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Abstract
Logitech made the following statement in a white paper
in 2009: “Since the displacements of a mouse would not
give any useful information to a hacker, the mouse re-
ports are not encrypted.” It is time to correct this misun-
derstanding. In this paper, we investigate how sensitive
user information leaks from displacements of Bluetooth
mouse while our results can be easily extended to mouse
using other radio links, which are not encrypted either.
We begin with presenting multiple ways to sniff unen-
crypted Bluetooth packets containing raw mouse move-
ment data. We then show that such data, seemingly
harmless, may reveal extremely sensitive information,
including text-based passwords clicked through software
keyboard and graphical passwords such as Windows 8
picture password. Nonetheless, such a Bluetooth-mouse
data leakage attack can be challenging to perform be-
cause: (i) packet loss is common for sniffing Bluetooth
traffic, and (ii) modern operating systems use complex
mouse acceleration algorithms, which introduce noise
for reconstructing the on-screen cursor coordinates from
sniffed mouse movement data. We have conducted a
holistic study of these issues over all popular operating
systems and analyze how mouse acceleration algorithms
and packet loss during sniffing may affect reconstruc-
tion results. Our real-world experiments demonstrate the
severity of privacy leakage from un-encrypted Bluetooth
mouse. We also discuss countermeasures to prevent pri-
vacy leaking from Bluetooth mouse. To the best of our
knowledge, our work is the first to retrieve sensitive in-
formation from sniffed mouse raw data.

1 Introduction

Logitech made the following statement in a white paper
published on March 2, 2009 [30]: “Since the displace-
ments of a mouse would not give any useful informa-
tion to a hacker, the mouse reports are not encrypted.”

Wireless mouse may use 27 MHz, Proprietary 2.4 GHz,
or Bluetooth 2.4 GHz radio link. From our interview
with major brand-name manufacturers including Log-
itech, Microsoft, Apple and Lenovo and the study of bib-
liography, no wireless mouse encrypts its communica-
tion [37, 38]. This practice is also reflected in the design
of mouse communication protocols. Bluetooth Human
Interface Device (HID) profile [40] requires support of
authentication and encryption for keyboards as well as
other HIDs such as fingerprint scanner, which transmits
identification or biometric information [40, 28, 39], but
leaves the support optional for Bluetooth mouse.

In this paper, we show mouse movement data could
leak extremely sensitive information. Timings and posi-
tions of mouse movements are often used as an entropy
source for random number/secret generation. Leaked
mouse movement data could reduce the entropy of seed-
ing random number generation. From a reconstructed
mouse trajectory on screen, an attacker may build a user
computer usage profile, identify applications, or even ob-
tain user passwords. We will use the inference of pass-
words through a software keyboard and graphical pass-
words such as the one used by Windows 8 to demonstrate
the threat. This problem is particularly serious given
that conventional belief of mouse traffic being insensi-
tive lends users a false sense of security.

We will investigate privacy leaking from Bluetooth
mouse while our results can be easily extended to mouse
using other radio links [37, 38]. Our attack begins with
sniffing Bluetooth mouse communication. Various off-
the-shelf tools are available to conduct Bluetooth sniff-
ing. In particular, USRP2 (Universal Software Radio Pe-
ripheral 2) [16], a software-defined radio device, can be
tuned to any Bluetooth channel with a 2.48GHz daugh-
terboard. To sniff all Bluetooth channels, four USRP2s
are needed. Tools such as Ubertooths [33, 42, 43] can
be used to determine the MAC address of undiscover-
able devices, which can in turn be fed into FTS4BT [18],
a commercial product that is able to synchronize with
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victim Bluetooth devices. FTS4BT is able to follow the
Bluetooth frequency hopping sequence, and thereby sniff
an entire communication session. We shall describe how
to use such sniffers to sniff Bluetooth communication.
One question often raised for Bluetooth attack is the at-
tack distance. Although Bluetooth is designed as a short-
range radio technology, researchers have modified Blue-
tooth devices and successfully implemented the long dis-
tance attack from over one mile away [27, 6]. With a
customized antenna for USRP2, we were able to success-
fully sniff Bluetooth packets at a distance of 30m in the
corridor of a campus building.

Once raw mouse data are eavesdropped, we intro-
duce a trajectory-reconstruction technique, reconstruct-
ing the on-screen mouse cursor trajectory and the topol-
ogy formed by the positions where mouse clicks, denoted
as clicking topology. Clicking topology may reveal sen-
sitive information, including the text-based password (in-
putting through software keyboard) and graphical pass-
word such as the one used in Window 8. To the best of
our knowledge, our work is the first to retrieve sensitive
information from sniffed mouse raw data.

Our major contributions is summarized as follows.
First, we examine mouse data semantics and investigate
how mouse events are processed in an operating system
and propose prediction attack to reconstruct cursor tra-
jectory. Sniffed mouse packets contain raw movement
data. However, an operating system uses acceleration al-
gorithms to accelerate the raw movement and produce
the cursor movement on screen. To reconstruct an on-
screen cursor trajectory, we carefully investigate various
mouse acceleration algorithms, and derive their mathe-
matical models. Once these acceleration algorithms are
known, we develop an inference algorithm, denoted as
prediction attack, for estimating the on-screen cursor tra-
jectory. We analyze the impact of packet loss and the
timing of mouse packet arrivals on the accuracy of re-
constructing cursor trajectory. Because almost all com-
plex mouse acceleration algorithms take into account the
packet inter-arrival interval as a factor in accelerating
cursor movement, we found a strong correlation between
the accuracy of measuring packet arrival time and the ac-
curacy of reconstructing the cursor trajectory. This is the
most challenging part where we spent a long time on
analysis and experiments to reach this conclusion. We
have also derived the upper and lower bounds of the com-
plex mouse acceleration to study reconstruction errors.

Second, by analyzing the reconstructed cursor tra-
jectory, we can infer much information about a user’s
interaction with the computer. Various systems, in-
cluding Windows, Linux, Mac, and critical applications
[1, 23, 45] provide software keyboard as an alterna-
tive input method. Users may click the software key-
board and input various sensitive information. We use

the attack against the soft-keyboard-based authentication
scheme as an example to demonstrate the severity of
such privacy leakage. Section 4.2.1 explains the motiva-
tion in details and Section 5.1 also extends our attack to
graphical passwords, a selling security feature in Win-
dow 8. We develop two approaches to map a clicking
topology to a password sequence entered by a user using
the software keyboard. In the basic inferring approach,
all candidate passwords are enumerated from a clicking
topology. In the enhanced inferring approach, the sta-
tistical information of human clicking keys is utilized to
reduce the number of candidate passwords from a click-
ing topology. The entropy of candidates passwords per
clicking topology is reduced from around 6 bits by the
basic approach to around 1 bit by the enhanced inferring
approach, i.e. two passwords per clicking topology. Our
experiments on Fedora 13 and OpenSUSE 11.1 show that
the basic inferring approach has a success rate of more
than 98% recovering passwords, while the enhanced in-
ferring approach has a success rate of more than 95%.

Third, given that mouse acceleration algorithms are
often proprietary and cannot always be easily reverse
engineered on Windows and Mac systems, we propose
replay attack for reconstructing on-screen cursor trajec-
tory without the knowledge of acceleration algorithms.
In a replay attack, sniffed raw data is replayed on a com-
puter installed with the same operating system as the one
on the victim computer. In this way, we can derive the
clicking topology and apply either the basic inferring ap-
proach or the enhanced inferring approach to derive the
password. Our real-world experiments show that the suc-
cess rate of replay attack against software keyboard on
Fedora 13, Windows 7 and Mac OSX 10.6.5 achieves
69%, 100%, and 44%, respectively. Please see the foot-
notes for videos of successful replay attacks on different
target OS: Fedora Core 131, Windows 7 default installa-
tion2, and Mac OSX 10.6.53. In these videos, our pro-
gram replays real raw mouse data sniffed by FTS4BT.
The data corresponds to clicks on a software keyboard.
For the clarity of demonstrating the impact of the attack,
at the beginning of each replay, we move the cursor to
the first character of the password and show that the re-
play attack can correctly derive the positions of the rest
of the password character. Please refer to Section 4.2.6
for a detailed introduction to these videos. In addition,
the video at this footnote4 demonstrates the replay attack
against the Windows 8 picture password.

Our contributions also include a discussion of poten-
tial countermeasures to the proposed attacks. Bluetooth

1Attack Fedora 13: http://youtu.be/qnjqgCCTVTk
2Attack Windows 7: http://youtu.be/FVJK_m3UPj0
3Attack Mac OSX: http://youtu.be/iFJoHBiYDWg
4Attack Windows 8 picture password: http://youtu.be/

eLUN8_pDuIE
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has four modes for secure pairing, in which secret keys
are negotiated between two pairing devices. We suggest
the numerical comparison mode for Bluetooth mouse.
As a demo, we have implemented the numerical com-
parison mode for our raw mouse data replay program,
i.e. fake mouse, for an Android tablet. More and more
people combine tablets, wireless mouse and keyboard
as a mobile computing platform. Microsoft developed
a Bluetooth mouse (the wedge mouse) for its Surface
tablet. Please refer to the video at the footnote5. As a
lightweight countermeasure, the software keyboard lay-
out can be randomized to resist the attack when users
input sensitive information. Most operating systems and
applications do not provide such an option for users. Mi-
crosoft also needs to reconsider their choice of graphical
password system.

The rest of this paper is organized as follows. In Sec-
tion 2, we discuss our proposed techniques for recon-
structing the mouse cursor trajectory. We analyze vari-
ous factors that affect the accuracy of trajectory recon-
struction in Section 3. In Section 4, we evaluate the ac-
curacy of inferring passwords from the sniffed Bluetooth
mouse movements using the software keyboard attack as
an example. In Section 5, we extend our attack to obtain
graphical passwords on Window 8, improve the sniffing
distance, and discuss countermeasures to the proposed
attacks. In Section 6, we briefly introduce the most re-
lated work, followed by the conclusion in Section 7.

2 Reconstruction of Cursor Trajectory
Please refer to Appendix A for the principle of sniff-
ing Bluetooth for raw mouse packets. In this section,
we first investigate raw Bluetooth mouse data semantics,
and then review various mouse cursor acceleration algo-
rithms used in modern operating systems. Finally, we
introduce the prediction attack and the replay attack for
reconstructing an on-screen cursor trajectory.

2.1 Raw Bluetooth Mouse Data
In this paper, we use Logitech MX 5500 Bluetooth
Mouse as an example most of the time. We investigated
many other Bluetooth mouses (e.g., Microsoft Bluetooth
Mouse 5000) and found mouse under the same brand
tends to have the same semantics. The semantics have
been understood by reverse engineering and referring to
HCI profile specification and related work, including a
general introduction to raw mouse data semantics [15].

For comparison, we briefly discuss Microsoft Blue-
tooth Mouse 5000, which has a simple raw packet pay-
load format. The following is an example of its payload:
{A1 11 00 01 FE 00 00}. The fields in bold give the
X and Y movement, respectively. This data is expressed
in the two’s complement form. Thus the corresponding

5Secure mouse: http://youtu.be/781yYdc-3O8

movement will be 1 and -2, i.e, a unit movement on right
and two units in the upward direction.

An example of Logitech MX 5500 mouse raw packet
payload is listed as follows: {A1 02 00 F3 FF FF 00
00 00}. The three fields in bold are used to compute
mouse movement. Following rules are applied to ob-
tain the movement: Let the three fields be XO (F3 in the
example above), YO,1 (FF) and YO,2 (FF), respectively.
In this case, the reconstruction of mouse movements
is more complicated than Microsoft Bluetooth Mouse
5000. Specifically, the hexadecimal values A, · · · ,F do
not refer to the decimal 10, · · · ,15 necessarily. When-
ever A - F do not represent 10 - 15, we would refer to
the HASH table in Algorithm 1, which shows the algo-
rithm to calculate the raw mouse movement for Logitech
mouse. From Algorithm 1, we can see that F3 on X
equals to -(16 - 3) = -13 and FF on Y equals to -(16 -
15) = -1.

Algorithm 1 Raw Mouse Movement Mapping Algo-
rithm for Logitech Mouse
Require: HASH = ( F → 16, E → 32, D → 48, C → 64, B → 80, A

→ 96);
1: if (XO >= 127 in decimal) then #Left movement
2: X = HASH[first digit of XO] - second digit of XO;
3: else #right movement
4: X = XO;
5: end if
6: if (first digit of YO,2 == F) then #Up movement
7: Y = HASH[second digit of YO,2] - first digit of YO,1;
8: else #Down movement
9: if (YO,2 == 00) then

10: Y = first digit of YO,1;
11: else
12: Y = result of concatenating second digit of YO,2 with first

digit of YO,1;
13: end if
14: end if

We would like to point out that the raw mouse move-
ment in the raw packet does not actually represent the on-
screen cursor movement because the operation system
handles such mapping with its acceleration algorithm.
Figure 1 shows the Linux input driver stack, where
Xserver conducts the mapping from the raw mouse
movement to the on-screen cursor coordinate. In Linux,
each hardware is treated as a special file, i.e., device file.
The device file allows user-space applications to interact
with the device driver via standard input/output system
calls. In the kernel space, the mousedev (PS2-emulator)
driver creates these device files, while the evdev generic
input event driver provides APIs for user-space applica-
tions. In the user space, Xserver enforces the mouse-
cursor acceleration, which artificially increases the cur-
sor speed based on how fast a user moves the mouse. For
example, consider a raw mouse movement of ∆x and ∆y
pixels on X and Y , respectively, an extremely simple ac-
celeration algorithm may increase the amount of cursor

3



movement by twice - i.e., (2∆x,2∆y).

!

Figure 1: Linux Input Device Driver Stack

To predict the cursor trajectory from the sniffed Blue-
tooth mouse packets, we need to have a precise under-
standing of mouse acceleration implementation. Mouse
acceleration is a feature available in most operating sys-
tems today. This feature defines the mapping between
the on-screen cursor motion and the physical movement
of a mouse. It provides users with the ability to effec-
tively navigate screens with high resolution with mini-
mal physical movement of a mouse. We derive the Linux
mouse acceleration from its source code and examine it
in detail as an example listed below. Because we can-
not obtain the source code of Windows and Mac mouse
acceleration algorithms, we will propose the replay at-
tack to reconstruct the on-screen cursor trajectory with
no need of understanding the mouse acceleration algo-
rithm being used.

2.2 Linux Mouse Acceleration
An OS may use an acceleration algorithm to calculate
the cursor position based on the raw mouse movement
data. Based on whether packet arrival time is considered
in calculating the cursor movement on screen, we clas-
sify mouse acceleration algorithms into two categorizes:
(i) lightweight acceleration algorithm, and (ii) complex
acceleration algorithm. Lightweight acceleration algo-
rithm does not consider the packet arrival time, and it is
used in Linux OS with Xserver version before 1.5. Com-
plex Acceleration Algorithm takes the packet arrival time
into account, and is adopted in Linux OS with Xserver
version after 1.5 [11], current Windows and Mac OS X.
We now explain these two types of algorithms in details.

2.2.1 Lightweight Acceleration Algorithm
Algorithm 2 illustrates the lightweight acceleration algo-
rithm in Linux: If a mouse is physically moved more
than T units, the algorithm amplifies the movement by
M times along X and Y axes, respectively, where T and
M are pre-determined parameters. It is important to note
that T is computed as the Manhattan distance (instead of
Euclidean distance) of the reported mouse movements.
For example, if a mouse reports a movement of (3,4),

the corresponding cursor movement will be (6,8) when
T = 6 and M = 2 on X and Y axes, respectively.

Algorithm 2 Lightweight Acceleration Algorithm
Require: Raw mouse movement (∆x, ∆y); Threshold T ; Acceleration

Factor M
1: if (|∆x|+ |∆y| ≤ T ) then
2: cursor movement = (∆x, ∆y);
3: else
4: cursor movement = (M×∆x, M×∆y);
5: end if

2.2.2 Complex Acceleration Algorithm
We explain the complex acceleration algorithm based on
Linux OS with Xserver version after 1.5. With this al-
gorithm, when a new mouse event arrives and a mouse
event is created for the mouse packet, the system first
computes the velocity of mouse movement, and then cal-
culates acceleration based on the derived velocity. Based
on the raw movement information in the mouse packet
and derived acceleration, the system determines the cur-
sor movement on screen.

To determine the mouse velocity, we first compute
the distance between two mouse events. Denote the se-
quence of raw mouse events as Z1,Z2, . . . ,Zn. A mouse
event Zi includes three elements: mouse relative motion
∆xi, ∆yi, and timestamp ti. Denote D(k,n) as the distance
between mouse events Zk and Zn, where 1 ≤ k < n.

D(k,n) =

√√√√( n

∑
i=k

∆xi

)2

+

(
n

∑
i=k

∆yi

)2

. (1)

Based on distance D(k,n), we can derive mouse velocity
V (k,n) between Zk and Zn as

V (k,n) =
D(k,n)
tn − tk

×α ×β , (2)

where α and β are velocity scaling and velocity softening
parameters with default values as 10 and 1 respectively.
Linux command xinput returns these parameters.

To compute the current mouse velocity Vn (note that
Vn is not velocity V (k,n) between Zk and Zn), the sys-
tem uses a mouse event queue to buffer l mouse events
and calculates Vn based on the past mouse events in the
queue. Figure 2 shows a mouse event queue with length
l, whose default value is 16. Denote Zn as the new mouse
event arriving at the queue. We now calculate V (p,n),
V (p + 1,n), . . ., V (n − 1,n), mouse velocity between
mouse event Zn and those in the queue based on Equation
(2), where n− l +1 ≤ p ≤ n−1, tn − tp−1 > 300ms, and
tn − tp < 300ms. It can be observed that mouse events
that happened 300ms before the current event Zn do not
participate in the calculation of mouse velocity Vn for Zn.
Vn is derived as follows: If there is only one mouse event
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before the mouse event Zn, the current mouse velocity
Vn = V (n− 1,n). If there are two mouse events before
Zn, Vn = V (n − 2,n). If there are more than two past
mouse events, V ( j,n) could be selected as the current
mouse velocity Vn by solving the following problem,

Maximize : Distance D( j,n),

Sub ject to : |V (n−2,n)−V ( j,n)| ≤ 1 or,
|V (n−2,n)−V ( j,n)|
V (n−2,n)+V ( j,n)

< 0.2,

(3)

where p < j ≤ n−1.

n-l+1 nn-1n-l+2

Figure 2: Mouse Event Queue
When velocities are derived, acceleration A can be de-

rived as follows,

A =
S (Vn)+S (Vn−1)+4∗S (

Vn+Vn−1
2 )

6
, (4)

where S(.) is a velocity smoothing function. Because
S (Vn) ≥ 1, we have A ≥ 1. Please refer to Appendix B
for the explanation of S(.).

Once A is derived, the cursor coordinate (X ,Y ) on
screen can be derived as follows,

X = X +A×∆xn,

Y = Y +A×∆yn,
(5)

where (∆xn,∆yn) is the raw mouse movement. If A = 1,
the system will not accelerate the mouse speed. Oth-
erwise, acceleration is in effect. Note that A can be a
decimal number and Equation (5) will produce a cursor
position that is not an integer. The Linux complex accel-
eration algorithm takes effort in rounding the coordinate
and maintaining the residues. Please refer to Appendix
B for details.

2.3 Reconstructing Cursor Trajectory
from Raw Mouse Data

Given the raw Bluetooth mouse movement data, if an at-
tacker knows the mouse acceleration algorithm used in
an operating system, the attacker can predict the cur-
sor trajectory on the target display of the victim system.
However, the attacker may not know the mouse acceler-
ation algorithm before-hand, particularly if the operating
system is proprietary. It is not always trivial to reverse
engineer those operating systems and derive the hidden
mouse acceleration algorithm. Hence, we propose the
replay attack as well.

The basic idea of the replay attack is to replay the
sniffed Bluetooth packets to an impersonating computer,

which uses the same OS as the victim computer OS and
observes the cursor trajectory on the impersonating com-
puter directly. For example, we can use Computer B
to impersonate the victim Bluetooth mouse and connect
to the impersonating Computer A. After setting up the
connection, the fake mouse, i.e., Computer B will re-
play the sniffed Bluetooth mouse packets according to
their timestamps. Therefore, the cursor movement on
Computer A is the reconstructed mouse trajectory that
we want. We have implemented the fake mouse on
a Linux computer and our fake mouse could emulate
various mouse brands. To guarantee that the replayed
packet timing is accurate, we use the high resolution
timer (nanosleep and real time clock) in Linux.

The benefit of replay attack is that we do not need
to understand the complex acceleration algorithm on the
victim computer if we can impersonate the victim com-
puter in terms of the operating system. We can know
the type of operating system on the victim computer by
using various scanning tools such as nmap and Nessus.

3 Analysis
In this section, we discuss various factors that affect the
accuracy of reconstructing the mouse cursor trajectory
from sniffed raw mouse data. Specifically, we shall fo-
cus on two main factors: (i) Bluetooth packet loss during
sniffing, and (ii) the randomness of packet arrival time.

3.1 Impact of Bluetooth Packet Loss
Bluetooth sniffer may miss packets due to various fading
or interference such as that from wireless LAN. We de-
signed the following experiments with FTS4BT to mea-
sure how many pixels may miss from the reconstructed
cursor trajectory on screen if a Bluetooth packet is lost.
A user is using a computer with a Bluetooth mouse
(Logitech MX 5500) for surfing the Internet and play-
ing games. At the same time, we use FTS4BT to sniff
the communication between the mouse and computer for
40 minutes. The experiment generates tens of thousands
of packets. For example, there are more than 39000 raw
mouse packets in one experiment.

For the lightweight acceleration algorithm, our em-
pirical result in Figure 3.left shows that the mean value
of absolute raw mouse movement distance incurred by
a Bluetooth mouse packet is 4.21 pixels with a confi-
dence interval of [4.16,4.26] at 95% confidence. From
Figure 3.right, which is derived from Figure 3.left using
Algorithm 2, the mean value of absolute on-screen cur-
sor movement distance is 6.76 pixels with a confidence
interval of [6.64,6.86] at 95% confidence. Therefore, un-
der the lightweight acceleration algorithm, missing one
Bluetooth packet leads to an error of around six pixels in
the predicted cursor trajectory. For the complex accel-
eration algorithm, losing packets deviates the predicted
mouse cursor trajectory as well. The impact is more
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complicated because the complex acceleration algorithm
considers the timing of arriving packets to compute the
mouse acceleration. The loss of a packet affects the com-
putation of mouse movement speed and acceleration. We
discuss the impact of timing in the following subsection.
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Figure 3: Histogram of Raw Mouse Movement and Cur-
sor Movement

3.2 Impact of Packet Arriving Time
Bluetooth packet inter-arrival interval as shown in Fig-
ure 4 has no effect on an operating system that uses the
lightweight acceleration algorithm in Algorithm 2, while
it affects the complex acceleration algorithm. Accord-
ing to the analysis in Section 2.2.2, the estimated current
velocity depends on the inter-packet interval in Equation
(2) and historic mouse events in the mouse event queue.
The current and previous estimated mouse velocity could
affect the acceleration in terms of Equation (4). Eventu-
ally, the acceleration determines the ultimate on-screen
mouse movement based on Equation (5). Therefore, the
Bluetooth packet timing and inter-packet interval play an
important role in estimating the ultimate mouse move-
ment.

In the prediction attack, packet timestamps recorded
during sniffing are not those seen by the victim com-
puter, whose event scheduling algorithm adds random-
ness into timestamps when packets get into the OS. In
the replay attack, we use a high resolution timer to relay
the sniffed packets. However, the randomness is added
into packet timestamps too when they get into the imper-
sonating computer. There is no guarantee that the imper-
sonating computer behaves the same as the victim com-

−200 0 200 400 600 800 1000
0

0.5

1

1.5

2

2.5

3

3.5
x 10

4

Inter−packet Interval (millisecond)

Figure 4: Histogram of Bluetooth Mouse Inter-packet In-
terval

puter. The effect of event scheduling on packet times-
tamps is similar to that in the case of prediction attack.
Hence, in both attacks, we cannot obtain the same packet
timestamps seen by the victim computer. The Bluetooth
packet arrival time is a factor that could affect the ac-
curacy of reconstructing mouse cursor trajectory from
sniffed raw mouse data in the air.

3.2.1 Bound of Complex Acceleration Algorithm
We now derive bounds of acceleration for the complex
acceleration algorithm under Linux in terms of the mouse
velocity in order to understand how the error of predicted
mouse velocity, caused by packet timing, affects the ac-
celeration, leading to the reconstructed cursor trajectory.
Consider the system-default mouse settings with the sim-
ple smoothen profile, as discussed in Section 2.2.2 (i.e.,
h = 4 and a = 2). Let the current and previous estimated
velocity be Vn and Vn−1, respectively. The bound of the
smoothed mouse velocity S(Vn) is as follows. The de-
tailed proof can be found in Appendix C.

S(Vn) = 1 , 0 <Vn ≤ 4,
1.5 < S(Vn)< 2 , 4 <Vn < 8,

S(Vn) = 2 , Vn ≥ 8.
(6)

Based on the bound of S(Vn), we derive the bound of
the mouse acceleration A as follows,

A = 1, 0 <Vn ≤ 4,0 <Vn−1 ≤ 4,
1.083 < A < 1.167, (0 <Vn ≤ 4,4 <Vn−1 < 8, or

4 <Vn < 8,0 <Vn−1 ≤ 4),2 <
Vn+Vn−1

2 < 4,
1.417 < A < 1.703, (0 <Vn ≤ 4,4 <Vn−1 < 8, or

4 <Vn < 8,0 <Vn−1 ≤ 4),4 <
Vn+Vn−1

2 < 6,
1.5 < A < 2, 4 <Vn < 8,4 <Vn−1 < 8,
1.583 < A < 2,(Vn ≥ 8,4 <Vn−1 < 8), or

(4 <Vn < 8,Vn−1 ≥ 8),
A = 2, Vn ≥ 8,Vn−1 ≥ 8,

(7)
where A has non-continuous subdomains.

The acceleration bound in Equations (7) implies that
the packet arrival timing may affect the acceleration, and
the cursor trajectory, according to the cursor coordinate
calculation Equation (5). Recall that Vn is V (k,n) when
Equation (3) is satisfied,

V (k,n) =
D(k,n)
tn − tk

×α ×β .

When the packet arrival timing has a change ∆t, the ve-
locity changes to V ′(k,n),

V ′(k,n) =
D(k,n)

tn − tk +∆t
×α ×β . (8)
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Hence, Vn will change with packet arrival timing as well.
Specifically, a small change of timing may switch Vn and
Vn−1 in Equation (7) from one subdomain such as (0,4]
to another subdomain such as (4,8]. For example, if ∆t
shifts 0 <Vn ≤ 4 and 0 <Vn−1 ≤ 4 to 4 <Vn < 8 and 4 <
Vn−1 < 8, respectively, the acceleration will be changed
from A = 1 to 1.5 < A < 2 according to Equations (7).
When the coordinates are updated based on Equation (5),
the cursor trajectory is changed.

3.2.2 Impact from Packet Arriving Time
Our experiments demonstrated the error of cursor tra-
jectory reconstruction caused by the difference of ar-
rival timing of Bluetooth packets seen by the target OS
and the sniffer. We use the sniffer FTS4BT to capture
the Bluetooth traffic between a Bluetooth mouse (Log-
itech MX 5500) and a Fedora core 13 computer, which
adopts the complex acceleration algorithm. Astute read-
ers may question: Since you are evaluating the impact of
packet arrival time, what if there is a packet loss during
your sniffing by FTS4BT? Actually, to ensure there is
no packet loss, we use FTS4BT and a HCI sniffing soft-
ware called “hcidump” to sniff packets simultaneously.
FTS4BT and hcidump capture the same Bluetooth traf-
fic between Computer A and the Bluetooth mouse. Note
that hcidump runs on Computer A and is able to sniff all
the packets without loss. We compare the data set from
FTS4BT with the data set from hcidump to make sure
there is no packet loss in the data set from FTS4BT.

Figures 5 and 6 use the sniffed data set from FTS4BT
and show that in the prediction attack, because the pre-
dicted acceleration deviates from the original one, the
predicted cursor trajectory does not exactly overlap with
the original trajectory. In our experiments, the origi-
nal acceleration values and cursor trajectory are obtained
from logs from a revised Linux kernel.
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4 Evaluation of Reconstructing Cursor
Topology by Inferring Passwords

In this section, we evaluate how well the reconstructed
cursor trajectory enable an attacker to compromise sen-
sitive information of a user. In particular, to quantify

results, we consider the scenario of inferring character
sequences from a reconstructed cursor clicking topol-
ogy when a user is clicking on an on-screen soft key-
board, and evaluate how well we can infer passwords
based on the reconstructed clicking topology. We con-
ducted extensive experiments and attacks were success-
ful on Linux, Windows and Mac OS X. Both the pre-
diction attack and replay attack were deployed against
Linux. Because we could not get the mouse accelera-
tion source code for Windows and Mac OS X, the re-
play attack was mainly deployed against these two oper-
ating systems. Although we referred to various materials
and gained moderate success with the prediction attack
against Windows and Mac OS X, we feel that the replay
attack is more general and methodological against these
two operating systems.

4.1 Inferring Character Sequence
A cursor clicking topology is formed by connecting all
clicking points in the reconstructed trajectory. Recall that
the reconstruction can be conducted by either the predic-
tion or replay attack from raw mouse movement data.

We now introduce the basic approach to infer the char-
acter sequence from a cursor clicking topology. The ba-
sic approach directly maps the clicking topology to an
on-screen keyboard. Assume that we have derived the
raw mouse data that contain clicks on a soft keyboard,
we can derive the clicking topology. However, we do not
know the exact starting point of the trajectory, and there-
fore cannot determine which keys are clicked. To derive
all candidates (i.e., all possible character sequences cor-
responding to the trajectory), we move the cursor click-
ing topology from top left to bottom right in the area of
the on-screen keyboard. When the topology moves, the
clicking points may produce a character sequence. We
record all different character sequences. Hence, a set of
character sequences based on a cursor clicking topology
can be derived. We denote the set of character sequences
as candidate character sequences. The true character se-
quence must be one of candidates if there is no packet
loss and the packet timing is correct. The challenge of
this approach is that it may generate a large number of
candidates.

To reduce the number of candidate character se-
quences, an enhanced inferring approach is proposed to
utilize the statistical information of the area, where peo-
ple click on the on-screen keyboard. Intuitively, when
hitting a key, the user tends to click in the middle region,
rather than the edge of the area belonging to the key. We
denote this area as the hot area for the key. Because the
size of keys on the soft keyboard is different, to derive
a normalized hot area, we first obtain more than 1000
clicking positions for random characters on the same on-
screen keyboard, and then normalize the rectangle area
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Figure 7: Normalized Clicking Positions on Large On-
screen Keyboard

of a key to a 1× 1 square area. Figure 7 shows clicking
positions for these 1000+ characters on an on-screen key-
board by the normalization method. The hot area is the
area that contains 99% of the clicked positions. After ob-
taining the hot area, we map a cursor clicking topology
to an on-screen keyboard from top left to bottom right.
A character sequence will be considered as a candidate
sequence only if all characters’ clicking positions are in
the hot area. With the hot area, the number of candidate
character sequences will sharply decrease. The benefit of
the enhanced inferring approach is that the uncertainty of
the clicked character sequence is significantly reduced.

4.2 Inferring Passwords
To evaluate our method of inferring a character sequence
from the reconstructed cursor topology in the prediction
attack and replay attack, we conducted extensive experi-
ments. Please note that all of our analysis and figures
in the following are derived from the sniffed data by
FTS4BT if not explicitly noted.

4.2.1 Why the Password Attack is Dangerous
In this paper, we use the example of reconstructing a
password clicked on a soft keyboard to demonstrate the
privacy leakage from sniffing Bluetooth mouse raw data.
We believe that this is an extremely severe threat to user
security and a good example that shows a new weakest
link of a system, Bluetooth mouse communication.

Various systems and applications provide soft key-
board as an alternative input method. Users may “click”
these soft keyboards and input sensitive information,
which is under the threat of attacks investigated in this
paper. We classify those soft keyboards into two cate-
gories: (i) classical soft keyboard, and (ii) randomized
soft keyboard. The classical soft keyboard emulates the
physical QWERTY keyboard and the randomized soft
keyboards has a randomized key layout. The random-
ization is for defending against other attacks such as the
keystroke logging attack, which are different from at-

tacks investigated in this paper. A randomized keyboard
could resist our proposed attack to some extent depend-
ing on how the keys are randomized. Our proposed at-
tack suggests that a purely randomized key layout should
be necessary for inputting sensitive information.

To demonstrate many systems are under the threat of
attacks proposed in this paper, we now give a brief sum-
mary of systems and applications, along with the class of
soft keyboards. The classic soft keyboard has been used
by various operating systems, including Linux, Win-
dows, Mac., an others. In particular, the well-known
anti-virus software Kaspersky [1] believes that entering
confidential data on a virtual keyboard is secure and
makes the following statement: “When you enter your
confidential data (for example, your login and password
in an E-Store) using your keyboard, there is a risk that
this personal information is intercepted using the hard-
ware keyboard interceptors or keyloggers, which are pro-
grams that register keystrokes. Then, this information
will be transferred to hackers/cyber criminals through
the Internet. Kaspersky Anti-Virus includes Virtual key-
board that allows to avoid interception of sensitive data.”
Online banking login system including HSBC [23] and
Westpac - Australia’s First Bank [45] use the classical
soft keyboard. The randomized soft keyboard is used to
a very limited extent. Here are two examples: the online
login system for State Bank of Travancore in India [3]
and an online chat system QQ [2].

Hence, the attack of reconstructing a password clicked
on a soft keyboard is truly realistic in various scenar-
ios. The fact that Bluetooth mouse leaks passwords is
significant. We also extended our attack against graph-
ical passwords in Section 5.1, which has been adopted
by Windows 8. To the best of our knowledge, we be-
lieve that the aforesaid hidden vulnerability of Bluetooth
mouse was largely ignored. Thus, we intend to sound a
warning bell to the industry that unencrypted communi-
cation over Bluetooth mouse may be detrimental to user
online privacy and security. In Section 5, we discuss
the encryption of Bluetooth mouse and a pure random-
ized soft keyboard as countermeasures to the proposed
attacks.

4.2.2 Performance Metrics
We consider two metrics for evaluating how well we
can infer passwords based on the reconstructed clicking
topology. One is success rate, which is defined as the
percentage of real passwords that are included in the set
of candidate passwords. The other is obscurity degree,
which measures the average number of passwords corre-
sponding to a clicking topology. Apparently, an attacker
prefers a small number of passwords from a given click-
ing topology. Assume that each candidate password has
the equal probability to be the real password. Hence, if
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the cardinality of a set is mi, its entropy is log2 mi. The
average entropy for all the clicking topologies is defined
as the obscurity degree and is derived by,

Obscurity degree =
∑n

i=1 log2 mi

n
, (9)

where n is the number of clicking topologies. Note that
obscurity degree is an information-theoretic metric and a
lower obscurity degree means fewer candidate passwords
per clicking topology that an attacker has to guess.

4.2.3 Success Rate without Packet Loss in Predic-
tion Attack

We generated 100 random passwords of 8 characters
long (including uppercase letters, lowercase letters, and
numbers), and used a Bluetooth mouse (Logitech MX
5500) to click on a soft keyboard, xvkbd of size 449×149
pixels (small-size soft keyboard), to input those pass-
words on a computer installed with openSUSE 11.1,
which uses the lightweight mouse acceleration algo-
rithm. At the same time, the sniffer FTS4BT was used
to sniff all the Bluetooth traffic. To check whether our
approach works on soft keyboards with different sizes,
we conduct the similar set of experiments on a large size
soft keyboard, xvkbd of size 896×254 pixels.

We evaluate both basic and enhanced inferring ap-
proaches for inferring password on different-sized soft
keyboards on OpenSUSE 11.1 with the lightweight
mouse acceleration algorithm. For both small and large
soft keyboards, we achieve a success rate of 100% for
basic inferring and 99% for enhanced inferring.

We also evaluate the number of candidate passwords
on both small and large soft keyboards and show that
the enhanced inferring approach can significantly reduce
the number of candidate passwords for both keyboards.
Figures 8 and 9 show the histogram of the number of
password candidates on the small and large size soft
keyboards, respectively through the basic inferring ap-
proach. Figures 10 and 11 show the histogram of pass-
word candidates from mouse clicking topologies on the
two keyboards by the enhanced inferring approach us-
ing the hot area. From those figures, we can observe
that the enhanced inferring approach sharply reduces the
number of candidate passwords for both small and large
keyboards. In particular, for the small keyboard, the en-
hanced inferring method reduces the number of candi-
date passwords from the range of (0,425) to (0,22). For
the large size keyboard, the enhanced inferring method
reduces the number of candidate passwords from the
range of (0,400) to (0,15).

From Figures 8 and 9, we can derive obscurity de-
gree. Table 1 compares obscurity degree for basic and
enhanced inferring with the lightweight acceleration al-
gorithm. We can see that the enhanced inferring reduces
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the obscurity of guessing a password sharply. The basic
inferring approach has an obscurity degree of around 6
bits while the enhanced inferring approach has an obscu-
rity degree of around 1 bit, corresponding to two pass-
words per clicking topology that an attacker has to guess.

Table 1: Obscurity Degree for Basic and Enhanced In-
ferring for Lightweight Acceleration

Small
keyboard

Large
keyboard

Basic inferring 6.1903 5.8845
Enhanced inferring 1.6972 1.1062

4.2.4 Success Rate with Packet Loss in Prediction
Attack

Recall that during sniffing, Bluetooth packets may drop
due to fading and interference. To reduce the packet loss
rate, we use two FTS4BT dongles in the redundant mode
to sniff the same Piconet. Table 2 lists the packet loss
rate in terms of distance between the sniffer and the tar-
get. The experiments were conducted in a corridor of a
campus building. We can see that the sniffer has a loss
rate of only 1.4% at a distance of 10 meters. This demon-
strates that the attack can be deployed stealthily from a
reasonable long distance. When the distance is more than
10 meters, the loss increases dramatically. In Section 5,
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we will discuss how to use customized devices to further
improve the sniffing distance.

Table 2: Packet Loss Rate v.s. Distance (meter)
Distance 1 3 5 10 15 30
Loss rate 0 0 0.2% 1.4% 27.1% 97.8%

We now use emulation to show how packet loss af-
fects success rate of inferring passwords because it is not
easy to control loss rate in real-world experiments. The
data is from the large size on-screen keyboard on open-
SUSE 11.1. For each loss rate, we first randomly discard
raw mouse packets from the original loss-less data set of
FTS4BT at a specific loss rate and form a new set of raw
mouse packets. We then apply either the basic inferring
approach or the enhanced inferring approach to the new
set of raw mouse packets. In this way, we can compute
the success rate at the specific packet loss rate. Figure 12
shows the success rate for the basic inferring approach
at different packet loss rates. We observe that when the
packet loss rate is less than 2% - i.e., when the distance
is 10 meters or less - the basic inferring approach can
achieve a very high success rate of around 80%.

Figure 13 shows the success rate for the enhanced in-
ferring approach at different packet loss rates. The con-
fidence interval for both figures is computed over 10 em-
ulations. When the packet loss rate is less than 1%, the
enhanced inferring approach can achieve a success rate
near 80%. Comparing Figure 12 with Figure 13, we can
see that when the packet loss rate is less than 1%, the
success rate will not decrease sharply for the basic and
enhanced inferring approaches. When the packet loss
rate is more than 1%, the basic inferring approach can
achieve much higher success rate than the enhanced in-
ferring approach. Hence, the basic inferring approach
is adopted when the packet loss rate is more than 1%.
Nonetheless, recall that the basic inferring approach has
a larger candidate set and therefore a higher uncertainty
of guessing the correct password. Hence, if the packet
loss rate is less than 1%, the enhanced inferring can be
adopted for a lower uncertainty.
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Figure 12: Success rate v.s.
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Figure 13: Success rate v.s.
packet loss rate by the en-
hanced approach

4.2.5 Success Rate with Complex Acceleration in
Prediction Attack

As we discussed in Section 3, the packet arrival timing
affects the attack accuracy on reconstructing the mouse
cursor trajectory on screen for operating systems using
the complex acceleration algorithm. We conducted ex-
tensive real-world experiments on Fedora Core 13, which
uses the complex acceleration algorithm, to investigate
how the packet timing affects inferring passwords. Note
that the data for investigating is from the sniffer FTS4BT.
To reduce the impact from timing, we should use the data
starting at the time when the first click of passwords oc-
curs and this reduces the prediction error according to the
discussion in Section 3.

Table 3 compares the results of inferring passwords
for lightweight and complex acceleration algorithms. We
can see that passwords can be derived with a success
rate of more than 95% for the complex acceleration al-
gorithm. One reason for the high success rate is that the
mouse movement during entering passwords (clicking an
on-screen keyboard) is different from the mouse move-
ment in other situations. Each character on the on-screen
keyboard corresponds to a small area. Users always take
caution when inputting passwords and will not move the
mouse too fast to miss a key. This slow movement re-
duces the impact of packet timing on mouse acceleration
and favors reconstructing a correct clicking topology. We
observed in the experiments for the large size keyboard
with the basic inferring approach that 98% of password
clicking processes have a topology deviation in the range
[0, 25] pixels in both X and Y axes. In only one case,
the deviation is 52 pixels on the X direction and 9 pix-
els in the Y direction. However, the large deviation does
not always lead to a failure of password inference, be-
cause the predicted clicking topology may be still in the
characters’ areas on the soft keyboard. We have observed
similar results in experiments on the small keyboard.

4.2.6 Replay Attack
To evaluate the replay attack, we conducted the following
experiments on Fedora Core 13, Windows 7, and Mac
OS X 10.6.5. After sniffing Bluetooth mouse raw data
between the Bluetooth mouse and a victim computer by
FTS4BT, we used another computer as the attack com-
puter, which was installed Ubuntu 8.04, to replay the
sniffed mouse data to an impersonating computer, which
is installed with the same OS as the victim computer OS.

We now show the results of replay attack and exam-
ine the impact of packet timing change caused by the re-
play attack. We first provide the result for a victim com-
puter installed with Fedora Core 13. Figures 14 and 15
show that acceleration and cursor trajectory are changed
during the reconstruction in the replay attack. Because
acceleration in the replay attack deviates from the origi-
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Table 3: Password Reconstruction Success Rate for Lightweight and Complex Acceleration Algorithms
Basic Inferring Enhanced Inferring

Small keyboard Large keyboard Small keyboard Large keyboard
Lightweight acceleration 100% 100% 99% 99%

Complex acceleration 99% 98% 98% 95%

nal one, the cursor trajectory derived by the replay attack
does not overlap with the original trajectory.

Table 4 shows the success rate and obscurity degree
for the replay attack with a large keyboard for 100 pass-
words. On Fedora 13, we can see that because of more
impact from replayed Bluetooth packet timing, the per-
formance of the replay attack is not as good as the predic-
tion attack. Bluetooth packet timing is seriously distorted
during the replay. However, a detection rate of 69% is
still achieved when the basic inferring is used. The de-
tection rate for the enhanced inferring is 31%. Hence,
the basic inferring is recommended for the replay attack
on Linux OS with Xserver version after 1.5.

On Windows 7, we conduct the replay attack on its de-
fault soft keyboard. To log the cursor clicking topology,
we install RUI, a tool Recording User Input from inter-
faces under Windows and Mac OS X [25], on the imper-
sonating computer. Once a clicking topology is logged,
either the basic inferring approach or the enhanced infer-
ring approach can be used to map the clicking topology
to the soft keyboard. As we can see from Table 4, the
success rate of basic inferring approach achieves 100%,
while the success rate of enhanced inferring approach
reaches 92% with an obscurity degree of only around 2,
corresponding to 4 passwords on average for the attacker
to choose and be successful in recovering the password.
It demonstrates that our replay attack against Windows 7
is feasible and effective.

On Mac OSX 10.6.5, we conduct replay attack on its
default soft keyboard. RUI is used to log the cursor
clicking topology on the impersonating computer. As
we can see from Table 4, the success rate of basic in-
ferring is 44%, while the success rate of enhanced infer-
ring is 14%. It seems that Mac OSX adopts more sensi-
tive mouse acceleration algorithm and randomness intro-
duced into the packet timing by the replay attack brings
more trajectory deviation, leading to a low success rate.
Based on our experiments, Mac OSX seems less vulner-
able to the replay attack.

Please see the footnotes for videos of successful re-
play attack on different target OS: Fedora Core 136,
Windows 7 default installation7, Mac OSX 10.6.58.
These videos show the replay attack process, and do not

6Attack Fedora 13: http://youtu.be/qnjqgCCTVTk
7Attack Windows 7: http://youtu.be/FVJK_m3UPj0
8Attack Mac OSX: http://youtu.be/iFJoHBiYDWg

0 5 10 15 20 25 30 35
0.8

1

1.2

1.4

1.6

1.8

2

2.2

Bluetooth Mouse Packet Number
 

 

Original Acceleration
Replayed Acceleration

Figure 14: Acceleration in
replay attack

1200 1250 1300 1350 1400 1450 1500
200

400

600

800

1000

1200

X(pixel)

 

 

Original Cursor Trajectory
Replayed Cursor Trajectory

Figure 15: Cursor trajec-
tory in replay attack

include the sniffing process. In each demo, two comput-
ers are used. One emulates the Bluetooth mouse, denoted
as “fake mouse”. The other computer is the “impersonat-
ing computer”, installed with the same OS as the victim
computer OS. In the video, the fake mouse is a laptop
installed with Ubuntu 8.04, and the impersonating com-
puter is either a laptop or computer. The fake mouse re-
plays sniffed data to the impersonating computer. The
sniffed data is derived by FTS4BT.

At the beginning of each video, we begin with the
mouse device registration and replay programs on the
fake mouse. The impersonating computer then connects
to the fake mouse. After the Bluetooth connection is set
up, the fake mouse will replay the sniffed data according
to their original time interval to the impersonating com-
puter. For the clarity of demonstrating the attack impact,
at the beginning of each replay, we move the cursor to
the first character of the password and show that the re-
play attack correctly derives the positions of the rest of
the password characters. In the video, we can see that
the cursor on the target computer moves and clicks pass-
words automatically. Here, the word “automatically”
means the cursor on the target computer is controlled by
the fake mouse, rather than a hand. As we can see, the
victim’s mouse movement trajectory and clicking topol-
ogy can be reconstructed from the cursor movement on
the impersonating computer.

5 Discussion
In this section, we first extend our attack to graphical
passwords, and then discuss how to improve the Blue-
tooth sniffing distance. Finally potential countermea-
sures are proposed to fight against the proposed attacks.

5.1 Attacking Graphical Passwords
Graphical passwords have attracted great attention as po-
tential alternatives to text-based passwords. Generally

11



Table 4: Performance of Replay Attack
Fedora 13 Windows 7 Mac OSX 10.6.5

Basic
inferring

Enhanced
inferring

Basic
inferring

Enhanced
inferring

Basic
inferring

Enhanced
inferring

Success rate 69% 31% 100% 92% 44% 16%
Obscurity degree 4.8114 0.5990 7.4084 2.1427 6.2582 1.1304

speaking, graphical passwords can be divided into three
categories [7]: (i) recall based, (ii) cued-recall based, and
(iii) recognition based techniques. In particular, recall
based techniques, including DAS [24], BDAS [14], Pass-
Go [44] and GrIDsure [20], require that users recall and
reproduce a drawing or repeat a selection that users cre-
ate during the personal identification registration phase.
In cued-recall systems such as PassPoints [46], users are
asked to remember and target specific locations within an
image. The image acts as a memory cue to these specific
locations selected (clicked) by users. Notice that the dif-
ference between the cued-recall and recognition is that:
the cued-recall only displays one picture and the user can
register a graphical password by choosing different lo-
cations in this picture. Hence, the picture itself likes a
cue for the user when he/she inputs the graphical pass-
word. The recognition will have a bunch of pictures and
then the user can pick up some of them as his/her graph-
ical password. The recognition based techniques such as
Déjà Vu [10], Story [9] and Passfaces [35] require users
to select a set of images during the registration phase and
then identify their pre-selected images from a set of de-
coy images in order to be authenticated.

Our attack proposed in this paper can be applied
to various recall based and cued-recall based graphical
passwords. Because those recall based and cued-recall
based systems take advantage of personal drawing or
pre-selected points in an image, the click topology is
preserved within the image. If a user uses a Bluetooth
mouse as the input device for these graphical passwords,
we can capture the user’s mouse movement and clicks,
and apply either the prediction or the replay attack that
we proposed in this paper to recover the passwords. As
an example of a commercial recall based graphical pass-
word product, GrIDsure [20] presents a user with a 5×5
square grid with 25 cells. During the registration phase,
a user chooses a pattern comprising an ordered subset
of the 25 cells by clicking the corresponding cells as a
personal identification pattern. During the login phase,
the user is presented with the fully populated grid filled
with random numbers in cells. The user input numbers
corresponding to her personal identification pattern as a
one-time password. In this case, if the user adopts a
Bluetooth mouse during the registration phase and the at-
tacker could capture the mouse movement data, it will be

trivial to disclose the personal identification pattern and
the attacker could login a victim computer as the user
after the attack.

The video at the footnote9 demonstrates the replay at-
tack against Windows 8 graphical password, which is a
standard cued-recall based graphical password system.
Under Windows 8, a user first chooses a picture and then
draws three gestures by using a mouse on PC. The three
gestures could be any combination of circles, straight
lines, and taps. The video shows the reconstructed cur-
sor trajectory could reveal those gestures and leaks user
graphical password effectively. This demonstrates that
our proposed attack against Windows 8 is feasible and
effective, and Windows 8 should reconsider their choice
of graphical password system.

5.2 Potential Countermeasures
We have demonstrated that eavesdropping Bluetooth
mouse communication is feasible and may incur serious
security and privacy breaches. Hence, we recommend
encrypting Bluetooth mouse communication as a poten-
tial countermeasure [28, 31].

Bluetooth has four modes for secure pairing in which
secret keys are negotiated between two pairing devices:
(i) The numeric comparison mode is used if both pairing
devices have displays. A user accepts the pairing if num-
bers on both displays are equal. This mode is designed
to resist the man-in-the-middle (MITM) attack. (ii) The
just works mode is designed for devices without displays.
It is similar to the numeric comparison mode, but with-
out number comparison and cannot defend against the
MITM attack. (iii) The out of band mode is used if an
extra channel exists between pairing devices. (iv) The
passkey entry mode is designed for “scenarios where one
device has input capability but does not have the capabil-
ity to display six digits and the other device has output
capabilities” [28].

We now discuss which mode is appropriate for en-
crypting the communication between a mouse and com-
puter. Passkey mode is not appropriate since it is awk-
ward to equip a mouse with a keypad or software keypad.
The out of band mode cannot be used because there is no
additional channel between a mouse and computer. The
just works mode is subject to the MITM attack. Lindell

9Attack Windows 8 picture password: http://youtu.be/

eLUN8_pDuIE
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[29] has proved that the numeric comparison mode for
device pairing in Bluetooth version 2.1 (or later) is se-
cure. Arming a mouse with a small display does not look
very prohibitive. If such a display shows 6 to 20 digital
numbers or characters, the numeric comparison can be
applied for Bluetooth mouse to prevent the MITM attack,
showing whether there is a MITM or not. 2.6 or higher
Linux kernel with Bluez 4.x fully supports Bluetooth se-
cure simple pairing, including the numerical comparison
mode. As a demo, we have implemented the numeri-
cal comparison mode for our raw mouse data replay pro-
gram, i.e. fake mouse, for an Android tablet. More and
more people combine tablets, wireless mouse and key-
board as a mobile computing platform. Microsoft devel-
oped a Bluetooth mouse (the wedge mouse) for its Sur-
face tablet. Please refer to the video at the footnote10.

We also propose randomization of the key layout of
a soft keyboard as a countermeasure to the proposed at-
tacks. Surprisingly, no major operating systems provide
a choice of randomized keyboard, neither do most ap-
plications. We did find that a few applications use ran-
domized soft keyboard. However, those applications in-
cluding ones used by the State Bank of Travancore in
India [3] and an online chat system QQ [2] often adopt
some rules to alternate a limited number of key layouts.
For example, the rules may be based on a state machine.
This implies that the entered characters are not purely
random in terms of on-screen positions. An attacker who
is familiar with those rules may still reconstruct the pass-
word from sniffed raw mouse data. Hence, the soft key-
board should be completely randomized while users in-
put sensitive information or careful analysis should be
performed to study the security of those randomization
strategies. We leave such analysis as our future work.

6 Related Work
Although there are various attacks against Bluetooth, our
work is the first on reconstructing the Bluetooth mouse
trajectory and deriving sensitive information such as
passwords. Bluetooth sniffing has been investigated in
[43, 12, 33, 17]. Attacks on the pairing procedure for
deriving link keys are introduced in [39, 28]. Attacks
against Bluetooth keyboard are investigated in [8, 32].
For a comprehensive study of Bluetooth security and re-
lated attacks, please refer to [22, 31].

Mouse movement can also be used as behavioral bio-
metrics. Behavioral biometrics, as a biometric authenti-
cation technology, has proven useful in authenticating a
user. For example, Pusara and Brodley [36] used mouse
dynamics for conducting re-authentication. Due to lim-
ited experiments with only eleven users, they concluded
that mouse biometrics might not be sufficient for user

10Secure mouse: http://youtu.be/781yYdc-3O8

re-authentication. Aimed and Traore [4, 5] proposed
an approach that aggregates low-level mouse events as
higher-level actions, including point-and-clicks or drag-
and-drops action. Aimed et al.’s work [4, 5, 47] achieved
very high authentication accuracy from the analysis of
2000 mouse actions. To deploy real time authentication
(such as online re-authentication) based on mouse bio-
metrics, Zheng et al. [48] proposed fine-grained angle-
based metrics to analyze mouse movement. Based on
these metrics, they used the Support Vector Machines
(SVM) to classify users. Their results showed that a high
accuracy based on few mouse actions could be achieved.

7 Conclusion

In this paper, we first conducted a holistic investigation
of privacy leakage from unencrypted Bluetooth mouse
traffic. By reviewing the process of establishing Blue-
tooth connections, we demonstrated how one can sniff
Bluetooth traffic through multiple sniffers or a single
sniffer. We then examined the Bluetooth mouse packet
semantics and presented the prediction attack and replay
attack. The two attacks are able to reconstruct on-screen
cursor trajectories based on sniffed raw mouse move-
ment data when a lightweight or complex mouse accel-
eration algorithm is used. We also presented a careful
analysis of how packet loss and variations of packet ar-
rival timing may affect the accuracy of reconstructed cur-
sor trajectories. Finally, we performed an extensive eval-
uation of an application of Bluetooth mouse sniffing -
the inference of passwords that a user enters through an
on-screen soft keyboard and the inference of graphical
passwords used by Window 8. We proposed two ap-
proaches for password inference: a basic inferring ap-
proach to enumerate all candidate passwords from the
clicking topology and an enhanced inferring approach
that utilizes the statistical distribution of human click-
ing patterns to reduce the number of candidate passwords
corresponding to a clicking topology. Our real-world ex-
periments showed the severity of privacy leakage from
unencrypted Bluetooth mouse.

We also discussed potential countermeasures to the
proposed attacks. We recommend the use of numerical
comparison mode for encrypting Bluetooth mouse traf-
fic to prevent the man-in-the-middle attack. A random-
ized software keyboard can also resist the attack against
software keyboard while we suggest Microsoft choose a
better graphical password system for Windows 8. Our fu-
ture work includes the development of a full-band Blue-
tooth sniffer using USRP2s. We also plan to give demos
at various technical and academic security conferences
and appeal to the Bluetooth/RF mouse manufacturers to
encrypt its data and enforce use of more secure device
pairing mechanisms.
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Appendix A

In this Appendix, we present an overview of Bluetooth
and discuss how to sniff Bluetooth traffic.

Introduction to Bluetooth: Bluetooth works in the
unlicensed 2.4GHz Industrial Scientific Medical (ISM)
band. In USA, Bluetooth divides the ISM band into 79
1MHz-wide channels and uses frequency hopping for
communication. For a thorough introduction to Blue-
tooth, please refer to the core specifications of Bluetooth
[41]. In the following, we focus on technical details re-
lated to sniffing Bluetooth traffic [19, 21, 41].

Figure 16 shows how a laptop equipped with a Blue-
tooth adapter communicates with a Bluetooth mouse and
forms a Bluetooth network, i.e., piconet. Assume that
the laptop has never connected with the mouse before.
Initially, both the laptop and the mouse are in the state of
standby, which is a low power mode. In this state, both
devices run at their native clocks independently.

To find the mouse and other Bluetooth devices nearby,
a user (using an application) commands the laptop Blue-
tooth adapter to enter the substate of inquiry and send out
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inquiry messages consciously over the inquiry hopping
sequence of channels. The inquiry hopping sequence is
determined by the General Inquiry Access Code (GIAC)
specified in the standard and known to all devices. It con-
sists of two groups of frequencies: train A and train B,
each of which is 16 frequencies long. In Bluetooth, the
device that initiates the communication is the master. In
our case, the laptop is the master, while the mouse is the
slave. To make the mouse discoverable, a user pushes the
button on the mouse to have the mouse enter the connect-
ing substate of inquiry scan. The Bluetooth specification
does not specify how a device leaves the state of standby
or connection to perform inquiry. The decision is up to
the device manufacturer and implementor.

!

Master! Slave

Standby! Standby

Inquiry!

Inquiry Response

Page!

Page!Response

Master!Response!

Connection

Pairing!

Inquiry!Scan

Page!Scan

Connection!

Service!Discovery!

Standby

Connecting!

substates!

Connection!

Figure 16: Establishing a Bluetooth Connection

To improve the chance that the mouse receives inquiry
messages transmitted at different frequencies, the mouse
listens for Tw inquiry scan seconds at one frequency every
Tinquiry scan seconds, where Tw inquiry scan is large enough
for receiving inquiry messages transmitted at one train
of 16 frequencies. If the inquiry message is not received
with the current scan window, the mouse will listen at
next frequency, following inquiry scan hopping sequence
determined by GIAC as well. Once the inquiry message
is received, the mouse gets into the substate of inquiry re-
sponse and sends a Frequency Hopping Synchronization
(FHS) packet to the laptop, which is also scheduled to lis-
ten for the FHS packet at the same frequency. The FHS
packet contains the mouse’s MAC address and clock in-
formation. Bluetooth designs the inquiry strategy so that
at most 10.24 seconds are required for the two devices
to find each other [13, 19] if the two devices are close to
each other.

When the laptop receives the FHS packet from the
mouse, the laptop is ready to build a connection with
that particular mouse. At this point, the laptop enters
the substate of page and runs at the paging-specific fre-
quency hopping sequence, which is computed from the
mouse’s MAC address. The mouse is in the substate of
page scan. The procedures of page and page scan are

similar to those of inquiry and inquiry scan. The pag-
ing procedure is normally shorter than the inquiry proce-
dure since the laptop can estimate the mouse’s hopping
sequence and phase (where “phase” refers to which fre-
quency the device currently stays at with regard to the
hopping sequence) from the FHS packet and has a better
chance to catch up with the mouse. The worst case page
delay is 2.56 seconds+ r, where r is a random variable
uniformly distributed between 0ms and 10ms. Once the
mouse receives the paging packet from the laptop, it en-
ters the substate of page response and sends a response
packet. When the laptop receives the response, it sends
its own FHS packet to the mouse. This FHS packet con-
tains the laptop Bluetooth adapter’s MAC address and
clock. The mouse then acknowledges the FHS packet.

Once the laptop’s FHS packet is acknowledged by the
mouse, the laptop and mouse have built the connection
and can run upper-layer applications such as service dis-
covery and pairing. During the state of connection, traf-
fic exchange follows the channel hopping sequence, de-
termined by the MAC address of the master device, i.e.,
the laptop in our example. The master’s clock determines
the phase in the channel hopping sequence.

Sniffing Bluetooth: To provide privacy, Bluetooth
supports optional encryption at the link layer. Bluetooth
human interface devices, such as keyboard, mouse, and
remote monitoring devices, follow the Bluetooth Human
Interface Device (HID) Profile, which defines the proto-
cols, procedures and features. This profile requires sup-
port for authentication and encryption for keyboards and
other HIDs that transmit identification or biometric in-
formation [40]. Encryption is optional for other types
of HIDs such as mouse. In many scenarios, Bluetooth
mouse traffic is sent without encryption because of three
possible reasons: (i) The Bluetooth mouse manufacturer
does not encrypt the traffic by default, (ii) people void
the encryption for Bluetooth mouse for convenience of
use, or (iii) the mouse encryption is often weak [28, 39].
This leaves the chance for an attacker to sniff Bluetooth
mouse communication and exploit the mouse cursor in-
formation.

One challenge to sniff Bluetooth communication is
how to deal with the channel hopping. There are two
possible ways to deal with this problem:

1. Sniffing all the 79 frequencies via multiple Blue-
tooth sniffers. With the advancement of hardware, sniff-
ing the whole ISM band is not impossible. In particu-
lar, the Universal Software Radio Peripheral2 (USRP2)
[16] is a software-defined radio device and works with
the GNU Radio [26], which is a free software toolkit for
building Software-defined Radio devices and can be used
to demodulate and process Bluetooth packets. A USRP2
with a 2.48GHz daughterboard can be tuned to any Blue-
tooth channel. One USRP2 can detect 25 channels si-
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multaneously. Thus, four USRP2s are enough to sniff all
79 Bluetooth channels. Multiple Ubertooths [33] can be
used for sniffing all 79 frequency channels as well [34].

2. Obtaining the hopping sequences of the target pi-
conet. FTS4BT [17] is a commercial Bluetooth sniffer,
which uses this approach. To sniff Bluetooth communi-
cation between two devices, FTS4BT needs the MAC ad-
dresses of both as input, which can be collected through
Ubertooth [33] with plugins for Kismet and Wireshark.
FTS4BT has a few modes for sniffing. The default mode
is slave inquiry, in which the sniffer performs an inquiry
of the slave device to obtain its Bluetooth clock and en-
ters the page scan mode. The sniffer can then pretend to
be the salve as it can use the slave’s Bluetooth clock and
MAC address to calculate the correct page scan frequen-
cies. Then, when the master pages the slave, the sniffer
can switch to the master’s Bluetooth clock and follow
the master’s frequency hopping sequence to capture all
Bluetooth packets.

Another challenge to sniffing Bluetooth is that all
Bluetooth packets are whitened by default [43]. That
is, data in the header and payload are scrambled be-
fore transmission. The sniffed mouse data must be un-
whitened to obtain the original mouse data. The whiten-
ing process uses the 6 bits of the clock as input to a linear
feedback shift register (LFSR) in order to get a pseudo-
random sequence, and then does an XOR of the sequence
with the packet data. Fortunately for the attacker, there
are only 64 possible starting statuses of LFSR, making it
easy to un-whiten a packet in a bruteforce manner. No-
tice that the Header Error Code (HEC), which is in the
packet’s header, is also calculated based on the LFSR
and initialized with the UAP (upper address part) of the
master device, and thus also needs to be un-whitened.
Spill et al. [43, 42] proposed a mechanism to un-white
Bluetooth data, which is used by Ubertooth. FTS4BT
emulates the whole process of Bluetooth communication
and can un-white the Bluetooth data automatically.

In this paper, we use FTS4BT to conduct sniffing in
all experiments. We leave the development of a full band
Bluetooth sniffer using USRP2s as our future work.

Appendix B

In this appendix, we introduce how acceleration A in Sec-
tion 2.2.2 is derived in detail. Before computing mouse
acceleration, mouse velocity Vn will be smoothed. Let
h and a be the acceleration threshold and acceleration
factor, respectively. Default values of h and a are 4 and
2, respectively. a is derived by acceleration numerator
divided by acceleration denominator, with default val-
ues of 2 and 1, respectively. Notice that the accelera-
tion threshold, numerator and denominator can be set in
a configuration file (i.e., /usr/share/X11/xorg.conf.d/10-

evdev.conf). In addition, F (x) in Equation (10) is used
to compute the penumbral gradient,

F (x) = 0.5+
(2x−1)

√
1− (2x−1)2 + arcsin(2x−1)

π
.

(10)
The smoothed mouse velocity S (Vn) is derived as fol-
lows,

S (Vn)=


F (0.5∗ (1+Vn))∗2−1 , 0 <Vn < 1,

1 , 1 ≤Vn ≤ h,

1+F (Vn
ah )∗ (a−1) , h <Vn < h∗a,

a , Vn ≥ h∗a,
(11)

and

if S (Vn)< 1, S (Vn) = 1. (12)

Hence, we know that

S (Vn)≥ 1. (13)

Simpson’s rule is then used to compute the mouse ac-
celeration A as follows,

A =
S (Vn)+S (Vn−1)+4∗S (

Vn+Vn−1
2 )

6
. (14)

Because S (Vn) ≥ 1, we have A ≥ 1. Let (X , Y ) be
the current cursor coordinate. If A = 1, the system will
not accelerate the mouse speed. We can derive the cursor
coordinate after the raw mouse movement (∆xn, ∆yn) as
follows,

X = X +∆xn,

Y = Y +∆yn.
(15)

If A > 1, the system will accelerate the mouse speed.
Before accelerating the mouse speed, the system first
softens the mouse relative motion ∆xi and ∆yi as follows.

∆x′n =

{
∆xn −0.5 , ∆xn > ∆xn−1,

∆xn +0.5 , ∆xn < ∆xn−1,
(16)

and

∆y′n =

{
∆yn −0.5 , ∆yn > ∆yn−1,

∆yn +0.5 , ∆yn < ∆yn−1.
(17)

Based on ∆x′n and ∆y′n, we can obtain the accelerated
mouse movement as follows,

∆x′′n = ∆x′n ∗A+Rx,

∆y′′n = ∆y′n ∗A+Ry,
(18)

where Rx and Ry are the last remainder of mouse mo-
tion.
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The system will then update the remainders,

Rx = ∆x′′n − round(∆x′′n),

Ry = ∆y′′n − round(∆y′′n).
(19)

Finally, we can obtain the cursor coordinate on screen

X = X + round(∆x′′n)

Y = Y + round(∆y′′n)
(20)

Appendix C

In this Appendix, we provide the detail of computing the
upper bound and lower bound of the complex accelera-
tion strategy in Linux. We assume that a user uses the
default mouse setting in the original system configura-
tion file. That is, the Simple Smooth Profile will be used
and the default values of the acceleration threshold h and
acceleration factor a are h = 4 and a = 2, respectively.
Based on Equations (11) and (10), we rewrite S(Vn) as
follows:

S(v) =



2× Vn
√

1−V 2
n +arcsinVn
π ,0 ≤Vn < 1,

1,1 ≤Vn ≤ 4,

1.5+
( Vn

4 −1)
√

1−( Vn
4 −1)2+arcsin( Vn

4 −1)
π ,4 <Vn < 8,

2,Vn ≥ 8.
(21)

We now prove the monotonicity of function S(Vn) in
each subdomain. From the monotonicity of function
S(Vn), we can derive the upper bound and lower bound
of S(Vn) in each subdomain.

Case 1. When 0 ≤Vn < 1, from Equation (21), we can
derive S(Vn)

′, the derivative of S(Vn), as follows

S(Vn)
′ =

2
π
∗ (
√

1−V 2
n − V 2

n√
1−V 2

n
+

1√
1−V 2

n
),(22)

=
4∗
√

1−V 2
n

π
. (23)

When 0 ≤ Vn < 1, we have S(Vn)
′ > 0. That is, S(Vn)

is monotonically increasing. The bound is

0 < S(Vn)< 1, when 0 <Vn < 1. (24)

Case 2. When 4 <Vn < 8, from (21), we have

S(Vn)
′ =

1
π
∗ (

√
1− (Vn

4 −1)2

4
−

(Vn
4 −1)2

4∗
√

1− (Vn
4 −1)2

+
1

4∗
√

1− (Vn
4 −1)2

), (25)

=
1
π
∗

1− (Vn
4 −1)2

2∗
√

1− (Vn
4 −1)2

, (26)

=

√
1− (Vn

4 −1)2

2π
. (27)

Hence, S(Vn)
′ > 0 and S(Vn) is monotonically increas-

ing, when 4 <Vn < 8. We have the bound

1.5 < S(Vn)< 2, when 4 <Vn < 8. (28)

Case 3. When 1 ≤ Vn ≤ 4, S(Vn) is a constant. We
have

S(Vn) = 1, when 1 ≤Vn ≤ 4. (29)

Case 4. Similar to Case 3, when Vn ≥ 8, S(Vn) is a
constant. Then we have

S(Vn) = 2, when Vn ≥ 8. (30)

Combining Equations (24), (28), (29), and (30), we
can derive the range of S(Vn)

0 < S(Vn)< 1 , 0 <Vn < 1,

S(Vn) = 1 , 1 ≤Vn ≤ 4,

1.5 < S(Vn)< 2 , 4 <Vn < 8,

S(Vn) = 2 , Vn ≥ 8.

(31)

According to Equations (12) and (13), we can simplify
the range of S(Vn) as follows,

S(Vn) = 1 , 0 <Vn ≤ 4,

1.5 < S(Vn)< 2 , 4 <Vn < 8,

S(Vn) = 2 , Vn ≥ 8.

(32)

Hence, based on Equation (4), which calculates the
acceleration from the current and last velocity as Vn and
Vn−1, we can numerically derive the bounds of the accel-
eration as follows,

A = 1, 0 <Vn ≤ 4,0 <Vn−1 ≤ 4,

1.083 < A < 1.167, (0 <Vn ≤ 4,4 <Vn−1 < 8, or

4 <Vn < 8,0 <Vn−1 ≤ 4),2 < Vn+Vn−1
2 < 4,

1.417 < A < 1.703, (0 <Vn ≤ 4,4 <Vn−1 < 8, or

4 <Vn < 8,0 <Vn−1 ≤ 4),4 < Vn+Vn−1
2 < 6,

1.5 < A < 2, 4 <Vn < 8,4 <Vn−1 < 8

1.583 < A < 2,(Vn ≥ 8,4 <Vn−1 < 8), or

(4 <Vn < 8,Vn−1 ≥ 8)

A = 2, Vn ≥ 8,Vn−1 ≥ 8.
(33)
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