
 

OXlearn  
user manual 

 

 

 

  Dr. Nicolas Ruh 

Oxford Brookes University 

 

 

 

 

 

 

 

The development of OXlearn was supported by ESRC grant  

Res-061-23-0129 to Gert Westermann. 



 2

Table of contents: 

OXlearn user manual ....................................................................................................... 1 

Introduction....................................................................................................................... 3 

Using OXlearn................................................................................................................... 4 

Starting OXlearn......................................................................................................................... 4 

Layout of the graphical user interface (GUI) ............................................................................. 4 

Workflow ..................................................................................................................................... 5 

Concepts............................................................................................................................. 6 

OXparams ................................................................................................................................... 6 

The workspace ............................................................................................................................ 7 

The content of a simulation file................................................................................................... 7 

Implications and common problems ........................................................................................... 8 

List of OXparams............................................................................................................ 10 

The OXlearn GUI ........................................................................................................... 14 

Control elements ....................................................................................................................... 14 

The File menu ........................................................................................................................... 18 

The Set-up menu........................................................................................................................ 19 

The Run menu ........................................................................................................................... 23 

The Inspect menu ...................................................................................................................... 27 

The Tools menu ......................................................................................................................... 32 

Glossary of neural network terms................................................................................. 38 



 3

Introduction 
OXlearn is a neural network simulation software that enables you to build, train, test and 
analyse connectionist neural network models. Because OXlearn is implemented in 
MATLAB you can run it on all operation systems (Windows, Linux, MAC, etc.), 
provided you have a recent version of MATLAB installed (R2006b or later). This also 
has the additional advantage that it makes it easy to ‘look under the hood’ so you can 
inspect the calculations performed by the program or adapt the program to your specific 
needs. 

First and foremost, OXlearn is designed as an educational tool that provides a quick and 
easy start to neural network modelling. OXlearn provides a Graphical User Interface 
(GUI) that enables access to most of its functionality, no programming is needed. In line 
with the principal aim to foster understanding of neural network models, OXlearn is set 
up for maximum transparency. By using native MATLAB components such as the 
workspace browser or the array editor, you can easily retrace most of the manipulations 
implemented in the GUI – or you can choose to manipulate data (changing parameters, 
plotting data, etc.) directly in MATLAB. The main part of this manual describes 
OXlearn’s general structure and functionality and provides a detailed description of all 
the parameters that are internally manipulated.  

The secondary aim of OXlearn, also aided by the above mentioned transparency, is to 
facilitate extension of the existing functionality. For example, if you wanted to implement 
a different learning algorithm or a network architecture that is not (yet) included, you 
could just add in the dedicated function(s) while still making use of OXlearn’s inbuilt 
utilities and interface. This latter step requires some proficiency in writing MATLAB 
code, of course, although it should usually be possible to take existing program files as a 
starting point.  



Using OXlearn 

Starting OXlearn 

Before you can start OXlearn, you have to make sure that Matlab knows where to find it. 
Because Matlab always knows the content of its “current directory”, you can use the 
standard browsing interface at the top of MATLAB’s main window to browse to the 
location on your hard drive where you have saved the (unzipped) OXlearn folder. 
Alternatively, the OXlearn folder can be added to the MATLAB path (i.e., a list of 
locations known to MATLAB), e.g., through the interface under File -> Set Path. 
Provided that you have administrator rights, this latter solution has the advantage of 
adding the new location permanently to the search path so that MATLAB will still know 
where to find OXlearn when you restart it.   

To start OXlean, type ‘OXlearn’ in the MATLAB command window and press return. As 
an alternative to always starting OXlearn from the command line, you can also create a 
shortcut. To do so, select the string “OXlearn” that you just typed in the command 
window and drag it over the shortcuts toolbar (located at the top of your MATLAB 
window, the bottom most toolbar). From now on, a single click on this shortcut will 
suffice to start OXlearn.   

The command (or shortcut) “OXlearn” will open an empty simulation in the OXlearn 
GUI. If you want OXlearn to load a specific simulation right away, simply add the name 
of the file (in parentheses and quotes) to the command, e.g., “OXlearn(‘XOR.mat’)”. 

Layout of the graphical user interface (GUI) 

 

 

 4



 5

Starting OXlearn will open the OXlearn GUI, which entails three parts: 

(1) In the title bar of the window you will find a label, consisting of the string 
“OXlearn:” and the name of the current simulation file (e.g. “OXlearn: new 
Simulation” if you have opened an empty simulation, or “OXlearn: XOR.mat” if 
you have opened, loaded or saved (as) a simulation with that name).  

(2) The menu bar which represents the main means to interact with the OXlearn GUI 
(on a MAC, as usual, the menu bar will appear at the top of your screen). The 
menu bar has five main menus (‘File’, ‘Set-up’, ‘Run’, ‘Inspect’ and ‘Tools’) with 
a number of selectable sub menus each. 

(3) The main part of the figure contains various displays, dependent on your selection 
in the ‘Inspect’ or ‘Analysis’ menus. Initially, an overview concerning the status of 
the current simulation will be shown. To return to this display at any time, select 
Inspect -> Simulation.  

Workflow 

Every simulation project involves three general steps: (1) preparing a simulation by 
defining the exact set-up, (2) running the simulation (training the network, verifying that 
it has learned and, possibly, testing the networks performance with specific or novel 
stimuli) and, finally, (3) analysing the networks behaviour/performance. This succession 
of steps is roughly mirrored in the layout of the menu bar, where the first two elements 
(‘File’ and ‘Set-up’) are mainly used to define the exact set-up of your simulation, the 
‘Run’ menu in the middle accesses training, verifying and testing actions, and the last 
two menus (‘Inspect’ and ‘Tools’) provide useful tools for visualisation and analysis of 
your simulation.  

Although this order reflects the general structure of a typical workflow, it is of course not 
imperative to use the interface in a strictly left to right (and, within each menu, top to 
bottom) fashion. For example, you might want to use the displays to inspect your set-up 
before having trained the network. Or you could train a network, have a closer look at its 
performance during training, and then go back to set-up a generalisation test which is 
subsequently run and analysed. Also, you will often want to change something in the set-
up of an existing simulation and then repeat the cycle of training it and analysing the 
performance. For the illustrative purpose of this manual, however, we will assume the 
standard case of creating a simple simulation of the XOR problem from scratch. 



 6

Concepts 
Before going into further details, it is important that you understand the general concept 
behind OXlearn. While there is no need to go into any technical details, this will make it 
much easier for you to find your way around the program and neural network models in 
general. 

OXparams 

Try to think about it like this: what do we need to fully describe a neural network model?  

1. To start with, we need to be explicit about the stimuli the model deals with, 
sometimes referred to as the environment. This includes the number and identity of 
input and target patterns, as well as labels or grouping information. If the model is to 
be tested on novel patterns after training (generalisation test), we also need 
information regarding these test patterns. 

2. Then there is the network architecture to be defined, for example the number of 
layers, how many units they have, how they are connected, if there is a bias, etc. 

3. And finally, we need to determine which learning algorithm is used, including 
important parameters such as learning rate or the number of patterns to be presented 
(= sweeps) before training stops. We will call this the training paradigm. 

It is clear that all of this information needs to be given before the network can actually be 
trained (or tested in the case of the test patterns), and therefore the “Set-up” menu 
provides the means to manipulate such information in appropriately organised pop-up 
windows. All the information that you can manipulate in these pop-up windows 
corresponds directly to variables that live in MATLAB’s basic workspace. The names of 
these variables will usually be displayed as tooltips, e.g. when you point with the mouse 
at the dropdown menu that allows you to select the network type (in Set-up -> Network) 
you will see that the variable representing this choice is called “OXnetworkType”. In a 
similar vein, every value that you can select, tick or change in the set-up windows has a 
corresponding variable name, all starting with ‘OX’ (from now on, these will be referred 
to as OXparams).  

OXparams are just variables, each having a name and value(s) that live in the MATLAB 
workspace.   



The workspace 

 

If you are interested in sneaking a peek under the hood of OXlearn, there is a very simple 
way of inspecting all the OXparams directly: go back to your main MATLAB window 
and have a look at the workspace browser (type “workspace” in the command window if 
you do not find such a window on the left hand side). You will see that it contains a 
number of  OXparams (if you are still working on an empty simulation you might only 
find one, ‘OXcomments’, which was automatically created upon opening OXlearn. To 
see more, you could load an existing simulation file or simply open some of the set-up 
windows, thereby creating the corresponding parameters and initializing them to default 
values). The MATLAB workspace browser also contains additional information as to the 
format, value, size, etc. of these OXparams (double-click on a parameter name to have its 
value displayed in the MATLAB array editor). An experienced user might sometimes 
find it more efficient to inspect and manipulate OXparams directly in the workspace 
browser or the array editor.  

Note that the underlying workspace is not directly accessible if you are working with the 
standalone version of OXlearn (OXlearn.exe, which does not require you to have a 
MATLAB license). Apart from not being able to directly inspect or manipulate variables 
in the workspace, however, there is no difference between the standalone and the Matlab 
version of OXlearn.  

The content of a simulation file 

Now, the important thing to understand is this: the content of an OXlearn simulation file 
(saved in MATLAB’s native data format that ends on ‘.mat’) is nothing but these 
OXparams (i.e., their names and values). When using the sub-menus under “Set-up”, you 
will automatically create the appropriate OXparams and determine their values. When 
saving a simulation file (File -> Save Simulation or -> Save Simulation As), all the 

 7



 8

existing OXparams will be stored in a ‘.mat’ file. If you load a simulation file (File -> 
Load Simulation) they will be put back into the workspace.  

In addition to the parameters pertaining to the network architecture, the training 
environment, and the training paradigm, there is one further type of OXparams: the 
variables that store the results of running an appropriately set-up simulation. Let’s have a 
more detailed look at this: Choosing any of the options available under ‘Run’ will take all 
the set-up OXparams that specify the current simulation, perform the specified operation 
– e.g., training or testing the network - and put all changed or novel performance 
OXparams back into the workspace.  For example, if you have trained a network (Run -> 
Train Network), the OXparams specifying the weights (e.g. ‘OXweightsInputToHidden’), 
and also some information regarding the networks performance during training (e.g. 
‘OXtrainError’) will be given back. The only difference between set-up and performance 
OXparams is that the latter are not meant to be manipulated directly, but rather are the 
outcome of training, verifying or testing the network. The displays available under 
‘Inspect’ and ‘Tools’, finally, also operate directly on the OXparams (both set-up and 
performance) in the workspace but will not change them.   

Why is this important? As you will see, the notion of the underlying OXparams that 
contain all the essential information about an OXlearn simulation will often recur when 
describing what the individual components do. Secondly, it helps with troubleshooting, as 
almost all the errors you might encounter when using OXlearn will have to do with 
particular OXparams being missing or having an incorrect format (e.g. letters where 
numbers are expected). And thirdly, demystifying the inner workings of OXlearn enables 
you to use some of MATLAB’s native functionality (e.g. the data import wizard or the 
array editor) if you want to perform specific kinds of data manipulation for which no 
suitable OXlearn tool exists. 

Implications and common problems 

(1) You can create/manipulate the parameters pertaining to the networks environment, 
architecture and learning algorithm by using the ‘Set-up’ menus or directly in the 
workspace. In the latter case you need to ensure appropriate naming and format. 

(2) All the options under the ‘Run’ menu require appropriate set-up OXparams to exist 
and have valid formats. These requirements differ slightly for training/verifying, 
which does not rely on test patterns being specified, and testing, which obviously 
does. Which exact OXparams are expected furthermore depends on the network type 
and the learning algorithm chosen. 

(3) The process of training, verifying or testing a network results in specific performance 
OXparams being created and put back into the workspace. Therefore, each simulation 
file can hold only one set of these performance OXparams for each of the operations 
(train/verify/test), respectively. If you want to run a second test with the same 
network, make sure to have saved the previous version.  

(4) If you train several instances of the current network, or if you dump intermediate 
states during training, each version will be automatically saved under a different file 
name (OXlearn will add suffixes to the name of your simulation) and only the last 
one will remain open after training terminates, still bearing the original name. You 
will need to reopen the automatically saved files in order to inspect or analyze them. 



 9

The only way to work with several simulations or states of a simulation at once is by 
using the network comparison tool (Tools -> Compare Networks).   

(5) If you change set-up OXparams in a simulation that already contains performance-
OXparams (i.e. the network has already been trained/verified/tested), your simulation 
might become temporally inconsistent because it contains the result of training a 
network with a different (the previous) set-up. This inconsistency will be resolved 
once you have trained/verified/tested the network with the new set-up. To avoid 
possible confusion, however, it is recommended to clear all performance OXparams 
(File -> Reset Simulation) before changing anything in the set-up. 

(6) We said earlier that .mat files in general, and OXlearn simulation files more 
specifically, may contain a variable number of name-value pairs. If you import data 
from a .mat file, the import wizard provides you with a preview of the content and 
allows you to decide which of the variables you actually want to import. However, 
OXlearn will only recognize the imported variables if the have valid OXparam 
names. To ensure this (if necessary) you can change the name of any imported 
variable by right-clicking on it within the import wizard. Alternatively, you can 
rename variables in the workspace browser (right-click). 

(7) The requirement of assigning valid OXparam names is also given when you import 
data from other sources, such as text or Excel files. In this case, however, it is 
difficult to import several variables at once and you should usually import the data 
corresponding to each OXparam separately. 



 10

List of OXparams 
Name Description Content Default Display 

OXactFcnH activation function of nodes in the 
hidden layer 

‘sigmoid' 
‘threshold’ 
‘linear’ 

'sigmoid' Set-up -> 
Network 

OXactFcnO activation function of nodes in the 
output layer 

'sigmoid' 
‘threshold’ 
‘linear’ 

‘sigmoid' Set-up -> 
Network 

OXautoTestFlag toggles automatic testing when end 
of training is reached or when an 
simulation file is dumped 

0 or 1 
(false/true) 

0 Set-up -> 
Training 
Options 

OXautoVerifyFlag toggles automatic verifying when 
end of training is reached or when 
an simulation file is dumped 

0 or 1 
(false/true) 

1 Set-up -> 
Training 
Options 

OXbH whether the hidden layer includes a 
bias node 

0 or 1 
(false/true) 

1 Set-up -> 
Network 

OXbO whether the output layer includes a 
bias node 

0 or 1 
(false/true) 

1 Set-up -> 
Network 

OXcomments user editable comments and time 
stamps 

user 
defined 

 Inspect -> 
Simulation 

OXdumpEveryNSweeps interval (in sweeps) to dump 
simulation file during training 

 optional Set-up -> 
Training 
Options 

OXdumpFlag whether to dump simulation files 0 or 1 
(false/true) 

0 Set-up -> 
Training 
Options 

OXearlyStoppingFlag whether to consider early stopping 0 or 1 
(false/true) 

0 Set-up -> 
Training 
Options 

OXfahlmannOffset parameter in some learning 
algorithms that prevents weights 
from changing any more when the 
error is negligable 

<0 0 Set-up -> 
Training 
Options 

OXinput matrix that represents input patterns 
(rows) for training (and verifying) 

matrix of 
numbers 

 Set-up -> 
Train 
Patterns 

OXinputLabels labels for the input patterns eq rows 
OXinput 

optional Set-up -> 
Train 
Patterns 

OXlearningAlgorithm learning algorithm to be used ‘backprop' 
‘quickprop
’ 
‘BPTT’ 

backprop' Set-up -> 
Training 
Options 

OXliveUpdateFlag whether the Oxlearn displays are 0 or 1 1 Set-up -> 



 11

updated during the training process (false/true) Training 
Options 

OXlogTrainPerfFlag whether the networks performance 
during training is logged 

0 or 1 
(false/true) 

 Set-up -> 
Training 
Options 

OXlogTrainPerfInterval how often (in sweeps) the training 
performance is logged 

<OXmaxS
weeps 

1 Set-up -> 
Training 
Options 

OXlr learning rate; the magnitude of 
weight adjustments 

small 
number 

0.5 Set-up -> 
Training 
Options 

OXmaxSweeps maximum number of sweeps after 
which training is terminated.  

number 1000 Set-up -> 
Training 
Options 

OXmomentum parameter in some learning 
algorithms that governs how large a 
proportion of the previous weight 
change is added to the current 
adjustment of weights 

small 
number 

0 Set-up -> 
Training 
Options 

OXnH number of units in the hidden layer  0 Set-up -> 
Network 

OXnI number of units in the input layer eq columns 
OXinput 

0 Set-up -> 
Network 

OXnO number of units in the output layer eq columns 
OXtarget 

0 Set-up -> 
Network 

OXnSweeps number of sweeps performed, 
equals maxSweeps at the end of 
training 

<OXmax-
Sweeps 

  

OXnetworkType architecture of the 
network 

‘2-layer feed-forward’ 
‘3-layer feed-forward’ 
‘SRN’ 

‘2-layer 
feed-
forward' 

Set-up -> 
Network 

OXpresentationOrder order in which the 
input patterns are 
presented during 
training 

‘sequential’ 
‘random with replacement’
‘random without 
replacement’ 

‘sequential' Set-up -> 
Training 
Options 

OXrunNr index when training several 
instances of a network 

 optional  

OXseedNr id of the seed used by the random 
number generator 

<2^32 optional Set-up -> 
Training 
Options 

OXsimFileName name of the current simulation user 
defined 
string 

 File -> 
Save 
Simulation 
As 

OXsimFilePath location (on the computer) to which 
the simulation file is saved 

user 
defined 

“OXlearn\ 
Simulations” 

File -> 
Save 



 12

path Simulation 
As 

OXstopCritType operator used by the early stopping 
criterion 

 optional Set-up -> 
Training 
Options 

OXstopCritValue value against which the early 
stopping criterion evaluates 

 optional Set-up -> 
Training 
Options 

OXstopCritWindow number of consecutive sweeps for 
which the early stopping criterion 
must be fulfilled 

 optional Set-up -> 
Training 
Options 

OXtarget matrix that represents target 
patterns (rows) for training (and 
verifying) 

matrix of 
numbers 

 Set-up -> 
Train 
Patterns 

OXtargetLabels labels for the target patterns eq rows 
OXtarget 

optional Set-up -> 
Train 
Patterns 

OXtestGroups group vector for test patterns eq rows 
OXtestInpu
t 

optional Set-up -> 
Test 
Patterns 

OXtestHidden hidden layer activations during 
testing 

RESULTS RESULTS Inspect -> 
Patterns 

OXtestInput matrix that represents input patterns 
(rows) for testing 

matrix of 
numbers 

 Set-up -> 
Test 
Patterns 

OXtestInputLabels' labels for the test input patterns eq rows 
OXtestInpu
t 

 Set-up -> 
Test 
Patterns 

OXtestLogHiddenActFlag whether to log hidden activation 
during testing 

0 or 1 
(false/true) 

1 Set-up -> 
Test 
Options 

OXtestLogOutputActFlag whether to log output activation 
during testing 

0 or 1 
(false/true) 

1 Set-up -> 
Test 
Options 

OXtestOutput raw activation of the output layer 
during testing 

RESULTS RESULTS Inspect -> 
Patterns 

OXtestTarget matrix that represents target 
patterns (rows) for testing 

matrix of 
numbers 

 Set-up -> 
Test 
Patterns 

OXtestTargetLabels labels for the test target patterns eq rows 
OXtestTar
get 

 Set-up -> 
Test 
Patterns 

OXtimeStamp date and time where a simulation 
file was saved 

date and 
time 

now  

OXtrainCorrect performance during training, 
evaluated against the correctness 

RESULTS RESULTS Inspect -> 
Performanc



 13

criterion of 'deviation < 0.1' e 

OXtrainError performance during training 
measured as mean squared error 

RESULTS RESULTS Inspect -> 
Patterns 

OXtrainGroups group vector for train/verify 
patterns 

eq rows 
OXinput 

 Set-up -> 
Train 
Patterns 

OXtrainOrderLog the actual order in which the train 
patterns have been presented during 
training 

RESULTS RESULTS Inspect -> 
Performanc
e 

OXverifyHidden hidden layer activations during 
verifying 

RESULTS RESULTS Inspect -> 
Patterns 

OXverifyOutput output layer activations during 
verifying 

RESULTS RESULTS Inspect -> 
Patterns  

OXwInitMean mean of the distribution from which 
initial weight values are drawn 

number 0 Set-up -> 
Training 
Options 

OXwInitRange range of the distribution from which 
initial weight values are drawn 

number 0.1 Set-up -> 
Training 
Options 

OXwInitType whether and how to initialize 
weight values. A specific seed 
allows to recreate a specific 
random pattern 

‘random seed’ 
‘seed Nr:’ 
‘use existing 
weights’ 

‘random 
seed’ 

Set-up -> 
Training 
Options 

OXweightsHiddenTo-
Output 

weights from the hidden to the 
output layer 

RESULTS RESULTS Inspect -> 
Weights 

OXweightsInputToHidden weights from the input to the hidden 
layer 

RESULTS RESULTS Inspect -> 
Weights 

OXweightsToHiddenBias weights from the bias node (always 
1) to the hidden layer 

RESULTS RESULTS Inspect -> 
Weights 

OXweightsToOutputBias weights from the bias node (always 
1) to the output layer 

RESULTS RESULTS Inspect -> 
Weights 



The OXlearn GUI 

Control elements 

The different displays within OXlearn enable the set-up and the detailed graphical 
investigation of various components of a simulation. In most display windows you will 
find a panel with several control elements at the left hand side. These buttons let you 
interact with the graphs that occupy the main portion of the display, e.g. by changing the 
appearance of the displayed data (zooming, coloring, etc.) or by providing additional 
information (enabling datatips, adding colorbars, etc.). The “Options” panel at the bottom 
part of most displays influences which data are shown, e.g. information from training, 
verifying or testing the network. Similarly, you will often find tickboxes to control which 
parts of the data are shown or hidden.  

Most of the functionality provided by the various control elements (buttons, tickboxes, 
drop-down menus, etc.) should be self-explanatory – note that a short description will be 
displayed as tooltip when the mouse pointer hovers over a control element. However, in 
the following you will find a short description of the functionality of all control elements 
within OXlearn’s various displays. 

The extract button  

This button opens a new MATLAB figure and extracts a snapshot of the currently 
displayed data into it. This novel window does not contain any of the control elements 
and will not be updated in case the underlying data change. Instead of the OXlearn 
control elements, however, you will find that all the native MATLAB graphics tools are 
accessible in this new Window (see the menus and toolbars at the top). With their help 
you can change every part of the appearance of the figure (labels, colors, legends, 
annotations, etc.), please refer to the MATLAB help for information on how to use these 
tools. It is also possible to organize several extracted figures with the dock controls in the 
top right corner of the figure. And finally, you can save the graph in a variety of formats 
– use the ‘save’ button or choose File -> Save Simulation or Save Simulation As. Make 
sure to change the type (choose ‘.jpg’, for example) if you do not want to save the figure 
in MATLAB’s native .fig format (you will find advanced options under File -> Export 
Setup). 

The colorbar button  

This button toggles the display of a colorbar at the right hand side of the current axes 
(click on a graph to make it current). The colorbar indicates the correspondence between 
the colors in a graph and the underlying data values.     

The datatip button  

This button toggles the datacursormode in which additional information regarding a 
specific datapoint is displayed when you click on a patch/line/dot in a graph. For some 
displays this mode is initially enabled. 

 14



The zoom in button  

This button toggles the zoom mode. When zoom mode is on, clicking within an axes will 
zoom in by a specific amount, centered around the region you have clicked on. You can 
also use the mouse wheel to continuously zoom in or out or specify the region you want 
to look at by dragging out a rectangle or line with the primary mouse button held down. 
Double clicking will usually restore the original view (see also the zoom out button). 
Note that, depending on the nature of the data displayed, zooming might be restricted to 
one dimension (horizontal or vertical) and several graphs might be coupled with respect 
to their zooming behaviour. To circumvent these restrictions, extract the graph (extract 
button) and use MATLAB’s zoom tool on the extracted figure. 

The zoom out button  

This button will disable the zoom mode and restore the original view. 

The pan button  

This button toggles the pan mode in which you can drag the elements within a graph by 
moving the mouse within the graph with the primary button pressed down. This usually is 
most useful when you have zoomed into an appropriate level of detail, but now want to 
inspect neighbouring data points. 

The rotate button  

This button toggles the rotate mode in which you can rotate a (usually 3 dimensional) 
graph by moving the mouse within the graph with the primary button pressed down. 
Double clicking will usually restore the original view (see also the zoom out button). You 
might also want to explore the options available in the context menu that appears when 
you perform a right click on the graph (when in rotate mode), e.g. to select specific 
dimensions. 

The scroll (up/down) buttons  

These buttons are specific to the Inspect/Set-up -> Patterns displays. When you have 
zoomed into the graph, pressing these buttons will result in the next/previous portion of 
the data to be shown, similar to the page up/down keys in a text editor or internet 
browser. 

The skip (up/down) buttons  

These buttons are specific to the Inspect -> Activations display. Pressing these buttons 
will result in the next/previous pattern to be displayed. Note that ‘next’ in this context 
usually means the following pattern within the epoch of train or test patterns as 
determined in the Set-up -> Train Patterns/Test Patterns window. The number displayed 
between the two skip buttons corresponds to the index of the currently displayed pattern 
within the (sorted) epoch. With sort by error disabled, this index will always correspond 

 15



to the one indicated in the title of the individual bar graphs. You can also set the number 
in this box directly.    

The sort by error button  

This button toggles skipping through patterns in the order of ascending/descending error, 
i.e., the ‘next’ pattern would be the one with the next higher/lower error. When sort by 
error is enabled, the number displayed between the two skip buttons refers to this 
alternative order. The number one, for example, indicates that the pattern with the highest 
error is currently displayed.  

The group button  

This button is specific to the Inspect -> Performance and the Tools -> Compare 
Networks displays. This button influences the colouring of the performance display or, 
more specifically, it toggles the display of groupings within the data in different colours. 
The exact the way in which the underlying data are split into groups depends on an 
optional grouping vector (OXtrainGroups/OXtestGroups). 

The smootfactor spinner  

This element, comprised of a number in the middle (the smoothfactor) and two buttons 
by which this number can be increased or decreased, is also specific to the Inspect -> 
Performance and the Tools -> Compare Networks displays. The number, which can also 
be edited directly, determines the level of smoothing applied to the data. A setting of 0 or 
1 indicates that no smoothing is applied and therefore each datapoint (corresponding to 
the network’s performance in a specific sweep) is displayed exactly as logged. This is a 
sensible setting when inspection test or verify performance. With regard to the much 
larger amount of data that arises from training, however, it often makes sense to smooth 
the (error/correct) curve in order to see the general tendency. A smoothfactor of 4, for 
example, means that the average over groups of four sweeps is displayed instead of the 
original data points.  

The labels button  

In the Tools -> PCA display, this button toggles whether pattern labels are displayed 
within the scatterplot or not. In the Tools -> Cluster Analysis display this button switches 
between two different kinds of labels that you might want to see, namely annotation the 
cluster plot with either input labels or target labels. 

The n clusters spinner  

This element, comprised of a number in the middle (number of clusters to show) and two 
buttons by which this number can be increased or decreased, is specific to the Tools -> 
PCA display. The number of clusters, which can also be edited directly, determines the 
coloring of the scatter plot. If, for example, this number is set to 2, OXlearn will calculate 

 16



the two groups of datapoints that are most distant from one another and indicate the 
membership of each individual point to one or the other cluster by using two different 
colors.  

The change size button  

This button is specific to the Set-up -> Train Patterns/Test Patterns window. Pressing it 
will raise a pop-up window which lets you choose the new dimensions of your input and 
target patterns. Note that new simulations always start out with 1x1 patterns and you need 
to adjust the dimensions to accommodate the specific requirements of your simulation 
before you can start to enter values. 

The graphical edit mode button  

This button is specific to the Set-up -> Train Patterns/Test Patterns window. When 
toggled, a single click within one of the graphs not only displays additional information 
with regard to the datapoint you have clicked on (same as the datatip), but it also allows 
you to enter a new value for this datapoint. Confirm by pressing return. Note that this 
functionality is also accessible by right clicking on the graph. 

The edit in table button  

This button is specific to the Set-up -> Train Patterns/Test Patterns window. Pressing it 
will open the relevant OXparams (input, output, labels and groupings) in MATLAB’s 
native array editor. Use the tabs at the bottom to switch between OXparams, also note the 
dock controls in the upper right hand corner of the array editor which let you manage the 
grouping and display of several variables at once. The functionality of the edit in table 
button is similar to double clicking on the respective OXparams in the workspace. You 
can edit all values directly in this table based format. Note that strings (e.g. when editing 
labels) need to be enclosed in single quotes. It is not  

The edit labels button  

This button is specific to the Set-up -> Train Patterns/Test Patterns window. Pressing it 
will raise a pop-up window which lets you edit pattern labels – after having queried 
which labels you want to edit. Please make sure that the number of labels and the number 
of patterns match. Note that this functionality is also available by right clicking on the 
labels (on the y-axes) of a graph.   

The edit groups button  

This button is specific to the Set-up -> Train Patterns/Test Patterns window. Pressing it 
will raise a pop-up window which lets you edit the grouping vector. Please make sure that 
the grouping vector has one entry for every pattern. The position of the entry codes for 
the group membership of the pattern in the same position, the identity if the entry will be 
taken as a label for the group. Thus, if you enter ‘group A’ in the first, sixth and seventh 
position of the group vector, patterns one, six and seven will be deemed to belong to 
‘group A’.  

 17



 18

The File menu 

The options under the File menu let you import, export or clear (selected) variables 
to/from the workspace. If you import from data formats other than OXlearn’s native 
‘.mat’ simulation files, you might have to ensure proper naming of the parameters, either 
during the import or in the workspace (choose ‘rename’ from the context menu after 
right-click). 

File -> New simulation (shortcut: CTRL-N) 

Choosing this option will erase all existing variables from the workspace, thus creating a 
clean slate for a novel simulation. Please assign a name to your new simulation (File -> 
Save Simulation As). If your simulation is still called “new Simulation” when training the 
network, you will be prompted to assign a name. 

File -> Load Simulation (shortcut: CTRL-L) 

Choosing this option will open a file browser that enables you to select a ‘.mat’ file from 
anywhere on your computer. Once you confirm your selection, all previously existing 
variables will be deleted and the contents of the chosen file will be loaded into the 
workspace instead. OXlearn will not check the contents of the loaded file. 

File -> Save Simulation (shortcut: CTRL-S) 

Choosing this option will save the current status of your simulation to the current 
filename and location. To change the filename and/or location please choose File -> Save 
Simulation As – this dialogue will also open automatically if filename and location have 
not been determined yet.   

File -> Save Simulation As (shortcut: CTRL-Z) 

Choosing this option will raise a dialogue that allows you to determine the location in 
which you want the current simulation to be saved and the name under which you want to 
save it. All OXlearn simulation files should have the extension ‘.mat’ which indicates 
MATLAB’s native data format. Use this option to change the name and/or location of the 
current simulation. 

File -> Dump Simulation As (shortcut: CTRL-D) 

Choosing this option will raise a dialogue that allows you to determine the location in 
which you want the current simulation to be saved and the name under which you want to 
save it. In contrast to Save Simulation As, however, the current simulation will remain 
open and unchanged. Use this option to create safety copies of the current state of the 
simulation. 

File -> Import Selected 

Choosing this option will invoke the MATLAB import wizard. The import wizard allows 
you to import data from many standard formats (e.g. from text files, old t-learn projects 
or excel worksheets, but also normal .mat files). All selected variables (untick the ones 
you don’t want to import) will be loaded into the workspace with the given names and 
values, which you can inspect with the import wizard’s preview function. Variables 
already existing in the workspace will remain unchanged, except if your imported 



 19

variables have the same name – in which case you will be asked to confirm that they 
should be overwritten. You can import variables with whichever names you like, but 
OXlearn will only recognize OXparams when they are named appropriately. You can 
rename variables by right-clicking on them, either within the import wizard or, after 
import, in the MATLAB workspace browser.  

While it is easy to import multiple OXparams from other ‘.mat’ simulation files (e.g. all 
the set-up parameters for testing), you should usually only import one variable at a time 
from other file formats (e.g. from text files or Excel worksheets). 

File -> Export Selected 

Choosing this option will raise a dialogue that lists all the currently existing variables 
from which you can select the ones you want to export (use the SHIFT and CTRL keys to 
select multiple items). Once you have confirmed your selection, another dialogue will let 
you choose a filename and location under which you want the selected variables to be 
saved. Note that the drop-down menu at the bottom gives a choice between three 
different formats in which the selected parameters may be saved: .mat, .txt, or .xls 
(OXparams will get distributed to several appropriately labelled worksheets). 

File -> Clear Selected 

Choosing this option will raise a list of all currently existing variables from which you 
can choose the ones you want to be deleted from the workspace (use the SHIFT and 
CTRL keys to select multiple items).  

File -> Reset Simulation (shortcut: CTRL-R) 

Choosing this option will clear all performance OXparams, including all weights. Use 
this option to avoid confusion when changing the set-up of a simulation that already has 
been trained/verified/tested.  

File -> Quit OXlearn (shortcut: CTRL-Q) 

Choosing this option will close the OXlearn interface, all existing data will be destroyed. 
Please make sure you have saved you simulation, if appropriate.  

The Set-up menu 

The options under this menu let you create and manipulate all the OXparams needed to 
fully determine the set-up of a given simulation – you might also sometimes want to use 
these windows just to inspect the current values, e.g. to find out which learning algorithm 
has been used or what the learning rate was in a given simulation. The values shown in 
the diverse control elements (text boxes, dropdown menus, etc.) will be determined by 
the values of the corresponding OXparams in the workspace. Similarly, when you change 
any of these values on the interface, this change will be reflected instantly in the 
workspace. All corresponding OXparams that do not exist when a set-up window is 
opened will be created in the workspace and default values will be assigned. If, for 
example, you click on Set-up -> Network and there is no variable with the name 
‘OXnetworkType’ in the workspace, such a variable will be created with the default 
value of “2-layer feed-forward”. If you now choose “SRN” from the drop-down menu, 
you can see that the value in the workspace has changed as well. 



Set-up -> Network 

 

Use this option to determine the architecture of the network you want to employ. The 
interface should be self-explanatory, use the preview at the right hand side to inspect the 
current architecture. Note that neural networks, traditionally, are displayed with the input 
at the bottom because they were initially associated with a ‘bottom-up’ approach to 
cognition. You can change the orientation by pressing the arrow button to the right of the 
display if you prefer the input to be on top (more of a flow chart way of looking at 
things). Note also that individual units and connections will only be shown in small 
networks. When the layer size exceeds 15 units, a solid slab (for the layer) and a thick 
arrow, indicating full all-to-all connectivity, will be drawn instead. 

The drop-down menu at the top of the figure gives you a choice between several well 
known network architectures. The value chosen here (OXnetworkType) might also have 
an impact on other OXparams – everything related to the hidden layer, for example, 
becomes obsolete with a 2-layer architecture. The other control elements in this window 
govern, for each required layer, the number of units (OXnI, OXnH, OXnO), whether a 
bias should be included or not (OXbH, OXbO) and the activation function used 
(OXactFcnH, OXactFcnO). The smart set button adjusts the number of input and output 
units to dimensions of the training patterns (s. above), the typical set button initializes all 
parameters to typical values for this type of network (note that the weights initialisation 
parameters (OXwInitMearn, OXwInitRange) are influenced as well). 

 20



Set-up -> Train Patterns 

 

Use this option to determine the exact nature of the stimuli you want the network to deal 
with, the network’s environment. At the very least, this requires a matrix of numbers 
representing the network’s input. Each row of this matrix stands for an individual input 
pattern or stimulus, where the first value represents the activation of the first input unit, 
the second value holds the activation value of the second input unit, and so on. Evidently, 
the number of columns in the input patterns and the number of units in the input layer of 
the network should correspond. How many rows this matrix has determines the number 
of different input patterns or stimuli the network will have to deal with. As per MATLAB 
convention, the first dimension is downwards, the second one across (rightwards). 
Therefore we can say that the input patterns (OXinput) are represented by a n x m matrix 
of numbers, where n (rows) is the number of patterns and m (columns) is the number of 
input units.  

Many neural network models use supervised learning algorithms which basically means 
that we need, for each input pattern, a corresponding target pattern which specifies the 
intended activation in the output layer. Thus we have an additional n x m matrix 
(OXtarget) where n should correspond to n (number of patterns) in the input, and m 
equals the number of units in the output layer. Because of the one-to-one correspondence 
between input and target patterns, OXlearn displays them side by side. 

 21



The set-up window enables manipulation of these two matrixes in several, hopefully 
intuitive ways (see the descriptions of the graphics buttons for details). You can also set-
up labels for your input (OXinputLabels) and target (OXtargetLabels) patterns – again, 
the number of labels and the number of patterns should correspond. Setting custom labels 
is optional, but it helps keeping track of your simulation. Another optional parameter, 
again with n (number of patterns) elements, is a grouping vector (OXgroups). With its 
help you can define groups within your patterns and later differentiate the network’s 
behaviour with regard to these groups of patterns. 

Set-up -> Training Options (shortcut: CTRL-O) 

 

Use this option to determine the exact way in which your network will be trained, the 
training paradigm. This includes the choice of a learning algorithm 
(OXlearningAlgorithm) and the associated parameters (e.g. OXlr, OXmomentum, and 
OXfahlmannOffset for the classical backpropagation algorithm), but also parameters 
detailing the length of training (OXmaxSweeps), a possible early stopping criterion 
(OXearlyStoppingFlag, OXstopCritType, OXstopCritValue, OXstopWindow) and the 
order in which individual patterns are presented during training (OXpresentationOrder). 
Furthermore, you can specify the details of the weights initialisation (OXwInitType, 
OXwInitSeed, OXwInitMean, OXwInitRange) and influence which information will be 
logged (OXlogTrainPerfFlag, OXlogTrainPerfInterval), saved (OXdumpFlag, 
OXdumpEveryNSweeps, OXautoVerify, OXautoTest) and displayed during training 

 22



 23

(OXliveUpdateFlag). With the exception of the learning rate, the momentum and the 
training length, however, you will usually be fine with the default values for most of 
these parameters – which is also the reason why some of them will only be displayed 
when you click on the >> more button. Note as well that some of the parameters 
determine whether others are enabled or not. For example, it obviously is not necessary to 
specify an interval for performance logging when you have decided not to log training 
performance at all.  

Set-up -> Test Patterns 

Use this option to determine the exact nature of the stimuli you want to test the network 
with. The test patterns (OXtestInput, OXtestTarget, OXtestInputLabels, 
OXtestTargetLabels, OXtestGroups) are set-up in exactly the same way as the training 
patterns, but will be used for testing where the train patterns are used for training and 
verifying.  

Set-up -> Testing Options 

Use this option to determine which data will be logged during testing 
(OXtestLogOutputActFlag, OXtestLogHiddenActFlag). It is rarely necessary to change 
these parameters. 

The Run menu 

The options under the run menu let you train network(s), verify network(s) and test 
network(s). Obviously, a network can only be trained or tested when the simulation is set-
up appropriately, please use the Inspect -> Simulation display to determine the status of 
you simulation. The precondition for testing is that all parts of the simulation are 
indicated to be set-up correctly. Training and verifying can do without the parts that 
relate to testing only (Test Patterns, Test Options). Note that all the options under run 
might clear or overwrite previous results (performance OXparams), to avoid this make 
sure to save your simulation under a different name before training the next one. Note 
also that the Set-up -> Train Options window includes two tickboxes (auto verify, auto 
test) which, when ticked, automatically include one verification and/or one test run at the 
end of training (and before dumping any weights, in case the dump option is chosen). 

Run -> Train Network (shortcut: CTRL-T) 

Choosing this option will result in the network being trained. Essentially, the different 
input patterns will be presented to a network with the given architecture, one at a time, in 
the chosen order of presentation. For each pattern, the activation will be propagated 
through the net with its (usually) initially random weight configuration. The output 
produced by the net will be compared to the target for this pattern, and the weights will 
be adjusted in accordance with the chosen learning algorithm and its associated 
parameters. Repeatedly doing so will result in a weights configuration that has optimally 
adapted to the processed stimuli. These weights (e.g. OXweightsInputToHidden, 
OXweightsHiddenToOutput, etc.) contain all the acquired ‘knowledge’ of the network, 
and they will be sent back to the workspace at the end of training. Training ends when 
either the maximum number of sweeps is reached or when the early stopping criterion is 
satisfied.  



 24

There are three more things that are logged during the process of training: (1) the order in 
which individual patterns were presented (OXtrainOrderLog), (2) the mean square error 
for each pattern (OXtrainError), and (3) whether the network’s performance was correct 
or not (OXtrainCorrect). Correctness is determined by evaluating the network’s output 
against a relatively conservative correctness criterion, namely that the activation of none 
of the output units deviates by more than 0.1 from its target value. As per default, the 
three values mentioned above are logged for every single sweep during training – thus 
producing a large amount of data which allows you to inspect the networks training 
performance in detail. In large simulations (where training goes on for many sweeps) it is 
useful to increase the logging interval. If, for example, the interval is set to 10, only every 
tenth sweep will be logged, thus loosing some (usually negligible) detail but, at the same 
time, reducing the amount of data in you computer’s memory (and in the simulation file) 
by a magnitude.    

Apart from giving these performance OXparams back to the current workspace, OXlearn 
will also automatically save a complete copy of the state of your simulation at the end of 
training. You will find this file in the same folder that your current simulation resides in. 
The file will have the same name as your current simulation with a suffix of the form 
‘_sw<number of sweeps>’ attached. Thus if your simulation is called ‘MySim’ and you 
have trained the network for 3333 sweeps, this file will be named ‘MySim_sw3333.mat’. 
Your current ‘MySim’ file (having, at this point, the same content as ‘MySim_sw3333’) 
will remain open for you to continue working on it. 

Run -> Train Several Networks 

Choosing this option will open a dialog in which you can specify how many instances 
you want to train and subsequently repeat the process of training the current network for 
the given number of times. At the end of each training run, the simulation will be saved 
under the original name with a suffix of ‘_run(<N>)’, where N is a running index over 
instances. The simulation file including the results from the last run will remain open 
under the original name. 

This option is useful if you want to explore a network’s dependency on the initial weights 
configuration. For example, you might want to compare the final performance of 10 
networks which only differ in terms of the random weights initialisation (and/or the 
possibly random order of presenting patterns during training). Use the Tools -> Compare 
Networks display after having trained multiple instances to investigate such comparisons. 

Run -> Resume Training 

Choosing this option will use the current weights and continue training from the current 
point. It is, obviously, a precondition that suitable weights do exist. If the previous 
training process has been terminated prematurely, training will continue until the original 
maximum number of sweeps is reached (or until the early stopping criterion, if enabled, 
is satisfied). If the previous training run has reached the maximum number of sweeps, 
you will be queried as to how much longer you want to train the network. 

Please be cautious when changing any set-up parameters before resuming training. While 
it sometimes might make sense to, for example, reducing the learning rate before training 
for a final couple of hundred sweeps, OXlearn will not log this change and you might 
later be misled to believe that the network was entirely trained on the lower learning rate. 



Other changes can induce problems with displays (e.g. changing the logging interval) or 
training function (e.g. changing the network architecture).  

Displaying the training process 

 

When a network is being trained, a blue progress bar will appear in the bottom part of the 
current display. At the right hand side, you will find two buttons labelled ‘pause’ and 
‘cancel’. The latter, naturally, aborts the training process and prevents weights and 
training performance parameters to be given back to the workspace (alternatively you can 
press ‘c‘ on your keyboard). Pressing the pause button (or ‘p’ on your keyboard) will 
freeze the training process and provide five additional buttons that let you interact with 
the paused simulation. These buttons are: 

 resume (or press ‘r’): quit the paused mode and continue training 

 skip sweep (or press ‘1’): train for one more sweep, then pause again. You can also 
press another number (<=9) to train for so many more sweeps. 

 skip epoch (or press ‘e’): train for one more epoch (= the number of patterns in the 
input), then pause again. 

 stop (or press ‘s’): stop training at this point, give results (current weights, training 
performance up to that point) back to the workspace 

 cancel (or press ‘c’): abort training, do not give results back. 

The functions of these buttons are only useful when the displays are updated during 
training (this is controlled by a tickbox in the training options window). There exists a 
good reason for unticking this box: your simulation will run a fair amount faster when the 
displays do not have to be updated during training – progress will still be indicated by the 
progress bar and you can, of course, inspect training performance in detail after training 
is finished. Updating the display, on the other hand, enables you to monitor online how 
well your network is doing and, using the buttons mentioned above, you may inspect 
snapshots of the network’s development during training. The three displays that may be 
of interest with respect to this development are the Weights, Pattern, and Performance 
displays, all found under the Inspect menu.  

Run -> Verify Network (shortcut: CTRL-V) 

Choosing this option will present the current simulation with each of the train patterns 
once, in sequential order. The weights are not adjusted any more (they are ‘frozen’), the 
verify option thus essentially tests the networks current performance on the patterns used 
for training it. Because the requirements of training the network and running verify are 
the same, auto verify (on the training options window) is on per default. Verify returns 
two performance OXparams to the workspace, containing the output layer activations 
(OXverifyOutput) and the hidden layer activations (OXverifyHidden) produced in 

 25



 26

response to each of the input patterns. This is not usually an amount of data to challenge 
the capabilities of modern computers, it is thus recommended to leave the auto verify 
option enabled.  

Run -> Verify Several Networks 

Choosing this option will run the verification test on several simulation files, you will be 
prompted to indicate these files. You will only need this option when you have produced 
several simulations (or dumps) with the auto verify option disabled. See Inspect -> Test 
Several Networks for more details. 

Run -> Test Network (shortcut: CTRL-K) 

Choosing this option will present the current simulation with each of the test patterns 
once, in sequential order. The test patterns usually consist of novel patterns that the 
network has not seen during training, and the outcome of the test can thus inform you 
about the network’s ability to generalize. It is a precondition that the test patterns and 
other test related parameters are appropriately set. During testing, weights are not 
adjusted, they are ‘frozen’. The test returns two performance OXparams to the 
workspace, containing the output layer activations (OXtestOutput) and the hidden layer 
activations (OXtestHidden) produced in response to each of the test input patterns. It is 
not, strictly speaking, necessary to define test target patterns, but evaluation of the 
networks performance is often easier when you give them. If the test related parameters 
are set up prior to training, you can make OXlearn run a test automatically by checking 
the box next to auto test in the training options box. This is especially useful when you 
train multiple instances or dump intermediate states, as in each of these cases the auto test 
(and, possibly, auto verification) will be performed before a run or dump is saved. 

Run -> Test Several Networks 

Choosing this option will run the test defined in the currently opened simulation on 
several simulation files, you will be prompted to indicate these files. You will only need 
this option when you have produced several simulations (or dumps) with the auto test 
option disabled, or when you want a novel test to be performed on several runs or dumps. 
Note that each simulation file can only hold one set of test results, any existing test 
results will thus be overwritten by the new test (duplicate the simulation files before 
running the novel test to prevent that).   

When testing multiple simulation files, the currently opened simulation will serve as a 
reference point. Basically, any external simulation that you have selected for testing will 
be compared against the current one in a few key points that guarantee compatibility, e.g. 
that the number of input and output units match. Provided this is the case, OXlearn will 
perform the test defined in the current simulation with the weights defined in the external 
simulation file, to which the outcome will be saved as well. Only after all the external 
files have been tested in this way will the test be performed on the current simulation, 
which remains open.  



The Inspect menu 

The Inspect menu offers convenient ways of visualizing data within the simulation, i.e. 
OXparams or parts thereof. As an alternative it is always possible to inspect data directly 
in the MATLAB workspace browser and array editor.  

Inspect -> Simulation (shortcut: CTRL-I) 

 

This display provides a graphical overview of the current status of the simulation. Three 
main parts are distinguishable: the status panel, the graphical sketch panel and the 
comments panel.  

The comments panel allows you to include descriptive comments into the simulation file. 
This is often helpful in reminding yourself what you have done or attempted to do in a 
specific simulation when you come back to it at a later time. Nothing is more vexing than 
having done a simulation some months ago and then not being able to determine which 
was the final version. As an aid in this respect, OXlearn will automatically add a time 
stamp each time you open a simulation. However, you can delete/add/edit the comments 
in whichever way you like without causing any problems. Note that the small triangle 
buttons at the left hand side allow you to enlarge the comments panel. 

The graphical sketch panel summarizes your current simulation graphically without going 
into details. This is intended to provide, at a glance, information such as whether target 
patterns have been specified, if the network has been trained already or which type of 

 27



 28

network architecture is currently chosen. The dedicated displays in the ‘Inspect’ menu 
provide a more detailed view. 

The status panel tells you which parts of the simulation are set-up correctly and which are 
deficient. The nine labels at the top refer to different components that make up a 
simulation, and each of these labels summarises over a number of OXparams. The up-
most five labels correspond to information that can be manipulated in the ‘Set-up’ 
windows (= set-up OXparams), whereas the last three represent the performance 
OXparams for training, verifying and testing. The sixth element called ‘weights’ occupies 
a somewhat intermediate position, because it is dependent on the weight initialisation 
parameters (which can be manipulated under Set-up -> Training Options, >> more) but 
will only be assigned values once training is initialized. Those initial values are 
subsequently adjusted by the training process and thus, once they are given back to the 
workspace, resemble to other performance parameters in that they are an outcome of the 
training process. 

Green ticks to the left hand side of the labels indicate a satisfactory set-up, a red attention 
sign means that a problem has been detected with at least one of the OXparams 
summarized under that label. Clicking on the status indicator (tick or attention sign) will 
lead the listbox in the lower half of the status panel to show more detailed information 
regarding the relevant OXparams and the detected problem. The first column indicates 
problems with exclamation marks (‘opt’ indicates an optional parameter), the name of the 
parameter is given in the second column, and more detailed information regarding the 
parameter or the problem with it can be found in the third column. To address the 
problems found, the three buttons to the right hand side of each label provide shortcuts to 
manipulate or display the relevant part of the simulation. Pressing the eye button will 
switch to the dedicated display (if given for this part) usually found under the ‘Inspect’ 
menu. The pen button will raise the corresponding Set-up window (if given) so you can 
manipulate the erroneous parameters. Note that simply raising the window and closing it 
again will often solve the problem because all non-existing parameters for this part of the 
simulation will be created automatically. The red cross button, finally, will clear all 
OXparams summarised under the label. This is most useful for clearing the performance 
OXparams (the last four elements). Non-existent or cleared performance OXparams are 
indicated by a gray tick – the preferable status before training a network. A yellow 
attention sign at this place indicates that the current set-up might be different to the one 
that has resulted in those performance OXparams. It is possible to simply train the 
network again, thus rectifying the inconsistency. To avoid confusion, however, it is 
recommended to reset the simulation prior to changing the set-up.    

A simulation is ready to run when the first five status buttons show a green tick - strictly 
speaking, the 4th and 5th (‘Test Patterns’ and ‘Testing Options’) element is only required 
for testing, not for training/verifying.  



Inspect -> Weights (shortcut: CTRL-W) 

 

This display shows the current weights configuration of the network in so-called ‘Hinton 
diagrams’. Each connection weight is displayed as a coloured box at a x/y position that 
indicates from which unit (x-axes at the top) to which unit (y-axes at the right) the 
corresponding connection leads. Each weight’s numerical value is coded in its colour 
(negative values in red, positive values in blue) and its size (large absolute values -> big 
box; values close to zero -> small box). Similar to most other displays you can 
manipulate the subset of data shown in the graphs (zoom, pan, etc.) or gather more 
detailed information about individual data points with the datatip.  

It is not unusual that no weights configuration is displayed prior to having trained a 
network. The weights matrix will only be initialized at the beginning of training. You 
can, however, get a visual impression of the weights initialisation by choosing “weights 
initialisation” from the drop down menu in the options panel. Doing so repeatedly will 
reinitialize the weights each time. Note, however, that weights will also be reinitialised 
anew when training starts. Choose a “Seed Nr:” in training options if you want to ensure 
that the initial weights shown correspond exactly to the ones the network uses when 
being trained. 

 29



Inspect -> Patterns (shortcut: CTRL-P) 

 

This display shows colour coded images of all patterns (one epoch) used during training, 
verifying or testing. In addition to the input and target patterns (similar to the 
visualisation during set up), hidden layer activation, output activation, the resulting error 
and the pattern nearest in Euclidean space to the obtained output can be displayed when 
looking at verify or test data. This display enables inspection of the whole epoch (all 
patterns) at a glance, e.g. in order to identify problematic stimuli. Note that the Inspect -> 
Activations display provides a similar view on a per pattern basis.    

 30



Inspect -> Activations (shortcut: CTRL-A) 

 

This display shows network activation and error information for individual 
patterns/sweeps, thus allowing, e.g., for a direct comparison of the produced output 
activation of each unit and its intended target activation. Use the arrow buttons on the left 
to skip through patterns/sweeps, in sequential order, i.e. corresponding to the order in the 
Inspect -> Patterns display. If the “sort by error” button is toggled, the arrow buttons skip 
to the pattern with the next higher/lower error instead.       

 31



Inspect -> Performance (shortcut: CTRL-E) 

 

This display shows, for every sweep, the network’s performance in terms of mean square 
error and/or correctness. One datapoint per logged sweep will be displayed if “train 
performance” is chosen in the options panel, otherwise datapoints will correspond to the 
patterns in Train or Test Patterns. Recall that the curves can be smoothed and grouped.  

The Tools menu 

The Tools menu comprises a further set of specialized functions and/or displays.  

 32



Tools -> Compare Networks 

 

This tool is meant to enable comparison of the performance of multiple similar networks, 
or states of one network. For example, if you have dumped network states (including 
tests) at regular intervals during training you might want to investigate how the networks 
performance on the test patterns develops over the course of training. Similarly you might 
want to compare the performance of several networks that differ from one another only in 
terms of their initial weight values or the learning rate used. To do so, choose several 
comparable networks from the file selector that is raised by pressing the “select…” 
button. Similar to testing or verifying multiple networks, the currently loaded simulation 
(always at the top of the list at the left hand side of the window) will serve as a reference 
point with which the indicated simulations are compared. Depending on whether you 
look at train or verify/test performance you can either smooth or group the displayed 
data, just like in the Inspect -> Performance display. Additionally, the “show individual” 
button below the list of simulations toggles between displaying data for all the selected 
simulations and displaying the mean performance plus a measure of the spread of data 
(+/- one standard deviation, indicated by error bars or dotted lines). 

 33



Tools -> Cluster Analysis 

 

Cluster analysis is a technique for visualizing high dimensional data. Essentially the idea 
is to always group the two elements with the smallest Euclidean distance and 
subsequently treat them as one item that is located at the midpoint between the two 
original elements. Iterative application of this rule leads to a cluster tree that conveys an 
impression on how the items are distributed in some high-dimensional space (e.g. hidden 
layer activation space). The length of the edges indicates the distance between 
clusters/items. This technique can be applied to any high dimensional data (i.e. all 2-
dimensional matrices of data with columns being interpreted as dimensions and rows as 
items), but it usually is most useful for analysing the distributed representations that 
emerge in a trained networks hidden layer. Items/patterns/stimuli that are grouped 
together are treated as similar by the network. 

This tool works only if you have the MATLAB Statistics toolbox installed.      

 34



Tools -> PCA 

 

PCA (principle component analysis) is another technique to visualize high dimensional 
data, this time by dimension reduction. Essentially, a PCA rotates the coordinate system 
of the underlying high-dimensional such that the first dimension captures the most 
variance, then the second, and so on. Often it is possible to look only at the first two or 
three dimensions (or principle components) and still capture the majority of variance or 
information in the data. The display of this tool shows and possibly labels the underlying 
data (chosen in the drop down menu at the bottom) in this new coordinate system. You 
will find the loadings of the first three components in the axes labels. Use the rotation 
tool to change the viewing angle. The n clusters spinner indicates the n clusters with the 
highest inter cluster distance by assigning different colours.   

This tool works only if you have the MATLAB Statistics toolbox installed.      

 35



Tools -> Translation 

 

The translation tool will usually be used during the process of setting up a simulation, for 
example when you want to transform a couple of words that should serve as the 
network’s input patterns into a numerical representation which can be processed by the 
network. However, you might also want to translate the network’s output back into 
graphemic representations – to some extent this will happen automatically if you have 
provided appropriate labels along with the train or test patterns.  

Because it is literally impossible to preview the exact translation anyone might want to 
perform, the translation tool provides a rather high level solution: you can choose which 
variable within the MATLAB workspace you want the translation to be applied to 
(translation source), you determine the name that will be given to the outcome of the 
translation process (translation target) and you choose the translation function that 
mediates between the content of the source (input) and the content of the target (output). 
OXlearn provides some inbuilt translation functions, such as mapping letters in the 
source onto a six-digit binary code that encodes phonological features such as voiced, 
labial, dental, etc1. Another, more generic translation function (“OX_trslTlearnStyle.m”) 
will query the user for a left hand side (input) and a right hand side (output) translation 
table with corresponding rows.  

In case none of the provided translation functions suit your needs or you are unclear on 
how exactly they work it is recommended to have a look at the corresponding .m files. 
You will find these in the subfolder “TranslationFiles” within the “OXlearn” folder. If 
you browse to this location using MATLAB’s “current directory” editor, a double click 
will open the file within the MATLAB file editor. The translation functions are heavily 
commented and even if you have not much experience with programming it should be 
relatively easy to find out what they are doing or to adjust them to your needs. Please 
make sure to save any changed files under a different name. As long as you keep your 

                                                 
1For details of this specific translation function (called “OX_trslCH11.m”) please refer to chapter 11 in 
“Exercises in Rethinking Innateness” by Plunkett & Elman (1996).  

 36



 37

customized translation functions in the same folder (“…\OXlearn\TranslationFiles”), they 
will be offered as a choice in the drop down menu of the translation tool. 



 38

Glossary of neural network terms 
activation function: a function that is applied to the sum of a node’s incoming activation 
(= net input). Common choices include ‘linear’, which amounts to no change at all (i.e. 
the node’s activation value is set to its net input), ‘threshold’, which means that the node 
will be ‘on’ (activation value of 1) if the incoming activation surpasses a specific value 
(usually 0) and off (activation value of 0) otherwise, and ‘sigmoid’, which can be 
described as a soft threshold function because the transition from ‘off’ to ‘on’ is more 
gradual, allowing for intermediate values as well. The sigmoid is the typical function of 
choice for multilayer networks because of these model’s requirement for an activation 
function (at least in the hidden layer(s)) that is (a) non-linear and (b) differentiable.   

architecture: the way in which the network is set up, e.g., the number of layers, the 
number and type of units in each layer, the way the units/layers are connected with each 
other, if there is a bias, etc.  

bias: a node that has no inputs and is always active (activation value of 1). The effect of 
connecting a bias to a normal node within the network is to provide a constant 
(independent of the pattern actually processed) bias on the receiving node’s propensity to 
respond or, from a mathematical perspective, a bias induces a lateral shift to the receiving 
node’s activation function. The direction and amount of said shift is directly proportional 
to the weight that connects the bias with the receiving node, and this weight is adjusted 
(learned) in the exact same manner as all other weights in the network. In biological 
terms, the bias can be linked to a neuron’s resting activation, in technical terms a bias can 
help especially in situations in which an output is required although the network has no or 
little input activation to work with. It is common to connect a bias to all nodes in a 
network. 

catastrophic interference: the most common learning algorithms work on the basis of 
the individual patterns that are processed in a given sweep. The resulting adjustment of 
the weights matrix is guaranteed to improve the network’s performance for this particular 
pattern/stimulus. It is possible, however, that the adjustments are detrimental to the 
processing of another pattern. Thus, if the magnitude of adjustments to the current 
pattern is too large (e.g. due to a large learning rate or because always the same pattern is 
presented) the network might loose its ability to deal with other patterns. This 
phenomenon is often termed ‘catastrophic interference’ or ‘catastrophic forgetting’, ways 
to counteract this tendency include: reducing the learning rate, using a momentum, and/or 
making sure that the different patterns are presented in an interleaved manner rather than 
in blocks. 

epoch: a pass through the entire set of training patterns. If, for example, there are 4 
different input/target patterns, an epoch would equal 4 sweeps. OXlearn does not use the 
concept of epochs, everything is defined in sweeps.  

error: the difference between an output unit’s activation value and the corresponding 
target value. 

layer: a set of nodes in a network, usually defined by a shared pattern of connectivity. 
The most basic network architecture has only two layers (input and output), but most 
models employ a three layer architecture which includes an additional hidden layer. 



 39

learning algorithm: the mathematical process in which the network determines how to 
adjust its weights. In supervised networks, the learning algorithm is aimed at minimizing 
the error, usually by implementing some form of gradient descend. The result is that the 
weights are adjusted constantly (usually after each sweep during training) in a direction 
that would improve the network’s response should the same pattern be processed again. 
Over time and through repeated exposure to the different train patterns, the weights 
matrix usually settles into a configuration that suits all patterns.  

learning rate: the magnitude of weights adjustment. Too small a learning rate can 
prevent the network from learning at all (at least within a reasonable amount of 
exposure/sweeps), too large a learning rate can induce catastrophic interference. 
Determining an appropriate learning rate is not an analytical process, as it depends on 
many aspects of a network’s task and architecture and their interaction. As general rules 
of thumb, however, smaller networks and networks with little overlap between patterns 
can afford larger learning rates (> 0.1), while large networks with much redundancy and 
overlap often use learning rates a small as < 0.001. 

momentum: a value that determines the proportion of last sweep’s weights adjustment 
that is added to the current adjustment of weights. As a result, instead of trying to 
maximally accommodate the current pattern, the weight adjustment reflects a mixture of 
the current patterns ‘demands’ and those of other recently processed patterns. In terms of 
gradient descent, a momentum could be said to add some inertia to the downward path 
along the error surface, thus preventing, e.g., the current step to go in an entirely different 
direction than the last. In some circumstances using a momentum can make learning 
more efficient or stable (see gradient descend). Momentum values > 1 do not usually 
make sense, because this would mean that the current step has less influence than past 
ones.     

gradient descent: the most common learning algorithms (e.g., backpropagation) 
determine the necessary weights adjustments by looking at the error that results from the 
processing of a specific pattern as a function of the weights in the network. Calculating a 
partial derivative with respect to all the weights in the network thus gives the direction in 
which the weights must be adjusted in order to reduce the error, i.e., going down the 
slope of the error function. Depending on the exact set-up of the network, the task 
processed and the initial value of the weights, however, there is a possibility that this 
process of incrementally reducing the error for individual patterns will not result in the 
minimization of the overall error (for all patterns). Analogically speaking, the error 
surface can be likened to a hilly landscape and if the only directive is going downwards it 
may be that one ends up in a high valley; if this happens, the network is said to be trapped 
in a local minimum. Common solutions to prevent this from happening include: 
retraining the network (because a different set of initial weights corresponds to a different 
place in the error landscape to start from, which might prevent the network from visiting 
the problematic region in the error surface), using a momentum (the added inertia can 
smooth over the local valley), increasing the learning rate (might step over small local 
valleys), and/or using a different presentation order (can induce a different way down the 
mountain).   

hidden layer: a group of units that mediate between the (externally determined) input 
units and the output units, which correspond to the network’s response. The hidden layer 
is especially interesting for researchers, because of the emergent, distributed 



 40

representations that develop here during the process of training a network. 
Inspecting/visualizing the hidden layer activations can give valuable insights as to how 
the network solves (or learns to solve) a task. Determining an appropriate number of 
hidden units is difficult, as it depends on the complexity of the task. More hidden units 
grant the network more processing power and enable more potential solutions (in terms 
of different weights matrixes that solve the task), but that does not necessarily mean that 
those solutions are easier to find (by the learning algorithm). Apart from runtime 
considerations, an overabundance of hidden units also has the disadvantage of hampering 
generalization, because the network can, potentially, solve the task on an exemplar-by-
exemplar basis rather than being forced to extract the regularities within the train set. 
Conversely, however, an insufficient number of hidden units will prevent the network 
from learning anything but the coarsest regularities in the task. 

node: an individual processing unit within a neural network model, usually taken to 
roughly mimic the functionality of a biological neuron or group of neurons. A note 
performs two functions: (a) summing up all incoming activation (=> netinput) and (b) 
passing this sum through an activation function (=> activation value). The incoming 
activation for a node is determined by multiplying the activation values of all upstream 
nodes with the respective connection weights. Input units are not usually counted as 
nodes because their activation value is determined directly by the current input pattern an 
they thus don not perform any computations. A similar argument applies to bias nodes. 

patterns: in supervised networks, input and target patterns form pairs that represent a 
stimulus processed by the network and the expected response. A single input pattern is a 
vector of numbers (often binary, i.e. zeros and ones) that determines which activation 
values the input units will be set to when this pattern is processed. Similarly, a target 
pattern defines the activation values that the units in the output layer should assume when 
the corresponding input pattern is passed through the network (The numerical deviation 
from the target pattern is called the error). From this it follows that the number of 
elements (numbers) in an input pattern should correspond to the number of input units in 
the network, whereas the length of the target pattern should correspond to the size of the 
output layer. The number of different training or test patterns, conversely, corresponds to 
the number of different stimuli that the network processes. During training, the network 
is usually presented with the train patterns repeatedly (in a specified order), for 
verification the network processes each of the train patterns once at the end of training, 
and testing means that the different set of test patterns (often novel patterns that the 
network was not exposed to during training) are processed once. Weights are adapted 
according to the learning algorithm during training, but not during verification or testing. 
In OXlearn, patterns are represented in a matrix where rows correspond to individual 
patterns and columns give the respective elements/values. 

presentation order: the order in which the individual input/target pattern pairs are 
presented (repeatedly) to the network during training. Sequential presentation follows the 
order in which the patterns are organized in OXlearn, starting over once the last pattern 
(= row of the matrix OXinput) has been presented. Presenting the patterns randomly 
without replacement means that, similarly, all patterns are presented once before starting 
over, but the order is randomly determined for each pass (or epoch). When presenting 
randomly with replacement, one of the patterns is randomly chosen for each individual 
sweep.  



 41

mean squared error: value obtained by first raising the deviation of an output unit’s 
activation value from the corresponding target value (see error), and then averaging over 
all output units. 

run: training a network for a given number of sweeps (or until the mean square error is 
below a certain value). The weight initialization at the beginning of a run means that all 
knowledge acquired in from earlier runs is discarded, each run represents a totally new 
take, similar to training another network on a similar task. Successive runs with an 
unchanged set-up may still produce divergent results due to the weights initialization 
and/or the presentation order, depending on the settings chosen.  

seed: a ‘label’ for a specific random distribution. A specific seed guarantees that the 
same set of random numbers is drawn whenever this specific seed is used. For example, 
the weights matrix at the start of training can be kept constant between training runs 
when a seed is specified, thus ruling out that between run differences are due to the 
weights initialization.   

sweep: forward pass of a single pattern through the network. During training, this is 
usually followed by a backwards propagation of the observed error and the resulting 
adjustment of weights through application of the learning algorithm. 

task: the task of a network is defined by the entire set of input-target pattern pairs that it 
is trained on. The network can be said to have solved the task if it performs to a certain 
criterion (i.e. max error of any output node < 0.1) for all patterns/stimuli. How difficult it 
is for a network to learn a task depends on several factors, most of which can be linked to 
the related concepts of interference and redundancy. Learning is easy when many similar 
(i.e. patterns whose distribution of activation values overlap considerably) input patterns 
exist that require similar responses (i.e. have similar target patterns, such groups of 
patterns are often termed ‘friends’). Learning is difficult when there is much competition 
for share processing resources (weights), e.g. when only a small aspect of the input 
pattern (e.g. the activation value of only one input unit) distinguishes one desired 
response (target) from another (this is called an ‘enemy’) or when patterns exist that (a) 
are infrequent and (b) are not backed up by ‘friends’. Maybe surprisingly this means that 
neural networks are usually more robust (i.e., tolerant with respect to the choice of 
learning rate, number of hidden units, presentation order, initial weights, etc.) for larger, 
more naturalistic tasks, because these often involve a large number of highly redundant 
stimuli.  

testing: the presentation of a test set of input-target patterns to a trained network 
(sometimes also done at intermediate stages during training). The test patterns are usually 
different from the patterns that the network had processed during training, thus allowing 
to test the network’s ability to generalize, i.e. to transfer the ‘knowledge’ that was 
extracted from the training exemplars to novel stimuli. During testing (and verification) 
weights are frozen, that is, the weights are not adjusted any more. 

training: see run. 

unit: see node 

verification: the presentation of the set of train patterns (once, in sequential order) after 
training has finished. During verification (and testing) weights are frozen, that is, the 
weights are not adjusted any more. Verification is necessary to evaluate the network’s 



 42

performance on the entire task for a given weights matrix. Such an evaluation should not 
be based on the training performance because the weights change (if only slightly) after 
each sweep and even adjacent sweeps are thus not directly comparable.  

weight: a numerical value (can be positive or negative) that is associated with the 
connection from one node to another. The activation that the downstream node receives is 
weighted, that is, the upstream node’s activation value gets multiplied with the weight of 
the connection. Weights represent the strength of the connection or association between 
two nodes. During the training process, the weights are adjusted according to a learning 
algorithm. 

weights initialization: The values that are assigned to the weights in a network at the 
very beginning of a training run. The virgin network needs to start from somewhere, and 
it is usually taken to be the least arbitrary solution to simply assign small random weights 
(see seed). Because a network’s performance is entirely determined by its weights matrix, 
however, the random values drawn here can in some cases have a profound impact on the 
network’s learning progress. It could be, for example, that the randomly drawn set of 
initial weights is, by pure chance, very similar to a weights matrix that enables the 
network to perform correctly on the given task, in which case there would not be much 
learning (i.e., adjustment of weights) left to do. Conversely, it is possible that the initial 
weights matrix is detrimental to learning the task, thus either prolonging the learning 
process or, in the worst case, preventing the network from finding an optimal solution 
(see gradient descend).   

weights matrix:  a set of weights, usually this refers to either all weights between two 
layers or all weights within the whole network. The weights matrix in the latter sense is 
what defines the networks functionality and ‘knowledge’. The process of learning, in 
neural networks, thus consists of finding an appropriate weights matrix through repeated 
processing of train patterns and subsequent application of the learning algorithm. 

 


	Introduction
	Using OXlearn
	Starting OXlearn
	Layout of the graphical user interface (GUI)
	Workflow

	Concepts
	OXparams
	The workspace
	The content of a simulation file
	Implications and common problems

	List of OXparams
	The OXlearn GUI
	Control elements
	The extract button 
	The colorbar button 
	The datatip button 
	The zoom in button 
	The zoom out button 
	The pan button 
	The rotate button 
	The scroll (up/down) buttons 
	The skip (up/down) buttons 
	The sort by error button 
	The group button 
	The smootfactor spinner 
	The labels button 
	The n clusters spinner 
	The change size button 
	The graphical edit mode button 
	The edit in table button 
	The edit labels button 
	The edit groups button 

	The File menu
	File -> New simulation (shortcut: CTRL-N)
	File -> Load Simulation (shortcut: CTRL-L)
	File -> Save Simulation (shortcut: CTRL-S)
	File -> Save Simulation As (shortcut: CTRL-Z)
	File -> Dump Simulation As (shortcut: CTRL-D)
	File -> Import Selected
	File -> Export Selected
	File -> Clear Selected
	File -> Reset Simulation (shortcut: CTRL-R)
	File -> Quit OXlearn (shortcut: CTRL-Q)

	The Set-up menu
	Set-up -> Network
	Set-up -> Train Patterns
	Set-up -> Training Options (shortcut: CTRL-O)
	Set-up -> Test Patterns
	Set-up -> Testing Options

	The Run menu
	Run -> Train Network (shortcut: CTRL-T)
	Run -> Train Several Networks
	Run -> Resume Training
	Displaying the training process
	Run -> Verify Network (shortcut: CTRL-V)
	Run -> Verify Several Networks
	Run -> Test Network (shortcut: CTRL-K)
	Run -> Test Several Networks

	The Inspect menu
	Inspect -> Simulation (shortcut: CTRL-I)
	Inspect -> Weights (shortcut: CTRL-W)
	Inspect -> Patterns (shortcut: CTRL-P)
	Inspect -> Activations (shortcut: CTRL-A)
	Inspect -> Performance (shortcut: CTRL-E)

	The Tools menu
	Tools -> Compare Networks
	Tools -> Cluster Analysis
	Tools -> PCA
	Tools -> Translation


	Glossary of neural network terms

