Order this document by
DSP56303EVMUM/D

Rev. 3.2, 11/98

DSP56303EVM User’'s Manual

Motorola, Incorporated _
Semiconductor Products Sector Ty

6501 William Cannon Drive West '{":"‘ s
Austin TX 78735-8598



OMOTOROLA INC., 1998. All rights reserved.

This document contains information on a new product. Specifications and information herein are subject to change
without notice.

Motorola reserves the right to make changes without further notice to any products herein to improve
reliability, function, or design. Motorola does not assume any liability arising out of the application or use
of any product or circuit described herein; neither does it convey any license under its patent rights nor the
rights of others. Motorola products are not designed, intended, or authorized for use as components in
systems intended for surgical implant into the body, or other application in which the failure of the
Motorola product could create a situation where personal injury or death may occur. Should Buyer
purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall
indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless
against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or
indirectly, any claim of personal injury or death associated with such unintended or unauthorized use,
even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part.
Motorola and 14 are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal
Opportunity/Affirmative Action Employer

OnCE and Mfax are trademarks of Motorola, Inc.




Quick Start Guide

Example Test Program

DSP56303EVM Technical Summary

DSP56303EVM Schematics

DSP56303EVM Parts List

Motorola Assembler Notes

Codec Programming Tutorial

Index



Quick Start Guide

Example Test Program

DSP56303EVM Technical Summary

DSP56303EVM Schematics

DSP56303EVM Parts List

Motorola Assembler Notes

Codec Programming Tutorial

Index



Table of Contents

Chapter 1
Quick Start Guide
L1 EQUIPMENE ..ot 1-1
111 What You Get withthe DSP56303EVM .. ..o 1-1
112 What YouNeed toSUpply ... .o 1-2
1.2 Installation Procedure . ... 1-2
121 Preparing the DSP56303EVM . .. ..ot e 1-3
122 Connecting the DSP56303EVM tothe PCand Power. .. ............... 1-4
Chapter 2
Example Test Program
21 Writingthe Program. . . ...t 2-2
211 Source Statement Format . . . ... ... 2-2
2111 Label Field ... 2-3
21.12 Operation Field . . ... 2-3
2113 Operand Field . . ... 2-3
2114 DataTransfer Fields. ... 2-3
21.15 Comment Feld . ... 2-4
2.1.2 Example Program. . ... 2-4
2.2 AssemblingtheProgram . ... 2-5
22.1 Assembler Command Format. . . ... 2-5
2.2.2 Assembler OptionS. .. ... 2-6
2.2.3 Assembler DIreCtiVES . . . ..ot 2-8
2231 Assembler Significant Characters. . ... 2-8
2.2.3.2 Assembly Control . ... o 2-9
2.2.3.3 Symbol Definition. . ... 2-9
2234 Data Definition/Storage Allocation . ........................... 2-10
2.2.35 Listing Control and Options . . . .. ...t 2-10
2.2.3.6 Object FileControl . ... e 2-11
2.2.3.7 Macros and Conditional Assembly. . ........... ... ... ... ... 2-11
2.2.3.8 Structured Programming. . .. ..o 2-11
224 Assembling the ExampleProgram. .. ........... . i 2-12
2.3 MotorolaDSP LINKer. . . ..o e 2-12
2.4  LINKer OptioNS. ..ot e 2-13
24.1 Linker DIreCtives . ... .o e e 2-16

Motorola Table of Contents Vii



2.5 Introduction to the Debugger Software. . ......... ... .. ... o . 2-17

26 RunningtheProgram. ......... ... .. i 2-19
Chapter 3
DSP56303EVM Technical Summary
3.1 DSP56303EVM Descriptionand Features . ............coiiiinnnnnn.. 31
3.2  DSP56303 DESCriPtiON . .o ot ittt ittt e e 31
3.3 MEMOIY . . 3-2
331 FORAM 3-3
3311 FSRAM CONNECLIONS . . . . oottt e 3-3
3312 Example: Programming AARO .. ... 34
3.3.2 Flash. . 3-6
3321 Flash Connections. . . . ... oo e 3-6
3.3.2.2 Programming for Stand-Alone Operation ........................ 3-6
34 AUdIOCOEC . .. .ot e 3-7
34.1 Codec Analog Input/OuUtpUL. . . .. ..o i e 3-8
34.2 Codec Digital Interface ... 3-8
35 Command ConVerter . .......oi i 3-10
36 Off-BoardInterfaces . . ...t 3-12
3.6.1 Serial Communication Interface Port (SCI). .. ... 312
3.6.2 Enhanced Synchronous Serial Port O(ESSIO) . . .. ..........cooontt. 3-13
3.6.3 Enhanced Synchronous Serial Port L (ESSI1)....................... 3-14
3.6.4 Host Port (HIO8). . . ..o e e e 3-14
3.6.5 Expansion BusControl . ............c i 3-15
37 MOOe SEECtOr . .o 3-15
Appendix A

DSP56303EVM Schematics

Appendix B
DSP56303EVM Parts List

B.1 PartsListing......... ... B-1
Appendix C
Motorola Assembler Notes
C.l  INtrodUCHiON . .. ..o e e C-1
C.2 Assembler Significant Characters. . ... C-1
C21 ;. Comment Delimiter Character. . ... C-1
C.22 . Unreported Comment Delimiter Characters . ..................... C-2
Cc.23 \ Line Continuation or Macro Argument Concatenation Character. . . .. .. C-2

Viii DSP56303EVM User’'s Manual Motorola



C231 Line Continuation. . . ...ttt C-2
C.23.2 Macro Argument Concatenation. . .. ... C-2
C24 ? ReturnVaueof Symbol Character. ............................. C-3
C.25 % Return Hex Value of Symbol Character ......................... C-4
C.26 A MacroLocal Label Override. . ... C-4
C.27 " Macro String Delimiter or Quoted String DEFINE Expansion Character C-5
C271 MaCIO SHNG. . . vt C-5
C.27.2 Quoted String DEFINE EXpansion. .. ..o C-5
C.28 @ FunctionDelimiter. . ... C-6
C.29 * Location Counter Substitution . ............. . i C-6
C.210 ++ String Concatenation Operator. .. ....vv v it e C-6
C.211 [] Substring Delimiter [<string>,<offset><length>].................. C-7
C.212 << |/O Short Addressing Mode Force Operator ..................... C-7
C.213 < Short Addressing Mode ForceOperator. .. ... i, C-7
C.214 > Long Addressing Mode ForceOperator. . ......vvvvviinnnnnnnn. C-8
C.215 # Immediate AddressingMode . ... C-9
C.216 #< Immediate Short Addressing Mode ForceOperator. .. ............. C-9
C.217 #> Immediate Long Addressing Mode Force Operator. ............... C-9
C.3  Assembler DIreCliVES. . . ..ot e C-10
C31 BADDR SetBuffer Address . ... C-10
C32 BSB Block StorageBit-Reverse ... C-11
C33 BSC Block Storageof Constant. . ..., C-11
C34 BSM Block StorageModulo . ........ ... C-12
C.35 BUFFER StartBuffer........ ... s C-12
C.3.6 COBJ CommentObjectFile . ... C-13
C.3.7 COMMENT StatCommentLines ..............coviuiuinnnnnnn.. C-14
C.38 DC DefineConstant. . ... ..ovii it C-14
C.3.9 DCB DefineConstantByte . ... C-15
C.3.10 DEFINE DefineSubstitution String. . .. ..., C-16
C.311 DS DefineStorage . .. ..o vt C-17
C312 DSM DefineModuloStorage ..o C-17
C.3.13 DSR DefineReverseCarry StOrage. . .. oo v vi e iae e C-18
C.3.14 DUP Duplicate Sequence of SourcelLines......................... C-18
C.3.15 DUPA Duplicate Sequence With Arguments ...................... C-19
C.3.16 DUPC Duplicate SequenceWithCharacters. . ..................... C-20
C.3.17 DUPF Duplicate SequenceinLoop. . ......cvvvuveininiinnnnn.. C-21
C.3.18 END Endof SourceProgram. ......... ... C-22
C.319 ENDBUF EndBuUffer...........ccooiiiii e C-23
C.3.20 ENDIF Endof Conditional Assembly .. ............. ... .. ....... C-23
C.321 ENDM Endof MacroDefinition............. .. ..., C-23
Motorola Table of Contents iX



C.322 ENDSEC ENdSeCtion ..........c.ouiiiiuiiiiniinennnnnn. C-24
C323 EQU EquateSymboltoaVaue. ................ ... C-24
C324 EXITM EXIEMACIO .. ..ottt e C-25
C325 FAIL Programmer Generated Error. .. ..., C-25
C326 FORCE SetOpeandForcingMode ............. ... C-26
C.3.27 GLOBAL Globa Section Symbol Declaration..................... C-26
C328 GSET SetGlobal SymboltoaVaue............... ... ... C-26
C329 HIMEM SetHighMemoryBounds.....................cocuu... C-27
C.3.30 IDENT Object Code IdentificationRecord . ....................... C-27
C.331 IF Conditiona Assembly Directive.............ccoiiiiiiiian... C-28
C.3.32 INCLUDE IncludeSecondary File ................ ... .ciin... C-29
C.333 LIST ListtheAssembly........ ... C-29
C334 LOCAL Loca Section Symbol Declaration ....................... C-30
C335 LOMEM SetLowMemoryBounds .............ccoiiiiininn... C-30
C.336 LSTCOL SetListingFieldWidths ........... ... ... . ..., C-31
C.337 MACLIB MacroLibrary ...... ... i C-31
C.338 MACRO MacroDefinition .........couiiiiii i C-32
C.339 MODE ChangeRelocationMode ................coiiiiiinon... C-33
C340 MSG Programmer GeneratedMessage . . ..o i iiii i C-33
C.341 NOLIST StopAssembly Listing ..........ccoiiiiiiiinnn... C-34
C.342 OPT Assembler Options . ......coviiii it it C-34
C3421 Listing Format Control . . ... C-35
C.3422 Reporting OptioNns. . . ..o ot e C-35
C.3423 Message Control . . ... oot e C-35
C3424 Symbol Options . . ... C-36
C.3425 Assembler Operation . ... C-36
C.343 ORG Initialize Memory Space and Location Counters. . ............. C-42
C344 PAGE Topof Page/lSizePage . ..., C-45
C345 PMACRO PurgeMacroDefinition...............coiiiiiinan... C-45
C.346 PRCTL SendControl StringtoPrinter ........... ... ..., C-46
C.347 RADIX Changelnput Radix for Constants. ....................... C-46
C.348 RDIRECT Remove Directiveor Mnemonicfrom Table.............. C-47
C.349 SCSIMP Set Structured Control Statement Branching Mode. ......... C-47
C.350 SCSREG Reassign Structured Control Statement Registers. .......... C-48
C.351 SECTION Start SECtion. ........ ..o, C-48
C352 SET SetSymboltoaVaue........... ... C-51
C.353 STITLE Initidlize Program Sub-Title . ......... ... ... .. ... C-51
C354 SYMOBJ Write Symbol Informationto ObjectFile................. C-51
C355 TABS SetListingTab Stops . ... ovoviii e C-52
C356 TITLE InitidizeProgramTitle ......... ... i C-52
X DSP56303EVM User’s Manual Motorola



C.357 UNDEF UndefineDEFINESymbol ................ ... .. ... ..... C-52

C.358 WARN Programmer GeneratedWarning ..............ccoovven... C-52

C.359 XDEF External Section Symbol Definition. . ...................... C-53

C.3.60 XREF Externa Section Symbol Reference........................ C-53

C.4  Structured Control Statements. . ...t C-54

c41 Structured Control Directives . ... C-54

C4.2 QYN aX. . et C-55

C421 BREAK Statement. . .. ... .o C-55

C4.22 CONTINUE Statement . . . ......ourii iy C-56

C.4.23 FOR Statement . ... C-56

c424 AR Statement. . ... C-57

C.4.25 LOOP Statement . . ..ot C-58

C.4.26 REPEAT Statement . ... ..ot C-58

C.4.2.7 MWHILEStatement . . ... e C-58

C4.3 Simple and Compound EXPressions. .. ....oov i C-59

C433 Operand Comparison EXPressionS . .. ..o v v C-60

C434 Compound EXPressions . .. ..o v C-61

C.4.35 Statement Formatting . .. .. ... C-61

C.4.36 Expression Formatting . .. ... C-61

C4.37 FOR/.LOOPFOrmMatting . .. .o vt e C-62

C44 Assembly Listing Format. . ............ i C-62

C45 Effects on the Programmer’s Environment . . ....................... C-62

Appendix D
Codec Programming Tutorial

D.1  INtrodUCHION . . . oo D-1
D.2 Codec Background. . ....... ... D-2
D.2.1 CodeC DeVICE . . . o v D-2
D.2.2 CodeC MOOES . . . .ot D-2
D.3 ESSIPorts Background . ... ... .. . D-3
D.4  ESSIGPIO PINS. . .o e e e e e e D-4
D.5 ESSI POrt RegiSters . . .. D-4
D.5.1 ESSI/GPIO Shared Registers. . . ... e D-4
D.5.2 ESSIRegISters . ... D-5
D.5.3 GPIO RegISterS. . . ot D-5
D.5.4 GPIOMode PortCand PortD .......... . e D-6
D.6 Digital Interface (ESSI—CodeC). .. ... i e D-6
D.7 Programming the CS4218 COUEC . . ... ...ttt D-8
D.8 Phase l:Settingup Constants .. ............ it D-9
D.8.1 Setting Up Buffer Space and Pointers . . ......... ... ... .. D-9
Motorola Table of Contents Xi



D.8.2 Defining Control Parameters of the CODEC. . ...................... D-10
D.9 Phasell: Initializing and Interfacing the ESSI and CODEC Ports.......... D-12
D.9.1 INitialize ESSI POItS. . .. oo D-12
D.9.2 Configure GPIO PINS. . .. oot D-15
D.9.3 Initialization of the CODEC pOrtS. .. ..o v i D-19
D.94 Enabling InterruptsESSI ports: . .. .. ..o D-23
D.10 Phaselll: Data Transferring Mechanism. . ......... ... ... it D-24
D.10.1 Interruptsand Interrupt ServiceRoutines . ............... .. .. ...... D-24
D.10.2 ESSI Receive Datawith Exception Status Interrupt .. ................ D-24
D.10.3 ESSI RecelveDatalnterrupt . ...t D-25
D.10.4 ESSI RecelvelLast SlotInterrupt. . ...t D-26
D.10.5 ESSI Transmit Data with Exception Status Interrupt . ................ D-27
D.10.6 ESSI Transmit Last Slot Interrupt . .. .. ... D-28
D.10.7 ESSI Transmit Datalnterrupt. .. ... D-29
D.11 Example Application. . ... ..ot e D-30
D.11.1  EchoProgram. ... ...t e D-31
D.11.2 EchoCode . ... ..ot D-31
Xii DSP56303EVM User’s Manual Motorola



List of Tables

2-1 Assembler Options ... ..ot 2-6
2-2 Linker Options ... ...t e e e 2-13
31 CHA218 Sampling Frequency Selection . .. ..., 3-7
3-2 JP5 Jumper Block Options . .. ... 3-9
3-3 JP4 Jumper Block Options . .. ... 3-9
3-4 On-Board JTAG Enable/DisableOption .. ...................... 311
3-5 Debug RS-232 Connector (P2) Pinout . .. ..., 311
3-6 JTAG/ONCE (J6) Connector Pinout . . .......................... 3-12
3-7 SClHeader (J7) PINOUL. . .. .. .ot 3-13
3-8 J7IUMPEr OPtioNS. . ..ot 3-13
3-9 DSP Seria Port (P1) Connector Pinout .. ....................... 3-13
3-10 ESSIOHeader (J5) PiINOUL. . . ... 3-14
3-11 ESSIOHeader (M) PiNOUt. . . ... 3-14
3-12 HIO8 Header (J3) PINOUL. . ... ..o 3-15
3-13 Expansion Bus Control Signal Header (J2) Pinout. . ............... 3-15
3-14 Boot Mode SelectionOptions. . .. ... 3-16
B-1 DSP56303EVM PartsList ... B-1
D-1 ESSI PinDefinition. .. ... D-4
D-2 ESSI/GPIO Shared Reglisters . . .. .. ..o D-5
D-3 ESSI REQIStErS . .ot D-5
D-4 GPIO REIS NS . . ot D-6
D-5 Pin Set-Up DesCriptions . . .. ...t D-7
D-6 JP5 Jumper BIock (ESSIO) ... oo D-7
D-7 JP4 Jumper BIOCK (ESSIL) .. ..o oo D-8
D-8 CA4218 Codec Control Information(MSB) . ........... ... ...... D-10
D-9 Settingsfor Control Register A. . ... D-13
D-10 SettingsControl Register B .. .. ... D-13
Motorola List of Tables Xiii



D-11 Port Data Register C Pin/bit Correspondence . ................... D-16
D-12 Port Data Register D Pin/bit Correspondence . ................... D-16
D-13 DataDirectionRegister C. .. ... D-18
D-14 DataDirectionRegister D ........ ... . i D-18
D-15 CodeC PINS . ..o D-20
Xiv DSP56303EVM User’s Manual Motorola



List of Figures

1-1 DSP56303EVM Component Layout . ..............ccoiuiuinn.n.. 1-4
1-2 Connecting the DSP56303EVM Cables. . ...t 1-5
2-1 Development ProcessFIOW. . .. ... oo 2-2
2-2 Example Debugger Window Display .. ............... ... ... 2-18
31 DSP56303EVM Component Layout . ..., 3-2
3-2 DSP56303EVM Functiona Block Diagram. .. .................... 3-3
3-3 FSRAM Connectionstothe DSP56303 .. ........... ..., 3-3
3-4 Example Memory Map with the Unified External Memory. .......... 3-5
35 Address Attribute Register AARO . ... 3-5
3-6 Flash Connections. . . ... ..ot 3-6
3-7 Codec Analog Input/Output Diagram. . . .. ... 3-8
3-8 Codec Digital InterfaceConnections ... ................ciin.. 3-9
39 RS-232 Serid Interface. .. ... 311
A-1 DOP5EB303 . . .t A-2
A-2 External Memory . . ... A-3
A-3 RS232 INnterface ... .o A-4
A-4 Command CoNVEIEr . . . ..ot A-5
A-5 AUdIOCOEC. . . .ottt A-6
A-6 Power SUPPLY ..o A-7
A-7 Bypass CapaCitors. . . ... oo A-8
D-1 DataFormat of CodeC. . .. .. ..ot D-3
D-2 ESSI/Codec PinSetup. . ... oo D-8
D-3 Block Diagram of aDelayed Sample(echo) ..................... D-31
Motorola List of Figures XV



XVi DSP56303EVM User’'s Manual Motorola



List of Examples

2-1 Example Source Statement . . .. ... .. 2-2
2-2 Simple DSP56303EVM CodeExample. ...................ooont. 2-4
C-1 Example of Comment Delimiter. . ............. .. ... ... ... C-1
C-2 Example of Unreported Comment Delimiter ...................... C-2
C-3 Example of Line Continuation Character . ........................ C-2
C-4 Example of Macro Concatenation. .. ..., C-3
C-5 Example of Use of Return ValueCharacter . ...................... C-3
C-6 Example of Return Hex Value Symbol Character .................. C-4
C-7 Example of Local Label OverrideCharacter ...................... C-4
C-8 Example of aMacro String Delimiter Character ................... C-5
C-9 Example of a Quoted String DEFINE Expression .. ................ C-6
C-10 Example of a Function Delimiter Character. .. .................... C-6
C-11 Example of aLocation Counter Substitution .. .................... C-6
C-12 Example of a String Concatenation Operator. . .. .................. C-6
C-13 Example of aSubstring Delimiter. .. ......... ... ... o . C-7
C-14 Example of an I/O Short Addressing Mode Force Operator .......... C-7
C-15 Example of a Short Addressing Mode Force Operator. .. ............ C-8
C-16 Example of aLong Addressing Mode ForceOperator. .. ............ C-8
C-17 Example of Immediate AddressingMode ........................ C-9
C-18 Example of Immediate Short Addressing Mode Force Operator . . . . . .. C-9
C-19 Example of an Immediate Long Addressing Mode Operator. . .. ..... C-10
C-20 Example BADDRDirective. ... C-10
C-21 Buffer Directive .. ... e C-11
C-22 Block Storage of Constant Directive ............. ... .coivn... C-12
C-23 Block Storage Modulo Directive . ... C-12
C-24 Buffer Directive .. ... C-13
C-25 COBM DIrectiVe. . ..ot C-13
C-26 COMMENT DIrective . .....ou e C-14
C-27 Single Character String Definition. . ........................... C-15
Motorola List of Examples XVil



C-28 Multiple Character String Definition .. .......... ... ...t C-15
C-29 DC DITECHIVE. . .ottt e C-15
C-30 DCB DIreCtiVe . ..ot C-16
C-31 DEFINEDIreCtiVe . .. ... e et e C-16
C-32 DS DITEClIVE. . oottt e C-17
C-33 DSM DireCtive . .. .o C-17
C-34 DSRDIreCtiVe. . . ..o e C-18
C-35 DUPDITECHIVE . ..ot e e e e C-19
C-36 DUPA DireCtiVe. . ..ot e e C-20
C-37 DUPC DIreCtiVe . .. .o e e e e C-21
C-38 DUPE DITECHIVE . . oot e et C-22
C-39 END DIrective .. .. .o e e e C-23
C-40 ENDBUF DIreCtiVe . ... e e C-23
C-41 ENDIF DIrective. . .. ..ot e e e C-23
C-42 ENDM Directive. . . ... e e e e C-24
C-43 ENDSECDIrective. . ... e e e C-24
C-44 EQUDIreCtiVe . .. .o C-25
C-45 EXITM DIrective . . ... oo e e e C-25
C-46 FAIL Directive. . ... e e e e e C-26
C-47 FORCEDIreCtiVe. . ..o e e e C-26
C-48 GLOBAL DIreCliVe . . ..ot et e C-26
C-49 GSET DIrectiVe .. ..o e e e C-27
C-50 HIMEM Directive. . ... e e e C-27
C-51 IDENT DIrectiVe .. ... e e e et e C-28
C-52 IF DIreCtiVe. . ... e C-29
C-53 INCLUDEDITECHVE. . ..ottt C-29
C-H4 LISTDIreCtiVe . . ..ot e e et e C-30
C-55 LOCAL Directives. .. ..o e e e et C-30
C-56 LOMEM DireCtive. . ..o e e e C-31
C-57 LSTCOL Directive. . ... e e e e C-31
C-58 MACLIBDIrective. . ... e e e C-32
C-59 MACRODIIECHVE . . .ot C-33
Xviii DSP56303EVM User’s Manual Motorola



C-60
C-61
C-62
C-63

C-65
C-66
C-67
C-68
C-69
C-70
C-71
C-72
C-73
C-74
C-75
C-76
C-77
C-78
C-79
C-80
C-81
C-82
C-83
C-84
C-85
C-86
C-87
C-88
C-89
D-1

D-2

MODE DIrectiVe. . . ...t e e e e e e e e e C-33

MSG DireCtiVe . ... e C-33
NOLIST DIreCtiVe . . ..o e e e C-34
OPT DIreCtiVe. . ..ot e et e e e e C-41
ORG DIreCtiVe . . ot e e e e e e C-43
PAGEDIrective . . ... e e e C-45
PMACRODIreCtiVe. . . oo e e C-46
PRCTL DIrective . . ... e e e e e e C-46
RADIX DireCtive . ... e C-47
RDIRECT DIreCtive. .. ... et C-47
SCSIMPDITECHIVE . ..ot e C-48
SCSREG DireCtiVe. . . ..o e e e e e C-48
SECTION DIreCtiVe . . ..ot e e e C-51
SET DIreCtiVe. ..ot C-51
STITLEDIreCtVE. . . ..o e e e e e C-51
SYMOBI ... C-52
TABSDIrECtiVE . ..o C-52
TITLEDIreCtiVe. . ... e e e et e C-52
UNDEFDIrective. . ... ... et e C-52
WARN DIreCtive . ... e e e C-53
XDEF DIreCtiVe . ..o e C-53
XREFDIrective . ... e C-H4
BREAK Statement. . ... C-56
CONTINUE Statement . ...t C-56
FOR Statement . ... e C-57
JFE Statement. .. ... C-57
LOOP Statement .. ... e C-58
REPEAT Statement. .. ... C-58
MWHILEStatement . . ... e C-59
Condition Code EXpression . ... C-60
Setting Up Transmit and Recelve Buffersand Pointers. . ............ D-9
Setting Codec Control Information ............................ D-11

Motorola

List of Examples XiX



D-3

D-5

D-6

D-7

D-8

D-9

D-10
D-11
D-12
D-13
D-14
D-15
D-16
D-17
D-18
D-19
D-20
D-21
D-22
D-23
D-24

ESSI Port Reset Procedure. . ... D-12

Setting Control RegistersfortheESSIOPort. . ................... D-15
Defining GPIO Pin/Bin Correspondence. .. .....coovviiiinnnn. D-17
GPIOPINConfiguration. . ... D-17
Code Form Settingsin Data Direction Registers. . ................ D-19
CodeFormat Procedures . ...t D-19
DeassartingCode Reset .. ...t D-19
Sending Code Information. ...t D-21
SendinginControl Words . ... D-22
ESSI Port Priority and Functionality Setting .. ................... D-24
ESSI Exception Status Interrupt Service . ... D-25
ESSlI Receive DataInterrupt Service. . .....ov oo D-26
ESS| Receive Last Slot Interrupt Service. .. ... D-27
ESSI Transmit Data with Exception Status Interrupt Service . ....... D-28
ESSI Transmit Last Slot Interrupt Service. . ...t D-29
ESS| Transmit Data Interrupt Service . ..., D-30
Include, Defing, and Set-Up Tasks. . ...t D-32
DSP Initidlization Procedure .. ... D-33
Initializing CODEC/ESSI. . . ... ..o D-33
Setting Up and InitidizingBuffer ............................. D-33
Implementation of EChoProgram. . ......... .. ..ot D-34
Applicationof EChoCode .......... .. D-35

XX

DSP56303EVM User’'s Manual Motorola



Chapter 1
Quick Start Guide

This section summarizes the evaluation module contents and additional requirements and
also provides quick installation and test information. The remaining sections of this
manual give details on the DSP56303EVM design and operation.

1.1

Equipment

The following subsections list the equipment required to use the DSP56303 evaluation
module (DSP56303EV M), some of which is supplied with the module, and some of which
must be supplied by the user.

1.1.1 What You Get with the DSP56303EVM
The following material comes with the DSP56303EV M:

DSP56303 Evaluation Module board

DSP56303EVM Product Brief

DSP56303EVM User’'s Manuéhis document)

DSP56303 Product Specifications, Revision 1.03

DSP56303 Chip Errata

Crystal Semiconductor CS4218 16-bit Multimedia Audio Codec Data Sheet
Technical Documentation CD-ROM including the following documents:
— DSP56300 Family Manual

— DSP56303 User’s Manual

— DSP56303 Technical Data Sheet

The required software:

— GUI Debugger from Domain Technologies (1 CD)

— Assembler/linker software from Motorola (1 CD)

Motorola Quick Start Guide 1-1



Installation Procedure

1.1.2 What You Need to Supply

The user must provide the following:

1.2

PC (Pentium-90MHz or higher) with

— Windows95 or NT4

— Minimum of 16Mbytes of memory with Windows95

— Minimum of 32Mbytes of memory with Windows NT

— 3%-inch high density diskette drive

— CD-ROM drive

— Hard drive with 20 Mbytes of free disk space

— Mouse

— RS-232 serial port supporting 9,600-115,200 bit-per-second transfer rates
RS-232 interface cable (DB9 plug to DB9 female)

Power supply, 7-9 V AC or DC input into a 2.1-mm power connector
Audio source (tape player, radio, CD player, etc.)

Audio interface cable with 1/8-inch stereo plugs

Headphones

Installation Procedure

Installation requires the following four basic steps:

1. Preparing the DSP56303EVM board

> w DN

Connecting the board to the PC and power
Installing the software
Testing the installation

1-2

DSP56303EVM User’'s Manual Motorola



Installation Procedure

1.2.1 Preparing the DSP56303EVM

Warning

Because all electronic components are
sensitive to the effects of electrostatic
discharge (ESD) damage, correct
procedures should be used when handling
all components in this kit and inside the
supporting personal computer. Use the
following procedures to minimize the
likelihood of damage due to ESD:

Always handle all static-sensitive
components only in a protected area,
preferably a lab with conductive
(antistatic) flooring and bench surfaces.

Always use grounded wrist straps when
handling sensitive components.

Do not remove components from antistatic
packaging until required for installation.

Always transport sensitive components in
antistatic packaging.

Locate jumper blocks J1, J4, J5, and J8, as shown in Figure 1-1. For block J1, make sure
that there are jumpers connecting pins 3 and 4 and pins 5 and 6. For blocks M4, J5, and J8
make sure that all positions on each block are jumpered. These jumpers perform the
following functions:

« J1 controls the operating mode of the DSP56303.

» J4 and J5 control the interface between the audio codec and the DSP56303
enhanced synchronous serial interface (ESSIO).

» J8 controls the interface between the DSP56303 JTAG/OnCE™ port and
DSP56002 synchronous serial interface (SSI).

Motorola Quick Start Guide 1-3



Installation Procedure

1.2.2 Connecting the DSP56303EVM to the PC and Power

Jjs J1
8
J10 ® I I ®
1 @ o
J1 J2 J3
TEST
SW2 || | ] LED
MC74HGT04 O
DSP56002
AT29LVO10A swi
D SW3 Flash
Pl J4  MC34164
DSP56303
J1
J7 -
MAX21 <s P6 OUT
S& .
Debug  Qs3384 o 36 J5
LED 3 —
a3 O[] I
JTAG/
OnCE™ MC33269 LM4880 ||

P2

Power
LED

@ MOTOROLA

/

CS4218

D HDPHNE

E:

P5

P4
IN

J4

12

L4

J5

~

IIIIIIl2
1

J

Figure 1-1. DSP56303EVM Component Layout

AA1925

Figure 1-2 shows the interconnection diagram for connecting the PC and the external
power supply to the DSP56303EVM board.

1-4

DSP56303EVM User’'s Manual

Motorola



Installation Procedure

Cable
PC-Compatible
Computer
| i
Connect cable P3
to RS-232 port
External
7-9V
Power DSP56303EVM

AA1926

Figure 1-2. Connecting the DSP56303EVM Cables
Use the following steps to complete cable connections:

1. Connect the DBOP end of the RS-232 interface cable to the RS-232 port connection
on the PC.

2. Connect the DB9S end of the cable to P2, shown in Figure 1-1, on the
DSP56303EV M board. This provides the connection to allow the PC to control the
board function.

3. Make sure the external 7-9 V power supglgot supplied with power.

4. Connect the 2.1-mm output power plug into P3, shown in Figure 1-1, on the
DSP56303EVM board.

5. Apply power to the power supply. The green power LED lights up when power is
correctly applied.

Motorola Quick Start Guide 1-5



Installation Procedure

1-6 DSP56303EVM User’'s Manual Motorola



Chapter 2
Example Test Program

This section contains an example that illustrates how to develop avery simple program for
the DSP56303. This exampleisfor users with little or no experience with the DSP
development tools. The example demonstrates the form of assembly programs, gives
instructions on how to assemble programs, and shows how the Debugger can verify the
operation of programs.

Figure 2-1 shows the development process flow for assembly programs. The rounded
blocks represent the assembly and object files. The white blocks represent software
programs to assemble and link the assemble programs. The gray blocks represent
hardware products.

The following sections give basic information on the assembly program, the assembler,
the linker and the object files. For detailed information on these subjects, consult the
assembler and linker manuals provided with the Motorola DSP CLAS software package,
available through your Motorola sales office or distributor. The documentation is also
available through the Motorola Wireless internet, URL

http://ww. not. com’ SPS/ DSP/ docunent at i on.

Motorola Example Test Program 2-1



Writing the Program

Assembly Program
*.asm

Assembler

v

Relocatable
Object File
*.;In

Linker

v

Executable
Object File
*.cld

DSP56002
DSP56303

DSP56303EVM AA1927

Y

ADS Command
Converter Card

Figure 2-1. Development Process Flow

2.1 Writing the Program

The following sections describe the format of assembly language source statements and
give an example assembly program.

2.1.1 Source Statement Format

Programs written in assembly language consist of a sequence of source statements. Each
source statement may include up to six fields separated by one or more spaces or tabs. a
label field, an operation field, an operand field, up to two data transfer fields, and a
comment field. For example, the following source statement shows all six possible fields:

Example 2-1. Example Source Statement

trm nac x0, y0, a x: (rQ)+, x0 y:(r4)+vy0 ; Text

Label Operation Operand X DataTransfer Y Data Transfer Comment

2-2 DSP56303EVM User’'s Manual Motorola



Writing the Program

2.1.1.1 Label Field

Thelabel field isthefirst field of a source statement and can take one of the following
forms:

» A space or tab as the first character on a line ordinarily indicates that the label file is
empty and that the line has no label.

* An alphabetic character as the first character indicates that the line contains a
symbol called a label.

 An underscore as the first character indicates that the label is local.

With the exception of some directives, a label is assigned the value of the location counter
of the first word of the instruction or data being assembled. A line consisting of only a
label is a valid line and assigns the value of the location counter to the label.

2.1.1.2 Operation Field

The operation field appears after the label field and must be preceded by at least one space
or tab. Entries in the operation field may be one of three types:

» Opcode—mnemonics that correspond directly to DSP machine instructions

» Directive—special operation codes known to the assembler that control the
assembly process

* Macro call—invocation of a previously defined macro that is to be inserted in
place of the macro call

2.1.1.3 Operand Field

The interpretation of the operand field depends on the contents of the operation field. The
operand field, if present, must follow the operation field and must be preceded by at least
one space or tab.

2.1.1.4 Data Transfer Fields

Most opcodes specify one or more data transfers to occur during the execution of the
instruction. These data transfers are indicated by two addressing mode operands separated
by a comma, with no embedded blanks. If two data transfers are specified, they must be
separated by one or more blanks or tabs. Refer O $@&6300 Family Manual for a

complete discussion of addressing modes that are applicable to data transfer
specifications.

Motorola Example Test Program 2-3



Writing the Program

2.1.1.5 Comment Field

Comments are not considered significant to the assembler but can be included in the
source file for documentation purposes. A comment field is composed of any characters
that are preceded by a semicolon.

2.1.2 Example Program

The example program discussed in this section takes two lists of data, one in X memory
and onein'Y memory, and calculates the sum of the products of the two lists. Calculating
the sum of productsis the basis for many DSP functions. Therefore, the DSP56303 has a
special instruction, “multiplier-accumulate (MAC)s”, which multiplies two values and
adds the result to the contents of an accumulator.

Example 2 -2. Simple DSP56303EVM Code Example

rkkhkkkhkhkkhkkhkhkkhkhkhkkhkhkkkhhkkhkkhhkkhkkhhkkhkhhkkhkhkkkhkhkhkkhhkkhkkhhkhhkhkkhhkhkkhhkhkkhkhkhkkhkkhhkkhkhkkhhkk*k

;A SI MPLE PROGRAM CALGULATI NG THE SUM CF PRCDUCTS

rkkhkkkhkhkkhkkhkhkkhkhkhkkhkhkkkhkhkkhkkhkhkkhkkhhkkhkhhkkhkhkkkhkhkhkkhhkkhhhkhhkhkkhhkhkkhhkhkkhkhkhkkhkkhhkkhkhkhkkhhkk*k
l

PBASE EQ $100 ;instruct the assenbler to replace
;every occurrence of PBASE with $100

XBASE EQU $0 ;used to define the position of the
;data in X nmenory

YBASE EQU $0 ;used to define the position of the

;data in Y nmenory

rkkhkkkhkhkkhkkhkhkkhkhkhkkhkhkkkhhkkhkkhhkkhkkhhkkhkhhkkhkhkkkhkhkhkkhhkkhkkhkhkhhkhkkhhkhkkhhkhkkhkkhkkhkkhhkkhhkkhhkk*k
’

; X MEMORY
IR R R R R R R b I i b b R R I b R R R b b R R R R R R R R b b R I b
org X: XBASE ;instructs the assenbl er that we
;are referring to X nenory starting
;at | ocation XBASE
listl dc $475638, $738301, $92673a, $898978, $091271, $f 25067
dc $987153, $3A8761, $987237, $34b852, $734623, $233763
dc $f 76756, $423423, $324732, $f 40029
IR R R R R R b b i I b R b I b b R R R b b R R b R R R R R R R I b b
;Y MEMORY
IR R R R R R R b I b I b R I b R R b R b b R R R R R R R R b R I b
org y: YBASE ;instructs the assenbl er that we
;are referring to Y nenory starting
;at | ocation YBASE
list2 dc $f 98734, $800000, $f edcba, $487327, $957572, $369856
dc $247978, $8a3407, $734546, $344787, $938482, $304f 82
dc $123456, $657784, $567123, $675634
IR R R R R i b b b b b R I b R R b b b b R R R R R R R R R R b b b b
; PROGRAM
IR R R R b R R i b b i b I R b I b b R b b b b R R R R R R R R b I b b
org p: 0 ;put follow ng programin program

;menory starting at |location O

2-4 DSP56303EVM User’'s Manual Motorola



Assembling the Program

Example 2-1. Simple DSP56303EVM Code Example (Continued)

jnp begi n ;p:0is the reset vector i.e. where
:the DSP | ooks for instructions
after a reset

org p: PBASE ;start the nain programat p: PBASE
begi n

nove #listl,r0O ;set up pointer to start of listl

nove #list2,r4 ;set up pointer to start of list2

clr a ; cl ear accurul ator a

nove x: (r0)+, x0 y:(r4)+y0
;1 oad the val ue of X nenory pointed
;to by the contents of rO into x0O and
; post-increnent r0
;1 oad the value of Y nenory pointed
;to by the contents of r4 into yO and
; post-i ncrenent r4

do #15, endl oop; do 15 ti nmes

nac X0, y0, a x: (r0)+, x0 y:(r4)+,y0
;multiply and accumul ate, and | oad
; next val ues

endl oop jnp * ;this is equivalent to

; | abel jnp | abel
;and is therefore a never-ending,
;enpty | oop

rkkkkkhkhkhkkhkhkkkhkhkkhkkhkhkkhkhkhkkhkhkhkkhhkkkhhkkhkhkkkhkhkhkkhhkkhkkhhkhhhkhkhkkhkhkhkkhhkkhhkhkkhhkhkkhkkhkkk*k

;EhE>CF THE S| MPLE PROGRAM

rkkkkkhkhkhkkhkhkkkhkhkkhkkhhkkhkhkhkkhkhkhkkhkhkkkhkhkkhkhkkkhkhkhkkhhkkhkkhhkhhhkhkhkkhkhkhkkhhkkhhkhkkhhkhkkhkkhkkk*k
’

2.2 Assembling the Program

The following sections describe the format of the assembler command, list the assembler
special characters and directives, and give instructions to assemble the example program.

2.2.1 Assembler Command Format

The Motorola DSP assembler isincluded with the DSP56303EVM on the Motorola Tools

CD and can beinstaled by following the instructions in the “Read Me’file on the CD.

The Motorola DSP assembler is a program that translates assembly language source
statements into object programs compatible with the DSP56303. The general format of the
command line to invoke the assembler is

asm56300 [options] <filenames>

whereasm56300 is the name of the Motorola DSP assembler programsflathames>
is a list of the assembly language programs to be assembled.

Motorola Example Test Program 2-5



Assembling the Program

2.2.2 Assembler Options

Table 2-1 describes the assembler options. To avoid ambiguity, the option arguments
should immediately follow the option letter with no blanks between them.

Table 2-1. Assembler Options

Option

Description

Puts the assembler into absolute mode and generates an absolute object file when the -B
command line option is given. By default, the assembler produces a relocatable object file
that is subsequently processed by the Motorola DSP linker.

-B<obijfil>

Specifies that an object file is to be created for assembler output. <objfil> can be any legal
operating system filename, including an optional pathname. The type of object file depends
on the assembler operation mode. If the -A option is supplied on the command line, the
assembler operates in absolute mode and generates an absolute object (.cld) file. If there
is no -A option, the assembler operates in relative mode and creates a relocatable object
(.cln) file. If the -B option is not specified, the assembler does not generate an object file. If
no <obffil> is specified, the assembler uses the basename (filename without extension) of
the first filename encountered in the source input file list and appends the appropriate file
type (.cIn or.cld) to the basename. The -B option should be specified only once.

Example: asm56300 -Bfilter main.asm fft.asm fio.asm

This example assembles the files main.asm, fft.asm, and fio.asm together to produce the
relocatable object file filter.cIn.

-D <symbol>
<string>

Replaces all occurrences of <symbol> with <string> in the source files to be assembled.
Example: asm56300 -DPOINTS 16 prog.asm

Replaces all occurrences of the symbol POINTS in the program prog.asm by the string
‘16°.

-EA<errfil> or
-EW<errfil>

Allows the standard error output file to be reassigned on hosts that do not support error
output redirection from the command line. <errfil> must be present as an argument but can
be any legal operating system filename, including an optional pathname. The -EA option
causes the standard error stream to be written to <errfil>; if <errfil> exists, the output
stream is appended to the end of the file. The -EW option also writes the standard error
stream to <errfil>; if <errfil> exists, it is overwritten.

Example: asm56300 -EWerrors prog.asm

Redirects the standard output to the file errors. If the file already exists, it is overwritten.

-F<argfil>

Indicates that the assembler should read command line input from <argfil>, which can be
any legal operation system filename, including an optional pathname. <ardfil> is a text file
containing further options, arguments, and filenames to be passed to the assembler. The
arguments in the file need to be separated only by white space. A semicolon on a line
following white space makes the rest of the line a comment.

Example: asm56300 -Fopts.cmd

Invokes the assembler and takes the command line options and source filenames from the
command file opts.cmd.

2-6

DSP56303EVM User’'s Manual Motorola




Assembling the Program

Table 2-1. Assembler Options (Continued)

Option

Description

Sends the source file line number information to the object file. This option is valid only in
conjunction with the -B command line option. Debuggers can use the generated line
number information to provide source-level debugging.

Example: asm56300 -B -Gmyprog.asm

Assembles the file myprog.asm and sends the source file line number information to the
resulting object file myprog.cin.

-I<pathname>

Causes the assembler to look in the directory defined by <pathname> for any include file
not found in the current directory. <pathname> can be any legal operating system
pathname.

Example: asm56300 -l\project| testprog

Uses IBM PC pathname conventions and causes the assembler to prefix any include files
not found in the current directory with the \project\ pathname.

-L<Istfil>

Specifies that a listing file is to be created for assembler output. <Istfil> can be any legal
operating system filename, including an optional pathname. If no <lIstfil> is specified, the
assembler uses the basename (filename without extension) of the first filename
encountered in the source input file list and appends .Ist to the basename. The -L option is
specified only once.

Example: asm56300 -L filter.asm gauss.asm

Assembles the files filter.asm and gauss.asm together to produce a listing file. Because no
filename is given, the output file is named using the basename of the first source file, in this
case filter, and the listing file is called filter.Ist.

-M<pathname>

Causes the assembler to look in the directory defined by <pathname> for any macro file not
found in the current directory. <pathname> can be any legal operating system pathname.

Example: asm56300 -Mfftlib\ trans.asm

Uses IBM PC pathname conventions and causes the assembler to look in the fftlib
subdirectory of the current directory for a file with the name of the currently invoked macro
found in the source file, trans.asm.

Causes the assembler to report assembly progress to the standard error output stream.

Causes the assembler to strip symbol information from the absolute load file. Normally
symbol information is retained in the object file for symbolic references purposes. This
option is valid only with the -A and -B options.

Note: Multiple options can be used. A typical string might be as follows:

Example: asm56300 -A -B -L -G filename.asm

Motorola

Example Test Program 2-7




Assembling the Program

2.2.3 Assembler Directives

In addition to the DSP56303 instruction set, the assembly programs can contain
mnemonic directives that specify auxiliary actions to be performed by the assembler.
These are the assembler directives. These directives are not always trandlated into
machine language. The following sections briefly describe the various types of assembler
directives.

2.2.3.1 Assembler Significant Characters
The following one-and two-character sequences are significant to the assembler:

; Comment delimiter

;; Unreported comment delimiter

\ Line continuation character or macro dummy argument concatenation operator
? Macro value substitution operator

% Macro hex value substitution operator

A Macro local 1abel override operator

“ Macro string delimiter or quoted string DEFINE expansion character
@ Function delimiter

* Location counter substitution

++ String concatenation operator

[ Substring delimiter

<< 1/0 short addressing mode force operator

< Short addressing mode force operator

> Long addressing mode force operator

# Immediate addressing mode operator

#< Immediate short addressing mode force operator

#> Immediate long addressing mode force operator

2-8 DSP56303EVM User’'s Manual Motorola



Assembling the Program

2.2.3.2 Assembly Control

The directives used for assembly control are as follows:

COMMENT
DEFINE
END

FAIL
FORCE
HIMEM
INCLUDE
LOMEM
MODE
MSG
ORG
RADIX
RDIRECT
SCSIMP
SCSREG
UNDEF
WARN

Start comment lines

Define substitution string

End of source program
Programmer-generated error message

Set operand forcing mode

Set high memory bounds

Include secondary file

Set low memory bounds

Change relocation mode
Programmer-generated message

Initialize memory space and location counters
Change input radix for constants

Remove directive or mnemonic from table
Set structured control branching mode
Reassign structured control statement registers
Undefine DEFINE symbol
Programmer-generated warning

2.2.3.3 Symbol Definition

The directives used to control symbol definition are as follows:

ENDSEC End section
EQU Equate symbol to avalue
GLOBAL Global section symbol declaration
GSET Set global symbol to avalue
LOCAL Local section symbol declaration
SECTION Start section
SET Set symbol to avalue
XDEF External section symbol definition
XREF External section symbol reference
Motorola Example Test Program 2-9



Assembling the Program

2.2.3.4 Data Definition/Storage Allocation

The directives to control constant data definition and storage allocation are as follows:

BADDR— Set buffer address
BSB— Block storage bit-reverse

BSC

BSM
BUFFER
DC

DCB

DS

DSM
DSR
ENDBUF

Block storage of constant
Block storage modulo

Start buffer

Define constant

Define constant byte

Define storage

Define modulo storage
Define reverse carry storage
End buffer

2.2.3.5 Listing Control and Options

The directives to control the output listing are as follows:

LIST
LSTCOL
NOLIST
OPT
PAGE
PRCTL
STITLE
TABS
TITLE

List the assembly

Set listing field widths

Stop assembly listing
Assembler options

Top of page/size page

Send control string to printer
Initialize program subtitle
Set listing tab stops

Initialize program title

2-10

DSP56303EVM User’'s Manual

Motorola



Assembling the Program

2.2.3.6 Object File Control

The directives for control of the object file are as follows:

COBJ
IDENT
SYMOBJ

Comment object code
Object code identification record

Write symbol information to object file

2.2.3.7 Macros and Conditional Assembly

The directives for macros and conditional assembly are as follows:

DUP
DUPA
DUPC
DUPF
ENDIF
ENDM
EXITM
IF
MACLIB
MACRO
PMACRO

Duplicate sequence of source lines
Duplicate sequence with arguments
Duplicate sequence with characters
Duplicate sequencein loop

End of conditional assembly

End of macro definition

Exit macro

Conditional assembly directive
Macro library

Macro definition

Purge macro definition

2.2.3.8 Structured Programming

The directives for structured programming are as follows:

.BREAK Exit from structured loop construct
.CONTINUE Continue next iteration of structured loop
.ELSE Perform following statements when .IF false
.ENDF End of .FOR loop
.ENDI End of .IF condition
.ENDL End of hardware loop
.ENDW End of .WHILE loop
.FOR Begin .FOR loop
IF Begin .IF condition
Motorola Example Test Program 2-11



Motorola DSP Linker

.LOOP Begin hardware loop
.REPEAT Begin .REPEAT loop
UNTIL End of .REPEAT loop
WHILE Begin WHILE loop

2.2.4 Assembling the Example Program

The assembler isan MS-DOS based program; thus, to use the assembler you must exit
Windows or open an MS-DOS Prompt Window. To assemble the example program, type
asm56300 -a -b -I -g example.asm into the evm30xw directory created by the installation
process from Section 2.2.1, "Assembler Command Format," on page 2-5. This creates two
additional files: example.cld and example.lst. The example.cld file is the absol ute object
file of the program; it is downloaded into the DSP56303. The example.lst fileisthelisting
file; it gives full details of where the program and data are placed in the DSP56303
memory.

2.3 Motorola DSP Linker

Though not needed for our simple example, the Motorola DSP linker is also included with
the DSP56303EVM. The Motorola DSP linker is a program that processes rel ocatable
object files produced by the Motorola DSP assembler, generating an absolute executable
file which can be downloaded to the DSP56303. The Motorola DSP linker isincluded on
the Motorola Tools CD and can be installed by following theinstructionsin Section 2.2.1,
"Assembler Command Format," on page 2-5. The general format of the command line to
invoke the linker is

dsplnk [optiong] <filenames>

where dsplnk is the name of the Motorola DSP linker program, and <filenames> isalist
of the relocatable object files to be linked.

2-12 DSP56303EVM User’'s Manual Motorola



Linker Options

2.4 Linker Options

Table 2-2 describes the linker options. To avoid ambiguity, the option arguments should
immediately follow the option letter with no blanks between them.

Table 2-2. Linker Options

Option

Description

Auto-aligns circular buffers. Any modulo or reverse-carry buffers defined in the object file
input sections are relocated independently in order to optimize placement in memory.
Code and data surrounding the buffer are packed to fill the space formerly occupied by the
buffer and any corresponding alignment gaps.

Example: dspink -A myprog.cin

Links the file myprog.cln and optimally aligns any buffers encountered in the input.

-B<obifil>

Specifies that an object file is to be created for linker output. <obijfil> can be any legal
operating system filename, including an optional pathname. If no filename is specified, or
if the -B option is not present, the linker uses the basename (filename without extension)
of the first filename encountered in the input file list and appends .cld to the basename. If
the -1 option is present (see below), an explicit filename must be given because if the linker
follows the default action, it can overwrite one of the input files. The -B option is specified
only once. If the file named in the -B option already exists, it is overwritten.

Example: dspink -Bfilter.cld main.cin fft.cin fio.cin

Links the files main.cln, fft.cln, and fio.cln together to produce the absolute executable file
filter.cld.

-EA<errfil> or
-EW<errfil>

Allows the standard error output file to be reassigned on hosts that do not support error
output redirection from the command line. <errfil> must be present as an argument, but it
can be any legal operating system filename, including an optional pathname. The -EA
option causes the standard error stream to be written to <errfil>; if <errfil> exists, the
output stream is appended to the end of the file. The -EW option also writes the standard
error stream to <errfil>; if <errfil> exists it is overwritten.

Example: dspink -EWerrors myprog.cin

Redirects the standard error output to the file errors. If the file already exists, it is
overwritten.

-F<argfil>

Indicates that the linker should read command line input from <argfil>, which can be any
legal operating system filename, including an optional pathname. <ardfil> is a text file
containing further options, arguments, and filenames to be passed to the linker. The
arguments in the file need be separated only by white space. A semicolon on a line
following white space makes the rest of the line a comment.

Example: dspink -Fopts.cmd

This example invokes the linker and takes command line options and input filenames from
the command file opts.cmd.

Motorola

Example Test Program 2-13



Linker Options

Table 2-2. Linker Options (Continued)

Option Description

-G Sends source file line number information to the object file. The generated line number
information can be used by debuggers to provide source-level debugging.

Example: dspink -B -Gmyprog.cin

Links the file myprog.cln and sends source file line number information to the resulting
object file myprog.cld.

-1 The linker ordinarily produces an absolute executable file as output. When the -1 option is
given, the linker combines the input files into a single relocatable object file suitable for
reprocessing by the linker. No absolute addresses are assigned and no errors are issued
for unresolved external references. Note that the -B option must be used when performing
incremental linking in order to give an explicit name to the output file. If the filename is
allowed to default, it can overwrite an input file.

Example: dspink -I -Bfilter.cin main.cin fft.cln fio.cin

Combines the files main.cln, fft.cln, and fio.cln to produce the relocatable object file
filter.cIn.

-L<library> The linker ordinarily processes a list of input files that each contain a single relocatable
code module. Upon encountering the -L option, the linker treats the following argument as
a library file and searches the file for any outstanding unresolved references. If it finds a
module in the library that resolves an outstanding external reference, it reads the module
from the library and includes it in the object file output. The linker continues to search a
library until all external references are resolved or no more references can be satisfied
within the current library. The linker searches a library only once, so the position of the -L
option on the command line is significant.

Example: dspink -B filter main fir -Lio

Illustrates linking with a library. The files main.cln and fir.cin are combined with any
needed modules in the library io.lib to create the file filter.cld.

-M<mapfil> Indicates that a map file is to be created. <mapfil> can be any legal operating system
filename, including an optional pathname. If no filename is specified, the linker uses the
basename (filename without extension) of the first filename encountered in the input file
list and append .map to the basename. If the -M option is not specified, then the linker
does not generate a map file. The -M option is specified only once. If the file named in the
-M option already exists, it is overwritten.

Example: dspink -M filter.cln gauss.cin

Links the files filter.cIn and gauss.cln to produce a map file. Because no filename is given
with the -M option, the output file is named using the basename of the first input file, in this
case filter. The map file is called filter.map.

-N For the linker the case of symbol names is significant. When the -N option is given the
linker ignores case in symbol names; all symbols are mapped to lower case.

Example: dspink -N filter.cIn fft.cln fio.cln

Links the files filter.cln, fft.cln, and fio.cln to produce the absolute executable file filetr.cld;
Maps all symbol references to lower case.

2-14 DSP56303EVM User’'s Manual Motorola



Linker Options

Table 2-2. Linker Options (Continued)

Option

Description

-O<mem>[<ctr>][<
map>]:<origin>

By default, the linker generates instructions and data for the output file beginning at
absolute location zero for all DSP memory spaces. This option allows the programmer to
redefine the start address for any memory space and associated location counter. <mem>
is one of the single-character memory space identifiers (X, Y, L, P). The letter can be
upper-or lowercase. The optional <ctr> is a letter indicating the high (H) or low (L) location
counters. If no counter is specified the default counter is used. <map> is also optional and
signifies the desired physical mapping for all relocatable code in the given memory space.
It can be | for internal memory, E for external memory, R for ROM, A for Port A, and B for
Port B. If <map> is not supplied, then no explicit mapping is presumed. The <origin> is a
hexadecimal number signifying the new relocation address for the given memory space.
The -O option can be specified as many times as needed on the command line. This
option has no effect if incremental linking is being done. (See the -I option.)

Example: dspink -Ope:200 myprog -Lmylib

Initializes the default P memory counter to hex 200 and maps the program space to
external memory.

-P<pathname>

When the linker encounters input files, it first searches the current directory (or the
directory given in the library specification) for the file. If it is not found and the -P option is
specified, the linker prefixes the filename (and optional pathname) of the file specification
with <pathname> and searches the newly formed directory pathname for the file. The
pathname must be a legal operating system pathname. The -P option can be repeated as
many times as desired.

Example: dspink -Pl\project| testprog

Uses IBM PC pathname conventions and causes the linker to prefix any library files not
found in the current directory with the \project\ pathname.

-R<ctlfil>

Indicates that a memory control file is to be read to determine the placement of sections
into DSP memory and other linker control functions. <ctlfil> can be any legal operating
system filename, including an optional pathname. If a pathname is not specified, an
attempt is made to open the file in the current directory. If no filename is specified, the
linker uses the basename (filename without extension) of the first filename encountered in
the link input file list and append .ctl to the basename. If the -R option is not specified, then
the linker does not use a memory control file. The -R option is specified only once.

Example: dspink -Rproj filter.cln gauss.cin

Links the files filter.cln and gauss.cln using the memory file proj.ctl.

-U<symbol>

Allows the declaration of an unresolved reference from the command line. <symbol> must
be specified. This option is useful for creating an undefined external reference in order to
force linking entirely from a library.

Example: dsplnk -Ustart -Lproj.lib

Declares the symbol start undefined so that it is resolved by code within the library proj.lib.

Causes the linker to report linking progress (beginning of passes, opening and closing of
input files) to the standard error output stream. This is useful to ensure that link editing is
proceeding normally.

Example: dspink -V myprog.cin

Links the file myprog.cln and sends progress lines to the standard error output.

Motorola

Example Test Program 2-15



Linker Options

Table 2-2. Linker Options (Continued)

Option Description

-X<opt>[,<opt>,...,< | Provides for link time options that alter the standard operation of the linker. The options
opt>] are described below. All options can be preceded by “NO” to reverse their meaning. The
-X<opt> sequence can be repeated for as many options as desired.

Option  Meaning

ABC* Perform address bounds checking

AEC* Check form of address expressions

ASC Enable absolute section bounds checking

CSL Cumulate section length data

ESO Do not allocate memory below ordered sections
OVLP Warn on section overlap

RO Allow region overlap

RSC* Enable relative section bounds checking

SVO Preserve object file on errors

WEX Add warning count to exit status

(* means default)
Example: dspink -XWEX filter.cIn fft.cin fio.cin

Allows the linker to add the warning count to the exit status so that a project build aborts
on warnings as well as errors.

-Z Allows the linker to strip source file line number and symbol information from the output
file. Symbol information normally is retained for debugging purposes. This option has no
effect if incremental linking is being done. (See the -l option.)

Example: dsplnk -Zfilter.cln fft.cln fio.cln

Links the files filter.cln, fft.cIn, and fio.cln to produce the absolute object file filter.cin. The
output file contains no symbol or line number information.

2.4.1 Linker Directives

Similar to the assembler directives, the linker includes mnemonic directives which specify
auxiliary actions to be performed by the linker. Following is alist of the linker directives.

BALIGN Auto-align circular buffers
BASE Set region base address

IDENT Object module identification
INCLUDE Include directivefile

MAP Map file format control
MEMORY Set region high memory address
REGION Establish memory region

RESERVE Reserve memory block
SBALIGN Auto-align section buffers

2-16 DSP56303EVM User’'s Manual Motorola



Introduction to the Debugger Software

SECSIZE Pad section length
SECTION Set section base address
SET Set symbol value
SIZSYM Set size symbol

START Establish start address
SYMBOL Set symbol value

2.5 Introduction to the Debugger Software

This section briefly introduces the Domain Technol ogies debugger, giving only the details
required to work through this example. For full details on the Debugger and an
informative tutorial, consult the Debug-56K Manual. The Domain Technologies
Debugger is a software development system for the DSP56303. The Domain
Technologies Debugger is included with the DSP56303EVM on the Domain
Technologies CD-ROM, and can be installed following the on-line instructions. If you are
running Windows95 or WindowsNT, the softwareinstaller will be launched automatically
when you insert the CD into your drive. To invoke the Debugger, double-click on theicon
labelled evm30xw in the EVM5630x program group created when the Debugger was
installed.

The Debugger display is similar to that shown in Figure 2-2; the screen is divided into

four windows—the command window, the data window, the unassembly window, and the
registers window. The command window is the window selected, which means that key
strokes are placed into the command window. The data window displays DSP56303 data.
The unassembly window displays the DSP56303 programs highlighting the next
instruction to be executed. The registers window shows the contents of the DSP56303
internal registers.

Motorola Example Test Program 2-17



Introduction to the Debugger Software

= EVM-563xx - COM2 [ -] -
Flle  Misw PBun  Symbol Breakpoinl  Gonfig  Window  Help
Bk rve[e F |
e Unassembhyfexampbe.asm) i i | Data [HEX] [lis1Z) = =
+ : : +
1
;
.llfll.llll HlistZ, rs et
. s §
-
. - s Registers [HEX] - -
Coom s [HEX] i
il exeaple
%0
4+
AA1791

Figure 2-2. Example Debugger Window Display

When the command window is selected asin Figure 2-2, the tool-bar at the top of the
screen will change and show buttons for the commands used most often in the command
window. From left to right the commands are’go”, “stop”, “step”, “jump”, “automatic
update”, “reset” and “radix”.

e “Go0” runs the DSP56303 from the program counter.

e “Stop” stops the DSP56303.

» “Step” executes a single instruction.

« “Jump” is similar to the step, except that subroutines are treated as one instruction.

» “Automatic update” turns the automatic screen update mode on, so that the
DSP56303 is periodically interrupted to update the data and registers windows.

* “Reset” resets the DSP56303.
« “Radix” can be used to change the radix of the selected window.

Other buttons appear when other windows are selected, and they function as described in
the Debug-56K Manual, which is contained in the Domain Technologies CD-ROM.

2-18 DSP56303EVM User’'s Manual Motorola



Running the Program

2.6 Running the Program

To load the example program into the Debugger, click in the command window and type
load example. Theinstruction at line 33 is highlighted in the unassembly window because
thisisthefirst instruction to be executed. But, before executing the program, verify that
the values expected in data memory are there. To do this, type display x:0 and display y:O.
The datais displayed in the data window.

To step through the program, type step at the command window prompt. For a shortcut,
click on the step button or type the start of the command and press the space bar, and the
debugger will complete the remainder of the command. To repeat the last command, press
return. As you step through the code, notice that the registersin the registers window are
changed by the instructions. After each cycle, any register that has been changed is
highlighted. Once you have stepped through the program, ensure that the program has
executed correctly by checking that the result in accumulator ais $FE 9F2051 6DFCC2.

Stepping through the program like thisis good for short programs, but it isimpractical for
large, complex programs. The way to debug large programsisto set breakpoints, which
are user-defined points where execution of the code stops, allowing the user to step
through the section of interest. In the example set a breakpoint, to verify that the valuesin
r0O and r4 are correct before the do loop, type break p:$106 in the command window. The
line before the loop brightens in the unassembly window, indicating the breakpoint has
been set. To point the DSP56303 back to the start point of the program, type change pc 0.
This changes the program counter so that it pointsto the reset vector. To run the program
type go or click on the go button. The DSP56303 stops when it reaches the breakpoint, and
you can step through the remainder of the code.

To exit the Debugger, type quit at the command prompt.

Motorola Example Test Program 2-19



Running the Program

2-20 DSP56303EVM User’'s Manual Motorola



Chapter 3
DSP56303EVM Technical Summary

3.1 DSP56303EVM Description and Features

An overview description of the DSP56303EVM is provided in the DSP56303EVM
Product Brief (DSP56303EVMP/D) included with this kit. The main features of the
DSP56303EV M include the following:

 DSP56303 24-bit digital signal processor

* FSRAM for expansion memory and Flash PEROM for stand-alone operation.
* 16-bit CD-quality audio codec

 Command converter circuitry

3.2 DSP56303 Description

A full description of the DSP56303, including functionality and user information, is
provided in the following documents:

» DSP56303 Technical Data (Document order number DSP56303/D): Provides
features list and specifications including signal descriptions, DC power
requirements, AC timing requirements, and available packaging.

* DSP56303 User's ManualDocument order number DSP56303UM/AD):
Provides an overview description of the DSP and detailed information about the
on-chip components including the memory and 1/0 maps, peripheral functionality,
and control and status register descriptions for each subsystem.

» DSP56300 Family Manual (Document order number DSP56300FM/AD):
Provides a detailed description of the core processor including internal status and
control registers and a detailed description of the family instruction set.

Refer to these documents for detailed information about chip functionality and operation.
These documents will be provided in the kit on either CD or hard copy.

Motorola DSP56303EVM Technical Summary 3-1



Memory

Note: A detailed list of known chip erratais also provided with this kit. Refer to the
DSP56303 Chip Errata document for information that has changed since the
publication of the reference documentation listed previously. The latest version
can be obtained on the Motorola DSP worldwide web site at
http://ww not. coni SPS DSP/ chi perr at a/ i ndex. ht ni

3.3 Memory

The DSP56303EVM includes the following external memory:

* 64K x 24-bit fast static RAM (FSRAM) for expansion memory
« 128K x 8-bit flash memory for stand-alone operation
Refer to Figure 3-1 for the location of the FSRAM and Flash on the DSP56303EVM.

Figure 3-2 shows a functional block diagram of the DSP56303EVM including the
memory devices.

H )2 %3 Test
w2l [ ] | | | L(E)D
MC74HCTO04
DSP56002
swa AT29LVO10A SW1
Flash
Pl )4 MC34164
DSP56303
J10
J7 -
MAX212 D 3= P6 OUT
Ss L
\:I Debug  Qs3384 59 i J5
LED & —
=Nomul —
JTAG/
OnCE  MC33269 Lmaggo L1 o
MOTOROLA D HDPHIE
P2
3.3 -
Y Serial # o4
IN
5v Cs4218
Power
2.5v
HED I:l 79 AA1928

Figure 3-1. DSP56303EVM Component Layout

3-2 DSP56303EVM User’'s Manual Motorola



Memory

r—------—--- - - - - - - - - - - - - - - -—-- - =- A
RS-232 | p > |
| FSRAM | | Flash | |
I b i I
H | | 64K x 24 128K x8 |
CS) ! \ 4 \ 4 |
T | Data Bus Address Bus |
| |

| SSi TA
p [—»(5C \(])nCGE/T'VI Port !
c ]! o | !
| DSP56002 DSP56303 |
I SCI I
RS-232 EXTAL  SCLK Data Control |
I ESSIO| | ESSI1 I
| 153.6 kHz EXTAL |
H [ ¢ i |
© [ Oscillator [ - 35 J4 [
S | Oscillator H ¢ ¢ |

T | 19.6608 MHz T3 588 Tz
5 . J10 —In |
| CS4218 |—Headphone |

C 371
! L] CLKIN  [—Out '
L e o e e/ e _— —_ - -
AA1924
Figure 3-2. DSP56303EVM Functional Block Diagram
3.3.1 FSRAM

The DSP56303EVM uses one bank of 64K x 24-bit fast static RAM(GS71024T-10,
labelled U4) for memory expansion. The GS71024T-10 uses asingle 3.3 V power supply
and has an access time of 10 ns. The following sections detail the operation of the
FSRAM.

3.3.1.1 FSRAM Connections

The basic connection for the FSRAM is shown in Figure 3-3.

DSP56303 FSRAM

A0-AlS iy AO-A15
D0-D23 (~——{ |00-1023
AAOl— I CE1l
RD—»| OE
WR > WE AA1929

Figure 3-3. FSRAM Connections to the DSP56303

Motorola DSP56303EVM Technical Summary 3-3



Memory

The data input/output pins 100-1023 for the FSRAM are connected to the DSP56303
D0-D23 pins. The FSRAM write (WEand output enable (Qfines are connected to the
DSP56303 write (WIRand read (RPlines, respectively. The FSRAM chip enable (CE1

Is generated by the DSP56303 address attribute 0 (AAO). The FSRAM activity is
controlled by AAO and the corresponding address attribute register 0 (AAROQ). The

FSRAM address input pins, AO—A15, are connected to the respective port A address pins
of the DSP. This configuration selects a unified memory map of 64K words. The unified
memory does not contain partitioned X data, Y data, and program memory. Thus, access
to P:$1000, X:$1000, and Y:$1000 istreated as access to the same memory cell and 48-bit
long memory data moves are not possible to or from the external FSRAM.

3.3.1.2 Example: Programming AARO

As mentioned above, the FSRAM activity is controlled by the DSP56303 pin AAO and the
corresponding AARO. AARO controls the external access type, the memonramgpe,

which external memory addresses access the FSRAM. Figure 3-4 shows the memory map
that is attained with the AARO settings described in this example.

Note: In this example, the memory switch bit in the operating mode register (OMR) is
cleared and the 16-bit compatibility bit in the status register is cleared.

In Figure 3-4, the FSRAM responds to the 64K of X and Y data memory addresses
between $040000 and $04FFFF. However, with the unified memory map, accesses to the
same external memory location are treated as accesses to the same memory cell.

A priority mechanism exists among the four AAR control registers. AAR3 has the highest
priority and AARO had the lowest. Bit 14 of the OMR, the address priority disable (APD)
bit, controls which AA pins are asserted when a selection conflict occurs (i.e. the external
address matches the address and the space that is specified in more than one AAR). If the
APD bit is cleared when a selection conflict occurs, only the highest priority AA pin is
asserted. If the APD bit is set when a selection conflict occurs, the lower priority AA pins
are asserted in addition to the higher priority AA pin. For this example, only one AA pin
must be asserted, AAO. Thus, the APD bit can be cleared.

34 DSP56303EVM User’'s Manual Motorola



Memory

$FFFFFF

$FF0000

$004000

$000000
Figure 3-4. Example Memory Map with the Unified External Memory

Memory Map (MS =0, SC =0)
X Data

Program

Y Data

Unified FSRAM

1 =internal

$050000

$040000
$006000

Memory

AA1930

Figure 3-5 shows the settings of AARO for this example. The external access type bits
(BAT1 and BATO) are set to 0 and 1, respectively, to denote FSRAM access. The address
attribute polarity bit (BAAP) iscleared to define AAQ as active low. Address multiplexing
Is not needed with the FSRAM:; therefore, the address multiplexing bit BAM is cleared.
Packing is not needed with the FSRAM; thus, the packing enable bit BPAC is cleared to
disable this option.

23

12

BAC11
0

BAC10
0

BAC9

BAC8

BAC7

BAC6

BACS

BAC4

BAC3

BAC2

BAC1

BACO

11

0

BNC3

BNC2

BNC1

BNCO

BPAC

BAM

BYEN

BXEN

BPEN

BAAP

BAT1
0

BATO
1

[

| External Access Type

Address to Compare

X:$FFFFF9

AA Pin Polarity
Program Space Enable
X Data Space Enable
Y Data Space Enable
Address Multiplexing
Packing Enable
Number of Address
Bits to Compare

AA1931

Figure 3-5. Address Attribute Register AARO

Motorola

DSP56303EVM Technical Summary

3-5



Memory

The P, X data, and Y data space Enable bits (BPEN, BXEN, and BY EN) define whether
the FSRAM is activated during external P, X data, or Y data space accesses, respectively.
For this example, the BXEN and BY EN bits are set, and BPEN is cleared to allow the
FSRAM to respond to X and Y data memory accesses only.

The number of address bits to compare BNC(3:0) and the address to compare bits
BAC(11:0) determine which external memory addresses access the FSRAM. The BNC
bits define the number of upper address bits that are compared between the BAC bits and
the external addressto determine if the FSRAM is accessed. For this example, the
FSRAM is assigned to respond to addresses between $040000 and $04FFFF. Thus, the
BNC bitsare set to $8 and the BAC bits are set to $040. If the eight most significant bits of
the external address are 00000100, the FSRAM is accessed.

3.3.2 Flash

The DSP56303EVM uses an Atmel AT29LV010A-20TC chip (U3) to provide a
128K x 8-bit CMOS Flash for stand-alone operation (i.e., startup boot operation without
accessing the DSP56303 through the JTAG/OnCE port). The AT29LV010 usesa 3.3V
power supply and has a read access time of 200 ns.

3.3.2.1 Flash Connections

The basic connection for the Flash is shown in Figure 3-6.

DSP56303 Flash

A0-A16 | =l AO—A16
DO-D7 |~<——/00-1/07
AAl —®|CE
RD —»OE
WR ———»WE

AA1932

Figure 3-6. Flash Connections

The flash address pins (A0O—A16) connect the respective port A address pins on the DSP.
The flash data input/output pins I/O0-1/O7 are connected to the DSP56303 DO-D7 pins.
The flash write enable (WEand output enable (QBines connect the DSP56303 write

(WR) and read (RDenable lines, respectively. Address attribute 1 (AA1) generates the
flash chip enable CE

3.3.2.2 Programming for Stand-Alone Operation

The DSP56303 mode pins determine the chip operating mode and start-up procedure
when the DSP56303 exits the reset state. The switch at SW1 resets the DSP56303 by

3-6 DSP56303EVM User’'s Manual Motorola



Audio Codec

asserting and then clearing the RESET pin of the DSP56303. The mode pins MODA,
MODB, MODC, and MODD are sampled as the DSP56303 exits the reset state. The mode
pins for the DSP56303EV M are controlled by jumper block J1 shown in Figure 3-1 on
page 3-2 and Table 3-14 on page 3-16. The DSP56303 boots from the Flash after reset if
there are jJumpers connecting pins 3 and 4 and pins 5 and 6 on J1 (Mode 1: MODA and
MODD are set, and MODB and MODC are cleared).

3.4 Audio Codec

The DSP56303EVM analog section uses the Crystal Semiconductor CS4218-KQ for two
channels of 16-bit A/D conversion and two channels of 16-bit D/A conversion. Refer to
Figure 3-1 on page 3-2 for the location of the codec on the DSP56303EVM and to
Figure 3-2 on page 3-3 for afunctional diagram of the codec within the evaluation
module. The CS4218 uses a 3.3 V digital power supply and a5 V analog power supply.

The CS4218 isdriven by a 12.288 MHz signal at the codec master clock (CLKIN) input
pin. The oscillator at Y1 createsa5V 12.288 MHz signal. The QS3384 at U5 then
convertsthe 5V signal to 3.3 V for input to the codec CLKIN pin and the DSP56303
EXTAL pin. Refer to the C$4218 data sheet included with this kit for more information.

The C4218 isvery flexible, offering selectable sampling frequencies between 8 kHz and
48 kHz. The sampling frequency is selected using jumpers on jumper block J9. Table 3-1
shows jumper positions that select the possible sampling frequencies for the
DSP56303EVM.

Table 3-1. CS4218 Sampling Frequency Selection

J9 Pins 1-2 J9 Pins 3-4 J9 Pins 5-6 Sampling Frequency

(MF6) (MF7) (MF8) (kHz2)
Jumper Jumper Jumper 48.0
Jumper Jumper Open 32.0
Jumper Open Jumper 24.0
Jumper Open Open 19.2

Open Jumper Jumper 16.0

Open Jumper Open 12.0

Open Open Jumper 9.6

Open Open Open 8

The codec is connected to the DSP56303 ESSI 0 through the shorting jumpers on J4 and J5
shown in Figure 3-1 on page 3-2. Jumper block J4 connects the ESSI1 pins of the

Motorola DSP56303EVM Technical Summary 3-7



Audio Codec

DSP56303 to the control pins of the CS4218. Jumper block J5 connects the ESSIO pins of
the DSP56303 to the data pins of the C$4218. By removing these jumpers, the user has
full accessto the ESSIO0 and ESSI 1 pins of the DSP56303. The following sections describe
the connections for the analog and digital sections of the codec.

3.4.1 Codec Analog Input/Output

The DSP56303EV M contains 1/8-inch stereo jacks for stereo input, output, and
headphones. Figure 3-7 shows the analog circuitry of the codec.

CS4218
4 Headphones
itst"jfo —~— IRIN2 — ~ Ll (ps)
(P4) ——11LIN2
LM4880
X—RIN1
Unused
LIN1 LOUT Stereo
D Output
ROUT (P6)

AA1933

Figure 3-7. Codec Analog Input/Output Diagram

The stereo jack |abelled P4/IN on the DSP56303EVM connects to the codec right and | eft
input pins, RIN2 and LIN2. Standard line level inputs are 2 V pp and the codec requires
that input levels be limited to 1 Vpp. Thus, avoltage divider forms a 6 dB attenuator
between P4 and the CS4218.

The codec right and left channel output pins, ROUT and LOUT, provide their output

analog signals, through the stereo jack labelled P6/OUT on the DSP56303EVM. The

outputs of the codec are also connected to the stereo jack labelled PS/HDPHNE on the
DSP56303EVM through National Semiconductor’s LM4880 dual audio power amplifier
at U8. The headphone stereo jack permits direct connection of stereo headphones to the
DSP56303EVM.

3.4.2 Codec Digital Interface

Figure 3-8 shows the digital interface to the codec. Tabla®dZable 3-3show the
jumper selections to Enable/Disable the code’s digital signals.

3-8 DSP56303EVM User’'s Manual Motorola



Audio Codec

DSP56303

STDO [ p»
SRDO (g
SCKO |ag———
SCO0 | p»

SCIl|— g
SC12|— g

CS4218
SDIN

SDOUT
SCLK
RESET

MF4/CCS
MF3/CCLK
MF2/CDIN

Figure 3-8. Codec Digital Interface Connections

Table 3-2. JP5 Jumper

AA1934

Block Options

JP5 DSP Signal Name Code Signal Name
1—2 SCKO SCLK
3—4 SC00 RESET
5—6 STDO SDIN
7—8 SRDO SDOUT
9—10 SCco1 —
11—12 SCO02 SSYNC

Table 3-3. JP4 Jumper

Block Options

JP4 DSP Signal Name Code Signal Name
1—2 SCK1 _
3—4 SC10 CCs
5—6 STD1 —
7—8 SRD1 —
9—10 SC12 CDIN
1112 SC11 CCLK

The seria interface of the codec transfers digital audio data and control datainto and out
of the device. The codec communicates with the DSP56303 through the ESSIO for the data
information and through the ESSI 1 for the control information. The codec has three modes

Motorola

DSP56303EVM Technical Summary

3-9



Command Converter

of serial operation that are selected by the serial mode select SMODE1, SMODE?2, and
SMODES3 pins. The SMODE pins on the DSP56303EVM are set to enable serial mode 4,
which separates the audio data from the control data. The SMODE pins are also set to
enable the master sub-mode with 32-bit frames, thefirst 16 bits being the left channel, and
the second 16 bits being the right channel.

The DSP56303 ESSIO transfers the data information to and from the codec. The
DSP56303 serial transmit data (STDO) pin transmits data to the codec. The DSP56303
serial recelve data (SRDO) pin receives data from the codec. These two pins are connected
to the codec serial port datain (SDIN) and serial port data out (SDOUT) pins,
respectively. In master sub-mode, the codec serial port clock (SCLK) pin provides the
seria bit rate clock for the ESSIO interface. It is connected to the DSP56303 bidirectional
serial clock (SCKO) pin. The DSP56303 serial control 0 (SCO0) pin is programmed to
control the codec reset signal RESET. The serial control 2 (SC02) pin is connected to the
codec serial port sync signa (SSYNC) signal. A rising edge on SSYNC indicates that a
new frame is about to start.

The DSP56303 ESSI 1 pins are used as general purpose i/o (GPIO) signals to transfer the
control datato the codec. The control data needs to be transferred only when it changes.
The DSP56303 seria control 0 (SC10) pin is programmed to control the codec
multi-function pin 4 or the control data chip select pin, MF4/CCS. This pin must be low
for entering control data. The serial control 1 (SC11) pin connects to the codec
multi-function pin 3 or the control data clock pin, MF3/CCLK. The control datais
inputted on the rising edge of CCLK. The seria control 2 (SC12) pin is connected to the
codec multi-function pin 2 or the control datainput pin, MF2/CDIN. This pin contains the
control data for the codec.

3.5 Command Converter

The DSP56303EVM uses Motorola’s DSP56002 to perform JTAG/OnCE command
conversion. The DSP56002 serial communications interface (SCI) communicates with the
host PC through an RS-232 connector. The DSP56002 SCI receives commands from the
host PC. The set of commands may include read data, write data, reset OnCE module,
reset DSP56303 (the HA2 pin of the DSP56002 is then used to reset the DSP56303),
request ONnCE module, or release OnCE module. The DSP56002 command converter
software interprets the commands received from the PC and sends a sequence of
instructions to the DSP56303's JTAG/OnCE port. The DSP56303 may then continue to
receive data or it may transmit data back to the DSP56002. The DSP56002 sends a reply
to the host PC to give status information. The set of replies may include “acknowledge
good”, “acknowledge bad”, “in debug mode”, “out of debug mode”, or “data read”. When
the DSP56303 is in the debug state, the red debug LED (LED2) is illuminated.

3-10 DSP56303EVM User’'s Manual Motorola



Command Converter

The DSP56002 connects to the DSP56303 JTAG/OnCE port through the shorting jumper
on J8. Table 3-4 shows the JTAG enable/disable options. The jumper must be present in
J8 to use the DSP56002 as the command converter. Refer to Figure 3-1 on page 3-2 for the
location of J8 on the DSP56303EVM and to Figure 3-2 on page 3-3 for afunctiona
diagram. Figure 3-9 shows the RS-232 seria interface diagram. Table 3-5 shows the
RS-232 connectors pinout, (P2).

Table 3-4. On-Board JTAG Enable/Disable Option

J8 Option Selected
1-2 On-Board Command Converter Enabled
OPEN On-Board Command Converter Disabled
DSP56002 RS-232 TRANSCEIVER HOST PC
RXD ~«—|R40UT R4IN |<¢—TD
TXD ——®|T2IN T20UT —®|RD
RESET | R50UT R5IN | DTR

AA1935

Figure 3-9. RS-232 Serial Interface

Table 3-5. Debug RS-232 Connector (P2) Pinout

NuFr>ri1rE)er Dsgasni]genal Pin Number Dssasni]genal
1 — 6 —
2 TxD 7 —
3 RxD 8 —
4 RESET 9 —
5 GND

Maxim’s 3 V Powered RS-232 Transceiver MAX212 at U11 is used to transmit the
signals between the host PC and the DSP56002. Serial data is transmitted from the host
PC transmitted data (TD) signal and received on the DSP56002 receive data (RXD) pin.
Serial data is similarly transmitted from the DSP56002 transmit data (TXD) signal and
received on the host PC received data (RD) signal. The data terminal ready (DTR) pin
asserts the RESHiin of the DSP56002.

Motorola DSP56303EVM Technical Summary 3-11



Off-Board Interfaces

As an option, the DSP56303EVM 14-pin JTAG/OnCE connector at J6 allows the user to
connect an ADS command converter card directly to the DSP56303EV M, if the
DSP56002 command converter software is not used (J8 jumper removed). Pin 8 has been
removed from J6 so that the cable cannot be connected to the DSP56303EV M incorrectly.
Table 3-6 shows the JTAG/OnCE (J6) connector pinout. The JTAG cable from the ADS
command converter is similarly keyed so that the cable cannot be connected to the
DSP56303EVM incorrectly.

Table 3-6. JTAG/OnCE (J6) Connector Pinout

Pin Number DSP Signal Name Pin Number DSP Signal Name

1 TDI 2 GND

3 TDO 4 GND

5 TCK 6 GND

7 — 8 KEY-PIN

9 PRESET 10 TMS

11 +3.3V 12 —

13 DEZ 14 TRST

3.6 Off-Board Interfaces

The DSP56303EV M provides interfaces with off-board devices viaits on-chip periphera
ports. Most of the DSP ports are connected to headers on the EVM to facilitate direct
access to these pins by using connectors or jJumpers.

3.6.1 Serial Communication Interface Port (SCI)

Connection to the DSP’s SCI port can be made at J7. Refer to Talbte Biiout. The

signals at J7 are +3.3 V signals straight from the DSP. If RS-232 level signals are required,
jumpers should be installed at J7. Refer to Tabla@f8ute the DSP’s SCI signals

through an RS-232 level converter to P1. The pinout of P1 is shown in Table 3-9.

By installing a jumper at J10, the SCI port will be clocked by the on-board 153.6 kHz
oscillator instead of being clocked externally via the serial port connector, P1, or internally
by an SCI timer. If J10 is installed, jumper 3—-4 on J7 must be removed.

3-12 DSP56303EVM User’'s Manual Motorola



Off-Board Interfaces

Table 3-7. SCI Header (J7) Pinout

Pin Number DSP Signal Pin Number DSP Signal
Name Name
1 RxD 2 _
3 SCLK 4 —
5 TxD 6 —

Table 3-8. J7 Jumper Options

J7 DSP Signal Name
1—2 RxD
3—4 SCLK
5—6 TxD

Table 3-9. DSP Serial Port (P1) Connector Pinout

Pin Number | DSP Signal Name | Pin Number | DSP Signal Name
1 — 6 -
2 TxD 7 SCLK
3 RxD 8 —
4 — 9 —
5 GND

3.6.2 Enhanced Synchronous Serial Port 0 (ESSIO)

Connection to the DSP’s ESSIO port can be made at J5. Refer to Tabfer3H®
header’s pinout.

Motorola DSP56303EVM Technical Summary 3-13



Off-Board Interfaces

Table 3-10. ESSIO Header (J5) Pinout

Pin Number DSP Signal Pin Number DSP Signal
Name Name
1 SCKO 2 _
3 SCO00 4 —
5 STDO 6 —
7 SRDO 8 _
9 SCO01 10 _
11 SC02 12 _

3.6.3 Enhanced Synchronous Serial Port 1 (ESSI1)

Connection to the DSP’s ESSI1 port can be made at J4. Réfabl® 3-11for the
header’s pinout.

Table 3-11. ESSIO Header (J4) Pinout

Pin Number | DSP Signal Name | Pin Number | DSP Signal Name
1 SCK1 2 —
3 SC10 4 —
5 STD1 6 —
7 SRD1 8 —
9 SC12 10 —
11 SC11 12 —

3.6.4 Host Port (HIO8)

Connection to the DSP’s HIO8 port can be made at J3. Refer to Tabl®Bti2 header’s
pinout.

3-14 DSP56303EVM User’'s Manual Motorola



Mode Selector

Table 3-12. HIO8 Header (J3) Pinout

Pin Number DSP Signal Name Pin Number DSP Signal Name

1 HO 2 H1

3 H2 4 H3

5 H4 6 GND
7 H5 8 H6

9 H7 10 RESET
11 HAO 12 HAl
13 HA2 14 HCS
15 HREQ 16 HDS
17 +3.3V 18 HACK
19 HRW 20 GND

3.6.5 Expansion Bus Control

Connection to the DSP’s expansion BUS control signals can be made at J2. Refer to

Table 3-13for header’s pinout.

3.7 Mode Selector

Boot Up mode selection for the DSP56303 is made by jumper selections on header J1.

Table 3-13. Expansion Bus Control Signal Header (J2) Pinout

Pin Number DSP Signal Name Pin Number DSP Signal Name
1 +3.3V 2 RD
3 WR 4 BG
5 BB 6 BR
7 TA 8 BCLK
9 BCLK 10 CAS
11 CLKOUT 12 AAl
13 AAO 14 AA2
15 AA3 16 GND

Refer to Table 3-14or header J1 jumper options.

Motorola

DSP56303EVM Technical Summary

3-15



Mode Selector

Table 3-14. Boot Mode Selection Options

J1
Mode Boot Mode Selected
Number
D1-2 Cc34 B 5-6 A7-8
8 OPEN JUMP JUMP JUMP Jump to program at $008000
1 OPEN JUMP JUMP OPEN Bootstrap from byte-wide memory
2 OPEN JUMP OPEN JUMP Bootstrap from SCI
4 OPEN OPEN JUMP JUMP HI08 bootstrap in ISA/DSP5630X mode
5 OPEN OPEN JUMP OPEN HI08 Bootstrap in HC11 non-multiplexed bus
mode
6 OPEN OPEN OPEN JUMP HI08 Bootstrap in 8051 multiplexed bus mode.
7 OPEN OPEN OPEN OPEN HI08 Bootstrap in MC68302 bus mode.
3-16 DSP56303EVM User’s Manual Motorola



Appendix A
DSP56303EVM Schematics

Motorola DSP56303EVM Schematics

A-1



€0€95dSA 'T-V @4nbi4

El
L Jo T 11¥3ys

q
866T ‘0T JaqwanoN ‘Aepsan|

s|001 dS@ :aubisaq areq
TT g
. : JaquinN
A9y NSQ@'€0£95dSd womnboN | eas
£0£95dSd  am1
W 092.-168(218) :Xv4  £159-T68(215)
T
1S8M 8ALIQ uouued Wel|Im 1059
UoISINIQ 18q11SqNS SS8] 8JIM
= l LSyl 1304
SWL MOLY
il 0aL&-
3000/9V10 a1,
—-aq €T
T 20A *—q?zil 1T o———ONEE+ v
- L—duo 6 p——K 11353y 7T
T *—q 8 Lp—x T
77 J0A 9 S o]
4 € il
[ T T
BN J0A
z or %198 7
yed yogd ayi Jopun idaoxa XL (—CR
7/ 99A axy) T
seln o/m aue|d punolb
1als
o] 0o au) uo painos aq Isnw AL 184S z
108 T
2108 z
20A 1108
k] I3
0138 rE]
| 20A 0ais TT
Fol g E]
0428 T
T 20A 2008 ™
1008 T
002S EE]
1T 20A
w108 TTW
%108 TN
oW 20A \SYO N
188, TTd
\98 tTd
rol0 | 220 \48 TIN
€ WL 0Td
71 20N
1a ovy S E— t 1
W74
b 99 SN S—
eV K—————— |
t——| 001 /mBMM‘:s
v J0A
I 08V PTN
18V €W
5a] 20N Zav FIW
£8v| <7
8y vIT
ratm ISRl Sgv| TT
98Y! MW
L8Y
7T 20 88v| i
68Y! vaHI
018Y!
v asn Rl TT8Y TIH
19
T9
—TH | J0A T
JAE]
PLE]
AeE [110lava (e B =

08

=|olale <
&5lalm|< 5
S

<
|

70YLNOD SN 1X3
MYH 91 ST

T

v

0

g

0

o]

0

a

10373S 3A0ON

0T

—AN——
aaow e
MOT

AN
oaow 8y
%ot

TR —
gaon o
ot

BT —
Yaow 6
0T

e AN
11353y vy
MOT

— AN
\aa g
HoT

—_— AN ———

\eg

Ty

I
= LSOH
——q oz 6l p—
OVH 8T T AEE vy vIo el
\SQH 91 ST \03uH vy a1
\SOHL—————q 1T €1 p————NevH \SY, 0T 6
WHE———q 21 1T p————3%0%H %108 8 L
uzsHL—1—d 01 6 H 148 9 sp——
HLK—T—Qq ¢ L SH 98— v €
L do S H 1y z T
sH———qg 1 £ H
H——d ¢ T oH o
er
AE'9
_ ALy
= = -QY9TYEIN 01
F ano =
4#.%% AA v 7 L
\1383y kammm _
WIX3 gy ZHW88Z 2T s
| 10 o S HOLIMS 13534
4¥2d g 3nT0°0] 12109 £,
910
LINId g
LNOMTD [gr——————HLNONTD At
AOVH T WOVH
awxxz \034H B
SOH |7 \SOH
un T i ' X0€95dSA/VSI NI dVd1S1008 80IH
4y =
i v WAL ' 10S HONOYHL dvd1S1009
L] a3y K ,
2vH Z9H R
oH oH €031 AHOWIN 3AIM-ILAEG NOYd dVdLS1004
bo———————)
TH TH I
NIMN‘ ZH
[l e e —) I L !
TH 2 'H \
SH frqmmm————————— SH
d 09
H 55 9H I = = = = = = = = = = = = = = = =
N S oty
o T 00IL T WO
4} T0IL =
OIL ZoIL ems 193135 300W =
b o
200N [5¥ 9001 € v
aaon oo 200N T z
L] aaon
1353 -
SN 11353y = I
00a CEG E@O
AE] TN =1 [~ pe S
L — TN s
o0 [£1a zaaa |  7dl 14l
v0a [£10 td \
710 Ve
500 fprg——~add
g0 | S8 58dd N
710 9800\
00 1y
800 L8904
600 [45:] 8800 N
ota [-4¥ TN
110 |18 Ot \
v T
z1a 5
£10
r1a
s1a v
910
L10 MM
81a 5]
610 v
0za id
teq L8 0esaa N
zzq| 98 1¢8q@ N
oD zegaa |
[o——cad
€8 N, [£270]800
00T09£0£95dSQ
0

AEE+

DSP56303EVM User's Manual MOTOROLA

A-2




KloWa [eutaixgy

"2V 2inbi-

| a

)

E]
L jo ¢ 193ys

- s|j00l 4S@ :Jaubisa@ | 866T ‘0T Jaqwanon ‘Aepsany :ajeq g

. E 1aqun

A9y NSQ’'€0£95dSd EwEﬁoou az15
Alowaw [euIdIxg  epiy

yT€30:AN  092L-168(2TS) :XVd

8658-58.8L ‘XL ‘UNsny
1S8M @ALIQ uouue) wel||im 1059
UoISING 18G119SqNS SSa| aIM

£159-168(278)

[ez0lgaa)

0102-¥0TOA162LY

F ano 30 1347

v EL) wm \ay

3m UM

o:([ﬂN‘

Tov 08Y!

[V — T8V

e — for —
1q 0¥

18 1428 sov |-F 78Y

g £ g v s Sgv

g X4 A s 98V

0 57 ra L0V T T8V
sa 80Y

z 7| oq cov 86V

T 521 g oy v

0 [ T [OE v

2 57 Y

eIV v

Piv T

RMimas v

AEE+ 7 J0A 9Tv T v
en

K LT olava

[210lava))

ano  20A
T lans  oon 8
T9 anN9 20A T
53| N9 DDA 1gg
o7 ONO  0A (7
4 ano 20A 7
T anNog J0A ST
ST ONO  20A (3t
vn AEE+
0T-1v201.59
* Te| 4% e 5800\
76| 2, 24 8800 |
\Q¥ >——51 30 120 8d4a
e G0 ] 730 0za [-£C L \
ovY, 6 130 610
m 3| 3 810
L1a
910
STav L M a1a
£18Yi T {1V 4
ey oy z1a —
oy N 110
oty ota
bey St oy 60 —
oy 7o 8Y 8Q —
oy DAY La
v 9v 9a
L v sa
Loy I va
Tay eY €a
08y (Al za T\
Z18vi o v 0 N\
T8V T TN

—

[ez olaaa

<

A-3

DSP56303EVM User’'s Manual

MOTOROLA




99BIaIU| ZEZSY 'E-V 2nBi4

90®JI9)U| 2€CSH  eapiL

yTE30:AN  092L-168(2TS) :XVd  €159-168(21S)

8658-G€28L ‘XL ‘unsny ‘ ‘d

1S3M 3ALIQ uouued wWel||im 1059
UoISING 18G119SqNS SSa| aIM

E] T a T 5 T 5 v
L J0 ¢ 199ys s|00l dSa :Jaubisag | 866T ‘0T Jaquanon ‘Aepsan)  :areq
1 g
. . Jaquiny
LEH] NS@’'€0£94dSd Juomnson | eas
avy0LOHYLOW avy0LOHYLOW

26N

QVyOLOHPLOW

QYYOLOHYLOW QVPOLOHPLOW

TTN 40 0Z uid papunoi T 7T
“TTN 40 0z uid pue Td 4o v uid 60 asn
Bunoauuod [eubis paroway "TIN
291nap Jo g uid woly [eubis 1osay
PaAOWISI ORWBYIS JO T'T UOISISA
QYy0LOHYLOW
13404 Y1435 9830 1404 1V1¥3S dSQ T 3> 1200713534
z
2d 1d ven
blefeleled  bToTolole)
~ V; NS ZEI - o Er OYOZIZXVN
@
2
5
N3 1n|0>m £+
Lyl OS —"NV—0 jpgg+
ALy
8y
T Ny o [ 3Ige3 26284 01 198 dSQ
o Nigd Lnogd [ —x 5 9 < axe
17| Nizd 1n0zY £ v W 108
44 NITY inoty ) T z axy
° = i
qu 1nogL NIEL L
o7 LnozL NIZL <zoo~axL
T lnotL NITL T y
410 -
= 4NEE0 |
— 20A ’
e +A !
5 = 189
|- 4n89°0
0S09NT 0S09NT 880
IN| IN|
Vi |4
La 9a
HNST
oo
v 91
E] a 5 ] v

MOTOROLA

DSP56303EVM User’'s Manual

A-4



191J8AUOD pUBRWIWOD ‘p-V aInbi4

i

oaL

200_aXL
200 axy

120071353y

» 11353y

El I a I
L 10 ¥ 198ys s|ooL 4sa :eufisa@ | 866T ‘0T JaquanoN ‘Aepsany  :81eq
T g
‘A9 NS@’'€0£94dSd Jaguinn 21
o juswnoog sus
18118AU0D pUBWWOD 8y
v1€30:AN  092L-T68(2T8) :Xv4  £169-168(21S)
T .
1S3/ 9ALIQ UOUUBD WEI||IM TOS9
UOISIAIQ 18q119SqNS SS8] dIM
¥3dWne 318YN3
1008 20895dSa ¥3L¥IANOD ANYHIWOO - =
[ Buunp pasn o010 Qyvy08-NO 1038|190 ZHINB099'6T
SnouoIOUAS aiqeu3 =
AA 2 ano ano T
%108 4 = AS+ J0A 20A
H = So S SR
—__zbloeal T
ot ZTHngose 6T T 2N 9N g
. 10100 ZHNBBZ T = @
= A
S
z {0 ONO [+
68 6V
114 144 ZHY9EST T
88 8Y =>—9
« o b i mca— m_:
F T e — 1 KL 9y :
Mw ca sy x ZHINBSZ ZT
%L va v
\3a QM €q ev Mﬁ
10— 28 ov 7
R e e —— ] v
[N SWL 08 M ov T
? 3
Or8eEsd sn
1dozs
= .|0>T
= .|\_ €90
T TOOYWS e
rr aoNo 2210 -
aans sa ==
IET
€ Ze7| AN
aang PRI
ST QN e b o .E o
T 99N9 PN T bk o b k b b =
SOT NAND
NGNS cvnnnn PEE) am w0 o
5 88838% 832 % SR 2
75| NINO U T SZR2E0 =28 o3 z° = Aot
ST NN uson [ = = 223333 533 cF 2
o NaNo uoop [ = = “2828Q 328 ¥
e IELLE] 29N gy oNg3a x por—7
il Sano a3y x| 0E
S
75| SAND SO | 2031
HAND ot 3T =
SEY
WM HAND . ey MW
2 R - o 0sa LI
Jew 5L osonsa
72T mozo ”S> 341 T[] 1S0/asa =
ano 097 ¥a =
mm Oan9 boop [0 _|ﬂooo Il T
v 171 0aN9 booA 7 ¢
1
T daN9 doop T i Y
29, NOT NOT NOT Peg——¢
T AOaNS N 98y Tedd ey
A
08/d20095450 Zn
«n AS+
NG+ NG+
E] a 5

A-5

DSP56303EVM User’'s Manual

MOTOROLA



99p0D oIpny G-V 3inbi4

3

| a

L 10 g 198ys s|ool 4sa :eufisa@ | 866T ‘0T JaquanoN ‘Aepsany  :81eq
1 g
FEN] NS@’'€0£94dSd Jaguinn 2713 ' ' TIss3
juswnoog . 008 T T T
WMOOLK——q 2T 1T o— D> TIOS
29poY oipn | ! ¥ ' NI@D o1 6 Jo———0 210§
poO 0PNy s ! 09'6 0 T T , *—q 8 Lo———2 1ays
002t T 0 T 9 Hs 1ais
vI€30:aN  0922-168(2TS) 'Xv4  £159-168(21S) . 15994 4 H oros
. ' 00°9T 0 0 T *—q
8658-G€.8L X1 ‘uhsny . s
YTOHOLOW , 0z'61 T T o
1S3/ 9ALIQ UOUUBD WEI||IM TOS9 ) )
UOISIAIQ 18G119SGNS SS8] 841 i oove 0 T o
) 00'ze T 0 0
' 00'8% 0 0 o
(ZHY) s4 84N ZAN 94N 0iss3
193|3S 9|dwes .
= Lo- - s s s s s s s s s e s e e ONAS3703000)) a0 2008
= T 5 »—dor 6 005
= d9 s 10005793009 8 L 0ays
“ : ¢ m““ NIgS70300 9 S 0a1s
q ¢ T S 13$34_0300 14 € 0008
AS2 %195703000) 4 T 0395
6C
4nt st
] ved
%T
%002
Wossy A1 L2y 40T ot %01
Ty o0zy 6TY
8n NV ¥3d SLIGZE YILSYIN
w @ @3103713S ¥ 3A0W TVI¥3S
E 2 =
AE'9 S = ACE AETE+ AEE+ AEE+
4oLy g a
€60
uuse T 8 1no a NI )
Yor[ 031915 B
0 auoydpesy = —
sss woe &V
AE'9 355 EEE
4N0LY 1—‘|m‘ﬂ ON90 o ~ww WWW anov
NHd dIL [43] - - Ae'E+O——{ A oge VA gr—0 YAS+
— T v 1no v NI -
NHd ONIY NIaS NI0ST93009
* 2 S = 1N00S [ 3% 110023000
o = T %108 g %128 _03000
ONASS 55 ONAS3703000
s NOd |——One'e ~
= W1 13534 ﬂM 13534703000
%T %l %I 224 NDITD v ZHWB8Z ZT
Hooe %0°02 %00z
82y 92y sey
410
50 N8I3 555
NG+ sz
AS2 Ase
% ant an INTT JN|A
= = aniv’o
180 09 229
INIY lmd|iq 0
wws's Hz'6¢ Nz'68 4n22000 == == 422000 120 W
Yoer 0alaig vey €2y 12 922 ACEH AETEH s
ASZ 1]
n0 aun ant N7z e 0] | wws'g
622 ved oe 0818
T 1107 dooe yoer 02121
1IN0 dIL 020 uaun
s¢
o oNg ° ant 5] 0% 2 - NI¥ o7
9d 820 a m NI dIL i N\
z £ L e A
© = N oNTE
0X-812rSD n ﬁ%m vd
FLI)

962
2aAE'9
4not

91y

MOTOROLA

DSP56303EVM User’'s Manual

A-6



Alddng 1amod ‘9-v 2.nbi

=

[

)

o
AEE+

1013j8s 360N 810D

5
, Jo 9 1989ys sjoo] 4s@ :Jaufisag 8667 ‘0T JaqwanonN ‘Aepsan]  :@1eq
TT El
. . JaquinN
DY NSQ'€0£95dSd woumson | oS
Ajddns 1amod  apiy
yT€30:AN  092L-168(2TS) :XVd  €159-168(21S)
T
1S3 8ALIQ UOUUERD Wel|[IM T0S9
UoIsSIAIg 19q119Sqns SS8| a4IM
= %1 EPT
[ 2aAe'9 08y
4noT L~
1210+
%T EVT
6Ld =
J0AE9
1069 N 4notT
z + 0z10
¢ av3g 311¥y¥3d
12 ino =
AST+O 7 ino aneo T —_
S§1 =
= »  ¥3mod
szn L \EERB)
a
sor0— 1031
AN+tHO——————————————+
N AT
™
av3g 3114434 av3g 3118434
YAS+
pal €1
0°G-10692EEIN
20A0T 2aA0T oo
. 4o 4ney |+ Ay |+ 4NgE’0 sS
- 60 80 T~ 90 T~ - %2 NIA
@ €
2
3
[ ven
2aA9T
4n000T
10
RV av3g 3Li¥yad T
[l
4NEE0
[4e]
20A0T JaA0T £'€-10692EEOW
~— 4y ~ dny ——dnseo ®
v + 10 + L) €0 w
NIA
oo
ee
SS
] €en
av3g 3L1¥y3d
AEE+O

3l

0 o
ASZ+ A810D
To0YIA T00PN3
d d
N N
va 2 -
T007W3 T007N3
d d
N N u
za 10 d
ey

—

[ 4
MOVC ¥3MOd 20/0Y

4
T

ed

A-7

DSP56303EVM User’'s Manual

MOTOROLA



slioyoede) ssedAg /- ainbi4

ELial)
£210

o |
- L

3 T a T E) | 8 v
jo . 198ys sjoo] 4sa :Jaubisag 866T ‘0T Jaqwanon ‘Aepsan]  :8)eq@
T El
. . JaqunN
roy NSQ'€0£95dSd usamon | @S
sio) oede)d ssedAg  epy
yTE30:AN  092L-168(2TS) :XVd 219)
1S9 @ALIQ uouue) wel||im 1059
UOISIAIQ 18q119SqNS SS8] dIM
T

090

4n10°0
6010

i

4100
8010

1010

410°0 4100 4n10°0
€010 2010

-

AEE+

20895dSA 3LON 1

A-8
(11/20/98)

DSP56303EVM Schematics

Motorola



Appendix B
DSP56303EVM Parts List

B.1 Parts Listing
The following table contains information on the parts and devices on the DSP56303EV M.

Table B-1. DSP56303EVM Parts List

Designator Manufacturer Part Number Description

Ul Motorola DSP56303GC100 DSP

u2 Motorola DSP56002PV80 DSP (JTAG/OnCE)

U4 GSl GS71024T-10 FSRAM

u3 Atmel AT29LVO10A-20TC Flash

uUs Quality QS3384Q Bus Switch
Semiconductor

ué Motorola MC34164D-3 Power-On-Reset

u7 Crystal CS4218-KQ Audio Codec
Semiconductor

us Pioneer LM4880M Audio Amplifier

u9 Motorola MC74HCTO4AD Hex Inverter

ull Maxim MAX212CAG RS-232 Transceiver

uz23 Motorola MC33269DT-3.3 3.3 V Regulator

uz24 Motorola MC33269DT-5.0 5 V Regulator

u25 Motorola MC33269DT Adj Regulator

D1 D2 D3 D4 D5 Rectron FM4001 IN4001 Diode

D6 D7 Motorola MMBD6050LT1 IN6050 Diode

LED1 Quality HLMP1790 Green LED
Technologies

LED2 LED3 Quality HLMP1700 Red LED
Technologies

Motorola

DSP56303EVM Parts List

B-1



Parts Listing

Table B-1. DSP56303EVM Parts List (Continued)

Designator Manufacturer Part Number Description

Y1l MMD MC100CA-12.288MHZ 12.288 MHz Oscillator

Y2 ECS OECS-196.6-3-C3X1A 19.6608 MHz /153.6
kHz Oscillator

SW1 SW2 SW3 Panasonic EVQ-QS205K 6 mm Switch

P1 P2 Mouser 152-3409 DB-9 Female
Connector

P3 Switchcraft RAPC-722 2.1 mm DC Power
Jack

P4 P5 P6 Switchcraft 35RAPC4BHN2 3.5 mm Miniature

Stereo Jack

J1l Robinson Nugent NSH-8DB-S2-TG Header 8 pin double
row

J2 Robinson Nugent NSH-16DB-S2-TG Header 16 pin double
row

J3 Robinson Nugent NSH-20DB-S2-TG Header 20 pin double
row

J4 J5 Robinson Nugent NSH-12DB-S2-TG Header 12 pin double
row

J6 Robinson Nugent NHS-14DB-S2-TG Header 14 pin double
row

J7 J9 Robinson Nugent NSH-6SB-S2-TG Header 6 pin double
row

J8 Robinson Nugent NSH-2SB-S2-TG Header 2 pin single
row

C99 C120 C121 Panasonic PCS1106CT 10 pF Capacitor, 6.3 V
dc

C28 C29 C30 C31 C34 Murata GRM42-6Y5V105Z025BL 1.0 yF Capacitor, 25 V

C124 C126 dc

C9C12C13C14 C15C17 | Murata GRM40-X7R104K025BL 0.1 puF Capacitor

C18 C35 C37 C50 C51
C52 C53 C54 C61 C62
C64 C79 C80 C96 C101
C104 C105 C106 C110
C122 C123 C125

C16 C40 C55 C56 C57 Murata GRM40-X7R103K050BL 0.01 pF Capacitor
C58 C60 C65 C67 C68
C102 C103 C107 C108
C109

B-2 DSP56303EVM User’'s Manual Motorola



Parts Listing

Table B-1. DSP56303EVM Parts List (Continued)

Designator Manufacturer Part Number Description

C10 Panasonic PCS1475CT 4.7 pF Capacitor,
6.3V dc

C2C3C4C23C24C39 Murata GRM42-6Y5V3342025BL 0.33 pF Capacitor

C21 C22 C25 Murata GRM42-6Y5V474Z025BL 0.47 pF Capacitor

C38 Murata GRM42-6Y5V684Z025BL 0.68 uF Capacitor

C19 C20 Xicon 140-CC501N331J 330 pF Capacitor

C26 C27 Murata GRM40-C0OG222J050BL 2200 pF Capacitor

C63 Murata GRM40-X7R821K050BL 820 pF Capacitor

C5C6C7C8 AVX TPSV476-025R0300 47 pF Capacitor, 10 V
dc

C32C33 Panasonic PCE3028CT 470 pF Capacitor,
6.3V dc

C1 Xicon XAL16V1000 1000 pF Capacitor,
16 Vdc

L1L2L3L4L5 Murata BLO1RN1-A62 Ferrite Bead

L6 Murata LQH4N150K04M00 Inductor

R1 R37 NIC NRC12RF1001TR 1 KQ Resistor

R3 Xicor 260-5K 5 KQ Resistor

R4 R6 R7 R8 R9 R11 R12 | NIC NRC12RF1002TR 10 KQ Resistor

R13 R14 R15 R18 R19

R20 R21 R22 R31 R32

R33 R34 R35 R36 R38

R39

R25 R26 R27 R28 Xicor 260-20K 20 KQ Resistor

R23 R24 NIC NRC12RF3922TR 39.2 KQ Resistor

R16 R17 R29 R30 Xicor 260-5.6K 5.6 KQ Resistor

R10 NIC NRC12RF6040TR 604 Q Resistor

R79 R80 Panasonic ERJ-6GEYJ240 240 Q Resistor

R81 NIC 260-4.7K 4.7 KQ Resistor

Motorola DSP56303EVM Parts List B-3



Parts Listing

B-4 DSP56303EVM User’'s Manual Motorola



Appendix C
Motorola Assembler Notes

C.1 Introduction

This appendix supplements information in Chapter 3 of this document and provides a
detailed description of the following components used with the Motorola Assembler:

» Special characters significant to the assembler
* Assembler directives
» Structure control statements

C.2 Assembler Significant Characters

Several one- and two-character sequences are significant to the assembler. The following
subsections define these characters and their use.

C.2.1 ; Comment Delimiter Character

Any number of characters preceded by a semicglobijt not part of a literal string, is
considered a comment. Comments are not significant to the assembler, but you can use
them to document the source program. Comments are reproduced in the assembler output
listing. Comments are normally preserved in macro definitions, but this option can be
turned off. (See the OPT directive.)

Comments can occupy an entire line or can be placed after the last assembler-significant
field in a source statement. A comment starting in the first column of the source file is
aligned with the label field in the listing file. Otherwise, the comment is shifted right and
aligned with the comment field in the listing file.

Example C-1. Example of Comment Delimiter

; THS COMMENT BEA NS | N COLUW 1 CF THE SOURCE FI LE

LOCP JSR COMPUTE ; THS IS A TRAI LI NG COMMENT
; THESE TWD COMENTS ARE PRECEDED
; BY A TAB I N THE SCURCE FI LE

Motorola Motorola Assembler Notes C-1



Assembler Significant Characters

C.2.2 ;; Unreported Comment Delimiter Characters

Unreported comments are any number of characters preceded by two consecutive
semicolons (;;) that are not part of aliteral string. Unreported comments are not
considered significant by the assembler and can be included in the source statement,
following the same rules as norma comments. However, unreported comments are never
reproduced on the assembler output listing and are never saved as part of macro
definitions.

Example C-2. Example of Unreported Comment Delimiter

;, THESE LINES WLL NOT' BE REPRCDUCED
;5 N THE SQURCE LI STI NG

C.2.3 \ Line Continuation or Macro Argument Concatenation
Character

The following subsections define how the\ character can be used in two different
Instances.

C.2.3.1 Line Continuation

The backslash character (\), if used asthe last character on aline, indicatesto the
assembler that the source statement continues on the following line. The continuation line
Is concatenated to the previous line of the source statement, and the result is processed by
the assembler asif it were a single-line source statement. The maximum source statement
length (the first line and any continuation lines) is 512 characters.

Example C-3. Example of Line Continuation Character

C.2.3.2 Macro Argument Concatenation

The backslash (\) is also used to cause the concatenation of amacro dummy argument with
other adjacent a phanumeric characters. For the macro processor to recognize dummy
arguments, they must normally be separated from other alphanumeric characters by a
non-symbol character. However, sometimes it is desirable to concatenate the argument
characters with other characters. If an argument isto be concatenated in front of or behind
some other symbol characters, then it must be followed by or preceded by the backslash,
respectively.

C-2 DSP56303EVM User’'s Manual Motorola



Assembler Significant Characters

Example C-4. Example of Macro Concatenation

Suppose the source input file contained the following macro definition:

SWAP REG  NMACRO REGL, RER ;swap REGL, REQ using D4.L as tenp
MOVE R REGL, D4. L
MOVE R RE@Q, R REGL
MOVE M. L, RREQ
ENDM

The concatenation operator (\) indicates to the macro processor that the substitution
characters for the dummy arguments are to be concatenated in both cases with the
character R. If this macro were called with the statement,

SWAP_REG 0,1

the resulting expansion would be as follows:

MOVE RO, 4. L
MOVE Rl, RO
MOVE M LR

C.2.4 ? Return Value of Symbol Character

The ?<symbol> sequence, when used in macro definitions, is replaced by an ASCII string
representing the value of <symbol>. This operator may be used in association with the
backslash (\) operator. The value of <symbol> must be an integer (not floating point).

Example C-5. Example of Use of Return Value Character

Consider the following macro definition

SWAP_SYM  NACRO REGL, RER ;swap REGL, REQ using D4.L as tenp
MOVE R ?REGL, 4. L
MOVE R ?RER, R ?REGL
MOVE M. L, R?REQ
ENDM

If the source file contained the following SET statements and macro call,

AREG SET 0
BREG SET 1
SWAP_SYM  AREG BREG

the resulting expansion would appear as follows on the source listing:

MOVE RO, D4. L
MOVE Rl, RO
MOVE M LR

Motorola Motorola Assembler Notes C-3



Assembler Significant Characters

C.25 % Return Hex Value of Symbol Character

The % <symbol> sequence, when used in macro definitions, is replaced by an ASCI|
string representing the hexadecimal value of <symbol>. This operator may be used in
association with the backslash (\) operator. The value of <symbol> must be an integer (not
floating point).

Example C-6. Example of Return Hex Value Symbol Character

Consider the following macro definition:

C(EN LAB MACRO LAB, VAL, STMI
LAB\ %/AL STMI
ENDM
If this macro were called as follows,
NUM SET 10

CGEN LAB HEX, NOM * NCP
the resulting expansion would appear as follows in the listing file:
HEXA NCP

C.2.6 N~ Macro Local Label Override

The circumflex ("), when used as a unary expression operator in a macro expansion,
causes any local labelsin its associated term to be evaluated at normal scope rather than
macro scope. This means that any underscore labels in the expression term following the
circumflex will not be searched for in the macro local label list. The operator has no effect
on normal labels or outside of a macro expansion. The circumflex operator is useful for
passing local labels as macro arguments to be used as referents in the macro.

Note: The circumflex is also used as the binary exclusive OR operator.

Example C-7. Example of Local Label Override Character

Consider the following macro definition:

LQAD MACRO ADDR
MOVE P: "ADDR RO
ENDM
If this macro were called as follows,
_LOCAL
LQAD _LOCAL

the assembler would ordinarily issue an error since L OCAL is not defined within the
body of the macro. With the override operator the assembler recognizesthe LOCAL
symbol outside the macro expansion and uses that value in the MOV E instruction.

Cc-4 DSP56303EVM User’'s Manual Motorola



Assembler Significant Characters

C.2.7 " Macro String Delimiter or Quoted String DEFINE Expansion
Character

The following subsections define how the " character can be used in two different
Instances.

C.2.7.1 Macro String

The double quote ("), when used in macro definitions, is transformed by the macro
processor into the string delimiter, the single quote (*). The macro processor examines the
characters between the double quotes for any macro arguments. This mechanism allows
the use of macro arguments as literal strings.

Example C-8. Example of a Macro String Delimiter Character

Using the following macro definition,

CSTR MACRO STR NG
bC "STR NG'
ENDM

and amacro call,
CSTR ABCD
the resulting macro expansion would be

bC " ABCD

C.2.7.2 Quoted String DEFINE Expansion

A sequence of characters which matches a symbol created with a DEFINE directive is not
expanded if the character sequence is contained within a quoted string. Assembler strings
generally are enclosed in single quotes (). If the string is enclosed in double quotes (")
then DEFINE symbols are expanded within the string. In all other respects, usage of
double quotes is equivalent to that of single quotes.

Motorola Motorola Assembler Notes C-5



Assembler Significant Characters

Example C-9. Example of a Quoted String DEFINE Expression

Consider the source fragment below:

DEFI NE LONG "short’

STR MAC MACRO STRI NG
MG "This is a LONG STR NG
MG "This is a LONG STR NG'
ENDMVI

If this macro were invoked as follows,
STR_NMVAC sent ence

then the resulting expansion would be as follows

MBG "This is a LONG STR NG
MBG "This is a short sentence’

C.2.8 @ Function Delimiter
All assembler built-in functions start with the (@) symbol.

Example C-10. Example of a Function Delimiter Character
SVAL EQ @QT(FVAL) ; OBTAIN SQUARE ROOT

C.2.9 * Location Counter Substitution

When used as an operand in an expression, the asterisk (*) represents the current integer
value of the runtime location counter.

Example C-11. Example of a Location Counter Substitution

rRG X $100
XBASE EQU *+$20 ; XBASE = $120

C.2.10 ++ String Concatenation Operator

Any two strings can be concatenated with the string concatenation operator (++). The two
strings must each be enclosed by single or double quotes, and there must be no intervening
blanks between the string concatenation operator and the two strings.

Example C-12. Example of a String Concatenation Operator
" ABC ++ DEF =’ ABCDEF

C-6 DSP56303EVM User’'s Manual Motorola



Assembler Significant Characters

C.2.11 [] Substring Delimiter [<string>,<offset><length>]

Square brackets delimit a substring operation. The <string> argument is the source string.
<offset> is the substring starting position within <string>. <length> is the length of the
desired substring. <string> may be any legal string combination, including another
substring. An error isissued if either <offset> or <length> exceed the length of <string>.

Example C-13. Example of a Substring Delimiter
DEFI NE ID [ DSP56000' , 3,5]; 1D = "56000°

C.2.12 << 1/O Short Addressing Mode Force Operator

Many DSP instructions allow an /O short form of addressing. If the value of an absolute
address is known to the assembler on pass one, then the assembler will always pick the
shortest form of addressing consistent with the instruction format. If the absolute address
Is not known to the assembler on pass one (that is, the addressis aforward or external
reference), then the assembler picks the long form of addressing by default. If thisis not
desired, then the 1/0O short form of addressing can be forced by preceding the absolute
address by the I/O short addressing mode force operator (<<).

Example C-14. Example of an 1/0O Short Addressing Mode Force Operator

Since the symbol IOPORT is aforward reference in the following sequence of source
lines, the assembler would pick the long absolute form of addressing by default:

BTST #4, Y: | CPCRT
| CPCRT EQU Y: $FFF3

Because the long absol ute addressing mode would cause the instruction to be two words
long instead of one word for the 1/O short absol ute addressing mode, it would be desirable
to force the 1/0 short absol ute addressing mode as shown below:

BTST #4, Y: <<| CPCRT
| CPCRT EQU Y: $FFF3

C.2.13 < Short Addressing Mode Force Operator

Many DSP instructions allow a short form of addressing. If the value of an absolute
addressis known to the assembler on pass one, or the FORCE SHORT directiveis active,
then the assembler will always pick the shortest form of addressing consistent with the
instruction format. If the absolute address is not known to the assembler on pass one (that
is, the addressis aforward or external reference), then the assembler picks the long form
of addressing by default. If thisis not desired, then the short absolute form of addressing

Motorola Motorola Assembler Notes Cc-7



Assembler Significant Characters

can be forced by preceding the absolute address by the short addressing mode force
operator (<).

Example C-15. Example of a Short Addressing Mode Force Operator

Since the symbol DATAST isaforward reference in the following sequence of source
lines, the assembler would pick the long absolute form of addressing by default:

MOVE £0. L, Y: DATAST
DATAST EQU Y: $23

Because the long absol ute addressing mode would cause the instruction to be two words
long instead of one word for the short absolute addressing mode, it would be desirable to
force the short absolute addressing mode as shown below:

MOVE DO. L, : <DATAST
DATAST EQU Y: $23

C.2.14 > Long Addressing Mode Force Operator

Many DSP instructions allow along form of addressing. If the value of an absolute
address is known to the assembler on pass one, then the assembler will always pick the
shortest form of addressing consistent with the instruction format, unless the FORCE
LONG directiveisactive. If thisis not desired, then the long absolute form of addressing
can be forced by preceding the absolute address by the long addressing mode force
operator (>).

Example C-16. Example of a Long Addressing Mode Force Operator

Since the symbol DATAST isanot aforward reference in the following sequence of
source lines, the assembler would pick the short absolute form of addressing:

DATAST EQU Y: $23
MOVE £0. L, Y: DATAST

If thisis not desirable, then the long absol ute addressing mode can be forced as shown
below:

DATAST EQU Y: $23
MOVE DO. L, Y: >DATAST

C-8 DSP56303EVM User’'s Manual Motorola



Assembler Significant Characters

C.2.15 # Immediate Addressing Mode

The pound sign (#) is used to indicate to the assembler to use the immediate addressing
mode.

Example C-17. Example of Immediate Addressing Mode

ONST EQU $5
MOVE #ONST, D0. L

C.2.16 #< Immediate Short Addressing Mode Force Operator

Many DSP instructions allow a short immediate form of addressing. If the immediate data
is known to the assembler on pass one (not aforward or external reference) or the FORCE
SHORT directiveis active, then the assembler will always pick the shortest form of
immediate addressing consistent with theinstruction. If theimmediate dataisaforward or
external reference, then the assembler picks the long form of immediate addressing by
default. If thisis not desired, then the short form of addressing can be forced using the
immediate short addressing mode force operator (#<).

Example C-18. Example of Immediate Short Addressing Mode Force Operator

In the following sequence of source lines, the symbol CNST isnot known to the assembler
on pass one, and therefore, the assembler would use the long immediate addressing form
for the MOVE instruction.

MOVE #CONST, DO. L
ONST EQU $5
Because the long immediate addressing mode makes the instruction two words long
instead of one word for the immediate short addressing mode, it may be desirable to force
the immediate short addressing mode as shown below:

MOVE #<CONST, D0. L
ONST EQU $5

C.2.17 #> Immediate Long Addressing Mode Force Operator

Many DSP instructions allow along immediate form of addressing. If the immediate data
is known to the assembler on pass one (not aforward or external reference), then the
assembler will always pick the shortest form of immediate addressing consistent with the
instruction, unless the FORCE LONG directive is active. If thisis not desired, then the
long form of addressing can be forced using the immediate long addressing mode force
operator (#>).

Motorola Motorola Assembler Notes Cc-9



Assembler Directives

Example C-19. Example of an Immediate Long Addressing Mode Operator

In the following sequence of source lines, the symbol CNST is known to the assembler on
pass one, and therefore, the assembler would use the short immediate addressing form for
the MOV E instruction.

CNST EQU $5
MOVE #ONST, D0. L

If thisis not desirable, then the long immediate form of addressing can be forced as shown
below:

CNST EQU $5
MOVE #>CONST, D0. L

C.3 Assembler Directives

The following subsections define each directive and its use.

C.3.1 BADDR Set Buffer Address
BADDR <M | R>, <expr essi on>

The BADDR directive sets the runtime location counter to the address of a buffer of the
given type, the length of which in wordsis equal to the value of <expression>. The buffer
type may be either modulo or reverse-carry. If the runtimelocation counter is not zero, this
directive first advances the runtime location counter to a base address that is amultiple of
2% where 2K >= <expression>. Anerror isissued if thereisinsufficient memory remaining
to establish avalid base address. Unlike other buffer allocation directives, the runtime
location counter is not advanced by the value of the integer expression in the operand
field; the location counter remains at the buffer base address. The block of memory
intended for the buffer is not initialized to any value.

The result of <expression> may have any memory space attribute but must be an absolute
integer greater than zero and cannot contain any forward references (symbols that have not
yet been defined). If amodulo buffer is specified, the expression must fall within the range
2 < <expression> < m, where mis the maximum address of the target DSP. If a
reverse-carry buffer is designated and <expression> is not a power of two, awarning is
issued. A label isnot allowed with this directive.

Note: See also BSM, BSB, BUFFER, DSM, DSR.

Example C-20. Example BADDR Directive

rRG X $100
M BUF BADDR M 24 ;0 ROULAR BUFFER MDD 24

C-10 DSP56303EVM User’'s Manual Motorola



Assembler Directives

C.3.2 BSB Block Storage Bit-Reverse
[ <l abel >] BSB <expr essi on>[ , <expr essi on>]

The BSB directive causes the assembler to allocate and initialize a block of wordsfor a
reverse-carry buffer. The number of wordsin the block is given by the first expression,
which must evaluate to an absolute integer. Each word is assigned the initial value of the
second expression. If there is no second expression, an initial value of zero is assumed. If
the runtime location counter is not zero, this directive first advances the runtime location
counter to a base address that is a multiple of 2 where 2¥is greater than or equal to the
value of the first expression. An error will occur if the first expression contains symbols
that are not yet defined (forward references) or if the expression has avalue of lessthan or
equal to zero. Also, if thefirst expression is not a power of two awarning is generated.
Both expressions can have any memory space attribute.

<label>, if present, is assigned the value of the runtime location counter after avalid base
address has been established.

Only one word of object code is shown on the listing, regardless of how large the first
expression is. However, the runtime location counter is advanced by the number of words
generated.

Note: See also BSC, BSM, DC.

Example C-21. Buffer Directive
BUFFER BSB BUFSI Z ; I N TI ALI ZE BUFFER TO ZERCS

C.3.3 BSC Block Storage of Constant
[ <l abel >] BSC <expr essi on>[ , <expr essi on>]

The BSC directive causes the assembler to allocate and initialize a block of words. The
number of wordsin the block is given by the first expression, which must evaluate to an
absolute integer. Each word is assigned the initial value of the second expression. If there
IS no second expression, an initial value of zero isassumed. If thefirst expression contains
symbols that are not yet defined (forward references) or if the expression has a value of
less than or equal to zero, an error is generated. Both expressions can have any memory
space attribute.

<label>, if present, is assigned the value of the runtime location counter at the start of the
directive processing.

Only one word of object code is shown on the listing, regardless of how large the first
expression is. However, the runtime location counter is advanced by the number of words
generated.

Motorola Motorola Assembler Notes Cc-11



Assembler Directives

Note: See dso BSM, BSB, DC.

Example C-22. Block Storage of Constant Directive
UNUSED BSC $2FFF- @QCV(R), $FFFFFFFF;, FI LL UNUSED EPROM

C.3.4 BSM Block Storage Modulo
[ <l abel >] BSM <expr essi on>[ , <expr essi on>]

The BSM directive causes the assembler to allocate and initialize a block of words for a
modulo buffer. The number of wordsin the block is given by the first expression, which
must eval uate to an absolute integer. Each word is assigned the initial value of the second
expression. If there is no second expression, an initial value of zero is assumed. If the
runtime location counter is not zero, this directive first advances the runtime location
counter to a base address that is a multiple of 2 where 2K is greater than or equal to the
value of the first expression. An error will occur if the first expression contains symbols
that are not yet defined (forward references), has avalue of less than or equal to zero, or
falls outside the range 2 < <expression> < m, where mis the maximum address of the
target DSP. Both expressions may have any memory space attribute.

<label>, if present, is assigned the value of the runtime location counter after avalid base
address has been established.

Only one word of object code is shown on the listing, regardless of how large the first
expression is. However, the runtime location counter is advanced by the number of words
generated.

Note: See dso BSC, BSB, DC.

Example C-23. Block Storage Modulo Directive
BUFFER BSM BUFSI Z, $FFFFFFFF; | NI Tl ALI ZE BUFFER TO ALL ONES

C.3.5 BUFFER Start Buffer
BUFFER <M | R>, <expr essi on>

The BUFFER directive indicates the start of a buffer of the given type. Datais allocated
for the buffer until an ENDBUF directive is encountered. Instructions and most data
definition directives may appear between the BUFFER and ENDBUF pair, athough
BUFFER directives may not be nested and certain types of directives such as MODE,
ORG, SECTION, and other buffer allocation directives may not be used. The
<expression> represents the buffer size. If less datais allocated than the size of the buffer,
the remaining buffer locations are uninitialized. If more datais allocated than the specified
size of the buffer, an error isissued.

C-12 DSP56303EVM User’'s Manual Motorola



Assembler Directives

The BUFFER directive sets the runtime location counter to the address of a buffer of the
given type, the length of which in wordsis equal to the value of <expression>. The buffer
type may be either modulo or reverse-carry. If the runtimelocation counter is not zero, this
directive first advances the runtime location counter to a base address that is a multiple of
2K where 2¢ >= <expression>. Anerror isissued if thereisinsufficient memory remaining
to establish avalid base address. Unlike other buffer allocation directives, the runtime
location counter is not advanced by the value of the integer expression in the operand
field; the location counter remains at the buffer base address.

The result of <expression> may have any memory space attribute but must be an absolute
integer greater than zero and cannot contain any forward references (symbolsthat have not
yet been defined). If amodulo buffer is specified, the expression must fall within the range
2 < <expression> < m, where mis the maximum address of the target DSP. If a
Reverse-carry buffer is designated and <expression> is not a power of two awarning is
issued.

Note: A label isnot allowed with this directive. See also BADDR, BSM, BSB, DSM, DSR,

ENDBUF.
Example C-24. Buffer Directive
ORG X $100
BUFFER M 24 ; O ROULAR BUFFER MID 24
M BUF DC 0.5,0.5,0.50.5
DS 20 ; REMAI NDER UNLN TI ALI ZED
ENDBUF

C.3.6 COBJ Comment Object File
Bl <string>

The COBJdirectiveis used to place acomment in the object code file. The <string> is put
in the object file as a comment.

Note: A label isnot allowed with this directive. See also IDENT.

Example C-25. COBM Directive
QacBl "Start of filter coefficients’

Motorola Motorola Assembler Notes C-13



Assembler Directives

C.3.7 COMMENT Start Comment Lines
COWENT <delimter>

<delimter>

The COMMENT directive is used to define one or more lines as comments. The first
non-blank character after the COMMENT directive is the comment delimiter. The two
delimiters are used to define the comment text. The line containing the second comment
delimiter is considered the last line of the comment. The comment text can include any
printable characters and the comment text is reproduced in the source listing as it appears
in the sourcefile.

Note: A label is not allowed with this directive.

Example C-26. COMMENT Directive

OCOMMENT + This is a one |ine cooment +

COMMVENT * This is a multiple |ine comrent. Any
nunber of |ines can be placed between the
two delimters.

C.3.8 DC Define Constant
<| abel >] bC <arg>[,<arg>,...,<arg>]

The DC directive alocates and initializes aword of memory for each <arg> argument.
<arg> may be anumeric constant, a single or multiple character string constant, a symbol,
or an expression. The DC directive may have one or more arguments separated by
commas. Multiple arguments are stored in successive address locations. If multiple
arguments are present, one or more of them can be null (two adjacent commas), in which
case the corresponding address location is filled with zeros. If the DC directiveisused in
L memory, the arguments are evaluated and stored as long word quantities. Otherwise, an
error occurs if the evaluated argument value istoo large to represent in asingle DSP word.

<label>, if present, is assigned the value of the runtime location counter at the start of the
directive processing.

Integer arguments are stored asis; floating point numbers are converted to binary values.
Single and multiple character strings are handled in the following manner:

» Single character strings are stored in a word whose lower seven bits represent the
ASCII value of the character.

C-14 DSP56303EVM User’'s Manual Motorola



Assembler Directives

Example C-27. Single Character String Definition
"R = $000052

* Multiple character strings represent words whose bytes are composed of
concatenated sequences of the ASCII representation of the characters in the string
(unless the NOPS option is specified; see the OPT directive). If the number of
characters is not an even multiple of the number of bytes per DSP word, then the
last word will have the remaining characters left aligned and the rest of the word is
zero-filled. If the NOPS option is given, each character in the string is stored in a
word whose lower seven bits represent the ASCII value of the character.

Example C-28. Multiple Character String Definition

" ABCD = $414243
$440000

Note: See dso BSC, DCB.

Example C-29. DC Directive

TABLE bC 1426, 253, $2662, ' ABCD
CHARS bC "A,'B,'C,’'D

C.3.9 DCB Define Constant Byte
[ <l abel >] DCB <arg>[,<arg>,...,<arg>]

The DCB directive allocates and initializes a byte of memory for each <arg> argument.
<arg> may be a byte integer constant, a single or multiple character string constant, a
symbol, or a byte expression. The DCB directive may have one or more arguments
separated by commas. Multiple arguments are stored in successive byte locations. If
multiple arguments are present, one or more of them can be null (two adjacent commas),
in which case the corresponding byte location is filled with zeros.

<label>, if present, is assigned the value of the runtime location counter at the start of the
directive processing.

Integer arguments are stored as is but must be byte values (i.e., within the range 0-255);
floating point numbers are not allowed. Single and multiple character strings are handled
in the following manner:

» Single character strings are stored in a word whose lower seven bits represent the ASCII
value of the character. (See Example C-27.)

* Multiple character strings represent words whose bytes are composed of concatenated
sequences of the ASCII representation of the characters in the string (unless the NOPS
option is specified; see the OPT directive). If the number of characters is not an even
multiple of the number of bytes per DSP word, then the last word will have the remaining

Motorola Motorola Assembler Notes C-15



Assembler Directives

characters left aligned and the rest of the word is zero-filled. If the NOPS option is given,
each character in the string is stored in aword whose lower seven bits represent the ASCI|
value of the character.(See Example C-28.)

Note: See dso BSC, DC.

Example C-30. DCB Directive

TABLE DCB "two’, 0, strings’,0
CHARS DCB "A,’B,'C,’'D

C.3.10 DEFINE Define Substitution String
DEFI NE <synbol > <string>

The DEFINE directive is used to define substitution strings that are used on all following
source lines. All succeeding lines are searched for an occurrence of <symbol>, whichis
replaced by <string>. This directive isuseful for providing better documentation in the
source program. <symbol> must adhere to the restrictions for non-local labels. That is, it
cannot exceed 512 characters, the first of which must be alphabetic, and the remainder of
which must be either a phanumeric or the underscore( ). A warning resultsif a new
definition of apreviously defined symbol is attempted. The assembler output listing will
show lines after the DEFINE directive has been applied and therefore redefined symbols
arereplaced by their substitution strings unlessthe NODXL optionisin effect. See C.3.42,
"OPT Assembler Options,” on page C-34

Macros represent a special case. DEFINE directive translations are applied to the macro
definition asit is encountered. When the macro is expanded any active DEFINE directive
trandations are applied again.

DEFINE directive symbolsthat are defined within a section will only apply to that section.
See the SECTION directive.

Note: A label is not allowed with thisdirective. See also UNDEF-.
Example C-31. DEFINE Directive

If the following DEFINE directive occurred in the first part of the source program:

DEFI NE ARRAYSI Z 10 * SAWPLS Z
then the source line below:

DS ARRAYS| Z
would be transformed by the assembler to the following:
(DS 10 * SAWMPLSI Z

C-16 DSP56303EVM User’'s Manual Motorola



Assembler Directives

C.3.11 DS Define Storage

[ <l abel >] DS <expr essi on>
The DS directive reserves a block of memory the length of which in wordsis equal to the
value of <expression>. This directive causes the runtime location counter to be advanced
by the value of the absolute integer expression in the operand field. <expression> can have
any memory space attribute. The block of memory reserved is not initialized to any value.

The expression must be an integer greater than zero and cannot contain any forward
references (symbols that have not yet been defined).

<label>, if present, is assigned the value of the runtime location counter at the start of the
directive processing.

Note: See also DSM, DSR.

Example C-32. DS Directive
S BUF DS 12 ;  SAMPLE BUFFER

C.3.12 DSM Define Modulo Storage
[ <l abel >] DSM <expr essi on>

The DSM directive reserves a block of memory the length of which in wordsis equal to
the value of <expression>. If the runtime location counter is not zero, this directive first
advances the runtime location counter to a base address that is a multiple of 2% where

2K >= <expression>. An error isissued if there isinsufficient memory remaining to
establish a valid base address. Next the runtime location counter is advanced by the value
of the integer expression in the operand field. <expression> can have any memory space
attribute. The block of memory reserved is not initialized to any given value. The result of
<expression> must be an absolute integer greater than zero and cannot contain any
forward references (symbolsthat have not yet been defined). The expression also must fall
within the range:

2 < <expression> < m,
where mis the maximum address of the target DSP.

<label>, if present, is assigned the value of the runtime location counter after avalid base
address has been established.

Note: See dso DS, DSR.

Example C-33. DSM Directive

CRG X $100
M BUF DSM 24 ;O ROULAR BUFFER MDD 24

Motorola Motorola Assembler Notes C-17



Assembler Directives

C.3.13 DSR Define Reverse Carry Storage
[ <l abel >] DSR <expr essi on>

The DSR directivereserves ablock of memory the length of which in wordsis equal to the
value of <expression>. If the runtime location counter is not zero, this directive first
advances the runtime location counter to a base address that is a multiple of 2% where

2K > <expression>. An error isissued if there is insufficient memory remaining to
establish avalid base address. Next the runtime location counter is advanced by the value
of the integer expression in the operand field. <expression> can have any memory space
attribute. The block of memory reserved isnot initialized to any given value. The result of
<expression> must be an absolute integer greater than zero and cannot contain any
forward references (symbolsthat have not yet been defined). Because the DSR directiveis
useful mainly for generating FFT buffers, awarning is generated if <expression> isnot a
power of two .

<label>, if present, is assigned the value of the runtime location counter after avalid base
address has been established.

Note: See also DS, DSM.

Example C-34. DSR Directive

CRG X $100
R _BUF DSR 8 ; REVERSE CARRY BUFFER FCR 16 PA NT FFT

C.3.14 DUP Duplicate Sequence of Source Lines
[ <l abel >] DUP <expr essi on>
ENDM
The sequence of source lines between the DUP and ENDM directivesis duplicated by the
number specified by the integer <expression>. <expression> can have any memory space
attribute. If the expression evaluates to anumber lessthan or equal to zero, the sequence of
lines will not be included in the assembler output. The expression result must be an

absolute integer and cannot contain any forward references (symbols that have not already
been defined). The DUP directive may be nested to any level.

<label>, if present, is assigned the value of the runtime location counter at the start of the
DUP directive processing.

Note: See also DUPA, DUPC, DUPF, ENDM, MACRO.

C-18 DSP56303EVM User’'s Manual Motorola



Assembler Directives

Example C-35. DUP Directive
The sequence of source input statements,

GCOUNT SET 3
DuP GOUNT ; ASR BY COUNT
ASR (DY)
ENDM

would generate the following in the source listing:

COUNT SET 3
DuP COUNT ; ASR BY OOUNT
ASR Do
ASR Do
ASR Do
ENDM
Note that the lines
DuP COUNT ; ASR BY OOUNT
ENDM
will only be shown on the source listing if the MD option is enabled. The lines
ASR Do
ASR Do
ASR Do

will only be shown on the source listing if the MEX option is enabled.

Note: See the OPT directive in this appendix for more information on the MD and MEX
options.

C.3.15 DUPA Duplicate Sequence With Arguments
[<l abel >] DUPA <dummy>, <arg>[ <, <arg>, ..., <ar g>]
ENDM
The block of source statements defined by the DUPA and ENDM directives are repeated
for each argument. For each repetition, every occurrence of the dummy parameter within
the block is replaced with each succeeding argument string. If the argument string isa
null, then the block is repeated with each occurrence of the dummy parameter removed. If

an argument includes an embedded blank or other assembler-significant character, it must
be enclosed with single quotes.

<label>, if present, is assigned the value of the runtime location counter at the start of the
DUPA directive processing.

Note: See also DUP, DUPC, DUPF, ENDM, MACRO.

Motorola Motorola Assembler Notes C-19



Assembler Directives

Example C-36. DUPA Directive

If the input source file contained the following statements,

DUPA VALLE, 12, 32, 34
oC VALUE
ENDM

then the assembled source listing would show

DUPA VALLE, 12, 32, 34
bC 12

bC 32

oC 34

ENDM

Note that the lines

DUPA VALLE, 12, 32, 34
ENDM

will only be shown on the source listing if the MD option is enabled. The lines

bC 12
bC 32
oC 34

will only be shown on the source listing if the MEX option is enabled.

Note: See the OPT directive in this appendix for more information on the MD and MEX
options.

C.3.16 DUPC Duplicate Sequence With Characters
[ <l abel >] DUPC <durmmy>, <stri ng>

" ENDM
The block of source statements defined by the DUPC and ENDM directives are repeated
for each character of <string>. For each repetition, every occurrence of the dummy

parameter within the block is replaced with each succeeding character in the string. If the
string is null, then the block is skipped.

<label>, if present, is assigned the value of the runtime location counter at the start of the
DUPC directive processing.

Note: See also DUP, DUPA, DUPF, ENDM, MACRO.

C-20 DSP56303EVM User’'s Manual Motorola



Assembler Directives

Example C-37. DUPC Directive

If input source file contained the following statements,

DUPC VALUE, ' 123
DC VALUE
ENDM

then the assembled source listing would show:

DUPC VALUE, ' 123’
DC 1

DC 2

DC 3

ENDM

Note that the lines

DUPC VALUE, ' 123’
ENDM

will only be shown on the source listing if the MD option is enabled. The lines

DC 1
DC 2
DC 3

will only be shown on the source listing if the MEX option is enabled.

Note: See the OPT directive in this appendix for more information on the MD and MEX
options.

C.3.17 DUPF Duplicate Sequence in Loop
[ <l abel >] DUPF <dumy>, [ <st art >] , <end>[, <i ncr enent >]
" ENDM
Theblock of source statements defined by the DUPF and ENDM directives are repeated in
general (<end> — <start>) + 1 times when <increment> is 1. <start> is the starting value
for the loop index; <end> represents the final value. <increment> is the increment for the

loop index; it defaultsto 1 if omitted (as doesthe <start> value). The <dummy> parameter
holds the loop index value and may be used within the body of instructions.

<label>, if present, is assigned the value of the runtime location counter at the start of the
DUPF directive processing.

Note: See dso DUP, DUPA, DUPC, ENDM, MACRO.

Motorola Motorola Assembler Notes Cc-21



Assembler Directives

Example C-38. DUPF Directive

If input source file contained the following statements,

DUPF NUM O, 7
MOVE #0, R NUM
ENDM

then the assembled source listing shows:

DUPF NUM O, 7
MOVE #0, RO
MOVE #0, RL
MOVE #0, R2
MOVE #0, R3
MOVE #0, R4
MOVE #0, RS
MOVE #0, R6
MOVE #0, R7
ENDM

Note that the lines

DUPF NUM O, 7
ENDM

are only shown on the source listing if the MD option is enabled. The lines

MOVE #0, RO
MOVE #0, RL
MOVE #0, R2
MOVE #0, R3
MOVE #0, R4
MOVE #0, RS
MOVE #0, R6
MOVE #0, R7

are only shown on the source listing if the MEX option is enabled.

Note: See the OPT directive in this appendix for more information on the MD and MEX
options.
C.3.18 END End of Source Program
END [ <expr essi on>]
The optional END directive indicates that the logical end of the source program has been

encountered. Any statements following the END directive are ignored. The optional
expression in the operand field can be used to specify the starting execution address of the

C-22 DSP56303EVM User’'s Manual Motorola



Assembler Directives

program. <expression> may be absolute or relocatable but must have a memory space
attribute of Program or None. The END directive cannot be used in a macro expansion.

Note: A label isnot allowed with this directive.

Example C-39. END Directive
END BEAN ; BEGNis the starting execution address

C.3.19 ENDBUF End Buffer
ENDBUF

The ENDBUF directive is used to signify the end of abuffer block. The runtime location
counter will remain just beyond the end of the buffer when the ENDBUF directiveis
encountered.

Note: A labdl isnot allowed with this directive. See also BUFFER.
Example C-40. ENDBUF Directive

CRG X $100
BUF BUFFER R 64 ;uninitialized reverse-carry buffer
ENDBUF

C.3.20 ENDIF End of Conditional Assembly
ENDI F
The ENDIF directive is used to signify the end of the current level of conditional

assembly. Conditional assembly directives can be nested to any level, but the ENDIF
directive always refers to the most previous I F directive.

Note: A label isnot allowed with this directive. (See C.3.31, "IF Conditional Assembly
Directive," on page C-28.)

Example C-41. ENDIF Directive

| F @REL()
SAVEPC SET *
ENDI F

Save current program counter

C.3.21 ENDM End of Macro Definition
ENDM

Every MACRO, DUP, DUPA, and DUPC directive must be terminated by an ENDM
directive.

Note: A labdl is not allowed with this directive. See dso DUP, DUPA, DUPC, MACRO.

Motorola Motorola Assembler Notes C-23



Assembler Directives

Example C-42. ENDM Directive

SWAP_SYM  MACRO REGL, REG ;swap REGL, REQ using D4.L as tenp
MOVE R ?REGL, D4. L
MOVE R ?REGR, R ?REGL
MOVE M. L, R?REQ
ENDM

C.3.22 ENDSEC End Section
ENDSEC

Every SECTION directive must be terminated by an ENDSEC directive.
Note: A label isnot allowed with this directive. See also SECTION.

Example C-43. ENDSEC Directive
SECTI ON OCEFF

CRG Y:
VALUES BSC $100 c Initialize to zero
ENDSEC

C.3.23 EQU Equate Symbol to a Value
<| abel > EQUI[{X | Y- | L. | P | E}]<expression>

The EQU directive assigns the value and memory space attribute of <expression> to the
symbol <label>. If <expression> has a memory space attribute of None, then it can
optionally be preceded by any of the indicated memory space qualifiersto force amemory
space attribute. An error will occur if the expression has a memory space attribute other
than None and it is different than the forcing memory space attribute. The optional forcing
memory space attribute is useful to assign a memory space attribute to an expression that
consists only of constants but is intended to refer to afixed address in a memory space.

The EQU directiveis one of the directives that assigns a value other than the program
counter to the label. The label cannot be redefined anywhere else in the program (or
section, if SECTION directives are being used). The <expression> may be relative or
absolute but cannot include a symbol that is not yet defined (no forward references are
allowed).

Note: See also SET.

C-24 DSP56303EVM User’'s Manual Motorola



Assembler Directives

Example C-44. EQU Directive
ADPXRT EW X $4000

This assigns the value $4000 with a memory space attribute of X to the symbol
A_ D PORT.

COMPUTE ~ EQU @ov(L)

@LCV(L) isused to refer to the value and memory space attribute of the load location
counter. This value and memory space attribute is assigned to the symbol COMPUTE.

C.3.24 EXITM Exit Macro
EXI T™M

The EXITM directive will cause immediate termination of a macro expansion. It is useful
when used with the conditional assembly directive IF to terminate macro expansion when
error conditions are detected.

Note: A label is not allowed with this directive. See also DUP, DUPA, DUPC, MACRO.
Example C-45. EXITM Directive

CALC MACRO XVAL, YVAL
I F XVAL<0
FAl L " Macro paraneter val ue out of range’
EXI ™™ ; Exit nacro
ENDI F
ENDM

C.3.25 FAIL Programmer Generated Error
FAl L [{<str>]| <exp>}[, {<str>| <exp>}, ..., {<str>| <exp>}]]

The FAIL directive will cause an error message to be output by the assembler. The total
error count isincremented as with any other error. The FAIL directive is normally used in
conjunction with conditional assembly directives for exceptional condition checking. The
assembly proceeds normally after the error has been printed. An arbitrary number of
strings and expressions, in any order but separated by commas with no intervening white
space, can be specified optionally to describe the nature of the generated error.

Note: A labdl is not allowed with this directive. See dso MSG, WARN.

Motorola Motorola Assembler Notes C-25



Assembler Directives

Example C-46. FAIL Directive
FAl L ' Paraneter out of range’

C.3.26 FORCE Set Operand Forcing Mode

FORCE {SHORT | LONG | NO\E}
The FORCE directive causes the assembler to force al immediate, memory, and address
operands to the specified mode as if an explicit forcing operator were used. Note that if a
relocatable operand value forced short is determined to be too large for the instruction

word, an error will occur at link time, not during assembly. Explicit forcing operators
override the effect of thisdirective.

Note: A label isnot allowed with thisdirective. See also <, >, #<, #>.

Example C-47. FORCE Directive
FORCE SHORT ; force operands short

C.3.27 GLOBAL Global Section Symbol Declaration

A.CBAL <synbol >[, <synbol >, . . ., <synbol >]
The GLOBAL directiveis used to specify that the list of symbolsis defined within the
current section, and that those definitions should be accessible by all sections. This
directiveisonly valid if used within a program block bounded by the SECTION and

ENDSEC directives. If the symbols that appear in the operand field are not defined in the
section, an error is generated.

Note: A label is not allowed with this directive. See also SECTION, XDEF, XREF.
Example C-48. GLOBAL Directive

SECTION | O
AQCBAL LOCOPA ; LOOPA w Il be globally accessible by other sections

ENDSEC

C.3.28 GSET Set Global Symbol to a Value

<| abel > GSET <expr essi on>
GSET <| abel > <expr essi on>

The GSET directiveis used to assign the value of the expression in the operand field to the
label. The GSET directive functions somewhat like the EQU directive. However, labels
defined viathe GSET directive can have their values redefined in another part of the
program (but only through the use of another GSET or SET directive). The GSET

C-26 DSP56303EVM User’'s Manual Motorola



Assembler Directives

directive is useful for resetting aglobal SET symbol within a section, where the SET
symbol would otherwise be considered local. The expression in the operand field of a
GSET must be absolute and cannot include a symbol that is not yet defined. (No forward
references are allowed.)

Note: See also EQU, SET.

Example C-49. GSET Directive
QOUNT GSET 0 ; I N TIALI ZE GOUNT

C.3.29 HIMEM Set High Memory Bounds

H MEM <meny|[ <rl >]: <expression>[,...]
The HIMEM directive establishes an absolute high memory bound for code and data
generation. <mem> corresponds to one of the DSP memory spaces (X, Y, L, P, E). <rl>is
one of the letters R for runtime counter or L for load counter. The <expression> is an

absolute integer value within the address range of the machine. If during assembly the
specified location counter exceeds the value given by <expression>, awarning is issued.

Note: A labdl is not allowed with this directive. See also LOMEM.

Example C-50. HIMEM Directive

H MEM XR $7FFF, YR $7FFF ; SET XY RN H GH MEM
BOUNDS

C.3.30 IDENT Object Code Identification Record
[ <l abel >] | DENT <expr essi onl>, <expr essi on2>

The IDENT directiveis used to create an identification record for the object module. If
<label> is specified, it is used as the module name. If <label> is not specified, then the
filename of the source input file is used as the module name. <expression1> isthe version
number; <expression2> isthe revision number. The two expressions must each evaluate to
an integer result. The comment field of the IDENT directiveis also passed on to the object
module.

Note: See also COBJ.

Motorola Motorola Assembler Notes c-27



Assembler Directives

Example C-51. IDENT Directive

If the following line was included in the source file,

FFI LTER | DENT 1,2 ; FIR FILTER MODULE

then the object module identification record includes the module name (FFILTER), the
version number (1), the revision number (2), and the comment field (; FIR FILTER
MODULE).

C.3.31 IF Conditional Assembly Directive

I F <expr essi on>
tELSE] (the ELSE directive is optional)
END F

Part of aprogram that isto be conditionally assembled must be bounded by an IF-ENDIF
directive pair. If the optional EL SE directive are not present, then the source statements
following the IF directive and up to the next ENDIF directive isincluded as part of the
source file being assembled only if the <expression> has a nonzero result. If the
<expression> has avalue of zero, the source file is assembled asif those statements
between the IF and the ENDIF directives were never encountered. If the EL SE directiveis
present and <expression> has a nonzero result, then the statements between the IF and

EL SE directives are assembled, and the statements between the EL SE and ENDIF
directives are skipped. Alternatively, if <expression> has a value of zero, then the
statements between the IF and EL SE directives are skipped, and the statements between
the ELSE and ENDIF directives are assembled.

The <expression> must have an absolute integer result and is considered true if it hasa
nonzero result. The <expression> isfalse only if it has aresult of zero. Because of the
nature of the directive, <expression> must be known on pass one (no forward references
allowed). IF directives can be nested to any level. The EL SE directive will awaysrefer to
the nearest previous IF directive as will the ENDIF directive.

Note: A label is not allowed with this directive. See also ENDIF.

C-28 DSP56303EVM User’'s Manual Motorola



Assembler Directives

Example C-52. IF Directive

I F @.ST>0

DUP QST : Unwind LIST directive stack
NCLI ST

ENDM

END F

C.3.32 INCLUDE Include Secondary File
I NCLUDE <string> | <<string>>

This directive isinserted into the source program at any point where a secondary fileisto
be included in the source input stream. The string specifies the filename of the secondary
file. The filename must be compatible with the operating system and can include a
directory specification. If no extension is given for the filename, a default extension of
ASM issupplied.

Thefileis searched for first in the current directory, unless the <<string>> syntax is used,
or in the directory specified in <string>. If thefile is not found, and the -1 option was used
on the command line that invoked the assembler, then the string specified with the -1
option is prefixed to <string> and that directory is searched. If the <<string>> syntax is
given, thefileis searched for only in the directories specified with the -1 option.

Note: A labdl isnot allowed with this directive. See also MACLIB.

Example C-53. INCLUDE Directive

I NCLUDE ' headers/io.asni; Unix exanple
I NCLUDE ' storage\nemasni; M5 DOS exanpl e
INCLUDE <data.asnm» ; Do not look in current directory

C.3.33 LIST Listthe Assembly
LI ST

Print the listing from this point on. The LIST directive is not printed, but the subsequent
source lines are output to the source listing. The default isto print the source listing. If the
IL option has been specified, the LIST directive has no effect when encountered within the
source program.

TheLIST directive actually increments acounter that is checked for apositivevalueand is
symmetrical with respect to the NOLIST directive.

Motorola Motorola Assembler Notes C-29



Assembler Directives

Note the following sequence:

; Counter value currently 1

LI ST ; Counter value = 2
LI ST : Counter value = 3
NCLI ST ; Counter value = 2
NCLI ST : Counter value = 1

Thelisting still would not be disabled until another NOLIST directive was issued.
Note: A label isnot allowed with this directive. See d'so NOLIST, OPT.

Example C-54. LIST Directive

I F LI STON
LI ST ; Turn the listing back on
END F

C.3.34 LOCAL Local Section Symbol Declaration
LOCAL <synbol >[, <synbol >, . . ., <synbol >]

The LOCAL directiveis used to specify that the list of symbolsis defined within the
current section, and that those definitions are explicitly local to that section. It is useful in
cases where a symbol is used as a forward reference in a nested section where the
enclosing section contains alike-named symbol. Thisdirectiveisonly valid if used within
a program block bounded by the SECTION and ENDSEC directives. The LOCAL
directive must appear before <symbol> is defined in the section. If the symbols that appear
in the operand field are not defined in the section, an error is generated.

Note: A label is not allowed with this directive. See also SECTION, XDEF, XREF.

Example C-55. LOCAL Directives

SECTI ON |10
LOCAL LOCPA : LOCPA local to this section

ENDSEC

C.3.35 LOMEM Set Low Memory Bounds
LOVEM <men®[ <rl >] : <expression>[,...]

The LOMEM directive establishes an absolute low memory bound for code and data
generation. <mem> corresponds to one of the DSP memory spaces (X, Y, L, P, E). <rl>is
one of the letters R for runtime counter or L for load counter. The <expression> isan
absolute integer value within the address range of the machine. If during assembly the

C-30 DSP56303EVM User’'s Manual Motorola



Assembler Directives

specified location counter falls below the value given by <expression>, awarning is
issued.

Note: A labdl is not allowed with this directive. See also HIMEM.

Example C-56. LOMEM Directive
LOQVEM XR $100, YR $100; SET XY RUN LON MEM BOUNDS

C.3.36 LSTCOL Set Listing Field Widths
LSTOOL [ <l abws[, <opcws[, <oprw>[ , <opc2w>| , <opr 2w, <xwe[, <yw>] 111111

Sets the width of the output fields in the source listing. Widths are specified in terms of
column positions. The starting position of any field isrelative to its predecessor except for
the label field, which always starts at the same position relative to page left margin,
program counter value, and cycle count display. The widths may be expressed as any
positive absolute integer expression. However, if the width is not adequate to
accommodate the contents of afield, the text is separated from the next field by at |east
one space.

Any field for which the default is desired may be null. A null field can beindicated by two
adjacent commas with no intervening space or by omitting any trailing fields altogether. If
the LSTCOL directiveis given with no arguments all field widths are reset to their default
values.

Note: A labdl isnot allowed with this directive. See also PAGE.

Example C-57. LSTCOL Directive
LSTOCOL 40, ,,,, 20,20; Reset label, X and Y data field wi dths

C.3.37 MACLIB Macro Library
MACLI B <pat hnane>

Thisdirectiveis used to specify the <pathname> (as defined by the operating system) of a
directory that contains macro definitions. Each macro definition must be in a separatefile,
and the file must be named the same as the macro with the extension .ASM added. For
example, BLOCKMV.ASM would be afile that contained the definition of the macro
called BLOCKMV.

If the assembler encounters a directive in the operation field that is not contained in the

directive or mnemonic tables, the directory specified by <pathname> is searched for afile
of the unknown name (with the . ASM extension added). If such afileisfound, the current
source lineis saved, and the file is opened for input as an INCLUDE file. When the end of
the file is encountered, the source line is restored and processing is resumed. Because the

Motorola Motorola Assembler Notes C-31



Assembler Directives

source lineis restored, the processed file must have a macro definition of the unknown
directive name or else an error will result when the source line is restored and processed.
However, the processed file is not limited to macro definitions and can include any legal
source code statements.

Multiple MACLIB directives may be given, in which case the assembler will search each
directory in the order in which it is encountered.

Note: A label is not allowed with this directive. See dso INCLUDE.

Example C-58. MACLIB Directive

MACLI B ' nmacros\nynacs\’; |BM PC exanpl e
MACLIB "fftlib/’ ; UNL X exanpl e

C.3.38 MACRO Macro Definition
<| abel > MACRO [ <durmmy argunent |i st >]

<macro definition statenents>
ENDM
The dummy argument list has the following form

[ <dunmar g>[ , <dunarg>, ..., <dumar g>] |

The required label isthe symbol by which the macro is called. If the macro is named the
same as an existing assembler directive or mnemonic, awarning isissued. Thiswarning
can be avoided with the RDIRECT directive.

The definition of amacro consists of three parts. the header, which assigns a name to the
macro and defines the dummy arguments; the body, which consists of prototype or
skeleton source statements; and the terminator. The header isthe MACRO directive, its
label, and the dummy argument list. The body contains the pattern of standard source
statements. The terminator isthe ENDM directive.

The dummy arguments are symbolic names that the macro processor replaces with
arguments when the macro is expanded (called). Each dummy argument must obey the
same rules as symbol names. Dummy argument names that are preceded by an underscore
are not allowed. Within each of the three dummy argument fields, the dummy arguments
are separated by commas. The dummy argument fields are separated by one or more
blanks.

C-32 DSP56303EVM User’'s Manual Motorola



Assembler Directives

Macro definitions may be nested but the nested macro is not defined until the primary
macro is expanded.

Note: See ad'so DUP, DUPA, DUPC, DUPF, ENDM.
Example C-59. MACRO Directive

SWAP_SYM  NACRO REGL, RER ;swap REGL, RE@Q using X0 as tenp
MOVE R ?REGL, X0
MOVE R ?REGQ, R ?REGL
MOVE X0, R ?RE@
ENDM

C.3.39 MODE Change Relocation Mode

MODE <ABS[ OLUTE] | REL[ATI VE] >
The MODE directive causes the assembler to change to the designated operational mode.
This directive may be given at any time in the assembly source to alter the set of location
counters used for section addressing. Code generated while in absolute mode is placed in
memory at the location determined during assembly. Relocatable code and data are based

from the enclosing section start address. The MODE directive has no effect when the
command line -A option isissued.

Note: A labdl isnot allowed with this directive. See also ORG.

Example C-60. MODE Directive
MODE ABS ; Change to absol ute node

C.3.40 MSG Programmer Generated Message

MBG [{<str>| <exp>}[, {<str>|<exp>},..., {<str>| <exp>}]]

The M SG directive causes amessage to be output by the assembler. The error and warning
counts are not affected. The M SG directive is normally used in conjunction with
conditional assembly directives for informational purposes. The assembly proceeds
normally after the message has been printed. An arbitrary number of strings and

expressions, in any order but separated by commas with no intervening white space, can
be specified optionally to describe the nature of the message.

Note: A labdl is not allowed with this directive. See also FAIL, WARN.

Example C-61. MSG Directive
VBG "CGenerating sine tables’

Motorola Motorola Assembler Notes C-33



Assembler Directives

C.3.41 NOLIST Stop Assembly Listing
NCLI ST

Do not print the listing from this point on (including the NOLIST directive). Subsequent
source lines will not be printed.

The NOLIST directive actually decrements a counter that is checked for a positive value
and is symmetrical with respect to the LIST directive. Note the following sequence:

; Counter value currently 1

LI ST : Counter value = 2
LI ST : Counter value = 3
NCLI ST : Counter value = 2
NCLI ST : Counter value = 1

Thelisting still is not disabled until another NOLIST directive is issued.
Note: A label isnot allowed with thisdirective. Seeaso LIST, OPT.

Example C-62. NOLIST Directive

| F LI STCFF
NCLI ST ; Turn the listing off
ENDI F

C.3.42 OPT Assembler Options
CcPT <opt i on>[, <option>, ..., <option>][ <coment >]

The OPT directiveis used to designate the assembler options. Assembler optionsare given
in the operand field of the source input file and are separated by commas. Options also
may be specified using the command line -O option. All options have a default condition.
Some options are reset to their default condition at the end of pass one. Some are alowed
to have the prefix NO attached to them, which then reverses their meaning.

Note: A label isnot allowed with this directive.
Options can be grouped by function into five different types.
« Listing format control
* Reporting options
* Message control
» Symbol options
« Assembler operation

C-34 DSP56303EVM User’'s Manual Motorola



Assembler Directives

C.3.42.1 Listing Format Control

The following options control the format of the listing file.

FC
FF
FM
PP
RC

Fold trailing comments
Form feeds for page gjects
Format messages

Pretty print listing
Relative comment spacing

C.3.42.2 Reporting Options

The following options control what is reported in the listing file.

CEX
CL
CRE
DXL
HDR
IL
LOC
MC
MD
MEX
MU
NL
S

U

Print DC expansions

Print conditional assembly directives

Print symbol cross-reference

Expand DEFINE directive stringsin listing
Generate listing headers

Inhibit source listing

Print local labels in cross-reference

Print macro cals

Print macro definitions

Print macro expansions

Print memory utilization report

Print conditional assembly and section nesting levels
Print symbol table

Print skipped conditional assembly lines

C.3.42.3 Message Control

The following options control the types of assembler messages that are generated.

AE Check address expressions
MSW Warn on memory space incompatibilities
UR Flag unresolved references
w Display warning messages
Motorola Motorola Assembler Notes C-35



Assembler Directives

C.3.42.4 Symbol Options

The following options deal with the handling of symbols by the assembler.

DEX Expand DEFINE symbols within quoted strings

IC Ignore case in symbol names

NS Support symbol scoping in nested sections

SCL Scope structured control statement labels

SCO Structured control statement labelsto listing/object file
SO Write symbols to object file

XLL Write local |abelsto object file

XR Recognize X DEFed symbols without XREF

C.3.42.5 Assembler Operation

The following are miscellaneous options having to do with internal assembler operation.

CcC Enable cycle counts

CK Enable checksumming

CM Preserve comment lines within macros
CONST Make EQU symbols assembly time constants
CONTCK Continue checksumming

DLD Do not restrict directives in loops

GL Make all section symbols global

GS Make all sections global static

INTR Perform interrupt location checks

LB Byte increment load counter

LDB Listing file debug

Ml Scan MACLIB directoriesfor include files
PS Pack strings

PSM Programmabl e short addressing mode

RP Generate NOP to accommodate pipeline delay
RSV Check reserve data memory locations

Sl Interpret short immediate as long or sign extended
SvO Preserve object file on errors

C-36 DSP56303EVM User’'s Manual Motorola



Assembler Directives

Following are descriptions of the individual options. The parenthetical inserts specify
default if the option isthe default condition and reset if the option isreset to its default
state at the end of pass one.

AE

CcC

CEX
CK

CL
CM

CONST

CONTC

(default, reset) Check address expressions for appropriate arithmetic
operations. For example, thiswill check that only valid add or subtract
operations are performed on address terms.

Enable cycle counts and clear total cycle count. Cycle counts are shown on
the output listing for each instruction. Cycle counts assume afull instruction
fetch pipeline and no wait states.

Print DC expansions.

Enable checksumming of instruction and data values and clear cumulative
checksum. The checksum value can be obtained using the @CHK()
function.

(default, reset) Print the conditional assembly directives.

(default, reset) Preserve comment lines of macros when they are defined.
Note that any comment line within a macro definition that starts with two
consecutive semicolons (;;) is never preserved in the macro definition.

EQU symbols are maintained as assembly time constants and will not be
sent to the object file. Thisoption, if used, must be specified before the first
symbol in the source program is defined.

Reenable cycle counts. Does not clear total cycle counts. The cycle count for
each instruction is shown on the output listing.

CONTCK Reenable checksumming of instructions and data. Does not clear cumulative

CRE

DEX

DLD

DXL

checksum value.

Print a cross reference table at the end of the source listing. This option, if
used, must be specified before the first symbol in the source program is
defined.

Expand DEFINE symbols within quoted strings. Can also be done on a
case-by-case basis using double-quoted strings.

Do not restrict directives in DO loops. The presence of some directivesin
DO loops does not make sense, including some OPT directive variations.
This option suppresses errors on particular directives in loops.

(default, reset) Expand DEFINE directive stringsin listing.

Motorola

Motorola Assembler Notes C-37



Assembler Directives

FC

Fr
FM

GL

GS

INTR

LB

LDB

LOC

MC
MD

Fold trailing comments. Any trailing comments that are included in asource
line are folded underneath the source line and aligned with the opcode field.
Linesthat start with the comment character are aligned with the label field in
the source listing. The FC option is useful for displaying the source listing
on 80 column devices.

Use form feeds for page gectsin the listing file.

Format assembler messages so that the message text is aligned and broken at
word boundaries.

Make all section symbols global. This has the same effect as declaring every
section explicitly GLOBAL. This option must be given before any sections
are defined explicitly in the sourcefile.

(default, reset in absolute mode) Make all sections global static. All section
counters and attributes are associated with the GLOBAL section. This
option must be given before any sections are defined explicitly in the source
file.

(default, reset) Generate listing header along with titles and subtitles.

Ignore case in symbol, section, and macro names. This directive must be
issued before any symbols, sections, or macros are defined.

Inhibit source listing. This option will stop the assembler from producing a
source listing.

(default, reset in absolute mode) Perform interrupt location checks. Certain
DSP instructions may not appear in the interrupt vector locationsin program
memory. This option enables the assembler to check for these instructions
when the program counter is within the interrupt vector bounds.

Increment load counter (if different from runtime) by number of bytesin
DSP word to provide byte-wide support for overlaysin bootstrap mode.
This option must appear before any code or data generation.

Usethelisting file as the debug source file rather than the assembly
language file. The -L command line option to generate a listing file must be
specified for this option to take effect.

Include local labelsin the symbol table and cross-reference listing. Local
labels are not normally included in these listings. If neither the S or CRE
options are specified, then this option has no effect. The LOC option must
be specified before the first symbol is encountered in the sourcefile.

(default, reset) Print macro calls.
(default, reset) Print macro definitions.

C-38

DSP56303EVM User’'s Manual Motorola



Assembler Directives

MEX Print macro expansions.

Ml Scan MACLIB directory paths for include files. The assembler ordinarily
looks for included files only in the directory specified in the INCLUDE
directory or in the paths given by the -I| command line option. If the Ml
option is used the assembler also looks for included filesin any designated
MACLIB directories.

MSW  (default, reset) Issue warning on memory space incompatibilities.

MU Include amemory utilization report in the source listing. This option must
appear before any code or data generation.

NL Display conditional assembly (IF-ELSE-ENDIF) and section nesting levels
on listing.

NOAE Do not check address expressions.

NOCC (default, reset) Disable cycle counts. Does not clear total cycle count.
NOCEX (default, reset) Do not print DC expansions.

NOCK  (default, reset) Disable checksumming of instruction and data values.
NOCL Do not print the conditional assembly directives.

NOCM Do not preserve comment lines of macros when they are defined.
NODEX (default, reset) Do not expand DEFINE symbols within quoted strings.
NODLD (default, reset) Restrict use of certain directivesin DO loop.

NODXL Do not expand DEFINE directive stringsin listing.

NOFC  (default, reset) Inhibit folded comments.

NOFF  (default, reset) Use multiple line feeds for page gectsin the listing file.
NOFM  (default, reset) Do not format assembler messages.

NOGS (default, reset in relative mode) Do not make all sections global static.
NOHDR Do not generate listing header. This also turns off titles and subtitles.
NOINTR (default, reset in relative mode) Do not perform interrupt location checks.
NOMC Do not print macro calls.

NOMD Do not print macro definitions.

NOMEX (default, reset) Do not print macro expansions.

NOMI  (default, reset) Do not scan MACLIB directory paths for include files.
NOMSW Do not issue warning on memory space incompatibilities.

NONL (default, reset) Do not display nesting levels on listing.

Motorola Motorola Assembler Notes C-39



Assembler Directives

NONS
NOPP

NOPS

NORC
NORP
NOSCL

NOU

NOUR
NOW
NS

PP

PS

RC

RP

Do not allow scoping of symbols within nested sections.

Do not pretty print listing file. Source lines are sent to the listing file as they
are encountered in the source, with the exception that tabs are expanded to
spaces and continuation lines are concatenated into a single physical line for
printing.

Do not pack stringsin DC directive. Individual bytesin strings are stored
one byte per word.

(default, reset) Do not space comments relatively.
(default, reset) Do not generate instructions to accommodate pipeline delay.

Do not maintain the current local |abel scope when a structured control
statement label is encountered.

(default, reset) Do not print the lines excluded from the assembly dueto a
conditional assembly directive.

(default, reset) Do not flag unresolved external references.
Do not print warning messages.
(default, reset) Allow scoping of symbols within nested sections.

(default, reset) Pretty print listing file. The assembler attemptsto align fields
at aconsistent column position without regard to source file formatting.

(default, reset) Pack stringsin DC directive. Individual bytesin strings are
packed into consecutive target words for the length of the string.

Space commentsrelatively inlisting fields. By default, the assembler always
places comments at a consistent column position in the listing file. This
option allows the comment field to float: on aline containing only alabel
and opcode, the comment begins in the operand field.

Generate NOP instructions to accommodate pipeline delay. If an address
register isloaded in one instruction then the contents of the register is not
available for use asapointer until after the next instruction. Ordinarily when
the assembler detects this condition it issues an error message. The RP
option will cause the assembler to output a NOP instruction into the output
stream instead of issuing an error.

Print symbol table at the end of the source listing. This option has no effect
if the CRE option is used.

C-40

DSP56303EVM User’'s Manual Motorola



Assembler Directives

SCO

UR

WEX

XLL

XR

(default, reset) Structured control statements generate non-local labels that
ordinarily are not visible to the programmer. This can create problems when
local |abels are interspersed among structured control statements. This
option causes the assembler to maintain the current local label scope when a
structured control statement label is encountered.

Send structured control statement labelsto object and listing files. Normally
the assembler does not externalize these labels. This option must appear
before any symbol definition.

Write symbol information to object file. This option is recognized but
performs no operation in COFF assemblers.

Preserve object file on errors. Normally any object file produced by the
assembler isdeleted if errors occur during assembly. This option must be
given before any code or data is generated.

Print the unassembled lines skipped due to failure to satisfy the condition of
aconditional assembly directive.

Generate awarning at assembly time for each unresolved external reference.
This option works only in relocatable mode.

(default, reset) Print all warning messages.

Add warning count to exit status. Ordinarily the assembler exits with a count
of errors. This option causes the count of warnings to be added to the error
count.

Write underscore local labels to object file. Thisis primarily used to aid
debugging. Thisoption, if used, must be specified before the first symbol in
the source program is defined.

Causes X DEFed symbols to be recognized within other sections without
being XREFed. This option, if used, must be specified before the first
symbol in the source program is encountered.

Example C-63. OPT Directive

aPT CEX, MEX ; Turn on DC and macro expansions
aPT CRE, MJ ; oss reference, nenory utilization
Motorola Motorola Assembler Notes Cc-41



Assembler Directives

C.3.43 ORG Initialize Memory Space and Location Counters

CRG <rns>[<rlc>][<rnp>]:[<expl>][, <l ns>[<l|c>][<lnp>]:[<exp2>]]
RG <rns>[<rnp>] [(<rce>)]:[<expl>][, <l ns>[ <l np>] [ (<l ce>)]:[<exp2>]]

The ORG directiveis used to specify addresses and to indicate memory space and
mapping changes. It also can designate an implicit counter mode switch in the assembler
and serves as a mechanism for initiating overlays.

Note: A label is not allowed with this directive.

The parameters used with the ORG directive are as follows

<rms>

<rlc>

<rmp>

<rce>

<expl>

<Ims>

<llc>

Which memory space (X, Y, L, P, or E) is used as the runtime memory
space. If the memory spaceisL, any allocated datum with avalue greater
than the target word size is extended to two words; otherwise, it istruncated.
If the memory space is E, then depending on the memory space qualifier,
any generated words are split into bytes, one byte per word, or a 16/8-bit
combination.

Which runtime counter H, L, or default (if neither H or L is specified), that
Is associated with the <rms> is used as the runtime location counter.

Indicates the runtime physical mapping to DSP memory: |—internal,
E—external, R—ROM, A—port A, B—port B. If not present, no explicit
mapping is done.

Non-negative absolute integer expression representing the counter number
to be used as the runtime location counter. Must be enclosed in parentheses.
Should not exceed the value 65535.

Initial value to assign to the runtime counter used as the <rlc>. If <expl> is
a relative expression the assembler uses the relative location counter. If
<expl> is an absolute expression the assembler uses the absolute location
counter. If <expl> is not specified, then the last value and mode that the
counter had is used.

Which memory space (X, Y, L, P, or E) is used as the load memory space. If
the memory space is L, any allocated datum with a value greater than the
target word size is extended to two words; otherwise, it is truncated. If the
memory space is E, then depending on the memory space qualifier, any
generated words are split into bytes, one byte per word, or a 16/8-bit
combination.

Which load counter, H, L, or default (if neither H or L is specified), that is
associated with the <lIms> is used as the load location counter.

C-42

DSP56303EVM User’'s Manual Motorola



Assembler Directives

<Imp> Indicates the load physical mapping to DSP memory: I—internal,
E—external, R—ROM, A—rport A, B—port B. If not present, no explicit
mapping is done.

<lce> Non-negative absolute integer expression representing the counter number
to be used as the load location counter. Must be enclosed in parentheses.
Should not exceed the value 65535.

<exp2> Initial value to assign to the load counter used as the <lic>. If <exp2> is a
relative expression the assembler uses the relative location counter. If
<exp2> is an absolute expression the assembler uses the absolute location
counter. If <exp2> is not specified, then the last value and mode that the
counter had is used.

If the last half of the operand field in an ORG directive dealing with the load memory

space and counter is not specified, then the assembler assumes that the load memory space
and load location counter are the same as the runtime memory space and runtime location
counter. In this case, object code is being assembled to be loaded into the address and
memory space where it is when the program is run; it is not an overlay.

If the load memory space and counter are given in the operand field, then the assembler
always generates code for an overlay. Whether the overlay is absolute or relocatable
depends upon the current operating mode of the assembler and whether the load counter
value is an absolute or relative expression. If the assembler is running in absolute mode, or
if the load counter expression is absolute, then the overlay is absolute. If the assembler is
in relative mode and the load counter expression is relative, the overlay is relocatable.
Runtime relocatable overlay code is addressed relative to the location given in the runtime
location counter expression. This expression, if relative, may not refer to another overlay
block.

Note: See also MODE.
Example C-64. ORG Directive

CRG P: $1000

Sets the runtime memory space to P. Selects the default runtime counter (counter 0)
associated with P space to use as the runtime location counter and initializes it to $1000.
The load memory space is implied to be P, and the load location counter is assumed to be
the same as the runtime location counter.

Motorola Motorola Assembler Notes C-43



Assembler Directives

Example C-64. ORG Directive (Continued)

CRG PHE

Sets the runtime memory space to P. Selects the H load counter (counter 2) associated
with P space to use as the runtime location counter. The H counter will not be initialized,
and itslast value is used. Code generated hereafter is mapped to external (E) memory. The
load memory space isimplied to be P, and the load location counter is assumed to be the
same as the runtime location counter.

CRG PI:OLLY:

Indicates code is generated for an overlay. The runtime memory spaceis P, and the default
counter is used as the runtime location counter. It is reset to the value of OVL1. If the
assembler isin absolute mode viathe -A command line option then OVL1 must be an
absolute expression. If OV L1 is an absolute expression the assembler uses the absolute
runtime location counter. If OVL1 isarelocatable value the assembler uses the relative
runtime location counter. In this case OVL1 must not itself be an overlay symboal (i.e.,
defined within an overlay block). Theload memory spaceisY. Since neither H, L, nor any
counter expression was specified as the load counter, the default load counter (counter 0)
is used as the load location counter. The counter value and mode are whatever they were
the last time they were referenced.

ORG XAL:, ES:

Sets the runtime memory space to X. Selectsthe L counter (counter 1) associated with X
space to use as the runtime location counter. The L counter is not initialized, and its last
value is used. The load memory space is set to E, and the qualifier 8 indicates a bytewise
RAM configuration. Instructions and data are generated eight bits per output word with
byte-oriented |oad addresses. The default load counter is used, and thereis no explicit load
origin.

CRG P(5):,Y: $8000

Indicates code is generated for an absolute overlay. The runtime memory spaceis P, and
the counter used as the runtime location counter is counter 5. It will not be initialized, and
the last previous value of counter 5 is used. The load memory spaceisY. Since neither H,
L, nor any counter expression was specified as the load counter, the default load counter
(counter 0) is used asthe load location counter. The default load counter isinitialized to
$8000.

C-44 DSP56303EVM User’'s Manual Motorola



Assembler Directives

C.3.44 PAGE Top of Page/Size Page
PACE [ <expl>[, <exp2>..., <exp5>]]

The PAGE directive has two forms:

1. If noarguments are supplied, then the assembler advances the listing to the top of
the next page. In this case, the PAGE directive is not output.

2. The PAGE directive with arguments can be used to specify the printed format of
the output listing. Arguments may be any positive absolute integer expression.
The arguments in the operand field (as explained below) are separated by
commas. Any argument can be left as the default or last set value by omitting the
argument and using two adjacent commas. The PAGE directive with arguments
will not cause a page eject and is printed in the source listing.

Note: A label isnot allowed with this directive.
The arguments in order are as follows:

1. PAGE_WIDTH <expl>—~Page width in terms of number of output columns per
line (default 80, min 1, max 255).

2. PAGE_LENGTH <exp2>—~Page length in terms of total number of lines per page
(default 66, min 10, max 255). As a special case a page length of zero turns off all
headers, titles, subtitles, and page breaks.

3. BLANK TOP <exp3>—a-Blank lines at top of page (default 0, min 0, max see
below).

4. BLANK BOTTOM <exp4>—aBlank lines at bottom of page (default 0, min 0, max
see below).

5. BLANK_ LEFT <exp5>—-Blank left margin. Number of blank columns at the left
of the page (default 0, min 0, max see below).

The following relationships must be maintained:

BLANK TCP + BLANK BOTTOM <= PAGE LENGTH - 10
BLANK LEFT < PAGE W DTH

Note: Seealso LSTCOL.

Example C-65. PAGE Directive

PACE 132,,3,3 ; Set wdth to 132, 3 line top/bottom nargins
PACE ; Page egj ect

C.3.45 PMACRO Purge Macro Definition
PMACRO <synbol >[, <synbol >, . . ., <synbol >]

The specified macro definition is purged from the macro table, allowing the macro table
space to be reclaimed.

Motorola Motorola Assembler Notes C-45



Assembler Directives

Note: A label is not allowed with this directive. See also MACRO.

Example C-66. PMACRO Directive
PVACRO MACL, NAC2

This statement would cause the macros named MAC1 and MAC2 to be purged.

C.3.46 PRCTL Send Control String to Printer
PRCTL <exp>l<string>,..., <exp>l <string>

PRCTL simply concatenates its arguments and ships them to thelisting file. (The directive
lineitself isnot printed unlessthereisan error.) <exp> isabyte expression and <string> is
an assembler string. A byte expression would be used to encode non-printing control
characters, such as ESC. The string may be of arbitrary length, up to the maximum
assembler-defined limits.

PRCTL may appear anywhere in the source file and the control string is output at the
corresponding placein thelisting file. However, if aPRCTL directiveisthelast linein the
last input file to be processed, the assembler insures that all error summaries, symbol
tables, and cross-references have been printed before sending out the control string. Thisis
so aPRCTL directive can be used to restore a printer to a previous mode after printing is
done. Similarly, if the PRCTL directive appears asthefirst line in the first input file, the
control string is output before page headings or titles.

The PRCTL directive only worksif the -L command line option is given; otherwiseitis
ignored.

Note: A label is not allowed with this directive.

Example C-67. PRCTL Directive
PRCTL $1B,’ E ; Reset HP LaserJet printer

C.3.47 RADIX Change Input Radix for Constants
RADI X <expr essi on>

Changes the input base of constants to the result of <expression>. The absolute integer
expression must evaluate to one of thelegal constant bases (2, 10, or 16). The default radix
is 10. The RADIX directive allows the programmer to specify constantsin a preferred
radix without aleading radix indicator. The radix prefix for base 10 numbersisthe grave
accent (‘). Note that if a constant is used to alter the radix, it must be in the appropriate
input base at the time the RADIX directive is encountered.

Note: A label is not allowed with this directive.

C-46 DSP56303EVM User’'s Manual Motorola



Assembler Directives

Example C-68. RADIX Directive

_RAD10O DC 10 ; BEvaluates to hex A
RADI X 2

_RAD2 DC 10 ; BEvaluates to hex 2
RADI X ‘16

_RAD16 DC 10 ; BEvaluates to hex 10
RADI X 3 ; Bad radi x expression

C.3.48 RDIRECT Remove Directive or Mnemonic from Table
RDI RECT <direc>[,<direc>, ..., <direc>]

The RDIRECT directiveis used to remove directives from the assembler directive and

mnemonic tables. If the directive or mnemonic that has been removed is later encountered

in the sourcefile, it is assumed to be a macro. Macro definitions that have the same name

as assembler directives or mnemonics will cause awarning message to be output unless

the RDIRECT directive has been used to remove the directive or mnemonic name from

the assembler’s tables. Additionally, if a macro is defined through the MACLIB directive
with the same name as an existing directive or opcode, it will not automatically replace
that directive or opcode as previously described. In this case, the RDIRECT directive must
be used to force the replacement.

Since the effect of this directive is global, it cannot be used in an explicitly-defined
section. (See SECTION directive.) An error results if the RDIRECT directive is
encountered in a section.

Note: A label isnot allowed with this directive.

Example C-69. RDIRECT Directive
RDl RECT PAGE, MOVE

This causes the assembler to remove the PAGE directive from the directive table and the
MOVE mnemonic from the mnemonic table.

C.3.49 SCSJMP Set Structured Control Statement Branching Mode
SCSIWP {SHORT | LONG | NONE}

The SCSJIMP directive is analogous to the FORCE directive, but it only applies to
branches generated automatically by structured control statements. (See Section C.4,
"Structured Control Statements," on page C-54.) There is no explicit way, as with a
forcing operator, to force a branch short or long when it is produced by a structured
control statement. This directive causes all branches resulting from subsequent structured
control statements to be forced to the specified mode.

Motorola Motorola Assembler Notes C-47



Assembler Directives

Just like the FORCE pseudo-op, errors can result if avalueistoo large to be forced short.
For relocatable code, the error may not occur until the linking phase.

Note: See also FORCE, SCSREG. A labd is not allowed with this directive.

Example C-70. SCSJMP Directive
SCSIMP SHORT ; force all subsequent SCS junps short

C.3.50 SCSREG Reassign Structured Control Statement Registers
SCSREG [ <srcreg>[, <dstreg>[, <tnpreg>[, <extreg>]]]]

The SCSREG directive reassigns the registers used by structured control statement (SCS)
directives. It is convenient for reclaiming default SCS registers when they are needed as
application operands within a structured control construct. <srcreg> is ordinarily the
source register for SCS data moves. <dstreg> is the destination register. <tmpreg> isa
temporary register for swapping SCS operands. <extreg> is an extraregister for complex
SCS operations. With no arguments, SCSREG resets the SCS registers to their default
assignments.

The SCSREG directive should be used judiciously to avoid register context errors during
SCS expansion. Source and destination registers may not necessarily be used strictly as
source and destination operands. The assembler does no checking of reassigned registers
beyond validity for the target processor. Errors can result when a structured control
statement is expanded and an improper register reassignment has occurred. Itis
recommended that the MEX option (see the OPT directive) be used to examine structured
control statement expansion for relevant constructs to determine default register usage and
applicable reassignment strategies.

Note: See also OPT (MEX), SCSIMP. A label isnot allowed with this directive.

Example C-71. SCSREG Directive
SCSREG Y0, B ; reassign SCS source and dest. registers

C.3.51 SECTION Start Section
SECTI ON <synbol > [Q.CBAL | STATIC | LOCAL]

<section source statenents>
ENDSEC

The SECTION directive defines the start of a section. All symbolsthat are defined within
a section have the <symbol> associated with them as their section name. This servesto

C-48 DSP56303EVM User’'s Manual Motorola



Assembler Directives

protect them from like-named symbols elsewhere in the program. By default, a symbol
defined inside any given section is private to that section unlessthe GLOBAL or LOCAL
qualifier accompanies the SECTION directive.

Any code or datainside a section is considered an indivisible block with respect to
relocation. Code or data associated with a section is independently relocatable within the
memory space to which it is bound, unlessthe STATIC qualifier follows the SECTION
directive on the instruction line.

Symbols within a section are generally distinct from other symbols used elsewhere in the
source program, even if the symbol name is the same. Thisistrue aslong as the section
name associated with each symbol is unique, the symbol is not declared public
(XDEF/GLOBAL), and the GLOBAL or LOCAL qualifier is not used in the section
declaration. Symbols that are defined outside of a section are considered global symbols
and have no explicit section name associated with them. Global symbols may be
referenced freely from inside or outside of any section, aslong as the global symbol name
does not conflict with another symbol by the same name in a given section.

If the GLOBAL qualifier follows the <section name> in the SECTION directive, then all
symbols defined in the section until the next ENDSEC directive are considered global.
The effect isasif every symbol in the section were declared with GLOBAL. Thisis useful
when a section needs to be independently relocatable, but data hiding is not desired.

If the STATIC qualifier follows the <section name> in the SECTION directive, then all
code and data defined in the section until the next ENDSEC directive are relocated in
terms of theimmediately enclosing section. The effect with respect to relocation isasif all
code and data in the section were defined within the parent section. Thisis useful when a
section needs data hiding, but independent relocation is not required.

If the LOCAL qualifier follows the <section name> in the SECTION directive, then all
symbols defined in the section until the next ENDSEC directive are visible to the
immediately enclosing section. The effect isasif every symbol in the section were defined
within the parent section. Thisis useful when a section needs to be independently
relocatable, but data hiding within an enclosing section is not required.

The division of a program into sections controls not only labels and symbols but also
macros and DEFINE directive symbols. Macros defined within a section are private to that
section and are distinct from macros defined in other sections even if they have the same
macro name. Macros defined outside of sections are considered globa and may be used
within any section. Similarly, DEFINE directive symbols defined within a section are
private to that section and DEFINE directive symbols defined outside of any section are
globally applied. There are no directives that correspond to XDEF for macros or DEFINE

Motorola Motorola Assembler Notes C-49



Assembler Directives

symbols, and therefore, macros and DEFINE symbols defined in a section can never be
accessed globally. If global accessibility is desired, the macros and DEFINE symbols
should be defined outside of any section.

Sections can be nested to any level. When the assembler encounters a nested section, the
current section is stacked and the new section is used. When the ENDSEC directive of the
nested section is encountered, the assembler restores the old section and usesit. The
ENDSEC directive always applies to the most previous SECTION directive. Nesting
sections provides a measure of scoping for symbol names, in that symbols defined within
agiven section are visible to other sections nested within it. For example, if section B is
nested inside section A, then a symbol defined in section A can be used in section B
without XDEFing in section A or XREFing in section B. This scoping behavior can be
turned off and on with the NONS and NS options respectively. (See the OPT directive.)

Sections may aso be split into separate parts. That is, <section name> can be used
multiple times with SECTION and ENDSEC directive pairs. If this occurs, then these
separate (but identically named) sections can access each others symbols freely without
the use of the XREF and XDEF directives. If the XDEF and XREF directives are used
within one section, they apply to al sections with the same section name. The reuse of the
section name is allowed to permit the program source to be arranged in an arbitrary
manner (e.g., al statements that reserve X space storage locations grouped together) but
retain the privacy of the symbols for each section.

When the assembler operates in relative mode (the default), sections act as the basic
grouping for relocation of code and data blocks. For every section defined in the source, a
set of location countersis allocated for each DSP memory space. These counters are used
to maintain offsets of data and instructionsrelative to the beginning of the section. At link
time, sections can be relocated to an absolute address, |oaded in a particular order, or
linked contiguously as specified by the programmer. Sections which are split into parts or
among files are logically recombined so that each section can be relocated as a unit.

Sections may be relocatable or absolute. In the assembler absolute mode (command line
-A option) al sections are considered absolute. A full set of locations countersis reserved
for each absol ute section unless the GS option isgiven. (Seethe OPT directive.) Inrelative
mode, all sections areinitially relocatable. However, a section or a part of a section may
be made absolute either implicitly by using the ORG directive or explicitly through use of
the MODE directive.

Note: A label is not allowed with this directive. See also MODE, ORG, GLOBAL, LOCAL,
XDEF, XREF.

C-50 DSP56303EVM User’'s Manual Motorola



Assembler Directives

Example C-72. SECTION Directive
SECTI ON TABLES . TABLES will be the section nane

C.3.52 SET Set Symbolto a Value

<| abel > SET <expr essi on> _
SET <| abel > <expr essi on>

The SET directive is used to assign the value of the expression in the operand field to the
label. The SET directive functions somewhat like the EQU directive. However, labels
defined viathe SET directive can have their values redefined in another part of the
program (but only through the use of another SET directive). The SET directive is useful
in establishing temporary or reusable counters within macros. The expression in the
operand field of a SET must be absolute and cannot include a symbol that is not yet
defined. (No forward references are allowed.)

Note: See also EQU, GSET.

Example C-73. SET Directive
GOUNT SET 0 ; I N TIALI ZE GOUNT

C.3.53 STITLE Initialize Program Sub-Title

STI TLE [ <string>]
The STITLE directiveinitializes the program subtitle to the string in the operand field.
The subtitleis printed on the top of all succeeding pages until another STITLE directiveis
encountered. The subtitleisinitially blank. The STITLE directive will not be printed in the

source listing. An STITLE directive with no string argument causes the current subtitle to
be blank.

Note: A labdl isnot allowed with this directive. Seeaso TITLE.

Example C-74. STITLE Directive
STI TLE " OCLLECT SAMPLES

C.3.54 SYMOBJ Write Symbol Information to Object File
SYMBJ <synbol >[, <synbol >, . . ., <synbol >]

The SYMOBJ directive causes information for each <symbol> to be written to the object
file. Thisdirective isrecognized but currently performs no operation in COFF assemblers.

Note: A label isnot allowed with this directive.

Motorola Motorola Assembler Notes C-51



Assembler Directives

Example C-75. SYMOBJ
SYMCBJ XSTART, H RTN, ERRPRCC

C.3.55 TABS Set Listing Tab Stops
TABS <t abst ops>

The TABS directive allows resetting the listing file tab stops from the default value of 8.
Note: A label isnot allowed with thisdirective. Seeadso LSTCOL.

Example C-76. TABS Directive
TABS 4 ; Set listing file tab stops to 4

C.3.56 TITLE Initialize Program Title

TI TLE [ <string>]
The TITLE directive initializes the program title to the string in the operand field. The
program titleis printed on the top of all succeeding pages until another TITLE directiveis

encountered. Thetitleisinitially blank. The TITLE directive is not printed in the source
listing. A TITLE directive with no string argument causes the current title to be blank.

Note: A label is not allowed with this directive. See also STITLE.

Example C-77. TITLE Directive
TI TLE "FIR FILTER

C.3.57 UNDEF Undefine DEFINE Symbol
UNDEF [ <synbol >]

The UNDEF directive causes the substitution string associated with <symbol> to be
released, and <symbol> will no longer represent avalid DEFINE substitution. See the
DEFINE directive for more information.

Note: A label is not allowed with this directive. See also DEFINE.

Example C-78. UNDEF Directive
UNDEF DEBUG; UNDEFI NES THE DEBUG SUBSTI TUTI ON STR NG

C.3.58 WARN Programmer Generated Warning
WARN [{<str>| <exp>}[, {<str>| <exp>},...,{<str>| <exp>}]]

The WARN directive causes a warning message to be output by the assembler. The total
warning count isincremented as with any other warning. The WARN directiveis

C-52 DSP56303EVM User’'s Manual Motorola



Assembler Directives

normally used in conjunction with conditional assembly directives for exceptional
condition checking. The assembly proceeds normally after the warning has been printed.
An arbitrary number of strings and expressions, in any order but separated by commas
with no intervening white space, can be specified optionally to describe the nature of the
generated warning.

Note: A labdl is not allowed with this directive. See also FAIL, MSG.

Example C-79. WARN Directive
WARN " paraneter too |arge’

C.3.59 XDEF External Section Symbol Definition

XDEF <synbol >[, <synbol >, . . ., <synbol >]
The XDEF directive is used to specify that the list of symbolsis defined within the current
section, and that those definitions should be accessible by sections with a corresponding
XREF directive. Thisdirectiveisonly valid if used within a program section bounded by
the SECTION and ENDSEC directives. The XDEF directive must appear before

<symbol> is defined in the section. If the symbols that appear in the operand field are not
defined in the section, an error is generated.

Note: A label isnot allowed with this directive. See also SECTION, XREF.
Example C-80. XDEF Directive

SECTI ON IO
XDEF LOCPA ; LOCPA will be accessible by sections wth XREF
ENDSEC

C.3.60 XREF External Section Symbol Reference
XREF <synbol >[, <synbol >, . . ., <synbol >]

The XREF directive is used to specify that the list of symbolsis referenced in the current
section but is not defined within the current section. These symbols must either have been
defined outside of any section or declared as globally accessible within another section
using the XDEF directive. If the XREF directive is not used to specify that a symbol is
defined globally and the symbol is not defined within the current section, an error is
generated, and all references within the current section to such a symbol are flagged as
undefined. The XREF directive must appear before any reference to <symbol> in the
section.

Note: A labdl is not allowed with this directive. See also SECTION, XDEF.

Motorola Motorola Assembler Notes C-53



Structured Control Statements

Example C-81. XREF Directive

SECTI ON FI LTER
XREF AA CC DD ; XDEFed synbols wthin section

ENDSEC

C.4 Structured Control Statements

An assembly language provides an instruction set for performing certain rudimentary
operations. These operationsin turn may be combined into control structures such asloops
(FOR, REPEAT, WHILE) or conditiona branches (IF-THEN, IF-THEN-ELSE). The
assembler, however, accepts formal, high-level directives that specify these control
structures, generating the appropriate assembly language instructions for their efficient
implementation. This use of structured control statement directives improves the
readability of assembly language programs without compromising the desirable aspects of
programming in an assembly language.

C.4.1 Structured Control Directives

The following directives are used for structured control. Note the leading period, which
distinguishes these keywords from other directives and mnemonics. Structured control
directives may be specified in either upper or lower case, but they must appear in the
opcode field of the instruction line (i.e., they must be preceded either by alabel, a space,
or atab).

.BREAK .ENDI .LOOP
.CONTINUE .ENDL .REPEAT
.ELSE .ENDW UNTIL
.ENDF .FOR WHILE
IF

In addition, the following keywords are used in structured control statements:

AND DOWNTO TO
BY OR
DO THEN
Note: AND, DO, and OR are reserved assembler instruction mnemonics.

C-54 DSP56303EVM User’'s Manual Motorola



Structured Control Statements

C.4.2 Syntax

The formats for the “.BREAK”, “.CONTINUE”, “.FOR”, “.IF", “.LOOP”, “.REPEAT”,
and “.WHILE” statements are given in sections C.4.2.1 through C.4.2.7. Syntactic
variables used in the formats are defined as follows:

Note:

<expression>—A simple or compound expression (Section C.4.3).

<stmtlist>—Zero or more assembler directives, structured control statements, or
executable instructions.

An assembler directive occurring within a structured control statement is examined

exactly once—at assembly time. Thus the presence of a directive within a .FOR,
.LOOP, .REPEAT, or .WHILE statement does not imply repeated occurrence of an
assembler directive; nor does the presence of a directive within an .IF-THEN-.ELSE

structured control statement imply conditional assembly.

* <0opl>—A user-defined operand whose register/memory location holds the .FOR
loop counter. The effective address must use a memory alterable addressing mode
(i.e, it cannot be an immediate value).

» <op2>—Theinitia value of the .FOR loop counter. The effective address may be
any mode and may represent an arbitrary assembler expression.

e <op3>—Theterminating value of the .FOR loop counter. The effective address
may be any mode and may represent an arbitrary assembler expression.

» <op4>—The step (increment/decrement) of the .FOR loop counter each time
through the loop. If not specified, it defaults to avalue of #1. The effective address
may be any mode and may represent an arbitrary assembler expression.

e <cnt>—Theterminating value in a.LOOP statement. This can be any arbitrary
assembler expression.

All structured control statements may be followed by normal assembler comments on the
same logical line.

C.4.2.1 .BREAK Statement
. BREAK

The .BREAK statement causes an immediate exit from the innermost enclosing loop
construct (WHILE, .REPEAT, .FOR, .LOOP). A .BREAK statement does not exit an
IF-THEN-.ELSE construct. If a.BREAK is encountered with no loop statement active, a
warning is issued.

Note: .BREAK should be used with care near .ENDL directives or near the end of DO loops.
It generates ajump instruction which isillegal in those contexts.

Motorola Motorola Assembler Notes C-55



Structured Control Statements

Example C-82. .BREAK Statement
.WH LE X:(rl)+ <GI> #0;1 oop until zero is found

: I F <cs>

. BREAK ;causes exit fromWH LE | oop

. ENDI

: ;any instructions here are skipped
. ENDW

cexecution resunes here after . BREAK

C.4.2.2 .CONTINUE Statement
. GONTI NUE

The .CONTINUE statement causes the next iteration of a looping construct (*.WHILE”,
“REPEAT”, “.FOR”, “.LOOP?”) to begin. This means that the loop expression or operand
comparison is performed immediately, bypassing any subsequent instructions. If a
.CONTINUE is encountered with no loop statement active, a warning is issued.

Note: .CONTINUE should be used with care near .ENDL directives or near the end of DO
loops. It generates ajump instruction which isillegal in those contexts. One or more
.CONTINUE directivesinsidea .L OOP construct will generate aNOP instruction just
before the loop address.

Example C-83. .CONTINUE Statement

. REPEAT
IF <cs>
. GONTI NUE ;causes immediate junp to . UNTIL
. ENDI
;any instructions here are skipped
CUNTI L X:(rl)+ <EQ #0;evaluation here after . CGONTI NUE

C.4.2.3 .FOR Statement

. FCR <op1> = <op2> {TO| DOMTG <op3> [BY <op4>] [Dg
<stmtlist>
. ENDF

Initialize <opl> to <op2> and perform <stmtlist> until <op1> is greater (TO) or less than
(DOWNTO) <op3>. Makes use of a user-defined operand, <opl>, to serve as a loop
counter. .FOR-TO allows counting upward, while .FOR-DOWNTO allows counting

C-56 DSP56303EVM User’'s Manual Motorola



Structured Control Statements

downward. The programmer may specify an increment/decrement step size in <op4>, or
elect the default step size of #1 by omitting the BY clause. A .FOR-TO loop is not
executed if <op2> is greater than <op3> upon entry to the loop. Similarly, a
.FOR-DOWNTO loop is not executed if <op2> isless than <op3>.

<op1> must be awritable register or memory location. It isinitialized at the beginning of
the loop and updated at each pass through the loop. Any immediate operands must be
preceded by a pound sign (#). Memory references must be preceded by a memory space
qualifier (X:, Y:, or P:). L memory references are not allowed. Operands must be or refer
to single-word values.

Thelogic generated by the .FOR directive makes use of several DSP dataregisters. Infact,
two data registers are used to hold the step and target values, respectively, throughout the
loop; they are never reloaded by the generated code. It isrecommended that these registers
not be used within the body of the loop, or that they be saved and restored prior to loop
evaluation.

Note: The DO keyword is optional.

Example C-84. .FOR Statement
. FCR XONT = #0 TO Y:(targ*2)+114; |oop on X ONT

ENDF

C.4.2.4 |IF Statement

JAF <expr essi on> THEN|
<stmlist>

[. ELSE

<stntlist>]

. ENDI

If <expression> istrue, execute <stmtlist> following THEN (the keyword THEN is
optional); if <expression> isfalse, execute <stmtlist> following .EL SE, if present;
otherwise, advance to the instruction following .ENDI.

Note: In the case of nested .|F-THEN-.EL SE statements, each .EL SE refers to the most
recent .IF-THEN sequence.

Example C-85. .IF Statement
JAF <EQ> ; zero bit set?

Motorola Motorola Assembler Notes C-57



Structured Control Statements

C.4.25 .LOOP Statement

.LOOP <cnt>
<stntlist>
. ENDL

Execute <stmtlist> <cnt> times. This is similar to ttHHeOR” loop construct, except that

the initial counter and step value are implied to be #1. It is actually a shorthand method for
setting up a hardware DO loop on the DSP without having to worry about addressing
modes or label placement.

Since the .LOOP statement generates instructions for a hardware DO loop, the same
restrictions apply as to the use of certain instructions near the end of the loop, nesting
restrictions, etc. One or more “.CONTINUE” directives inside a .LOOP construct generate
a NOP instruction just before the loop address.

Example C-86. .LOOP Statement
. LOCP LPCNT ; hardware | oop LPONT times

ENDL

C.4.2.6 .REPEAT Statement

. REPEAT
<stnmlist>
.UNTI L <expression>

<stmtlist> is executed repeatedly until <expression> is true. When expression becomes
true, advance to the next instruction following .UNTIL. The <stmtlist> is executed at least
once, even if <expression> is true upon entry to the .REPEAT loop.

Example C-87. .REPEAT Statement

. REPEAT

. UNTI L X:(rl)+ <eQ> #0; |loop until zero is found

C.4.2.7 .WHILE Statement

.WH LE <expr essi on> DJ
<stntlist>
. ENDW

The <expression> is tested before execution of <stmtlist>. While <expression> remains
true, <stmtlist> is executed repeatedly. When <expression> evaluates false, advance to the

C-58 DSP56303EVM User’'s Manual Motorola



Structured Control Statements

instruction following the “.ENDW” statement. If <expression> is false upon entry to the
.WHILE loop, <stmtlist> is not executed; execution continues after the .ENDW directive.

Note: The DO keyword is optional.

Example C-88. .WHILE Statement
.VWH LE X:(rl)+ <GI> #0; |loop until zero is found

_ ENDW

C.4.3 Simple and Compound Expressions

Expressions are an integral part of “.IF”, “*. REPEAT", and “WHILE” statements.
Structured control statement expressions should not be confused with the assembler
expressions. The latter are evaluated at assembly time and are referred to here as
"assembler expressions;” they can serve as operands in structured control statement
expressions. The structured control statement expressions described below are evaluated
at run time and are referred to in the following discussion simply as “expressions”.

A structured control statement expression may be simple or compound. A compound
expression consists of two or more simple expressions joined by either AND or OR (but
not both in a single compound expression).

C.43.1 Simple Expressions

Simple expressions are concerned with the bits of the condition code register (CCR).
These expressions are of two types. The first type merely tests conditions currently
specified by the contents of the CCR. (See Section C.4.3.2.) The second type sets up a
comparison of two operands to set the condition codes and afterwards tests the codes.

C.4.3.2 Condition Code Expressions

A variety of tests (identical to those in the Jcc instruction) may be performed, based on the
CCR condition codes. The condition codes, in this case, are preset by either a
user-generated instruction or a structured operand-comparison expression. Each test is
expressed in the structured control statement by a mnemonic enclosed in angle brackets.

When processed by the assembler, the expression generates an inverse conditional jump to
beyond the matching .ENDx/.UNTIL directive.

Motorola Motorola Assembler Notes C-59



Structured Control Statements

Example C-89. Condition Code Expression

JAF <EQ> ;zero bit set?

+ bne Z 100002 ;code generated by assenbl er
LR D1 ; user code
. ENDI

+ Z 1.00002 ; assenbl er - gener at ed | abel
. REPEAT ;subtract until DO < D7

+ Z 100034 ; assenbl er - gener at ed | abel
SUB D7, DO ; user code
. UNTI L <LT>

+ bge Z 100034 ;code generated by assenbl er

C.4.3.3 Operand Comparison Expressions

Two operands may be compared in a simple expression, with subsequent transfer of
control based on that comparison. Such a comparison takes the form

<opl> <cc> <op2>

where <cc> is a condition mnemonic enclosed in angle brackets (as described in section
C.4.3.2), and <opl> and <op2> are register or memory references, symbols, or assembler
expressions. When processed by the assembler, the operands are arranged such that a
compare/jump sequence of the following form always results

aw <regl>, <reg2>
(J| B cc <| abel >

where the jJump conditional isthe inverse of <cc>. Ordinarily <opl> is moved to the
<regl> dataregister and <op2> is moved to the <reg2> data register prior to the compare.
Thisis not always the case, however. If <opl> happens to be <reg2> and <op2> is
<regl>, an intermediate register is used as a scratch register. In any event, worstcase code
generation for agiven operand comparison expression is generally two moves, a compare,
and a conditiona jump.

Jumps or branches generated by structured control statements are forced long because the
number and address of intervening instructions between a control statement and its
termination are not known by the assembler. The programmer may circumvent this
behavior by use of the SCSIMP directive.

Any immediate operands must be preceded by a pound sign (#). Memory references must
be preceded by a memory space qualifier (X:, Y:, or P:). L memory references are not
allowed. Operands must be or refer to single-word values.

Note that valuesin the <reg1> and <reg2> data registers are not saved before expression
evaluation. This means that any user datain those registers are overwritten each time the
expression isevaluated at runtime. The programmer should take care either to save needed

C-60 DSP56303EVM User’'s Manual Motorola



Structured Control Statements

contents of the registers, reassign data registers using the SCSREG directive, or not use
them at all in the body of the particular structured construct being executed.

C.4.3.4 Compound Expressions

A compound expression consists of two or more simple expressions (See Section C.4.3.1.)
joined by alogical operator (AND or OR). The boolean value of the compound expression
is determined by the boolean values of the simple expressions and the nature of the logical
operator. Note that the result of mixing logical operators in acompound expression is
undefined:

JAF Xl <GI> B AND <LSS AND RL <NE> R2;this is K

AF Xl <LE> B AND <LC (R R <GI> Rg;undefined
The simple expressions are evaluated |eft to right. Note that this means the result of one
simple expression could have an impact on the result of subsequent simple expressions,
because of the condition code settings stemming from the assembler-generated compare.

If the compound expression isan AND expression and one of the simple expressionsis
found to be false, any further simple expressions are not evaluated. Likewise, if the
compound expression is an OR expression and one of the simple expressionsis found to
be true, any further ssimple expressions are not evaluated. In these cases, the compound
expression is either false or true, respectively, and the condition codes reflect the result of
the last simple expression eval uated.

C.4.3.5 Statement Formatting

The format of structured control statements differs somewhat from normal assembler
usage. Whereas a standard assembler lineis split into fields separated by blanks or tabs
with no white space inside the fields, structured control statement formats vary depending
on the statement being analyzed. In general, all structured control directives are placed in
the opcode field (with an optional |abel in the label field) and white space separates all
distinct fields in the statement. Any structured control statement may be followed by a
comment on the same logical line.

C.4.3.6 Expression Formatting
Given an expression of the form

<opl> <LT> <op2> (R <0p3> <&E> <op4>

there must be white space (blank, tab) between all operands and their associated operators,
including boolean operators in compound expressions. Moreover, there must be white
space between the structured control directive and the expression, and between the
expression and any optional directive modifier (THEN, DO). An assembler expression

Motorola Motorola Assembler Notes C-61



Structured Control Statements

used as an operand in a structured control statement expression must not have white space
init, sinceit is parsed by the standard assembler evaluation routines:

AF H#@M (@Qr(4.0)) <GI> #2; no white space in first operand
C.4.3.7 .FOR/.LOOP Formatting

The .FOR and .LOOP directives represent special cases. The .FOR structured control
statement consists of severa fields:

.FOR <opl> = <op2> TO <o0p3> BY <op4> DO

There must be white space between all operands and other syntactic entities such as “=",
“TO”, “BY”, and “DO”. As with expression formatting, an assembler expression used as
an operand must not have white space in it:

.FCR X ONT = #0 TO Y:(targ*2)+l BY #@M (@ON2.0, @(R)))

In the example above, the .FOR loop operands represented as assembler expressions
(symbol, function) do not have embedded white space, whereas the loop operands are
always separated from structured control statement keywords by white space.

The count field of a .LOOP statement must be separated from the .LOOP directive by
white space. The count itself may be any arbitrary assembler expression and therefore
must not contain embedded blanks.

C.4.4 Assembly Listing Format

Structured control statements begin with the directive in the opcode field; any optional
label is output in the label field. The rest of the statement is left as is in the operand field,
except for any trailing comment; the X and Y data movement fields are ignored.
Comments following the statement are output in the comment field (unless the unreported
comment delimiter is used).

Statements are expanded using the macro facilities of the assembler. Thus the generated
code can be sent to the listing by specifying the MEX assembler option, either via the OPT
directive or the -O command line option.

C.4.5 Effects on the Programmer’s Environment

During assembly, global labels beginning with “Z_L" are generated. They are stored in the
symbol table and should not be duplicated in user-defined labels. Because these non-local
labels ordinarily are not visible to the programmer, there can be problems when local
(underscore) labels are interspersed among structured control statements. The SCL option

C-62 DSP56303EVM User’'s Manual Motorola



Structured Control Statements

(see the OPT directive) causes the assembler to maintain the current local 1abel scope
when a structured control statement label is encountered.

In the.FOR loop, <opl> is auser-defined symbol. When exiting the loop, the
memory/register assigned to this symbol containsthe value which caused the exit from the
loop.

A compareinstruction is produced by the assembler whenever two operands aretested in a
structured statement. At runtime, these assembler-generated instructions set the condition
codes of the CCR (in the case of aloop, the condition codes are set repeatedly). Any
user-written code either within or following a structured statement that references CCR
directly (move) or indirectly (conditional jump/transfer) should be attentive to the effect of
these instructions.

Jumps or branches generated by structured control statements are forced long because the
number and address of intervening instructions between a control statement and its
termination are not known by the assembler. The programmer may circumvent this
behavior by use of the SCSIMP directive. In all structured control statements except those
using only a single condition code expression, registers are used to set up the required
counters and comparands. |n some cases, these registers are effectively reserved; the .FOR
loop uses two data registers to hold the step and target values, respectively, and performs
no save/restore operations on these registers. The assembler, in fact, does no save/restore
processing in any structured control operation; it simply moves the operands into
appropriate registers to execute the compare. The SCSREG directive may be used to
reassign structured control statement registers. The MEX assembler option (see the OPT
directive) may be used to send the assembler-generated code to the listing file for
examination of possible register use conflicts.

Motorola Motorola Assembler Notes C-63



Structured Control Statements

C-64 DSP56303EVM User’'s Manual Motorola



Appendix D
Codec Programming Tutorial

D.1 Introduction

The DSP56300 family is capable of many different types of activities. Through
mathematical algorithms implemented on the DSP, various of tasks and different kinds of
digital signal processing can be accomplished. However, in order to obtain useful
information, it is often necessary to interact with external eventsin the outside world.

To satisfy this requirement, Motorola engineersintegrated the CS4218 16-bit Audio codec
CMOS device with the current DSP5630x evaluation modules. Their design opened the
DSP to numerous applications, as the CS4218 codec has many critical components
needing to interface with the outside world. The codec will perform analog-to-digital
(A/D) and digital-to-analog (D/A) conversion, filtering, and level setting.

A sample program is included with this document to demonstrate the use of the C$4218

codec with aMotorola DSP. The program explains the steps necessary to interface the

Motorola DSP with the CS4218 codec. More specifically, the sample program explainsin

detail the use of the enhanced synchronous seria interface ports (ESSI) and how the

DSP’s ESSI ports interface, initialize, and transport data between the DSP and CS4218
codec.

The following source code files are provided to the programmer to assist in programming
the codec. The following source-code files can be found on Motorola’s DSP website on
the Internet at

W, not . conl SPS DSP/ documrent at i on/ DSP56300. ht ni .

* loequ.asm: Contains important 1/0O equates for the DSP5630XxEVM modules.
* Intequ.asm: Contains interrupt equates for the DSP5630x EVM modules.

* Ada_equ.asm: Contains equates used to initialize the codec.

» Ada_Init.asm: Contains initialization code for the ESSI and codec.

* Vectors.asm: Contains the vector table for the DSP5630XxEVM modules.

* Echo.asm: Example of codec programming.

Motorola Codec Programming Tutorial D-1



Codec Background

Throughout this appendix, the sample code, used to demonstrate the use of the codec,
references equates found in Ada_equ.asm, loequ.asm, and Intequ.asm.

D.2 Codec Background

D.2.1 Codec Device

The C$4218 stereo audio codec is comprised of many devices designed to perform A/D

and D/A conversion built into asingle chip. The chip consists of two delta-sigma A/D

converters, two delta-sigma D/A converters, input anti-aliasing filters, output smoothing

filters, programmable input gain, and programmable output attenuators. These separate
components built into the codec allow the DSP to receive data from the codec, to process

the data, and to eventually transmit processed data back to the codec. The data travels

through special serial ports using the DSP’s ESSI ports and the codec’s specialized pins.

D.2.2 Codec Modes

The codec has many modes of operation. These modes are configured by setting certain
pins on the codec high or low, specifically SMODE1, SMODE2, and SMODE3 pins. The
mode in which the DSP5630x evaluation modules are physically set to is Serial Mode 4
(SM4). SM4 allows the control information for the codec to be separated from the data
information. In effect, this reduces the bandwidth needed by the data serial ports and
simplifies the programming procedures.

Within the SM4 mode exist four sub modes. These secondary modes specify two things:
whether the codec functions in the master mode or the slave mode, and the number of bits
per frame. With the DSP evaluation boards that are discussed in this appendix, the
secondary modes are physically configured to sub mode 0. Sub mode 0 dictates the codec
to function in the master mode and sets the frame size to be 32 bits.

In essence, by setting the codec to operate in the master mode, the codec is responsible for
sending the serial bit clock and sending frame synchronization pulses to indicate the start
and stop of a data frame. In addition, sub mode zero specifies that each frame consist of
two 16-bit words, a left-channel 16 bit word and a right-channel 16 bit word. The left and
right channels are sent to and from the codec with the most significant bits (MSBS) first.

This information will be important in the sections to follow in this appendix. These
properties apply to both the input data going into the codec (SDIN) and the output data
coming from the codec (SDOUT). Please refer to Figure D-1.

Motorola DSP56303EVM User’'s Manual D-2



ESSI Ports Background

« Frame 32-bits >
SSYNC
SDOUT L eft Channel Word Right Channel Word
SDIN Left Channel Word Right Channel Word
< 16-bits > < 16-bits P

Figure D-1. Data Format of Codec

In the SM4 mode, the control information is separated from the data information. The
control information is thus sent to codec on a different serial interface than the data
information. The control information consists of alist of attributes that need to be
specified in order to dictate certain properties such aslevel settings. Although 31 bits must
be set in the control information, only 23 bits are useful. The other 8 bits are set to zero.

For more information on the C$4218 codec, please refer to the Crystal CS$4218 codec
Datasheset.

D.3 ESSI Ports Background

The Motorola DSP5630x evaluation modules referred to in this appendix have two ESS
ports. ESSI0 and ESSI 1, which form one of the major serial interfaces to external
peripherals. Each port consists of six unique pinsthat allow performance of a multitude of
functions, depending on how certain pins are configured. Each port can function as either
an ESSI or a General Purpose Input/Output port (GPI1O).

While the ESSI mode has some constraints, by using the ESSI port in the ESSI mode, the
programmer can synchronize his tasks with a master clock. In addition, certain control
actions and direction flow are set automatically. On the other hand, by using the ESSI port
in the GPIO mode, the programmer is given the option of specifying exactly how datais
transferred and what direction the datawill flow. The drawback to using the GPIO modeis
that the programmer must understand exactly how the GPIO ports are used when
programming the GPIO ports. In the example given in this appendix, both modes of
operation are used.

When working with ESSI ports, the programmer needs to know in detail of the registers
and pins available on the ESSI port. Although it is not the purpose of this appendix to
discuss the ESSI port in great detail, a brief description of each pin and register is
included.

Motorola Codec Programming Tutorial D-3



ESSI/GPIO pins

D.4 ESSI/GPIO pins

The ESSI port uses six pinsto allow transfer of information. Each pin can be configured to
function in the ESSI mode or the GPIO mode by modifying the port control registers.

Please refer to Table D-1.

Table D-1. ESSI Pin Definition

Pin Name

Pin Function

Serial Control 0 (SC0/PCO0)

Has a multitude of functions depending on how control registers are set.

Serial Control 1 (SC1/PC1)

Has a multitude of functions depending on how control registers are set.

Serial Control 2 (SC2/PC2)

Has a multitude of functions depending on how control registers are set.

Serial Clock (SCK/PC3)

Serves as a provider or a receiver of the serial bit rate clock.

Serial Receive Data (SRD/PC4)

Receives serial data.

Serial Transmit Data (STD/PC5)

Transmit serial data.

D.5 ESSI Port Registers

The ESSI port can be configured to work in the ESSI mode or the GPIO mode. However,

in either the ESSI mode or the GPIO mode there are certain registers that apply

specifically to each mode, with the exception of two registers. The two registers, port
control register C (PCRC) and port control register D (PCRD), determine how the ESS|
ports will be used. port control register C configures the ESSIO’s functionality mode,
while port control register D configures the ESSI1’s functionality mode.

Setting the corresponding bit/pin on the port control register to 1 configures the pin to
operate in the ESSI mode. On the other hand setting the corresponding bit/pin to O
configures the pin to function in the GPIO mode. Notice that each pin is individually
configured to be in the ESSI mode or the GPIO mode.

D.5.1 ESSI/GPIO Shared Registers

Table D-2 lists and describes the functions of the ESSI/GPIO shared registers.

Motorola

DSP56303EVM User’'s Manual D-4



ESSI Port Registers

Table D-2. ESSI/GPIO Shared Registers

Register Name Function

Port Control Register C (PCRC) | Controls whether to use the ESSIO port in ESSI mode or GPIO mode

Port Control Register D (PCRD) | Controls whether to use the ESSI1 port in ESSI mode or GPIO mode.

D.5.2 ESSI Registers

The ESSI consists of 12 registers specific to the ESSI mode. Recall that the DSP5630x has
two ESSI ports. Therefore there are two sets of ESSI registers; onefor ESSIO and the other
for ESSI1. Table D-3 displaysalist of the ESSI registers.

Table D-3. ESSI Registers

Register Name Function

Control Register A (CRA)

Controls ESSI Mode operations.

Control Register B (CRB)

Controls ESSI Mode operations.

Status Register (SSISR)

Describes status and serial flags.

Transmit Slot Mask Register A (TSMA)

Determines when to transmit during a given time slot.

Transmit Slot Mask Register B (TSMB)

Determines when to transmit during a given time slot.

Receive Slot Mask Register A (RSMA)

Determines when to receive during a given time slot.

Receive Slot Mask Register B (RSMB)

Determines when to receive during a given time slot.

Time Slot Register (TSR)

Prevents data transmission during a time slot.

Receive Data Register (RX)

Read only register that receives data.

Transmit Data Register 0 (TXO0)

Transfer data for transmitter 1

Transmit Data Register 1 (TX1)

Transfer data for transmitter 2

Transmit Data Register 2 (TX2)

Transfer data for transmitter 3

D.5.3 GPIO Registers

While functioning in the GPIO mode, the ESSI port accesses four registers specific to the
GPIO mode. Refer to Table D-4 for details on the registers.

Motorola Codec Programming Tutorial D-5



Digital Interface (ESSI — Codec)

Table D-4. GPIO Registers

Register Name Function

Port Direction Register C (PRRC) | Controls the direction of data flow for ESSIO port in GPIO mode

Port Direction Register D (PRRD) | Controls the direction of data flow for ESSI1 port in GPIO Mode.

Port Data Register C (PDRC) Stores data received or transmitted for ESSIO port in GPIO mode.

Port Data Register D (PDRD) Stores data received or transmitted for ESSI1 port in GPIO mode.

D.5.4 GPIO Mode Port C and Port D

After a specific pin has been set to function in the GPIO mode, the direction of data flow
must be configured. In other words, the ESSI port must know whether the pinisreceiving
data or transmitting data. These specifications are determined by setting the Port Direction
Register C (PRRC) and Port Direction Register D (PRRD). By setting the pin/bit to 0 on
the port direction register, the GPIO pin is configured as an input. Furthermore by setting
the pin/bit on the port direction register to 1, the GPIO pin is configured as an output.

Finally, to retrieve or transmit data in the GPIO mode, the port dataregisters (PDRs) are
used. If the pin/bit is used as an input, the value in that pin/bit reflects the value present on
that pin. Additionally, if the pin/bit is used as an output, the value seen on the pin/bit isthe
value being transmitted.

For more information concerning ESSI ports please refer to the DSP5630xEVM User’s
Manual and the Application NotB,SP56300 Enhanced Synchronous Serial Interface
(ESS) Programming, (order number AN1764/D) located at web address

wwv. ot . comd SPS/ DSP/ docunrent at i on/ appnot es. ht m .

D.6 Digital Interface (ESSI — Codec)

As mentioned previously, the DSP’s ESSI ports form the major interface between the DSP
and the codec device. Recall that on the DSP5630x evaluation modules discussed in this
appendix the codec is configured to function in the SM4 mode. SM4 mode separates the
data information from the codec control information. Therefore, two serial ports are
required to transfer data and codec control information. Specifically, both ESSIO and
ESSI1 ports are used to control and transfer data between the DSP and the codec. In
general, ESSIO controls data transfers between the DSP and the codec, while ESSI1
controls codec control information transfers between the DSP and the codec.

ESSIO performs three functions with reference to the codec. First, ESSIO transfers data to
and from the codec. Secondly, ESSIO receives synchronization pulses. And finally, ESSIO

Motorola DSP56303EVM User’'s Manual D-6



Digital Interface (ESSI — Codec)

performs the reset function on the codec. Each ESSIO pin that is connected to the
codeccodec serves a specific purpose. Please refer to Table D-5 asto the individual
definition of each pin.

ESSI1 serves adifferent purpose. ESSI1 controls and transfers codec control information.

Again, pleaserefer to Table D-5 as to the definition of each corresponding pin.

Table D-5. Pin Set-Up Descriptions

ESSIO/ESSI1 Pin CS4218 Codec Pin Description
STDO (ESSIO) SDIN Data transfer from ESSIO to codec
SRDO (ESSI0) SDOUT Data transfer from codec to ESSIO
SCKO (ESSI0) SCLK Clock sent by codec (Master)
SCO00 (ESSI0) ~RESET Reset codec from ESSIO
SC02 (ESSI0) SSYNC Frame Synchronization pulse from codec
SC10 (ESSI1) ~CCS Control Information gate
SC11 (ESSI1) CCLK Clock sent by ESSI1 to set control information
SC12 (ESSI1) CDIN Control data transfer from ESSI1

Physically, the ESSI port pins are connected to the serial pins on the codec though jumper
connections. In order to ensure correct operation using the example code referenced in this
document refer to Table D-6 and Table D-7 for the correct jumper settings for the
DSP5630XEVM boards. Please refer to Figure D-2, which shows the pin set-up between
the DSP’s ESSI ports and the codec.

Table D-6. JP5 Jumper Block (ESSIO)

JP5 ESSI Pin Codec Pin
1-2 SCKO SCLK
3-4 SC00 ~RESET
5-6 STDO SDIN
7-8 SRDO SDOUT
9-10 SCO01
11-12 SC02 SSYNC

Motorola Codec Programming Tutorial D-7



Programming the CS4218 Codec

Table D-7. JP4 Jumper Block (ESSI1)

JP4 ESSI pin Codec pin
1-2 SCK1
3-4 SC10 ~CCS
5-6 STD1
7-8 SRD1
9-10 sc11 CDIN
11-12 SC12 CCLK
Motorola DSP C$4218 CODEC
(save) (master)
[ STDO »| SDIN
SRDO |« SDOUT
ESSI0 SCKO |« SCLK
SC00 p| RESET
SC02 |« FSYNC
[ SC10 »| MF4/CCS
ESSI1 sci11 p»| MF3/CCLK
SC12 »| MF2/CDIN

Figure D-2. ESSI/Codec Pin Setup

For more information concerning the pin layouts and jumper settings between the codec
and DSP, please consult the DSP user’'s manual for the respective evaluation modules.

D.7 Programming the CS4218 Codec

In order for the CS4218 codec device to work properly with the Motorola DSPs, certain
procedures must be followed. These procedures can be broken down into three major
phases. Each of the phases plays an essential role in properly setting up constants,

Motorola DSP56303EVM User’'s Manual D-8



Phase 1: Setting up Constants

interfacing and initializing, and finally using the CS4218 codec with the M otorola DSPs
correctly, in accordance with the following descriptions:

* Phase 1: Setting up global constants

This phase includes such activities as setting up buffer spaces and pointers, setting codec
control information constants, and defining interface constants and pins.

* Phase 2: Interfacing and Initializing the ESSI and the codec

The bulk of the work needed to obtain a working interface between the DSP5630x and the
codec, lies in this phase. The procedures include such activities as setting up and
initializing the codec ports, setting up and initializing the ESSI ports, and finally
interfacing the codec and ESSI ports.

* Phase 3: Data transferring mechanisms

This phase includes information concerning the types of data transfer mechanism. Polling,
DMA, and interrupts are the three types available to the programmer. However, the
interrupt method of transferring data will be discussed in detail in this document.

D.8 Phase 1: Setting up Constants

D.8.1 Setting Up Buffer Space and Pointers

Phase 1 begins with setting up buffer spaces and pointers. The buffer spaces and pointers
offer atemporary storage for the incoming and outgoing data. These variables comein the
form of receive and transmit buffer and pointers. In addition to offering atemporary
storage, the pointers offer amethod to access the memory location of the stored data.
Example D-1 demonstrates the task of setting up transmit and receive buffers and pointers.

Example D-1 Setting Up Transmit and Receive Buffers and Pointers

; Recei ve buffer and pointer

RX_ BUFF _BASE equ *

RX data 1 2 ds 1 ; Left receive channel audio
RX data 3 4 ds 1 ; R ght receive channel audio
RX PTR ds 1 ; Recei ve pointer

; Transmt buffer and pointer

TX BUFF_BASE equ *

TX data 1 2 ds 1 ; Left transmt channel audio
TX data 3 4 ds 1 ; Rght transmt channel audio
TX PTR ds 1 ; Transmt pointer

Motorola Codec Programming Tutorial D-9



Phase 1: Setting up Constants

D.8.2 Defining Control Parameters of the CODEC

To specify specific parameters of the A/D and D/A conversion and other audio
parameters, the control information must be declared. Parameters such as left and right
attenuation, left and right gain, line input selects, and mask interrupts, are configured in
the control information. The control information consists of 32 bits of information.
Although only 23 bits contain useful information, aminimum of 31 bits must be set. Table
D-8 lists the definitions of each bit.

Table D-8. CS4218 Codec Control Information (MSB)

Descriptions Bit Values
Not Applicable 31 0
Mask Interrupt 30 0 = no mask on MF5:\INT
1 = mask on MF5\INT
D01 29 N/A
Left output D/A Attenuation (1.5 28-24 00000 = No attenuation
dB steps) 11111 = Max attenuation
(-46.5 dB)
Right output D/A Attenuation (1.5 | 23-19 00000 = No attenuation
dB steps) 11111 = Max attenuation
(-46.5 dB)
Mute D/A output 18 0 = output not muted
1 = output muted
Left Input Select 17 0=LIN1
1=LIN2
Right Input Select 16 0 =RIN1
1=RIN2

Left input D/A Gain (1.5 dB steps) | 15— 12 00000 = no gain

11111 = max gain (22.5 dB)

Right input D/A Gain (1.5 dB 11-8 00000 = no gain

steps)

11111 = max gain (22.5 dB)

Not Applicable

0000000

Motorola

DSP56303EVM User’'s Manual

D-10



Phase 1: Setting up Constants

Referring to Table D-8, aprogrammer can configure the control information for the codec.
Suppose, for instance, that the following requirements are needed for this application:

1.
2
3.
4

5.

No mask for the interrupt pin.

. Noleft or right D/A attenuation.

Muting turned off.

. LIN2 and RIN2 Selected. (On the EVM boards input 2 is used for both left and right

channels.)
No left and right D/A gains.

Example D-2 illustrates the procedure of setting the codec control information using the
previous specified control parameters.

Example D-2 Setting Codec Control Information

NO_NMASK I NT equ $000000

NO LEFT_ATTN equ $000000 ; 0 dB

NO R GHT_ATTN  equ $000000 ; 0 dB

LI N2 equ $000200 ; use LIN2 on EWM
R N2 equ $000100 ; use RN2 on EW
NO LEFT_GAI N equ $000000 ; 0 dB
NORGIT_GAIN  equ $000000 ; 0 dB

NO_MUJTI NG equ $000000

9
A
S

NO MASK | NT+NO LEFT ATTN+NO R GHT ATTN+LI N2+R N2+
NO_MUTI NG

CTRL WD 34 equ NO LEFT_GAI NtNO R GHT GAI N

Note:

Note:

The CS4218 codec data sheet reverses the bit-order of the control information. For
instance, bit 1 should be the mask interrupt instead of bit 30. However, since most of
the work done with the ESSI ports and codec is done using MSB first, Table D-8 was
modified to reverse the bit order from the codec data sheet to ssimplify control
information programming.

The Evauation modules used in this document are designed to select line 2 of right
and left inputs. Therefore, bits 17 (Left Input Select) and bits 16 (Right Input Select)
should be configured to select LIN 2 (1) when using the DSP5630XxEVM evaluation
modules.

Motorola Codec Programming Tutorial D-11



Phase IlI: Initializing and Interfacing the ESSI and CODEC Ports

D.9 Phase ll: Initializing and Interfacing the ESSI and CODEC
Ports

After defining certain constants for the codec and the ESSI, the next step isto initialize the
ESSI and codec interface. Theinitialization procedure involves first initializing the ESSI
ports, which includes resetting the ESSI ports, modifying ESSI control registers, and
configuring ESSI/GPI O functionality. Second, the codec must also be initialized, which
entails resetting the codec and sending in codec control information.

In other words, the following general steps need to be performed:

Reset ESS| ports.

Modify ESSI control registers.
Configure ESSI or GPIO functionality.
Reset codec.

Modify codec control information.

© gk~ w P

De-assert ESS| reset and enable interrupts.

D.9.1 |Initialize ESSI Ports

Thefirst stepininitializing the ESSI Port isto reset the ESSI ports. By sending a value of
zero into the port control register C and port control register D on the ESSIs, ESSIO and
ESSI1 undergo areset. Although ESSI1 will be used as a GPIO, it is recommended that
the programmer aso perform the reset on ESSI1. Example D-3 illustrates the reset
procedure of the ESSI ports.

Example D-3 ESSI Port Reset Procedure

novep #$0000, x: M_PCRC ; reset ESSI0 C control register port
novep #$0000, x: M_PCRD ; reset ESSI1 D control register port

The next step ininitializing the ESSI port isto set the control parametersfor the ESSI port.
Adjusting the bits on the ESSI Control Register A (CRAOQ) and ESSI Control Register B
(CRBO) alow for initializing and modifying control parameters. Each bit on the registers
has a specific meaning. Describing the meaning of each bit on the registersis beyond the
scope of this appendix. The information on specific definitions of each bit can be found in
the respective DSP5630x chip manuals. However, there are certain typical settings that
need to be made in order for the codec to work properly with the ESSI ports. Table D-9
displays the settings that need to be made with Control Register A.

Motorola DSP56303EVM User’'s Manual D-12



Phase II: Initializing and Interfacing the ESSI and CODEC Ports

Table D-9. Settings for Control Register A

Bit Name Description Bit Position Value (Binary)

Reserved Reserved 23 0

SSC1 SC1 pin = serial 1/0 flag 22 0 (SC1 flag set)

WL[2:0] Word Length control 21-19 010
(16 bit control word)

ALC Alignment Control 18 0 (Align to bit 23)

Reserved Reserved 17 0

DC[4:0] Frame Rate Divider 16-12 00001 (2 time slots per

Control frame)

PSR Prescaler Range 11 1 (ESSI clock is divided
by one)

Reserved Reserved 10-8 000

PM[7:0] Prescale Modulus Select | 7-0 00000111 (ESSI clock
divided by 8)

Besides setting the CRAO register, the CRBO register must also be set to allow certain
parameters to be met. Table D-10 lists the typical settings that are required for Control
Register B in order to ensure functionality between the ESS| ports and the codec.

Table D-10. Settings Control Register B

Bit Name Description Bit Position Value (Binary)

REIE Receive exception 23 1 (enabled)
interrupt

TEIE Transmit exception 22 1 (enabled)
interrupt

RLIE Receive last slot 21 1 (enabled)
interrupt

TLIE Transmit last slot 20 1 (enabled)
interrupt

RIE Receive interrupt 19 1 (enabled)

TIE Transmit interrupt 18 1 (enabled)

RE Receive register 17 1 (enabled)

TEO Transmit register 0 16 1 (enabled)

TE1l Transmit register 1 15 0 (disabled)

Motorola Codec Programming Tutorial D-13




Phase IlI: Initializing and Interfacing the ESSI and CODEC Ports

TE2 Transmit register 2 14 0 (disabled)

MOD Mode 13 1 (Network Mode)

SYN Synchronization mode 12 1 (Synchronous mode)

CKP Clock polarity 11 0 (Data and frame sync
clocked on rising edge)

FSP Frame Sync. Polarity 10 0 (positive polarity)

FSR Frame Synch Relative 9 1 (Frame synch begins

Timing one bit before first bit of

data word)

FSL Frame Sync. Length 8-7 10 (Rx-bit length: TX-bit
length)

SHFD Shift direction 6 0 (shift MSB first)

SCKD Clock source direction 5 0 (SCKis input clock)

SCD2 SC2 pin direction 4 0 (SC2 is input)

SCD1 SC1 pin direction 3 1 (SC1 is output)

SCDO SCO pin direction 2 1 (SCO is output)

OF[1:0] Output flags 1-0 N/A

Notice that only the ESSIO control parameters are configured. Since ESSI1 functionsin

the GPIO mode, the control parameters do not need to be set. Example D-4 illustrates the
task of setting the control registersfor the ESSIO port according to the specifications given
in Table D-9 and Table D-10.

Motorola

DSP56303EVM User’'s Manual

D-14



Phase II: Initializing and Interfacing the ESSI and CODEC Ports

Example D-4 Setting Control Registers for the ESSIO Port
;Setting ESSIO Control Paraneters

; Control Register A

nmovep  #$101807, x: M_CRAD ; 12, 288MHz/ 16 = 768KHz SCLK
prescal e nodul us = 8

frame rate divider = 2
16-bits per word

32-bits per frame

16-bit data aligned to bit 23

; Control Register B
nmovep  #$ff 330c, x: M CRBO Enabl e REIE TH E RLIE TLI E,

R E TIE RE TEO

net wor k node, synchronous,

out on rising/in on falling
shift MBB first

external clock source drives SCK
(codec is naster)

RX frane sync pul ses active for
1 bit clock immedi ately before
transfer period

positive frane sync polarity
framesynclengthisl1-bit

D.9.2 Configure GPIO Pins

In the previous sections of this document, it was stated that the ESSIO pins function in the
ESSI mode, while the ESSI 1 pins operate in the GPIO mode. Referring to Figure D-2,
notice that some of the pins only affect the control information of the codec, while the
other pins deal with the transfer of data. Because the codec on the DSP5630XxEV M boards
are configured to operate in SM4 mode, the control information runs on a separate seria
line than the datalines. Additionally, SM4 dictates that the control information only needs
to be configured once unless a change is needed.

In order to control the codec control information, the full ESSI port mode does not need to
be used. Instead, the GPIO mode is used to transfer the control information. Any pins that
are used to control the codec control information will be configured as a GPIO mode,
otherwise the ESSI mode will be used. To configure the mode in which the pin operates,
ESSI or GPIO, port control registers C and D need to be modified. As mentioned in
Section D.5.1, "ESSI/GPIO Shared Registers," , port control C register controlsthe ESSIO
mode settings and Port Control D controls the ESSI1 mode settings.

Motorola Codec Programming Tutorial D-15



Phase IlI: Initializing and Interfacing the ESSI and CODEC Ports

The following pins are used as GPIO pins. Again, these pins control the transfer of codec

control information.

« SCO00 (CODEC_RESET pin)

* SC10 (CCS pin)

« SC11 (CCLK pin)
« SC12 (CDIN pin)

The pinslisted above correspond to specific bits on the port data registers. For instance,
the CODEC_RESET pin on the codec is connected to the SCOO0 pin on ESSIO. This pin
corresponds to bit 0 on port dataregister C. Pleaserefer to Table D-11 and Table D-12 for
details concerning the correspondence between physical pins and port data registers.

Table D-11. Port Data Register C Pin/bit Correspondence

Bit Name (ESSI0) Bit Name (Codec) Bit Position Register C Functionality Mode

Reserve for future use | N/A 6-23 N/A

STD SDIN 5 ESSI
SRD SDOUT 4 ESSI
SCK SCLK 3 ESSI
SC02 FSYNC 2 ESSI
SCO01 N/A 1 N/A

SC00 CODEC_RESET 0 GPIO

Table D-12. Port Data Register D Pin/bit Correspondence

Bit Name (ESSI1) Bit Name (Codec) Bit Position Register D Functionality Mode
Reserve for future use | N/A 6-23 N/A
STD N/A 5 N/A
SRD N/A 4 N/A
SCK N/A 3 N/A
SC12 CDIN 2 GPIO
SC11 CCLK 1 GPIO
SC10 CCS 0 GPIO

Motorola

DSP56303EVM User’'s Manual

D-16



Phase II: Initializing and Interfacing the ESSI and CODEC Ports

Using the information in Table D-11 and Table D-12, global constants can be defined to
simplify programming. Example D-5 illustrates the task of defining the pin/bit

correspondence for the GPIO pins.

Example D-5 Defining GPIO Pin/Bin Correspondence

ESSI0 - audio data port control

OCDEC_RESET equ 0

; ESSI1 - control data port control
; DSP CCDEC
acs equ 0
ALK equ 1
CDI'N equ 2

register C
bit0 SO0 ---> OODEC RESET~
register D
bit0 SCI0 ---> OCS~
bitl SCl1 ---> QOLK
bit2 SCl2 ---> CON

After setting up constants to reference the bit/pin correspondence for the GPIO pins, the
Port control registers need to be configured. To begin with, the CODEC_RESET pin

(pin 0) must be configured to function as a GPIO pin. Other pins on ESSIO, however,
should be configured to work in the ESSI mode. Therefore, a0 value should be sent into
bit O in port control register C, while avalue of 1 should be sent to the other five pertinent
bits.

Additionally, the CCS pin, the CCLK pin, and CDIN pin al must function as GPIO pins
on the ESSI1 port. Therefore, bit 0 (CCYS), bit 1 (CCLK), and bit 2 (CDIN), must all be set
to 0 to allow those pins to operate in the GPIO mode on the port control register D. Since
we are not using the other pinsin Port control Register D, the other pins can be set to
anything, that is, to “don’t care” values (0 or 1).

At this point, the ESSI functionality should be disabled prior to initializing the codec.
Therefore the pins on ESSIO will not be configured to function in the ESSI mode until the
codec has been initialized. However, the GPIO pins is configured as seen in Example D-6.

Example D-6 GPIO Pin Configuration

; Port Control Register C
novep #3$0000, x: M PCRC ; Setting pin O for G2 Q other
; pins ESSI
; Port Control Register D
novep #3$0000, x: M PCRD ; Setting pin O, pin1, and pin 2

: to @GPl O node

Since ESSIO pin 0 and ESSI1 will be used in the GPIO mode, the direction of data flow
must be declared. In other words, the direction of flow determines which device is
transmitting and which device is receiving. Recall that in order to set the direction of data

Motorola Codec Programming Tutorial D-17



Phase IlI: Initializing and Interfacing the ESSI and CODEC Ports

flow Port Direction Registers C and D must be set, (register C refersto ESSIO and register

D refersto ESSI1).

Setting the pin/bit on the Port Direction Register to 1 configures the pin/bit as an output
and setting the pin/bit on the Port Direction Register to O configures the pin/bit as an input.
Therefore, in order to configure the pins using the Data Direction Registers to mimic the
direction flow information in Figure D-2, the following bits must be set. Table D-6 and
Table D-7 show the bit settings for the Data Direction Registers.

Table D-13. Data Direction Register C
Bit Name Bit position Value (binary)
Other bits 6-23 X (don't care)
STDO 5 X (don’t care)
SRDO 4 X (don’t care)
SCKO 3 X (don'’t care)
SC02 2 X (don't care)
SCo01 1 X (don'’t care)
SC00 0 1 (CODEC_RESET is
output)
Table D-14. Data Direction Register D
Bit Name Bit position Value (binary)
Other bits 6-23 X (don'’t care)
STD1 5 X (don't care)
SRD1 4 X (don'’t care)
SCK1 3 X (don't care)
SC12 2 1 (CDIN is output)
SC11 1 1 (CCLK is output)
SC10 0 1 (CCS is output)

Motorola

DSP56303EVM User’'s Manual

D-18



Phase II: Initializing and Interfacing the ESSI and CODEC Ports

Example D-7 illustrates the setting of the bitsin the Data Direction registersin code form.

Example D-7 Code Form Settings in Data Direction Registers
Data Drection Register C

hovep #$0001, x: M PRRC ; set SQAO0=CCDEC RESET~ as out put
; Data Drection Register D
nmovep  #$0007, x: M PRRD ; set SClL0=CCS~ as out put

set SCl1=CCLK as out put
set SCl12=CDI N as out put

D.9.3 Initialization of the CODEC ports

The next step that needs to occur is the process of initializing the codec. Thisinitialization
process begins with first resetting the codec, second waiting for the codec to reset, and
finaly sending the control information for the codec. Note that the control information
only needs to be sent when a change is needed to be made to the control parameters.

In order to reset the codec, a 0 value must be sent into the CODEC_RESET pin. Recall
that aglobal variable was defined called CODEC_RESET in this document. Thus, to reset
the codec the CODEC_RESET bit located on the Port Data Register C on the ESS| port
must be cleared. In addition, the codec must be notified that control information will be
modified. Setting the CSS pin to 0 allows for this. Furthermore, the codec requires a
minimum of 50 msto reset. Thus, often adelay is programmed into the DSP to alow for
the codec to reset. Example D-8 summarizes the procedures in code format.

Example D-8 Code Format Procedures
bcl r #OCDEC RESET, x: MPDRC ; assert OCODEC RESET~ (bit O on ESSI0)

bcl r #CCS, x: M _PDRD ; assert GCS~ (bit 0 on ESSI1)
;----reset delay for codec----

do #1000, del ay | oop

rep #1000 ; A delay greater than 50 ns
nop

_del ay_| oop

Once the codec has been reset, the codec control information needs to be sent from the
DSP to the codec ports. But, before the control information can be sent, the
CODEC_RESET pin must to be turned off (set to 1). Please refer to Table D-15 for
information concerning the options of each bit/pin. Example D-9 demonstrates the task of
deasserting the codec reset.

Example D-9 Deasserting Code Reset
bset #OCDEC RESET, x: MPDRC ; dissert OODEC RESET~ (pin O on ESSI0)

Motorola Codec Programming Tutorial D-19



Phase IlI: Initializing and Interfacing the ESSI and CODEC Ports

Table D-15. Codec Pins

Pin Name Description Values
~CODEC_RESET Resets the CODEC 0 = Reset codec
1 = Disable Reset
FSYNC Used to indicate a start of a frame Rising edge = New Frame
SCLK Serial clock Rising Edge = data is received
Falling edge = data is transmitted
SDOUT Serial data output line N/A
SDIN Serial data input line N/A
~CCS Enables setting of CODEC control parameters 0 = enabled
1 = disabled
CDIN Serial Control Information input line N/A
CCLK Clock for Control Parameters Rising edge = control parameters sent

Finally, the codec is ready to receive the control information. The codec will ignore the
first set of control information sent after areset. Therefore, adummy set of control
information is sent prior to sending the correct control information. To reduce the amount
of code written by the programmer, another solution is to send the correct control
information to the codec twice. Thefirst set of control information will be ignored, but the
second control information will be recognized.

Two global variables will be defined to simplify programming”:

« CTRL_WD_HI: The high word in the control information.
e CTRL_WD_LO: The low word in the control information.

To send the control information from the ESSI to the codec, perform the following steps:

Set up registers to send dummy control information.
Send control words.

w N e

Set up registers to send correct control information.
4. Send control words.

Example D-10 illustrates the procedures.

Motorola DSP56303EVM User’'s Manual D-20




Phase II: Initializing and Interfacing the ESSI and CODEC Ports

Example D-10 Sending Code Information

CTRL_VD H ds 1 ; Upper Control word
CTRL WD LO ds 1 ; Lower Control word
durmy_contr ol
nove #0, x0
nove x0, x: CTRL. WD H ; send dummy control data
nove x0, x: CTRL_ WD LO
jsr codec_contr ol
set _control
nove #CTRL_WD 12, x0 ; recall constant set previously

; for upper control info
nove x0, x: CTRL. WD H ; set hi control word to constant
nove #CTRL_WD 34, x0 ; recall constant set previously
; for upper control info
nove x0, x: CTRL_ W LO ; 16 bit data aligned to bit 23
jsr codec_control

The control words are sent serialy to the CDIN pin of the codec. The codec_control
subroutine in the previous code performs this action. The following is one method of
sending in the control words:

Clear CCS bit to allow the codec to accept control information.

Set CCLK hit on codec high. Recall Control bits are sent on rising edge of clock.
Determine whether MSB is 1 or O of control information.

Send MSB value to CDIN pin.

Set CCLK to low on codec to start next cycle.

Shift left control word.

Repeat 16 times.

N o g s~ wDdhPRE

This procedure must be performed once for the upper 16-bit control word and then once
for the lower 16-bit control word.

Example D-11 illustrates these procedures.

Motorola Codec Programming Tutorial D-21



Phase IlI: Initializing and Interfacing the ESSI and CODEC Ports

Example D-11 Sending in Control Words

; codec_control routine

X Input: CIRLW LO and CTRL WD H

; Qutput: CON

; Description: Used to send control infornation to CCDEC
; NOTE: does not preserve the ‘a’ register.

codec_control

cr a

bclr  #CCS,x:M_PDRD ; assert CCS

move Xx:CTRL WD _Hlal ; upper 16 bits of control data
jsr  send_codec ; shift out upper control word
move X.CTRL WD LO,al ; lower 16 bits of control data
jsr  send_codec ; shift out lower control word
bset #CCS,x:M_PDRD ; dissert CCS

s

; send_codec routine

; Input: al containing control information

; Ouput: sends bits to CDIN

; Description: Determines bits to send to CDIN

send_codec
do #16,end _send codec ;16 bits per word
bset #CCLKx:M_PDRD ; toggle CCLK clock high
jclr - #23,al,bit_low ; testmsb
bset #CDIN,xM_PDRD ; send high into CDIN
jmp  continue
bit_low
bclr  #CDIN,x:M_PDRD ; send low into CDIN
continue
rep #2 ; delay
nop
bclr #CCLKx:M_PDRD ; restart cycle
Isl a ; shift control word to 1 bit
; to left

end_send codec
s

The codec_control subroutine performs most of the work for sending the information to
the codec ports. First, the CSS bit is cleared to permit the modification of the control
registers on the codec. Afterwards the control words are loaded into registers, where they
are then sent out to another subroutine that sends the data serial out to the codec ports.
After sending both the upper and lower control words, the CCSbit isreset to 1 to disallow
changing of the control information on the codec.

The send_codec subroutine in essence serves as the workhorse for the codec_control
routine. This routine pushes the individual bits of the control words into the codec.

Motorola DSP56303EVM User’'s Manual D-22



Phase II: Initializing and Interfacing the ESSI and CODEC Ports

First it setsthe clock (CCLK) high to allow the bit to be sent. Afterwards, it determines
what the most significant bit (MSB) isand either sendsin a0 or 1 to the CDIN pin
depending on the MSB. A delay isincorporated into the routine to allow the information
to get sent. Afterwards the clock (CCLK) is set low to allow the cycle to begin again. The
control word is shifted to serve the next MSB hit. These procedures are performed 16
times to serve al the bitsin the control word.

D.9.4 Enabling Interrupts/ESSI ports:

Now that the ESSI port and CODEC ports are configured and initialized, there are just
three more steps to complete the interface between the ESSI and the CODEC. To begin
with, the priority level of the interrupts must be set. This parameter is determined by the
application. The second step is to enable interrupts on the DSP. Finally, the ESSI ports
must be enabled. Recall that in order to set the functionality of ESSI pin, the port control
registers must be configured. Again, setting the corresponding pin/bit to 1 enables the
ESSI mode, while setting the pin/bit to O disables the ESSI mode and enables the GPIO
mode.

From Section D.9.2, "Configure GPIO Pins," the following pinsg/bits must be configured
as GPIO pins:

» CODEC_RESET pin (bit 0 on ESSIO)
* CCS pin (bit 0 on ESSI1)

* CCLK pin (bit 1 on ESSI1)

e CDIN pin (bit 2 on ESSI1)

Therefore on port control register C, bit O isset to 0. Other pertinent pinsshould be setto 1
in order to configure the other pinsas ESSI pins. On Port Control Register D, bits0, 1, and
2 should all be set to the value of 0 to allow GPIO functionality on those pins. Because the
other pins are not connected to the codec, the other bits will not have an effect.

Example D-12 demonstrates setting the interrupt priority level, enabling the priority, and
finaly setting the ESSI/GPIO functionality of the ESSI ports.

Motorola Codec Programming Tutorial D-23



Phase lll: Data Transferring Mechanism

Example D-12 ESSI Port Priority and Functionality Setting

novep #$000c, x: MIPRP ; set interrupt priority level for ESSIO
; to 3
andi #$fc, nmr ; enable interrupts
novep #3$003e, x: M PCRC ; enabl e ESSI node for
; bit 5 bit 4 bit 3,bit 2,bit 1.
; enabl e G°l O node for
; bit O
novep #$0000, x: M PCRD ; enable Gl O node for
; bit 2, bit 1, bit O.
; Other bits are don't care.

D.10 Phase lll: Data Transferring Mechanism

There are basically three different methods for transferring data from the codec to and
from the ESSI port. They are Polling, DMA, and Interrupts. In this document, however,
only the use of interrupts will be demonstrated.

D.10.1 Interrupts and Interrupt Service Routines

The ESSI device has six interrupts available. They are the ESSI receive data with
exception status interrupt, ESSI receive data interrupt, ESSI receive last slot interrupt, the
ESSI transmit data with exception status interrupt, the ESSI transmit last slot interrupt,
and the ESSI transmit datainterrupt. Each interrupt istriggered based on certain status bits
and can be cleared by performing certain actionsin an interrupt service routine. In the
following sections, this document will explain what specific status bits trigger the
interrupts and what must be done in order to clear the interrupts.

For more information concerning the properties and functionality of each type of interrupt
and for setting up the interrupt service routines please refer to the DSP5630xEVM'’s user
manual.

D.10.2 ESSI Receive Data with Exception Status Interrupt
The interrupt occurs when the following properties are true:

* The receive exception interrupt is turned on (CRB[23]).
e The receive data register is full.
» Arreceiver overrun error occurred.

The interrupt istriggered by the receiver overrun bit being set. When the interrupt is
serviced, the programmer will need to first clear the receiver overrun bit (SSISRO[5]) and

Motorola DSP56303EVM User’'s Manual D-24



Phase llI: Data Transferring Mechanism

then receive the Receive BUFFER. The following steps are needed to perform these
procedures:

Clear receive overrun bit.

Save necessary context.

Load receive buffer pointer.

Move received data to receive buffer.
Update receive buffer pointer.

S o o

Restore context.
Example D-13 illustrates the procedures to service this interrupt.

Example D-13 ESSI Exception Status Interrupt Service
; ESSI Receive Data with Exception Interrupt Service Routine

Ssi_rxe_isr
; (ear receives overrun bit

bcl r #5, x: M SSI SRO ; (MSSISRO refers to status register)
; explicitly clears overrun fl ag

; Save Cont ext
nove ro, x:(r7)+ ; Save r0 to the stack.
nove nd, x: (r7)+ ; Save nD to the stack.
nove #1, O ; Modulus 2 buffer.
nove X: RX_PTR r0 ; Load the pointer to the rx buffer.
nop ; Delay
novep X: M RX0, x: (rO)+ ; Mve received data to receive buffer
nove ro, x: RX_PTR ; Update rx buffer pointer.
; Restore Context
nove X:-(r7),n0 ; Restore n0.
nove X:-(r7),r0 ; Restore r0.

rti

D.10.3 ESSI Receive Data Interrupt
The interrupt occurs when the following properties are true:

e The receive interrupt is turned on (CRBJ[19])
* The receive data register is full

Motorola Codec Programming Tutorial D-25



Phase lll: Data Transferring Mechanism

To service the interrupt the programmer will need to receive the data. The following steps
can be performed to accomplish such atask:

Save necessary context.

Load receive buffer pointer.

Move received data to receive buffer.
Update receive buffer pointer.

o bk~ WD PP

Restore context.
Example D-14 illustrates the procedures to service this interrupt.

Example D-14 ESSI Receive Data Interrupt Service
; ESSI Receive Data Interrupt Service Routine

SSi_rx_isr

; Save Cont ext
nove ro,x: (r7)+ ; Save r0 to the stack.
nove no, x: (r7)+ ; Save nD to the stack.
nove #1, n0 ; Mbdul us 2 buffer.
nove X: RX_ PTR r0 ; Load the pointer to the rx buffer.
nop ; Delay
novep X: M RXO, x: (r0) + ; Move received data to receive buffer
nove ro, x: RC_ PTR ; Update rx buffer pointer.
; Restore Context
nove X:-(r7),n0 ; Restore no.
nove X:-(r7),r0 ; Restore rO0.

rti

D.10.4 ESSI Receive Last Slot Interrupt
The interrupt occurs when the following properties are true:

* The receive last slot interrupt is turned on (CRB[21]).
* The last time slot ends.

The use of the receive last slot interrupt guarantees that the previous frame has been

serviced and the next frame is ready to be serviced. The interrupt alows the programmer
to redefine pointers to the buffer to be reset so that a new frame can be serviced.

Motorola DSP56303EVM User’'s Manual D-26



Phase llI: Data Transferring Mechanism

To perform the procedure of preparing for the next frame the following steps can be used:

1. Save Context.
2. Reset receive buffer.
3. Restore context.

Example D-15 demonstrates the steps required servicing this interrupt.

Example D-15 ESSI Receive Last Slot Interrupt Service

; receive last slot interrupt service routine

ssi_rxls isr
: Save cont ext

nove ro, x:(r7)+ ; Save r0 to the stack.

nove #RX BUFF_BASE, r 0 ; Reset rx buffer pointer just in
; case it was corrupted.

nove ro, x: RX_PTR ; Update rx buffer pointer.

nove X:-(r7),r0 ; Restore r0.

rti

D.10.5 ESSI Transmit Data with Exception Status Interrupt
The interrupt occurs when the following properties are true:

* The transmit exception interrupt is turned on (CRB[22]).
e The transmit data register is empty.
* Atransmit underrun error occurred.

The interrupt istriggered by the transmit underrun bit being set. When the interrupt is
serviced, the programmer will need to first clear the transmit underrun bit (SSISR0[4])
and then transmit the transmit BUFFER. The steps needed to perform these procedures are
asfollows:

Clear transmit underrun bit.

Save necessary context.

Load Transmit buffer pointer.

Move Transmit buffer data to transmit register.
Update Transmit Buffer pointer.

2 e o A

Restore context.

Example D-16 illustrates the procedures to service thisinterrupt.

Motorola Codec Programming Tutorial D-27



Phase lll: Data Transferring Mechanism

Example D-16 ESSI Transmit Data with Exception Status Interrupt Service

; transmt data with exception status interrupt service routine

Ssi_txe_isr _
: dear underrun bit

bcl r #4, x: M SSlI SRO ; (MSSISRO pointers to status register)
; Save Cont ext

nove ro,x: (r7)+ ; Save r0 to the stack.

nove no, x: (r7)+ ; Save nD to the stack.

nove #1, n0 ; Mbdul us 2 buffer.

; Load transmt pointer to transmt ;

; buffer
nove X: TX PTR r0O ; Load the pointer to the tx buffer.
nop ; del ay
; Mve Transmt buffer data to transmt
; register
novep X:(r0)+,x: MTX00; SSI transfer data register.
; Update transmt buffer pointer
nove ro, x: TX PTR ; Update tx buffer pointer.
; Restore Context
nove X:-(r7),n0 ; Restore no.
nove X:-(r7),r0 ; Restore rO0.

rti

D.10.6 ESSI Transmit Last Slot Interrupt
The interrupt occurs when the following properties are true:

e The transmit last slot interrupt is turned on (CRB[20]).
e The last time slot begins.

The use of the transmit last slot interrupt guarantees that the previous frame has been
serviced and the next frame is ready to be serviced. The interrupt alows the programmer
to redefine pointers to the buffer to be reset so that a new frame can be serviced.

To perform the procedure of preparing for the next frame the following steps can be used:

1. Save Context.
2. Reset Transmit buffer.
3. Restore Context.

Example D-17 depicts the servicing of thisinterrupt.

Motorola DSP56303EVM User’'s Manual D-28



Phase llI: Data Transferring Mechanism

Example D-17 ESSI Transmit Last Slot Interrupt Service

, transmt last slot interrupt service routine
ssi_txls isr

nove

nove
nove

nmove
rei

: Save Cont ext
Save r0 to the stack.

ro, x:(r7)+

Reset Transmt buffer pointer

#TX BUFF_BASE, r 0 Reset pointer.

ro, x: TX PTR Reset tx buffer pointer just in
case it was corrupted.
; Restore Context
X:-(r7),r0 ; Restore r0.

D.10.7 ESSI Transmit Data Interrupt

The interrupt occurs when the following properties are true:

The receive interrupt is turned on (CRB[18]).
The transmit data register is empty.

To service the interrupt, the programmer will need to transmit the data. The following
steps can be performed to accomplish such atask:

a bk~ w0 PR

Save necessary context .

Load Transmit buffer pointer.

Move Transmit buffer data to transmit register.
Update Transmit Buffer pointer.

Restore context.

Example D-18 illustrates the procedures to service thisinterrupt.

Motorola

Codec Programming Tutorial D-29



Example Application

Example D-18 ESSI Transmit Data Interrupt Service

; transmt data interrupt service routine

Ssi_tx_isr

; Save Cont ext

nove ro,x: (r7)+ ; Save r0 to the stack.

nove no, x: (r7)+ ; Save nD to the stack.

nove #1, n0 ; Mbdul us 2 buffer.

nove X: TX PTR r0O ; Load the pointer to the tx
; buffer.

nop ; del ay

novep X: (r0)+, x: M TX00 ; SSI transfer data register.

nove ro, x: TX PTR ; Update tx buffer pointer.
; Rest or e Cont ext

nove X:-(r7),n0 ; Restore no.

nove X:-(r7),r0 ; Restore rO0.

rti

D.11 Example Application
An example program has been provided to illustrate the use of the codec.

The following files are included in a package to be distributed with this document:

* loequ.asm: Contains important I/0O equates.

* Intequ.asm: Contains interrupt equates for the DSP EVM modules.
* Ada_equ.asm:Contains equates used to initialize the CODEC.

« Ada_Init.asm: Contains initialization code for the ESSI and CODEC.
* Vectors.asm: Contains the vector table for the DSP EVM modules.
e Echo.asm: Sample code that illustrates DSP processing.

All the procedures that were discussed in Section D.6, "Digital Interface (ESSI — Codec),"
and Section D.7, "Programming the CS4218 Codec," have been included in these files.
Therefore it will take little effort on the part of the programmer to quickly generate an
application using the CS4218 codec. If a desired property in the control information is
needed, simple modifications can be made to these files.

Motorola DSP56303EVM User’'s Manual D-30



Example Application

D.11.1 Echo Program

This example shows a simulation of an echo of an input signal using a number of
time-delayed sample. To implement atime-delayed echo on the DSP, asampleisfed into
the DSP from the codec. The new sampleis then divided by two to maintain stability and
is then added to atime delayed sample. The sum of the signalsis, again, divided by two
and then sent out to the codec.

Figure D-3 displays the block diagram describing this process.

New Sample ——p| +2 ‘ ¥ 5 ) ) +2 p»  Output

Z—l

47

Figure D-3. Block Diagram of a Delayed Sample (echo)

D.11.2 Echo Code

To begin the echo program, the following files are included to ssimplify the initialization,
the interface, and the transferring mechanism of the codec:

e joequ.asm

e intequ.asm

* ada_equ.asm
* vectors.asm

e ada_init.asm

The next step is to define the transmit and receive buffers and pointers.

After performing the task of defining the receive and transmit buffers and pointers, the
control information constants for the codec will also need to be defined.

The following steps need to be performed:

1. Include codec and I/O files.
2. Define transmit and receive buffer and pointers.
3. Define codec control constants.

Motorola Codec Programming Tutorial D-31



Example Application

Example D-19 illustrates the tasks of including initialization and interface files, defining
transmit and receive buffers and pointers, and setting up control word constants.

Example D-19 Include, Define, and Set-Up Tasks

rkkkkkhkhkkhkhkkkhkhkhkkhkhkkkhkhkkhkkhhkkhkhkhkkhkhhkkhkhkkhhkhkkhhkkhhkhkkhhkhkhhkhkkhhkhhkkhhkhkkhhkhkkhhkhkkhkkhkhkkhkhkkikk*k
’

nol i st

i ncl ude i oequ. asn

i ncl ude ' i nt equ. asni
i ncl ude ' ada_equ. asni
i ncl ude ’ vectors. asm
l'ist

rkkkkkhkhkkhkhkhkkhkhkhkkhkhkkkhkhkkhkkhhkkhkhkhkkhkhhkkhkhkkhhkhkhhkkhhkhkkhhkhkhhkhkhhkhhkkhhkhkkhhkhkhhkhkkhkkhkhkkhkhkkikk*k
’

;---Buffer for talking to the C34218

org x: $0
RX_BUFF_BASE equ *
R{data_1 2 ds 1 ; data time slot 1/2 for RX ISR (left audi o)
R data 3 4 ds 1 ; data tinme slot 3/4 for RX ISR (right audio)
TX BUFF_BASE equ *
TX data 1.2 ds 1 ; data time slot 1/2 for TX ISR (left audio0)
TX data 3 4 ds 1 ; data tinme slot 3/4 for TX ISR (right audio)
RX PTR ds 1, Pointer for rx buffer
TX PTR ds 1, Pointer for tx buffer
CTRL_WD 12 equ M N _LEFT_ATTN+M N_R GHT_ATTN+LI N2+RI N2
CTRL_WD 34 equ MN LEFT GANtMN R GHT_GAIN

After setting up the constants needed for the codec, the DSP needs to be set up and
initialized.

1. TheDSPwill need to know what speed the PLL isrunning at. For this application the PLL
will be set to 86.016MHz.
The interrupts are masked with the correct values.
The hardware stack pointer isinitialized.
Operate DSP on Mode 0.

The data interrupt stack pointer isinitialized, which is the stack used in the ISR for the
codec.

a ~ w DN

6. Assert linear addressing for the stack pointer used for by the data interrupts.
Example D-20 illustrates the initialization procedures of the DSP:

Motorola DSP56303EVM User’'s Manual D-32



Example Application

Example D-20 DSP Initialization Procedure

org p: $100

START

nmai n
nmovep  #$040006, x: M PCTL ; PLL 7 X 12.288 = 86. 016M+&
ori #3, mr ; mask interrupts
novec #0, sp ; clear hardware stack pointer
nove #0, onr ; operating node O
nove #$40,r7 ; initialize stack pointer for ISR
nove #-1,nv ; linear addressing

Following the initialization procedures of the DSP, the codec aso needsto be initialized.
Again, using the supplied code, ajump statement can be made to start the CODEC/ESSI
initialization routine. Example D-21 demonstrates this procedure.

Example D-21 Initializing CODEC/ESSI
jsr ada init ;initialize CODEC ESSI

The DSP and codec are ready to receiveinstructionsto receive, process, and transmit data.
The echo implementation requires that a buffer is setup and initialized. The codein
Example D-22 can be used to perform these steps.

Example D-22 Setting Up and Initializing Buffer

nove #$0400,r4 ; start echo buffer at $400
nove #$03FF, mit ; make echo buffer 1024 deep
clr a ; clear a

rep #$03FF ; clear the echo buffer

nove a,l:(rd)+

In order to receive datafrom the ESSI port, the programmer must ensure that datais
received at the beginning of the frame. Thus, it is necessary to check the status bits to
ensure that data receive starts at the beginning of the frame and not in the middie. Once a
receive frame synchronization is detected, data can be manipulate through the receive
memory location, RX_BUFF_BASE. Afterwards, the data can be processed and then
moved into the transmit pointer. All of these procedures can be implemented in an infinite
loop to continuous receive, process, and transmit the data.

In the case of the echo program, Example D-23 illustrates the implementation.

Motorola Codec Programming Tutorial D-33



Example Application

Example D-23 Implementation of Echo Program

echo_| oop
j set #3, x: M_SSI SRO, ; wait for rx frame sync
jclr #3, x: M_SSI SRO, ; wait for rx frame sync
clr a
clr b
nove x: RX_BUFF_BASE, a ; receive left
nove x: RX_BUFF_BASE+1, b ; receive right
asr a X: (r4) X0 ; divide themby 2 and get ol dest
asr b y:(r4),y0 ; sanples frombuffer
add X0, a ; add the new sanples and the ol d
add y0, b
asr a ; reduce magni tude of new data
; (to ensure stability)
asr b
nove a, x:(rd) ; save the altered sanpl es
nove b,y:(r4)+ , and bunp the pointer
nove a, x: TX BUFF_BASE ; transmt |eft
nove b, x: TX BUFF_BASE+1 ;transmt right
jnp echo_| oop
echo

After receiving the left and right channels, the dataiis quickly divided by two. Then the left
and right channels are added to the time-delayed samples, which were stored on the echo
buffer. The magnitude is reduced by two and the echo buffer is updated with the newest
output sample. The left-and-right processed channels are then sent to the transmit buffers,
where it is sent to the ESSI port and eventually to the CODEC. The procedures loop
infinitely until manually stopped.

Example D-24 combines al the separate pieces of the echo code into an application that
performs the time-delayed echo.

Motorola DSP56303EVM User’'s Manual D-34



Example Application

Example D-24 Application of Echo Code

rkkhkkkhkhkkkhkhkkkhkhkkhkkhkhkkhkhkhkkhkhkhkkhkhkkkhhkhkhkkkhhkhkhhkkhhhkhkkhhkhhkkhhkhkkhhkhkhhkhkkhkkhhkkhhkhkkikkhkhkhkkihkk*k
’

nol i st

i ncl ude i oequ. asm

i ncl ude i ntequ. asnm
i ncl ude ’ada_equ. asni
i ncl ude ' vectors. asni
l'ist

rkkhkkkhkhkkkhkhkkkhkhkkhkkhkhkkhkhkhkkhkhkhkkhkhkkhkkhhkkhkhkkhhkhkhhkkhhhkhkkhhkhhkkhhkhkkhhkhkhhkhkkhkkhhkkhhkhkkhkkhkhkkihkk*k
’

;---Buffer for talking to the C34218

org X: $0
RX BUFF _BASE equ *
RX{data 1 2 ds 1 ; data tine slot 1/2 for RXISR (left audi0)
R data 3 4 ds 1 ; data tine slot 3/4 for RKISR (right audi0)
TX BUFF_BASE equ *
TX data 1 2 ds 1 ; data tine slot 1/2 for TX ISR (left audi 0)
TX data 34 ds 1 ; data tine slot 3/4 for TX ISR (right audi0)

RX PTR ds 1 ; Pointer for rx buffer
TX PTR ds 1 ; Pointer for tx buffer
CTRL WD 12 equ M N _LEFT_ATTN+M N_RI GHT_ATTN+LI N2+RI N2
CTRL_ WD 34 equ MN LEFT GAINtM N R GHT_GAIN
org p:$100
START
mai n

novep #$040006, x: MPCTL ; PLL 7 X 12.288 = 86. 016M

ori #3, m mask interrupts
novec #0, sp cl ear hardware stack pointer
nove #0, onr operating node 0O

nove #$40, r7
nove #-1,nv

initialize stack pointer for isr
| i near addressing

jsr ada_init initialize codec

nove #$0400,r4 ; start echo buffer at $400
nove #$O03FF, mi ; make echo buffer 1024 deep
clr a ; clear a

rep #$O03FF ; clear the echo buffer

nove al:(rd)+

Motorola Codec Programming Tutorial D-35



Example Application

echo_| oop
j set #3, x: M SSI SRO, *
jclr #3, x: M SSI SRO, *
clr a
clr b
nove x: RX_BUFF BASE, a
nove x: RX_BUFF_BASE+1, b
asr a x:(rd),x0
asr b y:(r4),y0
add X0, a
add y0, b
asr a
asr b
nove a, x:(r4)
nove b,y:(r4)+
nove a, X: TX BUFF_BASE
nove b, x: TX BUFF BASE+1
jnp echo_| oop

include ’ada init.asm

echo
end

wait for rx frane sync
wait for rx frane sync

receive left

recei ve right

di vide themby 2 and get ol dest
sanpl es from buf fer

add the new sanpl es and the ol d

reduce nagni tude of new data
(to ensure stability)

save the altered sanpl es
and bunp the pointer
transmt |eft

transmt right

used_to_inc!ude codec
initialization routines

Motorola

DSP56303EVM User’'s Manual D-36



INDEX

A/D converter 3-7
AARO
programming 3-4
Address Attribute Pin Polarity Bit, BAAP 3-5
Address Attribute Pin, AAO 3-4
Address Attribute Pin, AA1 3-6
Address Attribute Register, AARO 3-4
Address Muxing Bit, BAM 3-5
Address Pins, A(0:17) 3-4, 3-6
Address Priority Disable Bit, APD 3-4
Address to Compare Bits, BAC(11:0) 3-6
Addressing
I/0 short C-7
immediate C-9
long C-8
long immediate C-9
short C-7
short immediate C-9
Analog Input/Output 3-8
Assembler 2-12
mode C-33
option C-34
warning C-41
assembler 2-1
control 2-9
data definition/storage allocation 2-9
directives 2-8

listing control and options 2-10
macros and conditional assembly 2-11
object file control 2-10
options 2-6
significant characters 2-8
structured programming 2-11
symbol definition 2-9

assembler control 2-9

assembler directives 2-8

assembler options 2-6

assembling the example program 2-12

assembling the program 2-5

assembly programming 2-1

AT29LVO010A 3-6

audio 3-7

audio codec 3-1, 3-7

audio interface cable 1-2

audio source 1-2

B

Buffer
address C-10
end C-23
buffer space and pointers D-9

C

Checksum C-37
Codec 3-7, 3-8, 3-10, D-2, D-20
Control Data Chip Select Pin, MF4/CCS 3-10
Control Data Clock Pin, MF3/CCLK 3-10
Control Information (MSB) D-10
control parameters D-10
digital interface 3-8
digital interface connections 3-9
initializing and interfacing D-12
Left Input #2 Pin, LIN2 3-8
Master Clock Pin, CLKIN 3-7
modes of serial operation 3-9
ports, initialization D-19
programming D-1
Programming the CS4218 D-8
Reset Pin, RESET 3-10
Serial Sync Signal Pin, SSYNC 3-10
command converter 3-1, 3-10
command format
assembler 2-5

Motorola

Index Index-xxxvii



Comment C-14

delimiter C-1

object file C-13

unreported C-2
comment field 2-3
Conditional assembly C-28, C-37
Constant

define C-14, C-15

storage C-11
Constants D-9
Control Data Input Pin, MF2/CDIN 3-10
Control Register A, settings D-13
Control Register B, settings D-13
Crystal Semiconductor CS4215 3-7
Cs$4218 3-7
Cycle count C-37

D

D/A converter 3-7
Data Pins, D(0:23) 3-4, 3-6
datatransfer fields 2-3
Debugger 2-1, 2-17

running the 2-19
Debugger software 2-17
Debugger window display 2-18
development process flow 2-1
device D-2
Directive C-10

.BREAK C-55

.CONTINUE C-56

.FOR C-56

IF C-57

.LOOP C-58

.REPEAT C-58

WHILE C-58

BADDR C-10

BSB C-11

BSC C-11

BSM C-12

BUFFER C-12

COBJ C-13

COMMENT C-14

DC C-14

DCB C-15

DEFINE C-5, C-16, C-37

DS C-17

DSM C-17

DSR C-18

DUP C-18

DUPA C-19

DUPC C-20

DUPF C-21

END C-22

ENDBUF C-23

ENDIF C-23

ENDM C-23

ENDSEC C-24

EQU C-24

EXITM C-25

FAIL C-25

FORCE C-26

GLOBAL C-26

GSET C-26

HIMEM C-27

IDENT C-27

IF C-28

inloop C-37

INCLUDE C-29

LIST C-29

LOCAL C-30

LOMEM C-30

LSTCOL C-31

MACLIB C-31

MACRO C-32

MODE C-33

MSG C-33

NOLIST C-34

OPT C-34

ORG C-42

PAGE C-45

PMACRO C-45

PRCTL C-46

RADIX C-46

RDIRECT C-47

SCSIMP C-47

SCSREG C-48

SECTION C-48

SET C-51

STITLE C-51

SYMOBJ C-51

TABS C-52

TITLE C-52

UNDEF C-52

WARN C-52

XDEF C-53

XREF C-53
Domain Technologies Debugger 1-1, 2-17
DSP development tools 2-1
DSP linker 2-12
DSP56002 3-10
DSP56002 Receive Data Pin, RXD 3-11
DSP56002 Transmit Data Pin, TXD 3-11
DSP56300 Family Manual 3-1
DSP56303 2-1

Chip Errata 3-2

Product Specification 1-1

Product Specification, Revision 1.02 3-1

Index-xxxviii

DSP56303EVM User’'s Manual Motorola



Technical Data 1-1, 3-1

User's Manual 3-1
DSP56303 Features 3-1
DSP56303EVM

additional requirements 1-2

Component Layout 3-2

connecting to the PC 1-4

contents 1-1

description 3-1

features 3-1

Flash PEROM 3-2

functional block diagram 3-3

installation procedure 1-2

interconnection diagram 1-4

memory 3-2

power connection 1-4

Product Information 1-1

SRAM 3-2

User's Manual 1-1

E

Echo Code D-31
Echo Program D-31
Enhanced Synchronous Serial Port 0 (ESSIO) 3-13
Enhanced Synchronous Serial Port 1 (ESSI1) 3-14
ESSI Pin Definition D-4
ESSI Port Registers D-4
ESSI Ports Background D-3
ESSI ports, enabling interrupts D-23
ESSI Registers D-5
ESSI, initializing and interfacing D-12
ESSI, receive data interrupt D-25
ESSI/Codec Pin Setup D-8
ESSI/GPIO pins D-4
ESSIO 3-7
ESSI1 3-7
example
assembling the 2-12
example program 2-3
Expansion Bus Control 3-15
Expression
address C-37
compound C-61
condition code C-59
formatting C-61
operand comparison C-60
radix C-46
simple C-59
External Access Type Bits, BAT(1:0) 3-5

F

field

comment 2-3

data transfer 2-3

label 2-2

operand 2-3

operation 2-2

X data transfer 2-3

Y data transfer 2-3
File

include C-29

listing C-38
Flash 3-2
Flash Address Pins, A(0:16) 3-6
Flash Chip Enable Pin, CE 3-6
Flash Data Pins, 1/0(0:7) 3-6
Flash Output Enable Pin, OE 3-6
Flash PEROM 3-23-6

connections 3-6

stand-alone operation 3-6
Flash Write Enable Pin, WE 3-6
format

assembler command 2-5

source statement 2-2
Function C-6

G

GPIO pins, configuration D-15
GPIO Registers D-5
GS71024T-10 3-3

H

headphones 1-2

Host Address Pin, HA2 3-10

host PC 3-10

Host PC Data Terminal Ready Pin, DTR 3-11
Host PC Receive Data Pin, RD 3-11

host PC requirements 1-2

Host PC Transmit Data Pin, TD 3-11

Host Port (HIO8) 3-14

|
Include file C-29
J

J11-3

J4 1-3 3-7

J51-3 3-7

J6 3-12

J7 3-7

Jg 1-3 3-11

J9 3-3 3-7

JP4 Jumper Block (ESSI1) D-8

Motorola

Index

Index-xxxix



JP5 Jumper Block (ESSIO) D-7
JTAG 3-10

K
kit contents 1-1

L

Label
local C-38, C-41
label field 2-3
LED, red 3-10
Left Channel Output Pin, LOUT 3-8
Line continuation C-2

N

Number of Bitsto Compare Bits, BCN(3:0) 3-6

O

Object file
comment C-13
identification C-27
symbol C-41, C-51
object files 2-1
OnCE commands 3-10
OnCE/JTAG conversion 3-10
operand field 2-3
operand fields 2-3

Iinker. 2-1,. 2-12 Operating Mode, DSP56307 3-6
directives 2-16 operation field 2-3
options 2-13 Option

linker directives 2-16 AE C-35, C-37

Listing file C-38 assembler operation C-36
format C-31, C-38, C-40, C-45, C-52 CC C-36, C-37
sub-title C-51 CEX C-?:5 C-37
title C-52 CK C-36 ’C-37

LM4880 3-8 CL C—35’ C-37

Location counter C-6, C-42 CM C-3é C-37

Long Memory Data Moves 3-4 CONST C’-36 C-37

M CONTC C-37

CONTCK C-36, C-37
CRE C-35, C-37
M )
aCL‘; a8 DEX C-36, C-37
comment C-37 DXL G, C.7
definition C-32, C-38 FC G35 C.38
directive C-32 FF C-35’ C-38
dCc-23 35 C
$it g FM C-35, C-38
: GL C-36, C-38
expansion C-39 GS C-36, C-38
library C-31, C-39 HDR C-35. C-38
purge C-45 IC C-36, C-38

Macro argument IL C 35’ C-38
concatenation operator C-2 INTI% c 36- C-38
local label override operator C-4 LB C 3(_; C’ 38-
return hex value operator C-4 LDB C ?;6 C 38
return value operator C-3 listing format C-35

MAX212 3-11 ﬁaé)lggcg? act:-sé

Memory MC C-35, C-38
limit C-27, C-30 MD C-35. C-38
utilization C-39 esmg- é 3;;

Memory space C-39, C-42 EEX 0635_ C-39

Mode Selection 3-15 MI C 3(% é 3é

Modes D-2 G35,

odes MSW C-35, C-39

Motorola MU C-35, C-39

DSP linker 2-12 NL C.35. C.39
NOAE C-39
Index-x| DSP56303EVM User's Manual Motorola



P

P Space Enable Bit, BPEN 3-6

NOCC C-39
NOCEX C-39
NOCK C-39
NOCL C-39
NOCM C-39
NODEX C-39
NODLD C-39
NODXL C-39
NOFC C-39
NOFF C-39
NOFM C-39
NOGS C-39
NOHDR C-39
NOINTR C-39
NOMC C-39
NOMD C-39
NOMEX C-39
NOMI C-39
NOMSW C-39
NONL C-39
NONS C-40
NOPP C-40
NOPS C-40
NORC C-40
NORP C-40
NOSCL C-40
NOU C-40
NOUR C-40
NOW C-40
NS C-36, C-40
PP C-35, C-40
PS C-36, C-40
PSM C-36

RC C-35, C-40
reporting C-35
RP C-36, C-40
RSV C-36

S C-35, C-40
SCL C-36, C-41
SCO C-36, C-41
Sl C-36

SO C-36, C-41
SVO C-36
symbol C-36
U C-35, C41
UR C-35, C-41
W C-35, C-41
WEX C-41
XLL C-36, C-41
XR C-36, C-41

Packing Enable Bit, BPAC 3-5
PC 3-10
PC requirements 1-2
PEROM 3-6
stand-alone operation 3-6
Pin Setup Descriptions D-7
Pins D-20
power supply, external 1-2, 1-4
program
assembling the 2-5
example 2-3
writing the 2-2
Program counter C-6, C-42
programming
AARO 3-4
assembly 2-1
development 2-1
example 2-1

Q

Quick Start Guide 1-1
R

Read Enable Pin, RD 3-4, 3-6
Register C, data direction D-18
Register D, data direction D-18
Reset, DSP56002 3-11

Reset, DSP56303 3-7

Right Channel Output Pin, ROUT 3-8
Right Input #2 Pin, RIN2 3-8
RS-232 cable connection 1-4
RS-232 interface 3-10

RS-232 interface cable 1-2

RS-232 serial interface 3-10
running the Debugger program 2-19

S

Sampling frequency 3-7
SCI, DSP56002 3-10
Section C-48

end C-24

global C-26, C-38, C-49

local C-30, C-49

nested C-40

static C-38, C-49
Seria Clock Pin, SCKO 3-10
Serial Communication Interface Port (SCI) 3-12
Seria Control Pin 0, SC00 3-10
Serial Control Pin 0, SC10 3-10
Seria Control Pin 1, SC01 3-10
Seria Control Pin 1, SC11 3-10

Motorola

Index Index-xli



Seria Control Pin 2, SC02 3-10 Y
Seria Control Pin 2, SC12 3-10
serial interface 3-10 Y datatransfer field 2-3
Serial Port Clock Pin, SCLK 3-10 Y Space Enable Bit, BYEN 3-6
Seria Port Dataln Pin, SDIN 3-10
Seria Port Data Out Pin, SDOUT 3-10
Serial Receive DataPin, SRDO 3-10
Seria Transmit Data Pin, STDO 3-10
Sourcefile

end C-22
source statement format 2-2
SRAM 3-2, 3-3

connections 3-3
SRAM Address Pins, A(0:14) 3-4
SRAM Chip Enable Pin, E 3-4
SRAM Data Pins, 10(0:23) 3-4
SRAM memory map 3-4
SRAM Output Enable Pin, OE 3-4
SRAM Write Enable Pin, WE 3-4
stand-alone operation 3-6
Stereo Headphones 3-8
Stereo Input 3-8
Stereo Output 3-8
String

concatenation C-6, C-7

delimiter C-5

packed C-40
Symbol

case C-38

cross-reference C-37

equate C-24, C-37

global C-38

listing C-40

set C-26, C-51

undefined C-41

T
Tutorial, codec programming D-1
U

Unified Memory Map 3-4

W

Warning C-41
Write Enable Pin, WR 3-4, 3-6

X

X datatransfer field 2-3
X Space Enable Bit, BXEN 3-6

Index-xlii DSP56303EVM User’'s Manual Motorola



Quick Start Guide

Example Test Program

DSP56303EVM Technical Summary

DSP56303EVM Schematics

DSP56303EVM Parts List

Motorola Assembler Notes

Codec Programming Tutorial

Index



Quick Start Guide

Example Test Program

DSP56303EVM Technical Summary

DSP56303EVM Schematics

DSP56303EVM Parts List

Motorola Assembler Notes

Codec Programming Tutorial

Index



	Cover
	Table of Contents
	List of Tables
	List of Figures
	List of Examples
	Chapter�1 Quick Start Guide
	Chapter�2 Example Test Program
	Chapter�3 DSP56303EVM Technical Summary
	Appendix A DSP56303EVM Schematics
	Appendix�B DSP56303EVM Parts List
	Appendix�C Motorola Assembler Notes
	Appendix�D Codec Programming Tutorial
	Index

