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Introduction
The STR750 microcontroller comes with a dedicated set of peripherals designed for field 
oriented control (FOC) of both permanent magnet DC/AC motors (PMDC/PMAC also called 
BLDC) and AC induction motors. It is delivered with two software libraries that allow you to 
develop applications to control these motors.

■ The PMSM software library 

■ The AC induction motor software library 

The complete library source files are delivered with the STR750-MCKIT, and are also 
available for free on the ST website www.stmcu.com, in the Support section. Check this site 
for the latest version of the library.

This user manual describes the PMSM software library required to control a permanent 
magnet synchronous motor with an encoder and a sinewave drive, open or closed loop. The 
AC induction motor software library designed to control an AC induction motor in sinewave 
mode with sensors is described in the UM0324 User Manual.

The PMSM software library is composed of several C modules, compatible with the IAR 
EWARM toolchain. The functions are grouped into several families, making this library an 
easy way to go through any PM sensored motor project development. Used in conjunction 
with the STR750-MCKIT starter kit, evaluation can be achieved in a very short time, 
because the software library spares you the trouble of studying the MCU in detail.

Overall software architecture

The figure below shows the architecture of the firmware. It uses the STR750 Standard 
Library extensively but it also acts directly on hardware peripherals when optimizations in 
terms of execution speed or code size are required.
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PMSM software library 1.0 features (CPU running at 60MHz)
■ Permanent magnet motor with encoder: 

– Open loop operation
– Closed loop operation, PID regulation with 0.5ms to 127ms sampling time

■ Current sampling method:
– 2 isolated current sensors
– 3 shunt resistors

■ Current regulation for torque and flux control:

PIDs, sampling time adjustable up to the PWM frequency

■ 16-bit space vector PWM generation frequencies:
– PWM frequency can be manually adjusted
– Centered PWM pattern type
– 11-bit resolution at 14.6kHz

● Free C source code and spreadsheet for look-up tables

● Motor control modules developed in accordance with MISRA C rules

Note: These figures are for information only; this software library may be subject to changes 
depending on the final application and peripheral resources. Note that it was built using 
robustness-oriented structures, thus preventing the speed or code size from being fully 
optimized.

The table below summarizes the memory required by the software library, as it is delivered 
(three-shunt topology for the current reading, encoder for speed feedback). These metrics 
include non motor control related code, implemented for demo purposes (such as user 
interface via LCD and joystick). Therefore, the figures provided should be considered as an 
estimation, which would be lower in the final application.

         

Related documents:
Available on www.st.com:

● STR750 User Manual,

● STR750 Datasheet,

● STR750 Standard Library User Manual,

● STR7 Flash Programming Manual

Available on www.arm.com:
ARM7TDMI-S Rev.4 Technical Reference Manual ARM DDI 0234A

ROM RAM 

Size (Kbyte) 27.5 3
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1 Getting started with tools

To develop an application for a PM sensored motor using the PMSM software library, you 
must set up a complete development environment, as described in the following sections. A 
PC running Windows 2000 (SP4) or Windows XP (SP2) is necessary.

1.1 Working environment
The PMSM software library was fully validated using the main hardware board included in 
the STR750-MCKIT starter kit (a complete inverter and control board). The STR750-MCKIT 
starter kit provides an ideal toolset for starting a project and using the library. Therefore, for 
rapid implementation and evaluation of the software described in this user manual, it is 
recommended to acquire this starter kit.

It is also recommended to install the IAR EWARM C toolchain which was used to compile 
the PMSM software library. With this toolchain, you do not need to configure your 
workspace. You can set up your workspace manually for any other toolchain. A free 
“kickstart editio”n of the IAR EWARM C toolchain with a 32Kb limitation, which is enough to 
compile and evaluate this library, can be downloaded from http://www.iar.com. 

1.2 Software tools
A complete software package consists of:

● A third-party integrated development environment (IDE).

● A third-party C-compiler: the EWARM development environment from IAR is pre-
configured (30 days time-limited or 32Kb kickstart versions can be obtained upon 
request for evaluation).

This library was compiled using the third party IAR EWARM C-toolchain. However, the 
choice of the C toolchain is left to your own appreciation. An IAR dedicated workspace 
can be directly opened in the root of the library installation folder (See Section 1.3).

● JTAG interface for debugging and programming

Using the JTAG interface of the MCU, you can enter in-circuit debugging sessions with 
most toolchains. Each toolchain can be provided with an interface connected between 
the PC and the target application.

Figure 1. JTAG interface for debugging and programming

The JTAG interface can also be used for in-circuit programming of the MCU. Other 
production programmers can be obtained from third-parties.

IDE
STR750

Application
board

JTAG
interface

JTAG
peripheral
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1.3 Library source code

1.3.1 Download

The complete library source files are available for free download on the ST web site 
www.stmcu.com, in the Support section. 

Note: It is highly recommended to check for the latest releases of the library before starting any 
new development, and then to verify from time to time all release notes to be aware of any 
new features that might be of interest for your project. Registration mechanisms are 
available on ST web sites to automatically obtain updates.

1.3.2 File structure

The PMSM software library contains the workspace for the IAR toolchain. Once the 
download files are unzipped, the following library structure appears as shown in Figure 2.

Figure 2. Library structure for PMSM software library version 1.0

The STR750 FOC Firmware Libraries v1.0 folder contains the firmware libraries for 
running both PMSM and AC induction three-phase sensored motors.

The Stdlib folder contains the standard library for the STR750. It provides standard routines 
for the configuration of the STR750 peripherals. This library is described in the STR75x 
Software Library User Manual UM0218.

The Include folder contains all the standard library header files: function prototypes, global 
variables, compiler directives.

The Source folder contains all library C source files and dedicated routines for the control of 
a permanent magnet motor with an encoder. These functions are described in this manual 
in Section 4: Motor control library routines on page 31.

The IAR folder contains the configuration file for the IAR C toolchain (kickstart, evaluation or 
standard edition).

\ FOC_PMSM_SR_v1.0

STR750 FOC Firmware Libraries v1.0

\ Include
\ Source

\ IAR
\ Debug
\ Release

\ StdLib

\ Settings

\ FOC_AC_SR_v1.0
\ ...

\ config
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1.3.3 Starting the IAR toolchain

When you have installed the toolchain, you can open the workspace directly from the 
dedicated folder, by double-clicking on the PMSM Sensored.eww file.

The file location is:

\ FOC_PMSM_SR_v1.0\ IAR\ PMSM Sensored.eww

1.4 Customizing the workspace for your STR75x device
The library described in this manual was written for the STR750FVT2. However, it works 
equally successfully with all the products in the STR75x family.

Using a STR750 sales type different from the STR750FVT2 may require some modifications 
to the library, according to the available features (some of the I/O ports are not present on 
low-pin count packages). Refer to the datasheet for details.

Depending on the memory size, the workspace may have to be configured to suit your 
STR75x MCU.

Table 1. Device summary

1.4.1 Inkarm_xxx.xcl file (internal/external flash or RAM based project)

The IAR\ config folder contains 3 files:

● Inkarm_flash.xcl

● Inkarm_smi.xcl 

● Inkarm_ram.xcl

These files are used as an extended command linker file and contain linker options. Memory 
areas, start address, size, and other parameters are declared here. It also contains the 
value assigned to the stack size for each ARM operating mode (for example, USER or FIQ. 
Refer to the ARM7TDMI-S Technical Reference Manual for more information).
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The default extended linker file used in the standard library to configure the device for 
internal flash based resident firmware is Inkarm_flash.xcl. An extract of this file 
showing the definitions of heap and stack size is provided below. Depending on the project 
requirements, it may be necessary to manually edit the segment sizes.

// Embedded Flash (256/128/64Kbytes)
// The user has to change the flash memory length depending STR75xFxx 
devices

// Code memory in flash
-DROMSTART=0x20000000
-DROMEND=0x2003FFFF   //0x2001FFFF;0x200FFFF

// Data memory
-DRAMSTART=0x40000000
-DRAMEND=0x40003FFF

........

//************************************************************************
*
// Stack and heap segments.
//************************************************************************

// Add size >0 for  ABT_Stack, UND_Stack if you need them.
// size must be 8 byte aligned.

-D_CSTACK_SIZE=0x200
-D_SVC_STACK_SIZE=0x20
-D_IRQ_STACK_SIZE=0x100
-D_FIQ_STACK_SIZE=0x40
-D_ABT_STACK_SIZE=0x0
-D_UND_STACK_SIZE=0x0
-D_HEAP_SIZE=0x400

Memory size modifications must be done according to the MCU specifications. Default 
settings are done for a 256Kb embedded flash memory. Depending on the project 
requirements, stack and heap segment size might also need to be changed.

1.4.2 Extended linker file setting

As mentioned in the previous section, the IAR workspace is provided by default with the 
internal flash extended linker file Inkarm_flash.xcl. To modify the workspace to use a 
different file:

1. Open the IAR workspace by double-clicking on the \ FOC_PMSM_SR_v1.0\ IAR \ 
PMSM Sensored.eww file.

2. Go to the Project menu, select Options... then Linker, and select the Config sub-
menu.

The dialog box shown in Figure 3 is displayed.

3. In the Linker command file section, tick the Override default checkbox, select the 
linker file you want to use, and then click OK.
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Figure 3. Linker file selection
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2 Getting started with the library

2.1 PMSM FOC drive quick introduction
The PMSM software library is designed to achieve the high dynamic performance in 
permanent magnet motor control offered by the field oriented control (FOC) strategy.

Through complex machine electrical quantity transformations, this well-established drive 
system optimizes the system efficiency, to the extent that it is able to offer decoupled torque 
(Te) and magnetic flux (λ) control.

Figure 4. FOC drive placed in a speed loop

Basic information on field oriented structure and library functions is represented in Figure 5.

● The θλr calculation block estimates the rotor position, which is essential to 
transformation blocks (Park, Reverse Park) for performing field orientation, so that the 
currents supplied to the machine can be oriented in quadrature to the rotor flux vector. 
More in depth information about reference frame theory is available in Section 4.2.8 on 
page 54.

● The space vector PWM block (SVPWM) implements an advanced modulation method 
that reduces current harmonics, thus optimizing DC bus exploitation.

● The current reading block allows you to measure stator currents correctly, using either 
shunt resistors or market-available isolated current Hall sensors (ICS).

● The speed-reading block handles the encoder signals in order to acquire properly rotor 
angular velocity or position.

● The PID-controller block implements a proportional, integral and derivative feedback 
controller, to achieve speed, torque and flux regulation.
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Figure 5. PMSM FOC structure

2.2 Pre-checks and library configuration
It is quite easy to set up an operational evaluation platform with a drive system that includes 
the STR750-MCKIT (featuring the STR750 microcontroller, where this software runs) and a 
permanent magnet sensored motor.

This section explains how to quickly configure your system and, if necessary, customize the 
library accordingly.

Follow these steps to accomplish this task:

1. Gather all the information that is needed regarding the hardware in use (motor 
parameters, power devices features, speed/position sensor parameters, current 
sensors characteristics);

2. Edit, using an IDE, the 75x_MCconf.h configuration header file (as explained in more 
detail in Section 2.2.1), and the following parameter header files,

– MC_PMSM_motor_param.h (see Section 2.2.2);

– MC_encoder_param.h (see Section 2.2.3).

– MC_Control_Param.h (see Section 2.2.4),

3. Re-build the project and download it on the STR750 microcontroller.

2.2.1 Library configuration file: 75x_MCconf.h file

The purpose of this file is to declare the compiler conditional compilation keys that are used 
throughout the entire library compilation process to:

1. Select which current measurement technique is actually in use (the choice is between 
three-shunt or ICS sensors, according to availability).

2. Enable or disable the derivative action in the speed controller or in the current 
controllers in accordance with expected performance and code size.
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If this header file is not edited appropriately (no choice or undefined choice), you will receive 
an error message when building the project. Note that you will not receive an error message 
if the configuration described in this header file does not match the hardware that is actually 
in use, or in case of wrong wiring.

More specifically:

● #define ICS_SENSORS

To be uncommented when current sampling is done with isolated current sensors 
(commented by default).

● #define THREE_SHUNT

To be uncommented when current sampling is done with 3 shunt resistors 
(uncommented by default).

● #define ENCODER

To be uncommented when the encoder is connected to the starter kit. Mandatory 
(uncommented by default) for the PMSM software library 1.0.

● #define TACHO

To be uncommented when the tacho signal is connected to the starter kit. Not used 
(commented by default) in the PMSM software library.

● #define Id_Iq_DIFFERENTIAL_TERM_ENABLED

To be uncommented when derivative terms for torque and flux control loop regulation 
(PID) are enabled (uncommented by default).

● #define SPEED_DIFFERENTIAL_TERM_ENABLED

To be uncommented when the derivative term for speed control loop regulation (PID) is 
enabled (uncommented by default).

Once these settings have been done, only the required blocks will be linked in the project; 
this means that you do not need to exclude any C source files from the build.

Caution: When using shunt resistors for current measurement, ensure that the REP_RATE parameter 
(in MC_Control_Param.h) is set properly (see Section 2.2.4 and Section A.2: Selecting 
PWM frequency for 3 shunt resistor configuration on page 80 for details).

2.2.2 Permanent magnet motor parameters: MC_PMSM_motor_param.h file

The MC_PMSM_motor_param.h header file holds motor parameters which are essential to 
properly operate the vector drive. It provides the compiler with the number of pole pairs of 
the motor, and with the alignment settings (see Figure 6).

The following parameters must be defined in all cases:

● #define POLE_PAIR_NUM

Specify here the number of pole pairs of your motor. For the SHINANO PM Sensored 
motor provided with the starter-kit, the default value is 2.

● #define T_ALIGNMENT

Define here the time in ms for the rotor alignment.

● #define I_ALIGNMENT

Define here the maximum current value at the end of the rotor alignment (the value is 
hardware dependent).
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Figure 6. Alignment procedure

After the alignment procedure, a reset of the encoder timer is done in order to record the ‘0 
degree’ rotor angle reference.

2.2.3 Encoder parameters: MC_ENCODER_param.h file

The purpose of this header file is to provide the compiler with the encoder parameters.

● #define TIMER0_HANDLES_TACHO

To be uncommented if the encoder outputs are connected to the TIMER0 input.

● #define TIMER1_HANDLES_TACHO

To be uncommented if the encoder outputs are connected to the TIMER1 input.

● #define TIMER2_HANDLES_TACHO

To be uncommented if the encoder outputs are connected to the TIMER2 input. (This is 
the default setting when using the STR750-MCKIT).

● #define ENCODER_PPR

This statement contains the number of pulses per revolution of the motor encoder. For 
the SHINANO PM Sensored motor provided with the starter-kit, the default value is 
‘400’.

2.2.4 Drive control parameters: MC_Control_Param.h file

The MC_Control_Param.h header file gathers parameters related to:

● Maximum modulation index, see page 19

● Power device control parameters, see page 19

● Flux and torque PID regulators sampling rate, see page 19

● Speed regulation loop frequency, see page 19

● Speed controller setpoint and PID constants, see page 20

● Torque and flux controller setpoints and PID constants, see page 20

● Linear variation of PID constants according to mechanical speed, see page 21
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Maximum modulation index

The maximum modulation index for space vector PWM modulation guarantees a maximum 
limit to the PWM duty cycle output to the power stage in order to sample the current in the 3 
phases correctly. This value depends on both the PWM switching frequency and the time 
required to compute the PID control loop for torque and flux regulation.

Only one definition out of the 9 declared must be uncommented. Refer to Section 4.2.9: 
Circle limitation on page 56 for explanations on maximum modulation index.

/* DEFINE ONLY ONE max modulation index in the following list */
//#define MAX_MODULATION_100_PER_CENT // 100% max modulation index
//#define MAX_MODULATION_99_PER_CENT // 99% max modulation index
//#define MAX_MODULATION_98_PER_CENT // 98% max modulation index
//#define MAX_MODULATION_97_PER_CENT // 97% max modulation index
#define MAX_MODULATION_96_PER_CENT // 96% max modulation index
//#define MAX_MODULATION_95_PER_CENT // 95% max modulation index
//#define MAX_MODULATION_94_PER_CENT // 94% max modulation index
//#define MAX_MODULATION_93_PER_CENT // 93% max modulation index
//#define MAX_MODULATION_92_PER_CENT // 92% max modulation index

Power device control parameters

● #define PWM_FREQ

PWM switching frequency. The value must be expressed in Hz (default 14000, 14Khz).

● #define DEADTIME_NS

Define here, in ns, the dead time, in order to avoid shoot-through conditions.

Flux and torque PID regulators sampling rate

#define REP_RATE 

Value to be fed into the repetition counter of the synchronizable PWM timer peripheral. The 
value (default 1) is 8-bit long, and provides the period frequency for current sampling and 
regulation. For more information, refer to the STR750 Datasheet Synchronizable Standard 
Timer, Repetition Counter Register section. 

In fact, because there is no reason for either executing the PMSM FOC algorithm without 
updating the stator currents values or for performing stator current conversions without 
running the PMSM FOC algorithm, in the proposed implementation the stator current 
sampling frequency and the PMSM FOC algorithm execution rate coincide.

Note: REP_RATE must be an odd number if currents are measured by shunt resistors (see 
Section A.2: Selecting PWM frequency for 3 shunt resistor configuration on page 80 for 
details); its value is 8-bit long;

Speed regulation loop frequency

#define PID_SPEED_SAMPLING_TIME 

Sampling time for the PID speed control loop. This value is 8-bit long, and the sampling 
period is adjustable from 0 (500ms) to 255 (127ms). The default sampling time is 2ms.

1_
_2

+
⋅=

RATEREP
FREQPWMrate sampling PIDs torque andFlux 
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Speed controller setpoint and PID constants (initial values)

● #define PID_SPEED_REFERENCE

Mechanical speed reference in closed loop at start up. This is a signed 16-bit value, 
expressed with 0.1Hz resolution (‘150’ means 15Hz which is the default value). The 
sign gives the direction of the motor rotation.

● #define PID_SPEED_KP_DEFAULT

Proportional coefficient gain for the speed control loop regulation. This is a signed 16-
bit value, adjustable from 0 to 32767 (default 5400).

● #define PID_SPEED_KI_DEFAULT

Integral coefficient gain for the speed control loop regulation. This is a signed 16-bit 
value, adjustable from 0 to 32767 (default 2000).

● #define PID_SPEED_KD_DEFAULT

Derivative coefficient gain for the speed control loop regulation. This is a signed 16-bit 
value, adjustable from 0 to 32767 (default 7400).

Torque and flux controller setpoints and PID constants:

● #define PID_TORQUE_REFERENCE

Torque reference value in open loop at start up. This is a signed 16-bit value (default 
2500). The sign gives the direction of rotation of the motor. In closed loop, this value is 
computed automatically by the speed regulation loop.

● #define PID_TORQUE_KP_DEFAULT

Proportional coefficient gain for the torque control loop regulation. This is a signed 16-
bit value, adjustable from 0 to 32767 (default 15000).

● #define PID_TORQUE_KI_DEFAULT

Integral coefficient gain for the torque control loop regulation. This is a signed 16-bit 
value, adjustable from 0 to 32767 (default 1000).

● #define PID_TORQUE_KD_DEFAULT 

Derivative coefficient gain for the torque control loop regulation. This is a signed 16-bit 
value, adjustable from 0 to 32767 (default 1400).

● #define PID_FLUX_REFERENCE 

Flux reference value. This is a signed 16 bits value (default 0). The modification of flux 
reference can help to increase the maximum speed of the motor, while the efficiency 
will be slightly decreased.

● #define PID_FLUX_KP_DEFAULT

Proportional coefficient gain for the flux control loop regulation. This is a signed 16-bit 
value, adjustable from 0 to 32767 (default 10000).

● #define PID_FLUX_KI_DEFAULT

Integral coefficient gain for the flux control loop regulation. This is a signed 16-bit value, 
adjustable from 0 to 32767 (default 1200).

● #define PID_FLUX_KD_DEFAULT

Derivative coefficient gain for the flux control loop regulation. This is a signed 16-bit 
value, adjustable from 0 to 32767 (default 1000).
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Linear variation of PID constants according to mechanical speed

When the linear coefficient computation is enabled in speed closed loop (see Figure 40 on 
page 73), the following set-points must be fed with appropriate values (coefficient 
computation is disabled by default in the library). Refer to Section 5.2.2: Adjusting the speed 
regulation loop Ki, Kp and Kd vs the motor frequency on page 72.

● #define Freq_Min

Linear curve for speed control loop, minimum frequency, set-point number 1.

● #define Ki_Fmin

Linear curve for speed control loop, integral coefficient gain, set-point number 1.

● #define Kp_Fmin

Linear curve for speed control loop, proportional coefficient gain, set-point number 1.

● #define Kd_Fmin

Linear curve for speed control loop, derivative coefficient gain, set-point number 1.

● #define F_1

Linear curve for speed control loop, intermediate frequency, set-point number 2.

● #define Ki_F_1

Linear curve for speed control loop, integral coefficient gain, set-point number 2.

● #define Kp_F_1

Linear curve for speed control loop, proportional coefficient gain, set-point number 2.

● #define Kd_F_1

Linear curve for speed control loop, derivative coefficient gain, set-point number 2.

● #define F_2

Linear curve for speed control loop, intermediate frequency, set-point number 3.

● #define Ki_F_2

Linear curve for speed control loop, integral coefficient gain, set-point number 3.

● #define Kp_F_2

Linear curve for speed control loop, proportional coefficient gain, set-point number 3.

● #define Kd_F_2

Linear curve for speed control loop, derivative coefficient gain, set-point number 3.

● #define Freq_Max

Linear curve for speed control loop, maximum frequency, set-point number 4.

● #define Ki_Fmax

Linear curve for speed control loop, integral coefficient gain, set-point number 4.

● #define Kp_Fmax 

Linear curve for speed control loop, proportional coefficient gain, set-point number 4.

● #define Kd_Fmax 

Linear curve for speed control loop, derivative coefficient gain, set-point number 4.
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2.3 Running your own motor
As a starting point, the open loop mode should be used for the first trials (fixed speed Ki, Kp 
and Kd coefficients are applied). Low-current alignment values should be used also and 
then increased smoothly step by step. Sufficient alignment time should be applied in order to 
avoid any oscillations while resetting the encoder timer at the end of the ramp (see 
I_ALIGNMENT and T_ALIGNMENT settings in Section 2.2.2: Permanent magnet motor 
parameters: MC_PMSM_motor_param.h file on page 17).

2.4 Closed loop operation and PID settings
To run a motor in standalone closed loop, the first step should be to run the system with 
fixed PID speed parameters and modify them while the motor is running in order to define a 
working range (linear coefficient computation disabled, see Disabling the linear curve 
computation routine, 75x_it.c module on page 73). 

The second step is, for a given target mechanical speed, to fine-tune all the PID speed 
parameters most adequate for this speed. For each target speed, these values should be 
recorded in the form of a table, which will be used by the STR750 standalone firmware.

You should collect data for 4 speeds: the min and max speeds, and 2 intermediate speeds 
of your choice. The STR750 firmware will then make a linear extrapolation of these 
parameters between the 4 specified speeds to ensure smooth operation (linear coefficient 
computation enabled, see Figure 40 on page 73).

2.5 How to define and add a module
This section explains how you can create your own library modules to enhance the 
functionalities offered by the PMSM software library. 

1. Create a new file.

You can either copy and paste an existing file and rename it, or in the File menu, 
choose New, then click the File icon and save it in the right format (*.c, *.h 
extension), as shown in Figure 7.
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Figure 7. Creating a new file

2. Declare the new file containing your code in the toolchain workspace.

To do this, simply right-click in the workspace folder, then choose the Add Files sub-
menu. The new file is automatically added to the workspace and taken into account for 
the compilation of the whole project.

The procedure of adding the module to the project is very easy with the IAR Embedded 
Workbench, as the makefile and linking command files are automatically generated. When 
rebuilding the library, the configuration files are updated accordingly.

Figure 8. Adding a file to the workspace
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3 Running the demo program

This section assumes that you are using the STR750-MCKITmotor control starter kit.

The demo program is intended to provide examples on how to use the software library 
functions; it includes both open speed loop and closed speed loop operations (hereafter 
simply referred to as Open Loop and Closed Loop), with the possibility of changing different 
parameters on the fly.

The default configuration allows the use of three shunt resistors for current reading and 
encoder for speed feedback. Refer to Section 3.3 on page 27 for setting up the system when 
using ICS.

When the application is started, it first shows a welcome message and switches shortly to 
the main screen. Use the joystick and the button labelled KEY to navigate between the 
menus.

Key assignments are shown in Figure 9.

Figure 9. Key function assignments

A simple state machine handles the motor control tasks in the main loop, as well as basic 
monitoring of the power stage. This state machine does not differentiate open loop from 
closed loop control. It is described in Figure 10.

The power stage is monitored using the ADC peripheral and the PWM peripheral 
Emergency Stop (ES) input to watch the following conditions:

● Heatsink over-temperature (ADC channel AIN6 and ES input),

● DC bus over/under-voltage (on ADC channel AIN7),

● Over-current protection (ES input).

Any of these three conditions will cause the PWM to be stopped and the state machine to go 
into FAULT state before coming back to IDLE state. Depending on the source of the fault, an 
error message is also displayed on the LCD during FAULT state.
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Figure 10. Main.c state machine

3.1 LCD display in OPEN loop mode
The following sections provide a summary of the screen access and settings in open loop; 
blinking items are shown underlined.

         

Switching from open to closed loop operation and vice versa is done by moving the joystick 
up or down while the first menu shown in the above figure is displayed and the motor is 
stopped. Moving the joystick left or right in these circumstances allows changing the context 
into the second menu where it is possible to modify both the torque and flux reference.
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Finally press either the KEY button or the joystick to start the motor (main state machine will 
move from IDLE to START state).

The ramp up strategy is illustrated in Figure 6: Alignment procedure on page 18. Basically, 
the applied stator current reference reaches the I_ALIGNMENT value that is defined in 
‘MC_Control_Param.h’ following a linear ramp. After a programmed delay (T_ALIGNMENT), 
the torque and flux references become adjustable on the fly from the joystick.

3.2 LCD display in CLOSED loop mode
The following sections provide a summary of the screen access and settings in closed loop; 
blinking items are shown underlined.

         

Switching from open to closed loop operation and back is done by moving the joystick up or 
down while the first menu shown in the above figure is displayed and the motor is stopped.

         

In closed loop operation, you can vary the target speed by moving the joystick up or down 
while the PID motor speed target selection menu is displayed. 

The demo program also allows real-time tuning of the speed PID regulator coefficients:
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In closed loop, only the torque reference is the output of the speed PID regulator. Although 
you cannot act directly on the torque reference, you can set the flux reference and also 
observe both the measured flux and torque components; varying the flux reference can help 
to increase the motor speed while the system efficiency decreases (also known as field 
weakening).

As in open loop, pressing the joystick or the KEY button will start the motor. 

The speed PID regulator is enabled and takes control of the torque reference right after the 
linear ramp-up alignment process as shown in Figure 11. 

Figure 11. Closed loop start-up strategy

3.3 Setting up the system when using ICS sensors
The default configuration provides for the use of three-shunt resistors. Section 3.3.1 
describes how to change the firmware configuration from three-shunt resistors to two ICS 
stator current reading. This section gives you information about how to provide the STR750 
with ICS feedback signals and to customize the firmware to use a different hardware.

Caution: When using two ICS for stator current reading, you must ensure that the sensors output 
voltage range is compatible with the STR750 supply voltage.

3.3.1 Connecting the two ICS sensors to the motor and to STR750

In order for the implemented PMSM FOC algorithm to work properly, it is necessary to 
ensure that the software implementation of the 75x_svpwm_ICS module and the hardware 
connections of the two ICS are consistent. 

As illustrated in Figure 12, the two ICS must act as transducers on motor phase currents 
coming out of the inverter legs driven by STR750 PWM signals PWM1 (Phase A) and 
PWM2 (Phase B). In particular, the current coming out of inverter Phase A must be read by 
an ICS whose output has to be sent to the analog channel specified by the 
PHASE_A_CHANNEL parameter in MC_pwm_ics_prm.h. Likewise, the current coming out 
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of inverter Phase B must be read by the other ICS and its output has to be sent to the 
analog channel specified by the PHASE_B_CHANNEL parameter in MC_pwm_ics_prm.h.

About the positive current direction convention, a positive half-wave on 
PHASE_X_CHANNEL is expected, corresponding to a positive half-wave on the current 
coming out of the related inverter leg (see direction of I in Figure 12). 

Figure 12. ICS hardware connections

3.3.2 Selecting PHASE_A_CHANNEL and PHASE_B_CHANNEL

Default settings for PHASE_A_CHANNEL and PHASE_B_CHANNEL are respectively 
ADC_CHANNEL11 and ADC_CHANNEL10. You can change the default settings if the 
hardware requires it by editing the MC_pwm_ics_prm.h file. However, there are a few rules 
to follow when selecting the new ADC channels:

● You must initialize the proper GPIOs as analog inputs; an example for channel 8 is 
given below:

/* ADC Channel 8 pin configuration */

GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AIN;

GPIO_InitStructure.GPIO_Pin = GPIO_Pin_29;

GPIO_Init(GPIO0, &GPIO_InitStructure);

● You must select two contiguous channels (for example, ADC_CHANNEL8 and 
ADC_CHANNEL9) and the one with the highest number must be associated with 
PHASE_A_CHANNEL (for example, PHASE_A_CHANNEL -> ADC_CHANNEL9, 
PHASE_B_CHANNEL->ADC_CHANNEL8)   
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3.4 Managing the incremental encoder
Quadrature incremental encoders are widely used to read the rotor position of electric 
machines.

As the name implies, incremental encoders actually read angular displacements with 
respect to an initial position: if that position is known, then rotor absolute angle is known too.

Quadrature encoders have two output signals (represented in Figure 13 as TI1 and TI2). 
With these, and with the STR750 standard timer in encoder interface mode, it is possible to 
get information about rolling direction.

Figure 13. Encoder output signals: counter operation

In addition, rotor angular velocity can be easily calculated as a time derivative of angular 
position.

To set up the PMSM software library for use with an incremental encoder, simply modify the 
MC_encoder_param.h header files according to the indications given in Section 2.2.3 on 
page 18.

However, some extra care should be taken, concerning what is considered to be the positive 
rolling direction. Because of this, and because of how the encoder output signals are wired 
to the microcontroller input pins, it is possible to have a sign discrepancy between the real 
rolling direction and the direction that is read. To avoid this kind of reading error, you can 
apply the following procedure:

1. You can correct it by simply swapping and rewiring the encoder output signals.

2. If this isn’t practical, you can modify a software setting instead: in the 75x_encoder.c 
file, replace the code line:

TIM_InitStructure.TIM_IC1Polarity = TIM_IC1Polarity_Rising;

with:

TIM_InitStructure.TIM_IC1Polarity = TIM_IC1Polarity_Falling;
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3.5 Fault messages
This section provides a list of possible fault message that can be displayed on the LCD 
when using the software library together with the STR750MC-KIT:

● “Over Current”

An Emergency Stop was detected on the PWM peripheral dedicated pin. If using 
STR750-MCKIT it could mean that either the hardware over temperature protection or 
the hardware over current protection were triggered. Refer to the STR750-MCKIT User 
Manual for details,

● “Over Heating”

An over temperature was detected on the dedicated analog channel; the digital 
threshold NTC_THRESHOLD and the relative hysteresis (NTC_HYSTERESIS) are 
specified in the MC_Misc.c source file. Refer to the STR750-MCKIT User Manual for 
details.

● “Bus Over Voltage”

An over voltage was detected on the dedicated analog channel. The digital threshold 
(OVERVOLTAGE_THRESHOLD) is specified in the MC_Misc.c source file. Refer to the 
STR750-MCKIT User Manual for details.

● "Bus Under Voltage"

The bus voltage is below 20V DC. The threshold is specified in the MC_Misc.c source 
file (UNDERVOLTAGE_THRESHOLD parameter). The corresponding FAULT flag is not 
cleared by firmware, therefore the STR750 must be reset after the bus voltage has 
been switched on.

3.6 Note on debugging tools
The third party JTAG interface should always be isolated from the application using the 
MB535 JTAG opto-isolation board; it provides protection for both the JTAG interface and the 
PC connected to it.

Caution: During a breakpoint, when using the JTAG interface for the firmware development, the motor 
control cell clock circuitry should always be enabled; if disabled, a permanent DC current 
may flow in the motor because the PWM outputs are enabled, which could cause 
permanent damage to the power stage and/or motor. A dedicated bit in the PWM_CR control 
register, the DBGC bit must be set to 1 (see Figure 14).

Figure 14. DBGC bit in PWM control register (from STR750 reference manual)

Control Register (PWM_CR)
Address Offset: 00h
Reset value: 0000h
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4 Motor control library routines

4.1 Library reference
Functions are described in the format given below:

         

Some of these sections may not be included if not applicable for example, no parameters or 
obvious use.

4.2 Motor control software layer
The software related to motor control is part of several modules. These modules provide:

● Basic setup

● Control routines

● Related interrupt handling routines

● Current sampling for torque and flux regulation

● Speed acquisition for closed loop operation

4.2.1 75x_svpwm_3shunt module

Two important tasks are performed in the 75x_svpwm_3shunt module:

● Space vector pulse width modulation (SVPWM)

● Three shunt resistor topology current reading

In order to reconstruct the currents flowing through a three-phase load with the required 
accuracy using three shunt resistors, it is necessary to properly synchronize A/D 
conversions with the generated PWM signals.

Synopsis Lists the referenced include files and prototype declarations.

Description Describes the functions specifically with a brief explanation of how 
they are executed.

Input Gives the format and units.

Returns Gives the value returned by the function, including when an input 
value is out of range or an error code is returned.

Note Indicates the limits of the function or specific requirements that 
must be taken into account before implementation.

Caution Indicates important points that must be taken into account to 
prevent hardware failures.

Functions called Lists called functions. Useful to prevent conflicts due to the 
simultaneous use of resources.

Code example Indicates the proper way to use the function, and if there are 
certain prerequisites (interrupt enabled, etc.).
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SVPWM_3ShuntInit

         

Synopsis void SVPWM_3ShuntInit(void);

Description The purpose of this function is to set-up microcontroller peripherals for   
performing 3 shunt resistors topology current reading and center aligned 
PWM generation.

The function initializes the DMA, EIC, ADC, GPIO, PWM, and TIM0 
peripherals. 

In particular, the DMA, ADC, PWM and TIM0 peripherals are configured 
to perform two synchronized A/D conversions per PWM switching 
period. 

Input None

Returns None

Caution It must be called at main level

Functions 
called

Standard Library:

MRCC_PeripheralClockConfig, GPIO_Init, EIC_IRQInit, EIC_IRQCmd, 
DMA_Init, DMA_Cmd, TIM_DMAConfig,  DMA_DeInit,  ADC_DMACmd,  
PWM_DeInit, PWM_StructInit, PWM_Init,  PWM_TRGOSelection,  
PWM_ClearFlag,  PWM_ITConfig,  PWM_ResetCounter, 
ADC_StructInit,  ADC_Init,  ADC_Cmd, ADC_StartCalibration,  
ADC_ConversionCmd,  TIM_Init,  TIM_SynchroConfig, 
TIM_ResetCounter,  PWM_Cmd.

Motor Control Library:

SVPWM_3ShuntCurrentReadingCalibration
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SVPWM_3ShuntCurrentReadingCalibration

         

SVPWM_3ShuntGetPhaseCurrentValues

         

Synopsis void SVPWM_3ShuntCurrentReadingCalibration(void);

Description The purpose of this function is to store the three analog voltages 
corresponding to zero current values for compensating the offset 
introduced by the amplification network.

Input None

Returns None

Caution This function must be called before PWM outputs are enabled so that 
the current flowing through inverter legs is zero. When using STR750 
MC Kit, the power board (MB459B) must be supplied before the 
control board (MB469B). This way, the current sensing conditioning 
network will reach steady state before performing calibration.

Functions called Standard Library:

ADC_GetFlagStatus,  ADC_ConversionCmd,  ADC_Init,  
ADC_ClearFlag,  ADC_ITConfig

Motor Control Library:

SVPWM_3ShuntCalcDutyCycles

Synopsis Curr_Components SVPWM_3ShuntGetPhaseCurrentValues(void);

Description This function computes current values of Phase A and Phase B in q15 
format starting from values acquired from the A/D Converter 
peripheral.

Input None

Returns Curr_Components type variable

Caution In order to have a q15 format for the current values, the digital value 
corresponding to the offset must be subtracted. Thus, it must be called 
after SVPWM_3ShuntCurrentReadingCalibration  

Functions called None
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SVPWM_3ShuntCalcDutyCycles

         

SVPWM_3ShuntGPADCConfig

         

Synopsis void SVPWM_3ShuntCalcDutyCycles (Volt_Components 
Stat_Volt_Input);

Description After execution of the PMSM FOC algorithm, new stator voltages 
component Vα and Vβ are computed. The purpose of this function is to 
calculate exactly the three duty cycles to be applied to motor phases 
starting from the value of those voltage components.

Moreover, once the three duty cycles to be applied in next PWM period 
are known, this function sets the DMA, ADC and TIM0 peripherals for 
the next current reading. In particular, depending on the duty cycle 
values, the delay for the two current samplings are computed (see 
Section 4.2.4 on page 39). 

Refer to Section 4.2.2 for information on the theoretical approach of 
SVPWM.

Input Vα and Vβ 

Returns None

Caution None

Functions called None

Synopsis void SVPWM_3ShuntGPADCConfig(void);

Description The purpose of this function is to configure the A/D converter for 
general purpose conversions after conversions for current reading 
have been performed. In particular, this function starts a chain of 
regular conversions whose first channel is 
GP_CONVERSIONS_FIRST_CHANNEL (defined in 
‘MC_pwm_3shunt_prm.h’). In addition, the number of channels to be 
converted is set equal to GP_CONVERSIONS_NUMBER (defined in 
‘MC_pwm_3shunt_prm.h’).

Input None 

Returns None

Caution As mentioned in Section 4.2.2, the overall duration of the regular chain 
conversion must be lower than the duration of the PMSM FOC routines 
(Clarke, Park, Reverse Park and SVPWM generation).

Functions called None
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4.2.2 Space vector PWM implementation

Figure 15 shows the stator voltage components Vα and Vβ while Figure 16 illustrates the 
corresponding PWM for each of the six space vector sectors.

Figure 15. Vα and Vβ stator voltage components

Figure 16. SVPWM phase voltage waveforms
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With the following definitions for:

and

literature demonstrates that the space vector sector is identified by the conditions shown in 
Table 2.

         

The duration of the positive pulse widths for the PWM applied on Phase A, B and C are 
respectively computed by the following relationships:

Sector I, IV:  

Sector II, V: 

Table 2. Sector identification

Y<0 Y>=0

Z<0 Z>=0 Z<0 Z>=0

X<=0 X<0 X<=0 X>0

Sector V IV III VI I II
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βUX =
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=
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−
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Ztt AB +=
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ZYTt A

−+=

Ztt AB +=
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Sector III, VI: 

Where T is the PWM period.

Now, considering that the PWM pattern is center aligned and that the phase voltages must 
be centered to 50% of duty cycle, it follows that the values to be loaded into the PWM output 
compare registers are given respectively by:

Sector I, IV:  

 

Sector II, V: 

Sector III, VI: 

4.2.3 Current sampling in three shunt topology and general purpose A/D 
conversions

The three currents I1, I2, and I3 flowing through a three-phase system follow the 
mathematical relation:

I1+I2+I3=0

For this reason, to reconstruct the currents flowing through a generic three-phase load, it is 
sufficient to sample only two out of the three currents while the third one can be computed 
by using the above relation. 

The flexibility of the STR750 A/D converter trigger, makes it possible to synchronize the two 
A/D conversions needed for reconstructing the current flowing through the three-phase AC 
induction motor at any given time along the PWM period. To do this, the control algorithm 
must have a full control of the A/D converter peripheral.

2
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+−=
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Furthermore, you have the possibility to add any A/D conversions required for your 
application (hereafter referred to as general purpose conversions). This section describes 
how this is achieved.

First of all, the SVPWM_3ShuntInit function performs the synchronization between PWM 
and TIM0 peripherals (Figure 17 shows the two peripheral counters when REP_RATE = 1), 
then, the A/D converter peripheral is configured so that it is triggered by the TIM0 OC2 
signal.

Figure 17. PWM and TIM0 synchronization (REP_RATE=1)

This way, when the value of the TIM0 counter matches the value contained in the OCR2 
register, the first A/D conversion for current sampling is started.

Meanwhile, a DMA transaction reloads the TIM0 OCR2 register with the value 
corresponding to the delay required for the second current sampling conversion. Moreover, 
the end of this first A/D conversion triggers another DMA transaction which sets the next 
channel to be converted in the ADC register CLR2.

At the end of the second conversion, the three-phase load current has been updated and 
the PMSM FOC algorithm can then be executed in the A/D End of Conversion Interrupt 
Service Routine (EOC ISR). In this routine, the A/D converter is also reconfigured so that it 
can perform the general purpose chain of conversions while the CPU executes the PMSM 
FOC algorithm.

The entire process is illustrated in Figure 18.

After execution of the PMSM FOC algorithm, the A/D converter is configured to perform the 
next PWM period three-phase current sensing (delays and channels). This allows to reduce 
the CPU load (lower number of ADC ISR).

To specify the general purpose conversions to be performed, you can select the first channel 
and the number of channels to be converted by editing the 
GP_CONVERSIONS_FIRST_CHANNEL and GP_CONVERSIONS_NUMBER parameters 
respectively in the MC_pwm_3shunt_prm.h header file. 



UM0312 Motor control library routines

 39/84

Figure 18. Three shunt topology current sampling and GP A/D conversions 
integration (REP_RATE=1) 

4.2.4 Tuning delay parameters and sampling stator currents in three-shunt 
resistor topology

Figure 19 shows one of the three inverter legs with the related shunt resistor.

Figure 19. Inverter leg and shunt resistor position

To indirectly measure the phase current I, it is possible to read the voltage V providing that 
the current flows through the shunt resistor R. 

It is possible to demonstrate that, whatever the direction of current I, it always flows through 
the resistor R if transistor T2 is switched on and T1 is switched off. This implies that in order 
to properly reconstruct the current flowing through one of the inverter legs, it is necessary to 
properly synchronize the conversion start with the generated PWM signals. This also means 
that current reading cannot be performed on a phase where the duty cycle applied to the low 
side transistor is either null or very short.
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Fortunately, as discussed in Section 4.2.3,to reconstruct the currents flowing through a 
generic three-phase load, it is sufficient to simultaneously sample only two out of three 
currents, the third one being computed from the relation given in Section 4.2.3. Thus, 
depending on the space vector sector, the A/D conversion of voltage V will be performed 
only on the two phases where the duty cycles applied to the low side switches are the 
highest. In particular, by looking at Figure 16, you can deduct that in sectors 1 and 6, the 
voltage on the Phase A shunt resistor can be discarded; likewise, in sectors 2 and 3 for 
Phase B, and finally in sectors 4 and 5 for Phase C.

Moreover, in order to properly synchronize the two stator current reading A/D conversions, it 
is necessary to distinguish between the different situations that can occur depending on 
PWM frequency and applied duty cycles.

Note: The explanations below refer to space vector sector 1. They can be applied in the same 
manner to the other sectors.

Case 1: Duty cycle applied to Phase A low side switch is larger than
DT+TN+ 2TS + TH + TDMA

Where:

● DT is dead time.

● TN is the duration of the noise induced on the shunt resistor voltage of a phase by the 
commutation of a switch belonging to another phase.

● TS is the sampling time of the STR750 A/D converter. Refer to the STR750 reference 
manual for more detailed information.

● TH is the holding time of the STR750 A/D converter. Refer to the STR750 reference 
manual for more detailed information.

● TDMA is the time required for the DMA to load the value related to the next conversion 
delay in TIM0 OCR2 (refer to Section 4.2.3: Current sampling in three shunt topology 
and general purpose A/D conversions on page 37 for further details).

This case typically occurs when SVPWM with low (<60%) modulation index is generated 
(see Figure 20). The modulation index is the applied phase voltage magnitude expressed as 
a percentage of the maximum applicable phase voltage (the duty cycle ranges from 0% to 
100%).

Figure 21 offers a reconstruction of the PWM signals applied to low side switches of Phase 
A and B in these conditions plus a view of the analog voltages measured on the STR750 
A/D converter pins for both Phase B and C (the time base is lower than the PWM period).
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Figure 20. Low side switches gate signals (low modulation indexes)

Note that these current feedbacks are constant in the view in Figure 21 because it is 
assumed that commutations on Phase B and C have occurred out of the visualized time 
window.

Moreover, it can be observed that in this case the two stator current sampling conversions 
can be performed between the two commutations of the Phase A low side switch, as shown 
in Figure 21.

Figure 21. Low side Phase A duty cycle > DT+TN+ 2TS + TH + TDMA

After the commutation of the Phase A low side switch, a blanking window equal to TN is 
applied before starting conversion of phase C, then at the end of the first conversion, it is 
necessary to wait a TDMA period before starting the phase B conversion.
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Case 2: DT+TN+TS < Phase A duty cycle < DT+TN+ 2TS + TH + TDMA

In this case, only one of the two conversions can be performed between the two Phase A 
low side commutations. The other conversion is then synchronized depending on the 
difference of duty cycles between Phase B and A (ΔDutyA-B). In particular if 
ΔDutyA-B < DT+TN+TS (as shown in the red circle in Figure 22), the sampling of Phase C 
cannot be performed between Phase B low side switching on and Phase A high side 
switching off (see Figure 23). Therefore, Phase C current sampling is performed before 
Phase B high side commutation.

Figure 22. DT+TN+TS< Low side Phase A duty cycle < DT+TN+2TS+TH+TDMA and 
ΔDutyA-B<DT+TN+TS
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Figure 23. DT+TN+TS < Low side Phase A duty cycle < DT+TN+2TS+TH+TDMA and 
ΔDutyA-B<DT+TN+TS

On the contrary, if ΔDutyA-B > DT+TN+TS (as shown in the red circle in Figure 24), Phase C 
conversion is performed between Phase B low side switch on and Phase A high side switch 
off (see Figure 25).

Figure 24. DT+TN+TS < Low side Phase A duty cycle < DT+TN+2TS+TH+TDMA and 
ΔDutyA-B>DT+TN+TS
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Figure 25. DT+TN+TS < Low side Phase A duty cycle < DT+TN+2TS+TH+TDMA and 
ΔDutyA-B>DT+TN+TS

Case 3: Phase A pulse width < DT+TN+TS

In this case, the duty cycle applied to Phase A is so short that no current sampling can be 
performed in between the two low side commutations.

Then if the difference of duty cycles between Phase B and A is long enough to allow two A/D 
conversions to be performed between Phase B low side switch on and Phase A high side 
switch off, the strategy shown in Figure 27 is used.

Figure 26. Low side duty cycle Phase A < DT+TN+TS and ΔDutyA-B > 
DT+TN+2TS+TH+TDMA
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Otherwise, if the difference of duty cycles between Phase B and A is long enough to allow 
only one A/D conversion to be performed between Phase B low side switch on and Phase A 
high side switch off, the strategy shown in Figure 29 is used. 

In Figure 29, TRise represents the time required by the analog voltage on the shunt resistor 
of a phase (signal ‘Current feedback of Phase B’) to settle after a commutation of the low 
side switch belonging to the same phase.

Figure 27. Low side duty cycle Phase A < DT+TN+TS and
ΔDutyA-B > DT+TN+2TS+TH+TDMA

Figure 28. Figure 31: Low side duty cycle Phase A < DT+TN+TS and 
DT+TRise+TS < ΔDutyA-B < DT+TN+2TS+TH+TDMA
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Figure 29. Low side duty cycle Phase A < DT+TN+TS and
DT+TRise+TS < ΔDutyA-B < DT+TN+2TS+TH+TDMA

Finally, when a high modulation index (> 92%) and high frequency (>11kHz) PWM signal is 
generated, it could happen that both Phase A pulse width is lower than DT+TN+TS and that 
ΔDutyA-B <  DT+TRise+TS. In this case, it is not possible to perform the current reading on 
Phase B, (see Figure 30), so the PWM patterns are slightly modified to relapse in the case 
shown in Figure 29. Because this PWM pattern modification produces a distortion on the 
phase currents, it is better to limit the scope of the modification by limiting the modulation 
index depending on the selected PWM frequency.

● DT = 0.7µs

● TN = 2.55µs

● TS = 1.6µs

● TH = 2.67µs

● TDMA = 0.7µs

● TRise =2.6µs
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Figure 30. Low side duty cycle Phase A < DT+TN+TS and DutyA-B< DT+TRise+TS 

The maximum applicable duty cycles are listed in Table 3 as a function of the PWM 
frequency.

         

Note: The figures above were measured using the MB459 motor control board. This evaluation 
platform is designed to support several motor driving topologies (PMSM and AC induction) 
and current reading strategies (single and three-shunt resistors). Therefore, the figures 
provided in Table 3 should be understood as a starting point and not as a best case.

Table 3. PWM frequency vs maximum duty cycle

PWM frequency Max duty cycle Max modulation index (MMI)

Up to 11.4kHz 100% 100%

12.2kHz 99.5% 99%

12.9kHz 99% 98%

13.7kHz 98.5% 97%

14.4kHz 98% 96%

15.2kHz 97.5% 95%

16kHz 97% 94%

16.7kHz 96.5% 93%

17.5kHz 96% 92%
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You can further increase the maximum applicable duty when using your own hardware 
system by editing the following definitions in the MC_pwm_3shunt_prm.h header file:

#define HOLD_TIME 0xA0 //2.67usec 1/60MHz units
#define DMA_TIME  0x2A  //0.7usec  
#define SAMPLING_TIME 0x60//1.6usec
#define TNOISE 0x96//2.55usec 
#define TRISE 0x96 //2.6usec 

4.2.5 75x_svpwm_ICS module
Two important tasks are performed in the 75x_svpwm_ICS module:

● Space vector pulse width modulation (SVPWM),

● Three-phase current reading when two isolated current sensors (ICS) are used.

In order to reconstruct the currents flowing through a three phase load with the required 
accuracy using two ICS’, it is necessary to properly synchronize A/D conversions with the 
generated PWM signals.

Two tasks are included in a single software module.

SVPWM_IcsInit

         

Synopsis void SVPWM_IcsInit(void);

Description The purpose of this function is to set-up microcontroller peripherals for   
performing ICS reading and center aligned PWM generation.

The function initializes EIC, ADC, GPIO, and PWM peripherals. 

In particular ADC and PWM peripherals are configured to perform one 
injected chain of two A/D conversions every time PWM registers are 
updated (event called U event).

Refer to Section 4.2.6 for further information on A/D conversion 
triggering in ICS configuration.

Input None

Returns None

Note It must be called at main level

Functions called Standard Library:

MRCC_PeripheralClockConfig, GPIO_Init, EIC_IRQInit, 
EIC_IRQCmd, PWM_DeInit, PWM_StructInit, PWM_Init,  
PWM_TRGOSelection,  PWM_ClearFlag,  PWM_ITConfig,  
PWM_ResetCounter, ADC_StructInit,  ADC_Init,  ADC_Cmd, 
ADC_StartCalibration,  ADC_ConversionCmd,  PWM_Cmd.

Motor Control Library:

SVPWM_IcsCurrentReadingCalibration 
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SVPWM_IcsCurrentReadingCalibration

         

 SVPWM_IcsGetPhaseCurrentValues

         

Synopsis void SVPWM_IcsCurrentReadingCalibration(void);

Description The purpose of this function is to store the two analog voltages 
corresponding to zero current values for compensating the offset 
introduced by both ICS and amplification network.

Input None

Returns None

Caution The function must be called before PWM outputs are enabled so that 
current flowing through inverter legs is zero. When using the STR750 
MC Kit, ICS sensors must be supplied before the control board 
(MB469B). This way, the current sensing conditioning network can 
reach steady state before performing calibration.

Functions called Standard Library:

ADC_GetFlagStatus, ADC_ConversionCmd, 
ADC_GetConversionValue

Synopsis Curr_Components SVPWM_IcsGetPhaseCurrentValues(void);

Description This function computes current values of Phase A and Phase B in q15 
format from the values acquired from the A/D converter.

Input None

Returns Curr_Components type variable

Caution In order to have a q1.15 format for the current values, the digital value 
corresponding to the offset must be subtracted when reading phase 
current A/D converted values. Thus, the function must be called after 
SVPWM_IcsCurrentReadingCalibration.

Functions called None
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SVPWM_IcsCalcDutyCycles

         

4.2.6 Isolated current sensor topology current sampling and general 
purpose (GP) A/D conversions integration

The three currents I1, I2, and I3 flowing through a three-phase system follow the 
mathematical relationship:

I1+I2+I3=0

Therefore, to reconstruct the currents flowing through a generic three-phase load, it is 
sufficient to sample only two out of the three currents while the third one can be computed 
by using the above relationship. 

The flexibility of the STR750 A/D converter trigger makes it possible to synchronize the two 
A/D conversions necessary for reconstructing the stator currents flowing through the three-
phase AC induction motor with the PWM registers update whose rate is also adjusted by the 
repetition counter. This is important because, as shown in Figure 31, it is precisely during 
counter overflow and underflow that the average level of current is equal to the sampled 
current. Refer to the STR750 Reference Manual to learn more about A/D conversion 
triggering and the repetition counter.

Finally, at the end of the injected chain conversion for current reading, the general purpose 
A/D conversions are performed while the CPU executes the PMSM FOC algorithm.

Synopsis void SVPWM_IcsCalcDutyCycles (Volt_Components 
Stat_Volt_Input);

Description After execution of the PMSM FOC algorithm, new stator voltages 
component Vα and Vβ are computed. The purpose of this function is 
to calculate exactly the three duty cycles to be applied to motor 
phases from the values of these voltage components.

Refer to Section 4.2.2 for details about the theoretical approach of 
SVPWM and its implementation.

Input Vα and Vβ

Returns None

Caution None

Functions called None
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Figure 31. Stator currents sampling and GP conversions in ICS configuration 
(REP_RATE=1)

4.2.7 MC_Clarke_Park.h module

This module is designed to perform transformations of electric quantities between frames of 
reference that rotate at different speeds.

Based on the arbitrary reference frame theory, the module provides three functions, named 
after two pioneers of electric machine analysis, E. Clarke and R.H. Park.

These functions implement three variable changes that are required to carry out field-
oriented control (FOC): 

● those required to carry out field oriented control (FOC): Clarke transforms stator 
currents to a stationary orthogonal reference frame (named qd frame, see Figure 32);

● then, from that arrangement, Park transforms currents to a frame that rotates at an 
arbitrary speed  (which, in PMSM FOC drive, is synchronous with the rotor flux);

● Reverse Park transformation brings back stator voltages from a rotating qd frame to a 
stationary one.
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Figure 32. Clarke, Park, and Reverse Park transformations

Clarke

         

Synopsis Curr_Components Clarke (Curr_Components Curr_Input)

Description This function transforms stator currents ias and ibs (which are 
directed along axes each displaced by 120 degrees) into currents iα 
and iβ in a stationary qd reference frame; q,d axes are directed along 
paths orthogonal to each other.

See Section 4.2.8 for the details.

Input Stator currents ias and ibs (in q1.15 format) as members of the 
variable Curr_Input, which is a structure of type Curr_Components.

Returns Stator currents iα and iβ (in q1.15 format) as members of a structure 
of type Curr_Components.

Functions called mul_q15_q15_q31
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Park

         

Rev_Park

         

Synopsis Curr_Components Park (Curr_Components Curr_Input, s16 Theta)

Description The purpose of this function is to transform stator currents iα and iβ, 
which belong to a stationary qd reference frame, to a rotor flux 
synchronous reference frame (properly oriented), so as to obtain iqs 
and ids.

See Section 4.2.8 for the details.

Input Stator currents iα and iβ (in q1.15 format) as members of the variable 
Curr_Input, which is a structure of type Curr_Components; rotor flux 
angle θλr (65536 pulses per revolution).

Returns Stator currents iqs and ids (in q1.15 format) as members of a structure 
of type Curr_Components.

Functions called mul_q15_q15_q31

Synopsis Volt_Components Rev_Park (Volt_Components Volt_Input)

Description This function transforms stator voltage vq and vd, belonging to a 
rotor flux synchronous rotating frame, to a stationary reference 
frame, so as to obtain vα and vβ.

See Section 4.2.8 for the details.

Input Stator voltages vqs and vds (in q1.15 format) as members of the 
variable Volt_Input, which is a structure of type Volt_Components.

Returns Stator voltages vα and vβ (in q1.15 format) as members of a 
structure of type Volt_Components.

Caution None.

Functions called mul_q15_q15_q31
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Rev_Park_Circle_Limitation

         

4.2.8 Detailed explanation about reference frame transformations

By making a change of variables, that refers stator and rotor quantities to a frame of 
reference rotating at any angular velocity, it is possible to reduce the complexity of the 
system electrical equations.

This strategy is often referred to as the Reference-Frame theory [1].

Supposing fax, fbx, fcx are three-phase instantaneous quantities directed along axis each 
displaced by 120 degrees, where x can be replaced with s or r to treat stator or rotor 
quantities (see Figure 33); supposing fqx, fdx, f0x are their transformations, directed along 
paths orthogonal to each other; the equations of transformation to a reference frame 
(rotating at an arbitrary angular velocity ω) can be expressed as:

where θ is the angular displacement of the q-d reference frame at the time of observation, 
and θ0 that displacement at t=0 (see Figure 33).

Synopsis void RevPark_Circle_Limitation(void)

Description After the two new values (Vd and Vq) of the stator voltage producing 
flux and torque components of the stator current, have been 
independently computed by flux and torque PIDs, it is necessary to 
saturate the magnitude of the resulting vector, equal to 

passing before them to the SVPWM block. The purpose of this 
routine is to perform the saturation. Refer to Section 4.2.9: Circle 
limitation on page 56 for more detailed information 

Input None

Returns None

Caution The limitation of the stator voltage vector must be done in 
accordance with the PWM frequency as shown in Table 3: PWM 
frequency vs maximum duty cycle on page 47. 

Functions called None
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Figure 33. Transformation from an abc stationary frame to a qd rotating frame

With Clark’s transformation, stator currents ias and ibs (which are directed along axes each 
displaced by 120 degrees) are resolved into currents i and i on a stationary qd reference 
frame.

Appropriate substitution into the general equations (given above) yields:

In Park’s change of variables, stator currents iα and iβ, which belong to a stationary qd 
reference frame, are resolved to a rotor flux synchronous reference frame (properly 
oriented), so as to obtain iqs and ids.

Consequently, with this choice of reference, ω=ωλr; thus:

On the other hand, reverse Park transformation takes back stator voltage vq and vd, 
belonging to a rotor flux synchronous rotating frame, to a stationary reference frame, so as 
to obtain vα and vβ:
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4.2.9 Circle limitation

As discussed above, FOC allows to separately control the torque and the flux of a 3-phase 
permanent magnet motor. After the two new values(  and ) of the stator voltage 
producing flux and torque components of the stator current, have been independently 
computed by flux and torque PIDs, it is necessary to saturate the magnitude of the resulting 
vector ( ) before passing them to the SVPWM block. 

The saturation boundary is normally given by the value (S16_MAX=32767) which produces 
the maximum output voltage magnitude (corresponding to a duty cycle going from 0% to 
100%).

Nevertheless, when using three shunt resistor configuration and depending on PWM 
frequency, it might be necessary to limit the maximum PWM duty cycle to guarantee the 
proper functioning of the stator currents reading block.

For this reason, the saturation boundary could be a value slightly lower than S16_MAX 
depending on PWM switching frequency when using three shunt resistor configuration.

Table 3 on page 47, repeated below for convenience, shows the maximum applicable 
modulation index as a function of PWM switching frequency when using the STR750-
MCKIT.

         

Note: The figures above were measured using the MB459 board. This evaluation platform is 
designed to support several motor driving topologies (PMSM and AC induction) and current 
reading strategies (single and three-shunt resistors). Therefore, the figures provided in 
should be understood as a starting point and not as a best case.

The RevPark_Circle_Limitation function performs the discussed stator voltage 
components saturation, as illustrated in Figure 34.

PWM frequency Max duty cycle Max modulation index (MMI)

Up to 11.4kHz 100% 100%

12.2kHz 99.5% 99%

12.9kHz 99% 98%

13.7kHz 98.5% 97%

14.4kHz 98% 96%

15.2kHz 97.5% 95%

16kHz 97% 94%

16.7kHz 96.5% 93%

17.5kHz 96% 92%

*
dV *

qV

|V| *
r
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Figure 34. Circle limitation working principle

Vd and Vq represent the saturated stator voltage component to be passed to the SVPWM 
block. From geometrical considerations, it is possible to draw the following relationship:

   

In order to speed up the computation of the above equations while keeping an adequate 
resolution, the value  

is computed and stored in a look-up table for different values of . Furthermore, 
considering that MMI depends on the selected PWM frequency, a look-up table is stored in 
MC_Clarke_Park.h (with MMI ranging from 92 to 100%).

Once you have selected the required PWM switching frequency, you should uncomment the 
Max Modulation Index definition corresponding to the selected PWM frequency, as shown in 
Chapter 2.2.4: Drive control parameters: MC_Control_Param.h file on page 18.

For information on selecting the PWM switching frequency, you will find advice in 
Section A.2 on page 80. To determine the max modulation index corresponding to the PWM 
switching frequency, refer to Table 3 on page 47.

The following section provides an example of how the limitation is performed by the 
firmware.
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Example: max modulation index of 95%.

For a MMI of 95%, the Max module value is 95%*S16_MAX = 31128 (as per the 
MAX_MODULE value stored in MC_Clarke_Park.h). 

The Figure 35 shows the firmware implementation working principle, minimizing the CPU 
load (look-up table access and shift operation for division). The table 
circle_limit_table[...] stores a maximum of 81 values (generated from the 
circle limitation.xls file located in the Design tools folder). Access is as follows:

Figure 35. Example with Iq = 32000, Id = -5000

Note that the actual maximum PWM duty cycle is equal to:

Max duty cycle = 100% - (100% - maximum modulation index chosen) / 2

A 95% modulation index corresponds to a 100 - (100-95) / 2 = 97.5% maximum duty cycle 
output signals to the power stage.

Iq2 Id2+ greater than MaxModule2( ) 311282=

Module2

Module2 =

/ (512 x 32768) = 62

Iq Iq= x circle_limit_table[62 - START_INDEX] / 32768

Id Id= x circle_limit_table[62 - START_INDEX] / 32768

Return new Iq and Id values

Defined in MC_Clarke_Park.h
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4.2.10 75x_encoder.c module

ENC_Init

         

ENC_GetPosition

         

ENC_Get_Electrical_Angle

         

Synopsis void ENC_Init(void)

Description The purpose of this function is to initialize the encoder timer. The 
peripheral clock, input pins and update interrupt are enabled. The 
peripheral is configured in 4X mode, which means that the counter 
is incremented/decremented on the rising/falling edges of both 
timer input 1 and 2 (TIMx_TI0 and TIMx_TI1 pins).

Functions called MRCC_PeripheralClockConfig
GPIO_Init
EIC_IRQInit
TIM_StructInit, TIM_Init, TIM_ClearFlag, TIM_ITConfig, 
TIM_ResetCounter, Tim_Cmd

See also STR750 datasheet: synchronizable standard timer.

Synopsis u32 ENC_GetPosition(void)

Description This function returns the encoder timer value, giving a direct 
reading of the rotor position from 0 to 4*(number of encoder pulses 
per revolution). For the SHINANO motor included with the starter 
kit, the encoder delivers 400 pulses per revolution. This routine 
returns: 0 for 0 degrees, 4*400/2=800 for 180 degrees.

Input None

Output Unsigned 32 bits

Functions called None

See also STR750 datasheet: synchronizable standard timer.

Synopsis s16 ENC_Get_Electrical_Angle(void)

Description This function returns the electrical angle in signed 16-bit format. 
This routine returns: 0 for 0 degrees, -32768 (S16_MIN) for -180 
degrees, +32767 (S16_MAX) for +180 degrees.

Input None

Output Signed 16 bits

Functions called None
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ENC_Get_Mechanical_Angle

         

ENC_ResetEncoder

         

ENC_Clear_Speed_Buffer

         

Synopsis s16 ENC_Get_Electrical_Angle(void)

Description This function returns the mechanical angle in signed 16-bit format. 
This routine returns: 0 for 0 degrees, -32768 (S16_MIN) for -180 
degrees, +32767 (S16_MAX) for +180 degrees.

Input None

Output Signed 16 bits

Functions called None

Caution Link between Electrical/Mechanical frequency/RPM

Electrical frequency = number of pair poles x mechanical frequency

RPM speed = 60 x Mechanical frequency (RPM: revolutions per 
minute)

example: electrical frequency = 100 Hz, motor with 8 pair poles:
100Hz electrical <-> 100/8 =12.5Hz mechanical <-> 12.5 x 60=750 
RPM

Synopsis void ENC_resetEncoder(void)

Description This function resets the encoder timer (hardware register) value to 
zero.

Functions called TIM_ResetCounter

See also STR750 datasheet: synchronizable standard timer.

Synopsis void ENC_Clear_Speed_Buffer(void)

Description This function resets the buffer used for speed averaging.

Functions called None
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ENC_Get_Speed

         

ENC_Get_Average_Speed

         

TIMx_UP_IRQHandler - interrupt routine

         

Synopsis s16 ENC_Get_Speed(void)

Description This function returns the rotor speed in Hz. The value returned is 
given with 0.1Hz resolution, which means that 1234 is equal to 
123.4 Hz. 

Input None

Output Signed 16 bits

Functions called None

Caution This routine returns the mechanical frequency of the rotor. To find 
the electrical speed, use the following conversion:
electrical frequency = number of pole pairs * mechanical frequency

Synopsis s16 ENC_Get_Average_Speed(void) 

Description This function returns the average rotor speed in Hz. The value 
returned is given with 0.1Hz resolution, which means that 1234 is 
equal to 123.4 Hz. 

Input None

Output Signed 16 bits

Functions called ENC_Get_Speed()

Note The averaging is done with the values stored in ‘Speed_Buffer[]’. 
The size of this buffer is set through the ‘SPEED_BUFFER_SIZE’ 
statement, which must be equal to a power of 2 to allow the use of 
the shift operation for divisions.

Caution This routine returns the mechanical frequency of the rotor. To find 
the electrical speed, use the following conversion:

electrical frequency = mechanical frequency * number of pole pairs

Synopsis void TIMx_UP_IRQHandler(void)

Description This is the encoder timer (TIMER 0, 1 or 2) update routine. An 
interruption is generated whenever an overflow/underflow of the 
counter value occurs (TIM_CNT). The ‘Encoder_Timer_Overflow’ 
variable is then incremented.

Functions called None

Caution This is an interrupt routine.

See also STR750 Datasheet: Synchronizable Standard Timer.
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4.2.11 75x_TBTimer.c module

TB_Timebase_Timer_Init

         

TB_Wait

         

TB_Set_Delay_500us

         

Synopsis void TB_Timebase_Timer_Init(void)

Description The purpose of this function is to initialize the Timebase Timer. The 
peripheral clock, interrupt, auto-reload value and counter mode are 
set up. The peripheral is configured to generate an interruption every 
500µs, thus providing a general purpose timebase.

Functions called EIC_IRQInit
TB_StructInit, TB_Init, TB_ITConfig, TB_Cmd, TB_ResetCounter

TB_ResetCounter

See also STR750 datasheet: timebase timer.

Synopsis void TB_Wait(u16 time)

Description This function produces a programmable delay equal to the time 
variable multiplied by 500µs.

Input Unsigned 16 bits

Output None

Functions called None

Caution This routine exits only after the programmed delay has elapsed. 
Meanwhile, the code execution remains frozen in a waiting loop. 
Care should be taken when this routine is called at main/interrupt 
level: a call from an interrupt routine with a higher priority than the 
timebase interrupt will freeze code execution.

See also STR750 datasheet: timebase timer.

Synopsis void TB_Set_Delay_500us(u16 hDelay)

Description This function is used to update the wTimebase_500us static 
variable.

Input Unsigned 16 bits

Output None

Functions called None
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TB_Delay_IsElapsed

         

TB_Set_DisplayDelay_500us

         

TB_Set_DebounceDelay_500us

         

TB_DebounceDelay_IsElapsed

         

Synopsis bool TB_Delay_IsElapsed(void)

Description This function returns TRUE if ‘wTimebase_500us’ variable has 
reached 0, else FALSE. 

Input None

Output Boolean

Synopsis void TB_Set_DisplayDelay_500us(u16 hDelay)

Description This function is used to update the ‘wTimebase_display_500us’ 
static variable.

Input Unsigned 16 bits

Output None

Synopsis void TB_Set_DebounceDelay_500us(u16 hDelay)

Description This function is used to update the ‘wKey_debounce_500us’ static 
variable.

Input Unsigned 16 bits

Output None

Synopsis bool TB_DebounceDelay_IsElapsed(void)

Description This function returns TRUE if ‘wKey_debounce_500us’ variable 
has reached 0, else FALSE. 

Input None

Output Boolean
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TB_IRQHandler

         

Synopsis void TB_IRQHandler(void)

Description This is the Timebase timer interrupt routine. This peripheral is 
configured to produce an interruption every 500µs, thus providing a 
general purpose timebase allowing the refresh of various variables 
used mainly as counters (for example PID sampling time).

Input None

Output None

Functions called ENC_Get_Average_Speed
PID_Speed_Regulator
TB_ClearFlag

Note This is an interrupt routine.

See also STR750 datasheet: timebase timer.
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4.2.12 75x_it.c module

PWM_EM_IRQHandler

         

ADC_IRQHandler

         

Synopsis void PWM_EM_IRQHandler(void)

Description The purpose of this function is to refresh the ‘wGlobal_Flags’ and 
‘State’ variables upon detection of a signal on the dedicated 
emergency pin.

Functions called PWM_ClearFlag, PWM_ITConfig

Note This is an interrupt routine.

See also STR750 datasheet: synchronizable PWM timer.

Synopsis void ADC_IRQHandler(void)

Description The purpose of this function is to handle the ADC interrupt request. 

All the PMSM FOC algorithm is processed in this interrupt routine.

Triggered by ADC ECH / JECH ISR, the function loads stator currents 
(read by ICS or shunt resistors) and carries out Clark and Park 
transformations, converting them to iqs

λr and ids
λr (see Figure 5).

Then, these currents are fed to PID regulators together with reference 
values iqs

λr * and ids
λr *. The regulator output voltages vqsλr * and vdsλr 

* then must be transformed back to a stator frame (through Reverse 
Park conversion), and finally drive the power stage.

In order to correctly perform Park and Reverse Park transformation, it 
is essential to accurately estimate the rotor flux position (θλr): this is 
done by calling the ENC_Get_Electrical_Angle routine.

Functions called 3 shunts configuration: 

Clarke, Park, PID_Torque_Regulator, PID_Flux_Regulator, 
RevPark_Circle_Limitation, Rev_Park, 
SVPWM_3ShuntCalcDutyCycles, ENC_ResetEncoder, 
SVPWM_3ShuntGPADCConfig, 
SVPWM_3ShuntGetPhaseCurrentValues

Isolated current sensors (ICS) configuration: 

Clarke, Park, PID_Torque_Regulator, PID_Flux_Regulator, 
RevPark_Circle_Limitation, Rev_Park, SVPWM_IcsCalcDutyCycles, 
ENC_ResetEncoder, SVPWM_IcsGetPhaseCurrentValues

Note This is an interrupt routine.

See also STR750 datasheet: synchronizable PWM timer.
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Figure 36. ADC interrupt request processing

4.2.13 MC_PID_regulators.c module

PID_Init

         

Ramp-up:

ADC interrupt request?

State?
State=RUNState=START

increase Flux component

Return from interrupt

End of
alignment?

Yes

No

State=RUN

Clarke transformation
Park transformation
Torque regulation

Flux regulation
Circle limitation

Reverse park transformation
Space vector PWM generation

Reset encoder
timer

 Retrieve 3 phase current

Synopsis void PID_Init(void)

Description The purpose of this function is to initialize the PID for torque, flux 
and speed regulation. For each one, a set of default values are 
loaded: target (speed, torque or flux), proportional, integral and 
derivative gains, lower and upper limiting values for the output.

Functions called None

Note Default values for PID regulators are declared and can be modified 
in MC_Control_Param.h file (see Section l on page 19).
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PID_Flux_Regulator

         

PID_Torque_Regulator

         

Synopsis s16 PID_Flux_regulator(PID_FluxTYPEDEF *PID_Flux, s16 
qId_input)

Description The purpose of this function is to compute the proportional, integral 
and derivative terms (if enabled, see 
Id_Iq_DIFFERENTIAL_TERM_ENABLED in Section 2.2.1 on page 16) for 
the flux regulation. 

Input PID_FluxTYPDEF (see ‘MC_type.h’ for structure declaration)
signed 16 bits

Output Signed 16 bits

Functions called None

Note Default values for the PID flux regulation are declared and can be 
modified in the MC_Control_Param.h file (see Section 2.2.4 on 
page 18).

See also Figure 42 on page 74 shows the PID block diagram.

Chapter 5: PID regulator implementation and tuning on page 70.

Synopsis s16 PID_Torque_regulator(PID_TorqueTYPEDEF *PID_Torque, 
s16 qIq_input)

Description The purpose of this function is to compute the proportional, integral 
and derivative terms (if enabled, see 
Id_Iq_DIFFERENTIAL_TERM_ENABLED in Section 2.2.1 on page 16) for 
the torque regulation.

Input PID_TorqueTYPDEF (see MC_type.h for structure declaration)
signed 16 bits

Output signed 16 bits

Functions called None

Note Default values for the PID torque regulation are declared and can 
be modified in the MC_Control_Param.h file (see Section 2.2.4 on 
page 18).

See also Figure 42 on page 74 shows the PID block diagram.

Chapter 5: PID regulator implementation and tuning on page 70.
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PID_Speed_Regulator

         

PID_Reset_Integral_terms

         

PID_Speed_Coefficients_update

         

PID_Integral_Speed_update

         

Synopsis s16 PID_Speed_regulator(PID_SpeedTYPEDEF *PID_Speed, s16 
speed)

Description The purpose of this function is to compute the proportional, integral 
and derivative terms (if enabled, see 
SPEED_DIFFERENTIAL_TERM_ENABLED in section 2.2.1 on page 16) for 
the speed regulation.

Input PID_SpeedTYPDEF (see ‘MC_type.h’ for structure declaration)
signed 16 bits

Output signed 16 bits

Functions called None

Note Default values for the PID speed regulation are declared and can 
be modified in the MC_Control_Param.h file (see Section 2.2.4 on 
page 18).

See also Figure 43 on page 75 shows the PID block diagram.

Chapter 5: PID regulator implementation and tuning on page 70.

Synopsis void PID_Reset_Integral_terms(void)

Description The purpose of this function is to reset all the integral terms of the 
torque, flux and speed PID regulators.

Synopsis void PID_Speed_coefficients_update(s16 motor_speed)

Description This function automatically computes the proportional, integral and 
derivative gain for the speed PID regulator according to the actual 
motor speed. The computation is done following a linear curve 
based on 4 set points. See Section 5.2.2 on page 72 for more 
information.

Functions called None

Note Default values for the four set points are declared and can be 
modified in the MC_Control_Param.h file (see Section 2.2.4 on 
page 18).

Synopsis void PID_Integral_Speed_update(s32 value)

Description The purpose of this function is to load the speed integral term with 
a default value.
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4.3 Application layer
The application layer is split into several modules, mainly for the control of the keys, LCD 
display, temperature and bus voltage monitoring, and main loop. The following is a brief 
description of these modules.

4.3.1 main.c module 

This module contains the initialization and the main control loop of the overall firmware. 

4.3.2 MC_Keys.c module

The purpose of the MC_Keys.c module is to centralize all information regarding the 
keyboard reading. Any action on the keyboard is processed in the Keys_process routine.

4.3.3 MC_Display.c module

The purpose of the MC_Display.c module is to centralize all information regarding the LCD 
display management.

4.3.4 75x_LCD.c module

This module contains some dedicated routines for the control of the LCD embedded with the 
starter kit.

4.3.5 MC_dac.c module

This module contains some dedicated routines for the control of an external digital-to-analog 
(DAC) device (AD7303).

4.3.6 MC_misc.c module

This module contains some dedicated routines for monitoring the temperature of the power 
stage and the bus voltage. 
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5 PID regulator implementation and tuning

The regulators implemented for Torque, Flux and Speed are actually Proportional Integral 
Derivative (PID) regulators (see note below regarding the derivative term). PID regulator 
theory and tuning methods are subjects which have been extensively discussed in technical 
literature. Section 5.1 provides a basic reminder of the theory.

5.1 Theoretical background
The purpose of such regulators is to maintain a level of torque, flux or speed according to a 
desired target.

Figure 37. PID general equation

Equation 1 corresponds to a classical PID implementation, where:

● Kp is the proportional coefficient,

● Ki is the integral coefficient.

● Kd is the differential coefficient.

Note: As mentioned in Figure 37, the derivative term of the PID can be disabled independently 
(through a compiler option, see 75x_MCconf.h file) for the torque/flux or the speed 
regulation; a PI can then be quickly implemented whenever the system doesn’t require a 
PID control algorithm.

5.2 Regulation sampling time
The sampling time needs to be modified to adjust the regulation bandwidth. As an 
accumulative term (the integral term) is used in the algorithm, increasing the loop time 
decreases its effects (accumulation is slower and the integral action on the output is 
delayed). Inversely, decreasing the loop time increases its effects (accumulation is faster 
and the integral action on the output is increased). This is why this parameter has to be 
adjusted prior to setting up any coefficient of the PID regulator.

In order to keep the CPU load as low as possible and as shown in equation (1) in Figure 37, 
the sampling time is directly part of the integral coefficient, thus avoiding an extra 

torque = f(rotor position)
flux = f(rotor position)

torque = f(rotor speed)

torque and flux regulation for maximum

torque regulation for speed regulation
of the system

system efficiency

Where: Error of the system observed at time t = TErrorsysT

ErrorsysT 1– Error of the system observed at time t = T - Tsampling

f XT( ) Kp ErrorsysT
× Ki Errorsyst

Kd ErrorsysT
ErrorsysT 1–

–( )×+

0

T

∑×+= (1)

Derivative term can be disabled
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multiplication. Figure 38 describes the link between the time domain and the discrete 
system.

Figure 38. Time domain to discrete PID equations

5.2.1 Adjusting the regulation sampling time

In theory, the higher the sampling rate, the better the regulation. In practice, you must keep 
in mind that:

● The related CPU load will grow accordingly.

● For speed regulation, there is absolutely no need to have a sampling time lower than 
the refresh rate of the speed information fed back by the external sensors; this 
becomes especially true when all sensors are used while driving the motor at low to 
medium speed.

● At high speed, in most cases, system inertia is such that the system response is slow: 
in these conditions, there is no need to have a high sampling rate.

The speed regulation loop sampling time must be set in the 75x_TBtimer.c file (Time 
Base timer interrupt routine). Note that the sampling time is actually a multiple of the period 
of the Timebase timer interrupt update routine (500 µS by default). This is an 8-bit value 
(255 max).

Figure 39. Speed regulation sampling time adjustment in 75x_TBtimer.c

f XT( ) Kp ErrorsysT
× ki Ts Errorsyst

Kd ErrorsysT
ErrorsysT 1–

–( )×+

0

T

∑×+=

f t( ) Kp Errorsys t( )× Ki Errorsys0

t∫× t( )dt Kd td
d Errorsys t( )( )×+ +=Time domain

Discrete
 domain

ki Ts× Ki=
(sampling done at Fs = 1/Ts frequency)

void TB_IRQHandler(void)
{
.....
if (bPID_Speed_Sampling_Time_500us != 0 )  
  {
    bPID_Speed_Sampling_Time_500us --;
  }
  else
  {    
  bPID_Speed_Sampling_Time_500us = PID_SPEED_SAMPLING;  

.........
}
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For the torque and flux regulation loop sampling time, the PID_SPEED_SAMPLING 
parameter must be set in the MC_Control_Param.h file. Note that the sampling time is:

● A multiple of the PWM switching period in three-shunt configuration. The REP_RATE 
value can only be an odd number (8-bit value).

● A multiple of half of the PWM switching period in isolated current sensor configuration. 
The REP_RATE value can be any number (8-bit value).

The torque/flux regulation sampling time adjustment is defined as follows in the 
MC_Control_Param.h file:

#define REP_RATE (1)// (N.b): Internal current loop is performed every 
//             (REP_RATE + 1)/(2*PWM_FREQ) seconds.
// REP_RATE has to be an odd number in case of three-shunt
// current reading; this limitation doesn't apply to ICS

5.2.2 Adjusting the speed regulation loop Ki, Kp and Kd vs the motor 
frequency

Depending on the motor frequency, it might be necessary, to use different values of Kp, Ki 
and Kd.

These values have to be input in the code to feed the regulation loop algorithm. A function 
performing linear interpolation between four set-points 
(PID_Speed_Coefficient_update) is provided as an example in the software library 
(see MC_PID_regulators.c) and can be used in most cases, as long as the coefficient 
values can be linearized. If that is not possible, a function with a larger number of set-points 
or a look-up table may be necessary.

To enter the four set-points, once the data are collected, edit the MC_Control_param.h 
file and fill in the field dedicated to the Ki, Kp and Kd coefficient calculation as shown below. 

//Settings for min frequency
#define Freq_Min 10 // 1 Hz mechanical
#define Ki_Fmin 1000 // Frequency min coefficient settings
#define Kp_Fmin 2000
#define Kd_Fmin 3000

//Settings for intermediate frequency 1
#define F_1  50 // 5 Hz mechanical 
#define Ki_F_1 2000 // Intermediate frequency 1 coefficient settings
#define Kp_F_1 1000
#define Kd_F_1 2500

//Settings for intermediate frequency 2
#define F_2  200 // 20 Hz mechanical
#define Ki_F_2 1000     // Intermediate frequency 2 coefficient settings
#define Kp_F_2 750
#define Kd_F_2 1200
  
//Settings for max frequency
#define Freq_Max 500 // 50 Hz mechanical
#define Ki_Fmax 500 // Frequency max coefficient settings
#define Kp_Fmax 500
#define Kd_Fmax 500
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Once the motor is running, integer, proportional and derivative coefficients are computed 
following a linear curve between F_min and F_1, F_1 and F_2, F_2 and F_max (see 
Figure 40). Note that F_min, F_1, F_2, F_max are mechanical frequencies, with 0.1 Hz 
resolution (for example F_1 = 1234 means F_1 = 123.4Hz).

Figure 40. Linear curve for coefficient computation

Disabling the linear curve computation routine, 75x_it.c module

If you want to disable the linear curve computation, you must comment out the 
PID_Speed_Coefficients_update(..) routine. In this case, the default values for Ki, Kp, Kd for 
torque, flux and speed regulation are used. See PID_TORQUE_Kx_DEFAULT, 
PID_FLUX_Kx_DEFAULT, PID_SPEED_Kx_DEFAULT, in the MC_control_Param.h file.

To disable the linear curve computation routine in the 75x_it.c module:

void TB_IRQHandler(void)
{
........
if ((wGlobal_Flags & CLOSED_LOOP) == CLOSED_LOOP)
      {
       if (State == RUN) 
       {
         //PID_Speed_Coefficients_update(hRot_Freq_Hz); // to be commented out
....... .
}

5.3 Tricks and traps
When tuning the PID parameters you should consider the worst case conditions, which may 
be when the load varies quickly and unpredictably, when the inertia is at a minimum, or 
when the mains voltage is maximum for an off-line application.

If regulation tuning is performed in no-load condition (at the highest), it will most probably be 
unresponsive in the final application, and vice versa: regulation tuning performed in the 
application may become unstable in no-load conditions.

 Rotor mechanical
frequencyF_maxF_2F_1F_min

Ki_Fmin, Kp_Fmin, Kd_Fmin

Ki_Fmax, Kp_Fmax

Ki_F_1, Kp_F_1, Kd_F_1

Ki_F_2, Kp_F_2, Kd_F_2

Ki, Kp, Kd

Kd_Fmax
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5.4 Implementing closed loop regulation
Below is an example of the use of the speed regulation process.

Figure 41. Speed regulation loop call in 75x_TBTimer.c

Note: The PID_Speed_Regulator routine needs to be fed with a mechanical frequency input.

The following flow diagrams (Figure 42 and Figure 43) show the decision tree for the 
computation of the torque/flux and speed regulation routines. 

Figure 42. Torque/flux control loop block diagram 

 if (bPID_Speed_Sampling_Time_500us != 0 )  
  {
    bPID_Speed_Sampling_Time_500us --;
  }
  else
  {    
  bPID_Speed_Sampling_Time_500us = PID_SPEED_SAMPLING;  

....
PID_Speed_Coefficients_update(hRot_Freq_Hz);
PID_Torque_InitStructure.Reference = PID_Speed_Regulator(&PID_Speed_InitStructure, 
hRot_Freq_Hz);  // 6 hz
}

PI(D) computed every 2ms

Torque value increased by PID (resp.
decreased) when motor speed too low
(resp. high)

Integral term frozen

Clamp Output value to unsigned [PI(D) lower limit..PI(D) upper limit]

Target Torque/Flux

Torque/Flux error (signed 16 bit)

Proportional = Kp x Torque/Flux Error

Is PI output 
saturated?

Is Output < PI(D) lower limit

return Output value

Reset Saturated Output Flag

Set Saturated Output Flag

No

Yes

No

Integral = Integral +  Ki x Torque/Flux Error

Measured Torque/Flux 

Clamp Output value to

 signed int domain
Differential = Kd x (Error Torque/Flux - 
Previous Error Torque/Flux)

Output = Proportional/2^13 + Integral/2^16
+ Differential terms/2^13

or > PI(D) upper limit

(signed 16 bit)

If enabled
See 
important
note in 
section 2.2.1
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Figure 43. Speed control loop block diagram 

Integral term frozen

Clamp Output value to unsigned [PI(D) lower limit..PI(D) upper limit]

Target speed

Speed error (signed 16 bit)

Proportional = Kp x Speed Error

Is PI output 
saturated?

Is Output < PI(D) lower limit

return Output value

Reset Saturated Output Flag

Set Saturated Output Flag

No

Yes

No

Integral = Integral +  Ki x Slip Error

Current speed 

Clamp Output value to
 signed int domainDifferential = Kd x (Error Speed - 

Previous Error Speed)

Output = Proportional/2^8 + Integral/2^14
+ Differential terms/2^8

or > PI(D) upper limit

(signed 16 bit)

If enabled
See 
important
note in
section 2.2.1
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6 MISRA compliance

Based on the ‘The Motor Industry Software Reliability Association’s Guidelines for the Use 
of the C Language in Vehicle Based Software‘, the purpose of this section is to provide a 
report of any MISRA deviation in the version 1.0 of the library modules.

6.1 Analysis method
The software library was checked for MISRA compliance using the IAR Embedded 
Workbench® toolchain. The IAR Systems’ implementation is based on version 1 of the 
MISRA C rules, dated April 1998.

6.2 Limitations
Compliance tests were performed on required MISRA rules only, and not on advisory rules.

Due to the extensive use of the STR750 standard library which itself is not fully MISRA 
compliant (as of September 2006), the interaction (through function calls for example) 
between the standard library and PMSM library modules necessarily induces non-
compliances. 

The main reason is due to the fact the STR750 standard library routines rely on base-
address pointer parameters (e.g. pointer to a hardware register memory address) that are 
then re-casted as the first address of a structure inside the function call, as shown in the 
example in Figure 44.

Figure 44. Example of function call generating a MISRA rule 45 error

TIM_ResetCounter(TIM1);

declared in module 75x_tim.c
of standard library

Pointer to TIMER1 peripheral
register base address

void TIM_ResetCounter(TIM_TypeDef* TIMx) {...}75x_tim.c module:

Pointer to TIMER1 peripheral base address is passed as
the base address of the ‘TIM_TypeDef’ structure
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6.3 MISRA compliance for PMSM library files
         

Table 4. MISRA compliance of PMSM library files

Module name
MISRA 

compliant
Deviation

MC_Clarke_Park.h Yes

MC_RevPark.h Yes

MC_qmath.h Yes

MC_const.c Yes

MC_const.h Yes

MC_type.h Yes

75x_TBTimer.c Yes

75x_TBTimer.h Yes

MC_Globals.c Yes

MC_Globals.h Yes

MC_Display.c Yes

MC_Display.h Yes

MC_PMSM_motor_param.h Yes

75x_MClib.h Yes

MC_Control_Param.h Yes

75x_conf.h Yes

75x_MCconf.h Yes

MC_encoder_param.h Yes

75x_svpwm_3shunt.c
MISRA rule 45 non-compliance due to 
STR750 standard library function call. (See 
Section 6.2: Limitations on page 76)

75x_svpwm_3shunt.h
MISRA rule 45 non-compliance due to 
STR750 standard library function call. (See 
Section 6.2: Limitations on page 76)

75x_svpwm_ics.c
MISRA rule 45 non-compliance due to 
STR750 standard library function call. (See 
Section 6.2: Limitations on page 76)

75x_svpwm_ics.h
MISRA rule 45 non-compliance due to 
STR750 standard library function call. (See 
Section 6.2: Limitations on page 76)

Main.c
MISRA rule 45 non-compliance due to 
STR750 standard library function call. (See 
Section 6.2: Limitations on page 76)

75x_encoder.c
MISRA rule 45 non-compliance due to 
STR750 standard library function call. (See 
Section 6.2: Limitations on page 76)

75x_encoder.h Yes
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75x_it.c
MISRA rule 45 non-compliance due to 
STR750 standard library function call. (See 
Section 6.2: Limitations on page 76)

75x_lcd.c
MISRA rule 45 non-compliance due to 
STR750 standard library function call. (See 
Section 6.2: Limitations on page 76)

75x_lcd.h Yes

MC_Keys.c
MISRA rule 45 non-compliance due to 
STR750 standard library function call. (See 
Section 6.2: Limitations on page 76)

MC_Keys.h Yes

MC_Misc.c
MISRA rule 45 non-compliance due to 
STR750 standard library function call. (See 
Section 6.2: Limitations on page 76)

MC_Misc.h Yes

MC_DAC.c
MISRA rule 45 non-compliance due to 
STR750 standard library function call. (See 
Section 6.2: Limitations on page 76)

MC_DAC.h Yes

Table 4. MISRA compliance of PMSM library files

Module name
MISRA 

compliant
Deviation
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Appendix A Additional information

A.1 Adjusting CPU load related to PMSM FOC algorithm 
execution
The Synchronizable-PWM Timer peripheral has the built-in capability of updating PWM 
registers only after a given number of PWM semi-periods. This feature is handled by a 
programmable repetition counter. It is particularly useful to adjust the CPU load related to 
PMSM FOC algorithm execution for a given PWM frequency (refer to STR750 Reference 
Manual for more information on programmable repetition counter).

When using ICS, the injected chain of conversions for current reading is directly triggered by 
a PWM register update event. Moreover, since the PMSM FOC algorithm is executed at the 
end of the injected chain of conversions in the related ISR, changing the repetition counter 
has a direct impact on PMSM FOC refresh rate and thus on CPU load.

However, in the case of three shunt topology current reading, to ensure that the PMSM FOC 
algorithm is executed once for each PWM register update, it is necessary to keep the 
synchronization between current conversions triggering and PWM signal. In the proposed 
software library, this is automatically performed, so that you can reduce the frequency of 
execution of the PMSM FOC algorithm by simply changing the default value of the repetition 
counter (the REP_RATE parameter in the MC_Control_Param.h header file). 

Figure 45 shows current sampling triggering, and PMSM FOC algorithm execution with 
respect to PWM period when REP_RATE is set to 3.

Figure 45. AD conversions for three shunt topology stator currents reading and 
PMSM FOC algorithm execution when REP_RATE=3

Note: Because three shunt resistor topology requires low side switches to be on when performing 
current reading A/D conversions, the REP_RATE parameter must be an odd number in this 
case.
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Considering that the raw PMSM FOC algorithm execution time is about 25.7µs when in 
three shunt resistor stator current reading configuration, the related contribution to CPU load 
can be computed as follows:

         

A.2 Selecting PWM frequency for 3 shunt resistor configuration
Beyond the well known trade-off between acoustical noise and power dissipation, 
consideration should be given to selecting the PWM switching frequency using the PMSM 
software library. 

As discussed in Section 4.2.4 on page 39, depending on the PWM switching frequency, a 
limitation on the maximum applicable duty cycle could occur if using three shunt resistor 
configuration for current reading. Table 3: PWM frequency vs maximum duty cycle on 
page 47, summarizes the performance of the system when the software library is used in 
conjunction with the STR750-MCKIT hardware. 

Note: The MB459 board is an evaluation platform; it is designed to support different motor driving 
topologies (PMSM and AC induction) and current reading strategies (single and three shunt 
resistors). Therefore, the figures given in Table 3 on page 47 should be understood as a 
starting point and not as a best case.

Moreover, to keep the synchronization between TIM0 and PWM peripherals, it is always 
necessary to finish executing the PMSM FOC algorithm before the next PWM period begins 
as shown in Figure 46. 

Figure 46. FAD conversions for three shunt topology stator current readings and 
PMSM FOC algorithm execution when REP_RATE=1

CPULoad

FPWM

RefreshRate
------------------------------------- 25.7 6–× 10× 100×

FPWM

REPRATE 1+( ) 2⁄
------------------------------------------------------- 25.7 6–× 10× 100×= =
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Given that the raw execution time of the PMSM FOC algorithm is around 25.7µs and that 
other delays (such as the time necessary to enter ADC ISR) have to be considered, this 
limits to about 14.4 kHz the maximum PMSM FOC algorithm execution rate when using 
REP_RATE =1. However, no limitations occur in the typical range of PWM frequencies when 
using REP_RATE=3. 

The following table summarizes the performance of the system for different PWM 
frequencies.

         

A.3 Fixed-point numerical representation
The PMSM software library uses fixed-point representation of fractional signed values. 
Thus, a number n is expressed as

where m is the integer part (magnitude) and f the fractional part, and both m and f have fixed 
numbers of digits.

In terms of two’s complement binary representation, if a variable n requires QI bits to 
express - as powers of two - its magnitude (of which 1 bit is needed for the sign), QF bits – 
as inverse powers of two - for its fractional part, then we have to allocate QI + QF bits for that 
variable.

Therefore, given a choice of QI and QF, the variable representation has the following 
features:

● Range: -2(QI-1)  n < 2(QI-1) – 2(-QF) ;

● Resolution:  = 1 / 2QF.

The equation below converts a fractional quantity q to fixed-point representation n:

A common way to express the choice that has been made is the “q QI.QF” notation.

Table 5. System performance when using STR750-MCKIT

PWM frequency Max applicable duty cycle Max FOC algorithm execution rate

Up to 11.4kHz 100%

Equal to PWM frequency

12.2kHz 99.5%

12.9kHz 99%

13.7kHz 98.5%

14.4kHz 98%

15.2kHz 97.5%

Equal to PWM frequency/2 
(REP_RATE=3)

16kHz 97%

16.7kHz 96.5%

17.5kHz 96%

fmn .=

( )QFqfloorn 2⋅=
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So, if a variable is stored in q3.5 format, it means that 3 bits are reserved for the magnitude, 
5 bits for the resolution; the expressible range is from -4 to 3.96875, the resolution is 
0.03125, the bit weighting is:

This software library uses the PU (“Per Unit”) system to express current values. They are 
always referred to a base quantity that is the maximum measurable current Imax (which, for 
the proposed hardware, can be estimated approximately at Imax = 0.6 / Rshunt); so, the “per 
unit” current value is obtained by dividing the physical value by that base:

In this way, ipu is always in the range from -1 to +1. Therefore, the q1.15 format, which 
ranges from -1 to 0.999969482421875, with a resolution of 0.000030517578125, is perfectly 
suitable (taking care of the overflow value (-1)·(-1)=1) and thus extensively used.

Thus, the complete transformation equation from SI units is:

A.4 Additional or up-to-date technical literature 
More information can be found on the ST website (www.stmcu.com).

More specifically, the latest documents and software can be found directly at: 
http://www.stmcu.com/inchtml-pages-str750.html.

In addition, FAQ and Forums can be found directly at : 
http://www.stmcu.com/forumsid-17.html for STR7 general enquiries.

http://www.stmcu.com/forumsid-13.html for motor control related enquiries.

A.5 References
[1] P. C. Krause, O. Wasynczuk, S. D. Sudhoff, Analysis of Electric Machinery and Drive 
Systems, Wiley-IEEE Press, 2002.

[2] T. A. Lipo and D. W. Novotny, Vector Control and Dynamics of AC Drives, Oxford 
University Press, 1996.

[3] P. Vas, Sensorless Vector and direct Torque Control, Oxford University Press, 1998.
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7 Revision history

         

Table 6. Document revision history

Date Revision Changes

9-Feb-2006 1 Initial release.
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