level.

Before performing the day-night experiment, it is necessary to “plateau” the
scintillators. This is done in 2 steps: raw-count calibration and multiple counter plateauing.
Plateauing is needed to compensate for differing PMT gain and aging/degredation of the
scintillator material in order to get accurate data. Plateauing adjusts the PMT voltage so
that the data acquired contains a minimum of electronic noise and a maximum of real muon
interactions. If the voltage is set too high, then electronic noise will be heavily amplified
and give false positives. If the voltage is set too low, then the amount of data acquired will
be significantly decreased only high-energy muons will be detected while low or medium
energy muons will be ignored, resulting in the loss of legitimate data. In the multi-counter
plateauing step, the “flat” part of the graph is chosen as this indicates that one is detecting

most of the muons present with only minimum electronic noise and increasing the voltage
slightly is finding no additional muons. The edges of the graph go up and down
exponentially due to the cascading effect used by the PMTs.

For the raw count calibration, PMT voltage was varied and incidence counts were
taken at each voltage setting for ~45s. From this the incidence rate was calculated. The
scintillators were laid flat on a countertop with nothing on top of them so as to avoid any
extra muon shielding and expose maximum surface area to skyward muon detection. As a
muon incidence rate of 40Hz at ground level had been established as the accepted
value[12], the PMT voltage was set to the voltage setting which gave a reading closest to
40Hz until after counter plateauing was done.

For the plateauing experiment and the day-night experiment, the scintillators were
placed one on top of another in a “sandwich” configuration, with some wood blocks used
to space and stabilize them. Scintillator “D” was not used due to time constraints and only
3 scintillators being required for plateauing.
For ease of explanation in the plateauing experiment, let:

● 1 be the top scintillator
● 2 be the middle scintillator
● 3 be the bottom scintillator

In the plateauing experiment, 2-fold coincidences between 1 & 2 were counted for
~120s and then 2-fold coincidences between 1 & 3 were counter for ~120s. The ratio of the
frequency of the former over the frequency of the latter term is then calculated. This
process is then repeated for several PMT voltage values, and the frequency ratio vs. PMT
voltage is then plotted. The voltage where the graph is flattest is then the optimal value.
The scintillators are then repositioned appropriately and the entire process conducted again
to plateau the next scintillator until all of them have been plateaued.

In the day-night experiment, 2-fold coincidences between the scintillators were
counted and polled periodically throughout consecutive ~1-hour periods with the starting
and ending times of each period noted. Simple division yields average muon rates for each
1-hour period, which can then be plotted.

V. Results

The results of the initial scintillator calibration may be found in Tables 2-5 in
Appendix B and Figures 1-4 which follow.

Figure 1: Graph of scintillator “A” raw count data. Optimal voltage setting: 0.917V, which
gave reading of 40.18Hz

Figure 2: Graph of scintillator “B” raw count data. Optimal voltage setting: 0.983V, which
gave reading of 39.83Hz

Figure 3: Graph of scintillator “C” raw count data. Optimal voltage setting: 1.019V, which
gave a reading of 39.62Hz

0.85 0.9 0.95 1 1.05 1.1 1.15
0

20
40
60
80

100

120
140
160
180
200

Scintillator A count rate (thresh = -0.3V)

PMT voltage (V)

in
ci

d
e

n
ce

 f
re

q
u

e
n

cy
 (

H
z)

0.85 0.90 0.95 1.00 1.05 1.10 1.15
0

20

40

60

80

100

120

Scintillator B count rate (thresh = -0.3V)

PMT voltage (V)

in
c
id

e
n

c
e

 f
re

q
u

e
n

c
y
 (

H
z

)

Figure 4: Graph of scintillator “D” raw count data. Optimal voltage: 0.910V, which gave a
reading of 38.31Hz

Data Table 1: Plateauing results for scintillator “A”

0.850 0.900 0.950 1.000 1.050 1.100 1.150
0

10

20

30

40

50

60

70

80

scintillator C count rate (thresh = -0.3V)

PMT voltage (V)

in
ci

d
e
n
ce

 f
re

q
u
e
n
cy

 (
H

z
)

0.850 0.900 0.950 1.000 1.050 1.100 1.150
0

50

100

150

200

250

300

Scintillator D count rate (thresh = -0.3V)

PMT voltage (V)

in
c
id

e
n

c
e

 f
re

q
u

e
n

c
y
 (

H
z
)

Voltage (V) Frequency ratio
0.729 0.00314
0.835 0.0192
0.947 0.860
0.951 0.928
0.957 1.02
0.970 1.13
1.106 1.42
1.120 987
1.140 7260

Data Table 2: Plateauing results for scintillator “B”

Voltage (V) Frequency ratio
0.737 0.00528
0.886 0.0344
0.976 0.941
0.982 0.973
1.003 0.986
1.062 1.108
1.119 1.242
1.360 769
1.429 8416

Data Table 3: Plateauing results for scintillator “C”

Voltage (V) Frequency ratio
0.754 0.00259
0.861 0.0385
0.972 0.969
0.989 0.981
1.089 1.09
1.154 1.26
1.189 1.48
1.359 747
1.412 4392

Unfortunately, I was unable to figure out how to create an Excel graph with a logarithmic
scale as is required for graphs of the plateauing data to be intelligible, but exponential
trends are clearly visible in the data, and based on [10], ratios closest to 1.0 indicate
optimal voltage. These voltages are summarized in Table 4.

Data Table 4: Optimum voltages for scintillators based on plateauing

Scintillator Optimum voltage (V)
A 0.957
B 1.003
C 1.089

The following experimental results (Table 5 & Figure 5) from the day-night muon
detection experiment support the idea of solar muon emission because the muon
coincidence rates increased to a noon peak of 62.64 Hz (when the Sun is approximately
overhead and closest to the Earth's surface) and then decreased all the way down to 32.46
Hz at 2AM the following morning, with the Sun shining all the way on the opposite side of
the Earth. This correlation of Sun exposure and muon coincidences suggest that the Sun is
outputting muons, which are then detected when the Sun is visible thus increasing the
observed muon counts. However, as discussed in the Conclusion's error section, these data
do not prove definitively that the Sun is emitting muons.

Data Table 5: Data from day-night muon flux experiment
Time period Coincidence frequency (Hz) Time elapsed (s) Coincidences
10:02:12AM – 11:00:07AM 54.71 3475 190128
11:00:15AM – 12:00:24PM 59.22 3609 213731
12:00:33PM – 01:00:38PM 62.64 3605 225815
01:00:47PM – 02:00:03PM 60.42 3556 214867
02:00:18PM – 03:00:23PM 57.36 3605 206781
03:00:40PM – 04:00:01PM 53.28 3561 189733
04:00:52PM – 05:00:29PM 48.16 3577 172257
05:00:37PM – 06:00:08PM 49.83 3571 177949
06:00:42PM – 07:00:31PM 48.25 3589 173156
07:00:56PM – 08:00:11PM 43.56 3555 154839
08:00:38PM – 09:00:21PM 41.32 3583 148041
09:00:32PM – 10:00:03PM 38.07 3571 135934
10:00:06PM – 11:00:55PM 39.79 3649 145194
11:01:09PM – 12:00:48AM 35.89 3579 128468
12:00:53AM – 01:00:40AM 34.56 3587 123982
01:01:13AM – 02:00:10AM 32.46 3537 114813
02:00:34AM – 03:00:36AM 33.91 3602 122142

Figure 5: Graph of day-night experiment data with error bars. Error calculated using
standard deviation. Hour values greater than 24 indicate times in the following day.

8 10 12 14 16 18 20 22 24 26 28

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

Hour (24-hour clock)

C
o

in
c

id
en

c
e

fr
eq

u
en

c
y

(H
z)

VI. Conclusion
Overall, the project was a success though its solar muon results are not definitive.

The experimental results (Table 1 & Figure 5) support the idea of solar muon emission due
to the correlation between the distance between the Sun and the Earth's surface and the
observed muon coincidence rates, with a noon peak of 62.64 Hz and a minimum value of
only 32.46 Hz at 2AM the following morning, with the Sun facing roughly the other side of
the planet.

Error for the day-night experiment was calculated using standard deviation of the
coincidence frequencies, as shown in Figure X's error bars. Due to the magnitude of error
involved, approximately +/-10 on average, our conclusions regarding noticeable solar
muon activity are only probable, not certain, but the data does certainly seem to suggest
that the solar muon effect does exist. Error in this experiment could have been caused by
irregularities/aging of the scintillator material or PMTs, QuarkNet hardware malfunction,
programming error in the Python script, unexpected muon shower or other non-solar
fluctuation in natural muon emission, unknown shielding effects of the experiment site, or
unknown unnatural sources of muon emission rates. These could have caused the numbers
to be biased or entirely incorrect, though their coherency makes this less likely.

Over the course of the project, much was learned about interfacing with scientific
hardware as well as the particle physics involved in the experiments. Unfortunately, much
time was taken up by learning and trying to understand the somewhat arcane operation of
QuarkNet board, which left less time in which to perform the actual experiments.

Future work could include re-doing of the experiments for longer time periods to
further minimize error, calibration and plateauing of scintillator “D”, and enhancement of
the program produced including proper handling of the integer overflow of the QuarkNet
incidence and coincidence counters, and parsing of the live “data words” stream the board

makes available but was not utilized by this project. Unfinished code for the data words
processing is included in the quarknet.py source. Hopefully, future classes or projects can
build on the experience and tools gleaned from this experiment to do more interesting or
complex experiments.

VII. Bibliography
[1] Nichols A. Romero & Mukund T. Vengalattore, Speed and Decay of Cosmic Ray
Muons, Junior Physics Laboratory, Massachusetts Institute of Technology, 1998
[2] The NESTOR Collaboration (Aggouraset. al), A measurement of the cosmic-ray muon
flux with a module of the NESTOR neutrino telescope, Astroparticle Physics 23, p377–
392, 2005
[3] Bai et. al, Muon flux at the geographical South Pole, Astroparticle Physics, Volume 25,
Issue 6, p361-367, 7/2006
[4] Sanuki et. al, Atmospheric neutrino and muon fluxes, 29th International Cosmic Ray
Conference Pune 00, p101–104, 2005
[5] Ochanov, Calculation of the atmospheric muon flux motivated by the ATIC-2
experiment, 30th International Cosmic Ray Conference, 6/2007
[6] Wikipedia – The Free Encyclopedia, Muon, Wikimedia Foundation Inc.,
http://en.wikipedia.org/wiki/Muon, last modified 5/08/2008 3:14PM UTC
[7] Wikipedia – The Free Encyclopedia, Pions, Wikimedia Foundation Inc.,
http://en.wikipedia.org/wiki/Pions, last modified 3/23/2008 1:06PM UTC
[8] Wikipedia - The Free Encyclopedia, Scintillator, Wikimedia Foundation Inc.,
http://en.wikipedia.org/wiki/Scintillator, last modified 3/22/2008 10:13AM UTC
[9] Jeff Tyson, How Night Vision Works, Howstuffworks,
http://electronics.howstuffworks.com/nightvision.htm
[10] Rylander et. al, QuarkNet/Walta/CROP Cosmic Ray Detectors User's Manual,
08/2004
[11] Python programming language, version 2.5, Guido van Rossum et al., Python
Software Foundation, http://python.org, 4/2008
[12] Dr. James Dann, Applied Science Research class, Menlo School, Atherton, CA,
2007-2008

Acknowledgments
The author/experimenter would like to take this opportunity to thank:

● Dr. James Dann for coming up with the idea for this project and helping explain
some of the physics and electronics behind the experiment to me

● Jeff Rylander, Tom Jordan, R.J. Wilkes, Hans-Gerd Berns, Richard Gran, Fermilab,
and the University of Washington for writing the user's manual for QuarkNet

● the myriad of people who developed the QuarkNet data acquisition unit
● the Menlo School Technology Department for finding and letting me use their

serial cable and gender changer
● Chris Liechti, developer of the PySerial library which made writing my program

infinitely easier
● the Applied Science Research class of 2008 for providing me encouragement and

entertainment while I agonizingly waited for my program to gather data

http://en.wikipedia.org/wiki/Scintillator
http://python.org/
http://en.wikipedia.org/wiki/Pions
http://electronics.howstuffworks.com/nightvision.htm
http://en.wikipedia.org/wiki/Muon

Appendix A. - Python scripts
Please note that line-wrapping by the word processor may have slightly altered the
sources' whitespace.

quarknet.py – user-friendly console interface to the QuarkNet DAQ board
#!/usr/bin/env python
#Program to facilitate interaction with QuarkBoard
#Copyright 2008 Christopher V. Rebert
from __future__ import division
import serial
from time import sleep, time, strftime
from menulib import *
from sys import exit
from itertools import izip, chain, repeat
from time import time, sleep
from csv import writer
from os.path import exists

f

NEWLINE = '\r'#Quarkboard's newline char
PORT = None# serial connection to QuarkBoard
TRIGGER_PERIOD = -1#'d' in the manual
TMC_DELAY = -1#'w' in the manual
NS_PER_TICK = 24#tick = 24 nanoseconds
DATA = None #log file
DATA_DIR = "C:/Documents and Settings/MenloTech/Desktop/"#None #folder
to store logs in
DATA_EXT = ".csv" #extension of log files
OUTPUT = True

O

def writeln(s):
 '''Write line of text to board with proper newline char'''
 PORT.write(s + NEWLINE)

if False:##__debug__:
 old_write = writeln
 def new_write(s):
 print
 print "@@@", s
 old_write(s)
 writeln = new_write

def readline():
 '''Read a line of output from the board'''
 line = PORT.readline().strip()
 if __debug__: pass ##print "GOT:", line
 return line

BOARD_DELAY = 1#in seconds
def eatLine(n=1):
 '''Retrieve and discard next output line from the board'''
 for i in xrange(n):
 sleep(BOARD_DELAY)#wait for board to catch up
 readline()

def hexSans0x(n):
 '''Returns string representing integer "n" in base 16 without
leading "0x"'''
 return hex(n)[2:].upper()

##def _int2bin(n, bits=8):
'''Returns int "n" represented in binary as a string, using
"count" number of digits'''
return "".join([str((n >> y) & 1) for y in range(count-1, -1,
-1)])
##
##def hex2binDigits(hexNum):
#convert from hex to string of binary digits
#then reverse string so digits[n] is nth bit (n starts @ 0)
digits = ''.join(reversed(_int2bin(int(hexNum, 16))))
return digits

#

def binary2int(bin):
 return int(''.join(reversed(bin)), 2)

#utility function from itertools recipes
def groupIn(n, iterable, padvalue=None):
 "grouper(3, 'abcdefg', 'x') --> ('a','b','c'), ('d','e','f'),
('g','x','x')"
 return list(izip(*[chain(iterable, repeat(padvalue, n-1))]*n))

def connect():
 '''Connect to serial port QuarkBoard is connected to and output
connection details.
 Returns opened PySerial serial.Serial object, or exits on
failure.'''
 global PORT
 print "Opening serial port...",
 try:
 PORT = serial.Serial(port=0, baudrate=19200, xonxoff=True)
 except serial.SerialException, e:
 print "failed"
 print "Error while connecting:", e.message
 print "Exiting on error!"
 exit(1)
 else: print "done"
 print 'Connected on serial port #%s' %(PORT.port,)
print 'Baud rate:', PORT.baudrate
print 'Xon/Xoff enabled?:', PORT.xonxoff
print 'Timeout:', PORT.timeout,
if PORT.timeout is not None: print "seconds"
else: print
 stopCounting()

VERIFICATION_GREETING = "Quarknet Scintillator Card"
EXTRA_GREETING_LINES = 3
RESET_DELAY = 1
def resetBoard():
 '''Reset board to defaults. Also confirms that board is connected'''
 if OUTPUT: print "Resetting board configuration to defaults..."
 writeln("RE")
 sleep(RESET_DELAY)

 if VERIFICATION_GREETING not in readline():
 if OUTPUT: print "failed"
 raise IOError, "Card not connected (properly)"
 #QUESTION: add 'SA 1' or 'SA 2' here???? try both ways
 eatLine(EXTRA_GREETING_LINES)
 if OUTPUT: print "done"

##def disableCounters():
'''Disable coincidence counters'''
print "Disabling coincidence counters...",
writeln("CD")
eatLine()
print "done"

#

def enableCounters():
 '''Re-enable coincidence counters and start displaying data lines'''
 if OUTPUT: print "Enabling coincidence counters...",
 writeln("CE")
 eatLine(2)
 if OUTPUT: print "done"

def setupChannels(fold, channels):#bit-twiddling has been checked to be
theoretically correct
 '''Sets coincidence level and enables desired channels.
 fold - int indicating coincidence level required
 channels - list of bools specifying which channels on/off'''
 if len(channels) != 4: raise ValueError, "On/off state not
specified for all channels"
 if fold < 1 or fold > 4: raise ValueError, "Invalid # of channels
specified"
 if OUTPUT: print "Enabling channels & setting coincidence level...",
 leftChar = hexSans0x(fold - 1)
 channels.reverse()
 #convert channels from bools to ints (0 or 1)
 #then combine into binary string, and convert that to hex
 rightChar = hexSans0x(int(''.join([str(int(chan)) for chan in
channels]), 2))
 writeln("WC 00 "+leftChar+rightChar)
 eatLine(2)
 if OUTPUT: print "done"

def stopCounting():
 '''Stop incidence and coincidence counters.'''
 global OUTPUT
 if OUTPUT: print 'Stopping counters...',
 oldOutput = OUTPUT
 OUTPUT = False
 setupChannels(4,[False]*4)
 OUTPUT = oldOutput
 if OUTPUT: print 'done'

def setTriggerPeriod(ticks):
 '''Set (in ticks) how close time pulses must be to cause a
trigger'''
 global TRIGGER_PERIOD
 #period is difference between memory cells 01 and 02, so set cell
01 to 0

 TRIGGER_PERIOD = ticks
 if OUTPUT: print 'Setting trigger period ["d"]...',
 writeln("WT 01 00")
 eatLine(2)
 writeln("WT 02 %s" % (hexSans0x(ticks).zfill(2),))
 eatLine(2)
 if OUTPUT: print "done"

def setGateWidth(ticks):
 '''Set "gate width" ("w" in the board manual) to given value in
ticks'''
 if OUTPUT: print 'Setting gate width ["w"]...',
 TMC_DELAY = ticks
 bits = hexSans0x(ticks).zfill(4)
 #4 hex digit number split across 2 memory cells
 writeln("WC 02 %s" % (bits[2:],))
 eatLine(2)
 writeln("WC 03 %s" % (bits[:2],))
 eatLine(2)
 if OUTPUT: print 'done'

class ScalerData(object):
 '''Represents output of "DS" command'''
 def __init__(self, scalers, coins):#, timeOverThresh):
 self.scalers = scalers
 self.coins = coins#coincidence count
 #self.timeOver = timeOverThresh

def readScalers():
 '''Return ScalerData obj representing output from "DS" cmd'''
 if OUTPUT: print "Reading scaler values...",
 writeln("DS")
 eatLine()#eat echoing of cmd
 pairs = readline().strip().split(' ')[1:]#split @ spaces, ignore
leading "DS" field
 hexVals = [pair.split('=')[1] for pair in pairs]#grab hex number
from 'S1=846738'-like fields
 scalers = [int(val, 16) for val in hexVals]#convert hex to integer
 scalers.pop()#discard S5, the 1PPS signal, GPS-related
 if OUTPUT: print 'done'
 print 'Scaler values:', scalers
 return ScalerData(scalers, scalers[4])

def prompt4chans():
 '''Prompt user for coincidence and channel settings'''
 channels = [ask4bool("Enable scintillator %s?" % i) for i in
xrange(4)]
 nFold = ask4num("Detection fold to be considered a coincidence", 1,
4)
 setupChannels(nFold, channels)

def prompt4period():
 '''Prompt user for coincidence trigger period'''
 setTriggerPeriod(ask4num('Period ["d"] for triggers to be
considered a coincidence [in %s ns ticks]' % NS_PER_TICK, 2))

c

def prompt4width():

 '''Prompt user for gate width'''
 setGateWidth(ask4num('Gate width ["w"]', TRIGGER_PERIOD - 1))

def terminal():
 '''Gives user terminal-like access to board'''
 connect()
 print 'You now have terminal access to the Quarkboard.'
 print 'Enter "end" to terminate the session.'
 while True:
 input = raw_input("QuarkNet> ")#get cmd from user
 if input.lower() == 'end':
 print 'Exiting...'
 exit(0)
 writeln(input)
 sleep(1)
 while PORT.inWaiting() > 0:#display output
 print '========= ', readline()

def filename2logPath(filename, ext):
 '''Generates full path to log file based on given filename'''
 return DATA_DIR + filename + ext

def makeValidator(ext):
 def _validator(name):
 '''Checks whether a filename has already been used in the log
directory'''
 path = filename2logPath(name, ext)
 return not exists(path)
 return _validator

def ask4aLog(prompt, ext):
 '''Prompt user for log file name and return full path of desired
log file'''
 return filename2logPath(ask4file(prompt, makeValidator(ext)), ext)

def prompt4log():
 '''Prompt user for file to log to and open the file.'''
 createLog(ask4aLog("Filename to log data to?", DATA_EXT))

def createLog(filepath):
 '''Create log file or die on error'''
 global DATA
 if OUTPUT: print "Creating log file '%s'..." % filepath,
 try:
 DATA = file(filepath, 'w')
 except EnvironmentError, err:
 print
 print "Error opening log file:", str(e)
 print "Exiting on error..."
 raise SystemExit
 else:
 if OUTPUT:
 print "done"
 print
 print

##def log(line):

'''Write line to log file.'''
LOG.write(line+"\n")

#

##def parseEventLine(line):
fields = line.split(' ')[:9]#chop off GPS fields
log(','.join(fields))
#triggerCount = int(fields[0], 16)
#riseFalls = [(parseRise(rise), parseFall(fall)) for rise, fall
in groupIn(2, fields[1:])]

##def parseRise(hexVal):
bits = hex2binDigits(hexVal)
ticks = binary2int(bits[:5])
valid = bool(int(bits[5]))
newTrigger = bool(int(bits[7]))
##
##def parseFall(hexVal):
bits = hex2binDigits(hexVal)
ticks = binary2int(bits[:5])
valid = bool(int(bits[5]))

#

DEFAULT_D = 6
DEFAULT_W = 10
def calibrationExpmt():
f = file(ask4aLog("Filename to log incidents to?", ".csv"), 'wb')
 w = writer(DATA)#f)
 print 'Connect scintillator to QuarkBoard port #0.'
 wait4user()
 w.writerow(["scintillator", ask4str("Scintillator's designation")])
 w.writerow(["trigger period [d] (ticks)", DEFAULT_D])
 w.writerow(["gate window [w] (ticks)", DEFAULT_W])
 fieldNames = ["voltage", "time (s)", "scaler", "scal freq (Hz)"]
 w.writerow(fieldNames)
 DURATION = ask4num("Duration of each run (sec)", kind=int)
 print "Connect scintillator to be calibrated to port #0."
 wait4user()
 try:
 while True:
 connect()
 v = ask4num("Scintillator voltage (V)?", kind=float)
 setTriggerPeriod(DEFAULT_D)
 setGateWidth(DEFAULT_W)
 init = _ask4boardValue()
 print "***Gathering data. This will take ~"+str(DURATION),
"seconds...***"
 prevOutput = OUTPUT
 OUTPUT = False
 start = time()
 setupChannels(1, [True] + 3*[False])
 sleep(DURATION)
 s = readScalers()
 end = time()
 print "***Data gathered!***"
 OUTPUT = True
 scal = s.scalers[0] - init
c = s.coins
 duration = end-start

 freq = scal/duration
 row = [v, duration, scal, freq]
 print "Incidence frequency:", freq, "Hz"
 w.writerow(row)
 PORT.close()
 if ask4bool("Done with this scintillator?"): break
 print "Power-cycle the QuarkBoard."
 print "Also, change the voltage setting on the scintillator
being calibrated."
 wait4user()
 DATA.flush()
 finally:
 DATA.close()
 exit(0)

def _ask4counter(prompt):
 '''Asks the user for a number corresponding to a port #.'''
 return ask4num(prompt, mini=0,maxi=3,kind=int)

def coincidenceCount():
 return readScalers().coins

def _runCoinExpmt(chans, PLATEAU_DURATION):
 global OUTPUT
 connect()
 setTriggerPeriod(6)
 setGateWidth(10)
 offset = coincidenceCount()
 print "***Gathering datum. Please wait", '~'+str(PLATEAU_DURATION),
"seconds...***"
 oldOutput = OUTPUT
 OUTPUT = False
 start = time()
 setupChannels(2, chans)
 sleep(PLATEAU_DURATION)
 coins = readScalers().coins - offset
 PORT.close()
 end = time()
 OUTPUT = oldOutput
 print "***Done gathering datum***"
 elapsed = end - start
 freq = coins / elapsed
 return freq

ALL_OFF = [False]*4
def _1plateauDatum(top, mid, bot, PLATEAU_DURATION):
 print "*****Gathering datapoint...*****"
 first = ALL_OFF[:]
 first[top] = first[mid] = True
 second = ALL_OFF[:]
 second[top] = second[bot] = True
 numer = _runCoinExpmt(first, PLATEAU_DURATION)
 print "Power-cycle the QuarkBoard."
 wait4user()
 denom = _runCoinExpmt(second, PLATEAU_DURATION)
 ratio = numer / denom
 print "*****Datapoint calculated*****"

 print "Coincidence frequency ratio:", ratio
 return ratio

def plateauExpmt():
 PLATEAU_DURATION = ask4num("Duration of one plateauing experiment
run (sec)", mini=0, kind=float)
 plateaued = 1
 top = 0
 bot = 2
 print 'Connect 3 scintillators in a "sandwich" configuration as
follows:'
 print 'Top: scintillator connected to port #%s' % top
 print 'Middle: scintillator to be plateaued, connected to port #%s'
% plateaued
 print 'Bottom: scintillator connected to port #%s' % bot
 wait4user()
f = file(ask4aLog("Log file to output plateauing data to?",
'.csv'), 'w')
 log = writer(DATA)
 log.writerow(["Scintillator voltage (V)", "Coincidence frequency
ratio"])
 while True:
 v = ask4num("Scintillator #%s voltage (V)?" % plateaued,
kind=float)
 freq = _1plateauDatum(top, plateaued, bot, PLATEAU_DURATION)
 log.writerow([v, freq])
 DATA.flush()
 if ask4bool("Done plateauing?"): break
 DATA.close()

def dayNight():
 setupParameters()
 nPeriods = ask4num("Number of periods?")
 duration = ask4num("Duration of periods (min)?", mini=2)*60
 delay = ask4num("Time to wait before beginning experiment (sec)?")
 w = writer(DATA)
 w.writerow(["start", "end", "elapsed (s)", "coincidences",
"frequency (Hz)"])
 DATA.flush()
 base = time()
 doneInit = time()
 delay -= doneInit - base
 sleep(delay)
 for i in xrange(nPeriods):
 togo = duration
 oldcount = 0
 total = 0
 start = time()
 while togo > 0:
 count = coincidenceCount()
 if count < oldcount:
 total += oldcount
 oldcount = count
 sleep(60)
 togo -= 60
 end = time()

 total += count
 elapsed = end-start
 w.writerow([strftime(start), strftime(end), elapsed, total,
total/elapsed])
 DATA.flush()
 DATA.close()

def prompt4DataDir():
 global DATA_DIR
 DATA_DIR = ask4dir("Log & data directory")

def setupParameters():
 connect()
 prompt4log()
 prompt4period()
 prompt4width()
 prompt4chans()

ACTIVITIES = (("Calibrate scintillator",calibrationExpmt),
 ("Terminal interface to Quarkboard",terminal),
 ("Plateau scintillator",plateauExpmt),
 ("Perform day-night solar muon experiment",dayNight))
try:
 #prompt4logDir()
 prompt4log()
 ask4choice("Choose activity", ACTIVITIES)()

finally:
 print "Goodbye!"
 print "Closing port...",
 try: PORT.close()
 except: pass
 print "done"
 print "Closing log file...",
 try: LOG.close()
 except: pass
 print "done"

menulib.py – simple console-based menu-driven user interface library
from os.path import isdir
from string import ascii_letters as _LETTERS, digits as _DIGITS
_ACCEPTABLE = set(_LETTERS + _DIGITS + '_- ')
del _LETTERS, _DIGITS

d

def ask4bool(question):
 '''Asks the user a yes/no question. Returns a bool indicating their
response.'''
 question += ": "
 while True:
 input = raw_input(question).lower()
 if input in ('yes', 'y'): return True
 elif input in ('no', 'n'): return False
 print "Invalid input. Must be either (y)es or (n)o."

def ask4num(question, mini=None, maxi=None, kind=int):
 '''Asks the user for an integer within the given range.'''
 rng = ''.join(('(', str(mini) if mini is not None else '', '-',
str(maxi) if maxi is not None else '', ')'))
 mid = " " + rng
 if mini is None and maxi is None:
 mid = ""
 prompt = question + mid + ": "
 while True:
 try:
 s = raw_input(prompt)
 if s != '0': s = s.lstrip('0')
 val = kind(s)
 except ValueError: print "Invalid input. Must be a valid
decimal number."
 if (maxi is not None and val > maxi) or (mini is not None and
val < mini):
 print "Invalid input. Not within valid range %s." % rng
 else: return val

def ask4str(question, validator=None, errMsg="Try again."):
 '''Asks the user for a string for which "validator" returns True.'''
 question += ": "
 error = "Invalid input. "+errMsg
 while True:
 input = raw_input(question)
 if validator and not validator(input): print error
 else: return input

def wait4user():
 '''Does not return until user acknowledges the program'''
 raw_input("Press Enter to continue")
 print
 print

def _validateFilename(name):
 '''Check that proposed filename contains only valid characters.
 Allowed chars are letters, digits, underscores, dashes, and
spaces.'''
 for char in name:
 if char not in _ACCEPTABLE:
 return False
 return True

_BAD_FILENAME_MSG = "Filename must contain only letters, digits,
underscores, dashes, or spaces, and must not already be in use."
def ask4file(prompt, validator):
 '''Asks the user for a filename that passes _validateFilename and
the given "validator"'''
 def validater(s): return _validateFilename(s) and validator(s)
 return ask4str(prompt, validater, _BAD_FILENAME_MSG)

def ask4choice(prompt, titleValPairs):
 '''Asks the user to choose an option from a list.'''
 prompt += ":"
 while True:

 print prompt
 print '='*(len(prompt)+2)
 for i, titleVal in enumerate(titleValPairs):
 title = titleVal[0]
 print "[%s]"%(i+1), title
 print
 try:
 choice = int(raw_input("Enter the number of your choice:
")) - 1
 if choice > i or choice < 0: raise ValueError
 except:
 print "Invalid input. Try again"
 wait4user()
 continue
 else: break
 print
 print
 return titleValPairs[choice][1]

def ask4dir(prompt):
 '''Asks the user for an existing directory.'''
 prompt += ': '
 while True:
 path = raw_input(prompt)
 if isdir(path): return path
 print "Directory does not exist. Try again."
 wait4user()

Appendix B. - Raw count data
Data Table 2: Raw count calibration data for scintillator “A”

Data Table 3: Raw count calibration data for scintillator “B”

Voltage (V) incidence frequency (Hz) incidence count time (s)
0.867 26.19 1258 48.03
0.878 30.40 1460 48.03
0.889 32.69 1570 48.03
0.902 36.62 1759 48.03
0.917 40.18 1930 48.03
0.921 42.24 2029 48.03
0.931 50.86 2443 48.03
0.940 51.13 2456 48.03
0.951 55.86 2683 48.03
1.109 187.02 8983 48.03

Data Table 4: Raw count calibration data for scintillator “C”

Voltage (V) incidence frequency (Hz) incidence count time (s)
0.908 20.51 985 48.03
0.920 22.90 1100 48.03
0.931 24.48 1176 48.03
0.940 27.32 1312 48.03
0.952 31.98 1536 48.03
0.960 31.92 1533 48.03
0.970 36.50 1753 48.03
0.983 39.83 1913 48.03
0.984 42.39 2036 48.03
0.985 41.94 2015 48.05
0.993 46.43 2230 48.03
1.003 48.28 2319 48.03
1.105 100.39 4822 48.03

Data Table 5: Raw count calibration data for scintillator “D”

Voltage (V) incidence frequency (Hz) incidence count time (s)
0.910 16.76 805 48.03
0.921 17.30 831 48.03
0.935 19.86 954 48.03
0.945 19.92 957 48.05
0.950 21.57 1036 48.03
0.963 23.26 1117 48.03
0.973 25.09 1205 48.03
0.982 27.79 1335 48.03
0.995 30.42 1461 48.03
1.019 39.62 1903 48.03
1.110 73.18 3515 48.03

Voltage (V) incidence frequency (Hz) incidence count time (s)
0.892 33.85 1627 48.06
0.902 36.02 1734 48.14
0.910 38.31 1840 48.03
0.914 42.22 2030 48.08
0.925 45.37 2179 48.03
0.942 53.19 2559 48.11
0.953 56.78 2730 48.08
0.964 63.79 3071 48.14
0.975 76.75 3691 48.09
1.100 252.96 12150 48.03

