

V12 Database Engine™

for Macromedia Director®

Regular Edition

Version 3.0

User Manual

(99/06/16)

©Integration New Media, Inc. 1995-99

V12-DBE® for Macromedia Director® - User Manual version 3.0 (99/07/27)
©Integration New Media, Inc. 1995-99 page 2

Table of Contents
TABLE OF CONTENTS...2

INTRODUCTION..11

V12-DBE FOR DIRECTOR...11

V12-DBE FOR AUTHORWARE ..12

ABOUT THIS MANUAL ..12

WHERE TO START...13

SYSTEM REQUIREMENTS FOR RUNNING V12-DBE.....................................13
Macintosh Version...13
Windows Version ..13
Macromedia Director...13

DO I REALLY NEED TO MASTER LINGO TO USE V12-DBE?14

YOU’RE NOT ALONE!..14
V12-L Distribution List ...14
FAQs..14
Other Online Resources ...14
Customer Support and Developer Assistance15

TYPOGRAPHIC CONVENTIONS..15

WELCOME TO V12 DATABASE ENGINE ..16

INSTALLING V12-DBE..16

WHAT'S NEW IN VERSION 3.0?...17

VERSION HISTORY ..18

HOW TO REGISTER YOUR V12-DBE LICENSE ...18

FILES NEEDED TO USE V12-DBE...19

USING XTRAS...20

WHAT IS AN XTRA?...20
The V12-DBE Xtra..21

MAKING AN XTRA AVAILABLE TO DIRECTOR...21

CREATING AN XTRA INSTANCE ..21

V12-DBE® for Macromedia Director® - User Manual version 3.0 (99/07/27)
©Integration New Media, Inc. 1995-99 page 3

CHECKING IF NEW WAS SUCCESSFUL..21

USING THE XTRA INSTANCE ...22

CLOSING AN XTRA ..22

CHECKING FOR AVAILABLE XTRAS...23

DEALING WITH PATHNAMES ..23

PASSING PARAMETERS TO XTRAS..23

BASIC DOCUMENTATION ..24

USING XTRAS WITH SHOCKWAVE ..25
When using Netscape ..25
When Using Internet Explorer ..26

DATABASE BASICS...27

OVERVIEW...27
What is a Database?...27

Records, Fields and Tables...27
Indexes ..28
Compound Indexes..28
Database ...29

Full-text Indexing ..29
Flat and Relational Databases..30
Field Types ..32

Typecasting ...32
International Support ...33
Selection, Current Record, Search Criteria......................................33

USING V12-DBE..36

OVERVIEW...36

V12-DBE BASICS..36

THE MAIN STEPS...36

STEP 1: DECIDING ON A DATA MODEL ...38

Defining Identifiers..38

STEP 2: PREPARING THE DATA ...39

TEXT FILE FORMATS ..39
Field Descriptors ...39

V12-DBE® for Macromedia Director® - User Manual version 3.0 (99/07/27)
©Integration New Media, Inc. 1995-99 page 4

Dealing with Delimiters Ambiguity ...40
Virtual Carriage Returns ..40
Text Qualifiers ..40
Custom Delimiters ..41
Calculated Fields..41
Processing the Exported Text File ..41

Character Sets ..42
Dealing with Dates...42

DBF FILE FORMATS ...42

FIELD BUFFER SIZE ..44

STEP 3: CREATING A DATABASE...45

DATABASE DESCRIPTORS ...45
Defining Both an Index and a Full-index on a Field........................46
Alternate Syntax for Creating Indexes...47
Defining Compound Indexes ...47
Adding Comments to Database Descriptors48

USING THE V12-DBE TOOL ...49

SCRIPTING THE DATABASE CREATION ..49
Step 3a: Creating a Database Xtra Instance50
Step 3b: Defining the Database Structure ..50

mReadDBstructure from a Text File51
mReadDBstructure from a Literal ..51
mReadDBstructure from a DBF File52
mReadDBstructure from V12-DBE.......................................54
mReadDBstructure from FoxPro (Win-32 Only)54
mReadDBstructure from MS Access (Win-32 Only)56
mReadDBstructure from MS Excel (Win-32 Only)57
mReadDBstructure from MS SQL Server (Win-32 Only)58

Step 3c: Building the Database..59
VIEWING THE STRUCTURE OF A DATABASE ..60

STEP 4: IMPORTING DATA INTO A V12-DBE DATABASE............................62

USING THE V12-DBE TOOL ...62

SCRIPTING THE DATA IMPORTING...62
Importing Data with mImport ..63

Importing from a TEXT File ...64
Importing from a Literal ...65

V12-DBE® for Macromedia Director® - User Manual version 3.0 (99/07/27)
©Integration New Media, Inc. 1995-99 page 5

Importing from a DBF File...65
Importing from V12-DBE ...66
Importing from a Lingo List or Property List67

Importing XML to V12-DBE..67
Importing from MS Access (Win-32 only).............................68
Importing from MS FoxPro (Win-32 only)68
Importing from MS Excel (Win-32 only)...............................69
Importing from MS SQL (Win-32 only)69

IMPORTING MEDIA INTO A V12 DATABASE ...70

STEP 5: IMPLEMENTING THE USER INTERFACE...72

USING THE V12-DBE BEHAVIORS LIBRARY ...72

USING LINGO...72
Opening and Closing Databases and Tables73

Opening an Existing Database ...73
Opening a Table ...73
Closing a Table...74
Closing a Database...74

Selection and Current Record ..74
Selection at startup...75
Selecting All the Records of a Table ...75
Browsing a Selection ...75

mGetPosition ..75
mGoNext ...76
mGoPrevious ..76
mGoFirst...76
mGo ..76
mFind..77

Reading Data From a Database ...78
Reading Fields of Type String, Integer, Float and Date.......78
Reading one or more Entire Records....................................79

Reading the Entire Selection ...80
Reading a Range of Records in a String variable80
Reading a Range of Records in a Lingo List80
Reading a Range of Records in a Property List81
Reading the Entire Content of the Current Record..............81
Reading a Record without Setting it as the Current Record81
Reading the Entire Selection with Special Delimiters81
Reading Selected Fields in a Selection82
Reading Records with a Determined Order of Fields..........82

Reading Unique Values of a Field ..83
Data Formatting ...84

Formatting Integers and floats ..84

V12-DBE® for Macromedia Director® - User Manual version 3.0 (99/07/27)
©Integration New Media, Inc. 1995-99 page 6

Formatting Dates...85
Reading Fields of Type Media ..86

Adding Records to a Database...87
Updating Data in a Database ...87

Writing to Fields of Type Integer, Float and String..............88
Writing to Fields of Type Date..88
Writing to Fields of Type Media ...88

Deleting a Record ..89
Deleting All the Records of a Selection...89

DATA BINDING ..89
Binding Types..91

Full Binding ..91
Safe Binding (for advanced users)..91

Automatic Generation of Members and Auto-binding.....................92
mGenerateMembers..92
mAutoBinding ...93

SEARCHING DATA WITH MSETCRITERIA...93
Simple Search Criteria ...94
Sorting a Selection (mOrderBy) ..95
Operators ...95

Equal (=) ..95
Not Equal (<>) ...95
Less than (<)...96
Less or equal (<=)...96
Greater than (>) ...96
Greater or equal (>=) ..97
Starts ...97
Contains..97
WordStarts ..97
WordEquals ..98
Difference Between Contains and WordStarts......................98

Complex search criteria ...99
Partial Selections ...100
Checking the Size of a Selection ...100
Managing Styled Text..101

Searching and Sorting Styled Text Fields...........................102

ERRORS AND DEFENSIVE PROGRAMMING...103

Checking the Status of the Last Method Called.............................103
CheckV12Error...104

V12-DBE® for Macromedia Director® - User Manual version 3.0 (99/07/27)
©Integration New Media, Inc. 1995-99 page 7

Errors and Warnings..104
Lingo Syntax Errors...105

ADDITIONAL V12-DBE METHODS ...106

EXPORTING DATA ...106
Exporting in TEXT Format ...106
Exporting in DBF Format ..107

CLONING A DATABASE..107

FREEING UP DISK SPACE (PACKING)..108

FIXING CORRUPTED DATABASE FILES...109

PROGRESS INDICATORS ..109
Options of the ProgressIndicator property.....................................110

With_Cancel..110
Without_Cancel ..110
UserDefined ..110
None..110

User Defined Progress Indicators ..111
Example: spinning a custom cursor....................................111

CHECKING THE XTRA'S VERSION ..112

CHANGING A PASSWORD ..112

PROPERTIES OF DATABASES...112
Predefined Properties...113

ProgressIndicator ...113
ProgressIndicator.Message ..113
VirtualCR..114
CharacterSet ...114
Resources..114
CurrentDate ..115
Verbose ...115
Months ..115
ShortMonths..115
Weekdays ..116
ShortWeekdays..116
ErrorLog ...116
MaxLoggedErrors...117
SharedRWcount ..117
DBversion ...117

The String Property ...118

V12-DBE® for Macromedia Director® - User Manual version 3.0 (99/07/27)
©Integration New Media, Inc. 1995-99 page 8

String.Language..118
String.Language.Delimiters..118
String.Language.MinWordLength119
String.Language.StopWords ...119

Custom Properties (Advanced Users) ..120

APPENDIX 1: :LICENSING FAQS...121

APPENDIX 2: LICENSE AGREEMENT..123

APPENDIX 3: CAPACITIES AND LIMITS...126

APPENDIX 4: MULTI-USER ACCESS..128

OPENING A FILE IN SHARED READWRITE MODE128

MODIFYING A SHARED DATABASE...129

COUNTING THE NUMBER OF USERS..129

POSSIBLE CONFIGURATIONS ..130

APPENDIX 5: MULTIPLE INSTANCES OF A TABLE131

APPENDIX 6: DELIVERING TO THE END USER ...132

TESTING FOR END-USERS..132

APPENDIX 7: PORTABILITY ISSUES ...133

APPENDIX 8: DATA UPDATING AND SORT ORDERS..................................134

APPENDIX 9: ADVANCED BOOLEAN SEARCHES..136

Workaround #1: Merging Selections136
Workaround #2: Marking Records137
Workaround #3: Field Concatenation138

APPENDIX 10: HANDLING DOUBLE-BYTE CONTENT................................139

Storing and Retrieving Data ...139
Indexing, Searching and Sorting Data139
Work Around...140

APPENDIX 11: PRINTING FROM V12-DBE ...141

mPrint and V12 Database Engine141

V12-DBE® for Macromedia Director® - User Manual version 3.0 (99/07/27)
©Integration New Media, Inc. 1995-99 page 9

Example #1: printing a specific field in a record142
Example #2: printing multiple records from a V12-DBE
selection ...142
Example #3: printing multiple columns.............................143

PrintOMatic and V12 Database Engine145

APPENDIX 12: OPTIMIZATION USING INDEXES ...147

APPENDIX 13: RESOLVING RELATIONS..150

Resolving a One-to-Many Relation.....................................152
Resolving a Many-to-One Relation.....................................152
Resolving a Many-to-Many Relation153

APPENDIX 14: MODIFYING A DATABASE STRUCTURE............................155

APPENDIX 15: DATA ENCRYPTION...156

APPENDIX 16: STRING AND CUSTOM STRING TYPES...............................158

THE DEFAULT STRING...158

PREDEFINED CUSTOM STRING TYPES..160
Searching and Sorting rules for Strings of Type Swedish160
Searching and Sorting rules for Strings of Type Spanish161
Searching and Sorting rules for Strings of Type Hebrew162

USER-DEFINABLE CUSTOM STRING TYPES..163

APPENDIX 17: CHATACTER SETS..164

WINDOWS-ANSI CHARACTER SET..164

MAC-STANDARD CHARACTER SET ..165

MS-DOS CHARACTER SET ..166

APPENDIX 18: V12-DBE METHODS (BY CATEGORY)167

Initialization...167
Retrieving Data..167
Modifying Data..167
Browsing through Data..167
Searching and Sorting..167
Importing Data...167
Error Management ...167
Database Structures ...167
Database Utilities...167

V12-DBE® for Macromedia Director® - User Manual version 3.0 (99/07/27)
©Integration New Media, Inc. 1995-99 page 10

Special Methods ..167

APPENDIX 19: V12-DBE METHODS (ALPHABETICAL)...............................168

APPENDIX 20: ERROR CODES...185

ERRORS ...185

WARNINGS...191

INDEX...192

V12-DBE® for Macromedia Director® - User Manual version 3.0 (99/07/27)
©Integration New Media, Inc. 1995-99 page 11

Introduction
Welcome to V12 Database Engine (V12-DBE), the most powerful and user-friendly
cross-platform database management Xtra for Macromedia Director and
Macromedia Authorware .

V12-DBE for Director
V12-DBE was originally designed in 1996 to be used specifically with Director. It
extends Director’s features and helps you speed up the development of your
multimedia titles. You will discover many benefits in using V12-DBE to create
interactive applications such as electronic catalogs, storybooks, kiosks, training
material, sales material, games, and more. You will be using it as a back-end to your
multimedia projects to efficiently manage text, numeric data, dates, images, sound
clips as well as any type of media that Director can store in its members.

V12 Database Engine enables you to provide advanced functionality to your end-users
while bringing down your development and maintenance costs.

V12-DBE is very flexible and scalable. It can be used in a wide range of applications;
from simple projects where Lingo Lists and FileIO have become difficult to manage, to
true database-driven applications.

V12-DBE for Director is available in Light and Regular editions. V12-DBE Light
Edition can be used with Director 6.x and later and supports Windows 95, 98, NT, and
PowerMac. V12-DBE Regular Edition runs with Director 5.x and later, and supports
Windows 3.x, 95, and 98, NT, Mac68K and PowerMac.

Lingo programmers can work through more complex projects by taking advantage of
V12-DBE Regular Edition’s rich and flexible Lingo interface to fully script both the
authoring and runtime tasks. If you are new to Lingo you may want to begin with V12-
DBE Light Edition to create more simple projects. Both Regular and Light Editions
are fully compatible with each other. You can start using V12-DBE Light Edition, and
later easily upgrade to V12-DBE Regular Edition.

If you are looking for a fast and easy way to integrate V12-DBE into your multimedia
projects, you may be interested in using the V12-DBE Tool and V12-DBE Behaviors
Library, both freely available at http://www.integration.qc.ca.

An Online Companion is also available for V12-DBE. It enables the management of
V12 databases through the Internet. You can learn more about it at
http://www.integration.qc.ca, in the Products section.

http://www.integration.qc.ca/
http://www.integration.qc.ca/

V12-DBE® for Macromedia Director® - User Manual version 3.0 (99/07/27)
©Integration New Media, Inc. 1995-99 page 12

V12-DBE for Authorware
V12-DBE is easy to use with Authorware (version 4.x and later). It allows you to
enter, store, and retrieve data, using Auhthorware as a multimedia front-end. V12-
DBE enables you to easily create multimedia applications whose content is managed
separately from Authorware thus speeding up development cycle, last-minute changes
and content updating. It also provides Authorware with a simple way to store and
retrieve specific pieces of information, which is very useful for common data
management tasks such as multiple user tracking and score management.

The V12-DBE Tool used with Authorware will help you quickly implement the most
common V12-DBE’s powerful functions such as database creation, viewing, editing,
importing, exporting, and more. The V12-DBE Tool is available FREE on our web
site at http://www.integration.qc.ca

About This Manual
If you are familiar with other database management systems, you will find V12-DBE
very easy to use. If you are only vaguely familiar with database management, the First
Steps Manual will guide you, step-by-step, through the basics required to implement
simple database management in your multimedia projects.

This manual provides you with a brief overview on how to use V12-DBE, by
illustrating the main development stages involved through a practical example: the
Portfolio. You will be guided from step one, which consists in modeling your
database, up to the final results in a Director movie. The Portfolio example is also
extended in the Manual’s Appendix, where you will learn how to add a media field in
the project in order to display images in the Portfolio.

This manual is organized to help you get the information you need efficiently. The first
two sections deal with basics concerning Xtras (Using Xtras) and databases (Database
Basics). The third section leads you through explanations on how to use V12-DBE in
greater detail (Using V12-DBE). You will learn how to prepare data, create the
database and import data. The following sections will show you how to use the
methods available to you in V12-DBE.

The next sections cover the integration of V12-DBE with Macromedia Director —here
you can get a sense of how V12-DBE can be helpful to your projects. The Appendices
deal with very specific issues such as capacities and limitations, errors, end-user
delivery, portability, etc.

V12-DBE® for Macromedia Director® - User Manual version 3.0 (99/07/27)
©Integration New Media, Inc. 1995-99 page 13

Where to Start
Before browsing through this User Manual, we recommend that you look at the First
Steps. The First Steps contains an introductory tutorial, example scripts, and sample
projects to help you get started with V12-DBE and Lingo in a few short steps. You
may also benefit from browsing through the Sampler and the Mini-Sample movies. All
available for free on INM’s web site at http://www.integration.qc.ca/downloads.

Please make sure you understand V12 Database Engine's license agreement before
proceeding. The full license agreement is at the end of this user manual, in Appendix
2: License Agreement. Answers to commonly asked questioned can be found in the
licensing FAQ section in Appendix 1: :Licensing FAQs.

System Requirements for Running V12-DBE

Macintosh Version
Mac68K or PowerMac with System 7.1 or later and 1 Mb of free disk-space. On the
Macintosh, V12-DBE (and any other Xtra) will share the same memory partition as
Macromedia Director.

For simple database applications, you do not need to change the memory partition
allocated to Director or for projectors generated by Director. For more advanced
development, you may need to increase the memory partition. In either cases, try to
establish the minimum equipment requirements of your project as conservatively as
possible.

Windows Version
Any PC running Windows 3.1, 95, Windows 98 or Windows NT that is capable of
running Macromedia Director plus 1 Mb of free disk-space. The amount of memory
allocated to an application cannot be configured on Windows. This means that an
application can "borrow" as much memory as needed from the Operating System. It
also means that Windows shows unpredictable behaviors when it is short of memory.
Try to establish the minimum equipment requirements of your project as
conservatively as possible.

Macromedia Director
Macromedia Director version 5.0 or later is required.

V12-DBE® for Macromedia Director® - User Manual version 3.0 (99/07/27)
©Integration New Media, Inc. 1995-99 page 14

Do I really need to master Lingo to use V12-DBE?
How comfortable do you need to be with Lingo to use V12-DBE efficiently? The
answer varies according to the complexity of your projects.

Simple projects require no knowledge of Lingo at all. If your project uses a single
database and shows one record at a time on Director's stage, chances are that you can
implement it using the V12-DBE Behaviors Library only. No Lingo required.

For more advanced projects, V12 Database Engine's comprehensive Lingo interface
requires very little knowledge of Lingo and provides as much guidance as possible
when programming, such as checking the number of parameters, the types of the
parameters, etc.

In a nutshell, the Lingo basics you need to acquire before delving into V12-DBE are
- Local and global variables,
- Control structures (if statements, repeat loops, etc.),
- Handlers
- Object instances (this is covered in detail later in the Using Xtras section of this

manual)

You’re Not Alone!
Whether you are looking for a quick answer or in-depth information you may find the
following resources to be very helpful.

V12-L Distribution List
On the V12L List you will find developers at every level of expertise, and in every area
of multimedia. This friendly group is the perfect place to bounce ideas around with
other V12 developers. Sign up at http://www.integration.qc.ca/V12L

FAQs
INM’s FAQs discusses many of the questions that are frequently asked by V12
developers. Please check http://www.integration.qc.ca/products/v12director/faqs/

Other Online Resources
Macromedia’s web site at http://www.macromedia.com/support, is also a possible
source of information. It contains, amongst other things, directions on how to subscribe
to Macromedia's support Newsgroups (the NNTP server is
"forums.marcomedia.com").

V12-DBE® for Macromedia Director® - User Manual version 3.0 (99/07/27)
©Integration New Media, Inc. 1995-99 page 15

You may want to check alternate Internet resources such as Director-online-User
Group (http://www.director-online.com), UpdateStage (http://www.updatestage.com),
Maricopa (http://www.mcli.dist.maricopa.edu/director), and the Lingo User Journal
(http://www.penworks.com).

Customer Support and Developer Assistance
If you need additional assistance, INM’s experienced team will be happy to help.

Customer support is available from 9:00 am to 5:00 pm EST, Monday through Friday
by email to support@integration.qc.ca or by phone at (514) 871-1333 (choose menu
selection6). Priority will be given to registered V12-DBE users. Customer suport
covers:

•√ Helping to understand V12-DBE, clarify specifications.
•√ Supplying sample scripts.
•√ Providing useful tips.

Where Customer Support stops, Developer Assistance begins. If you are familiar
enough with V12-DBE, but want to take your project to a more sophisticated level,
Developer Assistance is for you. Our team of programmers can help you discover
easier ways to take advantage of databases in your multimedia projects. Here are just
some of the services we offer:

•√ Project design, data structure analysis, planning
•√ Technical assistance (guidance/advice) throughout the various steps of your

project
•√ Troubleshooting and debugging your scripts
•√ Optimization (how to obtain superior performance)
•√ Assistance with other Xtras, custom development of Xtras

Typographic Conventions
Important terms, such as the names of methods, are in bold.

Sample code is indented and printed in a courier font.

Note: Special annotations and tips are enclosed in boxes like this
one.

Although the sample scripts throughout this manual contain both upper and lower case
characters, V12-DBE is not case sensitive. This applies to the methods names, the
parameters as well as to the actual data.

mailto:support@integration.qc.ca

V12-DBE® for Macromedia Director® - User Manual version 3.0 (99/07/27)
©Integration New Media, Inc. 1995-99 page 16

Welcome to V12 Database Engine
Welcome to V12-DBE, the most powerful and user-friendly cross-platform database
management Xtra for Macromedia Director™ (version 5.x and later) on Macintosh and
Windows.

If you are familiar with other database management systems, you will find V12-DBE
very easy to use. If you are only vaguely familiar with database management systems,
the next few sections will give you an overview of what you need to know to help you
get started with V12-DBE.

Installing V12-DBE
The name of this Xtra is V12-DBE for Director.XTR on the Macintosh, V12-DBE for
Director.X32 on Windows 9x/NT and V12DBE-D.x16 on Window 3.x.

To install the V12-DBE Xtra in your authoring environment:

•√ Make sure that Director is closed.

•√ Move the V12-DBE Xtra to the Xtras folder located in the same folder as
Director.

•√ Start Director.

To confirm that V12-DBE is properly installed, check the Xtras menu in Director. You
should see "V12-DBE for Director" in the Xtras menu.

V12-DBE comes with an on-line help to assist you in the development of your
projects. It is an unprotected Director movie that can be accessed by selecting the
Xtras>V12-DBE for Director >Help menu. To install it, Move V12Help.DIR and
V12Help.V12 to the Director folder.

Note V12Help.DIR is itself a project that relies on dynamic data
management thanks to V12-DBE. A single Director movie –
V12Help.DIR – is used as a screen layout template and pulls
content out of a V12 database depending on users requests.
Replacing the V12Help.V12 database behind this movie by
another one makes an entirely new content available to the
users.

V12-DBE® for Macromedia Director® - User Manual version 3.0 (99/07/27)
©Integration New Media, Inc. 1995-99 page 17

What's New in Version 3.0?
V12 databases versions 2.x and 3.0 are fully compatible to each other. Databases created
with V12-DBE version 2.x can be used as is with V12-DBE version 3.0.

•√ Multiple users can simultaneously access V12 databases over a Local-Area Network.
See Appendix 4: Multi-user Access (if you need to make a V12 database available to
multiples users through a TCP/IP network, check V12-DBE's Online Companion).

•√ On Win9x/NT, MS Access databases, MS FoxPro files, MS Excel workbooks and MS
SQL Server data sources can be used as templates to create new V12 database and as
sources of data to import records from through ODBC drivers. See Scripting the
Database Creation and Importing Data with mImport.

•√ Text files can be easily imported from FileMaker Pro, MS Access and MS Excel
thanks to the new mImport file method and its TextQualifier property.
mImportFile is still supported for the purpose of backward compatibility. However,
it will be progressively phased out. See Importing Data with mImport.

•√ Lingo lists and property lists can be easily imported to V12 databases with the
mImport method. One can easily convert a project that has become hard to manage
with Lingo lists to one that takes advantage of V12-DBE. Also, it makes it possible to
import XML documents to V12 databases (through Macromedia's XML parser). See
Importing Data with mImport.

•√ Partial Selections: mSelect optionally returns a limited number of records in the
selection. This is convenient when users can express queries that match very large
numbers of records. See Partial Selections in Step 5: Implementing the User Interface.

•√ mFind allows the setting of the current record within the selection based on a value (as
opposed to mGo, which requires a record number). mFind in Step 5: Implementing the
User Interface.

•√ mGetUnique retrieves unique values of the field that determines selection's order. It is
convenient to populate a pop-up menu or a scrolling list with all the possible search
values on a given field. See Reading Unique Values of a Field in Step 5: Implementing
the User Interface.

•√ mBuild accepts an additional parameter, "online", and can create V12 databases that
are compatible to the V12-DBE Online Companion. See Step 3c: Building the
Database.

•√ mOrderBy can now properly sort on any field, whether indexed or not. See Sorting a
Selection (mOrderBy) in Step 5: Implementing the User Interface.

•√ Table, field and index identifiers must begin with an alphabetic character and must be
followed by up to 31 alphanumeric characters. Unlike former versions of V12-DBE
they cannot contain spaces or punctuation marks.

V12-DBE® for Macromedia Director® - User Manual version 3.0 (99/07/27)
©Integration New Media, Inc. 1995-99 page 18

•√ V12-DBE is now a Shockwave-Safe Xtra. It properly runs with Shockwave document
ran off a CD-ROM, or any local medium. However, it cannot be automatically
downloaded from a Shockwave movie.

Version History
V12 Database Engine version 1.0 was released in 1996 as both an Xobject and Xtra for
Macromedia Director 4 and 5. It was essentially meant to serve as an advanced data
management system for Director titles with elaborate user interfaces delivered on CD-
ROM, such as games and virtual workshops.

V12 Database Engine Xtra version 2.0 was released in early 1998. It focused on
making database technology easier to learn an use by Director users. It added features
that better suit projects such as electronic catalogs, electronic books, template-based
movies, etc. Some of these features are: full-text indexing, simplified database creation
, data binding, styled text management, a behaviors library, etc.

How to register your V12-DBE license
Evaluation copies of V12 Database Engine are available on Integration New Media's
web site (http://www.integration.qc.ca) along with full documentation and sample
movies. You can download those files and start developing your project without
purchasing a V12-DBE license.

The evaluation copy of V12-DBE is not limited in any way: it only displays a splash
screen upon startup. To get rid of the splash screen, you must purchase a V12-DBE
license (or as many as required by the V12-DBE license agreement). Such a license is
granted to you as a registration number that you enter in Director's Xtra > V12-DBE
for Director > Register… menu item.

Once your copy of V12-DBE is licensed, all new databases you create are
automatically stamped as legal and do not show a splash screen. Existing databases are
also stamped as legal as soon as they are opened by the registered V12-DBE.

V12-DBE® for Macromedia Director® - User Manual version 3.0 (99/07/27)
©Integration New Media, Inc. 1995-99 page 19

Note Existing V12 database must be opened once in ReadWrite or
Shared ReadWrite mode to be stamped as legal. If you open
them in ReadOnly mode or from a CD-ROM, they cannot be
legalized and the splash screen will continue to appear on
computers that do not have the license file. V12-DBE
returns a warning when opening unstamped databases in
such circumstances.

Files Needed to Use V12-DBE
Only one file is required for the "Runtime" version (also called "end-user" version) of
V12-DBE. The name of this file is V12-DBE for Director.XTR on the Macintosh and
V12-DBE for Director.X32 on Windows 9x/NT and V12DBE-D.x16 on Window 3.11.

The “Development” version requires an additional file – the license file - located in the
System:Preferences folder of your Macintosh, or the Windows\System folder of your
PC. This encoded file is generated by V12-DBE upon the registration of your license
number.

Although the “Runtime” version of V12-DBE can be distributed freely in as many
copies as you wish, you cannot distribute your license file. See Appendix 1: :Licensing
FAQs and Appendix 2: License Agreement.

V12-DBE® for Macromedia Director® - User Manual version 3.0 (99/07/27)
©Integration New Media, Inc. 1995-99 page 20

Using Xtras
This section deals with Xtras and how they are used in Macromedia Director. The
V12-DBE Xtra is used as an example throughout the manual. You will be introduced
to the basic steps involved in using V12-DBE successfully before you actually begin to
work with V12-DBE.

This appendix covers:
•√ What is an Xtra
•√ Making an Xtra available to Director
•√ Creating a Lingo Xtra instance
•√ Verifying whether the instance was successfully created
•√ Using the Lingo Xtra instance
•√ Freeing the Lingo Xtra instance

What is an Xtra?
Xtras are components (alternatively know as add-ons, or plug-ins) that add new
features to Macromedia Director. Many of Director's own functions are implemented
as Xtras.

Macromedia Director supports five types of Xtras:

•√ Lingo Xtras add new Lingo commands and functions to Director. They must be
delivered to the end-users along with your project. To list all available Lingo
Xtras, type "ShowXlib" in Director's Message Window. To find out what methods
are provided by a Lingo Xtra, type "put mMessageList(Xtra "<the Xtra's
name>")" in the message window.

•√ Tool Xtras extend Director's features at authoring time. They appear in Director's
Xtra menu.

•√ Transition Xtras add new transitions to Director's own transitions set. They only
appear in Director's Modify > Frame > Transition window.

•√ Asset Xtras enable you to create members of new types and place them on
Director's stage. They appear in Director's Insert menu.

•√ MIX Xtras are translation modules that enable you to import/export foreign media
such as WAV, MP3 files, etc.

Xtras for Windows 9x/NT must have a .X32 file extension, as in "V12-DBE for
Director.X32". Xtras for the Macintosh generally have the an .XTR extension. The file
extension *.X16 is reserved for Xtras for Windows 3.1.

V12-DBE® for Macromedia Director® - User Manual version 3.0 (99/07/27)
©Integration New Media, Inc. 1995-99 page 21

The V12-DBE Xtra
The brief description of V12 Database Engine is that it is a Lingo Xtra.

The more accurate description is that it actually contains two Lingo Xtras and one Tool
Xtra:

•√ a Lingo Xtra named V12dbe, which basically represents a database file

•√ a Lingo Xtra named V12table, which represents the table within the database file
(see Database Basics for the definition of table)

•√ a Tool Xtra that enables you to access V12-DBE's on-line help and to register
your V12-DBE license.

Making an Xtra Available to Director
Xtras are designed to be opened automatically by Director (in authoring mode) or by
your Projector (in runtime mode, also called playback mode). The Xtras must be
placed in the Xtras folder, located either in Director's folder or the same folder as your
Projector. This feature is supported on both Macintosh and Windows.

Creating an Xtra Instance
This step creates an Xtra instance of your database and stores its reference in a global
variable (gDB) for future use. It uses the New method of the database Xtra.

Example:
set gDB = New(Xtra"V12dbe", the pathname&"myBase.V12", "Create",

"myPassword")

Checking if New Was Successful
You should always ensure that the Xtra was created successfully immediately after
calling New. New can fail for many reasons, such as a lack of free memory or as a
result of misplaced files.

Example:
if NOT ObjectP(gDB) then alert "Could not create Xtra instance"

V12-DBE® for Macromedia Director® - User Manual version 3.0 (99/07/27)
©Integration New Media, Inc. 1995-99 page 22

Note: This is a generic approach and works with all Xtras. In V12-
DBE, the preferred way to check for errors is the
V12Status() method. See Errors and Defensive
Programming in this manual.

Using the Xtra Instance
Once the preliminary steps have been executed, you can start using the Xtra instance of
your database for creating tables, fields and indexes, or for using an existing database.
Methods of the Xtra need to be called to perform these operations. By convention,
V12-DBE method names begin with the letter m such as mGetfield and mSelect
(with a few exceptions such as New, V12Error and V12status). New and
mMessageList are compulsory methods and all Xtras support them.

Note: In order to learn which methods are supported by an Xtra,
use the Xtra's built-in documentation. See Basic
Documentation below.

This example shows the structure of the database referred to by gDB in the message
window:

put mDumpStructure(gDB)

Closing an Xtra
When the Xtra instance has completed its function and is no longer required, close it
by setting the variable that refers to it to 0. Closing an Xtra performs mandatory
housekeeping tasks and closes unneeded files. It also frees the memory occupied by
the Xtra. All Xtra instances created with New must be ultimately set to 0 once they are
no longer needed.

Example:
set gDB = 0

Note: If a V12dbe Xtra instance is not properly set to 0, the file it
refers to remains open and cannot be re-opened unless the
computer is restarted. In some cases, it can even become
corrupted.

V12-DBE® for Macromedia Director® - User Manual version 3.0 (99/07/27)
©Integration New Media, Inc. 1995-99 page 23

Checking for Available Xtras
You can learn which Xtras are available to Director by typing the following in the
Message Window:

ShowXlib

If V12-DBE is installed, you should see V12dbe and V12table listed in ShowXlib's
output, as well as all other available Lingo Xtras. Note that this technique applies to
Lingo Xtras only.

Dealing with Pathnames
The New method in V12dbe requires that you specify the name of the V12-DBE file
you want to create or open. If only a file name is specified, the file is assumed to be
located in the same folder as Director or the Projector.

Example
set gDB = New(Xtra"V12dbe", "myBase.V12", "Create", "myPassword")

assumes that "myBase.V12" is in the same folder as Director or the Projector. This is
strictly equivalent to:

set gDB = New(Xtra"V12dbe", the applicationPath & "myBase.V12",
"Create", "myPassword")

Most of the time, however, placing the database file in the same folder as the movie
that uses it is more convenient. Use the pathname Lingo function to get the current
movie's folder. Example:

set gDB = New(Xtra"V12dbe", the pathname & "myBase.V12", "Create",
"myPassword")

Passing Parameters to Xtras
As in any programming language (including Lingo), functions, commands and methods
require a certain number of parameters. For example, in Lingo, the Go to frame

command expects one parameter: the destination frame identifier. Likewise, the
getAt function expects two parameters: list and position.

While the two aforementioned examples require exactly one and two parameters
respectively, some commands and functions offer more flexibility by accepting
optional parameters. For example, in Lingo, the Beep command requires one
parameter: the number of beeps. However, if that parameter is omitted, Lingo assumes
that one beep is required.

Xtras offer the same mechanism: some methods require an exact number of parameters
(fixed number of parameters), others assume default values if parameters are omitted

V12-DBE® for Macromedia Director® - User Manual version 3.0 (99/07/27)
©Integration New Media, Inc. 1995-99 page 24

(variable number of parameters). Each of these methods can be easily identified in the
Xtras built-in documentation explained below (see Basic Documentation).

Basic Documentation
In Director, Xtras contain a built-in mechanism that provides documentation for Lingo
developers. In the Message Window, type:

put mMessageList(Xtra "V12dbe")

in the Message Window, where Xtra "V12dbe" is the name of the Xtra library, not of
an Xtra instance.

The above command returns the following Xtra description:
-- "Xtra V12dbe
-- part of V12 Database Engine
-- ©Integration New Media, Inc. 1995-1999
-- Please check the on-line help in the Xtras/V12-DBE menu
new object me, string databasename, string openmode, *
mBuild object me, *
mCloneDatabase object me, string databasename
mCreateField object me, string tablename, string fieldname, *
mCreateFullIndex object me, string tablename, string fieldname, *
mCreateIndex object me, string tablename, string indexname, string

isunique, string fieldname, string order, *
mCreateTable object me, string tablename
mCustom object me, *
mDeleteTable object me, string tablename
mDumpStructure object me, *
mEditDBStructure object me
+ mError object xtraRef, *
+ mFixDatabase object xtraRef, string databasename, string

newdatabasename
mGetPropertyNames object me, *
mGetProperty object me, string property
mGetRef object me
mPackDatabase object me, string newdatabasename
mReadDBStructure object me, string inputtype, string source, *
mRenameField object me, string tablename, string oldfieldname,

string newfieldname
mSetPassword object me, string oldpassword, string newpassword
mSetProperty object me, string property, string value
+ mStatus object xtraRef
mUpdateDBStructure object me
* V12Error *
* V12ErrorReset
* V12Status
+ mXtraVersion object xtraRef

Methods that expect a fixed number of parameters are those for which each parameter
is listed. Methods that accept a variable number of parameters are those followed by a
*.

Following are a few explanations:
mEditDBStructure object me

means that the mEditDBStructure method requires exactly one parameter: the
database instance.

mSetProperty object me, string property, string value

V12-DBE® for Macromedia Director® - User Manual version 3.0 (99/07/27)
©Integration New Media, Inc. 1995-99 page 25

means that mSetProperty requires three parameters: the database instance, the
property (a string) and the value of the property (a string).

mDumpStructure object me, *

means that mDumpStructure requires at least one parameter, and possibly more
(indicated by the asterisk). You must refer to the documentation of this method to
know what additional parameters are accepted.

+ mStatus object xtraRef

the leading "+" sign means that mStatus is a static method - a method that can be used
with a database instance (i.e. mStatus(gDB)) and a database library instance (i.e.
mStatus(Xtra "V12dbe")). Static methods are seldom used in V12-DBE.

* V12Status

the leading "*" means that V12status is a global method - a method that can be used
at any time, regardless of Xtra instances. It is only required that the Xtra be present
when that function is called.

Note: In addition to its built-in documentation, V12-DBE offers
detailed on-line help accessible from the Xtras>V12-DBE
for Director >Help menu in Director.

Using Xtras with Shockwave
V12-DBE can be used with Director movies delivered in Shockwave format (a.k.a.
"shocked" movies) on local media (e.g. CD-ROM, hard disk, etc.). This form of
distribution is interesting for users who need to view content locally, on their own
computer, and eventually connect to the World Wide Web by clicking on hyperlinks.

In this case, the Shockwave movies you deliver must playback on the end-user's
computer in a web browser (Microsoft Internet Explorer or a Netscape browser) using
a playback engine installed in the System folder.

Note If you plan to deploy Shockwave movies over the Internet or
require that Shockwave movies access a V12 database
located on a server on the Internet, you must either use the
V12-DBE Online Companion, or devise a way to bring the
V12 database to the local hard disk before opening it and
using it.
The V12 Database Engine Xtra can only open files that are
available locally or on mounted volumes.

Shockwave movies, like projectors, need to handle two files: the V12-DBE Xtra and
your V12 database. These files must be placed in a location on the end-user's computer
depending on which browser is used, as explained below.

When using Netscape

The Xtra file must be placed into the Shockwave Plug-In folder located in Netscape's
Plug-Ins folder. This folder's name is:

V12-DBE® for Macromedia Director® - User Manual version 3.0 (99/07/27)
©Integration New Media, Inc. 1995-99 page 26

•√ \windows\shockwave\xtras\ on Microsoft Windows
•√ System folder:Extensions:Macromedia:Shockwave:Xtras on Macintosh

The database file (filename.V12) must be placed in the same folder as Netscape. If the
Shocked movie is used locally (that is, not downloaded by the user from the Web), the
V12 database file can also be placed in the same folder as the Shockwave movie.

When Using Internet Explorer

The Xtra file must be placed into the Shockwave Plug-In folder.
•√ \windows\shockwave\xtras\ on Microsoft Windows
•√ System Folder:Extensions:Macromedia:Shockwave:Xtras: on Macintosh

The V12 database file must be placed in the same folder as the shocked movie.

V12-DBE® for Macromedia Director® - User Manual version 3.0 (99/07/27)
©Integration New Media, Inc. 1995-99 page 27

Database Basics

Overview
If your understanding of what a database is and does is unclear, we recommend that
you read this section. The following sections deal with database basics:

•√ what is a database,
•√ records, fields and tables,
•√ indexes and full-text indexes,
•√ flat and relational databases,
•√ field types,
•√ selection, current record, and search criteria.

What is a Database?
A database is a collection of information that can be structured and sorted. A
telephone book is an example of a hardcopy database, and government statistical
records are examples of electronic databases. Database management programs such as
V12-DBE provide many advantages over hardcopy databases. Unlike using a
telephone directory that sorts data in alphabetical order, database software allows you
to change the way you sort and view information. Moreover, you can find, modify and
update information quickly and easily.

Records, Fields and Tables

An entry in a database is called a record.

Each record consists of pieces of information called fields.

All records are stored in a table.

For example, data entry in an address book typically consists of seven pieces of
information called fields: last name, first name, street address, city, state, zip code
and phone number. All the information relevant to one person makes up one record.
The collected records make up the table and are contained in a database file.
Entries below are typical of those found in an address book:

This is a table:

Last Name First Name Address City State Zip Phone --- These are fields
Jordan Ann 6772 Toyon Court San Mateo CA 94403 349-5353 --- This is the 1st record
Brown Charles 30 Saxony Ave. San Francisco CA 94115 421-9963 --- ...the 2nd record
Pintado Jack 22 Hoover Ave. Bowie MD 20712 731-5134 --- ...the 3rd record
Van Damme Lucie 87 Main St. Richmond VA 23233 315-3545 --- ... etc

V12-DBE® for Macromedia Director® - User Manual version 3.0 (99/07/27)
©Integration New Media, Inc. 1995-99 page 28

Peppermint Patty 127 Big St. Lebanon MO 92023 462-6267

Note: Some database management systems refer to fields as
columns and to records as lines or rows. In V12-DBE, the
terms remain fields and records.

Indexes

In a telephone directory, information is indexed by last name - a typical way to search
for a telephone number. There are directories which index information by order of
phone number or address, but any such directory sorts information in only one specific
predetermined order.

V12-DBE allows you to determine how you want to sort information by defining one
or more indexes in a table. When a field is indexed, V12-DBE creates an internal list
that can be used to sort and search quickly the data it contains. Non-indexed fields can
also be searched and sorted, but at a slower speed.

In this example, the address book entries are listed according to an index of the first
name field and sorted in ascending order (A to Z), thus appearing in alphabetical order
by first name.

Last Name First Name Address City State Zip Phone
Jordan Ann 6772 Toyon Court San Mateo CA 94403 349-5353
Brown Charles 30 Saxony Ave. San Francisco CA 94115 421-9963
Pintado Jack 22 Hoover Ave. Bowie MD 20712 731-5134
Van Damme Lucie 87 Main St. Richmond VA 23233 315-3545
Peppermint Patty 127 Big St. Lebanon MO 92023 462-6267

Compound Indexes

A compound index — or complex index —organizes entries composed of two or more
fields, as opposed to simple indexes — or indexes, for short — which organize single-
field entries. Compound indexes are useful to determine the sorting order of records
when some fields contain identical values.

In the following example, three records share the same last names (Cartman). Indexing
the field LastName alone would certainly force Last Names to be properly ordered.
But this would not determine the order in which the Cartmans are sorted.

Last Name First Name City State Zip
Cartman Wendy San Mateo CA 94403
Brown Charles San Francisco CA 94115
Pintado Jack Bowie MD 20712
Cartman Lucy Richmond VA 23233
Cartman Eric Lebanon MO 92023

If you want your records sorted by Last Name, and by First Name in case of identical
Last Names, you define a compound index on the fields LastName and FirstName.
The sorted result would then be:

V12-DBE® for Macromedia Director® - User Manual version 3.0 (99/07/27)
©Integration New Media, Inc. 1995-99 page 29

Last Name First Name City State Zip
Brown Charles San Francisco CA 94115
Cartman Eric Lebanon MO 92023
Cartman Lucy Richmond VA 23233
Cartman Wendy San Mateo CA 94403
Pintado Jack Bowie MD 20712

If you want them sorted by Last Name, and then by State in case of identical Last
Names you define a compound index on the fields LastName and State. The sorted
result would then be:

Last Name First Name City State Zip
Brown Charles San Francisco CA 94115
Cartman Wendy San Mateo CA 94403
Cartman Eric Lebanon MO 92023
Cartman Lucy Richmond VA 23233
Pintado Jack Bowie MD 20712

Up to twelve fields can be declared in a single compound index in V12 Database
Engine.

Database

A table, its fields and the indexes defined are stored in a database. A database can
contain one or more such tables.

Last Name First Name Address City State Zip Phone

Jordan Ann 6772 Toyon Court San Mateo CA 94403 349-5353

Brown Charles 30 Saxony Ave. San Francisco CA 94115 421-9963

Pintado Jack 22 Hoover Ave. Bowie MD 20712 731-5134

Van Damme Lucie 87 Main St. Richmond VA 23233 315-3545

Peppermint Patty 127 Big St. Lebanon MO 92023 462-6267

Index IndexIndex

record 5

record 4

record 3

record 2

record 1

Field

in

Field Field Field

Table

Field

in

Field Field Field

Table

i nin

Table

Database

Full-text Indexing
Defining an index on a field allows for quick sorting and searching of the first few
characters of a field. In some applications – typically when fields contain extensive
information – you need to search for words that appear anywhere in a field efficiently.

V12-DBE® for Macromedia Director® - User Manual version 3.0 (99/07/27)
©Integration New Media, Inc. 1995-99 page 30

This is where you need to define a full-text index, or full-index for short, on that field.
A full-index is an index defined on every single word of a field.

Last Name First Name Publication Title
Jordan Ann Soups and Salads for Dummies
Brown Charles The Hunchback of the Empire State Building
Pintado Jack Bounds on Branching Programs
Van Damme Lucie Natural and Artificial Intelligence
Peppermint Patty Mastering Soups in 32767 Easy Lessons

In this example, looking for the word "Soup" in the Publication Title field requires a
full-index for optimal search performance. If no index is defined on the Publication
Title field, the same result can be achieved, but with a slower performance. If a regular
index is defined on the Publication Title field, publications that start with the word
"Soup" can be quickly located, but publications that contain that word require more
time. Full-indexes apply only to fields of type string, including those which contain
styled text (see Field Types, International Support and Managing Styled Text).

Note: Each index takes up disk space so it is not recommended
that all fields be indexed. Full-indexes require much more
space than regular indexes. Indexed fields should be limited
to those likely to be searched and sorted most often.

For optimal full-text search efficiency, some level of control is required on the way it is
performed. For example, indexing trivial words such as "and", "or", "the", etc. (or
equivalent words that appear frequently in your application's language) is useless as
most records would contain one or more occurrences of those words.

Likewise, some applications or languages require that digits be full-indexed whereas
others would prefer to ignore them. V12-DBE enables you to fine-tune the behavior of
the full-indexes by allowing for the definition of Stop Words (words that must be
ignored), Delimiters (characters that delimit word boundaries) and MinWordLength
(the size of the shortest word that must be considered for full-indexing).

Flat and Relational Databases
A flat database usually consists of one table. In flat database management systems such
as FileMaker Pro, the terms table and database are interchangeable.

A relational database presents a more sophisticated use of information. In relational
database management systems, two or more tables are contained in the database.
Therefore, you can store as many tables as you wish in a single database file and each
table could have one or more indexes. Tables can be linked so that information can be
shared, saving you the trouble of copying the same information into several locations
and in the maintenance of duplicate information. This is important if there are
relationships between the various pieces of information. Though tables can be linked
or related to other tables in a flat database management system, manipulation is
cumbersome and changes made in one record are not automatically updated in other(s).

V12-DBE® for Macromedia Director® - User Manual version 3.0 (99/07/27)
©Integration New Media, Inc. 1995-99 page 31

For example, if you want to add information to the entries contained in the address
book in our first example, such as the company address and phone number, one way to
do this would be to add them to the table:

Last Name First Name Address City State Zip Phone Company Phone
Jordan Ann 6772 Toyon Court San Mateo CA 94403 349-5353 Rocco & Co. 526-2342
Brown Charles 30 Saxony Ave. San Francisco CA 94115 421-9963 National Laundry 982-9400
Pintado Jack 22 Hoover Ave. Bowie MD 20712 731-5134 Rocco & Co. 526-2342
Van Damme Lucie 87 Main St. Richmond VA 23233 315-3545 Presto Cleaning 751-5290
Peppermint Patty 127 Big St. Lebanon MO 92023 462-6267 Presto Cleaning 751-5290

However, adding this information might lead to the duplicate of information given that
some people might be working for the same company. To prevent duplication and to
save on disk space and time required to update, you could create a new table
containing only the business information. For example, the new table could be called:
Companies. Each record of that new table would have a unique ID number, Company
Ref, that would also be used in the first table.

The database now contains two related tables, each having a field containing the
common information, named “Company Ref”:

Table 1 containing information about the each person:
Last Name First Name Address City State Zip Phone Company Ref
Jordan Ann 6772 Toyon Court San Mateo CA 94403 349-5353 RO
Brown Charles 30 Saxony Ave. San Francisco CA 94115 421-9963 NA
Pintado Jack 22 Hoover Ave. Bowie MD 20712 731-5134 RO
Van Damme Lucie 87 Main St. Richmond VA 23233 315-3545 PR
Peppermint Patty 127 Big St. Lebanon MO 92023 462-6267 PR

Table 2 containing information about the companies:
Company ref Company Phone
NA National Laundry 982-9400
PR Presto Cleaning 751-5290
RO Rocco & Co. 526-2342

The two databases could also be compared as follows:

The relational database is smaller because it avoids useless data duplication. In order
to retrieve full information about any given individual in your address book, you would
perform a search in your first table, retrieve the company reference, and then perform a
search in the second table. The flat model may be easier to manage when retrieving
data given that only one search is required, however it tends to consume valuable disk
space.

V12-DBE® for Macromedia Director® - User Manual version 3.0 (99/07/27)
©Integration New Media, Inc. 1995-99 page 32

Note Relational Database Management Systems (RDBMS) are
usually programmed with SQL (System Query Language),
which has the ability to automatically resolve relations
between related tables.
Although V12 Database Engine can store multiple tables per
database, it relies on Lingo scripts to resolve relations. It
cannot automatically such resolve relations.

Field Types
For optimal data sorting and searching, you can specify the kind of information to be
stored in each field. In V12-DBE, fields can be designated to contain strings, integers,
floating-point numbers, dates, pictures, sounds, palettes, etc. A field would then be of
type string, integer, float, date, or media. Fields of type Media can accommodate
any media that can be stored in a cast member except for Film Loops and QuickTime
movies. See Appendix 3: Capacities and Limits at the end of this manual for a formal
definition of each field type.

For example, if you wanted to organize a contest where each person listed in your
address book is collecting points, you would need to keep track of the number of
points accumulated by each person. Therefore, you would update your address book to
include a new field: number of points. Since you would want to search and sort this
new field quickly, you need to define an index. This new field could be one of two
types: string or integer.

If you define the new field as type string, you might end up with the following listing
when the table is sorted by ascending order of points:

Jordan Ann 1
Brown Charles 12
Peppermint Patty 127
Pintado Jack 6
Van Damme Lucie 64

This order occurs because the string "12" is alphabetically lower than the string "6"
given that the ASCII code for "1" is 49 which is smaller than the ASCII code for "6",
54. To sort the list in the expected ascending order, you must define the field number
of points to be of type integer to get the following result:

Jordan Ann 1
Pintado Jack 6
Brown Charles 12
Van Damme Lucie 64
Peppermint Patty 127

Typecasting

Typecasting (or casting, for short) is the process of converting a piece of data from one
type to another. This is a common mechanism to most programming languages,
including Lingo.

V12-DBE® for Macromedia Director® - User Manual version 3.0 (99/07/27)
©Integration New Media, Inc. 1995-99 page 33

For example, the integer 234 can be casted to the string "234". Conversely, the string
"3.1416" can be casted to the float 3.1416.

Typecasting can be performed explicitly in Lingo using the Integer, String and
Float functions (i.e., String(234) returns the string "234") or automatically (i.e.,
12&34 returns the string "1234").

V12-DBE has the same ability as Lingo to typecast data when it is required by the
context. However, some borderline conditions can lead to ambiguous results such as
trying to store the value " 123" in a field of type Integer (note the leading space).

You must always make sure that the data supplied to V12-DBE does not contain
spurious characters, otherwise typecasting will not be performed properly.

International Support
Although the 26 basic letters of the roman alphabet sort in the same order in all roman
languages, the position of accented characters (also called mutated characters) varies
from one language to another. For example, the letter ä sorts as a regular a in German
whereas it sorts after z in Swedish. Likewise, in Spanish, ch sorts after cz and ll sorts
after lz.

V12-DBE's default string was designed to satisfy as many languages as possible. It
can sort and search texts in English, French, Italian, Dutch, German, Norwegian, etc.
See Appendix 16: String and Custom String Types in the appendices of this manual for
a detailed description of string's behavior.

V12-DBE also offers the option of defining fields of type Swedish, Spanish,
Hebrew, etc. that index and sort data in a way that is compliant with these languages.
See Appendix 16: String and Custom String Types for an exhaustive list and
description of those behaviors called custom string types.

The Regular Edition of V12-DBE allows for the creation of custom string types having
each a sort/search description table defined by you. Therefore, you can define your
own string type for any language supported by single-byte characters, including
Klingon.

Note: Everything that applies to the type string also applies to
custom string types. Throughout this manual, the term
string is used to designate both the default V12-DBE
string and custom string types.

Selection, Current Record, Search Criteria
The selection is the set of records currently available in the table. When a table is
opened the selection contains all the records of the table. If you search through a table
after having defined search criteria, the resulting set of records that satisfy the search is
the new selection. When a selection is first defined, the current record is the first
record of that selection.

V12-DBE® for Macromedia Director® - User Manual version 3.0 (99/07/27)
©Integration New Media, Inc. 1995-99 page 34

•√ If exactly one record satisfies the search criteria, the selection contains only
the record which automatically becomes the current record.

•√ If two or more records satisfy the search criteria, the selection is the set of
those records and the first record of the selection becomes the current record.

•√ If no record satisfies the search criteria, then the selection is empty and the
current record is undefined. Any attempt to read or write in a field will result
in an error.

The following figure illustrates the idea of searching a table for records satisfying a
certain criteria. The result is placed in a selection, the first record of which becomes
the current record.

All operations on any fields (such as reading and writing data) are done on the current
record. Therefore, before performing these operations, you must designate the record
on which you wish to work as the current record by selecting it, and by using methods
such as mGoFirst, mGoLast, mGoNext, mGoPrevious and mGo.

At any given time, with the possible exception of no record satisfying the criteria, there
is a current record. All record operations apply to the current record and do not apply
to any other record. You can read the content of a field in the current record, modify
its content or delete the entire record. The current record is changed when you move
from one record to the next in the selection.

Besides sorting a table through indexes, you can find information based on search
criteria. You can define simple search criteria, also called simple queries, such as:

•√ First name is Jack
•√ State is California
•√ Number of points is less than 30
•√ Last name begins with P

Or you can define complex search criteria, also called Boolean queries using and/or,
such as:

•√ First name is Jack or Last name begins with P
•√ State is California and Number of points is less than 30
•√ State is California and Number of points is less than 30 and Last name

contains "pe"

V12-DBE® for Macromedia Director® - User Manual version 3.0 (99/07/27)
©Integration New Media, Inc. 1995-99 page 35

Note Database Management Systems that use SQL as their
programming language can define search criteria such as:
(Dish is soup or appetizer) and (Main Ingredient is celery
or eggplant or pumpkin). V12 Database Engine does not
support this alternation of ANDs and ORs. See Appendix 9:
Advanced Boolean Searches for possible workarounds.

V12-DBE® for Macromedia Director® - User Manual version 3.0 (99/07/27)
©Integration New Media, Inc. 1995-99 page 36

Using V12-DBE

Overview
This section covers the main steps in using V12-DBE. If you have looked at the First
Steps manuals, you should already be familiar with these five steps.

V12-DBE Basics
V12-DBE is a powerful database management engine, composed of two Xtras
libraries: a database Xtra named "V12dbe" and a table Xtra named "V12table". The
database Xtra is used to create a new database or to open an existing database in a
given mode (read only, read/write or create). The table Xtra is used to manage the
content of the table in your database.

The Main Steps
If you read through the First Steps manual, a typical step-by-step use of V12-DBE was
outlined. The individual steps to using V12-DBE are explored in greater details in this
section.

Step 1 Deciding on a data model: Before you create your database, decide which fields are
needed, the type of those fields, how they should be grouped in the tables and which
fields should be indexed. This is a design effort that does not require a special tool
(with the possible exception of a word processor to help you edit your ideas). If your
original data is managed in FileMaker Pro, MS Access, or a similar database
management product, that database's model is probably the best starting point for your
V12 database model.

Step 2 Preparing the data: If your original data is managed in FileMaker Pro, MS Access, or
a similar database management product, in step 2, you make sure that your data is
properly entered and that it is in a format readable by V12 Database Engine (Text file,
DBF file or one of V12-DBE's ODBC-compliant formats).

Step 3 Creating a V12-DBE database: Use the V12-DBE Tool to create the V12 database
you designed at Step 1. Alternatively, you can use the database Xtra's (i.e. Xtra
V12dbe's) methods to write an automated database creation script in Lingo.

V12-DBE® for Macromedia Director® - User Manual version 3.0 (99/07/27)
©Integration New Media, Inc. 1995-99 page 37

Step 4 Importing data into a V12-DBE database: Use the V12-DBE Tool to import the
Text or DBF file exported at Step 2. Alternatively, you can write Lingo scripts to
automate the process of importing data into your V12-DBE databases.

Step 5 Implementing the user interface: This step consists of the development of data
search, retrieval and modification routines at runtime either as Behaviors attached to
the various Director sprites, or as Lingo handlers in Director script members. Sample
movies provided in the V12-DBE package or on Integration New Media's web site
(http://www.integration.qc.ca) can be used to inspire the development of your projects.

Each of the aforementioned steps is discussed in subsequent sections. Since V12-DBE
offers more than one way to attain a goal, the simplest approach is explained first, then
alternate and more powerful or versatile approaches are discussed.

V12-DBE® for Macromedia Director® - User Manual version 3.0 (99/07/27)
©Integration New Media, Inc. 1995-99 page 38

Step 1: Deciding on a Data Model
Before creating a database file, you need to decide how you want to organize your
data. If your original data is managed in FileMaker Pro, MS Access, or a similar
database management product, that database's model is probably the best starting point
for your V12 database model. The questions you need to address are :

•√ which fields are required and what are their respective types?
•√ which fields should be indexed for quick searching and sorting?
•√ how many tables are required to group the fields?
•√ are there any relationships between the various tables?

In the stationary catalog example below, only one table is needed. It is called
"Articles". The seven fields you need are :

•√ Field "ItemName" of type String
•√ Field "Category" of type String
•√ Field "Description" of type String
•√ Field "Price" of type Float
•√ Field "CatalogNumber" of type Integer
•√ Field "Photo" of type Media
•√ Field "Date" of type Date

Since only the fields "ItemName", "Price" and "CatalogNumber" will be searchable,
only them are indexed.

Defining Identifiers
Tables, field and indexes are given names called identifiers, and V12-DBE makes
reference to them by use of these identifiers. An identifier must start with a low-ASCII
alphabetic character (a..z, A..Z) and can be followed by any combination of
alphanumeric characters (0..9, a..z, A..Z, à, é, ö, …). The maximum length for an
identifier is 32 characters. No two fields or indexes of a table can have the same name.

V12-DBE is not case-sensitive. That is, upper-cases and lower-cases are identical. The
following identifiers are considered identical in V12-DBE: "articles", "ARTICLES",
"Articles", "aRtICleS".

V12-DBE® for Macromedia Director® - User Manual version 3.0 (99/07/27)
©Integration New Media, Inc. 1995-99 page 39

Step 2: Preparing the Data
Step 2 is relevant only if your original data is managed in FileMaker Pro,
4th Dimension, DBase or any other database management system that has the ability to
export TEXT or DBF files.

If you plan to use an ODBC driver to import your data from MS Access, MS FoxPro,
MS Excel or MS SQL Server, or if the records must be keyed-in by the user, skip to
Step 3.

In brief, Step 2 consists in making sure that your original data is properly structured
and in exporting it as Text or DBF files. Those files are then imported to V12
databases at Step 4: Importing Data into a V12-DBE Database.

TEXT File Formats
Text files are the most popular data interchange file formats. Usually, TAB-delimited
Text files are used to exchange data between database management systems.

A typical TAB-delimited file is in the following format:
Field_A1 TAB Field_A2 TAB Field_A3 TAB ... TAB Field_An CR
Field_B1 TAB Field_B2 TAB Field_B3 TAB ... TAB Field_Bn CR
Field_C1 TAB Field_C2 TAB Field_C3 TAB ... TAB Field_Cn CR

where Field_A1, Field_A2, etc. designate the actual data in those fields. TAB is
the ASCII character 9, indicating the end of a field.

On the Mac, CR is the ASCII character 13, indicating the end of a record. On
Windows, CR is the ASCII character 13 followed by the ASCII character 10 (Line
Feed). Since V12-DBE always ignores Line Feed characters, you need not worry about
exceptional cases between the Mac and Windows with respect to Record Delimiters.

Generally, using the V12-DBE Tool or the mImport method to import a text file into a
V12-DBE database is a straightforward process, unless your fields contain TAB or CR
characters. In such cases, V12-DBE confuses the real delimiter with the legitimate
content of your field. See Dealing with Delimiters Ambiguity below.

Field Descriptors
V12-DBE requires a special type of Delimited Text file format. The file's first line
must contain field descriptors, or the names of the fields into which the data that
follow must be imported. This file format is sometimes referred to as mail merge
format. Following is an example of such a file:

Name Price CatNumber
Ruler 1.99 1431

V12-DBE® for Macromedia Director® - User Manual version 3.0 (99/07/27)
©Integration New Media, Inc. 1995-99 page 40

Labels 1.19 1743
Tags 6.19 …

You can easily have FileMaker Pro and MS Access export those field names before
exporting the records data as follows:

•√ In FileMaker Pro, choose File > Import/Export > Export Records and select
"Merge (*.MER)" in the Save as Type menu. As a side effect, FileMaker Pro
exports your data with quotation marks surrounding each field and a comma as
field separator. Your file can easily be imported to the V12 database with
quotation marks as Text Qualifiers (Text Qualifiers below) and commas as field
delimiters (see Custom Delimiters below).

•√ In MS Access, choose File > Save As/Export, to an external file or database.
Then, select Text Files in the Save as Type menu. Click Export. Make sure that
Delimited is selected and click Next. Click "Include Field Names in First Row".

Dealing with Delimiters Ambiguity
Most of the time, TABs are used to delimit fields in a Text file, and CRs to delimit
records. If your fields contain TABs or CRs as part of their actual data, the legitimate
content of your fields would be confused with those delimiters once exported in a text
file. There is more than one way to deal with this problem. Choose the one — or
combination — that best fit your project's needs in the list below.

Virtual Carriage Returns

Some database management systems (e.g., FileMaker Pro) export a special character
other than ASCII #13 instead of the CRs that appear in your fields. For example,
FileMaker Pro exports ASCII #11 (Vertical Tab) instead of ASCII #13. Those
characters are called Virtual Carriage Returns or VirtualCR for short.

V12 Database Engine can recognize those characters and convert them to real Carriage
Returns (ASCII #13) once they are imported. See Step 4: Importing Data into a V12-
DBE Database / Importing Data with mImport and VirtualCR / Properties of
Databases.

Text Qualifiers

A text qualifier is special character used to begin and end each Text field. In most
database management systems, the quotation mark (") is the default text qualifier. Its
main purpose is to group a field's content between two identical marks so to enable the
occurrence of field and record delimiters without the risk of confusion.

Example:
"Name" , "Description" CR
"Hat" , "high-quality, excellent fabric, available in:CRRedCRGreenCRBlue"
"Shoe", "this, description, field, contains, commas, and, CarriageCRReturns"

V12-DBE® for Macromedia Director® - User Manual version 3.0 (99/07/27)
©Integration New Media, Inc. 1995-99 page 41

Text qualifiers are automatically placed in text files exported from MS Access,
FileMaker Pro (Mail Merge format) and MS Excel (only for fields that contain
commas).

Text files containing Text Qualifiers are easily imported to V12 databases by setting
the mImport method's TextQualifier property to the right character. See Step 4:
Importing Data into a V12-DBE Database / Importing Data with mImport.

Custom Delimiters

Another way to avoid delimiter ambiguity is to choose delimiters other than TAB and
CR. Some database management systems allow you to select appropriate delimiters
before exporting a TEXT file (e.g., 4th Dimension). Some others allow only the
selection of a custom field delimiter and always use CRs as records delimiters (e.g., MS
Access). FileMaker Pro and MS Excel do not allow for any customization.

V12-DBE's mImport method assumes, by default, that the field and record delimiters
are TAB and CR. However, other delimiters can be specified. See Step 4: Importing
Data into a V12-DBE Database / Importing Data with mImport.

Note Since V12-DBE always ignores Line Feed characters,
(ASCII Character 10), those cannot be used as field or
record delimiters.

Calculated Fields

If your database management system does not support alternative delimiters you can
nonetheless force it to export your own delimiters by creating an additional field and
setting it as the result of the concatenation of all the other fields with the desired
delimiter in between each two fields. Then, export only the new field in a text file.

Processing the Exported Text File

If the database management system used to store your data is not flexible enough, or if
the data themselves are not properly structured, you can export them in a text file and
use Third Party tools to search and replace sequences — or patterns — of characters .

Below is a non-exhaustive list of helpful tools:
•√ BBEdit for MacOS from Bare Bones Software (www.barebones.com). For

MacOS.
•√ TextPad from Helios Software Solutions (www.textpad.com). For Windows.
•√ UltraEdit from IDM Computer Solutions (www.ultraedit.com). For Windows.
•√ MS Excel from Microsoft Corp. (www.microsoft.com). For MacOS and Windows.
BBEdit, TextPad and UltraEdit feature GREPs (General Regular Expression Parsers)
which are very convenient to structure unstructured data.

http://www.barebones.com/
http://www.textpad.com)/
http://www.ultraedit.com)/
http://www.microsoft.com)/

V12-DBE® for Macromedia Director® - User Manual version 3.0 (99/07/27)
©Integration New Media, Inc. 1995-99 page 42

Character Sets
Character sets are not standard across operating systems and file formats. For example,
the letter "é" is the 233rd on Windows, whereas it is the 142nd on Macintosh and the
130th on MS-DOS.

Although all three operating systems use the ASCII characters set, only low-ASCII
characters (i.e., those below #127) are common to the many variants of the ASCII set.
Therefore, the rest of this topic is of interest to you only if your deal with high-ASCII
characters (such as å, æ, ß, ê, ï, ø, ž, ‰, §, ¥, etc.)

V12-DBE's CharacterSet property can be set to translate Windows, Macintosh or
MS-DOS character sets when importing or exporting Text or DBF files. Optionally,
mImport accepts the CharacterSet property to use only once to import a single file
(as opposed to the CharacterSet property which permanently affects mImport,
mImportFile and mExportSelection, or until it is set to another value). Step 4:
Importing Data into a V12-DBE Database / Importing Data with mImport.

MS Word documents, V12 databases as well as many other proprietary file formats are
cross-platform compatible. You should not worry about this portability issue if your
data contains only low-ASCII characters (e.g. English alphabet).

Dealing with Dates
Although V12-DBE can output dates in highly customizable formats, it requires that
they be input in a single unambiguous format called the raw format: YYYY/MM/DD.

•√ YYYY: year in 4 digits (e.g., 1901, 1997, 2002)
•√ MM: month in 1 or 2 digits (e.g., 01 or 1 for January)
•√ DD: day in 1 or 2 digits (e.g., 04 or 4 for the 4th day of the month)

The separator between the three chunks of values can be any non-numeric character,
although slash (/), hyphen (-) and period (.) are most commonly used.

Any date that needs to be imported in a V12-DBE fields of type date needs to be in
this raw format. This rules applies to the V12-DBE Tool as well as to V12-DBE's
Lingo methods that accept dates as input parameters (e.g., mImportFile, mSetField
and mSetCriteria).

Note If you omit to initialize a field of type date in a new record,
or try to store an invalid date in it, it is automatically set to
1900/01/01 (January 1st, 1900).

DBF File Formats
V12 Database Engine can import DBF files two ways:

V12-DBE® for Macromedia Director® - User Manual version 3.0 (99/07/27)
©Integration New Media, Inc. 1995-99 page 43

•√ on both MacOS and Windows, it can read DBF files of type Dbase III, Dbase IV,
Dbase V, FoxPro 2.0, FoxPro 2.5, FoxPro 2.6, FoxPro 3.0 and FoxPro 5.0.

•√ on Windows 9x/NT only, DBF files can be exported through the FoxPro ODBC
driver.

You may want to export your data as DBF files, if that format is supported by your
database management system.

DBF is an old file format. It was enhanced over the years but most common
applications still use the popular Dbase III format whose features are common to all
other DBF file variants. Limitations include:

•√ Field names are limited to ten characters, all in upper case,

•√ The number of fields per DBF file is limited to 128,

•√ Records are of fixed length, determined upon the creation of the DBF file,

•√ There is more than one way to deal with high-ASCII characters (accented
characters) with DBF files. This depends on the operating system and
application used to manage the DBF file,

•√ Indexes are saved in separate files with extensions such as IDX, MDX, NDX
or CDX (depends on the managing application),

•√ DBF files cannot be password-protected. However, some applications protect
DBF files by encrypting/decrypting them,

•√ Character fields (roughly, the equivalent of V12-DBE's string fields) are
limited to 255 characters. Any text longer than 255 characters, must be stored
in separate files called DBT files and referred to by Memo fields,

•√ Media (either Binary or Text) are stored in external DBT files pointed to by
Memo fields in the DBF file. Media fields are limited to 32K of size.

Various flavors of the DBF file format were introduced over the years, such as DBase
IV, DBase V, FoxPro 2.0, FoxPro 2.5, FoxPro 2.6, FoxPro 3.0 and FoxPro 5.0. They
all include DBase III's features as core specifications and add new data types or extend
certain limits. See mReadDBstructure from a DBF File for more details.

Note Years ago, DBF files were convenient given that they
contained less variants than TEXT files. However, since the
introduction of Windows and the popularization of DBF to
other Operating Systems, DBF files contain many categories
and have become difficult to manage. V12-DBE's preferred
file importing format is Text.

In summary, the exact structure and limitations of your DBF files largely depend on
how your database management system deals with them.

V12-DBE® for Macromedia Director® - User Manual version 3.0 (99/07/27)
©Integration New Media, Inc. 1995-99 page 44

Field Buffer Size
Prior to creating your database structures, you need to determine the size of the largest
chunk of data for each field of type string or media in your database. This helps you
optimize the size of the buffers needed to manage V12-DBE's internal data structures
for each of those fields.

If you are confident that your strings will not exceed 256 bytes, or your media 64K,
you do not need to worry about the buffer size. Default buffers are set to 256 bytes for
strings and to 64K for media.

Note: Database management systems that use a fixed-length record
format (such as the DBF file format) use this maximum
value to allocate data space on disk. Consequently, that
amount of space is lost for each record of the database
regardless of the actual data stored in it.

 V12 Database Engine uses a variable-length record format.
This means that it uses the exact amount of space needed for
the storage of a record on disk, with no space loss at all. The
Field Buffer Size is used only to allocate buffer sizes in
RAM while transferring data between Director and the V12
database files.

V12-DBE® for Macromedia Director® - User Manual version 3.0 (99/07/27)
©Integration New Media, Inc. 1995-99 page 45

Step 3: Creating a Database
At Step 3, you formalize the database you designed at Step 1: Deciding on a Data
Model into a database descriptor. Then, you provide that descriptor to the V12-DBE
Tool (if you choose to use the V12-DBE Tool), or to V12-DBE's mReadDBstructure
method (if you decided to script the database creation process).

If you use the V12-DBE Tool, just read through the next two sections (Database
Descriptors and Using the V12-DBE Tool) and skip to Step 4: Importing Data into a
V12-DBE Database. If you wish to script the database creation process, read through
Scripting the Database Creation as well.

The V12-DBE Tool is a convenient point-and-click environment for small projects.
Scripting the database creation process with Lingo requires a little more effort upfront
but may end up saving you a lot of time, if you need to experiment with your database
structure or data before committing to a final form. It enables you to automate the
database creation process.

Database Descriptors
Following is the format of text (and literal) database descriptors required by both the
V12-DBE Tool and the mReadDBstructure method. It is used to build a database
structure from scratch.

If you build your V12 databases from other databases (e.g., MS Access, MS Excel,
etc.), you can directly skip to Scripting the Database Creation.

The desired V12-DBE database structure is stored in a text file (or Director member)
called the database descriptor in the following format.

[TABLE]
NameOfTable
[FIELDS]
FieldName1 FieldType1 IndexType1
FieldName2 FieldType2 IndexType2
FieldName3 FieldType3 BufferSize3 IndexType3
etc.
[END]

The [TABLE] tag is be followed by one parameter: the name of the table. This is an
identifier (see Defining Identifiers).

The [FIELDS] tag is followed by as many lines as you need to define fields in the
above defined table. The syntax of each line is as follows (see Database Basics for a
thorough explanation of these concepts):

•√ FieldName: the name given to the field to be created. This is an identifier
(see Defining Identifiers),

V12-DBE® for Macromedia Director® - User Manual version 3.0 (99/07/27)
©Integration New Media, Inc. 1995-99 page 46

•√ FieldType: string , integer, float, date, media or a custom string
type (see Field Types),

•√ BufferSize: the amount of RAM to allocate for the internal management of
the field's content. This parameter is relevant only for fields of type string
and media. If omitted, fields of type string are created with a default buffer
size of 255 characters and fields of type media are created with a default
buffer size of 64K. See Field Buffer Size in Step 2: Preparing the Data.

•√ IndexType: the word "indexed" if the field must be indexed, or the word
"full-indexed" if the field must be full-indexed, or nothing if no indexing is
required. If you need to both index and full-index a field, see Defining Both
an Index and a Full-index on a Field.

Note: If you try to store a text longer than the size of the buffer
allocated for a field type string, V12-DBE signals a
warning and stores the truncated text into the field. Media
that are larger than the maximum buffer size of a fields are
not stored at all.

[END] indicates the end of the descriptor. It is a mandatory tag.

In each line of the descriptor file, tokens (i.e. field name, index name, value, etc.) must
be separated by one or multiple Tabs and/or space characters.

Note: A convenient way to build a descriptor file for a database
containing a large number of tables, fields or indexes is to
type it in a spreadsheet thus taking advantage of advanced
editing functions. The result can then be saved to a TAB-
delimited file or Copy/Pasted to a Director field for
processing by mReadDBStructure.

Example:
[TABLE]
Recipes
[FIELDS]
NameOfRecipe string indexed
Calories integer indexed
CookingTime integer
TextOfRecipe string 5000 full-indexed
Photo media 300000
[END]

Note: A valid database needs exactly one table, at least one field
and at least one index.

Defining Both an Index and a Full-index on a Field
In exceptional cases, you would need to define both an index and a full-index on a
field. Since the IndexType parameter defined above can represent only one of

V12-DBE® for Macromedia Director® - User Manual version 3.0 (99/07/27)
©Integration New Media, Inc. 1995-99 page 47

"indexed" or "full-indexed", you would need to set it to "indexed" and define the full-
index separately under an additional tag named [FULL-INDEXES].

The [FULL-INDEXES] tag must follow the [FIELDS] section and must be followed
by a list of fields to be full-indexed, one per line.

Example:
[TABLE]
Recipes
[FIELDS]
NameOfRecipe string indexed
Calories integer indexed
CookingTime integer
TextOfRecipe string 5000 indexed
Photo media 300000
[FULL-INDEXES]
TextOfRecipe
[END]

Alternate Syntax for Creating Indexes
Database descriptors support an alternate syntax to create indexes. The [INDEXES] tag
can be used right after the fields definitions to explicitly name and define the desired
indexes.

This alternate syntax is used by mDumpStructure for clarity (see Viewing the
Structure of a Database).

This database descriptor example is equivalent to the one above:
[TABLE]
Recipes
[FIELDS]
NameOfRecipe string
Calories integer
CookingTime integer
TextOfRecipe string 5000
Photo media 300000
[INDEXES]
NameOfRecipeNdx duplicate NameOfRecipe ascending
CaloriesNdx duplicate Calories ascending
TextOfRecipeNdx duplicate TextOfRecipe ascending
[FULL-INDEXES]
TextOfRecipe
[END]

Defining Compound Indexes
Compound indexes are indexes defined on two or more fields (see Database
Basics/Compound Indexes). Compound indexes can be defined after the [INDEXES]
tag, as in:

[TABLE]
Students
[FIELDS]
LastName string
FirstName string
Age integer
[INDEXES]
CompoundNdx duplicate LastName ascending FirstName ascending

V12-DBE® for Macromedia Director® - User Manual version 3.0 (99/07/27)
©Integration New Media, Inc. 1995-99 page 48

[END]

The general syntax of a compound index definition is
[INDEXES]
Indx1 UniqueOrDup [FieldName AscOrDesc]1..10

where:

•√ Indx1 is the name of the compound index

•√ UniqueOrDup is either "unique" or "duplicate", depending upon whether or
not you allow duplicate entries for that index

•√ FieldName is the name of a field defined under the [FIELDS] tag

•√ AscOrDesc is "ascending" if you want that field sorted low-to-high, or
"descending" otherwise.

Up to ten FieldName AscOrDesc couples can be defined for a single compound
index.

Adding Comments to Database Descriptors
Database descriptors can also contain comments in much the same way Lingo scripts
do. In Lingo, comments are preceded by double hyphens ("--") and must be followed
by a CARRIAGE_RETURN. In database descriptors, comments must be preceded by (*
and be followed by *). They can include any sequences of characters, including
CARRIAGE_RETURNs.

Example:
(*

description of the Mega-Cookbook recipes table version 1.1
by Bill Gatezky, 14-Feb-97
This is a valid comment despite the fact that it contains
Carriage Returns

*)
[TABLE]
Recipes
(* this is also a valid comment *)
[FIELDS]
NameOfRecipe string indexed
...
[END]

The comment opening tag for database descriptors must be followed by a blank
character such as a space, tab or CARRIAGE_RETURN. Likewise, a comment closing tag
must be preceded by a blank character. Thus,

(*invalid comment: will generate an error*)

is an invalid comment, whereas
(* valid comment *)

is valid.

V12-DBE® for Macromedia Director® - User Manual version 3.0 (99/07/27)
©Integration New Media, Inc. 1995-99 page 49

Using the V12-DBE Tool
To create a V12 database using the V12-DBE Tool:

1. Choose File > New…

2. Fill out the Database Descriptor field according to the syntax described in
Database Descriptors,

3. Provide a name, and optionally a password, for your new V12 database,

4. Click the Create button

Instead of filling out the Database Descriptor field manually in the V12-DBE Tool,
you can edit it in a text file and load that text file to the Tool's Database Descriptor
field. You can also directly read the structure of a DBF file, or of another V12
database into the Tool's Database Descriptor field.

For more information, see the V12-DBE Tool's User Manual.

Scripting the Database Creation
Automating the creation a V12 database through Lingo with V12-DBE consists in
three steps:

•√ Creating an Xtra instance of the database with New
•√ Defining its structure with mReadDBstructure
•√ Building the database with mBuild

The general form of a database creation Lingo handler is:
on CreateDatabase

set gDB = New(Xtra "V12dbe", FileName, "create", Password)
CheckV12Error()
mReadDBStructure(gDB, InputType, other params)
CheckV12Error()
mBuild(gDB)
CheckV12Error()
set gDB=0

end CreateDatabase

where

•√ FileName is the full pathname of the V12 database to create

•√ Password is the password to protect FileName

•√ InputType is one of "Text", "Literal", "DBF", "V12", "FoxPro", "Access",
"Excel" or "SQL Server".

V12-DBE® for Macromedia Director® - User Manual version 3.0 (99/07/27)
©Integration New Media, Inc. 1995-99 page 50

•√ other params are one or more parameters depending on the selected
InputType.

See CheckV12Error in Errors and Defensive Programming for a definition of the
CheckV12Error() handler used throughout this section.

Step 3a: Creating a Database Xtra Instance
Use the New method to create a database Xtra instance.

Syntax:
set gDB = New(Xtra "V12dbe", Name, "create", Password)

The parameters you provide are:

•√ Name: the name of the new database file, including its path if needed (see
Dealing with Pathnames in Using Xtras).

•√ "Create" or the Mode: the mode in which the Xtra instance is defined. In
this case, the mode is Create (create a new database file). Other possible
modes are ReadOnly, ReadWrite and Shared ReadWrite. See Opening
an Existing Database.

•√ Password: the password is required if you wish to protect your database
against tampering and/or data theft. You can lock the database with a
password, but make sure to record it in a safe place. If you forget it, you will
not be able to open your database again.

Example:
set gDB = New(Xtra "V12dbe", "Catalog.V12", "Create", "top secret")

Note For a number of reasons, the creation of an Xtra instance can
fail (insufficient memory, invalid file path, etc.) Always
make sure that your database instance is valid by checking
V12Error (see Errors and Defensive Programming) or
ObjectP (see Checking if New Was Successful in Using
Xtras) before pursuing the database creation process.

Step 3b: Defining the Database Structure
The next method, after successfully creating a database Xtra instance, is to call
mReadDBstructure to read in the database structure you designed at Step 1:
Deciding on a Data Model.

mReadDBstructure requires one the following inputs:

•√ a database descriptor as defined in Database Descriptors above. Such as
descriptor is supplied either as a text file or as a literal (i.e. a Director field or
variable),

V12-DBE® for Macromedia Director® - User Manual version 3.0 (99/07/27)
©Integration New Media, Inc. 1995-99 page 51

•√ a DBF file (DBase) which serves as a table template,

•√ a V12 database which serves as a database template,

•√ a directory containing one or more MS FoxPro files which serve collectively
as a database template (Windows-32 only, requires the FoxPro ODBC
driver),

•√ a MS Access database which serves as a database template (Windows-32
only, requires the Access ODBC driver),

•√ a MS Excel workbook which serves as a database template (Windows-32
only, requires the Excel ODBC driver),

•√ a MS SQL Server data source which serves as a database template
(Windows-32 only, requires the MS SQL Server ODBC driver).

It is always a good practice to check the value returned by V12Error() or
V12Status() after calling mReadDBstructure (see Errors and Defensive
Programming) to find out if an error occurred. You may also call mDumpStructure
right after calling mReadDBstructure to check the actual database structure V12-
DBE will build once mBuild is called.

Database structure translation rules from the above ODBC-compliant databases to V12
Databases vary according to the specific ODBC driver installed on your computer.

mReadDBstructure from a Text File

To read a database descriptor into V12-DBE, use the following Lingo statement:
mReadDBStructure(gDB, "TEXT", File_Pathname)

Assuming that the name of the database descriptor's filename is "Def.txt", the
following Lingo code creates a new V12-DBE database file named "Catalog.V12" and
structures it as described in "Def.txt".

on CreateDatabase
set gDB = New(Xtra "V12dbe", the pathname&"Catalog.V12",
"create", "top secret")
CheckV12Error()
mReadDBStructure(gDB, "TEXT", the pathname & "Def.txt")
CheckV12Error()
mBuild(gDB)
CheckV12Error()
set gDB=0

end CreateDatabase

mReadDBstructure from a Literal

A literal is either a Director member of type Field or a Lingo variable that actually
contains the database descriptor (as opposed to containing the pathname of the
descriptor Text file). Building a database from a literal description is very similar to
the building it from a text file. The literal must contain the database descriptor as
defined in Database Descriptors. The Lingo script to build the database is:

mReadDBStructure(gDB, "LITERAL", Variable_or_Field_Name)

V12-DBE® for Macromedia Director® - User Manual version 3.0 (99/07/27)
©Integration New Media, Inc. 1995-99 page 52

For example, assume that the Director member of type Field and named "descriptor"
contains a database descriptor, the following example creates a V12-DBE database
compliant to that description.

on CreateDatabase
set gDB = New(Xtra "V12dbe", the pathname&"Catalog.V12",
"create", "top secret")
CheckV12Error()
mReadDBStructure(gDB, "LITERAL", field "Descriptor")
CheckV12Error()
mBuild(gDB)
CheckV12Error()
set gDB=0

end CreateDatabase

mReadDBstructure from a DBF File

A DBF file alone represents a flat file, thus a single V12-DBE table. A DBF file can be
used as a template for a V12-DBE table in much the same way as a text file or literal
can. The name of the created V12-DBE table is identical to the DBF filename without
the ".DBF" extension. The syntax is:

mReadDBStructure(gDB, "DBF", File_Pathname)

For a DBF file to be used as a complete and valid V12-DBE table descriptor, at least
one index must be defined. If that index is defined by an IDX or NDX file located in
the same folder as the DBF file, mReadDBstructure detects its presence and
automatically defines an index for that field in the current table.

Tip V12-DBE does not check the validity of that index,
therefore you can fool it to create an index for a field named
"MyField" by creating an empty file named "MyField.IDX"
in the same folder as your DBF file.

The following rules apply to the translation of DBF file structures:

DBF
field type

Translated to
V12 field type Notes

Character String Buffer size = size of field in
DBF file

Integer Integer

Numeric with no
digit after fixed
point

Integer

Numeric with one
or more digits
after fixed point

Float

Float Float

Double Float

Currency Float
On Windows 3.1 and Mac68K,
acceptable values are in the
range -2k to 2k-1, where k = 31

V12-DBE® for Macromedia Director® - User Manual version 3.0 (99/07/27)
©Integration New Media, Inc. 1995-99 page 53

minus the number of decimal
places.

Date Date

DateTime Date

Data cannot be converted from
fields of type DateTime. Only
the default date (1900/01/01) is
imported.

Logical Integer

FALSE values are translated to
0s, TRUE values to 1s and
undefined values (represented by
"?" in the DBF file) to -1s

Media String Buffer size = 32K

General Ignored

Character-Binary Ignored

Memo-Binary Ignored

Memo fields are those typically used to store text longer than 255 characters.
Memo fields can also store binary data of arbitrary formats: those cannot be
imported in V12-DBE databases. When importing data from a DBF file that
contains Memo fields, the corresponding DBT files are automatically processed
by V12-DBE.

The following example uses the file VIDEO.DBF as a template to build a table named
"video" in the V12-DBE database named "VideoStore.V12". The structure of the file
VIDEO.DBF is as follows:

Field Type Width
TITLE Character 30
DESCRIPT Memo 10
RATING Character 4
TYPE Character 10
DATE_ARRIV Date 8
AVAILABLE Logical 1
TIMES_RENT Numeric 5
NUM_SOLD Numeric 5

Two index files named TITLE.IDX and TYPE.IDX are available in the same folder as
VIDEO.DBF.

The Lingo script is as follows:
on CreateDatabase

set gDB = New(Xtra "V12dbe", the pathname&"VideoStore.V12",
"create", "")
CheckV12Error()
mReadDBStructure(gDB, "DBF", the pathname & "Video.DBF")
CheckV12Error()
mBuild(gDB)
CheckV12Error()
put mDumpStructure(gDB)
set gDB=0

end CreateDatabase

V12-DBE® for Macromedia Director® - User Manual version 3.0 (99/07/27)
©Integration New Media, Inc. 1995-99 page 54

The resulting V12-DBE database can be verified immediately with mDumpStructure
(see Viewing the Structure of a Database). The following is a sample output from
mDumpStructure:

[TABLE]
Video
[FIELDS]
TITLE String 30
DESCRIPT String 30000
RATING String 4
TYPE String 10
DATE_ARRIV Date
AVAILABLE Integer
TIMES_RENT Integer
NUM_SOLD Integer
[INDEXES]
TitleNdx duplicate TITLE ascending (* Default Index *)
TypeNdx duplicate TYPE ascending
[END]

mReadDBStructure reads the structure of a DBF file, not its content. To import the
content of a DBF file, see Importing from a DBF File.

mReadDBstructure from V12-DBE

Any V12-DBE database can be used as a template for the creation of a new V12-DBE
database, provided you know the password to unlock it. The syntax is as follows:

mReadDBStructure(gDB, "V12", FileName, Password)

The following example uses the database "Catalog.V12" as a template for a new
database named "Specials.V12".

on CreateDatabase
set gDB = New(Xtra "V12dbe", the pathname&"Specials.V12",
"create", "MyNewPassword")
CheckV12Error()
mReadDBStructure(gDB, "V12", the pathname&"Catalog.V12", "top
secret")
CheckV12Error()
mBuild(gDB)
CheckV12Error()
set gDB=0

end CreateDatabase

mReadDBStructure reads the structure of a V12-DBE file, not its content. To import
the content of a V12-DBE file, see Importing from V12-DBE and Adding Records to a
Database.

mReadDBstructure from FoxPro (Win-32 Only)

A FoxPro database is a directory containing a collection of DBF files along with their
index files. A directory containing one or more MS FoxPro files can be collectively
used as a database template to a V12 database. The FoxPro ODBC driver is required to
perform this operation. The names of your FoxPro files and their field names must be
valid V2-DBE identifiers (see Defining Identifiers in Step 1: Deciding on a Data
Model).

Syntax:
mReadDBStructure(gDB, "FoxPro", DirectoryPath)

V12-DBE® for Macromedia Director® - User Manual version 3.0 (99/07/27)
©Integration New Media, Inc. 1995-99 page 55

where DirectoryPath is the path to a directory — not a file. Thus, it must
necessarily end with a "\".

The following rules apply to the translation of FoxPro databases to V12 databases:

FoxPro
field type

Translated to
V12 field type Notes

Character String Buffer size is the size of the field
in the DBF file

Integer Float

Numeric Float

Float Float

Double Float

Currency Float

Date Date

DateTime Date

Data cannot be converted from
fields of type DateTime. Only
the default date (1900/01/01) is
imported.

Logical Integer

Memo String Buffer size = 32K

General String Buffer size is the size of the field
in the DBF file

Character-Binary String Buffer size is 32K

Memo-Binary String Buffer size is 32K

FoxPro indexes are translated to V12-DBE indexes with unique values.

Example:
on CreateDatabase

set gDB = New(Xtra "V12dbe", the pathname&"myDB.V12", "create",
"secret")
CheckV12Error()
mReadDBStructure(gDB, "FoxPro", the pathname&"FoxDB\")
CheckV12Error()
mBuild(gDB)
CheckV12Error()
set gDB=0

end CreateDatabase

mReadDBStructure reads the structure of a FoxPro database, not its content. To
import the content of a database, see Importing from MS FoxPro (Win-32 only).

V12-DBE® for Macromedia Director® - User Manual version 3.0 (99/07/27)
©Integration New Media, Inc. 1995-99 page 56

mReadDBstructure from MS Access (Win-32 Only)

MS Access databases can be used as templates to V12 databases. Like V12-DBE, MS
Access can store multiple tables per database. mReadDBstructure imports all such
tables to V12-DBE. The MS Access ODBC driver is required to perform this
operation.

The names of the tables and fields of your MS Access file must be valid V2-DBE
identifiers (see Defining Identifiers in Step 1: Deciding on a Data Model).

Syntax:
mReadDBStructure(gDB, "Access", FileName, Username, Password)

where

•√ FileName is the path to the *.MDB file,

•√ Username is a valid user name to access the MDB file, or EMPTY if the
MDB file is not protected,

•√ Password is Username's matching password, or EMPTY if the MDB file is
not protected.

The following rules apply to the translation of MS Access file structures to V12
databases:

MS Access
field type

Translated to
V12 field type Notes

Text String Buffer size is same as Access
field size

Number (byte) Integer

Number (integer) Integer

Number
(long integer) Integer

Number (single) Float

Number (double) Float

Number
(replication ID) Ignored

Currency Integer

Date / Time Ignored

Autonumber Integer

Yes/No Integer

OLE Object Ignored

HyperLink String URL imported as text

V12-DBE® for Macromedia Director® - User Manual version 3.0 (99/07/27)
©Integration New Media, Inc. 1995-99 page 57

Memo-Binary Ignored Buffer size is 32K

MS Access unique and duplicate indexes are properly converted to unique and
duplicate V12-DBE indexes with ascending field values.

mReadDBStructure reads the structure of a MS Access database, not its content. To
import the content of a database, see Importing from MS Access (Win-32 only).

mReadDBstructure from MS Excel (Win-32 Only)

MS Excel workbooks can be used as templates to V12 databases. MS Excel
workbooks can contain one or more worksheets, with each worksheet corresponding to
a V12 table and each column to a V12 field. The resulting V12 database contains as
many tables as there are worksheets in the Excel file. The MS Excel ODBC driver is
required to perform this operation.

The names of the worksheets and columns of your MS Excel file must be valid V2-
DBE identifiers (see Defining Identifiers in Step 1: Deciding on a Data Model).

The types of the field defined in the new V12 database depend on the format of the
corresponding MS Excel columns. To change the format of a entire column in MS
Excel, select it by clicking in its heading, choose Format > Cells… and select the
Number tab. It may be necessary to Save As… your workbook with a new name to
force MS Excel to commit to the new column's format (depends on version of Excel).

The following rules apply to the translation of MS Excel file structures to V12
databases:

MS Excel
field type

Translated to
V12 field type Notes

General Float

Number Float

Currency Integer

Accounting Integer

Date Ignored Convert to text first if importing
to V12-DBE is needed

Time Ignored Convert to text first if importing
to V12-DBE is needed

Percentage Float

Fraction Float

Scientific Float

Text String Buffer size = 255 bytes

Special Float

V12-DBE® for Macromedia Director® - User Manual version 3.0 (99/07/27)
©Integration New Media, Inc. 1995-99 page 58

Custom Float

MS Excel cannot define indexes on its fields, when reading an Excel workbook, V12-
DBE automatically indexes the leftmost field of each worksheet.

Syntax:
mReadDBStructure(gDB, "Excel", FileName)

where FileName is the path to the *.XLS file.

mReadDBStructure reads the structure of a MS Excel database, not its content. To
import the content of a database, see Importing from MS Excel (Win-32 only).

mReadDBstructure from MS SQL Server (Win-32 Only)

A MS SQL Server version 6 or 7 data source can be used as a template to a V12
database. In contrast to MS Access, MS FoxPro and MS Excel files,
mReadDBstructure requires a DSN (Data Source Name) to be supplied instead of a
pathname. The MS SQL Server ODBC driver is required to perform this operation.

The following rules apply to the translation of MS SQL Server data sources to V12
databases:

MS SQL Server
field type

Translated to
V12 field type Notes

Binary Ignored

Bit Integer

Char String Buffer size is same as MS SQL
Server field size

DateTime Ignored

Decimal Float

Float Float

Image String Buffer size = 32K. Data cannot
be imported from Image fields.

Int Integer

Money Float

Numeric Integer

Real Float

SmallDateSize Ignored

SmallInt Integer

SmallMoney Float

SysName String Buffer size is same as MS SQL

V12-DBE® for Macromedia Director® - User Manual version 3.0 (99/07/27)
©Integration New Media, Inc. 1995-99 page 59

Server field size

Text String Buffer size = 32K

TimeStamp Ignored

TinyInt Integer

VarBinary String Buffer size is same as MS SQL
Server field size

VarChar String Buffer size is same as MS SQL
Server field size

Syntax:
mReadDBStructure(gDB, "SQLserver", DSN, Username, Password)

•√ where DSN is the name of a valid User DSN, System DSN or File DSN (see
Window's Control Panel)

•√ Username is a valid user name to access the DSN,

•√ Password is Username's matching password.

mReadDBStructure reads the structure of a MS SQL Server data source, not its
content. To import the content of the data source, see Importing from MS SQL (Win-
32 only).

Step 3c: Building the Database
Once the database structure is read by mReadDBstructure, whether from a text file, a
DBF file or otherwise, build the database by calling mBuild. mBuild checks if the
database is well defined and creates the file on your disk.

Syntax:
mBuild(gDB)

mBuild optionally accepts a second parameter, "online", that makes the created file
compatible to the V12-DBE Online companion. In this case, two additional fields,
named _uID and _timeStamp are created for V12-DBE Online to manage
internally. Both fields are hidden and do not appear in mDumpStructure's result.

Syntax:
mBuild(gDB, "online")

Note: A valid database needs exactly one table, at least one field
and at least one index.

Example:
mBuild(gDB)
-- since mBuild does a lot of validations, checking for

errors/warnings is HIGHLY recommended
if V12Status() then Alert "mBuild failed with error code" &

V12Error()

V12-DBE® for Macromedia Director® - User Manual version 3.0 (99/07/27)
©Integration New Media, Inc. 1995-99 page 60

Once the database file is built, the database instance remains valid and data can be
immediately imported into the file. It is as if the database was opened in ReadWrite
mode.

Note: For mBuild to create a licensed database (that is, one that
does not display a Demo dialog when opened), a V12-DBE
license file must be present on your Mac or PC. Since the
V12-DBE license file cannot be delivered to the end-user,
mBuild cannot be used to create new databases at runtime.
If your application requires to create new databases at
runtime, usee mCloneDatabase (see Cloning a
Database).

Viewing the Structure of a Database
You can view the structure of a database with mDumpStructure.

Syntax:
mDumpStructure(gDB)

Example:
put mDumpStructure(gDB) into field "myDBstructure"

The above example places the structure of the database referred by gDB in the member
named "myDBstructure".

(*
Structure of file 'HardDisk:myDatabase.V12'
created on Thu Apr 29 15:55:07 1999,
last modified on Tue May 11 15:31:53 1999,
file format version = V12,3.0.0,Multi-User

*)

[TABLE]
Articles

[FIELDS]
name string 256
category string 256
price Float
catalognumber Integer
description string 600

[INDEXES]
nameNdx duplicate name ascending (* Default index *)
categoryNdx duplicate category ascending
priceNdx duplicate price ascending
cat#Ndx unique catalognumber ascending
catNameNdx duplicate category ascending name descending

[FULL-INDEXES]
description

[END]"

V12-DBE® for Macromedia Director® - User Manual version 3.0 (99/07/27)
©Integration New Media, Inc. 1995-99 page 61

Note that the date/hour of the last modification mentioned in the header of the above
output is provided by the Operating System. Therefore, it reflects the date/hour at
which the V12 database was closed regardless of when the modification occurred.

This output is fully compatible with the database descriptors discussed in Database
Descriptors and thus, can be used as is with mReadDBstructure.

V12-DBE® for Macromedia Director® - User Manual version 3.0 (99/07/27)
©Integration New Media, Inc. 1995-99 page 62

Step 4: Importing Data into a V12-DBE Database
In Step 3: Creating a Database, you created a properly structured (although empty)
V12 database. Step 4 explains how to import the data prepared at Step 2: Preparing the
Data into your V12 database.

You can import data into a V12 database through one of the two following methods:

•√ using the V12-DBE Tool. This is a convenient point-and-click environment for
small projects.

•√ using V12-DBE's mImport method in a Lingo handler. This approach is efficient
when you need to experiment with your database structure or data before
committing to a final form. However, it requires a bit more up front effort to
write/adapt Lingo handlers than simply using the V12-DBE Tool.

Note mImport was introduced with V12-DBE version 3.0. It
replaces the former mImportFile method. mImportFile
is still supported in V12-DBE version 3.0. However, it will
be phased out in future versions.

Using the V12-DBE Tool
To import data using the V12-DBE Tool:

1. Choose File > Open… to open the V12 database you want to import data to. A
newly created V12 database automatically opens and data can be immediately
imported to it.

2. Choose File > Import Text File… or File > Import DBF File…

3. Browse through your disk to locate the Text or DBF file to import. Click OK.

If the source data is in more than one file, you can successively import them by
repeating the above steps.

For more information, see the V12-DBE Tool's User Manual.

Scripting the Data Importing
mImport imports data to a V12-DBE table both at authoring time (i.e., in Director's
development environment) and at runtime (i.e., from a Projector or Shockwave movie).

V12-DBE® for Macromedia Director® - User Manual version 3.0 (99/07/27)
©Integration New Media, Inc. 1995-99 page 63

mImport is very flexible and can be adapted to a large number of situations. It can
import data from:

- a Text file
- a literal value, such as a string, a Director member, etc.
- a DBF file
- a V12 database
- a Lingo list or Lingo property list
- a MS Access database through an ODBC driver (Win-32 only)
- a FoxPro file through an ODBC driver (Win-32 only)
- a MS Excel file through an ODBC driver (Win-32 only)
- a MS SQL data source through an ODBC driver (Win-32 only)

Data type translation rules from the above ODBC-compliant databases to V12
Databases vary according to the specific ODBC driver installed on your computer.

The general form of a table importing script is:
-- create a V12dbe instance
set gDB = New(Xtra"V12dbe", database_filename, mode, password)
CheckV12Error()
-- create a V12table instance
set gTable = New(Xtra "V12table", mGetRef(gDB), TableName)
CheckV12Error()
-- import data
mImport(gTable, InputType, InputSource, other params)
CheckV12Error()
-- free the V12table and V12dbe instances
set gTable = 0
set gDB = 0

As for any V12table method, valid instances of V12dbe and V12table must exist
before the method is invoked. This is explained in details in Creating Instances.

mImport's syntax varies significantly according to the selected input source. This is
explained in details in Importing Data with mImport below.

Setting Xtra instances to 0 when they are no longer needed is mandatory, as explained
in Closing an Xtra, so to make sure that the imported data is secured on hard disk.

CheckV12Error is a generic error management handler explained in Errors and
Defensive Programming.

Note Previous versions of V12-DBE could import only Text and
DBF files via mImportFile. mImportFile is still
supported for backward compatibility reasons. It will be
progressively phased out in future versions of V12-DBE.

Importing Data with mImport
The general syntax for mImport is:

mImport(gTable, InputType, InputSource, other params)

where:

V12-DBE® for Macromedia Director® - User Manual version 3.0 (99/07/27)
©Integration New Media, Inc. 1995-99 page 64

•√ InputType is one of "Text", "DBF", "literal", "list", "propertyList", "V12",
"Access", "FoxPro", "Excel" or "SQLserver".

•√ InputSource is the data to import or a reference to the data to import. It
varies according to the selected InputType.

•√ other params are parameters that depend upon the selected InputType.
For example, if InputType is "text", other params is an optional property
list that specifies the source text file's field delimiter, record delimiter, etc. If
InputType is "Access", other params are the user name, password and
table to import. The details are explained below.

Importing from a TEXT File

The imported text file must begin with a field descriptor line. A field descriptor is a
sample record that contains the names of the fields in which subsequent data must be
imported (see Field Descriptors in Step 2: Preparing the Data). These fields can be
listed in any order. Some of them can be omitted.

Syntax:
mImport(gTable, "TEXT", FileName [, Options])

where FileName is the pathname of the text file to import, and Options is an
optional Lingo Property list containing the following properties:

#field_delimiter determines which character is used to delimit fields in
the text file. The default character is TAB (ASCII #9).

#record_delimiter determines which character is used to delimit records
in the text file. The default character is RETURN (ASCII #13). If the Text
file contains Carriage Returns (ASCII #13) followed by Line Feeds (ASCII
#10) as records delimiters, Line Feeds are automatically ignored.

#character_set is one of "Mac-Standard", "Windows-ANSI" or "MS-
DOS". It determines which character set the Text file is encoded in. Usually,
Text files exported on MacOS are encoded in the Mac-Standard character set,
and Text files exported on Windows are encoded in the Windows-ANSI
character set. See Character Sets in Step 2: Preparing the Data. The default
character set is the one defined by the CharacterSet property (see
CharacterSet in Properties of Databases).

#virtual_CR determines which character is used as a Virtual Carriage
Return, and thus must be converted to ASCII #13 after importing (see Virtual
Carriage Returns in Step 2: Preparing the Data). The default character is the
one defined by the VirtualCR property, which is usually ASCII #11 (see
VirtualCR in Properties of Databases).

#text_qualifier determines which character is used to begin and end each
Text field. Those qualifiers delimit the field so to allow it to contain special
characters, including those used as field and record delimiters. Text qualifiers

V12-DBE® for Macromedia Director® - User Manual version 3.0 (99/07/27)
©Integration New Media, Inc. 1995-99 page 65

are removed after importing the file. See Text Qualifiers in Step 2: Preparing
the Data. The default text qualifier is QUOTE

For example, the following instruction imports the Text file "myTextData.txt" located
in the same folder as the current movie into gTable with all the default options (field
delimiter = TAB, records delimiter = RETURN, Character set = the current operating
system's, virtual CR = ASCII #11, Text Qualifier = QUOTE).

mImport(gTable, "TEXT", the pathname & "myTextData.txt")

This second example imports the Text file "myFile.txt" which uses "%" as field
delimiter and "\" as record delimiter.

mImport(gTable, "TEXT", the pathname & "myTextData.txt",
[#field_delimiter:"%", #record_delimiter:"\"])

Importing from a Literal

Sometimes, you need to process data with Lingo before importing it in a V12-DBE
table. A convenient place to store such data is a Director member of type Field.
mImport allows to import the content of such a field through the following syntax:

mImport(gTable, "LITERAL", DirMemberName_or_variable, [, Options])

where DirMemberName_or_variable is an expression of type Text, such as
Field "myData"
the text of member "yada yada"
"Field-1,Field-2,Field-3" &RETURN& "12,14,16"&RETURN& "54,12,89"

and Options is a property list identical to the one used for importing Text files (see
Importing from a TEXT File above).

Following is an example of a Director field containing data to split into V12-DBE
fields and records (assume the name of the field is "Discounts"):

Level-1,Level-2,Level-3
12,14,16
45,58,72
33,56,68
224,301,451

The following instruction imports the above Director field to gTable:
mImportFile(gTable, "LITERAL", field "Discounts", ",", RETURN)

Importing from a DBF File

Importing a DBF file is similar to importing text files, except that you cannot specify a
subset of fields to import: all the fields in the DBF file must be imported. The field
names of the DBF file must match those in the destination V12-DBE table. Non-
matching field names are ignored during the importing process and a warning is
reported by V12Error (see Errors and Defensive Programming).

Syntax:
mImport(gTable, "DBF", FileName [, Options])

V12-DBE® for Macromedia Director® - User Manual version 3.0 (99/07/27)
©Integration New Media, Inc. 1995-99 page 66

where FileName is the pathname of the DBF file to import, and Options is an
optional Lingo Property list containing the following property:

#character_set is one of "Mac-Standard", "Windows-ANSI" or "MS-
DOS". It determines which character set the DBF file is encoded in. Most
systems automatically encode DBF file in the MS-DOS character set. See
Character Sets in Step 2: Preparing the Data. The default character set the one
defined by the CharacterSet property (see CharacterSet in Properties of
Databases). It is normally "Windows-ANSI" on the Windows version of V12-
DBE and "Mac-Standard" on the Macintosh version of V12-DBE.

Note DBF is an antiquated file format. It is always assumed to be
encoded in the MS-DOS character set. When importing a
DBF files, make sure to assign the right Character Set. See
CharacterSet in Properties of Databases.

Example:
mImport(gTable, "DBF", the pathname&"Pier1-Import.DBF",

[#character_set:"MS-DOS"])

If a field in the destination table has the same name as a field in the source DBF file,
but is of a different type, mImport tries to typecast the data to match the destination
field type. When importing data from a DBF file that contains Memo fields, the
corresponding DBT files are automatically processed and imported by V12-DBE. See
Dealing with Dates and mReadDBstructure from a DBF File for more details on DBF
files and data importing rules.

Importing from V12-DBE

Data can be imported from one V12 table into another. The name of the source table
need not necessarily match the name of the destination table. However, field names
must match. Non-matching field names are ignored. If the source and destination tables
have different indexes, the destination table's indexes are used.

Syntax:
mImportFile(gTable, "V12", FileName, password, TableName)

where FileName is the pathname of the V12 database to import from, password is
the password to unlock it and TableName is the name of the table to import.

Example:
mImportFile(gTable, "V12", the pathname&"Catalog.V12", "top secret",

"articles")

If two fields have the same name but are of different types when importing data from a
V12-DBE database, mImport tries to typecast the data fields.

V12-DBE® for Macromedia Director® - User Manual version 3.0 (99/07/27)
©Integration New Media, Inc. 1995-99 page 67

Importing from a Lingo List or Property List

Lingo list, or a Lingo Property List can easily be imported to V12 tables through
mImport. This is very convenient for the conversion of projects that use Lingo lists to
manage data and that have become difficult to debug and maintain.

It is also convenient to import XML documents into V12 tables, through Macromedia's
XML Xtra.

Syntax:
mImport(gTable, "List", theList)
mImport(gTable, "PropertyList", thePropertyList)

where:

•√ theList is a Lingo list of lists. The first element is a list containing the names of
the V12 fields to which subsequent items must be imported, in the right order. If
the first item of the list contains field names that are not present in the current V12
table, the corresponding data is ignored.

•√ thePropertyList is a Lingo list of property lists, where properties have the
same names as the V12 fields into which the corresponding data must be imported.

Examples of valid Lingo lists:

[["LastName", "FirstName", "Age"], ["Cartman", "Eric", 8],
["Testaburger", "Wendy", 9], ["Einstein", "Albert", 75]]

[["CatalogNumber"], [8724], [9825], [1745]]

Examples of valid Property lists:

[[#LastName:"Cartman", #FirstName:"Eric", #Age:8],
[#FirstName:"Wendy", #LastName:"Testaburger", #Age:9]
[#LastName:"Einstein", #FirstName:"Albert"]]

[[#CatalogNumber:8724], [#CatalogNumber:9825],
[#CatalogNumber:1745]]

Importing XML to V12-DBE

You can import an XML document to a V12 table using Macromedia's XML parser
Xtra (delivered with Director 7). This is a two-step process:

1 Convert the XML document to a Lingo property list using the XML parser.
Example (the XML string xmlString below is convert to xmlPropList)

parserObj = new (xtra "xmlparser")
node = parseString(parserObj, xmlString)
error = getError(parserObj)
if voidP(error) then

xmlPropList = makeList(parserObj)
else

alert "Sorry, there was an error"&&error
end if

V12-DBE® for Macromedia Director® - User Manual version 3.0 (99/07/27)
©Integration New Media, Inc. 1995-99 page 68

2 Import the resulting property list to your V12 table. Example
mImport(gT, "PropertyList", xmlPropList)

Importing from MS Access (Win-32 only)

MS Access (*.MDB) files can be imported to V12 databases, one table at a time. A
MS Access ODBC driver must be present but no DSN (Data Source Name) is
required.

Syntax:
mImport(gTable, "Access", FileName, UserName, Password, TableName)

where

•√ FileName is the path to the source *.MDB file,

•√ Username is a valid user name to access the MDB file, or EMPTY if the
MDB file is not protected,

•√ Password is Username's matching password, or EMPTY if the MDB file is
not protected.

•√ TableName is the name of the table to import.

Converting an MS Access database into a V12 database is a two-step process: First,
create the V12 database (see mReadDBstructure from MS Access (Win-32 Only)).
Then, import data to each of its tables with mImport, as explained above.

Generally, MS Access databases are encoded in the Windows ANSI character set.
Thus, you must make sure that the CharacterSet Property is properly set to
"Windows-ANSI" before importing the data. ("Windows-ANSI" is the default setting
for the CharacterSet property. See CharacterSet in Properties of Databases).

Importing from MS FoxPro (Win-32 only)

Fox Pro (*.DBF) files can be imported to V12 tables provided a MS FoxPro ODBC
driver is present on your PC. No DSN (Data Source Name) is required.

Syntax:
mImport(gTable, "FoxPro", FileName)

where FileName is the path to the source *.DBF file. Always make sure to set V12-
DBE's CharacterSet property to the encoding that matches your DBF file's (see
CharacterSet in Properties of Databases).

Example:
mImport(gTable, "Excel", the pahtname&"Results.XLS", TableName)

V12-DBE® for Macromedia Director® - User Manual version 3.0 (99/07/27)
©Integration New Media, Inc. 1995-99 page 69

Converting a FoxPro database into a V12 database is a two-step process: First, create
the V12 database (see mReadDBstructure from FoxPro (Win-32 Only)). Then, import
data to each of its tables with mImport, as explained above.

Importing from MS Excel (Win-32 only)

MS Excel workbooks (*.XLS) can be imported to V12 databases, one table at a time,
through a PC's ODBC driver. No DSN (Data Source Name) is required.

Syntax:
mImport(gTable, "Excel", FileName, TableName)

where:

•√ FileName is the path to the source *.XLS file. It is assumed to be encoded in
the Windows ANSI character set (default encoding on Windows).

•√ TableName is the name of the table to import.

Example:
mImport(gTable, "Excel", the pahtname&"Results.XLS")

Protected MS Excel workbooks cannot be imported

Converting a MS Excel workbook into a V12 database is a two-step process: First,
create the V12 database (see Importing from MS Excel (Win-32 only)). Then, import
data to each of its tables with mImport, as explained above.

Importing from MS SQL (Win-32 only)

MS SQL Server data sources can be imported to V12 databases, one table at a time,
through a PC's ODBC driver and a valid DSN (Data Source Name). Data sources can
be created through Window's ODBC Data Sources Control Panel which is accessible
from Start > Settings > Control Panel menu.

Syntax:
mImport(gTable, "SQLserver", DSN, Username, Password, TableName)

where:

•√ DSN is a valid Data Source Name.

•√ Username is a valid user name to access the SQL Server.

•√ Password is Username's matching password.

•√ TableName is the name of the table to import.

Example:
mImport(gTable, "SQLserver", "InventoryDSN", "Admin", "XBF48",

"Products")

V12-DBE® for Macromedia Director® - User Manual version 3.0 (99/07/27)
©Integration New Media, Inc. 1995-99 page 70

Converting an MS SQL Server data source into a V12 database is a two-step process:
First, create the V12 database (see mReadDBstructure from MS SQL Server (Win-32
Only)). Then, import data to each of its tables with mImport, as explained above.

Importing Media into a V12 database
Although V12-DBE databases can store different types of media (anything that can be
stored in a Director member, except Film Loops and QuickTime movies), there is an
alternative to storing media directly in V12.

Instead of storing media in V12-DBE files, they can be stored in a Director member. In
addition, these members' names or numbers can be stored in V12-DBE tables. This
may be convenient if your original media is already located in Director members - it
yields faster access times given that it avoids useless memory allocations/re-allocations
in transferring data between Director and V12-DBE.

However, storing media directly in V12-DBE databases has its advantages. Your data
becomes completely independent of your Director projector and it may be easier to
update.

You can import media to V12-DBE fields of type media, one at a time, using the V12-
DBE Tool (see the V12-DBE Tool's User Manual).

You can also automate and customize the media importing process through Lingo
scripting. Assume your database contains one table and five fields:

•√ Field ItemName of type String,
•√ Field Description of type String,
•√ Field Price of type Float,
•√ Field CatalogNumber of type Integer,
•√ Field Photo of type Media.

In addition, assume that the first four fields are in a TAB-delimited format named
"Data.txt", and that all photos (5th field) are in PICT format. Each photo is located in
the same folder as "Data.txt" with each image file bearing the catalog number of the
item with which it corresponds.

The following example illustrates how to import the text file in a V12-DBE database,
and then how to review each imported record in order to import the corresponding
image file.

Example:
-- some database creation preliminaries here
-- this is a purely academic example: no error trapping is performed
set gDB = New(Xtra "V12dbe", the pathname&"Catalog.V12",

"ReadWrite", "top secret")
set gTable = New(Xtra "V12table", mGetRef(gDB), "Articles")

-- import the text data
mImport(gTable, "TEXT", the pathname&"Data.txt")

V12-DBE® for Macromedia Director® - User Manual version 3.0 (99/07/27)
©Integration New Media, Inc. 1995-99 page 71

-- loop on each record and import the matching image
repeat with i = 1 to mSelectCount(gTable)

-- record i becomes the current record
mGo(gTable, i)

-- get the photo's filename and import it in a member
set catNbr = mGetField(gTable, "catalogNumber")
set the filename of member "DummyMember" to (the pathname&catNbr)

-- assign the photo to the appropriate V12-DBE field
mEditRecord(gTable)
mSetMedia(gTable, "photo", member "DummyMember")
mUpdateRecord(gTable)

end repeat

set gTable = 0 -- close the table instance
set gDB = 0 -- close the database instance

The mAddRecord, mSetField, mGetField and mUpdateRecord methods are
explained in greater detail Using a V12-DBE Database.

V12-DBE® for Macromedia Director® - User Manual version 3.0 (99/07/27)
©Integration New Media, Inc. 1995-99 page 72

Step 5: Implementing the User Interface
Steps 1 through 4 (Step 1: Deciding on a Data Model through Step 4: Importing Data
into a V12-DBE Database) explain how to design, build and import data into a V12-
DBE database.

This section discusses the elements needed to manage your V12-DBE database at
runtime.

Tip If you chose to script the database creation and importing
processes, once the database file is ready, you do not need
those Lingo scripts any longer. Moreover, they do not
necessarily need to be delivered to the end-user. However,
for your convenience, you may want to keep all the scripts
related to your project in a single Director movie.

Using the V12-DBE Behaviors Library
The fastest and easiest way to implement V12-DBE into your project's user interface is
to use the V12-DBE Behaviors Library. See the First Steps manual and the V12-DBE
Behaviors Library manual for an overview of V12-DBE Behaviors.

However, the V12-DBE Behaviors Library enables you to implement a subset of V12-
DBE's functionality. If the V12-DBE Behaviors Library cannot satisfy the
requirements of your project, you probably need to use V12-DBE's Lingo interface.

Using Lingo
As for any V12-DBE method, a valid V12dbe or V12table Xtra instance (depending
on which Xtra the method belongs to) must exist before the method is invoked.
Generally, you create instances of V12dbe and V12table on StartMovie, store their
references in global variables and use those instances throughout your project.

Likewise, on StopMovie, you set those global variables to 0 thus disposing of the
Xtra instances and closing the V12 database file.

The creation of such Xtra instances is often referred to as Opening a Database and
Opening a Table. Disposing the Xtra instances is often referred to as Closing the
Database and Closing the Table instances.

V12-DBE® for Macromedia Director® - User Manual version 3.0 (99/07/27)
©Integration New Media, Inc. 1995-99 page 73

Opening and Closing Databases and Tables

Opening an Existing Database

Use the New(Xtra "V12dbe"…) method to open an existing V12 database. If your
V12 database is not created yet, see Step 3: Creating a Database to learn how to create
it.

Syntax:
set gDB = New(Xtra"V12dbe", database_filename, mode, password)

Opening a database means creating a V12dbe Xtra instance with the following
parameters:

•√ database_Filename: the name if the database file. This is usually a
filename preceded by the lingo function the pathname & to indicate that
the file is located in the same folder as the current movie (see Dealing with
Pathnames in Using Xtras).

•√ mode: the mode in which the Xtra instance is opened. To allow for
modifications to the database, open it in "Shared ReadWrite" or "ReadWrite"
mode. If you open your database in "Shared ReadWrite" mode, up to 128
users can access your database simultaneously (see Appendix 4: Multi-user
Access). If you open it in "ReadWrite" mode, only one user at a time can
access your database. If you do not allow modifications to your database,
open it in "ReadOnly" mode.

•√ password: the password. If you do not use the correct password, the database
cannot be opened.

Example:
set gDB = New(Xtra "V12dbe", the pathname & "Catalog.V12",

"ReadWrite", "top secret")

Always make sure that the New method succeeded by checking the validity of the
returned reference with ObjectP. Example:

set gDB = New(Xtra"V12dbe", the pathname & "Catalog.V12",
"ReadWrite", "top secret")

if NOT (ObjectP(gDB)) then alert "New V12dbe failed"

Opening a Table

Records belong to tables. Creating new records, reading the contents of records, and
searching and sorting records are operations that are performed on tables. Prior to
performing any of these operations, you must create a table Xtra instance

Syntax:
set gTable = New(Xtra "V12table", mGetRef(gDB), TableName)

To create a table Xtra instance, use the New method with the following parameters:

V12-DBE® for Macromedia Director® - User Manual version 3.0 (99/07/27)
©Integration New Media, Inc. 1995-99 page 74

•√ gDB: the database Xtra instance to which the current table belongs

•√ TableName: the name of the table to open

Example:
set gTable = New(Xtra "V12table", mGetRef(gDB), "Articles")

mGetRef is a standard Xtra method that returns the exact reference of an Xtra
instance.

Always make sure that the New method succeeded by checking the validity of the
returned reference with ObjectP. Example:

set gTable = New(Xtra "V12table", mGetRef(gDB), "Articles")
if NOT (ObjectP(gTable)) then alert "New V12table failed"

Following is a complete example of a script that would run on startMovie:
on StartMovie

global gDB, gTable
set gDB = New(Xtra "V12dbe", the pathname&"Catalog.V12",
"ReadWrite", "pwd")
CheckV12Error()
set gTable = New(Xtra "V12table", mGetRef(gDB), "Articles")
CheckV12Error()
…

end StartMovie

Closing a Table

To close a table, set the variable that refers to it to 0. Example:
set gTable = 0

Closing a Database

To close a V12 database, set the variable that refers to it to 0. Example:
set gDB = 0

Always make sure to dispose of all V12table instances before you dispose of the
V12dbe instance that contains them.

Following is a complete example of a script that would run on StopMovie:
on StopMovie

global gDB, gTable
set gTable = 0
set gDB = 0

end StopMovie

Selection and Current Record
To read or write data to a record, set it as the current record. The current record
concept is strongly related to the concept of selection. Both concepts are fundamental
to this section. See Database Basics earlier in this manual for more details.

At any time, the selection is sorted according to one of its fields. You can enforce that
sorting order with mOrderBy (see Sorting a Selection (mOrderBy)). Otherwise, the

V12-DBE® for Macromedia Director® - User Manual version 3.0 (99/07/27)
©Integration New Media, Inc. 1995-99 page 75

selection's sorting order would be defined by the index chosen by V12-DBE for its last
search. The field that determines the selection's sorting order is called the master
field.

Selection at startup
When a table is first opened, its selection is the entire content of that table sorted by
the field that is indexed by the default index. The first record of that selection – which
is also the first record of the table – is the current record. The default index is the first
index that was defined for the table in the database descriptor. You can use
mDumpStructure to verify which of the table's index is the default index (see
Viewing the Structure of a Database).

You never need to explicitly manage indexes in V12-DBE. The best index is always
chosen by V12-DBE to perform a search. See Appendix 12: Optimization Using
Indexes for advanced index management.

Selecting All the Records of a Table
Call mSelectAll at any time to set the selection to the whole table..

Syntax:
mSelectAll(gTable)

To force a specific sort order, call mOrderBy before calling mSelectAll

Example:
mOrderBy(gTable, "price", "ascending")
mSelectAll(gTable)

This example sets the selection to the whole table as referred by gTable, in ascending
order of prices (least to most expensive). The field "price" must be indexed for
mSelectAll to work efficiently. Otherwise, it would be very slow.

Browsing a Selection
Browsing a selection means changing the position of the current record. The following
methods enable you to change the current record in a selection (to set the current
record to various values related to a given selection).

mGetPosition

mGetPosition checks the position of the current record in a table and returns an
integer between one and the total number of records in the selection.

Example:
set currRec = mGetPosition(gTable) -- returns the current record's

position in the Message Window
put "the current record is:" & currRec

V12-DBE® for Macromedia Director® - User Manual version 3.0 (99/07/27)
©Integration New Media, Inc. 1995-99 page 76

mGoNext

mGoNext sets the current record to the record following the current record.

Example:
mGoNext(gTable)

Suppose that the current record is the tenth item in the selection. After calling
mGoNext, the current record becomes the eleventh. If the selection contains only ten
records, the current record does not change and a warning is reported by V12-DBE
(see Errors and Defensive Programming).

mGoPrevious

mGoPrevious sets the current record to the record preceding the current record.

Example:
mGoPrevious(gTable)

Suppose that the current record is the tenth item in the selection. Upon calling
mGoPrevious, the current record becomes the ninth. If the current record is the first
record of the selection, upon calling mGoPrevious the current record does not change
and a warning is reported by V12-DBE (see Errors and Defensive Programming).

mGoFirst

mGoFirst sets the current record to the first record of the selection.

Example:
mGoFirst(gTable)

mGoLast sets the current record to the last record of the selection.

Example:
mGoLast(gTable)

mGo

mGo takes one integer parameter (call it n) and sets the current record to the nth item of
the selection.

Example:
mGo(gTable, 11)

This example sets the current record to the eleventh record of the selection. If no such
record exists, mGo signals a warning.

V12-DBE® for Macromedia Director® - User Manual version 3.0 (99/07/27)
©Integration New Media, Inc. 1995-99 page 77

mFind

mFind sets the current record to one, in the selection, whose Master Field equals or
starts with the keyword provided in parameter (see definition of Mater Field in
Selection and Current Record).

mFind is a great complement to mGo which can set the current record only based on its
position in the selection.

The syntax is:
mFind(gTable, "First", Keyword)
mFind(gTable, "Next")
mFind(gTable, "Previous")

where Keyword is the value to look for in the Master Field. If the Master Field is of
type String, the matching record's content must start with Keyword. If it is of type
Integer, Float or Date, it must equal Keyword

Use the first form (with the "First" parameter), if you want the new current record to be
the first one of the selection that matches Keyword

Use the second form (with the "Next" parameter) if you want it to be the next record in
the selection according to the present current record. Use the third form ("Previous") if
you want it to be the previous record in the selection according to the present current
record.

If, for example, you run the following script
mSetCriteria(gT, "Age", ">", 30)
mOrderBy(gT, "LastName")
mSelect(gT)

and get the following selection:
FirstName LastName Age
Marie Curie 39
Albert Einstein 75
Kurt Gödel 36
Mona Karp 53
Joe Karp 31
Richard Karp 62
Eric Kartman 31
Marshall McLuhan 48
John Von Neumann 51
Claude Shannon 33
Alan Turing 36

The selection's Master Field is "LastName". Thus, a call to mFind would automatically
look for values in this field. For example:

mFind(gT, "First", "Kar") -- current rec becomes Mona Karp's
mFind(gT, "Next") -- current rec becomes Joe Karp's
mFind(gT, "Next") -- current rec becomes Richard Karp's
mFind(gT, "Next") -- current rec becomes Eric Kartman's
mFind(gT, "Next") -- current rec remains Eric Kartman's
mFind(gT, "Previous") -- current rec becomes Richard Karp's

mFind can be used to quickly locate one occurrence of a keyword in a selection where
many duplicate values exist, as opposed to mSetCriteria and mSelect which find
all occurrences but need more time.

V12-DBE® for Macromedia Director® - User Manual version 3.0 (99/07/27)
©Integration New Media, Inc. 1995-99 page 78

Note Because mFind uses the selection's Master Field, it is
advised that you call mOrderBy with the appropriate field
before calling mSelect and mFind. (see Searching Data
with mSetCriteria).
If you don't call mOrderBy, mFind sets the current record
based on the Master Field chosen by default by V12-DBE,
which is either the one indexed by the default index (if the
table was just opened), or the one indexed by the best index
chosen by V12-DBE during the last search.

Reading Data From a Database
In order to read or write the content of a record, you must first set it as the current
record. Setting the appropriate current record is accomplished by use of the mGoNext,
mGoPrevious, mGoFirst, mGoLast and mGo methods (see Browsing a Selection).

Reading Fields of Type String, Integer, Float and Date

Once the current record is properly set, mGetField retrieves the data from a specific
field. mGetField retrieves data from all field types except Media.

Syntax:
set var = mGetField(gTable, fieldName[, dataFormat])

Example:
set cost = mGetField(gTable, "price")

This example stores the content of the price field from the current record in the
variable cost. You do not need to specify the type of field you are reading. The
Lingo variable is automatically set to the appropriate type after a successful call to
mGetField (see Typecasting in Database Basics).

Example:
set cost = mGetField(gTable, "price", "9,999.99")

This example retrieves the formatted content of the price field to the cost variable.
The formatting is according to the pattern "9,999.99". That is, if the field price
contains the value 1245.5, the string "1,245.50" is returned by mGetField. Note that
the result of a formatted value is always a string.

Data formatting applies to mGetField the same way it does to mDataFormat. If two
distinct formatting patterns are applied to a field with the mGetField option and
mDataFormat, the mGetField option overrides mDataFormat. See Data Formatting
for a complete explanation on formatting patterns.

Note mGetField retrieves only unformatted text. If you store
styled text to a V12 record, you can retrieve the text without
the styles with mGetField and the styled text with
mGetMedia. See Managing Styled Text.

V12-DBE® for Macromedia Director® - User Manual version 3.0 (99/07/27)
©Integration New Media, Inc. 1995-99 page 79

Reading one or more Entire Records

mGetSelection allows for the retrieval of one or more fields in one or more records
of the selection. The result is one of the followings:

•√ a string where fields are delimited by TABs and records by CARRIAGE_RETURNs
(the default delimiters), or by any other custom delimiters you specify.

•√ a Lingo list of lists, where each sub-list represents a record and each item of each
sub-list is the data contained in the corresponding field

•√ a Lingo list of property lists, where each sub-list represents a record and each item
is a property/value pair: the property is the name of the field and the value is the
data contained in it.

mGetSelection is powerful and flexible. It's behavior depends on the syntax used to
call it. The syntax for mGetSelection to return a result of type String is:

mGetSelection(gTable ["Literal" [, From [, #recs [, FieldDelimiter
[, RecordDelimiter [, FieldNames]*]]]]])

The syntax for mGetSelection to return a lingo list is:
mGetSelection(gTable ["List" [, From [, #recs [, FieldNames]*]]])

The syntax for mGetSelection to return a lingo property list is:
mGetSelection(gTable ["PropertyList" [, From [, #recs [, FieldNames

]*]]])

where:

•√ gTable is the instance of the table from which records must be retrieved
(mandatory parameter),

•√ From is the number of the first record to retrieve data from. It is optional. The
default value is 1.

•√ #recs is the number of records to retrieve starting from record number From.
It is optional. The default value is the number of records between From and
the end of the selection plus 1 (convenient to retrieve all the records of a
selection starting from record number From).

•√ FieldDelimiter is the character to use as the field delimiter. It is optional.
The default field delimiter is a TAB.

•√ RecordDelimiter is the character to use as the record delimiter. It is
optional. The default field delimiter is a CARRIAGE_RETURN.

•√ FieldNames are the names of the fields to retrieve, in the specified order. If
the field names are omitted, mGetSelection returns the contents of all the
fields of gTable, in their order of creation. Fields of type Media are ignored
by mGetSelection.

V12-DBE® for Macromedia Director® - User Manual version 3.0 (99/07/27)
©Integration New Media, Inc. 1995-99 page 80

Besides gTable, all other parameters are optional. However, if a parameter is
present, all its preceding ones must also be present. For example, if #recs is
present, result_format and From must also be present.

mGetField requires that you set the current record to the record you need to retrieve
data from. mGetSelection does not.

The examples below show various ways of using mGetSelection. All examples
assume that the table gTable contains 3 fields ("name", "price" and "number",
declared in that order when creating the table), and that the selection contains 6
records.

Reading the Entire Selection

This example retrieves the entire content of each record of the selection with TABs as
field delimiters and CARRIAGE_RETURNs (CRs) as record delimiters. Fields are sorted
in their order of creation. The records' sort order is the one defined by the selection.

set x = mGetSelection(gTable)

sets the variable x to the following string:
Batteries TAB 9.20 TAB 6780 CR
Floppies TAB 1.89 TAB 9401 CR
Labels TAB 1.19 TAB 1743 CR
Pencils TAB 5.55 TAB 6251 CR
Ruler TAB 1.99 TAB 1431 CR
Tags TAB 6.19 TAB 7519 CR

Reading a Range of Records in a String variable

This example retrieves the content of 3 successive records in the selection starting
with record #2, with TABs as field delimiters and CARRIAGE_RETURNs (CRs) as record
delimiters..

set x = mGetSelection(gTable, "LITERAL", 2, 3)

sets the variable x to the following string:
Floppies TAB 1.89 TAB 9401 CR
Labels TAB 1.19 TAB 1743 CR
Pencils TAB 5.55 TAB 6251 CR

Reading a Range of Records in a Lingo List

This is identical to the previous example, except that the result is returned in a Lingo
list:

set x = mGetSelection(gTable, "LIST", 2, 3)

sets the variable x to the following list:
[["Floppies", 1.89, 9401], ["Labels", 1.19, 1743], ["Pencils",

5.55, 6251]]

V12-DBE® for Macromedia Director® - User Manual version 3.0 (99/07/27)
©Integration New Media, Inc. 1995-99 page 81

Reading a Range of Records in a Property List

Same as the two previous examples, except that the result is returned in a Lingo
property list:

set x = mGetSelection(gTable, "PropertyList", 2, 3)

sets the variable x to the following list:
[[#name:"Floppies", #price:1.89, #number:9401], [#name:"Labels",

#price:1.19, #number:1743], [#name:"Pencils", #price:5.55,
#number:6251]]

Reading the Entire Content of the Current Record

This example retrieves the entire content of the current record in a single call to V12-
DBE.

set x = mGetSelection(gTable, "LITERAL", mGetPosition(gTable), 1)

sets the variable x to the following string:
Batteries TAB 9.20 TAB 6780 CR

The "List" and "ProperyList" would respectively return:
[["Batteries", 9.20, 6780]]

and
[[#name:"Batteries", #price:9.20, #number:6780]]

Reading a Record without Setting it as the Current Record

This example retrieves the content of record #4 without setting it as the current record.
set x = mGetSelection(gTable, "LITERAL", 4, 1)

sets the variable x to the following string:
Pencils TAB 5.55 TAB 6251 CR

The "List" and "ProperyList" would respectively return:
[["Pencils", 5.55, 6251]]

and
[[#name:"Pencils", #price:5.55, #number:6251]]

Reading the Entire Selection with Special Delimiters

This example retrieves the entire content of each record of the selection with commas
(",") as field delimiters and slashes ("/") as record delimiters.

set x = mGetSelection(gTable, "LITERAL", 1, mSelectCount(gTable),
"," , "/")

sets the variable x to the following string:
Batteries , 9.20 , 6780 / Floppies , 1.89 , 9401 / Labels , 1.19 , 1743 / Pencils , 5.55 , 6251
/ Ruler , 1.99 , 1431 / Tags , 6.19 , 7519 /

V12-DBE® for Macromedia Director® - User Manual version 3.0 (99/07/27)
©Integration New Media, Inc. 1995-99 page 82

Reading Selected Fields in a Selection

This example retrieves the content of a single field ("name") for all the records of the
selection. Note that the TAB parameter is unused in the result, but it should nonetheless
be present.

set x = mGetSelection(gTable, "LITERAL", 1, mSelectCount(gTable),
TAB , RETURN, "name")

sets the variable x to the following string:
Batteries CR
Floppies CR
Labels CR
Pencils CR
Ruler CR
Tags CR

The syntax for the Lingo List result would be:
set x = mGetSelection(gTable, "List", 1, mSelectCount(gTable),

"name")

and the result would be
[["Batteries"],["Floppies"],["Labels"],["Pencils"],["Ruler"],

["Tags"]]

Note This is a list where each element is itself a single element
list.

The syntax for the Property List result would be:
set x = mGetSelection(gTable, "PropertyList", 1,

mSelectCount(gTable), "name")

and the result would be
[[#name:"Batteries"],[#name:"Flsoppies"],[#name:"Labels"],

[#name:"Pencils"],[#name:"Ruler"],[#name:"Tags"]]

Reading Records with a Determined Order of Fields

This example retrieves the content of all the records of the selection with TABs as field
delimiters and CARRIAGE_RETURNs (CRs) as record delimiters, with fields ordered in
the sequence "number", "name", "price".

set x = mGetSelection(gTable, "LITERAL", 1, mSelectCount(gTable),
TAB, RETURN, "number", "name", "price")

sets the variable x to the following string:
6780 TAB Batteries TAB 9.20 CR
9401 TAB Floppies TAB 1.89 CR
1743 TAB Labels TAB 1.19 CR
6251 TAB Pencils TAB 5.55 CR
1431 TAB Ruler TAB 1.99 CR
7519 TAB Tags TAB 6.19 CR

The syntax for the Lingo List result would be:
set x = mGetSelection(gTable, "List", 1, mSelectCount(gTable),

"number", "name", "price")

V12-DBE® for Macromedia Director® - User Manual version 3.0 (99/07/27)
©Integration New Media, Inc. 1995-99 page 83

and the result would be
[[6780, "Batteries", 9.20], [9401, "Floppies", 1.89], [1743,

"Labels", 1.19], [6251, "Pencils", 5.55], [1431, "Ruler", 1.99],
[7519, "Tags", 6.19]]

The syntax for the Property List result would be:
set x = mGetSelection(gTable, "PropertyList", 1,

mSelectCount(gTable), "number", "name", "price")

and the result would be
[[#number:6780, #name:"Batteries", #price:9.20], [#number:9401,

#name:"Floppies", #price:1.89], [#number:1743, #name:"Labels",
#price:1.19], [#number:6251, #name:"Pencils", #price:5.55],
[#number:1431, #name:"Ruler", #price:1.99], [#number:7519,
#name:"Tags", #price:6.19]]

Although, this latter request would not be of much interest because property lists
are parsed by property names, not item positions.

Reading Unique Values of a Field

mGetUnique returns unique values of the Master Field in a string or a Lingo list (See
Selection and Current Record above for a definition of Master Field).

Syntax:
set a = mGetUnique(gTable, "literal")
set b = mGetUnique(gTable, "list")

mGetUnique is very convenient to populate a user interface element (such as scrolling
list or pull-down menu) with search values that are relevant only for a specific database
and context.

Example: In a clothing catalog, you want to display only the available colors for a
specific category and size of product (e.g., T-shirt and XXL). You run the following
script:

mSetCriteria(gTable, "category", "=", "T-shirt")
mSetCriteria(gTable, "and", "size", "=", "XXL")
mOrderBy(gTable, "color")
mSelect(gTable)
put mGetUnique(gTable, "literal") into field "ScrollList"

This script retrieves unique values of the "color" field (which is the Master Field) to
the field "ScrollList". Assuming that your selection contains 30 records (10 with Color
= "Red", 10 with Color = "Green" and 10 with Color = "Blue"), the above script puts
the string

Blue
Green
Red

in field "ScrollList".

Running the following script:
mSetCriteria(gTable, "category", "=", "T-shirt")
mSetCriteria(gTable, "and", "size", "=", "XXL")
mOrderBy(gTable, "color")
mSelect(gTable)
put mGetUnique(gTable, "list") into field "ScrollList"

would return the list

V12-DBE® for Macromedia Director® - User Manual version 3.0 (99/07/27)
©Integration New Media, Inc. 1995-99 page 84

["Blue", "Green", "Red"]

Note Because it uses the selection's Master Field, it is
recommended that you call mOrderBy with the appropriate
field before calling mSelect and mGetUnique.
If you don't call mOrderBy, mGetUnique returns unique
values from the Master Field chosen by default by V12-
DBE, which is either the one indexed by the default index (if
the table was just opened), or the one indexed by the best
index chosen by V12-DBE for the last selection. See
Selection and Current Record above.

Data Formatting

mDataFormat assigns a display pattern to a field so that all data read from that field
are formatted according to that pattern. All V12-DBE methods that read data from a
formatted field are affected. These include mGetField and mGetSelection.

Syntax:
mDataFormat(gTable, FieldName, Pattern)

The following example forces all data retrieved from the field price to be formatted
with 3 integral digits and 2 decimal places.

Example:
mDataFormat(gTable, "price", "999.99")

mDataFormat can be applied to fields of type float, integer and date. Media and
string fields cannot be formatted.

To reset the formatting of a pattern to its original value, call mDataFormat with an
empty string.

Example:
mDataFormat(gTable, "price", "")

Formatting Integers and floats

Valid patterns for fields of type integer and float contain the following:

•√ 9 designates a digit at that position (possibly 0),

•√ # designates a digit or a space at that position,

•√ . (period) designates the decimal point,

•√ any other character literally.

The following example forces the output of the field ratio to 2 integral digits, 2
decimal places and a trailing "%" sign:

V12-DBE® for Macromedia Director® - User Manual version 3.0 (99/07/27)
©Integration New Media, Inc. 1995-99 page 85

mDataFormat(gTable, "ratio", "99.99%")
put mGetField(gTable, "ratio")

If the value in field ratio is 34.567, the displayed string is "34.57%".

The pattern "###9999" forces the output of an integer field to be formatted within no
less than four digits and with three leading spaces if necessary. Thus:

4 is formatted as " 0004"
123 is formatted as " 0123"
314159 is formatted as " 314159"
3141592 is formatted as "3141592"
31415926 is formatted as "#######"

The last formatting in the above example fails because an eight-digit integer does not
fit in a seven-digit pattern.

The pattern "(999) 999-9999" is convenient for formatting phone numbers stored as
integers. For example:

mDataFormat(gTable, "phone", "(999) 999-9999")
put mGetField(gTable, "phone")
-- returns something formatted as "(514) 871-1333"

Formatting Dates

Valid patterns for fields of type date are combinations of:

•√ D for days,

•√ M for months,

•√ Y for years,

•√ any other character literally.

The following example formats the date in the "Year-Month-Day" numerical format:
mDataFormat(gTable, "TheDate", "YY-MM-DD")
put mGetField(gTable, "TheDate")

Assume the content of field TheDate for the current record is Jan 5th, 95 - the
returned string is "95-01-05".

Ds, Ms and Ys can be combined in the following way:

To format Use this sequence
Days as 1-31 D
Days as 01-31 DD
Weekdays as Sun-Sat DDD
Weekdays as Sunday-Saturday DDDD
Months as 1-12 M
Months as 01-12 MM
Months as Jan-Dec MMM
Months as January-December MMMM
Years as 00-99 Y or YY
Years as 1900-9999 YYY or YYYY

V12-DBE® for Macromedia Director® - User Manual version 3.0 (99/07/27)
©Integration New Media, Inc. 1995-99 page 86

Examples:

The pattern Formats 5 January 1995 as
D 5
DDDD Thursday
MM 01
DD-MM 05-01
MMM DD, YY Jan 05, 95
On D MMMM, YYYY On 5 January, 1995
'Weekday='DDDD; 'Month=' MMMM Weekday=Thursday; Month=January

In this last example, apostrophes around 'Weekday' and 'Month' are mandatory,
otherwise the "d" in Weekday and the "m" in Month would interfere with the pattern
itself. To specify real apostrophes within date patterns, use two consecutive
apostrophes.

When a table is first opened, the default format of all its Date fields is set to
"YYYY/MM/DD".

By default, the names for the months in V12-DBE are (MMMM)
January, February, March, April, May, June, July, August, September,

October, November, December

The short names for the months are (MMM)
Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, Dec

The names for the weekdays are (DDDD)
Sunday, Monday, Tuesday, Wednesday, Thursday, Friday, Saturday

The short names of the weekdays are (DDD)
Sun, Mon, Tue, Wed, Thu, Fri, Sat

All of these names can be replaced by custom names through the properties of the
database (see Properties of Databases).

Note: If a formatting pattern is assigned to a field, all values
retrieved from that field become strings (see Typecasting in
Database Basics).

Reading Fields of Type Media

mGetMedia retrieves data from fields of type media and stores them directly in the
designated Director member.

Syntax:
mGetMedia(gTable, fieldName, DirMember)

Example:
mGetMedia(gTable, "photo", member "PhotoMember")

This example stores the content of the field "photo" from the current record into the
member named "PhotoMember" in Director's internal castlib. If more than one castlib
is used in a project, mGetMedia can also retrieve media to any castlib through the
following syntax:

V12-DBE® for Macromedia Director® - User Manual version 3.0 (99/07/27)
©Integration New Media, Inc. 1995-99 page 87

Example:
mGetMedia(gTable, "photo", member 28 of castlib "album")

Adding Records to a Database
To add a new record to a V12-DBE table, use mAddRecord. Calls to mAddRecord
must be balanced by mUpdateRecord.

In the following example, a new record is created for the item "goggles" and its price is
set to $158.99:

mAddRecord(gTable)
mSetField(gTable, "ItemName", "Goggles")
mSetField(gTable, "Price", 158.99)
mUpdateRecord(gTable)

If mUpdateRecord is not called, the record created with mAddRecord is not saved to
the database. After calling mUpdateRecord, the record is created and kept in a cache:
it is not immediately written to disk. Thus, if the computer crashes or a power failure
occurs, the database file on disk may become corrupt. To secure the newly added
records onto the hard disk, close the database and open it again (see Opening and
Closing Databases and Tables).

New records are always added to the end of the selection regardless of the criteria used
to form the selection.

Note Only mSetField and mSetMedia can be called after
mAddRecord and before mUpdateRecord. Calling any
other method aborts the new record adding process and sets
the current record to the previous current record.
Thus, if you started to add a record and wish to abort the
operation, simply call mGetField instead of calling
mUpdateRecord.

Updating Data in a Database
Writing data is very similar to reading data. Writing data is accomplished with
mSetField. Prior to updating a field, you must set the current record, and your
intentions must be indicated in V12-DBE with mEditRecord. Once this is completed,
V12-DBE will update your database with mUpdateRecord.

After calling mUpdateRecord, the modified record is kept in a cache: it is not
immediately written to disk. Thus, if the computer crashes or a power failure occurs,
the database file on disk may become corrupt. To secure the updated record onto the
hard disk, close the database and open it again (see Opening and Closing Databases
and Tables)

V12-DBE® for Macromedia Director® - User Manual version 3.0 (99/07/27)
©Integration New Media, Inc. 1995-99 page 88

Writing to Fields of Type Integer, Float and String

In the following example, the name of the current record is changed to "funnel" and its
price to $2.95:

mEditRecord(gTable)
mSetField(gTable, "name", "funnel")
mSetField(gTable, "price", 2.95)
mSetField(gTable, "CatalogNumber", 1234)
mUpdateRecord(gTable)

Like mAddRecord, every call to mEditRecord must be balanced with a call to
mUpdateRecord. Calls to mSetField will result in an error if not preceded by
mEditRecord.

If an error occurs when updating a record (e.g. Duplicate Key error in a given field),
none of the preceding calls to mSetField are taken into consideration.

When writing to a field whose type is not the same as the supplied parameter, V12-
DBE tries to cast the parameter to the appropriate type and to interpret it as accurately
as possible (see Typecasting).

Example
mSetField(gTable, "price", "3.14") -– stores the value 3.14
mSetField(gTable, "price", "xyz") -– stores the value 0.00
mSetField(gTable, "name", 1234) -– stores the string "1234"

Note: Updating the content of a field that has a full-index may take
more time than equivalent fields without full-indexes.

Writing to Fields of Type Date

Writing to a field of type Date is similar to writing to field of type Integer, Float or
String, except that V12-DBE requires the date to be supplied in Raw format
(YYYY/MM/DD).

Example
mSetField(gTable, "BirthDate", "1993/02/22") –- is valid
mSetField(gTable, "BirthDate", "02/22/1993") –- is not valid

Storing the current date in Raw format may be difficult as Lingo's the Date function
returns the current date in the Control Panel settings of the computer it is running on.
In this case, use mGetProperty(gDB, "CurrentDate") to retrieve the current date
in Raw format (see CurrentDate in Properties of Databases).

Writing to Fields of Type Media

To write any media type, call:
mSetMedia(gTable, MediaField, DirMember)

The following example copies the content of member "Yeti" of castlib "photo_album"
to the field photo:

mEditRecord(gTable)
mSetMedia(gTable, "photo", member "Yeti" of Castlib "photo_album")

V12-DBE® for Macromedia Director® - User Manual version 3.0 (99/07/27)
©Integration New Media, Inc. 1995-99 page 89

mUpdateRecord(gTable)

Note: Only mSetField and mSetMedia can be called after
mEditRecord and before mUpdateRecord. Calling any
other method aborts the new record adding process and sets
the current record to the previous current record.
Thus, if you started editing a record and wish to abort the
operation, simply call mGetField instead of calling
mUpdateRecord.

Deleting a Record
Call mDeleteRecord to delete the current record.

Syntax:
mDeleteRecord(gTable_instance)

Example:
mDeleteRecord(gTable)

After calling mDeleteRecord, the record which follows the record being deleted
becomes the new current record. If no record follows the deleted record, the preceding
record becomes the new current record. If no record precedes the deleted record, the
selection is then empty and the current record is not defined.

Deleting All the Records of a Selection
Call mSelDelete to delete all the records of a selection at once.

Syntax:
mSelDelete(gTable)

After mSelDelete has been completed, the selection is empty and the current record
is undefined.

Note: Use this method with caution. There is no way to undelete
records in V12-DBE. As a general rule, avoid giving direct
access of this method to the end-user through your user
interface.

Data Binding
Throughout this section, the term field is used to designate a V12-DBE field, and
member to designate a Director member.

V12-DBE® for Macromedia Director® - User Manual version 3.0 (99/07/27)
©Integration New Media, Inc. 1995-99 page 90

mBindField establishes a live link between a field and a member. Once bound, the
member automatically displays and updates the content of its associated field, for the
current record.

Syntax:
mBindField(table_instance, V12FieldName, DirMember)

Example:
mBindField(gTable, "price", member "thePrice")
mBindField(gTable, "age", member "AgeOfStudent" of Castlib

"External-two")

mUnBindField performs the opposite function - it breaks the link between a member
and whatever field with which the link is bound.

Syntax:
mUnBindField(gTable, DirMember)

Example:
mUnBindField(gTable, member "thePrice")

mBindField spares you multiple calls to mGetField and mSetField every time the
current record changes. It performs a complete read/write binding between the member
and its associated field. Every time the current record changes, V12-DBE updates the
field with the Director member content, goes to the new current record and then
refreshes the Director member with the new field's content.

Data displayed in the bound members comply to the formatting pattern supplied to
mDataFormat, if such a pattern is specified.

At any given time, a maximum of one field can be bound to a Director member.
However, a single field can be bound to several members and they can all display the
bound field's content from the current record. This may lead to ambiguous results if
two or more of these members are edited and need to be saved in the associated field.
When updating such data, V12-DBE always gives precedence to the last bound
member.

If a V12-DBE field of type string is bound to a Director member of another type, the
type of the Director field is forced to the type imposed by the binding (that is,
string): its contents will be replaced.

Fields of all types can be bound to Director members, including fields of type Media.
If a V12-DBE field is bound to a member such as a check box or radio button, the
member is checked if the field contains a non-zero value.

It is not necessary to call mUnBindField before you free a table (setting its instance to
zero). Once free, all bindings pertaining to the fields of a table are automatically
revoked.

V12-DBE® for Macromedia Director® - User Manual version 3.0 (99/07/27)
©Integration New Media, Inc. 1995-99 page 91

Binding Types
V12-DBE offers the possibility of controlling when the binding features are applied,
(i.e. refreshing the screen and updating the database information). It is defined as
either “Full” or “Safe” binding, and set with the bindingType parameter.

When the bindingType is not specified, it is automatically set to "Fullbinding".

Full Binding

For projects that usually require simple browsing and viewing of information, the
binding is a “Full” binding. This means that information is displayed and updated
automatically to and from the V12 database.

mBindField(gTable, V12FieldName, DirMember, "FullBinding")

Safe Binding (for advanced users)

For large projects (i.e. a large number of bound members, many of which can be used
without being on the stage), or in cases where increased control over content updates
or screen refreshment is required, note the following syntax variation in which you
specify a "safe" binding.

mBindField(gTable, V12FieldName, DirMember, "SafeBinding")

The "SafeBinding" parameter instructs V12-DBE to wait for calls to
mRefreshBoundFields and mUpdateBoundFields to refresh the member content,
or to update the field content.

To explicitly trigger a field→member refresh, call:
mRefreshBoundFields(gTable) -- updates the display in Director

which forces the retrieval of content from V12-DBE and refreshes the display for the
bound member, and for all bound members simultaneously.

If you wish to refresh only selected bound fields, use:
mRefreshBoundFields(gTable, "f1", "f2", "f3")

which refreshes the members associated with fields f1, f2 and f3 only, as long as they
are already bound by mBindField.

Explicitly triggering member→ field√updates uses mUpdateBoundFields in much the
same way as. mUpdateBoundFields forces the writing of Director members content
into their bound V12-DBE fields.

mUpdateBoundFields(gTable)

or for a partial update of selected bound fields:
mUpdateBoundFields (gTable, "f1", "f2", "f3")

V12-DBE® for Macromedia Director® - User Manual version 3.0 (99/07/27)
©Integration New Media, Inc. 1995-99 page 92

Automatic Generation of Members and Auto-binding
When starting a new project, you need to create Director members for each V12-DBE
field you need to represent on the stage, name them in an appropriate way, and write
the script to retrieve and store data for each member (or use mBindField). For
convenience, you may want to have these members created and named automatically,
and then bound automatically to matching fields. This is accomplished with
mGenerateMembers and mAutoBinding.

mGenerateMembers

mGenerateMembers is usually used immediately after the creation of a database to
generate members that correspond to the created fields.

Syntax:
mGenerateMembers(table_instance, fromMember)

This instruction creates as many members as there are fields in table_instance,
starting the creation process from member fromMember. The members are of types
compatible with the V12-DBE field they were generated from. Fields of type String,
Integer, Float and Date generate members of type "field" in Director. Fields of
type Media generate members of type Bitmap. That would change to Sound, Palette,
or any other member type depending on the exact content retrieved by mGetMedia.

For example, assume gTable refers to a table named articles containing the fields:
ItemName of type String, Description of type String, Price of type Float,
Catalog number of type Integer and Photo of type Media:

mGenerateMembers(gTable, member 22)

creates five members in the internal castlib starting from member 22. If all members 22
- 26 are empty upon calling mGenerateMembers, members 22, 23, 24, 25 and 26 are
created.

If any of the members 22 - 26 are not empty upon calling mGenerateMembers, the
members are skipped. In the above example, suppose that members 24 and 26 already
existed, mGenerateMembers would have then created members 22, 23, 25, 27 and 28.

mGenerateMembers can also generate members in any castlib other than the default
Director "internal" castlib as follows:

mGenerateMembers(gTable, member "bird" of castlib "album")

The newly created members are named after the table from which they were generated,
followed by the V12-DBE field name they represent, with a comma in-between. In the
above example, the newly created members are named "Articles,ItemName",
"Articles,Description", "Articles,Price", "Articles,Catalog number" and
"Articles,Photo".

This naming scheme enables you to get each piece of information as follows: for a
given auto-generated member (say member 25), item 1 of the name of member

25 returns the name of the table from which it is generated and item 2 of the

name of member 25 returns the name of the field from which it is generated.

V12-DBE® for Macromedia Director® - User Manual version 3.0 (99/07/27)
©Integration New Media, Inc. 1995-99 page 93

mAutoBinding

mAutoBinding tries to bind V12-DBE fields to Director members automatically
based on the naming convention described above (e.g., "TableName,FieldName").

Syntax:
mAutoBinding(table_instance, castLib)

This operation tries to bind each field of table_instance to a member of castLib.
If more than one member is eligible to be bound, the one with the smallest number is
bound and the others are ignored.

For example, if gTable refers to a table named articles containing the fields:
ItemName, Description, Price, Catalog number and Photo, and if the Director
movie's internal cast contains members named "Articles,ItemName",
"Articles,Description", "Articles,Price", "Articles,ItemName" and "Articles,Photo"
(possibly obtained by calling mGenerateMembers):

mAutoBinding(gTable, "internal")

performs the following binding operations

V12-DBE field ↔↔↔↔ Director member
ItemName ↔ Articles,ItemName
Description ↔ Articles,Description
Price ↔ Articles,Price
Catalog number ↔ Articles,Catalog number
Photo ↔ Articles,Photo

As does mBindField, mAutoBinding accepts the parameter SafeBinding to
establish a binding link between fields and members where data updating and
refreshing operations must be explicitly triggered with mUpdateBoundFields and
mRefreshBoundFields.

Syntax:
mAutoBinding(gTable, "Cast", "SafeBinding")

Searching Data with mSetCriteria
When searching data, you often need to isolate a specific group of records that satisfy a
common condition in a table. These conditions are called search criteria and the
subset of isolated records is the selection (see Database Basics for an explanation of
selections and current records). mSetCriteria is the method used to specify search
criteria, followed by mSelect to trigger the search process.

Syntax:
mSetCriteria(gTable, FieldName, operator, Value)
mSelect(gTable)

V12-DBE® for Macromedia Director® - User Manual version 3.0 (99/07/27)
©Integration New Media, Inc. 1995-99 page 94

Simple Search Criteria
A search criterion has at least three characteristics:

•√ FieldName: this is a valid field name in the table instance,

•√ operator: this is a comparison keyword. Valid operators are =, <, <=, >,
>=, <>, starts, contains, wordStarts and wordEquals.

•√ value: this is the value to which the field contents must be compared to, in
order to be selected.

The following example selects all items that are cheaper that $12.
mSetCriteria(gTable, "price", "<", 12)
mSelect(gTable)

Upon completion of mSelect, the resulting selection contains the set of records that
satisfy the defined criteria. In the above example, all records that contain a price
field with a value that is strictly smaller than 12 are selected. In addition, the selection
is sorted with an increasing order of prices given that a search with a defined ascending
index was performed on that field.

The current record is the first record of that selection. In our example, it is the least
expensive item.

If you want the selection sorted in an order other than the one proposed by mSelect,
you can do so by calling mOrderBy right before calling mSelect. However, keep in
mind that this may cost some additional processing time.

Values provided to mSetCriteria need to be in the same type as FieldName. As
discussed in Database Basics / Typecasting, V12-DBE tries to automatically typecast
value to the proper type. Borderline conditions such as criteria containing extra
spaces, carriage returns or other unwanted characters must be avoided.

Example:
mSetCriteria(gTable, "price", "<", "100")

is strictly equivalent to
mSetCriteria(gTable, "price", "<", 100.00)

but beware of the unpredictable results of
mSetCriteria(gTable, "price", "<", "..100.00..")

Operations on fields of type Date require that Value be supplied in Raw format (see
Step 2: Preparing the Data / Dealing with Dates). The following example locates all
records where field theDate contains a date occurring before May 21st, 1997.

mSetCriteria(gTable, "theDate", "<", "1997/05/21")

V12-DBE® for Macromedia Director® - User Manual version 3.0 (99/07/27)
©Integration New Media, Inc. 1995-99 page 95

Sorting a Selection (mOrderBy)
You can define a sort order on a selection by calling the mOrderBy method prior to
calling mSelect. Specify the sorting order (whether ascending or descending)
and the field upon which the sort is performed.

Example:
mSetCriteria(gTable, "ItemName", "contains", "hat")
mOrderBy(gTable, "price", "descending")
mSelect(gTable)

The above example selects all hats in gTable and returns a selection sorted by a
descending order of prices (most expensive to least expensive).

If mOrderBy is not called before calling mSelect, the sort order of the selection
depends on the index used to perform the search. That index is automatically chosen
by V12-DBE to optimize the search time. See Appendix 12: Optimization Using
Indexes.

Operators
The following is a list of valid operators and their meanings. Although comparisons of
integers, floats and dates are straightforward, comparing strings and custom
string types depends on how those comparison rules are defined (see Appendix 16:
String and Custom String Types). Media fields cannot be compared.

Equal (=)

The "=" operator is used to locate data that exactly match the specified value.

Example:
mSetCriteria(gTable, "price", "=", 3.14)

specifies a search for items that cost exactly $3.14 .

Example:
mSetCriteria(gTable, "ItemName", "=", "hat")

specifies a search for items named "hat". Items named "hats" or "hatchet" will not be
selected. Since V12-DBE does not differentiate upper case and lower case characters,
items named "HAT" or "Hat" will be selected.

Not Equal (<>)

The "<>" operator has the opposite effect of the "=" operator. It is used to locate data
that are different than the specified value.

Example:
mSetCriteria(gTable, "price", "<>", 9.99)

V12-DBE® for Macromedia Director® - User Manual version 3.0 (99/07/27)
©Integration New Media, Inc. 1995-99 page 96

specifies a search for all items except those that cost $9.99.

Less than (<)

The "<" operator is used to locate data that are strictly smaller that the specified value.

Example:
mSetCriteria(gTable, "price", "<", 10)

specifies a search for items that cost less than $10. Items that cost exactly $10 are not
selected.

Example:
mSetCriteria(gTable, "ItemName", "<", "hat")

specifies an alphabetical search for items with names that precede the letter “h” in
"hat". This includes "cap", "bonnet" but excludes "hat".

Less or equal (<=)

The "<=" operator is used to locate data that are smaller or equal to the specified value.

Example:
mSetCriteria(gTable, "price", "<=", 10)

specifies a search for items that cost no more than $10.

Example:
mSetCriteria(gTable, "ItemName", "<=", "hat")

specifies an alphabetical search for items with names that precede equal “h” in "hat".
This includes "cap", "bonnet" and "hat".

Greater than (>)

The ">" operator is used to locate data that are strictly larger than the specified value.

Example:
mSetCriteria(gTable, "CatalogNumber", ">", 1000)

specifies a search for items with catalog numbers larger than 1000. Catalog number
1000 will not be selected.

Example:
mSetCriteria(gTable, "birth date", ">", "1961/12/31")

specifies a search for records with a "birth date" field occurring after Dec 31st, 1961,
(excluding that date). The earliest birth date in the selection should be Jan 1st, 1962 or
later.

V12-DBE® for Macromedia Director® - User Manual version 3.0 (99/07/27)
©Integration New Media, Inc. 1995-99 page 97

Greater or equal (>=)

The ">=" operator is used to locate data that are larger or equal to the specified value.

Example:
mSetCriteria(gTable, "CatalogNumber", ">=", 1000)

specifies a search for items with catalog numbers larger or equal to 1000. Catalog
number 1000 will be selected.

Example:
mSetCriteria(gTable, "birth date", ">=", "1961/12/31")

specifies a search for records with a "birth date" field occurring on or after Dec 31st,
1961. Therefore, the earliest birth date in the selection may be Dec 31st, 1961.

Starts

The "starts" operator can be used with fields of type string only (including custom
string types). It locates records that start with a given sub-string in the specified field.

Example:
mSetCriteria(gTable, "description", "starts", "hat")

sets items for selection with descriptions such as "Hat with two propellers" and
"Hatchet for heavy-duty applications".

If an index is defined on the field description, the search process is very fast. If not,
the search takes more time but can be performed nonetheless.

Contains

The "contains" operator can be used with fields of type string only (including
custom string types). It locates records that contain a given sub-string in the specified
field.

Example:
mSetCriteria(gTable, "description", "contains", "hammer")

sets records for selection containing descriptions such as "the greatest hammer in the
world" and "casing for hammers of all sizes".

Searches using the "contains" operator are inherently sequential. They cannot take
advantage of any index definition and can be very slow.

WordStarts

The "wordStarts" operator can be used only with fields of type string (including
custom string types) with defined full-indexes. It locates records that contain words
that fully or partially match the value specified to mSetCriteria.

V12-DBE® for Macromedia Director® - User Manual version 3.0 (99/07/27)
©Integration New Media, Inc. 1995-99 page 98

Example:
mSetCriteria(gTable, "description", "wordStarts", "ham")

sets records for selection containing descriptions such as "Gigantic hamburger with
fries" and "The greatest hammer in the world". It does not find records containing
descriptions such as "Champion" or "Gotham City" because the words in these records
don't start with the sub-string "ham".

Note Although words such as "hamburger" and "hammer" can be
quickly found by the above query, the word "ham" will
never be found because it is shorter than the minimum word
length set for full-indexing.

Since "wordStarts" operates on full-indexes, searching is performed very quickly.

WordEquals

The "wordEquals" operator can be used only with fields of type string with defined
full-indexes. It locates records that contain words that fully match the value specified
to mSetCriteria.

Example:
mSetCriteria(gTable, "description", "wordEquals", "form")

sets records for selection containing descriptions such as "claim form". Records
containing words such as "forms" or "formalism" would not be selected.

Since "wordEquals" operates on full-indexes, searching is performed very quickly.

Note Words shorter than the minimum word length set for full-
indexing cannot be looked for with the "WordEquals"
operator. In such cases, you must use the "WordStarts"
operator instead.

Difference Between Contains and WordStarts

Why should you bother using the slow "Contains" operator if "wordStarts" does the
job faster?

Because "wordStarts" requires that a full-index be defined on a field. Full-indexes
allow for quick searches, but require more disk space and more time when updating
data.

Another reason is that "wordStarts" can only search for words that match or begin with
a given string. For example, if the description field of a certain record contains the text
"Dark chocolate with hazelnuts":

mSetCriteria(gTable, "description", "contains", "cola")

would locate that record ("chocolate" contains the sub-string "cola"), whereas
mSetCriteria(gTable, "description", "wordStarts", "cola")

V12-DBE® for Macromedia Director® - User Manual version 3.0 (99/07/27)
©Integration New Media, Inc. 1995-99 page 99

would not. This is because no word in the description field starts with the string "cola".

Complex search criteria
mSetCriteria can also be called with four parameters. The additional parameter is
the Boolean operator "AND" or "OR". It is added to the second call to
mSetCriteria and inserted before the field to be searched.

Example:
mSetCriteria(gTable, "name", "contains", "hat")
mSetCriteria(gTable, "and", "price", "<=", 50)
mSelect(gTable)

The above example selects all hats up to $50.00 in the table referred to by gTable.

The first call to mSetCriteria should use three parameters, and it can be chained
with as many four-parameter calls as needed to specify your query. Using
mSetCriteria with three parameters will reset and ignore the preceding search
criteria.

Another example, using the Boolean "OR" operator is:
mSetCriteria(gTable, "name", "contains", "hat")
mSetCriteria(gTable, "or", "name", "contains", "helmet")
mSetCriteria(gTable, "or", "name", "contains", "cap")
mSelect(gTable)

It selects all records whose "name" fields contain either "hat" or "helmet" or "cap".

Note Complex searches that use the OR operator are always
slower than those that use the AND operator. This is true
with V12 Database Engine as well as most other database
management systems.

Complex criteria are very powerful but can be tricky to use. The following example
illustrates complex criteria.

mSetCriteria(gTable, "name", "=", "hat")
mSetCriteria(gTable, "or", "name", "=", "helmet")
mSetCriteria(gTable, "and", "price", "<=", 50)
mSelect(gTable)

This section of script selects all hats priced under $50.00 and all helmets under $50.00.
This is very different from:

mSetCriteria(gTable, "name", "=", "hat")
mSetCriteria(gTable, "and", "price", "<=", 50)
mSetCriteria(gTable, "or", "name", "=", "helmet")
mSelect(gTable)

where the selection consists of all hats under $50.00 and all helmets listed at any price.

To illustrate the semantic difference between the two requests, we could express the
first as:

(name = "hat" or name = "helmet") and price <= 50

whereas the second could be written as:

V12-DBE® for Macromedia Director® - User Manual version 3.0 (99/07/27)
©Integration New Media, Inc. 1995-99 page 100

(name = "hat" and price <= 50) or name = "helmet"

Note The current version of V12-DBE does not have the ability to
perform searches such as
name = "hat" or (name="helmet" and price<=50)

 (note the parentheses).
 The first two criteria are always grouped first and the third

criteria is added to the result. See Appendix 9: Advanced
Boolean Searches for possible workarounds.

Partial Selections
The selection process can be time-consuming if a large number of records match the
criteria you specify. The worst case scenario is when all the records of a table match
the specified criteria. This can handicap your project if you have no control over that
the queries the end-user can express.

To speed up the selection process, you can limit the number of records V12-DBE
places in the selection with the following syntax of mSelect.

mSelect(gTable, from, #recs)

Example:
mSetCriteria(gT, "LastName", "=", "Smith")
mSelect(gT, 1, 100)

The above example returns up to a maximum of 100 records in the selection,
regardless of the total number of Smith in the database. If less than 100 Smith exist, all
of them would be selected.

To retrieve the next 100 records that contain "Smith" in the "LastName" field, call:
mSelect(gT, 101, 100)

Note Partial selections also work with complex searches, but not
all of them. They are only accepted for complex searches
that do not use full-text indexes (i.e., WordStarts or
WordEquals).

Checking the Size of a Selection
It is sometimes useful to know the number of items localized in a selection. This is the
purpose of the mSelectCount method.

Example:
mSetCriteria(gTable, "name", "=", "hat")
mSelect(gTable)
set selSize = mSelectCount(gTable)

In this example, the number of records in the selection (the number of items named
"hat") is stored in selSize.

V12-DBE® for Macromedia Director® - User Manual version 3.0 (99/07/27)
©Integration New Media, Inc. 1995-99 page 101

Managing Styled Text
Director 5 and 6 feature cast members of type Text (also called of type Rich Text,
RTF, or #richText). Unlike members of type Field, members of type Text keep all
the formatting styles assigned to their content (including fonts, colors, margins, etc.)
and can be anti-aliased. In Director 5 and 6, members of type Text cannot be edited at
runtime. This is because members of type Text have two components: a content
component (the actual unformatted text) and an image component (the bitmap that
represents the formatted content). At runtime, only the image component of Text
members is available and therefore these members behave exactly like Bitmaps.

Director 7 introduced a new member of type Text (or #text) that can by styled and
edited both at authoring time and runtime.

V12 Database Engine manages both Director 5/6 and Director 7 Text members
through fields of type String, Integer, Float and Date. Both types of Text members are
split in two parts: the text of the member is stored in the V12 field itself. The media
component — whether bitmap or binary representation of styled text — is stored in a
hidden field of type Media. The text component is used to searching and sorting,
whereas the media component is used for storage and retrieval.

Any V12-DBE field of type integer, float, date or string can be used to store a
text member through the following syntax:

mSetField(gTable, fieldName, member)

For example, assume that gTable contains a field of type string named "Banner"
and that member 28 is a Text member containing the anti-aliased text "The Tiger in
your Engine",

mSetField(gTable, "banner", member 28)

stores the styled Text member 28 in the field "Banner". Technically, the string "The
Tiger in your Engine" is stored in the field "Banner" and the media component of the
Text member is stored in an hidden Media field.

To retrieve styled text, call mGetMedia as follows:
mGetMedia(gTable, "Banner", member "myBanner")

This instruction retrieves the banner image from the V12-DBE database and places it
in the member named "myBanner". Note that the V12-DBE field "Banner" mentioned
above is of type string and not media.

Alternatively, you can retrieve the content (the individual characters) of the data
contained in the field "Banner" as follows:

set aText = mGetfield(gTable, "Banner")
-- assigns "The Tiger in your Engine" to aText

If, for some reason, your script does the following:
mSetField(gTable, "banner", member 28)
mSetField(gTable, "banner", the text of member 28)

the second call to mSetField would replace the content of the field "Banner" with the
unformatted text contained in member 28. This would replace any image associated

V12-DBE® for Macromedia Director® - User Manual version 3.0 (99/07/27)
©Integration New Media, Inc. 1995-99 page 102

with that specific record/field by an empty image. A subsequent call to mGetMedia
would then return the placeholder.

Note By opening a Director 5 or 6 movie in Director 7, old Text
members are automatically converted to new Text members.
However, Director 5 or 6 styled texts that are stored in V12
databases cannot be converted to Director 7 text members.
To you need to convert such V12 fields into Director 7-
compatible members, first export them to Director 5/6
Castlibs, convert the Castlibs to Director 7 and then store
them back to V12-DBE. A utility movie called "Media
Converter" and available from http://www.integration.qc.ca
performs this conversion.

Searching and Sorting Styled Text Fields

As a result of this technique, it is possible to search and sort fields that contain styled
text based on the content component of the fields. Since the fields used to store styled
text are of type string, integer, float or date, operations such as indexing,
sorting, searching, etc. all remain valid.

http://www.integration.qc.ca/

V12-DBE® for Macromedia Director® - User Manual version 3.0 (99/07/27)
©Integration New Media, Inc. 1995-99 page 103

Errors and Defensive Programming
Effective error management is key to any reliable script or program. If you choose to
implement the user interface of your project with the V12-DBE Behaviors Library, you
automatically take advantage of this Library's efficient built-in error management. You
just need to make sure that the appropriate check boxes are checked when
dragging/dropping behaviors.

V12-DBE's Lingo interface provides methods that allow you to keep a close check on
your programming. Use the global functions V12Status() and V12Error(), to
confirm each step of database creation and handling.

As well, Director has two interesting tools to help you detect your Lingo scripting
errors: the Watcher and the Debugger, both available in the Windows menu. V12-
DBE's error detecting functions, the Watcher and the Debugger can be used together to
efficiently debug your scripts.

Checking the Status of the Last Method Called
Call V12Status() after each call to V12-DBE methods (both V12dbe and V12table
methods) to check its outcome. V12Status() returns 0 if no error occurred during the
execution of that method. Otherwise, it returns a non-zero error code.

Example:
set aPrice = mGetField(gTable, "price")
set errCode = V12Status()
if errCode <> 0 then

Alert("Mayday! Mayday! mGetField returned error code" && errCode)
end if

If V12Status() returns a non-zero result, you can call V12Error() to get the details
of the error. When called with no parameters, as in V12Error() this global function
returns a plain-English explanation of the outcome of the last called method. If an error
occurred in that last call to V12-DBE, V12Error() provides a detailed contextual
report on it.

Example:
set aPrice = mGetField(gTable, "price")
set errCode = V12Status()
if errCode <> 0 then

Alert (V12Error())
end if

When called with a parameter, as in V12Error(errCode), this function returns the
generic explanation of the code errCode regardless of the last called V12-DBE
method.

Example:
put V12Error(-600)

returns:

V12-DBE® for Macromedia Director® - User Manual version 3.0 (99/07/27)
©Integration New Media, Inc. 1995-99 page 104

-- "Table ‘%s’ does not exist"

As shown in this last example, V12Error() sometimes returns strings which contain
placeholders for context specific information, such as %s or %ld. This is because the
returned message is a generic explanation of the error code -600. When called without
parameter, V12Error() returns a contextual explanation with the actual non-existing
table name instead of %s.

CheckV12Error

The CheckV12Error() Lingo handler is often used throughout this manual and in
sample projects. It is a generic error handling routine that centralizes all the error
management logic is a single handler. That way, it can more easily be adapted from
one project to the other, or from a debugging mode to a delivery mode (e.g. the
debugging mode would display alerts, whereas the delivery mode would write an error
log to an external file with the FileIO Xtra).

on CheckV12Error
if V12Status() then

alert V12Error()
return TRUE

end if
return FALSE

end CheckV12Error

Errors and Warnings
Typically, two types of faults can occur in using V12-DBE:

•√ Errors which lead to major problems that require that you stop the execution
of your script.

•√ Warnings which happen while executing certain instructions partially or in
borderline conditions, that you need to be aware of.

An example of an error is File not found, when trying to import data. When a file is not
found, it does not make sense to continue the importing operation until the problem is
solved.

An example of a warning is No previous record, when trying to go to the previous
record from the first record of the selection. In such a case, the current record remains
valid (although unchanged).

V12Status() returns negative codes for errors and positive codes for warnings.
Often, the term error is used to designate faults of both types (i.e. errors and
warnings).

Note: Usually, you call V12Status() to get an error or warning
code, then V12Error() to get a full explanation of that
error or warning.

V12-DBE® for Macromedia Director® - User Manual version 3.0 (99/07/27)
©Integration New Media, Inc. 1995-99 page 105

Lingo Syntax Errors
When a scripting error occurs (e.g. Lingo syntax error), Macromedia Director displays
an error message and aborts the execution of the current handler. This can be annoying
in cases where local database and table instance variables are defined in your handler.

Example
on doSomethingCritical

set gDB = New(Xtra "V12dbe", the pathname&"catalog.V12",
"ReadWrite", "top top top")
set gTable = New(Xtra "V12table", mGetRef(gDB), "Articles")
-- other Lingo statements
-- with a syntax error somewhere which
-- causes the handler to abort
set gTable = 0
set gDB = 0

end doSomethingCritical

In this example, a Lingo error is detected and the database remains open. If the
database was opened in ReadWrite mode and changes were made, the database file
might become corrupted.

You can prevent this problem by declaring the instance variables as global variables.

Example:
on doSomethingCritical

global gDB, gTable
set gDB = New(Xtra "V12dbe", the pathname&"catalog.V12",
"ReadWrite", "top top top")
set gTable = New(Xtra "V12table", mGetRef(gDB), "Articles")
-- other Lingo statements
-- with a syntax error somewhere which causes the handler to
abort
set gTable = 0
set gDB = 0

end doSomethingCritical

When a Lingo syntax error is detected and the handler aborts, you can still type
set gTable = 0
set gDB = 0

in the Message Window to close your database file.

V12-DBE® for Macromedia Director® - User Manual version 3.0 (99/07/27)
©Integration New Media, Inc. 1995-99 page 106

Additional V12-DBE Methods

Exporting Data
mExportSelection allows exporting of data from a V12-DBE table to TEXT or
DBF files (DBase III). Only the selected records are exported (i.e. those in the
selection). To export a complete table, make sure it is entirely selected first (see
Selection and Selecting All the Records of a Table).

Exporting in TEXT Format
The syntax for exporting all the fields of a table's selection is:

mExportSelection(table_instance, "TEXT", FileName)

The above instruction exports all the fields of the selection to the file named
FileName. The field and record delimiters are TAB and CARRIAGE_RETURN
respectively.

To specify custom field and record delimiters, use:
mExportSelection(table_instance, "TEXT", FileName, FldDelimiter,

RecDelimiter)

Example:
mExportSelection(gTable, "TEXT", "Output.txt", "~", "%")

This example exports the selection in a text file named "Output.txt" with the field
delimiter "~" and the record delimiter "%".

mExportSelection can also export only selected fields in the following way:
mExportSelection(table_instance, "TEXT", FileName, FldDelimiter,

RecDelimiter, Field1, Field2, ...)

Example:
mExportSelection(gTable, "TEXT", "Data.TXT", TAB, RETURN,

"ItemName", "catalog number", "price")

This example exports the selection in a text file named "Data.TXT" with TAB and
RETURN delimiters. The only exported fields are ItemName, catalog number and
price, in that order.

The first line in the exported file contains the names of the exported fields separated by
the selected field delimiter. The resulting text file is in the character set of the current
Operating System (this is relevant only if accented characters are present in the
exported data).

V12-DBE® for Macromedia Director® - User Manual version 3.0 (99/07/27)
©Integration New Media, Inc. 1995-99 page 107

mExportSelection takes the format patterns specified in mDataFormat into
account. The sorting order of the exported records is identical to the one set on the
selection. Media fields are ignored during the exporting process.

Exporting in DBF Format
The parameters for exporting DBF files are identical to those of exporting text, without
the field and record delimiters.

Example:
mExportSelection(gTable, "DBF", "Goliath.DBF")
-- exports all fields of gTable

Or:
mExportSelection(gTable, "DBF", "Goliath.DBF", "ItemName", "catalog

number", "price")
-- exports only fields ItemName, catalog number and price.

The following rules apply when exporting to a DBF file format

•√ String fields are exported to fields of type Character, if the buffer size of the
string field is declared to be no larger than 255 characters. Otherwise, they are
exported to field of type Memo.

•√ Integer fields are exported to fields of type Numeric.

•√ Float fields are exported to fields of type Numeric with 10 digits after the
fixed point.

•√ Date fields are exported to fields of type Date.

•√ Media fields are ignored.

Note Although V12-DBE can read all kinds of DBF file variants,
it exports data only in the popular DBase III format. This is
mainly because DBase III is universally read by all DBF-
compliant systems whereas other more recent formats are
not.

Cloning a Database
Cloning a database makes a copy of an existing database file, with all the table, field
and index definitions but with none of the data. This is similar to creating a database
file from a template rather than starting a new project. Contrary to creating a database
with mReadDBstructure (which requires a V12-DBE license to create legal V12-
DBE databases) this method can be used at runtime.

Syntax:

V12-DBE® for Macromedia Director® - User Manual version 3.0 (99/07/27)
©Integration New Media, Inc. 1995-99 page 108

mCloneDatabase(db_instance, new_pathname)

Example
mCloneDatabase(gDB, the pathname & "myClonedFile.V12")

In this example, a new database file named "Cloned.V12" is created using the same
tables, fields and index definitions, as well as the same password as the database file
designated by the global variable gDB. This implies that the original database file,
designated by the variable gDB, must have been opened with the appropriate password
prior to proceeding with the cloning.

An alternate syntax for cloning databases is also supported for the purpose of
backward compatibility. It is similar to creating a new instance of an existing database,
and it uses the New method.

Syntax:
cloned_db_instance = New(Xtra "V12dbe", new_pathname, "clone",

mGetRef(main_db_instance))

where new_pathname is the pathname of the database file to be created and
main_db_instance is the database instance that serves as a model for the clone.

Example:
set gClone= New(Xtra "V12dbe", "myClone.V12", "clone", mGetRef(gDB))

In this example, the new Xtra instance gClone refers to the file "myClone.V12".

Freeing up Disk Space (packing)
Most database management systems, including V12-DBE, do not reclaim the space
freed by deleted records, for the sake of performance. Consequently, as records are
created and deleted, the size of the database grows continuously. mPackDatabase can
be used periodically to reclaim lost bytes.

Syntax:
mPackDatabase(database_instance, NewFilePathName)

Example:
mPackDatabase(gDB, the pathname & "Packed_DB.V12")
mPackDatabase(gDB, "LAN/Shared/Projects/Barney/KidsStuff.V12")

The first example compresses gDB into a new file named Packed_DB.V12 located in
the same folder as the current Director movie. The second example compresses gDB
into a new file named KidsStuff.V12 located on a different volume (removable
media, LAN, etc.)

At the end of the operation, database_instance stays valid (referring to the non-
packed database) and NewFilePathName is a new file that can be opened with V12-
DBE.

V12-DBE® for Macromedia Director® - User Manual version 3.0 (99/07/27)
©Integration New Media, Inc. 1995-99 page 109

If you just need to compress your current database without creating a new file, you can
do so by compressing it into a new temporary database, deleting your initial database
and renaming the temporary database to your initial database's name. FileXtra, a free
Xtra delivered with recent versions of Director (also available for download at
http://www.littleplanet.com/kent/kent.html), comes in handy as shown below:

-- let fName be your V12 database's name
-- first make sure to set all table instance to 0
mPackDatabase(gDB, the pathname&"temp.V12")
if CheckV12Error() then exit -- don't continue if pack failed
DeleteFile(the pathname&fName)
RenameFile(the pathname&"temp.V12", the pathname&fName)

Fixing Corrupted Database Files
Databases may become corrupt if a power failure or system crash occurs while
updating records. Therefore, V12-DBE is unable to reopen the database and returns an
explicit error code when trying to create a database instance.

Some of these corrupt databases can be fixed with mFixDatabase. The syntax for
mFixDatabase is:

mFixDatabase(Xtra "V12dbe", pathname, new_pathname)

pathname is the name of the database to fix and new_pathname is the name of the
fixed database, which may reside on a different volume.

mFixDatabase is a static method (its first parameter is the Xtra library itself, not on
an instance of V12dbe). In the following example:

mFixDatabase(Xtra "V12dbe", "Crash.V12", "Recovered.V12")

mFixDatabase tries to read data from "Crash.V12" and saves the data to
"Recovered.V12".

Note: mFixDatabase attempts to save a corrupted file as much as
possible, but there is no guarantee on the result.
mFixDatabase essentially attempts to rebuild the indexes
of a damaged V12-DBE file, but if the file's headers or data
clusters are damaged, chances are that the recovery process
will fail.

Progress Indicators
V12 Database Engine can display a progress indicator to the user when performing
time-consuming tasks such as mImportFile, mExportFile, mGetSelection,
mSelect, mSelDelete, mFixDatabase and mPackDatabase. Such a progress
indicator can optionally feature a Cancel button to enable users to interrupt the current

http://www.littleplanet.com/kent/kent.html

V12-DBE® for Macromedia Director® - User Manual version 3.0 (99/07/27)
©Integration New Media, Inc. 1995-99 page 110

task. You can also replace the standard V12-DBE progress bar by any custom progress
indicator you provide via Director and Lingo.

Note mSelect preceded by mSetCriteria with simple or
complex criteria enables the display of a single progress
indicator for the selection task, except if the criteria contain
wordStarts or wordEquals operators. In that case, as
many progress indicators as criteria are displayed.

To activate the progress indicator, set the ProgressIndicator property to
With_Cancel, Without_Cancel or UserDefined. To deactivate it, set it to None.

Options of the ProgressIndicator property

With_Cancel

V12-DBE displays its own progress bar when performing one of the above mentioned
tasks. The user can click on the Cancel button to abort it. You can set the
ProgressIndicator.Message property to whatever message you wish to display in
the upper part of the progress window. If you set the ProgressIndicator.Message
property to an empty string, V12-DBE displays its own context-dependant message.

Without_Cancel

Without_Cancel: V12-DBE displays its own progress bar when performing one of
the above mentioned tasks. No "Cancel" button is shown and the current task cannot be
interrupted. You can set the ProgressIndicator.Message property to whatever
message you wish to display in the upper part of the progress window. If you set the
ProgressIndicator.Message property to an empty string, V12-DBE displays its
own context-dependant message.

UserDefined

V12-DBE does not display a progress bar of its own. Instead, it calls three Lingo
handlers that must be defined in your movie: V12BeginProgress, V12Progress and
V12EndProgress. See

User Defined Progress Indicators below.

None

No Progress Indicator is shown and no callbacks are performed to Lingo handlers
(default value).

See also Properties of Databases / ProgressIndicator.

V12-DBE® for Macromedia Director® - User Manual version 3.0 (99/07/27)
©Integration New Media, Inc. 1995-99 page 111

User Defined Progress Indicators
If you wish to display your own progress indicator to the user, you must set the
ProgressIndicator property to UserDefined and define three Lingo handlers in
your movie: V12BeginProgress, V12Progress and V12EndProgress.

•√ The V12BeginProgress handler is called when the task starts, to allow you to
initialize or open whatever progress indicator you want to show. One parameter is
supplied to V12BeginProgress: it is either 100 (which is the upper bound that is
eventually reached by the first parameter at the end of the operation), or -1 if no
such upper bound is known up front.

•√ The V12Progress handler is repetitively called as long as the task is performed.
Two parameters are supplied to V12Progress. The first parameter is the actual
progress made so far and thus increases at every call. The second one is either 100
(which is the upper bound that is eventually reached by the first parameter at the
end of the operation), or -1 if no such upper bound is known up front.
V12Progress must return FALSE to keep V12-DBE performing the current task
or TRUE to abort it. See example below.

•√ The V12EndProgress handler is called at the end of the task, to allow you to
cleanup or close your progress indicator.

Note In V12-DBE 2.1, only mSelect calls V12BeginProgress
and V12EndProgress with an upper bound of -1. All the
other methods (i.e., mImportFile, mExportFile,
mSelDelete, mFixDatabase and mPackDatabase) pass
an upper bound parameter of 100.

Example: spinning a custom cursor

If you want to spin a custom cursor while V12-DBE is performing time-consuming
tasks, you need to define the following three handlers:

on V12BeginProgress
-- this is an empty handler. Spinning a cursor does not
-- require intialization.

end V12BeginProgress

on V12Progress prog, limit
-- rotate cursor cast members. limit is ignored because spinning
-- a cursor does not need to reach an upper bound.
-- cast 27=first of series 4 cursors, cast 31=mask (empty)

cursor [27 + (prog mod 4), 31]
return FALSE

end V12Progress

on V12EndProgress
cursor -1 -- restore pointer cursor

end V12EndProgress

In this example, V12BeginProgress is an empty handler, but it must be present.
V12Progress only uses the prog parameter because it indefinitely rotates among four

V12-DBE® for Macromedia Director® - User Manual version 3.0 (99/07/27)
©Integration New Media, Inc. 1995-99 page 112

cursors (which are one-bit depth members defined in members 27, 28, 29 and 30).
V12EndProgress is responsible of restoring the standard pointer cursor.

The "Progress" Mini-Sampler (available on http://www.integration.qc.ca) demonstrates
other uses of progress indicators, including user-defined ones.

Checking the Xtra's Version
At authoring time, you check the V12-DBE Xtra's version by opening its Get Info
window in the MacOS Finder, or by checking its Properties in Windows' Explorer.

Both at authoring time and runtime, you can call mXtraVersion to retrieve the
version of the Xtra. Example:

set v = mXtraVersion(xtra "v12dbe")
put v -- puts "V12,3.0.0,Multi-User" in message window
if (char 1 of item 2 of v) <> 3 then Alert "not version 3"

Changing a Password
You can change the password assigned to a database by using the mSetPassword
method. The new password can be an empty string. The syntax is as follows:

mSetPassword(gDB, oldPassword, newPassword)

Example:
mSetPassword(gDB, "houdini", "ali baba")

Properties of Databases
V12-DBE databases contain generic properties that provide for technical information
on the current V12-DBE environment (such as the number of available indexes and the
state of the active debugger) and allow for the control of the V12-DBE environment
(such as custom string types and custom weekday names).

mSetProperty and mGetProperty are used to assign and read these generic
database properties. Certain properties can only be read, not written (i.e. the number of
available indexes) while others can be read and written (i.e. custom string types)

Certain properties are persistent (i.e. saved to the database and recovered when the
database is reopened), others are not.

The syntax for mGetProperty is:
set val = mGetProperty(gDB, PropertyName)

V12-DBE® for Macromedia Director® - User Manual version 3.0 (99/07/27)
©Integration New Media, Inc. 1995-99 page 113

The syntax for mSetProperty is:
mSetProperty(gDB, PropertyName, Value)

PropertyName is a valid identifier (see Appendix 3: Capacities and Limits for the
definition of a valid identifier).

Value is always a string, even if PropertyName refers to a number. For example, the
MaxLoggedErrors property accepts a number (e.g. 35) but the parameter supplied to
mSetProperty must be a string (e.g. "35").

Note: Value is limited to 4096 characters.

mSetProperty can be used to define a new property or to change an existing one.
Using mSetProperty with a value of EMPTY deletes that property. Properties
pertaining to Strings (see The String Property below) cannot be deleted.

Note: mSetProperty is a very powerful tool. If you are unsure
about what you’re doing, always work on a copy of your
original database.

Valid PropertyNames and Values are listed below. Both parameters must be of type
String. Both are case insensitive (hence "resources", "Resources" and "RESOURCES"
are all three equivalent).

You can retrieve the list of all the properties of a database by calling
mGetPropertyNames, as in

set props = mGetPropertyNames(gDB)

Note: V12-DBE properties can only be accessed by the
mSetProperty and mGetProperty methods. They are
totally unrelated to Windows 9x/NT file properties.

Predefined Properties

ProgressIndicator

Read-Write, persistent. Valid values are "None", "With_Cancel", "Without_Cancel",
"UserDefined". Default value is "None".

set x = mGetProperty(gDB, "ProgressIndicator")
mSetProperty(gDB, "ProgressIndicator", "With_Cancel")

Enables V12-DBE to show a progress indicator while performing time-consuming
tasks, or calls back Lingo handlers to enable custom progress indicator
implementations. See Progress Indicators.

ProgressIndicator.Message

Read-Write, persistent.
set msg = mGetProperty(gDB, "ProgressIndicator.Message")

V12-DBE® for Macromedia Director® - User Manual version 3.0 (99/07/27)
©Integration New Media, Inc. 1995-99 page 114

mSetProperty(gDB, "ProgressIndicator.Message", "Exporting records.
Please be patient…")

This property sets the text that must be displayed in the upper part of V12-DBE's
progress window. If you set it to an empty string, V12-DBE displays a message that
depends on the current operation. See Progress Indicators.

VirtualCR

Read-Write, persistent. Valid values: any ASCII character.

When importing or exporting data, convert Carriage Returns (ASCII #13) to this
ASCII character. This is convenient to avoid the confusion of real Carriage Returns
with Record Delimiters. This property can be overridden by a specific VirtualCR
character passed as parameter to mImport.

set c = mGetProperty(gDB, "VirtualCR")
put CharToNum(c) – show ASCII number in message window
--
mSetProperty(gDB, "VirtualCR", NumToChar(10)) -- define ASCII

character #10 as virtual CR

See Step 2: Preparing the Data / Virtual Carriage Returns.

CharacterSet

Read-Write, persistent. Valid values: "Windows-ANSI", "Mac-Standard", "MS-DOS".
Default: "Windows-ANSI" on the Windows version of V12-DBE and "Mac-Standard"
on the Macintosh version of V12-DBE. This property affects all of V12-DBE's import
and export functions. It can be overridden by a specific character set passed as
parameter to mImport.

Translates imported and exported files (whether Text or DBF) with the "Windows-
ANSI", "Mac-Standard" or "MS-DOS" character set tables.

mSetProperty(gDB, "CharacterSet", "Mac-Standard")

See Step 2: Preparing the Data / Character Sets..

Resources

Read-only, non-persistent.
put mGetProperty(gDB, "resources")

Returns information on the number of available indexes and the index used by the last
call to mSelect.

Example:
-- Number of indexes used: 6
-- Current index in table 'articles': 'nameNdx', using field 'name'

V12-DBE resources should not be confused with the MacOS resources (those normally
edited with ResEdit) - they are completely unrelated.

V12-DBE® for Macromedia Director® - User Manual version 3.0 (99/07/27)
©Integration New Media, Inc. 1995-99 page 115

CurrentDate

Read-only, non-persistent.

mGetProperty returns the current date in V12-DBE's raw format (YYYY/MM/DD)
regardless of the Control Panel settings of the Mac or PC.

Example
set aDate = mGetProperty (gDB, "CurrentDate")
put aDate
-- "1999/12/31"

Verbose

Read/write, non-persistent. Valid values are "on" and "off".

When Verbose is set to "on", V12-DBE constantly displays a detailed feedback on the
tasks it is performing in Director's Message Window,

Example:
mSetProperty(gDB, "verbose", "on")
mGetProperty(gDB, "verbose")

Avoid setting both the Verbose and the ErrorLog properties to "on" at the same time,
otherwise Director's Message Window will be quickly loaded with lengthy error logs at
every call to V12-DBE.

Months

Read/write, persistent. Valid values: any 12 word string.

The Month property contains the names of the months used by mDataFormat to
format dates (the MMMM pattern in mDataFormat). The Value parameter is any 12-
word string. Words must be separated by spaces. Names of months that contain spaces
themselves must be enclosed between apostrophes.

Example:
mSetProperty (gDB, "Months", "Gennaio Febbraio Marzo Aprile Maggio

Giugno Luglio Agosto Settembre Ottobre Novembre Dicembre")

ShortMonths

Read/write, persistent. Valid values: any 12 word string.

The ShortMonth property contains the short names of the months used by
mDataFormat to format dates (the MMM pattern in mDataFormat). The Value
parameter is any 12-word string. Words must be separated by spaces. Short names of
months that contain spaces themselves must be enclosed between apostrophes.

Example:

V12-DBE® for Macromedia Director® - User Manual version 3.0 (99/07/27)
©Integration New Media, Inc. 1995-99 page 116

mSetProperty (gDB, "ShortMonths", "Jan Fév Mar Avr Mai Juin Juil
Août Sep Oct Nov Déc")

Weekdays

Read/write, persistent. Valid values: any 12 word string.

The Weekdays property contains the names of the weekdays used by mDataFormat to
format dates (the DDDD pattern in mDataFormat). The Value parameter is any 12-
word string. Words must be separated by spaces. Names of weekdays that contain
spaces themselves must be enclosed between apostrophes.

Example
mSetProperty (gDB, "Weekdays", "Montag Dienstag Mittwoch Donnerstag

Freitag Samstag Sonntag")

ShortWeekdays

Read/write, persistent. Valid values: any 12 word string.

The ShortWeekdays property contains the short names of the weekdays used by
mDataFormat to format dates (the DDD pattern in mDataFormat). The Value
parameter is any 12-word string. Words must be separated by spaces. Short names of
weekdays that contain spaces themselves must be enclosed between apostrophes.

Example
mSetProperty (gDB, "ShortWeekdays", "Lun Mar Mie Jue Vie Sab Dom")

ErrorLog

Read/write, persistent. Valid values: "on" and "off". Default value: "off".

When the ErrorLog property is set to "off", V12-DBE's error log and status code are
reset before each call to a V12-DBE method.

When ErrorLog is set to "on", error messages are cumulated in an error log as V12-
DBE methods are called. Likewise, the status code is set to reflect the most recent
error/warning code according to the following rule:

•√ V12Status() reflects the code of the most recent error,

•√ If no error occurred, V12Status() reflects the code of the most recent
warning,

•√ If no warning was reported, V12Status() signals a success.

Syntax:
mSetProperty(database_instance, "ErrorLog", on_or_off)

Example:
mSetProperty(gDB, "ErrorLog", "on")

V12-DBE® for Macromedia Director® - User Manual version 3.0 (99/07/27)
©Integration New Media, Inc. 1995-99 page 117

When ErrorLog is "on", the error log and status code can be explicitly cleared by
calling the global function V12ErrorReset. Resetting the ErrorLog property to
"on" or "off" also clears the error log and status code.

When ErrorLog is "on", the maximum number of messages allowed for logging can
be adjusted with the MaxLoggedErrors property.

Avoid setting both the Verbose and the ErrorLog properties to "on" at the same time,
otherwise Director's Message Window will be quickly loaded with lengthy error logs at
every call to V12-DBE.

MaxLoggedErrors

Read/write, persistent. Valid values: any integer between 1 and 1000. Default value:
32.

When the ErrorLog property is set to "on", the maximum number of messages that
can be cumulated can be set with the MaxLoggedErrors property.

Syntax:
mSetProperty(database_instance, "MaxLoggedErrors", Max)

As V12-DBE's methods are called, error messages cumulate in an error log and can be
retrieved at any time with the V12Error() function.

The V12-DBE error log and status code can be explicitly cleared by calling the global
function V12ErrorReset.

Example:
mSetProperty(gDB, "MaxLoggedErrors", "100")
The above example sets the maximum number of messages allowed for

cumulation to 100. Note that the last parameter is "100" (a
string), not 100 (an integer).

SharedRWcount

Read only, non-persistent. Returns the number of users currently using the database in
Shared ReadWrite mode.

Example:
set nbUsers = mGetProperty(gDB, "SharedRWcount")

DBversion

Read only, non-persistent. Returns the version of the V12-DBE Xtra used to create the
database.

Example:
set v = mGetProperty(gDB, "DBversion")
put v

V12-DBE® for Macromedia Director® - User Manual version 3.0 (99/07/27)
©Integration New Media, Inc. 1995-99 page 118

The above example puts "V12,3.0.0,Multi-User" in the message window.

The String Property
The String property is covered in a separate section because other sub-properties
(Delimiters, StopWords and MinWordLength) depend on it. Properties below
must be modified before fields of the corresponding string types are created in the
database.

String.Language

Read/write, persistent. Valid values: any valid search/sort table (see Appendix 16:
String and Custom String Types)

The String property defines or modifies custom string types (i.e. string fields that obey
to particular searching and sorting rules). To define a new string type, or modify an
existing one, you append its name to "String.". The chosen name must be a valid
identifier and cannot contain periods (".").

Example:
mSetProperty (gDB, "String.Klingon", field "CompTable")

In this example, field "CompTable" contains the search/sort descriptor for Klingon as
defined in Appendix 16: String and Custom String Types. Once this property is
defined, you can use the type "Klingon" to define new fields with mCreateField or
mReadDBstructure. You also need to define this property first before modifying
other string properties such as Delimiters, StopWords and MinWordLength.

To modify the sort order of the default string, just omit the Language identifier:
mSetProperty (gDB, "String", field "NewCompTable")

String.Language.Delimiters

Read/write, persistent. Valid values: any valid delimiters descriptor.

Delimiters defines, for an existing string type, the list of characters that are acceptable
as word delimiters for full-text indexing. By default, word delimiters for the predefined
types are all non-alphanumeric characters (everything except 0-9, A-Z, a-z and
accented characters).

Example:
mSetProperty (gDB, "String.Spanish.Delimiters",

"!?@$%?&*()[]^®{}£¢§¨¶≤≥º=+-,./\|")

In the above example, the punctuation characters indicated as the Value parameter
are considered as delimiters.

If you need to specify the double-quote as part of the delimiters, either use the Lingo
constant QUOTE, or place the delimiters in a Director member of type Field and use
that field as a Value parameter as follows :

V12-DBE® for Macromedia Director® - User Manual version 3.0 (99/07/27)
©Integration New Media, Inc. 1995-99 page 119

mSetProperty(gDB, "String.Spanish.Delimiters", field "myDelimiters")

All non-printing characters such as TAB, Space, CTRL+J, etc. (i.e. characters lower
than ASCII 32) are always considered as delimiters.

To modify the delimiters of the default string, just omit the Language identifier:
mSetProperty(gDB, "String.Delimiters", field "newDelimiters")

String.Language.MinWordLength

Read/write, persistent. Valid values: an integer in the range 1..100 passed as a String
parameter.

MinWordLength determines the size of the shortest word that must be considered for
full-indexing. All words shorter than MinWordLength are ignored and hence refused
by the mSetCriteria method when used with the operator "WordEquals".

Example:
mSetProperty (gDB, "String.Spanish.MinWordLength", "3")

Note that the Value parameter is "3" (with quotation marks). This is because
mSetProperty expects a Value parameter of type String only. The following is also a
valid formulation:

mSetProperty(gDB, "String.Spanish.MinWordLength", String(3))

To modify the MinWordLength of the default string, just omit the Language
identifier:

mSetProperty(gDB, "String.MinWordLength", "2")

The default value for MinWordLength is 4.

String.Language.StopWords

Read/write, persistent. Valid values: a string no longer than 32K.

StopWords allows for the definition of a list of words that must be ignored in the full-
indexing process. The Value parameter is a string containing the stop words in any
order separated by spaces, TAB or Carriage Returns).

Example:
mSetProperty (gDB, "String.Spanish.StopWords", "in on the a")

To modify the stop words list of the default string, just omit the Language identifier:
mSetProperty(gDB, "String.StopWords","a the on for in by as")

By default, the StopWords property is empty. A typical list of stop words in English
is:

a by in the an for is this and from it to are had not was as have
of with at he on which be her or you but his that

Note Remember that at most 4096 characters can be stored in
properties.

V12-DBE® for Macromedia Director® - User Manual version 3.0 (99/07/27)
©Integration New Media, Inc. 1995-99 page 120

Custom Properties (Advanced Users)
Advanced users may want to define their own properties and make them persistent to a
database. This is a convenient way to store preferences in your database and it
eliminates the trouble of having to create a table that includes only one record.

For example, if you need to save the frame last visited by the user prior to leaving your
application (possibly to bring him/her back to that same frame next time):

on StopMovie
global gDB
mSetProperty(gDB, "LastVisited", string(the frame))
-- Typcasting to string is mandatory here.
-- Some other housekeeping tasks...

end StopMovie

The startup handler of your movie would contain the following:
on StartMovie

global gDB
-- create database instance, etc.
set LastVisit = integer(mGetProperty(gDB, "LastVisited"))
if (LastVisit)>0) then go to frame LastVisit
-- other housekeeping tasks...

end StartMovie

Custom properties are always read/write and persistent.

V12-DBE® for Macromedia Director® - User Manual version 3.0 (99/07/27)
©Integration New Media, Inc. 1995-99 page 121

Appendix 1: :Licensing FAQs
We invite you to carefully read and agree to the terms and conditions of the license
before using V12 Database Engine. For your information, the following answers the
most frequent questions on our licensing policy. The full licensing agreement follows
these FAQs.

Q: Do I have to pay royalties, or a per-project fee, for using V12 Database Engine?

A: No. Integration New Media’s one-time licensing fee enables you to use V12-DBE royalty-
free Once you own a V12-DBE license, you can use it for as many projects as you wish.

Q: What do Authoring time and Runtime mean in the context of V12-DBE?

A: You use V12-DBE at authoring time if the V12-DBE Xtra is present in Director’s or
Authorware’s Xtras folder when developing a project that requires it. Writing scripts that
call the V12-DBE Xtra and creating/modifying database structures (a.k.a. database
schema) are authoring time tasks. You use V12-DBE at runtime if the V12-DBE Xtra is
present in a playback executable’s Xtras folder (a Director projector or Authorware
runtime).

Q: A business associate of mine is interested in evaluating V12-DBE. What am I entitled
to give him/her for the purpose of evaluation?

A: You can give away the V12-DBE Xtra, its manuals and other related files in as many
copies as you wish, except for the license file (*.LIC) and the V12-DBE registration
number. Better yet, refer your business associate to http://www.integration.qc.ca for free
downloads of V12-DBE and related files.

Q: During the development of my project, I need to have the V12-DBE Xtra in my
Director / Authorware’s Xtras folder. When I deliver it to end-users, I still need to
place the V12-DBE Xtra in the Xtras folder. Can’t the end-user simply hijack my
V12-DBE license?

A: No. The V12-DBE Xtra works as a development tool and enables you to create new
database structures only if it detects a license file in your System folder. Otherwise, it
works as a playback (a.k.a runtime) tool for reading, writing and searching data. Your
license number is encrypted in the V12 database you deliver. Thus, no one can hijack it.

Q: Can I deliver a project that uses V12-DBE and that would be used by two or more
users simultaneously?

A: You can distribute any product or program containing V12-DBE Xtra to be used at
runtime.

Q: I am working as a consultant for a client who will distribute (or sell, or give away)
the project I am developing. Who needs a V12-DBE license?

http://ww.integration.qc.ca/

V12-DBE® for Macromedia Director® - User Manual version 3.0 (99/07/27)
©Integration New Media, Inc. 1995-99 page 122

A: Both you and your client need a license for V12-DBE. The only other alternative is for
you to permanently transfer your V12-DBE license to your client. Integration New Media
must be notified of such permanent transfers. If you decide to transfer you license, you
must make sure not to keep a copy of the registration number and the license file. At all
time, a V12-DBE license file can be installed only on a single computer.

Q: We are two employees of the same company working on a project involving V12-
DBE. Both of us need to create database structures and/or write scripts to call V12-
DBE methods. Do we both need V12-DBE licenses?

A: Yes. You need two separate V12-DBE licenses, unless you share the same computer. A
V12-DBE license file can be installed on only one computer at a time.

Q: I am working on a project involving V12-DBE, however I never need to create or
modify database structures, neither do I write or modify V12-DBE related scripts.
Do I need a V12-DBE license.

A: No. If you only need to view or modify the content (add/delete records) of a V12-DBE
database, no license is required. If your project requires you to create or modify a V12-
DBE database structure (a.k.a adding/deleting tables), or if you need to write V12-DBE-
related scripts, then you must have a V12-DBE license.

Q: I developed a software tool that uses V12-DBE and I want to make it available to
colleagues and associates for use at authoring time. Must they also have V12-DBE
licenses?

A: Yes. Users of software that use V12-DBE in an authoring environment must have V12-
DBE licenses.

Q: As a student, am I entitled to an educational license of V12-DBE?

A: Yes, but you must conform to specific conditions. To obtain an educational license of
V12-DBE, you agree to use V12-DBE only for educational purposes. Educational means
that V12-DBE is intended for use by students and faculty of educational institutions only
for non-commercial projects.

Q: What are my obligations as V12-DBE license holder?

A: In your project, you must mention "Portions of code are Copyright (c)1995-99 Integration
New Media, Inc." next to your own copyright notice. You must also place the "Powered
by V12" logo on the packaging of your product or within your product (in the Credits
section, About box or equivalent location). The "Powered by V12" logo is available on
the V12-DBE CD-ROM and on Integration New Media's web site
(http://www.integration.qc.ca).

http://www.integration.qc.ca)/

V12-DBE® for Macromedia Director® - User Manual version 3.0 (99/07/27)
©Integration New Media, Inc. 1995-99 page 123

Appendix 2: License Agreement
PLEASE READ THIS LICENSE AGREEMENT CAREFULLY BEFORE USING
V12 DATABASE ENGINE. BY USING V12 DATABASE ENGINE, YOU AGREE
TO BECOME BOUND BY THE TERMS OF THIS LICENSE AGREEMENT.

The enclosed computer program(s), license file and data (collectively, "Software") are
licensed, not sold, to you by Integration New Media, Inc. ("Integration") for the
purpose of using it for the development of your own products ("Products") only under
the terms of this Agreement, and Integration reserves any rights not expressly granted
to you. Integration grants you no right, title or interest in or to the Software. The
Software is owned by Integration and is protected by International copyright laws and
international treaties.

1. License.

(a) You may install one copy of the Software on a single computer. To "install" the
Software means that the Software is either loaded or installed on the permanent
memory of a computer (i.e., hard disk). This installed copy of the Software may be
accessible by multiple computers, however, the Software cannot be installed on more
than one computer at any time. You may only install the Software on another computer
if you first remove the Software from the computer on which it was previously
installed. You may not sublease, rent, loan or lease the Software.

(b) You may make one copy of the Software in Machine readable form solely for
backup purposes. As an express condition of this Agreement, you must reproduce on
each copy any copyright notice or other proprietary notice that is on the original copy
supplied by Integration.

(c) You may permanently transfer all your rights under this Agreement to another party
by providing to such party all copies of the Software licensed under this Agreement
together with a copy of this Agreement and the accompanying written materials,
provided that the other party reads and agrees to accept the terms and conditions of this
Agreement and that you keep no copy of the Software. If the Software is an update,
any transfer must include the update and all prior versions.

(d) Your license is limited to the particular version (collectively "Version") of the
Software you have purchased. Therefore, use of a Version other than the one
encompassed by this License Agreement requires a separate license.

(e) The Software contains a license file (.LIC) which is subject to the restrictions set
forth above and may not be distributed by you in any way. However, Integration grants
you a royalty-free right to reproduce and distribute the files named "V12-DBE for
Director.XTR", "V12-DBE for Director.X32" and "V12DBE-D.X16" (collectively,
"Runtime Kit") provided that (i) you distribute the Runtime Kit only in conjunction
with and as part of your own Products; (ii) own a license for the specific Version of the
Software that contains the Runtime Kit; (iii) agree to indemnify, hold harmless and
defend Integration from and against any claims or lawsuits, including attorney's fees,
that arise or result from the use or distribution of your Products with the Runtime Kit.

V12-DBE® for Macromedia Director® - User Manual version 3.0 (99/07/27)
©Integration New Media, Inc. 1995-99 page 124

(f) Any third party who may distribute or otherwise make available a product
containing the V12-DBE Runtime Kit must purchase its own V12-DBE license.

(g) Any third party who will use the V12-DBE Runtime Kit in an authoring
environment must purchase his own V12-DBE license.

2. Restrictions. The Software contains trade secrets in its human perceivable form and,
to protect them, you may not MODIFY, TRANSLATE, REVERSE ENGINEER,
REVERSE ASSEMBLE, DECOMPILE, DISASSEMBLE OR OTHERWISE
REDUCE THE SOFTWARE TO ANY HUMAN PERCEIVABLE FORM. YOU
MAY NOT MODIFY, ADAPT, TRANSLATE, RENT, LEASE, LOAN OR CREATE
DERIVATIVE WORKS BASED UPON THE SOFTWARE OR ANY PART
THEREOF.

3. Copyright notices. You may not alter or change Integration's copyright notices as
contained in V12-DBE. You must include (a) a copyright notice, in direct proximity to
your own copyright notice, in substantially the following form "Portions of code are
Copyright (c)1995-99 Integration New Media, Inc."; and (b) place the "Powered by
V12" logo on the packaging of your Products; or (c) place the "Powered by V12" logo
within your Products in the credits section.

4. Acceptance. V12-DBE shall be deemed accepted by you upon delivery unless you
provide Integration, within two (2) weeks therein, with a written description of any
bona fide defects in material or workmanship.

5. Termination. This Agreement is effective until terminated. This Agreement will
terminate immediately without notice from Integration or judicial resolution if you fail
to comply with any provision of this Agreement. Upon such termination you must
destroy the Software, all accompanying written materials and all copies thereof, and
Sections 7 and 8 will survive any termination.

6. Limited Warranty. Integration warrants for a period of ninety (90) days from your
date of purchase (as evidenced by a copy of your receipt) that the media on which the
Software is recorded will be free from defects in materials and workmanship under
normal use and the Software will perform substantially in accordance with the manual.
Integration's entire liability and your sole and exclusive remedy for any breach of the
foregoing limited warranty will be, at Integration's option, replacement of the disk,
refund of the purchase price or repair or replacement of the Software.

7. Limitation of Remedies and Damages. In no event will Integration, its parent or
subsidiaries or any of the licensers, directors, officers, employees or affiliates of any of
the foregoing be liable to you for any consequential, incidental, indirect or special
damages whatsoever (including, without limitation, damages for loss of profits,
business interruption, loss of business information and the like), whether foreseeable or
not, arising out of the use of or inability to use the Software or accompanying written
materials, regardless of the basis of the claim and even if Integration or an Integration
representative has been advised of the possibility of such damage. Integration's liability
to you for direct damages for any cause whatsoever, and regardless of the form of the
action, will be limited to the greater of US $350.00 or the money paid for the Software
that caused the damages.

V12-DBE® for Macromedia Director® - User Manual version 3.0 (99/07/27)
©Integration New Media, Inc. 1995-99 page 125

THIS LIMITATION WILL NOT APPLY IN CASE OF PERSONAL INJURY ONLY
WHERE AND TO THE EXTENT THAT APPLICABLE LAW REQUIRES SUCH
LIABILITY. BECAUSE SOME JURISDICTIONS DO NOT ALLOW THE
EXCLUSION OR LIMITATION OF LIABILITY FOR CONSEQUENTIAL OR
INCIDENTAL DAMAGES, THE ABOVE LIMITATION MAY NOT APPLY TO
YOU.

8. General. This Agreement will be construed under the laws of the Province of
Quebec, except for that body of law dealing with conflicts of law. If any provision of
this Agreement shall be held by a court of competent jurisdiction to be contrary to law,
that provision will be enforced to the maximum extent permissible, and the remaining
provisions of this Agreement will remain in full force and effect.

9. The parties acknowledge having requested and being satisfied that this Agreement
and its accessories be drawn in English. Les parties reconnaissent avoir demandé que
cette entente et ses documents connexes soient rédigés en anglais et s'en déclarent
satisfaits.

The following trademarks are used throughout this manual: Director and Xtra are
trademarks of Macromedia, Inc., FileMaker Pro is a trademark of Claris corp.,
Windows, Access and MS Excel are trademarks of Microsoft corp., Macintosh is a
trademark of Apple corp., 4th Dimension is a trademark of ACI, Photoshop is a
trademark of Adobe Systems Inc.

V12-DBE® for Macromedia Director® - User Manual version 3.0 (99/07/27)
©Integration New Media, Inc. 1995-99 page 126

Appendix 3: Capacities and Limits
•√ The size of a V12-DBE database file is limited by disk space.

•√ The number of database instances and table instances is limited by RAM. Up
to 128 instances of single database can be opened by 128 different
executables (Director applications, Shockwave movies or Projectors) in
Shared ReadWrite mode. Each executable is entitled to only one database
instance of a given database (although, you may create as many instances of
distinct databases as you wish in a single executable). Multiple instances of a
table can be created on a single computer.

•√ Databases that contain media fields are not compatible between version 6 and
version 7 of Director. They must be used with the version of Director they
were created with.

•√ A maximum of 128 indexes can be defined on a V12-DBE database. Each
index can operate on up 12 fields.

•√ Since each table requires at least one index, the maximum number of tables in
a V12-DBE database is also 128.

•√ A valid V12-DBE database contains at least one field and one index.

•√ Up to 100 criteria can be chained with sequences of mSetCriteria
separated by Boolean operators.

•√ All records are of variable length. Fields of type media are limited to 1Mb.
Fields of type string are limited to 64K (Note: Director Field members are
limited to 32K).

•√ The range of the type Integer is -231 to 231-1 (-2147483648 to
2147483647).

•√ The range of the type Float is ±1.79769313486232E+308 to
±2.22507385850720E-308.

•√ Any date later than January 1st, 1600 can be compared, retrieved and stored to
fields of type Date. However, date formatting is limited to the range Jan 1st
1904 through Dec 31st 2037.

•√ No two fields or indexes can have the same name in the same table. However,
two fields or two indexes might have the same name in different tables.

•√ Fields of type media can hold any type of media that can be stored in a
Director member, except Film Loops and QuickTime movies.

•√ Up to 32 custom string types can be defined.

V12-DBE® for Macromedia Director® - User Manual version 3.0 (99/07/27)
©Integration New Media, Inc. 1995-99 page 127

•√ DBF files of type DBase III, DBase IV, DBase V, FoxPro 2.0, FoxPro 2.5,
FoxPro 2.6, FoxPro 3.0 and FoxPro 5.0 can be imported, exported and used
as templates for the definition of V12 databases. Fields of type DateTime are
not supported. The following DBF data types are ignored: General, Character-
Binary, Memo-Binary.

•√ On Win9x/NT, MS Access databases, MS FoxPro files, MS Excel workbooks
and MS SQL Server data sources can be used as templates to create new V12
database and as sources of data to import records from through ODBC
drivers. The exact database translation/data importing rules varies among
ODBC drivers and versions of ODBC drivers.

•√ Identifiers (names of fields, tables and indexes) are limited to 32 characters.
They must start with a low-ASCII alphabetic character (a..z, A..Z) and can be
followed by any alphanumeric character (0..9, a..z, A..Z, à, é, ö). Keywords
such as NOT, AND, OR, String, Integer, Float, Date or Media are not
suitable for use as identifiers.

•√ When indexing fields of type String, up to the 200 first characters of each
string are actually entered in the index. The remaining characters are ignored.

•√ Full-indexes are built with words not exceeding 31 characters. Words longer
than 31 characters are truncated to 31 characters for the purpose of indexing
(this does not affect the actual data).

•√ New database structures cannot be created at runtime without the presence of
a V12-DBE license file (actually, they can, but they will be non-licensed V12
databases). They can only be cloned from existing databases.

V12-DBE® for Macromedia Director® - User Manual version 3.0 (99/07/27)
©Integration New Media, Inc. 1995-99 page 128

Appendix 4: Multi-user Access
V12-DBE allows for multi-user access to its databases. This means that a V12-DBE
file can be shared by many users provided the V12-DBE file is available to them on a
mounted volume.

An icon on the desktop represents a mounted volume on the Macintosh computer. You
can mount such a volume by selecting it in the Chooser, in the Apple menu.

On windows 9x/NT a mounted volume is either a volume that is mapped to a drive
letter or a volume or partition accessible in the Network Neighborhood.

On Windows 3.1, a mounted volume is a network drive.

Opening a file in Shared ReadWrite Mode
To open a V12 database in a multi-user environment, create a V12dbe Xtra instance in
"Shared ReadWrite" mode. Syntax:

Set gDB = New(Xtra "V12dbe", "FilePathname", "Shared ReadWrite",
"MyPassword")

MacOS example:
new(Xtra "V12dbe", "MyNetworkDrive:Data:Catalog.V12", "Shared

ReadWrite", "password")

Windows 9x/NT/3.1 example (F is a mapped volume):
new(Xtra "V12dbe", "F:\Data\Catalog.V12", "Shared ReadWrite",

"password")

Windows 9x/NT example:
new(Xtra "V12dbe", "//BigServer/Data/Catalog.V12", "Shared

ReadWrite", "password")

At most 128 users can open a V12-DBE file in Shared ReadWrite mode.

Note: If a user opens a database in "Shared ReadWrite" mode, any
attempt to open it in an exclusive mode (ReadWrite or
ReadOnly) will fail.
If the database is open in "Shared ReadWrite", other users
can also open it "Shared ReadWrite" mode.
If the database is open in an exclusive mode ("ReadWrite"
or "ReadOnly"), it cannot be opened by any other user.

V12-DBE® for Macromedia Director® - User Manual version 3.0 (99/07/27)
©Integration New Media, Inc. 1995-99 page 129

Modifying a Shared Database
If you plan on allowing users to modifying the content of your shared database, note
the following rules:

•√ V12-DBE uses a record locking technique which means that if a user is editing the
current record after a mEditRecord, then no other user can call mUpdateRecord
until that user is finished. Any other call to mEditRecord would fail because the
record would be locked. Both V12Error() and V12Status() would report such
failures.

•√ Any attempt to retrieve the content of a locked record using mExportFile,
mGetSelection etc…, will return a warning and cancel the action.

•√ If many users proceed to making modifications on the same table simultaneously,
synchronization problems may arise between the actual content of the table and
the selection as reflected in the users' V12table instances. Such instances must be
"refreshed" by invoking mSelect(). To detect whether a table was modified by
another user, call mNeedSelect() at any time. mNeedSelect() returns TRUE if
records were added, deleted or modified since the current instance last called
mSelect(). In some cases, it is a good idea to check for mNeedSelect() on idle
and refresh the displayed records when signaled to do so.
Example:

on idle
if mNeedSelect(gTable) then

mSelect(gTable)
-- do wathever necessary to refresh the display
end if

end idle

Counting the number of Users
The sharedRWcount property is ReadOnly and non persistent. It returns the number
of users currently sharing the V12-DBE database file in Shared ReadWrite mode.

Syntax:
mGetProperty(gDB, "sharedRWcount")

V12-DBE® for Macromedia Director® - User Manual version 3.0 (99/07/27)
©Integration New Media, Inc. 1995-99 page 130

Possible Configurations

Scenario 1:

User 1 and User 2 access the same V12
database on a Remote Server. This is the
typical multi-user access configuration.

Scenario 2:

User 2 accesses the same V12 database file
as User 1, on User 1’s computer. User 1 and
User 2 use separate instances of the
projector and V12-DBE Xtra.

Scenario 3:

User 1 with two distinct Projectors, each
with its own copy of the V12-DBE Xtra
share a single V12 database. NOTE: for the
Mac version to properly run in this scenario,
File Sharing must be set and the V12
database must be in a shared folder.

Scenario 4:

User 1 and User 2 share the same projector,
V12-DBE Xtra, and V12-DBE database file

(this scenario requires a locked projector
file on a Windows computer).

V12-DBE® for Macromedia Director® - User Manual version 3.0 (99/07/27)
©Integration New Media, Inc. 1995-99 page 131

Appendix 5: Multiple Instances of a Table
In some applications, it is useful to create more than one Xtra instance for a given
table. The advantage of such a duplication is to keep several selections and several
current records for the same table.

Example
set gTable1 = New(Xtra "V12table", mGetRef(gDB), "articles")
set gTable2 = New(Xtra "V12table", mGetRef(gDB), "articles")
mOrdreBy(gTable1, "price")
mOrdreBy(gTable2, "name")
mSelectAll(gTable1)
mSelectAll(gTable2)

This example defines two table instances (gTable1 and gTable2) for the table
articles. The selection in gTable1 is sorted by order of price, whereas in gTable2
it is sorted by order of name.

Note: 1. The multiple instance definition technique is sometimes
convenient for Read-Only databases but can lead to
inconsistencies when used in Read/Write mode. This
happens particularly when editing a current record which is
also the current record of the other instance.

 2. Each table instance takes up RAM.

V12-DBE® for Macromedia Director® - User Manual version 3.0 (99/07/27)
©Integration New Media, Inc. 1995-99 page 132

Appendix 6: Delivering to the End User
V12-DBE is designed in a way that minimizes any last minute changes needed before
delivery to the end-user. Unlike other database management systems where you need
to swap the development version of certain files with the runtime versions, no
swapping is required with V12-DBE.

You deliver the Xtra file V12-DBE for Director.XTR and/or V12-DBE for
Director.X32 and/or V12-DBE for Director.X16. For an Xtra to be available to a
Director projector, you must to place it in a folder named "Xtras" located in the same
folder as the projector itself. Alternately, with Director 7, you can package the required
Xtras into your Director projector by including them in the Modify > Movie > Xtras
window.

As stated in the licensing agreement, you DO NOT deliver the license file
"V12-30.LIC", which is in the System:Preferences folder of your Macintosh, or the
Windows\System folder of your PC.

Note Although V12-DBE works fine with Shockwave movies,
you cannot have it automatically downloaded via the net
from a Shockwave movie.

Testing for end-users
It is always a good idea to thoroughly test the product before delivering it to the end-
user. Tests must be performed on computers with configurations very similar to those
of end-users. However, if you need to perform end-user tests on the computer that
contains the V12-DBE license, you can reproduce an end-user environment by
proceeding as follows:

•√ Make sure Director or a Director Projector is not running,

•√ Open the System:Preferences folder of your Macintosh, or the
(Windows\System folder) of your PC,

•√ Move the V12*.LIC file out of that folder to the destination of your choice,
except of course, the trash can or the recycle bin,

•√ Open your project either with a Projector or Macromedia Director and
perform the tests.

•√ Once the tests are completed, close the Projector or Macromedia Director
and put the license file back in its original folder.

Note DO NOT attempt to rename or tamper with the license file.
If you do, you may need to re-register V12-DBE.

V12-DBE® for Macromedia Director® - User Manual version 3.0 (99/07/27)
©Integration New Media, Inc. 1995-99 page 133

Appendix 7: Portability Issues
Some files are cross-platform compatible and others are not. As a general rule,
everything that can be executed is not cross-platform compatible. Applications, DLLs,
Xtras, EXE files are all executable and include the following:

•√ Macromedia Director
•√ Projectors generated by Macromedia Director
•√ the V12-DBE Xtras

Everything that is a static document is cross-platform compatible. This includes:

•√ Director movies (either protected or not)
•√ V12-DBE databases

The following figure identifies which files are specific to Macintosh or Windows, and
which files are compatible to both Macintosh and Windows.

Windows only
Macintosh

and Windows Macintosh only

Director for Windows Director for Macintosh

 Director movies (.DIR, .DXR)
Shockwave movies (.DCR)

Projector for Windows Projector for Macintosh

V12-DBE Xtras for
Windows

 V12-DBE Xtras for
Macintosh

 V12-DBE databases

V12-DBE® for Macromedia Director® - User Manual version 3.0 (99/07/27)
©Integration New Media, Inc. 1995-99 page 134

Appendix 8: Data Updating and Sort Orders
Updating a field that is used in the current index can yield a potentially unwanted –
although consistent – behavior. For example, imagine a database that has the following
structure:

[TABLE]
MyFavoriteThings
[FIELDS]
Preference integer indexed
Thing string
[END]

it contains the following 10 records:

Preference Thing
27 Raindrop on roses
35 Whiskers on kittens
50 Bright copper kettles
54 Warm woolen mittens
60 Round paper packages tied up with strings
75 Cream-colored ponies
87 Crisp apple strudels
92 Door bells and sleigh bells
95 Schnitzels with noodles

100 Wild geese that fly with the moon on their wings

The table is currently sorted by order of Preference, using that field's index and the
current record is the first record (27-Raindrop on roses).

Any modification to the Thing field does not affect the order of the selection.
However, modifying the Preference field would automatically cause the table to be
resorted with respect to the current index's sort order.

For example, modifying the value 27 above for 90 would instantly update the
selection to the following order, with the current record pointing to the 7th record.

Preference Thing
35 Whiskers on kittens
50 Bright copper kettles
54 Warm woolen mittens
60 Round paper packages tied up with strings
75 Cream-colored ponies
80 Crisp apple strudels
90 Raindrop on roses
92 Door bells and sleigh bells
95 Schnitzels with noodles

100 Wild geese that fly with the moon on their wings

This "repositioning" occurs right after calling mUpdateRecord.

V12-DBE® for Macromedia Director® - User Manual version 3.0 (99/07/27)
©Integration New Media, Inc. 1995-99 page 135

This behavior may seem even stranger when the V12-DBE Behaviors are used. In that
case, if the current record is #1, the value 27 is changed to 90 and the user clicks on
the Next button (theoretically to view record #2: 35-Whiskers on kittens), the record
50-Bright copper kettles is displayed. This is because the mGoNext method called by
the Next button updates record #1 thus relocating it as record #7, and then goes to the
new record #2 which is 50-Bright copper kettles.

To avoid this behavior, you must prohibit the modification of fields used in the current
index. Or better yet, create an additional indexed field that can be used as an internal
ID. This is how many database engines work internally.

Note Selections defined by calls to mSetCriteria/mSelect are
not affected by this symptom.

V12-DBE® for Macromedia Director® - User Manual version 3.0 (99/07/27)
©Integration New Media, Inc. 1995-99 page 136

Appendix 9: Advanced Boolean Searches
Two or more search criteria can be chained in a single query with V12 Database
Engine, as in:

mSetCriteria(gT, "DishType", "=", "soup")
mSetCriteria(gT, "AND", "TimeToPrepare", "<=", 20)
mSelect(gT)

or
mSetCriteria(gT, "Ingredients", "WordStarts", "celery")
mSetCriteria(gT, "OR", "Ingredients", "WordStarts", "pumpkin")
mSetCriteria(gT, "OR", "Ingredients", "WordStarts", "carrot")
mSetCriteria(gT, "OR", "Ingredients", "WordStarts", "eggs")
mSelect(gT)

You can also mix ANDs and ORs, as follows:

mSetCriteria(gT, "DishType", "=", "soup")
mSetCriteria(gT, "OR", "DishType", "=", "appetizer")
mSetCriteria(gT, "AND", "TimeToPrepare", "<=", 30)
mSelect(gT)

The above query finds all soups and appetizers that require less than 30 minutes of
preparation time. This is not equivalent to:

mSetCriteria(gT, "TimeToPrepare", "<=", 30)
mSetCriteria(gT, "AND", "DishType", "=", "soup")
mSetCriteria(gT, "OR", "DishType", "=", "appetizer")
mSelect(gT)

which finds all soups that require less than 30 minutes of preparation time and all
appetizers regardless of the time required to prepare them. Thus, the order in which
criteria are expressed to V12-DBE is important.

However, V12-DBE cannot handle four criteria or more with alternating ANDs and
ORs. For example, the query "(Dish is soup or appetizer) and (Main Ingredient is
celery or eggplant)" cannot be directly expressed to V12-DBE.

Following are three techniques to workaround this limitation. Many others can be
easily derived from those techniques, but they all require some Lingo programming.

Workaround #1: Merging Selections

This technique requires to act on two V12table instances of the same table and to
merge the resulting selections.

Define a separate table instance of the same V12 table for each set of query your are
performing. For example:

set gT1 = new (Xtra "v12Table, mgetRef(gBD), "Recipes")
set gT2 = new (Xtra "v12Table, mgetRef(gBD), "Recipes")

Run your segments of query on each table instance:
-- first on gT1
mSetCriteria(gT1, "DishType", "=", "soup")
mSetCriteria(gT1, "OR", "DishType", "=", "appetizer")
mOrderBy(gT1, "RecipeID") -- sort by a uniquely indexed field

V12-DBE® for Macromedia Director® - User Manual version 3.0 (99/07/27)
©Integration New Media, Inc. 1995-99 page 137

mSelect(gT1)
-- on gT2
mSetCriteria(gT2, "ingredient", "WordEquals", "celery")
mSetCriteria(gT2, "OR", "ingredient", "WordEquals", "eggplant")
mOrderBy(gT2, "RecipeID") -- sort by the same field as gT1 above
mSelect(gT2)

You end up with gT1 and gT2 referencing two separate selections, both ordered by
RecipeID. You can run a small Lingo loop to intersect them:

set field "result" = EMPTY -- Dir member. Can also be a Lingo list
repeat while not V12Error() -- by "Next" on last rec of gT1 or gT2
set s1 = (mGetField(gT1, "RecipeID")
set s2 = (mGetField(gT2, "RecipeID")
if (s1 = s2) then
put mGetField(gT1, "RecipeName")&RETURN after field "result"
mGoNext(gT1)
mGoNext(gT2)

else if (s1 < s2) then
mGoNext(gT1)

else
mGoNext(gT2)

end if
end repeat

This Lingo loop performs an AND (intersection) between two selections. It can easily
be modified to perform an OR (union).

If you need to run your query with 3, 4, 5,... sets of criteria, just modify the above
Lingo loop to operate on 3, 4, 5,... V12table instances.

Workaround #2: Marking Records

This technique may be faster if the number of records satisfying the search criteria is
large, but it works only if your database is on a writeable volume (ie, not on CD-
ROM).

In this case, you work with a single gTable instance. In your database structure, for
that table, define an additional indexed field of type Integer named "Marker". Initially,
this field contains 0s for all records.

Then, run the "(Dish is soup or appetizer) and (Main Ingredient is celery or eggplant)"
query in two rounds:

mSetCriteria(gTable, "DishType", "=", "soup")
mSetCriteria(gTable, "OR", "DishType", "=", "appetizer")
mSelect(gtable)

Then, mark all found records:
repeat with i = 1 to mSelectCount(gtable)
mEditRecord(gtable)
mSetField(gtable, "marker", 1)
mUpdateRecord(gtable)

end repeat

Now, run the second part of the query:
mSetCriteria(gTable, "ingredient", "WordEquals", "celery")
mSetCriteria(gTable, "OR", "ingredient", "WordEquals", "eggplant")
mSetCriteria(gTable,"and","marker","=", 1)
mSelect(gtable)

V12-DBE® for Macromedia Director® - User Manual version 3.0 (99/07/27)
©Integration New Media, Inc. 1995-99 page 138

If there is a third part to you query, mark your selection with a 2 in the "Marker" field,
and keep on going. For best performance, the first query must be the most restrictive,
that is, the one that yields the least results.

At the end, restore the marked fields to 0 so to prepare them for another query.

Workaround #3: Field Concatenation

The field concatenation technique works for queries that use ANDs at the lowest level,
and ORs a the higher level, such as:
(Origin is Italian AND Dish is appetizer) or (Origin is French AND Dish is soup)

Furthermore, all of your search criteria — with the possible exception of the last one
— must use the "=" operators. The last operator can be either "=" or "starts".

This technique requires some preparation at the database design step. Such a
preparation is sometimes called data preconditioning.

When designing your database, you plan for additional fields that would hold the
concatenated result of the lowest level queries. For example, in the above example you
would create an additional field named OriginType that would hold the
concatenation of DishOrigin and DishType. That field would contain values such as

"Italian Asparagus al dente"
"Italian Prociutto e melone"
"French Soupe à l'oignon"
"Italian Melanzane del re"
"French Bouillon de merguez au miel"

At runtime, to perform a user query such as
(Origin is Org1 AND Dish is Type1) or (Origin is Org2 AND Dish is Type2)

you run the script
mSetCriteria(gTable, "OriginType", "=", Org1 & Type1)
mSetCriteria(gTable, "OR", "OriginType", "=", Org2 & Type2)
mSelect(gTable)

V12-DBE® for Macromedia Director® - User Manual version 3.0 (99/07/27)
©Integration New Media, Inc. 1995-99 page 139

Appendix 10: Handling Double-Byte Content
V12 Database Engine is 100% compliant to single-byte languages. It can properly
index, sort and search strings of any single-byte language in addition to allowing for
the definition of custom sort and search orders. However, V12-DBE contains the
following limitations with respect to double-byte languages.

Storing and Retrieving Data

Double-byte strings can be successfully stored and retrieved from V12 fields of type
String. The calls to V12-DBE are identical to those used for single-byte strings (see
Step 5: Implementing the User Interface).

To store a double-byte string:
mEditRecord(gTable)
mSetField(gTable, "name", aName) -- a Name is double-byte
mUpdateRecord(gTable)

To retrieve a double-byte string:
set aName = mGetField(gTable, "name")

You can also store and retrieve styled double-byte strings with calls to
mSetField(gTable, "name", member 5 of castlib "V12stuff")
mGetField(gTable, "name", member 5 of castlib "V12stuff")

See Managing Styled Text for details on the storage and retrieval of styled text.

Indexing, Searching and Sorting Data

The indexes of V12 Database Engine version 3.0 are not designed to handle double-
byte strings. This implies the following limitations on the queries that can be expressed
for searching (see Searching Data with mSetCriteria).

•√ the Equal and <> operators works properly, as with single-byte languages.

•√ the Starts operator can fail in certain circumstances, such as when an odd
number of bytes is searched with mSetCriteria.

•√ the Contains operator finds all records that match the specified criteria, but
can also find additional records that don't (Remember: the contains
operator does not take advantage of indexes. It is therefore slow).

•√ the >, <, >=, <= operators will fail most of the time. They would work
properly only in exceptional cases where the sort order of each stored double-
byte string happens to match the numeric (i.e. single-byte) ordering of that
string.

V12-DBE® for Macromedia Director® - User Manual version 3.0 (99/07/27)
©Integration New Media, Inc. 1995-99 page 140

•√ WordEquals and WordStarts cannot be used because, unlike single-byte
languages, delimiting words in double-byte languages require language-
specific dictionaries.

Work Around

A convenient and easy way to work around the above limitations is to manage double-
byte strings as if they were media. That is, only use them for the purpose of storage and
retrieval, and use additional fields of type Integer or single-byte String to store codes
that would determine the searching behavior and sorting order of the corresponding
double-byte strings. Either fields of type String or Media can be used to store such
double-byte strings.

V12-DBE® for Macromedia Director® - User Manual version 3.0 (99/07/27)
©Integration New Media, Inc. 1995-99 page 141

Appendix 11: Printing From V12-DBE
There are three popular ways to print from Director movies:

•√ Directly print Director's stage with the PrintFrom Lingo command. This is very
easy to implement and does not require an additional Xtra. However, it simply
prints Director's stage and thus prints at 75 or so dots-per-inch.

•√ Use the mPrint Xtra (see http://www.mediashoppe.com). mPrint is easy to use and
features an advanced page design tool. However, it only runs on Windows 9x/NT.

•√ Use the PrintOMatic Xtra (see http://www.printomatic.com). PrintOMatic is
available for MacOS, Windows 3.11 and Windows 9x/NT. However, it doesn't
have an interactive page design tool: page layouts must be scripted in Lingo.

mPrint and V12 Database Engine

The main steps to print a report with mPrint are:

1. Use the mPrint designer to layout your reports.

2. Save your report (a *.MPF file) on your hard disk.

3. Choose Code > Generate > Director Lingo (F7) to have mPrint Designer generate
the Lingo script needed for printing.

4. Copy and paste the printing script in a Director handler.

5. Replace variable references (typically designated by the "--value--" strings) by
actual calls to V12-DBE

6. Print your report.

At step 6, you can optionally preview your report instead of printing it by replacing the
call to tMsPrintReport() by tMsPreviewReport()

http://www.mediashoppe.com/
http://www.printomatic.com/

V12-DBE® for Macromedia Director® - User Manual version 3.0 (99/07/27)
©Integration New Media, Inc. 1995-99 page 142

Example #1: printing a specific field in a record

For example, to print the content of selected fields of a record first design as report
similar to this:

"Recommend Diet for" is a mPrint Text object. "FirstName" is a mPrint variable.

In mPrint Designer, choose Code > Generate > Director Lingo. You get the following
script:

tMsRegisterMPrint("mp-xxxxxxxxxx")
tMsCreateReport(the pathname&"myReport.mpf")
tMsBeginRegion("MainRegion")

tMsSetVariable("FirstName","--value--")
tMsEndRegion()
tMsPrintReport()
tMsFreeReport()

Copy this script into your Lingo handler and replace
tMsSetVariable("FirstName","--value--")

by
tMsSetVariable("FirstName", mGetField(gT, "FirstName"))

Your report is ready for printing.

Example #2: printing multiple records from a V12-DBE selection

This example shows how to print the first ten records of a V12-DBE selection with
mPrint. Printing any other number of records, or the entire selection, is similar.

First define a Repeat Region with the mPrint Designer.

"Top Ten Performers" is a mPrint Text object named TEXT1. "FirstName" is a mPrint
variable. The rectangle enclosing "FirstName" is a Repeat Region named
"NameListRegion".

V12-DBE® for Macromedia Director® - User Manual version 3.0 (99/07/27)
©Integration New Media, Inc. 1995-99 page 143

In mPrint Designer, choose Code > Generate > Director Lingo. You get the following
script:

tMsRegisterMPrint("mp-xxxxxxxxxx")
tMsCreateReport(the pathname&"NameList.mpf")
tMsBeginRegion("MainRegion")

repeat with i=1 to "--loop count--"
tMsBeginRegion("NameListRegion")

tMsSetVariable("FirstName","--value--")
tMsEndRegion()
end Repeat

tMsEndRegion()
tMsPrintReport()
tMsFreeReport()

Change this script to obtain the following (changes are in bold):
tMsRegisterMPrint("mp-xxxxxxxxxx")
tMsCreateReport(the pathname&"NameList.mpf")
tMsBeginRegion("MainRegion")

repeat with i=1 to 10
tMsBeginRegion("NameListRegion")

mGo(gT, i)
tMsSetVariable("FirstName", mGetField(gT, "FirstName"))

tMsEndRegion()
end Repeat

tMsEndRegion()
tMsPrintReport()
tMsFreeReport()

Your report is ready for printing.

Example #3: printing multiple columns

This example shows how to print two columns on a mPrint report: the left column is a
list of products. The right column in a list of prices matching each product of the left
column. The right column is right-aligned.

This example also shows how to print a sum at the bottom of a column. This technique
can be easily extended to print a product, mean, standard deviation, etc.

In mPrint Designer, draw two Regions. In each region, create a Repeat Region: one for
each column. In the left region Repeat Region, create a variable named ProductName.
In the right region Repeat Region, create a variable named Price. Open the Properties
of the Price variable, and choose Alignment: Right. Finally, in the PriceColumn
Region but outside of the PriceList Repeat Region, create a variable named Total.

V12-DBE® for Macromedia Director® - User Manual version 3.0 (99/07/27)
©Integration New Media, Inc. 1995-99 page 144

In mPrint Designer, choose Code > Generate > Director Lingo. You obtain the
following script:

tMsRegisterMPrint("mp-xxxxxxxxxx")
tMsCreateReport(the pathname&"TwoCols.mpf")
tMsBeginRegion("MainRegion")

tMsBeginRegion("ProductColumn")
repeat with i=1 to "--loop count--"
tMsBeginRegion("ProductList")

tMsSetVariable("ProductName","--value--")
tMsEndRegion()
end Repeat

tMsEndRegion()
tMsBeginRegion("PriceColumn")

tMsSetVariable("Total","--value--")
repeat with j=1 to "--loop count--"
tMsBeginRegion("PriceList")

tMsSetVariable("Price","--value--")
tMsEndRegion()
end Repeat

tMsEndRegion()
tMsEndRegion()
tMsPrintReport()
tMsFreeReport()

Change this script to obtain the following (changes are in bold):
set n = mGetSelection(gT)
set totalPrice = 0 -- local var to sum up product prices
tMsRegisterMPrint("mp-xxxxxxxxxx")
tMsCreateReport(the pathname&"TwoCols.mpf")
tMsBeginRegion("MainRegion")

tMsBeginRegion("ProductColumn")
repeat with i=1 to n
tMsBeginRegion("ProductList")

mGo(gT, i)
tMsSetVariable("ProductName", mGetField(gT, "pName"))

tMsEndRegion()
end Repeat

tMsEndRegion()
tMsBeginRegion("PriceColumn")

repeat with j=1 to n
tMsBeginRegion("PriceList")

tMsSetVariable("Price", mGetField(gT, "price"))
set totalPrice = totalPrice + mGetField(gT, "price")

V12-DBE® for Macromedia Director® - User Manual version 3.0 (99/07/27)
©Integration New Media, Inc. 1995-99 page 145

tMsEndRegion()
end Repeat
tMsSetVariable("Total", totalPrice)

tMsEndRegion()
tMsEndRegion()
tMsPrintReport()
tMsFreeReport()

Note that the statement that prints "Total" was moved to after the repeat loop.

PrintOMatic and V12 Database Engine

First, initialize PrintOMatic as you normally would, and print the required titles, texts,
tables, etc. A typical PrintOMatic initialization script is:

global doc
set doc = new(xtra "PrintOMatic")
newPage doc -- add a new page

Then, if you want to print the content of a specific V12-DBE field at the current
coordinates location of PrintOMatic, call V12-DBE's mGetField method followed by
PrintOMatic's append method. Example:

set x = mGetField(gT, "FirstName")
append doc, x, FALSE

If you want to print an entire selection, call mGetField in a loop (mGetSelection
cannot be of much help). Example:

repeat with i = 1 to mSelectCount(gT)
set prod = mGetField(gT, "FirstName")
append doc, prod & RETURN, FALSE

end repeat

If you want to compute a function (e.g., number of items, sum, average, product, mean,
standard deviation, etc.), initialize a Lingo variable and keep updating it in your loop.
Example: to compute the average price of all the products in a selection:

set n = mSelectCount(gT)
set total = 0
repeat with i = 1 to n

set prc = mGetField(gT, "price")
append doc, prc & RETURN, FALSE
set total = total + prc

end repeat
append doc, "Total=" & total & REUTRN, FALSE
append doc, "Average=" & total/n & REUTRN, FALSE

To print multiple columns with PrintOMatic, you must first create frames in your
document. For example, to print a list of products along with their corresponding
prices (prices must obviously right-adjust), you would write a script similar to the
following:

on PrintProdAndPrice
set doc = new(xtra "PrintOMatic")
newPage doc -- add a new page

-- products frame is 200 pixels wide, 600 pixels tall
newFrame doc, Rect(0,0,200,600), FALSE
repeat with i = 1 to mSelectCount(gT)
mGo(gT, i)
set prod = mGetField(gT, "prodName")
append doc, prod & RETURN, FALSE

end repeat

-- prices frame is 50 pixels wide, 600 pixels tall

V12-DBE® for Macromedia Director® - User Manual version 3.0 (99/07/27)
©Integration New Media, Inc. 1995-99 page 146

newFrame doc, Rect(200,0,250,600), FALSE
setTextJust doc, "right" -- right-align column
repeat with i = 1 to to mSelectCount(gT)
mGo(gT, i)
set price = mGetField(gT, "prodName")
append doc, price & RETURN, FALSE

end repeat

printPreview doc -- or, to print: print doc
set doc=0

end PrintProdAndPrice

It is very convenient, with PrintOMatic, to first preview your page before printing it.
To preview a page, call

printPreview doc

To print a document, call
print doc

Note The reports printed by the above PrintOMatic sample scripts
are not visually identical to the ones illustrated in the mPrint
section. You need to add a few page layout and font styling
scripts to match those illustrations.

V12-DBE® for Macromedia Director® - User Manual version 3.0 (99/07/27)
©Integration New Media, Inc. 1995-99 page 147

Appendix 12: Optimization Using Indexes
Two methods in V12-DBE take advantage of database indexes: mOrderBy and
mSelect.

mSelect chooses the index that delivers the fastest search time based on the database
structure. It does an excellent job most of the time. However, it can be fooled in some
extreme cases where the actual data in the database is not uniform. In such cases, you
can optimize your queries to further improve searching time.

mOrderBy indifferently uses any one index defined for the field it sorts (if more than
one such index is defined). There is no performance handicap in using one index or
another. However, at any time, only one index can be used by V12-DBE. Thus, if you
call mOrderBy and mSelect in a single query, V12-DBE uses the best index it can to
build the selection, and then sorts the selection without relying on indexes1.

mSelect chooses its best index based on the following algorithm. Assume that your
query is :

(Field1 = A) AND (Field2 starts B) AND (Field3 < C)

V12-DBE first checks if Field1 is the first segment of an index (i.e., a simple index is
defined for it, or it is the first field of a compound index). If such an index exists, it is
automatically considered to be the best index for the query. Otherwise, V12-DBE
checks if Field2 is the first segment of an index. If so, that index is the best index for
the query. Otherwise, V12-DBE attempts to apply the same logic to Field3. If none of
Field1, Field2 and Field3 is indexed, or appears in the first segment of a
compound index, the table's default index is used.

Note This logic does not apply to OR operators. AND operators
further refine a selection, whereas OR operators constantly
add new data to them. This is also why queries with ORs are
slower than those with ANDs.

The index chosen by mSelect determines the selection's default sorting. Thus, if
Field1 is not indexed and Field2's index is chosen, the following script yields a
selection sorted by Field2:

mSetCriteria(gT, "Field1", "=", A)
mSetCriteria(gT, "AND", "Field2", "starts", B)
mSetCriteria(gT, "AND", "Field3", "<", C)
mSelect(gT)

1 Actually, V12-DBE can use two or more indexes for a single search. However, for
the purpose of combined search and sort operations, using an index for sorting would
require more CPU effort than actually sorting the selection with Quicksort. Quicksort
is the most efficient sorting algorithm known to date.

V12-DBE® for Macromedia Director® - User Manual version 3.0 (99/07/27)
©Integration New Media, Inc. 1995-99 page 148

Further assume that Field2 contains a lot of duplicate values, the sub-sorting order of
the duplicate records would be determined by the chosen index's second segment, or
the order in which records are input if the chosen index is not compound.

As a result, you can control the sorting order of your selection without calling
mOrderBy.

Example: consider the following address book table
[TABLE]
Addresses
[FIELDS]
LastName string
FirstName string
YearOfBirth integer
[INDEXES]
LastNameNdx duplicate LastName ascending
FirstNameNdx duplicate FirstName ascending

The following query uses the index LastNameNdx. It delivers a selection sorted by
LastName and then by order of input. Since all the last names in the selection would
be identical ("Smith"), the selection's sorting order would be the order in which records
were added to the database.

mSetCriteria(gT, "LastName", "=", "Smith")
mSelect(gT)

If you need to sort all the Smiths in your table by order of First Name, run the
following script:

mSetCriteria(gT, "LastName", "=", "Smith")
mOrderBy(gT, "FirstName")
mSelect(gT)

You can optimize this script by slightly modifying your database structure as follows:
[TABLE]
Addresses
[FIELDS]
LastName string
FirstName string
YearOfBirth integer
[INDEXES]
LastNameNdx duplicate LastName ascending FirstName ascending
FirstNameNdx duplicate FirstName ascending

By adding FirstName to the LastNameNdx index, your initial script:
mSetCriteria(gT, "LastName", "=", "Smith")
mSelect(gT)

yields a selection sorted by FirstName.

You can further optimize your queries by imposing a specific index for your search, if
more than one index fits the best index criteria.

Assume, for example, that your table contains two compound indexes: one for
LastName/FirstName and one for LastName/YearOfBirth:

[TABLE]
Addresses
[FIELDS]
LastName string
FirstName string
YearOfBirth integer
[INDEXES]

V12-DBE® for Macromedia Director® - User Manual version 3.0 (99/07/27)
©Integration New Media, Inc. 1995-99 page 149

LastFirstNdx duplicate LastName ascending FirstName ascending
LastBirthNdx duplicate LastName ascending YearOfBirth ascending
FirstNameNdx duplicate FirstName ascending

The query:
mSetCriteria(gT, "LastName", "=", "Smith")
mSelect(gT)

automatically chooses LastFirstNdx as its best index, thus delivering a selection
sorted by LastName and then FirstName. If you need your selection sorted by
LastName and then YearOfBirth, run the following script:

mSetCriteria(gT, "LastName", "=", "Smith")
mSetCriteria(gT, "AND", "YearOfBirth", ">", 0) -- bogus criterion
mSelect(gT)

The criterion (YearOfBirth > 0) does not affect your selection in any way (since
any data stored in this field is always greater than 0). However, its presence forces
V12-DBE to use the LastBirthNdx index thus resulting in a selection sorted by
YearOfBirth.

V12-DBE® for Macromedi
©Integration New Media, I

Appendix 13: Resolving Relations
A relational database stores data in two or more tables and establishes links between
records2.

For example, if you are tracking students scores, you would have two tables: one to
identify students, and one to log tests results. Following is a typical relational database
structure for student tracking:

[TABLE]
Students

[FIELDS]
ID integer indexed
LastName string indexed
FirstName string
Email string
Faculty string

[TABLE]
Scores

[FIELDS]
StudentID integer indexed
TestID integer indexed
Score integer indexed
TimeSpent integer

Table Students and Scores are related to each other through their respective ID and
StudentID fields. A shorthand notation to express this is:

StudentIDScoresIDStudents
N

::::
1−
→

1-N means that many records in the Scores table can be related to a single record in
the Students table, and that to each record in the Scores table is related to exactly
one record in the Students table. This is called a One-To-Many relation.

Example:

If you look a
you get a N-1

2 In exceptio
of the same t

ID La
127 C
128 Bro
129 Mc

tID S
81
84
15
81
15
S TU D E N TS
stName FirstName …
artman Eric …
slowsky Kyle …
Cormick Kenny …

Tes
10
12
20
10
20
a Director® - User Manual
nc. 1995-99

t the relation the other way around, that
, or Many-to-One relation noted:

StStudentIDScores
N

::
1−

→

nal cases, relations can be established f
able.

1081
S C OR E S
tudentID Score …

127 90 …
127 45 …
127 98 …
128 75 …
128 65 …
129 66 …
version 3.0 (99/07/27)
page 150

is starting from the Scores table,

IDudents ::

rom a table's records onto records

V12-DBE® for Macromedia Director® - User Manual version 3.0 (99/07/27)
©Integration New Media, Inc. 1995-99 page 151

Assume that we add a Tests table to the database to store the description of each test.

[TABLE]
Tests

[FIELDS]
ID integer indexed
Title string indexed
Topic string indexed
Author string
CreationDate date
LastUpdateDate date

Field TestID of table Scores refers to field ID of table Tests. This is another Many-
to-One relation:

IDTestsTestIDScores
N

::::
1−

→

Example:

The structure of the overall database now contains three tables and can be represented
by the following Entity-Relation Diagram.

Many-to-OneMany-to-One

SCORES
 TestID integer
 StudentID integer
 Score integer
 TimeSpent integer

TESTS
 ID integer
 Title string
 Topic string
 Author string
 CreationDate date
 LastUpdateDate date

STUDENTS
ID integer
LastName string
FirstName string
Email string
Facul ty string

Tables Students and Tests are said to be in a Many-to-Many relation.

In this example, we were lucky enough to have a Scores tables that naturally links
Students and Tests, but in many cases, creating a Many-to-Many relation is not
obvious: you often need to create a fake table that only contains the IDs of both sides'
entities. Such a table is called an Associative Table: It's sole purpose is to put other
tables in relation with each other.

V12 Database Engine does not contain a language that automatically resolve relations
between tables. Instead, it relies on Lingo to do so.

S C OR E S
StudentID TestID …

127 1081 …
127 1284 …
127 2015 …
128 1081 …
128 2015 …
129 1081 …

S TU D E N TS
ID LastName …

127 Cartman …
128 Broslowsky …
129 McCormick …

TE S TS
ID Title …

1081 Trigonometry …
1284 Genetics …
2015 Rocket Science …

V12-DBE® for Macromedia Director® - User Manual version 3.0 (99/07/27)
©Integration New Media, Inc. 1995-99 page 152

Resolving a One-to-Many Relation

In the above example, resolving a One-to-Many relation from the Students table is
something like "given a Student's last name, select all the records in table Scores that
a related to it". The following script performs this operation:

-- first locate record of student who's last name is LName
mSetCriteria(gTStudents, "LastName", "=", LName)
mSelect(gTStudents)
-- get student's ID
sID = mGetField(gTStudents, "ID")
-- look for score records where StudentID is sID
mSetCriteria(gTScores, "StudentID", "=", sID)
mOrderBy(gTScores, "Score") -- sorting is optional
mSelect(gTScores)

At the end of this script, gTScores'selection contains LName's scores sorted lowest
to highest.

Example: if LName was assigned the string "Cartman" in the above example, after the
execution of the above script, table gTScores' selection would contain:

S C OR E S
TestID StudentID Score …
1284 127 45 …
1081 127 90 …
2015 127 98 …

Resolving a Many-to-One Relation

Resolving a Many-to-One relation would be something like "given a score record,
which student does it belong to?". The script that answers this question is:

-- first get sID of Score record
sID = mGetField(gTScores, "StudentID")
mSetCriteria(gTStudents, "ID", "=", sID)
mSelect(gTStudents)

At the end of this script, gTStudents' current record is the one gTScores's current
record is related to.

Example: if the current record in table gTScores was

1081 128 75 …
the corresponding record in table gStudents would be

128 Broslowsky Kyle …

Another more complex Many-to-One relation resolving question would be "list the last
names of all the students who scored 75 or higher at test number 1081". It can be
answered by the following script:

-- first locate all Scores records that match criteria
mSetCriteria(gTScores, "TestID", "=", 1081)
mSetCriteria(gTScores, "AND", "Score", ">=", 75)
mSelect(gTScores)
-- loop through all Student Ids and append them to member "result"
put EMPTY into field "result"
repeat with i = 1 to mSelectCount(gTScores)

mGo(gTScores, i)
sID = mGetField(gTScores, "StudentID")

V12-DBE® for Macromedia Director® - User Manual version 3.0 (99/07/27)
©Integration New Media, Inc. 1995-99 page 153

mSetCriteria(gTStudents, "ID", "=", sID)
mSelect(gTStudents)
put mGetField(gTStudents, "LastName")&RETURN after field "result"

end repeat

Example: if we run this script on the above example, we would get:
Cartman
Broslowsky

This script lists the last names of all the students that match the specified criteria in a
Director member, in contrast to the previous script which leaves them in a V12-DBE
selection. Although a V12-DBE selection can be easily dumped to a Director field, the
opposite is not true.

Thus, if you need to further manage the list of last names created above, you must set
the current record to the one that matches a specific last name's and then perform the
required operation. This is sometimes called the lazy approach, whereby a piece of
data is accessed only when it is needed (as opposed to processing data before it is
actually needed, which may yield faster results, but at a higher pre-processing
overhead). V12-DBE's high-speed data search and retrieval routines enable you to
implement the lazy approach without handicap of performance.

Resolving a Many-to-Many Relation

Resolving Many-to-Many relations is much more complex than resolving other types
of relations. Even powerful query languages such as SQL cannot perform this
operation in a simple way.

A typical Many-to-Many relation resolving question in the above example would be
"list the last names of all the students who took Mrs. Crabtree's tests". Assuming that
table Tests possibly contains zero, one or more tests authored by Mrs. Crabtree, we
would run the following script:

-- find all students who took one of Mrs.Crabtree's tests
-- first locate all Tests authored by Mrs Crabtree
mSetCriteria(gTests, "Author", "=", "Crabtree")
mSelect(gTests)
put EMPTY into field "result"
-- loop through each test created by Mrs.Crabtree
repeat with i = 1 to mSelectCount(gTests)
mGo(gTests, i)
set tID = mGetField(gTests, "ID")
mSetCriteria(gTScores, "testID", "=", tID)
mSelect(gTScores)
-- loop through student IDs and retrieve name
repeat with j = 1 to mSelectCount(gTScores)
mGo(gTScores, j)
mSetCriteria(gTstudents, "ID", "=",)
mSelect(gTstudents)
put mGetField(gTStudents, "LastName")&RETURN after ¬

field "result"
end repeat

end repeat

For example, assuming that Mrs. Crabtree is the author of both the Trigonometry and
the Rocket Science courses, running this script on the above example would yield the
following result:

Cartman
Broslowsky

V12-DBE® for Macromedia Director® - User Manual version 3.0 (99/07/27)
©Integration New Media, Inc. 1995-99 page 154

McCormick
Broslowsky

A shortcoming of this script is it's inability to sort the results, or to remove duplicates
from the results. A possible work around this limitation consists in creating an
additional field named Marker in table Students and, instead of immediately listing
all last names in field "result", setting the Marker field of found records to 1. At the
end, just find all marked records in table Students. Of course, this requires the
database to be on a writeable volume.

-- find all students who took one of Mrs.Crabtree's tests
-- and list their last names in alphabetic order, without duplicates
-- first locate all Tests authored by Mrs Crabtree
mSetCriteria(gTests, "Author", "=", "Crabtree")
mSelect(gTests)
put EMPTY into field "result"
-- loop through each test created by Mrs.Crabtree
repeat with i = 1 to mSelectCount(gTests)
mGo(gTests, i)
set tID = mGetField(gTests, "ID")
mSetCriteria(gTScores, "testID", "=", tID)
mSelect(gTScores)
-- loop through student IDs and retrieve name
repeat with j = 1 to mSelectCount(gTScores)
mGo(gTScores, j)
set sID = mGetField(gTScores, "StudentID")
mSetCriteria(gTstudents, "ID", "=",)
mSelect(gTstudents)
-- mark the found record
mEditRecord(gTstudents)
mSetField(gTstudents, "Marker", 1)
mUpdateRecord(gTstudents)

end repeat
end repeat
-- once all records are marked, select them all
mSetCriteria(gTstudents, "Marker", "=", 1)
mOrderBy(gTstudents, "LastName")
mSelect(gTstudents)
put mGetField(gTstudents, "literal") into field "results"
-- DO NOT forget to restore Markers to 0 to prepare
-- for next search

In the above example, this modified script would yield the result:
Broslowsky
Cartman
McCormick

V12-DBE® for Macromedia Director® - User Manual version 3.0 (99/07/27)
©Integration New Media, Inc. 1995-99 page 155

Appendix 14: Modifying a Database Structure
Once a V12 database is created, modifying its structure is not an easy task. Because
V12-DBE files are optimized both for speed and file size, only a limited number of
modifications are allowed to an existing database. For example, to add a field to an
existing table, you must first create a new table, create all fields and indexes in it
including your new field, import all your records to the new table and finally delete the
old table.

The methods used to modify an existing V12 database are (see details in Methods
References):

mEditDBStructure
mUpdateDBStructure
mCreateField
mCreateFullIndex
mCreateIndex
mCreateTable
mDeleteTable
mRenameField

Modifying an existing database's structure is a tedious task and can be easily worked
around as follows:

1. Dump the structure of your initial database (see Viewing the Structure of a
Database).

2. Modify the returned database descriptor.

3. Create a new V12 database based on the modified descriptor.

4. Import the content of each table to the new V12 database (see Importing from
V12-DBE).

The above steps can be executed either through Lingo handlers, or using the V12-DBE
Tool.

V12-DBE® for Macromedia Director® - User Manual version 3.0 (99/07/27)
©Integration New Media, Inc. 1995-99 page 156

Appendix 15: Data Encryption
Though V12 Databases are password-protected and as such can not be readily opened
by other V12-DBE users, they are not encrypted. This means that a hacker using the
right tools (e.g., a hexadecimal editor) can open a V12 database and view its content.
In more exceptional cases, s/he can modify data in it, although this is very hard to
accomplish without corrupting the database.

This applies to V12-DBE as well as FileMaker Pro, MS Access and many other
database management systems.

To protect you V12 database from illegal viewing and/or tampering, you can use
simple techniques such as giving it a system file's name or making it invisible to the
Mac Finder or Windows Explorer.

If you really need to encrypt your data, you can use a third party Xtras (see
http://www.macromedia.com/software/xtras/director) or use your own Lingo
encryption handler. In either case, you will not be able to index encrypted strings.
Searching and sorting encrypted indexed strings would not work properly. Encrypted
fields must rely on other non-encrypted fields for searching and sorting.

The following Lingo handlers enable the encryption and decryption of strings based on
a variation of the One-Time Pad algorithm. One-Time Pad is very easy to program,
however it is only moderately secure, especially if a hacker is entitled to generate large
amounts of original/encrypted message pairs.

global gEncryptKey

on initCrypt
-- change this encryption key to the string of your choice.
-- The longer the string, the stronger your encryption algorithm.
set gEncryptKey = "thisisthesecretkey."

end initCrypt

on encrypt str
set res = ""
-- avoid redundant calls: compute lengths in advance
set keyLength = length (gEncryptKey)
set strLength = length (str)
repeat with i = 1 to strLength
set keyIdx = i mod keyLength
set tmp = numToChar ((charToNum (char i of str) + charToNum ¬

(char keyIdx of gEncryptKey)) mod 256)
-- check if resulting string contains 0.
-- if so, Director would trucate the string.
if (tmp = numToChar (0)) then
-- the escape code for a 00 char is 0102
set tmp = numToChar (1) & numToChar (2)

-- encode 01 as well to differentiate from encoded "0"s
else if (tmp = numToChar (1)) then
set tmp = tmp & tmp -- the escape code for a 01 char is 0101

end if

set res = res & tmp
end repeat
return res

end encrypt

http://www.macromedia.com/software/xtras/director

V12-DBE® for Macromedia Director® - User Manual version 3.0 (99/07/27)
©Integration New Media, Inc. 1995-99 page 157

on decrypt str
set res = ""
-- first clean up escape codes
set str = cleanEscape (str)
set keyLength = length (gEncryptKey)
set strLength = length (str)
repeat with i = 1 to strLength
set keyIdx = i mod keyLength
set res = res & numToChar ((charToNum (char i of str) - ¬

charToNum (char keyIdx of gEncryptKey) + 256) mod 256)
end repeat
return res

end decrypt

on cleanEscape str
-- just replace every instance of 0101 by 01, and 0102 by 00
set res = ""
set strLength = length (str)
repeat with i = 1 to strLength
if (charToNum (char i of str) = 1) then
if (charToNum (char i + 1 of str) = 2) then
set res = res & numToChar (0)

else if (charToNum (char i + 1 of str) = 1) then
set res = res & numToChar (1)

end if
set i = i + 1

else
set res = res & char i of str

end if
end repeat
return res

end cleanEscape

To use the above handlers, first assign the encryption key of your choice to the global
variable gEncryptKey. Then, at startup, call initCrypt (e.g., on StartMovie). To
store an encrypted string to a V12 table, call:

mSetField(gT, "Account", encrypt(secretData))

To retrieve an encrypted string from a V12 table, call:
set x = decrypt (mGetField(gT, "Account", encrypt(secretData))

You can further enhance the strength of your encryption by creating an additional field
in your table for the encryption key — as opposed to using the same global
gEncryptKey for all fields and records. Thus, each record would be encrypted with a
different key, making it harder to hackers to crack your algorithm.

If you want to encrypt dates, floats or integers, convert them to strings first.

V12-DBE® for Macromedia Director® - User Manual version 3.0 (99/07/27)
©Integration New Media, Inc. 1995-99 page 158

Appendix 16: String and Custom String Types
V12-DBE enables you to develop applications containing different types of strings
such as English, German, Swedish and Spanish. Basically, each V12-DBE table can
contain any combination of those string types.

String comparisons depend on how special characters are defined in their
corresponding languages. For example, the letters a and ä may be considered identical
in some languages but different in others. This behavior is determined by the sorting
and searching rules attached to each type of string.

V12-DBE's default and custom String types' sorting and searching rules are defined by
the following tables where equivalent characters are listed on the same line separated
by one or more spaces and strict precedence is indicated by characters on successive
lines. For example:

j J
k K
l L

means that:
•√ K sorts after J and before L,
•√ j and J are equivalent (likewise, k and K are equivalent, and l and L are

equivalent too)

Characters omitted from a sorting and searching rules table are considered to sort after
those listed in the table, except for Control characters (such as Carriage Return,
Horizontal Tab, Vertical Tab, etc.) which are considered to sort before those listed in
the table.

The default string
The default string type has predefined rules that accommodate a large number of
languages (English, French, German, Italian, Dutch, Portuguese, Norwegian, etc.).

(If the tables below are not properly formatted in the HTML version of this manual,
please refer to the PDF version)

Its sorting and searching rules table is:
1. ' ‘ ’
2. " « » “ ”
3. ! ¡
4. ? ¿
5. .
6. ,
7. :
8. ;
9. …
10. #
11. $

39. 1
40. 2
41. 3
42. 4
43. 5
44. 6
45. 7
46. 8
47. 9
48. a à á â ã ä A À Á Â Ã Ä
49. b B

V12-DBE® for Macromedia Director® - User Manual version 3.0 (99/07/27)
©Integration New Media, Inc. 1995-99 page 159

12. ¢
13. £
14. ¥
15. % ‰
16. °
17. |
18. † ‡
19. []
20. { }
21. ()
22. < >
23. *
24. +
25. -
26. /
27. \
28. =
29. ~
30. ¬ - – —
31. §
32. µ
33. &
34. @
35. ©
36. ƒ
37. ®
38. 0

50. c ç C Ç
51. d D
52. e è é ê ë E È É Ê Ë
53. f F
54. g G
55. h H
56. i ì í î ï I Ì Í Î Ï
57. j J
58. k K
59. l L
60. m M
61. n ñ N Ñ
62. o ò ó ô õ ö œ O Ò Ó Ô Õ Ö Œ
63. p P
64. q Q
65. r R
66. s ß S
67. t T
68. u ù ú û ü U Ù Ú Û Ü
69. v V
70. w W
71. x X
72. y ÿ Y Ÿ
73. z Z
74. æ Æ
75. ø Ø
76. å Å

V12-DBE® for Macromedia Director® - User Manual version 3.0 (99/07/27)
©Integration New Media, Inc. 1995-99 page 160

Predefined Custom String Types
Along with the standard string type, V12-DBE contains a number of predefined
custom string types. They include Swedish, Spanish and Hebrew.

Searching and Sorting rules for Strings of Type Swedish
(If the tables below are not properly formatted in the HTML version of this manual,
please refer to the PDF version)

1. ' ‘ ’
2. " « » “ ”
3. ! ¡
4. ? ¿
5. .
6. ,
7. :
8. ;
9. …
10. #
11. $
12. ¢
13. £
14. ¥
15. % ‰
16. °
17. |
18. † ‡
19. []
20. { }
21. ()
22. < >
23. *
24. +
25. -
26. /
27. \
28. =
29. ~
30. ¬ - – —
31. §
32. µ
33. &
34. @
35. ©
36. ƒ
37. ®
38. 0
39. 1

77. 2
78. 3
79. 4
80. 5
81. 6
82. 7
83. 8
40. 9
41. a à á â ã A À Á Â Ã
42. b B
43. c ç C Ç
44. d D
45. e è é ê ë E È É Ê Ë
46. f F
47. g G
48. h H
49. i ì í î ï I Ì Í Î Ï
50. j J
51. k K
52. l L
53. m M
54. n ñ N Ñ
55. o ò ó ô õ œ O Ò Ó Ô Õ Œ
56. p P
57. q Q
58. r R
59. s ß S
60. t T
61. u ù ú û ü U Ù Ú Û Ü
62. v V
63. w W
64. x X
65. y ÿ Y Ÿ
66. z Z
67. æ Æ
68. ø Ø
69. å Å
70. ä Ä
71. ö Ö

V12-DBE® for Macromedia Director® - User Manual version 3.0 (99/07/27)
©Integration New Media, Inc. 1995-99 page 161

Searching and Sorting rules for Strings of Type Spanish
(If the tables below are not properly formatted in the HTML version of this manual,
please refer to the PDF version)

1. ' ‘ ’
2. " « » “ ”
3. ! ¡
4. ? ¿
5. .
6. ,
7. :
8. ;
9. …
10. #
11. $
12. ¢
13. £
14. ¥
15. % ‰
16. °
17. |
18. † ‡
19. []
20. { }
21. ()
22. < >
23. *
24. +
25. -
26. /
27. \
28. =
29. ~
30. ¬ - – —
31. §
32. µ
33. &
34. @
35. ©
36. ƒ
37. ®
38. 0
39. 1

40. 2
41. 3
42. 4
43. 5
44. 6
45. 7
46. 8
47. 9
48. a à á â ã ä A À Á Â Ã Ä
49. b B
50. c ç C Ç
51. d D
52. e è é ê ë E È É Ê Ë
53. f F
54. g G
55. h H
56. i ì í î ï I Ì Í Î Ï
57. j J
58. k K
59. l L
60. m M
61. n N
62. ñ Ñ
63. o ò ó ô õ ö œ O Ò Ó Ô Õ Ö Œ
64. p P
65. q Q
66. r R
67. s ß S
68. t T
69. u ù ú û ü U Ù Ú Û Ü
70. v V
71. w W
72. x X
73. y ÿ Y Ÿ
74. z Z
75. æ Æ
76. ø Ø
77. å Å

V12-DBE® for Macromedia Director® - User Manual version 3.0 (99/07/27)
©Integration New Media, Inc. 1995-99 page 162

Searching and Sorting rules for Strings of Type Hebrew
(If the tables below are not properly formatted in the HTML version of this manual,
please refer to the PDF version)

(requires a hebrew font such as "Web Hebrew")
1. ' ’ ‘
2. " « » ” “
3. ! ¡
4. ? ¿
5. .
6. ,
7. :
8. ;
9. …
10. #
11. $
12. ¢
13. £
14. ¥
15. % ‰
16. °
17. |
18. † ‡
19. []
20. { }
21. ()
22. < >
23. *
24. +
25. -
26. /
27. \
28. =
29. ~
30. - – ¬
31. §
32. µ
33. &
34. @
35. ©
36. ƒ
37. ®
38. à (aleph)
39. á (beth)
40. â (ghimel)
41. ã (daleth)
42. ä (he)
43. å (vau)
44. æ (zain)
45. ç (heth)
46. è (teth)
47. é (iod)
48. ê ë (caph)
49. ì (lamed)

50. í î (mem)
51. ï ð (nun)
52. ñ (samech)
53. ò (ain)
54. ó ô (phe)
55. õ ö (sadi)
56. ÷ (koph)
57. ø (resch)
58. ù (sin)
59. ú (tau)
60. 0
61. 1
62. 2
63. 3
64. 4
65. 5
66. 6
67. 7
68. 8
69. 9
70. a A À Á Â Ã Ä
71. b B
72. c C Ç
73. d D
74. e E È É Ê Ë
75. f F
76. g G
77. h H
78. i I Ì Í Î Ï
79. j J
80. k K
81. l L
82. m M
83. n N Ñ
84. o O Ò Ó Ô Õ Ö
85. p P
86. q Q
87. r R
88. s ß S
89. t T
90. u û ü U Ù Ú Û Ü
91. v V
92. w W
93. x X
94. y ÿ Y Ÿ
95. z Z
96. Æ
97. Ø
98. Å

V12-DBE® for Macromedia Director® - User Manual version 3.0 (99/07/27)
©Integration New Media, Inc. 1995-99 page 163

User-definable Custom String Types
In addition to V12-DBE's predefined string types, you can define your own string types
with mSetProperty. Up to 32 custom types can be defined, including the ones
already predefined in V12-DBE.

To define your own sorting and searching rules, build a table similar to the ones listed
above in a Director member of type Field. Equivalent characters are listed on a single
line, whereas precedence is indicated by successive lines.

Then, call mSetProperty with the keyword "String." (note the period after String)
followed by the name of the custom string type.

For example, if your sorting and searching rules are defined in a Director field named
"Klingon-Sort-Order" and if the new custom string type is "Klingon", the following
statement defines the new custom type:

mSetProperty(gDB, "String.Klingon", field "Klingon-Sort-Order")

From then on, the type String.Klingon can be used in mCreateField and
mReadDBstructure to define new fields.

V12-DBE® for Macromedia Director® - User Manual version 3.0 (99/07/27)
©Integration New Media, Inc. 1995-99 page 164

Appendix 17: Chatacter sets

Windows-ANSI Character Set
(If the tables below are not properly formatted in the HTML version of this manual,
please refer to the PDF version)

32
33 !
34 "
35 #
36 $
37 %
38 &
39 '
40 (
41)
42 *
43 +
44 ,
45 -
46 .
47 /
48 0
49 1
50 2
51 3
52 4
53 5
54 6
55 7
56 8
57 9
58 :
59 ;
60 <
61 =
62 >
63 ?
64 @
65 A
66 B
67 C
68 D
69 E

70 F
71 G
72 H
73 I
74 J
75 K
76 L
77 M
78 N
79 O
80 P
81 Q
82 R
83 S
84 T
85 U
86 V
87 W
88 X
89 Y
90 Z
91 [
92 \
93]
94 ^
95 _
96 `
97 a
98 b
99 c
100 d
101 e
102 f
103 g
104 h
105 i
106 j
107 k

108 l
109 m
110 n
111 o
112 p
113 q
114 r
115 s
116 t
117 u
118 v
119 w
120 x
121 y
122 z
123 {
124 |
125 }
126 ~
127 �
128 �
129 �
130 ‚
131 ƒ
132 „
133 …
134 †
135 ‡
136 ˆ
137 ‰
138 Š
139 ‹
140 Œ
141 �
142 �
143 �
144 �
145 ‘

146 ’
147 “
148 ”
149 •
150 –
151 —
152 ˜
153 ™
154 š
155 ›
156 œ
157 �
158 �
159 Ÿ
160
161 ¡
162 ¢
163 £
164 ¤
165 ¥
166 ¦
167 §
168 ¨
169 ©
170 ª
171 «
172 ¬
173 -
174 ®
175 ¯
176 °
177 ±
178 ²
179 ³
180 ´
181 µ
182 ¶
183 ·

184 ¸
185 ¹
186 º
187 »
188 ¼
189 ½
190 ¾
191 ¿
192 À
193 Á
194 Â
195 Ã
196 Ä
197 Å
198 Æ
199 Ç
200 È
201 É
202 Ê
203 Ë
204 Ì
205 Í
206 Î
207 Ï
208 Ð
209 Ñ
210 Ò
211 Ó
212 Ô
213 Õ
214 Ö
215 ×
216 Ø
217 Ù
218 Ú
219 Û
220 Ü
221 Ý

222 Þ
223 ß
224 à
225 á
226 â
227 ã
228 ä
229 å
230 æ
231 ç
232 è
233 é
234 ê
235 ë
236 ì
237 í
238 î
239 ï
240 ð
241 ñ
242 ò
243 ó
244 ô
245 õ
246 ö
247 ÷
248 ø
249 ù
250 ú
251 û
252 ü
253 ý
254 þ
255 ÿ

V12-DBE® for Macromedia Director® - User Manual version 3.0 (99/07/27)
©Integration New Media, Inc. 1995-99 page 165

Mac-Standard Character Set
(If the tables below are not properly formatted in the HTML version of this manual,
please refer to the PDF version)

32
33 !
34 "
35 #
36 $
37 %
38 &
39 '
40 (
41)
42 *
43 +
44 ,
45 -
46 .
47 /
48 0
49 1
50 2
51 3
52 4
53 5
54 6
55 7
56 8
57 9
58 :
59 ;
60 <
61 =
62 >
63 ?
64 @
65 A
66 B
67 C
68 D
69 E

70 F
71 G
72 H
73 I
74 J
75 K
76 L
77 M
78 N
79 O
80 P
81 Q
82 R
83 S
84 T
85 U
86 V
87 W
88 X
89 Y
90 Z
91 [
92 \
93]
94 ^
95 _
96 `
97 a
98 b
99 c
100 d
101 e
102 f
103 g
104 h
105 i
106 j
107 k

108 l
109 m
110 n
111 o
112 p
113 q
114 r
115 s
116 t
117 u
118 v
119 w
120 x
121 y
122 z
123 {
124 |
125 }
126 ~
127 �
128 Ä
129 Å
130 Ç
131 É
132 Ñ
133 Ö
134 Ü
135 á
136 à
137 â
138 ä
139 ã
140 å
141 ç
142 é
143 è
144 ê
145 ë

146 í
147 ì
148 î
149 ï
150 ñ
151 ó
152 ò
153 ô
154 ö
155 õ
156 ú
157 ù
158 û
159 ü
160 †
161 °
162 ¢
163 £
164 §
165 •
166 ¶
167 ß
168 ®
169 ©
170 ™
171 ´
172 ¨
173 �
174 Æ
175 Ø
176 �
177 ±
178 �
179 �
180 ¥
181 µ
182 ð
183 Ý

184 Þ
185 þ
186 Š
187 ª
188 º
189 ý
190 æ
191 ø
192 ¿
193 ¡
194 ¬
195 ¯
196 ƒ
197 ¼
198 Ð
199 «
200 »
201 …
202
203 À
204 Ã
205 Õ
206 Œ
207 œ
208 -
209 —
210 “
211 ”
212 ‘
213 ’
214 ÷
215 ×
216 ÿ
217 Ÿ
218 �
219 ¤
220 ‹
221 ›

222 �
223 �
224 ‡
225 ·
226 ‚
227 „
228 ‰
229 Â
230 Ê
231 Á
232 Ë
233 È
234 Í
235 Î
236 Ï
237 Ì
238 Ó
239 Ô
240 �
241 Ò
242 Ú
243 Û
244 Ù
245 ¦
246 ˆ
247 ˜
248 –
249 š
250 ²
251 ¾
252 ¸
253 ½
254 ³
255 ¹

V12-DBE® for Macromedia Director® - User Manual version 3.0 (99/07/27)
©Integration New Media, Inc. 1995-99 page 166

MS-DOS Character Set
(If the tables below are not properly formatted in the HTML version of this manual,
please refer to the PDF version)

32
33 !
34 "
35 #
36 $
37 %
38 &
39 '
40 (
41)
42 *
43 +
44 ,
45 -
46 .
47 /
48 0
49 1
50 2
51 3
52 4
53 5
54 6
55 7
56 8
57 9
58 :
59 ;
60 <
61 =
62 >
63 ?
64 @
65 A
66 B
67 C
68 D
69 E

70 F
71 G
72 H
73 I
74 J
75 K
76 L
77 M
78 N
79 O
80 P
81 Q
82 R
83 S
84 T
85 U
86 V
87 W
88 X
89 Y
90 Z
91 [
92 \
93]
94 ^
95 _
96 `
97 a
98 b
99 c
100 d
101 e
102 f
103 g
104 h
105 i
106 j
107 k

108 l
109 m
110 n
111 o
112 p
113 q
114 r
115 s
116 t
117 u
118 v
119 w
120 x
121 y
122 z
123 {
124 |
125 }
126 ~
127 �
128 Ç
129 ü
130 é
131 â
132 ä
133 à
134 å
135 ç
136 ê
137 ë
138 è
139 ï
140 î
141 ì
142 Ä
143 Å
144 É
145 æ

146 Æ
147 ô
148 ö
149 ò
150 û
151 ù
152 ÿ
153 Ö
154 Ü
155 ø
156 £
157 Ø
158 ×
159 ƒ
160 á
161 í
162 ó
163 ú
164 ñ
165 Ñ
166 ª
167 º
168 ¿
169 ®
170 ¬
171 ½
172 ¼
173 ¡
174 «
175 »
176 _
177 _
178 _
179 ¦
180 ¦
181 Á
182 Â
183 À

184 ©
185 ¦
186 ¦
187 +
188 +
189 ¢
190 ¥
191 +
192 +
193 -
194 -
195 +
196 -
197 +
198 ã
199 Ã
200 +
201 +
202 -
203 -
204 ¦
205 -
206 +
207 ¤
208 ð
209 Ð
210 Ê
211 Ë
212 È
213 i
214 Í
215 Î
216 Ï
217 +
218 +
219 _
220 _
221 ¦

222 Ì
223 _
224 Ó
225 ß
226 Ô
227 Ò
228 õ
229 Õ
230 µ
231 þ
232 Þ
233 Ú
234 Û
235 Ù
236 ý
237 Ý
238 ¯
239 ´
240 -
241 ±
242 _
243 ¾
244 ¶
245 §
246 ÷
247 ¸
248 °
249 ¨
250 ·
251 ¹
252 ³
253 ²
254 _
255

V12-DBE® for Macromedia Director® - User Manual version 3.0 (99/07/27)
©Integration New Media, Inc. 1995-99 page 167

Appendix 18: V12-DBE methods (by category)
Appendix 18 IS NOT UPDATED FOR VERSION YET

Note: Database structuring methods require a V12-DBE license to be present.

Initialization
new (V12dbe)
new (V12Table)

Retrieving Data
mGetField (V12Table)
mGetMedia (V12Table)
mGetSelection (V12Table)
mGetUnique (V12Table)
mDataFormat (V12Table)

Modifying Data
mAddRecord (V12Table)
mDeleteRecord (V12Table)
mEditRecord (V12Table)
mSelDelete (V12Table)
mSetField (V12Table)
mSetMedia (V12Table)
mUpdateRecord (V12Table)

Browsing through Data
mFind (V12Table)
mGetPosition (V12Table)
mSelectCount (V12Table)
mGo (V12Table)
mGoFirst (V12Table)
mGoLast (V12Table)
mGoNext (V12Table)
mGoPrevious (V12Table)

Searching and Sorting
mOrderBy (V12Table)
mSelect (V12Table)
mSelectAll (V12Table)
mSetCriteria (V12Table)
mSetIndex (V12Table)

Importing Data
mImport (V12Table)
mImportFile (V12Table)

Error Management
V12Error (Global)
V12status (Global)

Database Structures
mReadDBStructure (V12dbe)
mBuild (V12dbe)
mDumpStructure (V12dbe)

Database Utilities
mGetProperty (V12dbe)
mSetProperty (V12dbe)
mSetPassword (V12dbe)

Special Methods
mCustom (V12dbe)
mCustom (V12Table)

V12-DBE® for Macromedia Director® - User Manual version 3.0 (99/07/27)
©Integration New Media, Inc. 1995-99 page 168

Appendix 19: V12-DBE methods (alphabetical)
NOTE: Appendix 19 IS NOT UPDATED FOR VERSION 3 YET
mAddRecord (V12Table)

Syntax
mAddRecord(gTable)

Parameters
(none)

Description
Adds a new record to the table and sets it as the current record. Calls to mAddRecord are
generally followed by calls to mSetField and must end with a call to mUpdateRecord.

Example
-- add a record to gTable, put data in fields "name" and "price" and updates the
record:
mAddRecord(gTable)
mSetField(gTable, "field1_string", "funnel")
mSetField(gTable, "field2_float", 2.95)
mUpdateRecord(gTable)

See Also
mEditRecord, mSetField, mUpdateRecord

 mBuild (V12dbe)

Syntax
mBuild (gDB)

Parameters
(none)

Description
Create the database structure defined by mReadDBstructure and writes it to a disk file. After
successfully calling mBuild, the database remains open in ReadWrite mode. Data can be
immediately imported to it.

Example
-- Reads the database definition contained in a text file:
set gDB = New(Xtra "V12dbe", "myBase", "Create", "very secret password")
mReadDBStructure(gDB, the pathname & "DatabaseDef.txt")
set mBuild(gDB)

See Also
new, mReadDBstructure.

V12-DBE® for Macromedia Director® - User Manual version 3.0 (99/07/27)
©Integration New Media, Inc. 1995-99 page 169

 mCustom (V12dbe)

Syntax
mCustom(gDB)

Parameters
(none)

Description
Undocumented generic method for project-specific implementations.
Contact Integration New Media, Inc. for specific implementations.

 mCustom (V12Table)

Syntax
mCustom(gTable)

Parameters
(none)

Description
Undocumented generic method for project-specific implementations.
Contact Integration New Media, Inc.for specific implementations.

 mDataFormat (V12Table)

Syntax
mDataFormat(gTable, fieldName, format)

Parameters
fielName = name of field to which format must be applied.
format = format applied to the content of fieldName.

Description
Associate a formatting pattern to the data retrieved from fieldName. Data formats can be
applied to fields of type Float, Integer and Date. If the retrieved data is longer then the
formatting pattern, V12 returns the corresponding number of "#": 56.78 would be returned as
"#.##" if the format was set to "9.99".

Example
mDataFormat(gTable,"date","dd/mm/yy")
-- characters can be added before the data such as:
-- 56.78 is formated to "00056.78":
mDataFormat(gTable, "price", "99999.99")
-- 56.78 is formated to "56.78$":
mDataFormat(gTable, "price", "99.99$")
-- 56.78 is formated to " 56.87":
mDataFormat(gTable, "price", "###.99")

V12-DBE® for Macromedia Director® - User Manual version 3.0 (99/07/27)
©Integration New Media, Inc. 1995-99 page 170

See Also
mGetField, mGetSelection

 mDeleteRecord (V12Table)

Syntax
mDeleteRecord(gTable)

Parameters
(none)

Description
Delete the current record. After calling mDeleteRecord, the record following the current record
becomes the new current record. If no record follows the deleted record, the preceding record
becomes the new current record. If no record precedes the deleted record, the current record is
not defined.

Example
mDeleteRecord(gTable)

See Also
mAddRecord, mEditRecord

 mDumpStructure (V12dbe)

Syntax
mDumpStructure(gDB)

Parameters
(none)

Description
Retrieve information on a database structure. Very convenient for debugging.

Example
put mDumpStructure(gDB)
put mDumpStructure(gDB) into field "dummy"

mEditRecord (V12Table)

Syntax
mEditRecord(gTable)

Parameters
(none)

V12-DBE® for Macromedia Director® - User Manual version 3.0 (99/07/27)
©Integration New Media, Inc. 1995-99 page 171

Description
Enable the modification of the current record. A normal record modification sequence consists
of a call to mEditRecord, a sequence of calls to mSetField and a call to mUpdateRecord.

Example
mEditRecord(gTable)
mSetField(gTable, "name", "funnel")
mSetField(gTable, "price", 2.95)
mUpdateRecord(gTable)

See Also
mAddRecord, mSetField, mUpdateRecord

mFind (V12Table)
-- alternative to mGo

 mGetField (V12Table)

Syntax
mGetField(gTable, fieldName [, dataFormat])

Parameters
fieldName = name of the field to read.
dataFormat = patten for Integer, Float and Date formatting.

Description
Retrieve the content of field FieldName for the current record. If dataFormat is specified, the
retrieved data is formatted accordingly. Otherwise, if a formatting pattern is assigned to
FieldName with mDataFormat, that format is taken into account. mGetField’s dataFormat
parameter overrides mDataFormat’s setting.

Example
set name = mGetField(gTable, "theName")
set date = mGetField(gTable, "theDate", "YY-MM-DD")

See Also
mDataFormat, mGetSelection, mGetMedia, mSetField

 mGetMedia (V12Table)

Syntax
mGetMedia(gTable, fieldName, Member)

Parameters
fieldName = name of the field from which media is retrieved.
member = cast member in which media is stored.

V12-DBE® for Macromedia Director® - User Manual version 3.0 (99/07/27)
©Integration New Media, Inc. 1995-99 page 172

Description
Replace the content of cast member Member with the media contained in the fieldName field of
the current record.

Example
-- get the media from field "photo" and
-- store in the cast named "thePhotoCast" in castlib 1:
mGetMedia(gTable, "photo", Member "thePhotoCast")
-- or:
mGetMedia(gTable, "photo", member "thePhotoCast" of castlib 1)

See Also
mDataFormat, mGetSelection, mGetField, mSetMedia

 mGetPosition (V12Table)

Syntax
mGetPosition(gTable)

Parameters
(none)

Description
Return the position of the current record in the selection.

Example
put mGetPosition(gTable)

See Also
mGo, mGoPrevious, mGoNext, mGoFirst, mGoLast, mSelectCount

mGetPropertyNames
-- introduced with V12 3.0. Return names of properties.

 mGetProperty (V12dbe)

Syntax
mGetProperty(gDB, Prop)

Parameters
Prop = "virtualCR" | "characterSet" | "resources" | "currentDate" | "weekDays" |
"shortWeekDays" | "months" | "shortMonths".

Description
Retrieve the value of the property Prop.

Example
put mGetProperty(gDB, "characterSet")
-- return: "Windows-ANSI"

V12-DBE® for Macromedia Director® - User Manual version 3.0 (99/07/27)
©Integration New Media, Inc. 1995-99 page 173

put mGetProperty(gDB, "months")
-- return: "January February March April May June July
-- August September October November"

See Also
mSetProperty

 mGetSelection (V12Table)

Syntax
mGetSelection(gTable, [outputType [, From [, #recs [, FieldDelimiter] [,
RecordDelimiter] [, FieldNames]*]]]]])

Parameters
outputType = “LITERAL” | “LIST” | “PROPERTYLIST”
From = number of first record to retrieve (default = position of current record)
#recs = number of records to retrieve (default value is Size of selection - From +1)
FieldDelimiter = delimiter between fieldsn (default = Tab, for “LITERAL” only)
RecordDelimiter = delimiter between record (default = Return, for “LITERAL” only))
FieldNames = any number of field names

Description
Retrieve one or more fields in one or more records of the selection. Optionally, you can specify
custom field and record delimiters (with the “Literal” option only. Delimiters are not supported
by the “List” and “PropertyList” options). If fieldNames are omitted, all fields are returned.
Otherwise, only the specified field are returned. “LITERAL” returns a string. “LIST” returns a
Lingo list. “PROPERTYLIST” returns a Lingo property list.

Example
set x = mGetSelection(gTable)
set x = mGetSelection(gTable, "LITERAL", mGetPosition(gTable), 1)
set x = mGetSelection(gTable, "LITERAL", 1, mSelectCount(gTable), TAB, RETURN,
"number", "name", "price")

Notes
Use mError to discover whether mGetField has succeeded, mGetField is the only method that
follows this rule.

See Also
mGetField, mSetField, mDataFormat

mGetUnique (V12Table)
-- similar to mGetSelection. Operates on Master Field only. Returns unique
values.

 mGo (V12Table)

Syntax
mGo(gTable, toPosition)

V12-DBE® for Macromedia Director® - User Manual version 3.0 (99/07/27)
©Integration New Media, Inc. 1995-99 page 174

Parameters
toPosition = index of a record in the selection.

Description
Set the current record to the toPosition nth record of the selection.

Example
-- set the current record to the 45th of the selection.
mGo(gTable, 45)

See Also
mGoFirst, mGoLast, mGoNext, mGoPrevious and mGetPosition

 mGoFirst (V12Table)

Syntax
mGoFirst(gTable)

Parameters
(none)

Description
Set the current record to the first record of the selection.

Example
mGoFirst(gTable)

See Also
mGoLast, mGoPrevious, mGoNext, mGo and mGetPosition

 mGoLast (V12Table)

Syntax
mGoLast(gTable)

Parameters
(none)

Description
Set the current record to the last record of the selection.

Example
mGoLast(gTable)

See Also
mGoFirst, mGoPrevious, mGoNext, mGo and mGetPosition

V12-DBE® for Macromedia Director® - User Manual version 3.0 (99/07/27)
©Integration New Media, Inc. 1995-99 page 175

 mGoNext (V12Table)

Syntax
mGoNext(gTable)

Parameters
(none)

Description
Set the current record to the record following the actual current record in the selection.

Example
mGoNext(gTable)

See Also
mGoFirst, mGoLast, mGoPrevious, mGo and mGetPosition

 mGoPrevious (V12Table)

Syntax
mGoPrevious(gTable)

Parameters
(none)

Description
Set the current record to the record preceding the actual current record in the selection.

Example
mGoPrevious(gTable)

See Also
mGoFirst, mGoLast, mGoNext, mGo and mGetPosition

 mImport (V12Table)
-- New method: import from Text, DBF, ODBC drivers

 mImportFile (V12Table)

Syntax
mImportFile(gTable, inputType, inputData [, fieldDelimiter [, recordDelimiter]])

Parameters
inputType = type of the file to import: “LITERAL” | “TEXT” | “V12” | “DBF”.
inputData = pathname of file to import.
fieldDelimiter and recordDelimiter = single-character delimiters.

V12-DBE® for Macromedia Director® - User Manual version 3.0 (99/07/27)
©Integration New Media, Inc. 1995-99 page 176

password = the password (for V12 files importing).
tableName = an identifier (for V12 files importing).

Description
Import the data from the specified source. Syntax varies according to inputType. See manual.

Example
-- import from within Director:
mImportFile(gTable, "LITERAL", field "data")
-- Default delemiters: TAB and RETURN:
mImportFile(gTable, "LITERAL", field "data", TAB, RETURN)
-- import from a TEXT file:
mImportFile(gTable, "TEXT", "data.txt", TAB, RETURN)
-- import from a V12 database file
-- you need to specify the password, put "" if there is
-- none, and specify from which table the data is taken
-- from:
mImportFile(gTable, "V12", the pathname & "data.v12", "password", "table")
-- import from a DBF database file:
mImportFile(gTable, "DBF", the pathname & "data.DBF")

Notes
During the importation of data from a V12 database, if two fields bear the same name but are of
different types, try type casting.
The index of the files from which you are importing the data are not taken into consideration.
Only the indexes of the host files are brought up-to-date.

See Also
mEditRecord, mUpdateRecord

 mOrderBy (V12Table)

Syntax
mOrderBy(gTable, fieldName [, SortOrder])

Parameters
fieldName = name of field to use as the sorting key.
SortOrder = “ascending” | “descending”, Default = “ascending”

Description
Sort the selection according to field fieldName.This method is normally called just before the
mSelect method is used.
NOTE: when mOrderBy is used before mSelectAll, fieldName must be indexed.

Example
mOrderBy(gTable, "lastName") -- ascending by default.
mSelect(gTable)

mOrderBy(gTable, "lastName", "ascending")
mSelect(gTable)

mOrderBy(gTable, "lastName", "descending")
mSelect(gTable)

V12-DBE® for Macromedia Director® - User Manual version 3.0 (99/07/27)
©Integration New Media, Inc. 1995-99 page 177

See Also
mSelectAll, mSelect, mSetIndex

 mReadDBStructure (V12dbe)

Syntax
mReadDBStructure(gDB, inputType, inputData,[password])

-- accepts importing from ODBC drivers

Parameters
inputType = "LITERAL" | "TEXT" | "V12" | "DBF"
inputData = database descriptor expression (if inputType = "LITERAL”) or pathname of
template file (otherwise)
password is releavnt only if inputType = "V12".

Description
Create a new database or modify an existing one. mReadDBstructure can read a definition from
a string, field or variable (LITERAL), from a text file (TEXT), from another V12 database file
or from a DBF file (DBF).
The size of the database descriptor is limited to 32K.

Example
-- read a definition from a Director field member:
mReadDBStructure(gDB,"LITERAL",field "definition")
-- read a definition from a TEXT file:
mReadDBStructure(gDB,"TEXT", the pathname & "definition.txt")
-- read a definition from a V12 database file:
mReadDBStructure(gDB,"V12", the pathname & "definition.v12", "top secret")
-- read a definition from a DBF database file:
mReadDBStructure(gDB,"DBF", the pathname & "definition.dbf")

See Also
new, mBuild

 mSelDelete (V12Table)

Syntax
mSelDelete(gTable)

Parameters
(none)

Description
Delete all the records of a selection. At the end of the operation, the selection is empty.

Example
-- the following will delete the current selection:
mSelDelete(gTable)

See Also
mDeleteRecord

V12-DBE® for Macromedia Director® - User Manual version 3.0 (99/07/27)
©Integration New Media, Inc. 1995-99 page 178

 mSelect (V12Table)

Syntax
mSelect(gTable)

-- accepts partial selections

Parameters
(none)

Description
Trigger the selection process. This is required after calls to mSetIndex, mSetCriteria and/or
mOrderBy. If no record satisfies the search criteria, mSelect returns an empty selection and sets
the current record to an undefined value.

Example
-- select all records of the table and sort them by order of catalog number:
mSetIndex(gTable, "CatNumberNdx")
mSelect(gTable)
-- select all items that cost at least $20,
-- and at most $40:
mSetCriteria(gTable, "price", ">=", 20)
mSetCriteria(gTable, "and", "price", "<=", 40)
mSelect(gTable)
-- select all items that cost at most $40
-- and sort them by alphabetic order:
mSetCriteria(gTable, "price", "<=", 40)
mOrderBy(gTable, "name")
mSelect(gTable)

See Also
mSetIndex, mSetCriteria, mOrderBy

 mSelectAll (V12Table)

Syntax
mSelectAll(gTable)

Parameters
(none)

Description
Select all the records of a table. The sorting order for the selection is the same as the most
recently chosen index unless it is preceded by mOrderby. That index is either explicitely chosen
by you (mSetIndex) or automatically chosen by mSetCriteria and/or mOrderBy.

Example
mOrderby(gT,"price")
mSelectAll(gTable)

See Also
mOrderby

V12-DBE® for Macromedia Director® - User Manual version 3.0 (99/07/27)
©Integration New Media, Inc. 1995-99 page 179

 mSelectCount (V12Table)

Syntax
mSelectCount(gTable)

Parameters
(none)

Description
Return the number of records in the selection. If the selection is empty, this method returns 0.

Example
put mSelectCount(gTable) into field "TotalHits"

See Also
mGetPosition

 mSetCriteria (V12Table)

Syntax
mSetCriteria(gTable, [boolOp,] fieldName, operator, value)

Parameters
boolOp = “and” | “or”
fieldName = fieldin which value must be searched.
Operator = "=" | "<>" | "<" | ">" | "<=" | ">=" | "starts" | "contains" | "wordEquals" |
"wordStarts"
value is value to look for.

Description
Specify a search criteria. A call or sequence of calls to mSetCriteria must be followed by a call
to mSelect to trigger the search process. If more than one criterion is used, subsequent criteria
must use the boolean operator “and” or “or”.

Example
-- finds all cases where the field "muffin"
-- contains "chocolate"
mSetCriteria(gTable, "muffin", "wordEquals", "chocolate")
-- This instruction combines a full text search
-- in two fields with an ordinary search
mSetCriteria(gTable, "muffin", "wordEquals", "chocolate")
mSetCriteria(gTable, "or", "donut","containsWord", "chocolate")
mSetCriteria(gTable, "and", "name", "starts", "Shlomo")
mOrderBy(gTable, "price")--selection doesn't apply to full Index
mSelect(gTable)

See Also
mSelect, mOrderBy

V12-DBE® for Macromedia Director® - User Manual version 3.0 (99/07/27)
©Integration New Media, Inc. 1995-99 page 180

 mSetField (V12Table)

Syntax
mSetField(gTable, fieldName, value)

Parameters
fieldName = name of the field who's content is modified
 in the current record.
value = value to assign to the field fieldName of the current record.

Description
Set the content of field fieldName, of the current record, to value. If value is not of the same
type as fieldName, V12-DBE casts it to the appropriate type. If fieldName is a date, value must
be a valid date in V12-DBE's raw format (YYYY/MM/DD). Calls to mSetField must be
preceded by a call to mEditRecord or to mAddRecord, and must be followed by a call to
mUpdateRecord.

Example
-- editing an existing record:
mEditRecord(gTable)
mSetField(gTable, "description", field "myDescription")
mSetField(gTable, "height", integer(field "height"))
mUpdateRecord(gTable)
-- adding a new record to the table gTable:
mAddRecord(gTable)
mSetField(gTable, "name", "hot dog")
mSetField(gTable, "length", 2)
mSetField(gTable, "price", 1.95)
mUpdateRecord(gTable)

See Also
mGetField, mSetMedia, mGetMedia, mEditRecord, mUpdateRecord

 mSetIndex (V12Table)

Syntax
mSetIndex(gTable, indexName)

Parameters
indexName = name of the index to set as current index

Description
Set the index indexName as the current index.
A call to mSetIndex must be followed by a call to mSelect.
It is useless to call mSetIndex before setting search criteria as mSetCriteria selects the most
appropriate index for a given query.
mSetIndex is seldom used. It is still supported only for the purpose of backwarding
compatiblity.

V12-DBE® for Macromedia Director® - User Manual version 3.0 (99/07/27)
©Integration New Media, Inc. 1995-99 page 181

Example
-- select all records of the table and sort them by order of price:
mSetIndex(gTable, "priceNdx")
mSelect(gTable)

See Also
mSelectAll, mOrderBy

 mSetMedia (V12Table)

Syntax
mSetMedia(gTable, fieldName, Member)

Parameters
fieldName = name of the field in which media is to be stored.
Member = cast member from which media is retrieved.

Description
Replace the content of the field FieldName of the current record with the cast member Member.

Example
-- get the media from the cast named "thePhotoCast".
-- in cast 1 and store it in the field "photo",
-- of the current record:
mSetMedia(gTable, "photo", member "thePhotoCast")
-- or
mSetMedia(gTable, "photo", member "thePhotoCast" of CastLib "internal")

See Also
mSetField, mGetMedia

 mSetPassword (V12dbe)

Syntax
mSetPassword(gDB, oldPassword, newPassword)

Parameters
oldPassword = current password.
newPassword = new password.

Description
Change the current password (oldPassword) to a new one (newPassword). Either oldPassword
and/or newPassword can be empty strings.

Example
-- change the password "very secret" to "even more secret":
mSetPassword(gDB, "very secret", "even more secret")
-- change from an empty password to "my new password":
mSetPassword(gDB, "", "my new password")

V12-DBE® for Macromedia Director® - User Manual version 3.0 (99/07/27)
©Integration New Media, Inc. 1995-99 page 182

 mSetProperty (V12dbe)

Syntax
mSetProperty(gDB, prop, value)

Parameters
Prop = "virtualCR" | "characterSet" | "weekDays" | "shortWeekDays" | "months" |
"shortMonths".

Description
Set an existing property Prop to value, or create a new property named Prop and assigns value
to it. Special rules apply to properties that start with “string.” (see manual)

Example
-- turn on the verbose property:
mSetProperty (gDB, "months", "January February March April May June July August
September October November December")
mSetProperty (gDB, "string.MinWordLength", String(5))

Note: See user manual for additional information.

See Also
mGetProperty

 mUpdateRecord (V12Table)

Syntax
mUpdateRecord(gTable)

Parameters
(none)

Description
Save modifications of the current record to the database file. A call to mUpdateRecord must be
preceded by a call to mEditRecord or mAddRecord.

Example
mEditRecord(gTable)
mSetField(gTable, "name", field "name")
mUpdateRecord(gTable)

See Also
mEditRecord, mAddRecord, mSetField

 new (V12dbe)

Syntax
new(Xtra "V12dbe", databaseName, openMode, password)

-- now accepts "Shared ReadWrite" mode

V12-DBE® for Macromedia Director® - User Manual version 3.0 (99/07/27)
©Integration New Media, Inc. 1995-99 page 183

Parameters
databaseName = name of the database file to create, clone or open. This can be a partial or full
pathname to that file.
openMode is the mode in which the database will be opened. Valid values are "create",
"readWrite", "readOnly" and "clone".

If openMode is "create", the third parameter is a password and it is stored in the database file
for later reference.
If openMode is "readOnly" or "readWrite", the third parameter is a password and it is checked
against the one provided with "create".

Description
Create a database Xtra instance and returns a reference to it. Usually, that reference is assigned
to a global variable and used throughout the Lingo script to refer to that database.
If openMode is "create" and new database file is created. Table, field and index definitions must
follow. That process must be terminated by a call to mBuild.
If openMode is "readOnly", data can be read but not be written to the database.
If openMode is "readWrite", data can be read and written to the database.

Example
-- create a new database named "myBase"
-- and lock it with password "very secret":
set gDB = New(Xtra "V12dbe", "myBase", "Create", "very secret")
-- open an existing database file named
-- "myBase" in Read-Only mode:
-- (i.e. the database cannot be modified).
set gDB = New(Xtra "V12dbe", "myBase", "ReadOnly", "very secret")
-- open an existing database (FirstDB.v12) and
-- clone it in the directory of the current movie:
set gDB1 = New(Xtra "V12dbe", "KrazyCD:DataFiles:FirstDB.v12", "ReadOnly", "top
secret")

 new (V12Table)

Syntax
new(Xtra "V12table", mGetRef(gDB), tableName)

Parameters
gDB = reference to the database object that contains tableName.
tableName = name of table to open.

Description
Create a table Xtra instance and opens the table
tableName. new returns a reference to that Xtra instance, which is normally assigned to a global
variable for later reference.

Example
set gDB = New(Xtra "V12dbe", "myBase", "ReadOnly", "Exclusive", "very secret")
set gTable = New(Xtra "V12dbe", gDB, "MegaTable")

See Also
new (v12dbe)

V12-DBE® for Macromedia Director® - User Manual version 3.0 (99/07/27)
©Integration New Media, Inc. 1995-99 page 184

 V12Error (Global)

Syntax
V12Error()

Parameters
err = an integer (optional parameter)

Description
If you call v12Error without the Err parameter and right after calling a V12 method, it returns
an accurate and contextual description of the result. When called with the Err parameter, a
generic explanation of that error code is provided. V12Error() is global method: it is an
alternate syntax to mError.

Example
set errMsg = V12Error()
set errMsg = V12Error(-30000)

See Also
V12status

 V12status (Global)

Syntax
V12Status()

Parameters
(none)

Description
Return the result code of the last V12-DBE method called. A return code of 0 means no error
occurred. A positive code signals a warning. A negative call signals an error.
Call V12Error to get a complete explanation of the problem(s) that occurred in the last method.

Example
mSetCriteria(gTable,"name","=","buzzlightyear")
if V12Status() then Alert V12Error()

See Also
V12Error

XtraVersion(Global)
-- Return version of Xtra.

V12-DBE® for Macromedia Director® - User Manual version 3.0 (99/07/27)
©Integration New Media, Inc. 1995-99 page 185

Appendix 20: Error Codes
This section lists error codes and their descriptions. Two kinds of errors may be
returned: warnings and errors.

Errors
-1 Selection empty
-2 Not initialized properly
-3 Internal error
-4 Bad global area
-5 Disk read error
-6 Disk Write Error
-7 Header Read Error
-8 Header Write Error
-9 The file does not exist or

is already opened
-10 Not closed properly
-11 No Space
-12 File already exists
-13 Not created properly
-14 Incomplete Data
-15 Bad Header
-16 Bad Node
-17 Bad Split Entry
-18 File Not Open
-19 File Not Closed
-20 No Root Node
-21 No Current
-22 Bad Index Number
-23 Bad data length
-24 Bad reference type
-25 Bad field reference
-26 Bad field pointer
-27 Bad field handle
-28 Bad field type
-29 Bad Sequence type
-30 Bad key length
-31 Bad key type
-32 Bad Duplicate type
-33 Buffer overflow
-34 Bad file specification
-35 Bad minimum extend
-36 Over demo limit
-37 File seek
-38 Log record number not used
-39 Double lock current info
-40 Double unlock current info
-41 Entry has bad data length
-42 Bad segment number
-44 Memory allocation error
-45 Data checksum error
-46 Data definition checksum

error
-47 Unable to open database.

The maximum of users as
been reached

-48 Bad build key
-49 Duplicate key
-50 Invalid number of buffers
-51 Key too big
-52 Too many segments
-53 Bad lock current info
-81 Bad load shared library

-82 Function not loaded
-83 Function not found
-101 File locked
-102 File mode error
-103 Not enough memory or not

multiuser OS
-104 Not locked
-105 Current record locked by

other user
-106 Locked by self
-107 Reset error
-108 Clear schema error
-109 Bad clear byte
-110 Bad set byte
-111 Current Record already

locked
-201 Bad select position number
-202 Bad field number
-203 Bad select type
-204 Bad select Op
-205 User abort
-206 Bad key number
-207 Different select types
-520 Invalid open mode
-530 Invalid parameter
-540 Bad edit mode
-550 Unknown error
-560 Invalid identifier. Valid

identifiers must have at
least one character

-570 Invalid identifier. First
character must be
alphabetic

-580 Invalid character(s) in
identifier

-590 Invalid identifier length.
Valid identifiers have at
most 32 characters

-600 Table '%s' does not exist
-610 Field '%s' does not exist

in table '%s'
-620 Field '%s' of type '%s' of

table '%s' is of a type
that cannot be full-indexed

-630 Invalid field type
-640 Invalid parameter. The

parameter must be a valid
V12base component

-650 Invalid parameter. The
parameter must be a valid
V12table component

-660 The database used by the
table is not opened

-1010 Bad table instance. Check
current instance

-1030 Too many records
-1050 Invalid object
-1060 Invalid database structure
-1070 Memory allocation error
-1080 Field does not exist

V12-DBE® for Macromedia Director® - User Manual version 3.0 (99/07/27)
©Integration New Media, Inc. 1995-99 page 186

-1090 Unable to read structure
from database

-1100 Structure not initialized
properly

-1110 Corrupted DBF file
-1120 Field does not exist.

Please contact tech support
-1130 Cannot modify table
-1140 Invalid database structure.

Please contact tech support
-1150 Invalid identifier
-1160 Cannot create text file.

Maybe the file already
exists

-1170 Cannot create DBF file.
Maybe the file already
exists

-1180 Cannot create DBT file.
Maybe the file already
exists

-1250 Field does not exist
-1260 Invalid field data. Please

contact tech support
-1270 Invalid field type
-1280 Invalid field size in table
-1290 No table defined
-1330 Unable to set password
-1370 Duplicate key
-1380 Unable to create or modify

a database on a locked
file/volume

-1400 Database not initialized
properly. Please contact
tech support

-1410 Unable to pack database.
File name already exists

-1420 Table already in use. Set
all instances of a table to
zero

-1430 MOA error in V12-DBE.
Please contact Tech Support

-1440 Cannot set a void value
-1460 Cannot bind multiple fields

with the same member name
-1480 Item not found in table.

Please contact tech support
-1500 Current record locked by

other user
-1530 Cannot open database. This

database structure is not
supported by the current
version of V12

-1810 Low-level engine not
initialized

-1820 Wrong number of parameters
-1830 Invalid file name
-1840 Invalid open mode. Valid

modes are Create,
ReadWrite, ReadOnly and
Clone

-1841 '%s' is an invalid open
mode. Valid modes are

Create, ReadWrite,
ReadOnly and Clone

-1850 V12-DBE instance was not
opened properly

-1860 Corrupted variables. Reboot
the computer

-1870 Invalid pathname
-1880 File already exists
-1890 Error at file creation

-1900 Error while writing header
files

-1910 File does not exist or is
already open

-1920 Not enough disk space
-1930 Wrong password
-1940 Cannot get password. Please

contact tech support
-1960 Invalid password. Check if

the password is not VOID
-2210 Invalid object
-2410 Unable to edit database

structure. Database must be
opened in ReadWrite mode

-2810 Unable to update database
structure. Database must be
opened in ReadWrite mode

-2820 Not in database structure
edition mode. Call
mEditDBstructure before
modifying database
structure

-3010 Wrong number of parameters
-3020 Invalid pathname
-3030 Empty pathname
-3210 Wrong number of parameters
-3220 Invalid descriptor type.

Valid types are Text,
Literal, V12 and DBF

-3230 Invalid database
descriptor. Check
descriptor's syntax

-3240 Unable to locate/decode
password

-3250 Unable to read database
structure

-3260 Field '%s' of table '%s'
has an invalid index order.
Valid orders are Ascending
and Descending

-3270 Missing '(*' or '*)'
-3280 Unable to open TEXT file.

Make sure the file is in
the specified path and not
used by another application

-3290 Unable to open V12 file.
Make sure the file is in
the specified path and not
used by another application

-3300 Unable to open DBF file.
Make sure the file is in
the specified path and not
used by another application

-3310 Unable to modify database
structure. Call
mEditDBstructure first

-3320 Empty file name
-3330 Missing [END] tag in

database descriptor
-3340 Missing field name in table

'%s'
-3350 Field '%s' of type Media

cannot be indexed
-3360 Missing [TABLE] tag in

database descriptor
-3370 Missing table name in

database descriptor
-3380 Invalid field name in table

'%s'
-3390 Field '%s' already exists

in table '%s'

V12-DBE® for Macromedia Director® - User Manual version 3.0 (99/07/27)
©Integration New Media, Inc. 1995-99 page 187

-3400 Field '%s' of type '%s' of
table '%s' is of a type
that cannot be full-indexed

-3410 Invalid field type in table
'%s'

-3420 Maximum number of indexes
reached. The maximum is %ld

-3430 Index '%s' already exists
in table '%s'

-3440 Invalid index type in index
'%s' of table '%s'

-3450 Missing field name for
index '%s' in table '%s'

-3460 Field '%s' set in index
'%s' of table '%s' does not
exist

-3470 Missing order for index
'%s' of table '%s'. Valid
orders are Ascending and
Descending

-3480 Invalid field name. '%s' is
a reserved word

-3490 Field '%s' of table '%s'
has an invalid field type

-3500 Invalid descriptor type.
Valid types are Literal,
Text, DBF or V12

-3510 Empty database descriptor
-3520 Table '%s' already exists
-3530 Field '%s' does not exist

in table '%s'
-3540 Unable to edit database

structure. Database must be
opened in Create or
ReadWrite mode

-3550 Not in database structure
edition mode. Call
mEditDBstructure first

-3570 Invalid DBF file format
-3580 Buffer size not required

for fields of type '%s'
-3590 Invalid field size in table

'%s'
-3600 First character of table

'%s' must be alphabetic
-3610 Unable to modify database

structure. Database must be
opened in Create or
ReadWrite mode

-3810 Wrong number of parameters
-3820 Invalid table name
-3830 Table '%s' already exists
-3840 Unable to create new table.

Call mEditDBstructure
before creating new tables

-3850 Empty table name
-3860 Unable to edit database

structure. Open database in
Create or ReadWrite mode

-3870 Table '%s' contains invalid
characters

-3880 First character of table
'%s' must be alphabetic

-3890 Table '%s' has an invalid
identifier length. Valid
identifiers have at most 32
characters

-3900 Cannot create table '%s'.
The maximum number of
table(s) is '%ld'

-4010 Wrong number of parameters

-4020 Invalid table name
-4030 Invalid field name
-4040 Invalid field type
-4050 Invalid buffer size
-4060 Table '%s' does not exist
-4070 Database structure not

created properly
-4080 Field '%s' already exists

in table '%s'
-4090 Unable to create new field.

Call mEditDBstructure and
mCreateTable before
creating new fields

-4100 Empty table name
-4110 Empty field name
-4120 Invalid buffer size. Buffer

size must be greater than
zero

-4140 Buffer size not required
for fields of type '%s'

-4160 Unable to use '%s' as a
field name. This is a
reserved word

-4170 Invalid index type. Valid
index types are indexed and
full-indexed

-4180 Unable to edit structure of
table '%s'. Table already
built

-4190 Unable to edit database
structure. Open database in
Create or ReadWrite mode

-4200 Field '%s' of table '%s'
contains invalid characters

-4210 First character of field
'%s' in table '%s' must be
alphabetic

-4220 Field '%s' of table '%s'
has an invalid identifier
length. Valid identifiers
have at most 32 characters

-4230 Field '%s' of table '%s'
cannot be indexed. It must
have at most 29 characters
to be indexed

-4240 Cannot create field '%s'.
The maximum number of
field(s) is '%ld'

-4510 Wrong number of parameters
-4520 Table '%s' does not exist
-4530 Field '%s' does not exist

in table '%s'
-4540 Database structure not

created properly
-4550 Invalid table name
-4560 Invalid field name
-4570 Invalid index name
-4580 Invalid index type. Valid

types are Duplicate and
Unique

-4590 Invalid index order. Valid
orders are Ascending and
Descending

-4591 '%s' is an invalid index
order. Valid orders are
Ascending and Descending

-4600 Unable to create index.
Call mEditDBstructure, then
create new tables and new
fields before creating new
indexes

V12-DBE® for Macromedia Director® - User Manual version 3.0 (99/07/27)
©Integration New Media, Inc. 1995-99 page 188

-4610 Maximum number of indexes
reached. The maximum is %ld

-4620 Empty table name
-4630 Empty index name
-4640 Empty field name
-4650 Empty index type. Valid

types are Unique and
Duplicate

-4660 Empty index order. Valid
orders are Ascending and
Descending

-4670 Field '%s' already used in
index '%s' of table '%s'

-4680 Unable to edit database
structure. Database must be
opened in Create or
ReadWrite mode

-4690 Field '%s' of type Media
specified in table '%s'
cannot be indexed

-4700 Unable to edit structure of
table '%s'. Table already
built

-4710 Cannot create compound
index '%s'. Limited to
'%ld' field(s) per index

-4910 Unable to delete table.
Database must be opened in
Create or ReadWrite mode

-4920 Unable to edit database
structure. Call
mEditDBstructure first

-4930 Table '%s' does not exist
-4940 Unable to open table
-4950 Empty table name
-4960 Table already in use. Set

all instances of a table to
zero before deleting it

-4970 Cannot delete table.
Database must be opened in
Create or ReadWrite mode

-5110 Database structure not
created properly

-5120 Missing index. Table '%s'
must contain at least one
index

-5130 Unable to edit database
structure

-5140 Unable to modify database
structure. Use
mEditDBStructure and
mUpdateDBStructure to
change a database structure

-5150 Unable to build database.
Database must be opened in
Create or ReadWrite mode

-5160 Unable to update database
structure. At least one
index per table is required

-5170 Unable to build database
structure. At least one
index per table is required

-5410 Wrong number of parameters
-5420 Invalid password. Password

should not exceed 32
characters

-5430 Invalid character(s) in
password

-5440 Wrong password. '%s' does
not match with the current
password

-5450 Unable to write to
database. Database must be
opened in ReadWrite mode

-5610 Wrong number of parameters
-5620 Database structure not

created properly
-5630 Invalid output format.

Please consult the manual
to get a description of the
different output formats

-5640 Table '%s' does not exist
-5650 Field '%s' does not exist

in table '%s'
-5660 Can only get size

information on fields of
type Media or String

-5670 Invalid table name
-5680 Invalid field name
-5690 Empty table name
-5700 Empty field name
-5810 Property does not exist
-5820 Invalid property
-5830 Missing apostrophe. A sub-

string was left open-ended
-5840 Unable to write to

database. Database must be
opened in ReadWrite mode

-5850 Cannot delete or set the
property value to blank

-5860 Cannot modify the property
value

-5870 Cannot change verbose
value. Invalid verbose type

-5880 Cannot set week days.
Invalid number of days

-5890 Cannot set months. Invalid
number of months

-5900 Cannot modify property. The
string type associated does
not exist

-5910 Cannot modify property. The
string type associated is
already used

-5920 Cannot modify MinWordLength
property. This property
must be greater than 0 and
smaller than 100

-5930 Cannot define new string
type. String type names
cannot contains periods
(dots)

-5940 Cannot set property name.
Too many characters

-5950 Cannot set new string type.
The maximum number of
custom string types is
reached

-5960 Invalid log value. Must be
set to 'on' or 'off'

-5970 Invalid maximum value. Must
be a number between 1 and
1000

-5980 Invalid progress indicator
value. Must benone,
with_cancel, without_cancel
or userdefined

-5990 Invalid Character Set
value. Must beDos-US, Mac-
Standard, Windows-ANSI or
Default

-6010 Property does not exist

V12-DBE® for Macromedia Director® - User Manual version 3.0 (99/07/27)
©Integration New Media, Inc. 1995-99 page 189

-6110 Memory allocation error
-6120 Wrong number of parameters
-6130 V12base instance not

properly opened
-6140 Invalid table name
-6150 Missing table definition in

database. At least one
table must be defined in a
V12 database

-6160 No such table in database
-6170 Failed to open table.

Database file not open.
-6180 Table was defined but not

written to database
-6190 Table not found
-6200 Invalid object
-6210 Empty table name
-6220 Cannot create table

instance. Only one table
instance can be created

-6410 Wrong number of parameters
-6420 Invalid export type
-6430 Invalid pathname
-6440 Invalid field delimiter
-6450 Invalid record delimiter
-6460 Invalid field name
-6470 Field '%s' does not exist
-6480 Invalid record delimiter

length
-6490 Invalid field delimiter

length
-6810 Wrong number of parameters
-6820 Wrong number of parameters
-6830 Wrong number of parameters
-6840 Parameter #2 should be

either a valid pathname or
a valid source type
(Literal, Text, DBF or V12)

-6850 Invalid pathname
-6860 Invalid record delimiter
-6870 Invalid field delimiter
-6880 Invalid import type. Must

be Literal, Text, DBF
or V12

-6890 Import error
-6900 Unable to open DBF file.

Check pathname
-6910 Unable to open TEXT file.

Check pathname
-6920 Empty file name
-6931 Field %ld does not exist
-6940 Empty table name
-6950 Database not properly

initialized
-6970 Invalid DBF file format
-6980 Field and record delimiters

must be different
-6990 Unable to import data.

Database must be opened in
ReadWrite mode

-7050 Cannot use line feed (LF)
as field delimiter

-7070 Duplicate key occurred at
line '%ld'

-7210 Selection empty. No current
record

-7410 Selection empty. No current
record

-7620 Selection empty. No current
record

-7820 Selection empty. No current
record

-8410 Index '%s' does not exist
-8420 Invalid index name
-8430 Empty index name
-8610 Wrong number of parameters
-8620 Invalid field name
-8630 Invalid operator
-8640 Invalid field type
-8650 Invalid operator
-8660 Invalid operator
-8670 Field does not exist
-8680 No memory available
-8690 Empty field name
-8700 Operator not allowed for

this type of field
-8710 Field '%s' is not full-

indexed
-8720 Field '%s' does not exist
-8730 Word length is smaller than

the minimum of indexed
words (%ld)

-8740 Cannot specify boolean
operator in first criteria

-8750 String must have at least
one character

-8760 Maximum number of criteria
reached

-9010 Wrong number of parameters
-9020 Field '%s' does not exist
-9030 Invalid index order
-9050 Empty index name
-9410 Selection empty. No current

record
-9420 Outside of selection range
-9610 Unable to delete selection.

Database must be opened in
ReadWrite mode

-9620 Unable to delete record
#%ld. This record is locked
by another user

-9810 Invalid result
-9820 Selection empty
-10010 Field does not exist
-10020 Invalid field name
-10030 Empty field name
-10040 Field '%s' does not exist
-10050 Cannot get field when

selection is empty
-10060 Wrong number of parameters
-10410 Invalid value. Please

contact tech support
-10440 Parameter incompatible with

type of destination field
-10450 Invalid field name
-10460 Unable to modify data. Call

mEditRecord first
-10470 Media exceeds buffer size

declared upon database
creation

-10480 Empty field name
-10490 '%s' is an invalid date
-10500 Field '%s' does not exist
-10810 Wrong number of parameters
-10820 Empty media field
-10830 Empty field name
-10840 Field '%s' does not exist
-10850 CastLib %ld does not exist
-10860 Unable to find member '%s'
-10870 The parameter must be a

(cast) member

V12-DBE® for Macromedia Director® - User Manual version 3.0 (99/07/27)
©Integration New Media, Inc. 1995-99 page 190

-10880 Cannot get field when
selection is empty

-11010 Wrong number of parameters
-11020 Cast member empty
-11030 Invalid field name
-11040 Empty field name
-11050 Empty media field
-11060 Field '%s' does not exist
-11070 Unable to modify data. Call

mEditRecord first
-11080 Unable to import this kind

of media
-11710 Unable to edit record.

Database must be opened in
ReadWrite mode

-11730 Selection empty. No current
record

-11910 Cannot write data. Call
mEditRecord first

-11920 Duplicate key '%s'. Check
the following field(s)

%s
-12130 Unable to delete record.

Database must be opened in
ReadWrite mode

-12140 Selection empty. No current
record

-12710 Wrong number of parameters
-12730 Cast '%s' does not exist
-12731 Cast %ld does not exist
-12740 Cast member %s does not

exist
-12741 Cast member %ld does not

exist
-12750 Invalid member identifier
-13010 Wrong number of parameters
-13025 Field '%s' is not bound.

Call mBindField first
-13030 Cast '%s' does not exist
-13035 Cast %ld does not exist
-13045 Cast member %s %ld does not

exist
-13050 Field '%s' does not exist
-13410 Wrong number of parameters
-13420 Invalid member identifier
-13610 Wrong number of parameters
-13630 Unable to find Field '%s'
-13640 Cast '%s' does not exist
-13650 Cast %ld does not exist
-13660 Cast member '%s' does not

exist
-13670 Cast member %ld does not

exist
-13680 Unable to update record.

Database must be opened in
ReadWrite mode

-14010 Wrong number of parameters
-14020 Field '%s' does not exist
-14030 Cast %ld does not exist
-14040 Cast member %s does not

exist
-14041 Cast member %ld does not

exist
-14050 Wrong number of parameters.

Please consult the manual
-14060 You must specify a CastLib
-14070 Cast member '%s' not found
-14080 Invalid CastLib identifier
-14410 Wrong number of parameters
-14420 Field '%s' does not exist

-14430 Invalid parameter. Third
parameter cannot be of type
String

-14440 Invalid member identifier
-14450 Invalid parameter 3,

attempt to get the binding
type

-14460 Cannot bind field. The
member '%ld' is already
bound

-14810 Wrong number of parameters
-14850 Database structure not

created properly
-14860 Invalid table name
-14870 Invalid field name
-14890 Field '%s' does not exist

in table '%s'
-14910 Unable to create full-

index. Call
mEditDBstructure first

-14920 Empty table name
-14930 Empty field name
-14940 Field '%s' of type '%s'

specified in table '%s'
cannot be full-indexed

-14950 Unable to edit database
structure. Database must be
opened in Create or
ReadWrite mode

-14960 Unable to edit structure of
table '%s'. Table already
built

-15210 Conflicting Add/Edit mode.
Call mUpdateRecord before
creating a new record

-15230 Unable to add record.
Database must be opened in
ReadWrite mode

-15610 Wrong number of parameters
-15620 Only fields type Integer,

Float, and Date can be
formatted

-15630 Invalid data format
-15650 Missing apostrophe. A sub-

string was left open-ended
-15660 Too may periods (.) in

format specifier. At most
one period is allowed

-15670 Empty field name
-15680 Cannot set field format.

200 is the maximum format
length

-15810 Wrong number of parameters
-15820 Invalid output format.

Please consult the manual
to get a description of the
different output formats

-15830 Error number required
-16010 Wrong number of parameters
-16020 Invalid pathname
-16030 Empty pathname
-16040 Invalid new pathname
-16050 Empty new pathname
-16410 Wrong number of parameters
-16420 Invalid table name
-16430 Empty table name
-16440 Invalid old field name
-16450 Empty new field name
-16460 Cannot rename field.

Database must be opened in
Create or ReadWrite mode

V12-DBE® for Macromedia Director® - User Manual version 3.0 (99/07/27)
©Integration New Media, Inc. 1995-99 page 191

-16470 Table '%s' does not exist
-16480 Field '%s' does not exist

in table '%s'
-16490 Unable to rename field '%s'

of table '%s'. Table
already built

-16500 Unable to modify database
structure. Call
mEditDBstructure first

-16510 Cannot rename field. Field
'%s' already exist in table
'%s'

-16810 Field '%s' does not exist
-16820 Invalid output format.

Please consult the manual
to get a description of the
different output formats

-16830 Invalid start position.
Must be a number greater
than zero (0) and smaller
than the number of records
in the selection

-16840 Invalid number of records
to read. Must be a number
greater than zero and
smaller than the number of
records in the selection

-16850 Invalid field delimiter
-16860 Invalid record delimiter
-16870 Invalid field name

Warnings
1390 File is opened in ReadOnly

mode. Check if medium or
file is read only

1450 Cannot update bound fields.
Not in ReadWrite mode

1470 No field match. No data
copied

1510 File is opened in ReadOnly
mode. Can't open in Shared
Readonly mode

1520 File is opened in ReadWrite
mode. Can't open in Shared
Readwrite mode

1950 Old database version. It
was opened in ReadOnly mode

1970 This database is still in
demo mode. To legalize it,
please open it once in
ReadWrite mode

2420 Already in database
structure edition mode.
Call mUpdateDBstructure
before calling
mEditDBstructure again

3620 Unsupported dbf field type
4130 Fields of type media cannot

be indexed

4150 Fields of type '%s' cannot
be full-indexed

6500 Unable to export binary
field type. Field '%s' not
exported in DBF file

6510 Field '%s' has been
truncated to ten characters

6520 Selection empty. No current
record

6530 Field '%s' of type Media
cannot be export

6930 Field '%s' does not exist
6960 '%s' is an invalid date.

Default date has been set
7000 Field '%s' at line '%ld' is

longer than the '%ld'
allocated for it and was
truncated

7010 Too many field delimiters
at line '%ld'. The extra
data was ignored

7020 Missing field delimiter(s)
at line '%ld'. Some fields
were set to default data

7030 Field '%s' is defined of
type media in your
database. Use mSetMedia to
store data in it

7040 The field '%ld' of your
definition has been
truncated. Exceed the
maximum number of
characters for a field (32)

7060 DBF field '%s' of type '%s'
does not match the V12 type
'%s'

7080 Unsupported dbf field type
7610 Unable to select records

beyond end of selection.
%ld record(s) in selection

7810 Unable to select records
preceding first record of
selection

10070 Current record is edited by
another user. Data could
change

11720 mEditRecord already called.
Call mUpdateRecord prior to
calling mEditRecord again

12120 No current record
12760 Cannot generate a member

beyond the size of the
castLib

14970 Field '%s' is already full-
indexed in table '%s'

15220 Already in database
structure addition mode

16880 Selection empty. No current
record

16890 Field '%s' of type Media
cannot be retrieved with
mGetSelection

V12-DBE® for Macromedia Director® - User Manual version 3.0 (99/07/27)
©Integration New Media, Inc. 1995-99 page 192

Index

A

Ascending ... 96
ASCII Character Set 42

B

Basics
Documentation.................................... 24

Binding
Automatic ... 93
Data .. 91
Full.. 92
Safe ... 93
Types .. 92

Boolean operator 100
Buffer size .. 46

C

Capacities ... 129
Character Set 33, 42, 117, 163
Cloning ... 109
Closing an Xtra....................................... 22
Comments (in database descriptors) 48
Compressing a Database file................. 110
Corrupted Database Files...................... 111
Creating

Database ... 49
Xtra-Instance 21, 50

Current Record 75, 76

D

Data Formatting................................ 79, 85
Data Model ... 38
Data Preconditioning 141
Database Descriptors 45
Date .. 109

raw format............................... 42, 90, 96
DBF File Formats 43, 52
Deleting a Record 90
Delimiters (Full-Text)............................. 30
Descending ... 96

E

End User ... 135
Error Codes... 192
Error detection.. 21

Errors105, 106, 107
Exporting

Data...108
DBF Format109
Text Format.......................................108

F

Field Delimiter ..80
Field Descriptor39, 65
Field Type ...32
Fixing a Database file............................111
Flat database..30
Float ..109
Formatting

Dates ...86
Integers and Floats86

Freeing up Disk Space110
Full-text Indexing....................................30

Delimiters..121
Shortest words...................................121
Stop words ..122

G

Generation of Members...........................93
Global functions......................................25

V12Error ...105
V12Status..105

I

Importing
A text File..65
Data into a V12-DBE Database74
From a DBF File67
From a Literal......................................66
Media ..71

Indexes ..28
Installing V12-DBE16
Integer ...109
International33, 163

L

Languages33, 163
Limits ..129

M

Master Field ..76

V12-DBE® for Macromedia Director® - User Manual version 2.1 (99/07/27)
©Integration New Media, Inc. 1995-98 page 193

Media.. 71, 109
Methods .. 22

mAddRecord....................................... 88
mAutoBinding 94
mBindField ... 91
mBuild .. 60
mCloneDatabase 110
mDataFormat 85, 109
mDeleteRecord 90
mDumpStructure................................. 61
mEditRecord....................................... 89
mExportSelection 108
mFind.. 78
mFixDatabase 111
mGenerateMembers............................ 93
mGetField ... 79
mGetMedia 88, 103
mGetPosition 76
mGetProperty.................................... 115

CurrentDate 117
DBversion..................................... 120
Delimiters 121
ErrorLog 119
MaxLoggedErrors......................... 119
MinWordLength 121
Months.. 118
ProgressIndicator 112, 116
ProgressIndicator.Message 116
Resources...................................... 117
SharedRWcount............................ 120
ShortMonths 118
ShortWeekDays 119
StopWords 122
String .. 121
Verbose... 117
VirtualCR...................................... 116
Weekdays...................................... 118

mGetPropertyNames......................... 115
mGetRef.. 74, 75
mGetSelection..................................... 80
mGetUnique.. 84
mGo .. 77, 79
mGoFirst... 77
mGoLast ... 77
mGoNext .. 77
mGoPrevious 77
mImport 65, 66, 67, 68, 69, 70, 71
mImportFile 66, 67

mMessageList24
mOrderBy..76
mPackDatabase110
mReadDBstructure..................51, 52, 55
mRefreshBoundFields.........................93
mSelDelete ..91
mSelect..95
mSelectAll...76
mSelectCount102
mSetCriteria95, 96, 100, 102
mSetField88, 89, 103
mSetPassword114
mSetProperty.....................................115

CharacterSet117
Delimiters......................................121
ErrorLog..119
MaxLoggedErrors119
MinWordLength............................121
Months ..118
ProgressIndicator112, 116
ProgressIndicator.Message............116
ShortMonths..................................118
ShortWeekDays.............................119
StopWords122
String...121
Verbose ...117
VirtualCR......................................116
Weekdays118

mUnBindField.....................................91
mUpdateBoundFields..........................93
mUpdateRecord89
mXtraVersion....................................114
new....................................21, 23, 50, 74
V12Error ...105
V12Status..105

Mode ...50
Clone ...110

Multiple Instances134

O

Operators searching.................................97

P

Packing a Database file110
Parameters...23
Password ...50, 114
Pathnames ...23
Portability Issues136

V12-DBE® for Macromedia Director® - User Manual version 2.1 (99/07/27)
©Integration New Media, Inc. 1995-98 page 194

Progress Indicator 112, 116
Properties

Custom.. 122
of Databases.............................. 112, 115
Predefined... 116
String .. 120

Q

Queries
Boolean... 35
Complex.. 35
Simple... 34

R

RAM buffer .. 46
Reading a record..................................... 80
Reading an entire selection 80
Reading data ... 79
Reading fields

of type date ... 79
of type float... 79
of type integer 79
of type media 88
of type string....................................... 79

Record Delimiter 80
Relational database 30
RTF... 102

S

Search Criteria
Complex...................................... 35, 100
Contains .. 99
Simple... 34, 95
Starts ... 99
WordEquals 100
WordStarts.. 99

Selection ... 75
Records ... 76
Size ... 102

Shortest word (Full-Index).................... 121
ShowXlib .. 23
Sorting Styled Text Fields 104
Stop Words ... 30
String .. 109, 163

String Types (Custom)163, 165, 169
System Requirements15

T

TAB-delimited file39
Testing ..135
Tool...49, 63
Typecasting ...33

U

Using
A V12-DBE Database73
Xtra Instances......................................22

V

V12BeginProgress (handler).................113
V12-DBE Tool..................................49, 63
V12EndProgress (handler)113
V12Error (method)................................105
V12Progress (handler)113
V12Status (method)105
Virtual CR.......................................40, 116

W

Warnings106, 200
What is ?

A database...27
A field ...27
A record ..27
A search criterion34
A selection...34
A table...27
The current record...............................34

Writing Data..89
of type Date...90
of type Float ..89
of type Integer89
of type Media90
of type String.......................................89

X

XML..69

	Table of Contents
	Introduction
	V12-DBE for Director
	V12-DBE for Authorware
	About This Manual
	Where to Start
	System Requirements for Running V12-DBE
	Macintosh Version
	Windows Version
	Macromedia Director

	Do I really need to master Lingo to use V12-DBE?
	You’re Not Alone!
	V12-L Distribution List
	FAQs
	Other Online Resources
	Customer Support and Developer Assistance

	Typographic Conventions

	Welcome to V12 Database Engine
	Installing V12-DBE
	What's New in Version 3.0?
	Version History
	How to register your V12-DBE license
	Files Needed to Use V12-DBE

	Using Xtras
	What is an Xtra?
	The V12-DBE Xtra

	Making an Xtra Available to Director
	Creating an Xtra Instance
	Checking if New Was Successful
	Using the Xtra Instance
	Closing an Xtra
	Checking for Available Xtras
	Dealing with Pathnames
	Passing Parameters to Xtras
	Basic Documentation
	Using Xtras with Shockwave
	
	When using Netscape
	When Using Internet Explorer

	Database Basics
	Overview
	What is a Database?
	Records, Fields and Tables
	Indexes
	Compound Indexes
	Database

	Full-text Indexing
	Flat and Relational Databases
	Field Types
	Typecasting

	International Support
	Selection, Current Record, Search Criteria

	Using V12-DBE
	Overview
	V12-DBE Basics
	The Main Steps

	Step 1: Deciding on a Data Model
	
	Defining Identifiers

	Step 2: Preparing the Data
	TEXT File Formats
	Field Descriptors
	Dealing with Delimiters Ambiguity
	Virtual Carriage Returns
	Text Qualifiers
	Custom Delimiters
	Calculated Fields
	Processing the Exported Text File

	Character Sets
	Dealing with Dates

	DBF File Formats
	Field Buffer Size

	Step 3: Creating a Database
	Database Descriptors
	Defining Both an Index and a Full-index on a Field
	Alternate Syntax for Creating Indexes
	Defining Compound Indexes
	Adding Comments to Database Descriptors

	Using the V12-DBE Tool
	Scripting the Database Creation
	Step 3a: Creating a Database Xtra Instance
	Step 3b: Defining the Database Structure
	mReadDBstructure from a Text File
	mReadDBstructure from a Literal
	mReadDBstructure from a DBF File
	mReadDBstructure from V12-DBE
	mReadDBstructure from FoxPro (Win-32 Only)
	mReadDBstructure from MS Access (Win-32 Only)
	mReadDBstructure from MS Excel (Win-32 Only)
	mReadDBstructure from MS SQL Server (Win-32 Only)

	Step 3c: Building the Database

	Viewing the Structure of a Database

	Step 4: Importing Data into a V12-DBE Database
	Using the V12-DBE Tool
	Scripting the Data Importing
	Importing Data with mImport
	Importing from a TEXT File
	Importing from a Literal
	Importing from a DBF File
	Importing from V12-DBE
	Importing from a Lingo List or Property List
	Importing XML to V12-DBE

	Importing from MS Access (Win-32 only)
	Importing from MS FoxPro (Win-32 only)
	Importing from MS Excel (Win-32 only)
	Importing from MS SQL (Win-32 only)

	Importing Media into a V12 database

	Step 5: Implementing the User Interface
	Using the V12-DBE Behaviors Library
	Using Lingo
	Opening and Closing Databases and Tables
	Opening an Existing Database
	Opening a Table
	Closing a Table
	Closing a Database

	Selection and Current Record
	Selection at startup
	Selecting All the Records of a Table
	Browsing a Selection
	mGetPosition
	mGoNext
	mGoPrevious
	mGoFirst
	mGo
	mFind

	Reading Data From a Database
	Reading Fields of Type String, Integer, Float and Date
	Reading one or more Entire Records
	Reading the Entire Selection
	Reading a Range of Records in a String variable
	Reading a Range of Records in a Lingo List
	Reading a Range of Records in a Property List
	Reading the Entire Content of the Current Record
	Reading a Record without Setting it as the Current Record
	Reading the Entire Selection with Special Delimiters
	Reading Selected Fields in a Selection
	Reading Records with a Determined Order of Fields

	Reading Unique Values of a Field
	Data Formatting
	Formatting Integers and floats
	Formatting Dates

	Reading Fields of Type Media

	Adding Records to a Database
	Updating Data in a Database
	Writing to Fields of Type Integer, Float and String
	Writing to Fields of Type Date
	Writing to Fields of Type Media

	Deleting a Record
	Deleting All the Records of a Selection

	Data Binding
	Binding Types
	Full Binding
	Safe Binding (for advanced users)

	Automatic Generation of Members and Auto-binding
	mGenerateMembers
	mAutoBinding

	Searching Data with mSetCriteria
	Simple Search Criteria
	Sorting a Selection (mOrderBy)
	Operators
	Equal (=)
	Not Equal (<>)
	Less than (<)
	Less or equal (<=)
	Greater than (>)
	Greater or equal (>=)
	Starts
	Contains
	WordStarts
	WordEquals
	Difference Between Contains and WordStarts

	Complex search criteria
	Partial Selections
	Checking the Size of a Selection
	Managing Styled Text
	Searching and Sorting Styled Text Fields

	Errors and Defensive Programming
	
	Checking the Status of the Last Method Called
	CheckV12Error

	Errors and Warnings
	Lingo Syntax Errors

	Additional V12-DBE Methods
	Exporting Data
	Exporting in TEXT Format
	Exporting in DBF Format

	Cloning a Database
	Freeing up Disk Space (packing)
	Fixing Corrupted Database Files
	Progress Indicators
	Options of the ProgressIndicator property
	With_Cancel
	Without_Cancel
	UserDefined
	None

	User Defined Progress Indicators
	Example: spinning a custom cursor

	Checking the Xtra's Version
	Changing a Password
	Properties of Databases
	Predefined Properties
	ProgressIndicator
	ProgressIndicator.Message
	VirtualCR
	CharacterSet
	Resources
	CurrentDate
	Verbose
	Months
	ShortMonths
	Weekdays
	ShortWeekdays
	ErrorLog
	MaxLoggedErrors
	SharedRWcount
	DBversion

	The String Property
	String.Language
	String.Language.Delimiters
	String.Language.MinWordLength
	String.Language.StopWords

	Custom Properties (Advanced Users)

	Appendix 1: :Licensing FAQs
	Appendix 2: License Agreement
	Appendix 3: Capacities and Limits
	Appendix 4: Multi-user Access
	Opening a file in Shared ReadWrite Mode
	Modifying a Shared Database
	Counting the number of Users
	Possible Configurations

	Appendix 5: Multiple Instances of a Table
	Appendix 6: Delivering to the End User
	Testing for end-users

	Appendix 7: Portability Issues
	Appendix 8: Data Updating and Sort Orders
	Appendix 9: Advanced Boolean Searches
	
	
	Workaround #1: Merging Selections
	Workaround #2: Marking Records
	Workaround #3: Field Concatenation

	Appendix 10: Handling Double-Byte Content
	
	
	Storing and Retrieving Data
	Indexing, Searching and Sorting Data
	Work Around

	Appendix 11: Printing From V12-DBE
	
	
	mPrint and V12 Database Engine
	Example #1: printing a specific field in a record
	Example #2: printing multiple records from a V12-DBE selection
	Example #3: printing multiple columns

	PrintOMatic and V12 Database Engine

	Appendix 12: Optimization Using Indexes
	Appendix 13: Resolving Relations
	
	
	Resolving a One-to-Many Relation
	Resolving a Many-to-One Relation
	Resolving a Many-to-Many Relation

	Appendix 14: Modifying a Database Structure
	Appendix 15: Data Encryption
	Appendix 16: String and Custom String Types
	The default string
	Predefined Custom String Types
	Searching and Sorting rules for Strings of Type Swedish
	Searching and Sorting rules for Strings of Type Spanish
	Searching and Sorting rules for Strings of Type Hebrew

	User-definable Custom String Types

	Appendix 17: Chatacter sets
	Windows-ANSI Character Set
	Mac-Standard Character Set
	MS-DOS Character Set

	Appendix 18: V12-DBE methods (by category)
	Appendix 19: V12-DBE methods (alphabetical)
	
	
	
	
	
	
	NOTE: Appendix 19 IS NOT UPDATED FOR VERSION 3 YET
	mAddRecord (V12Table)
	mBuild (V12dbe)
	mCustom (V12dbe)
	mCustom (V12Table)
	mDataFormat (V12Table)
	mDeleteRecord (V12Table)
	mDumpStructure (V12dbe)
	mEditRecord (V12Table)
	mFind (V12Table)
	mGetField (V12Table)
	mGetMedia (V12Table)
	mGetPosition (V12Table)
	mGetPropertyNames
	mGetProperty (V12dbe)
	mGetSelection (V12Table)
	mGetUnique (V12Table)
	mGo (V12Table)
	mGoFirst (V12Table)
	mGoLast (V12Table)
	mGoNext (V12Table)
	mGoPrevious (V12Table)
	mImport (V12Table)
	mImportFile (V12Table)
	mOrderBy (V12Table)
	mReadDBStructure (V12dbe)
	mSelDelete (V12Table)
	mSelect (V12Table)
	mSelectAll (V12Table)
	mSelectCount (V12Table)
	mSetCriteria (V12Table)
	mSetField (V12Table)
	mSetIndex (V12Table)
	mSetMedia (V12Table)
	mSetPassword (V12dbe)
	mSetProperty (V12dbe)
	mUpdateRecord (V12Table)
	new (V12dbe)
	new (V12Table)
	V12Error (Global)
	V12status (Global)
	XtraVersion(Global)

	Appendix 20: Error Codes
	Errors
	Warnings

	Index

