

modified 22/05/14

Content

1	2D STRAIN GAUGE MODULE	5
2	THE AMPLIFICATION IN A 2D STRAIN GAUGE MODULE4	ł
3	HOW TO PUT THE STRAIN GAUGE MODULE INTO SERVICE	5

Symbols used in the text

These paragraphs contain tips and practical advice for working with the 2D system

In the paragraphs highlighted with this symbol, you will find additional information and it is very important that you follow the instructions given.

Documentation reference

A user manual reference number is provided so the user can seek further assistance

1 2D Strain Gauge Module

The 2D Strain Gauge Module is available for two or four full strain gauge bridges. It contains programmable chips to amplify the incoming strain gauge signals and a CPU which translates the analog data from the strain gauges into CAN data. These CAN data can then be sent via CAN bus to a logger for recording the data.

2 The amplification in a 2D Strain Gauge Module

The amplifier chip in a 2D Strain Gauge Module offers three different parameters to adjust the amplification:

- Bridge offset
- Amplification
- Output offset

You can find these three values in tab *Parameter*, field *Parameter* of your channel:

	Chan	nel-Setting 1 AN#1	
General Analysis Fixpoint-Formula	Parameter Data type Telemetry	Sensor	
	Samplingrate Samplingrate (Hz) Resolution	25 16 bit	_
	Parameter Amplification Difset Additional parameter	10 2500,0 14	mV
	Display Filter Length Digits after dot	No Filter 7 1	•

Amplification

The amplification can be set from 10 to 1000 (whole numbers). The entered value is directly used as amplification with an accuracy of ± 2 @1000. An amplifier adjustment is not required.

Section 3 Step 1 describes how to find the right amplification.

Output offset

The output offset (in *Winlt* offset) is used to adjust the output voltage of the amplifier. It is possible to correct single side used bridge sensors or burdened sensor bridges.

The inserted value is directly used as a voltage and it is independent of the amplification. The value is added to the amplified bridge signal. Values from 0.0 to 5000.0 mV can be set.

Section 3 Step 2 describes how to find the right offset value.

Bridge offset (additional parameter)

The bridge offset (in *Winlt* additional parameter) is used to correct the offset of the sensor. There is the possibility to compensate negative and positive offsets of the used bridge. The usable values are between 0 and 28. The default value is 14. This means that no compensation is used.

The next table shows the different parameters and their bridge adjustments.

Doromotor	Bridge adjustment	Baramatar	Bridge adjustment
Farameter	[mV]	Farameter	[mV]
0	-59.50	15	4.25
1	-55.25	16	8.50
2	-51.00	17	12.75
3	-46.75	18	17.00
4	-42.50	19	21.25
5	-38.25	20	25.50
6	-34.00	21	29.75
7	-29.75	22	34.00
8	-25.50	23	38.25
9	-21.25	24	42.50
10	-17.00	25	46.75
11	-12.75	26	51.00
12	-8.50	27	55.25
13	-4.25	28	59.60
14	0		

Section 3 Step 2 describes how to find the right offset value.

3 How to put the strain gauge module into service

This section gives you a step by step instruction on how to set the right parameters to the strain gauge module. It is assumed that you have already installed the 2D software on your PC and the full strain gauge bridges are installed ready to use. To find the right settings and to calibrate your full strain gauge bridges you need a defined weight to put a stress on the components to be measured.

To put your system into service you need to connect the full strain gauge bridges to the strain gauge module and the strain gauge module to a logger. The system needs an external power supply. To change the setting you connect the logger to your PC via USB cable.

Start the program *WinIt* (*WinARace* \Rightarrow **<Communication** (F2)>).

Select the strain gauge module in the system tree and go to the analog channels.

File Logger Graphic Calibration Image: Complex state of the stat	Specials Options He	alp 💫 🎘 🕠	• 📾 🔛 💱 💼 🐠		
🖃 🧱 System Logger	Nr 🗣 Record	On Name	Sampli Sensor info	Multiplicator Di	gits Offset
	1 🕱	AN#1	25	1,000 2	27434 0,000
	2 🕱	AN#2	25	1,000 2	7553 0,000
Channels	3 🕱	Vext	400	0,0003 3	39411 0,0000
È-₩ Analog	4	Temp	25	0,100	287 0,000

There you can see the input channels of the strain gauges – AN#1, AN#2 (in this example it is a strain gauge module for only two full strain gauge bridges). This view is important, as you can check the digits-values of the channels easily.

Step 1: Finding the right amplification

The amplification is important to get the right measurement range. If the amplification is too high (3), you have a good resolution, but the measurement range in digits is not enough. And if the amplification is too small (1), then the measurement range is too big or rather the measurement data could be more accurate. Therefore you need to find an amplification which is adequate for your requirements (2).

Double click on the channel you want to adjust, e.g. AN#1, and check the tab Parameter.

	Chan	nel-Setting 1 AN#1	
General Analysis Fixpoint-Fo	rmula Parameter Data type Telemetry	Sensor	
	Samplingrate Samplingrate (Hz)	25	•
	Resolution	16 bit	
	Parameter Amplification	10	
	Offset Additional parameter	2500,0	mV
	Display	1	
	Filter Length	No Filter	•
	Digits after dot	1	

In the beginning the additional parameter has to be "14", as it means there is no bridge-offset, and the offset should be 2500 mV. You can start with the given amplification or change it, if you already know in which range the amplification should be. If you change anything confirm your changes with < Apply>.

To find the right parameters for the first full strain gauge bridge (e.g. AN#1) you take a note of the digits of the unstressed component and the component stressed with the defined weight in loading direction.

File Logger Graphic Calibration Sp	ecials Opti	ions Help G	15 -0	• 🕋 🚡	> Sta 🛑 (III)			
🖃 🞏 System Logger	Nr 🕹	Recoi On	Name	Sampli	Sensor info	Multiplicator	Digits	Offset
E C Logger	1	×	AN#1	25		1,000	27434	0,000
interfaces	2	X	AN#2	25		1,000	27553	0,000
E- to Channels	3	x	Vext	400		0,0003	39411	0,0000
ii-4∧ Analog	4		Тетр	25		0,100	287	0,000
	<		1.0000	1000				

Calculate the difference between those two values (stressed and unstressed).

Now you check if the measurement range is okay or if you have to adjust the amplification:

$$measurement \ range = \frac{65535 \ digits}{difference \ between \ stressed \ and \ unstressed} * stressing \ force$$

For example:

- Unstressed component value: 32770 digits
- Stressed component value: 34400 digits •
- Difference: 34400 digits 32770 digits = 1630 digits
- Defined weight: 10 kg •
- ≻
- Stressing force: $10 \ kg * 9,81 \frac{m}{s^2} = 98,1 \ N^1$ measurement range = $\frac{65535 \ digits}{1630 \ digits} * 98,1 \ N = 3944 \ N$ ⇒

If you're expecting forces in both directions of about 1500 N (±1500 N) you need a measurement range of at least 3000 N!

¹ The acceleration of gravity ($g=9.81m/s^2$) may differ, depending on your location.

Now you have three options:

- The measurement range is too small: You have to reduce the amplification in tab *Parameter*. Afterwards you do the same procedure as before.
 Example: Your measurement range is 1200 N, your amplification is 1000; you need a measurement range of at least 6000 N ⇒ adjust your amplification to 200 and start again
- The measurement range is too big: You should increase the amplification in tab Parameter. Afterwards you do the same procedure as before.
 Example: Your measurement range is 8000 N, your amplification is 250; you need a measurement range of at least 4000 N ⇒ adjust your amplification to 500 and start again
- 3. The measurement range is **adequate**: Your amplification is set, go on with step 2!

To change the amplification select the channel you want to adjust and select tab *Parameter*. Enter the new amplification value in the corresponding field.

E-Signal Cogger	General Analysis Fixpoint-Formula(Parameter) Da	ata type Telemetry Sen	sor
□ Interfaces □ <mark>t</mark> Channels	Samplingrate (Hz)	25	•
Analog	Resolution	16 bit	
	Parameter		
	Amplification	10	
www.vvv o4 remp	Offset	2500,0	mV
	Additional parameter	14	

Confirm your changes with < Apply>.

Step 2: Adjusting the additional parameter and offset

For this step it is important to know which forces you are expecting (only in one direction; in either directions, regular or irregular arranged), as it defines the zero-point on the digit-scale.

Example: You are expecting forces in both directions and those forces are similar to each other. Then it is advisable to put the zero-point in the middle of the measurement range. To get the zero-point in the middle of your measurement range you need to put the digits of the unstressed component in the middle of the digit-measurement range. The digit-measurement range is from 0 to 65535 digits, so the middle is 32767 digits.

You have two options to get the digits to your required value (for example 32767 digits):

- 1. For **rough** adjustment you use the **additional parameter**.
- 2. For fine adjustment you use the offset.

The additional parameter changes the bridge offset. It is used for rough adjustment as it is amplified, too.

To change the additional parameter select the channel you want to adjust and select tab *Parameter*. Enter the new value in the corresponding field.

E- System Logger	General Analysis Fixpoint-Formula Parameter Da	ta type Telemetry Sen	sor
erter Cuger erter BC-SG2 erter Channels	Samplingrate	25	T
Analog	Resolution	16 bit	
	Parameter Amplification	10	
A A CALOND	Offset	2500,0	mV
	Additional parameter	14	

Confirm your changes with <**Apply**>.

When the digit value of the channel is as near as it gets to your required digit value (for example 32767 digits) with the additional parameter, you start adjusting the offset.

To change the offset select the channel and go to tab *Parameter*. There you can enter values between 0 and 5000 mV in the offset field. The target is to get the digit value of the channel near your required digit value (for example 32767 digits).

E-C BC-SG2	General Analysis Fixpoint-Formula Farameter Da	ata type Telemetry Sen	sor
🗄 🔩 Interfaces	Samplingrate (Hz)	25	•
Analog	Resolution	16 bit	
	Parameter Amplification	10	
፡ ሳ ሌ 04 Temp	Offset	2500,0	mV 🔶
	Additional parameter	14	

Confirm your changes with < Apply>.

Step 3: Adjusting the formula

When the values for amplification, offset and additional parameter are set, you change the formula of the channel. The formula is used to set the zero-point to your required value of the measurement range and to adjust the multiplier.

Example: If you adjust the additional parameter and the offset in tab *Parameter* to be in the middle of the digit measurement range, the zero-point of your measurement range will be in the middle as well. With the offset of the formula you shift the zero-point of the scale (y-scale in the diagram below). And the multiplier will change the range value.

For changing the formula you select the channel in the system tree and select tab *Analysis*. There you can choose between the "new formula" and the "old formula" (click on **<Old Formula>** or **<New Formula>** respectively).

New formula:

Old formula:

Enter the new values for multiplier and offset in the fields.

Confirm your changes with < Apply>.

Example: You want the zero-point to be in the middle of the measurement range and you're expecting forces from -3000 N to +3000 N. In tab *Parameter* you have already set the right parameters and now you want to change the formula of the channel in tab *Analysis*.

You can choose between the "new formula" and the "old formula". To get the right value of the range you enter the multiplier. The range is from 0 to 65535 (like the digits). As you don't need such a big range, you can scale it down. In this example you need the range to be at least 6000 (from -3000 to +3000). Therefore the multiplier will be 0.1 in the new formula or 1/10 in the old formula.

Next you enter the offset of the formula. You want to have the value of your channel to be 0, as it is unstressed. In the old formula you simply enter the value of the current digits (in this example 32767), as the digits and the offset are subtracted before they are multiplied with the multiplier. In the new formula the digits are multiplied with the multiplier before the offset is added. Therefore you have to enter the value of the multiplied digits, in this case -3276.7.

Step 4: Calibrate the strain gauge channel

After adjusting the formula of the channel you need to calibrate it.

Select the channel in the system tree and select tab *Fixpoint-Formula*. Click on <**Calibrate**>.

BC-SG2	Value calculation with Fixpoint-Formula	Min theoretical	Current	Max theoretical
Channels	Input [V]	0,0000	1,8665	5,0000
	Complies digits at ADC	0	24464	65535
- 102 ANH2 - 103 Vext - 104 Temp	Value on CAN bus Digits at ADC Offset 1 / 1 * 24464 + 0 = -3276832767 165335 065535 -3276832767 * Physical value after calibration formula [] Multiplier Divisor Digits Offset 1 / 10 * 24464 - 32767	- 0	-830.3	65535
	 Number of different possible values= 65535 * 1 / 1 = 6553 	35 with a resolution of	f 0,1	
	3.000		Reset to	o identity
			Inver	range
	€ -1.000		Set	Zero
	-3.000 0 20.000 40.000	60.000	Cali	brate

Select <**Rule of Three Automatically**> in the next window.

Rule of Three Manually	Clicking this button will start the rule of three dialog. In this dialog you have to enter physical values correspondig to two voltage- or digits-values to calibrate the sensor.
Rule of Three Automatically	Clicking this button will start the sampling of the channel to find the minimum and maximum value for this channel. After the sampling the rule of three dialog opens and you have to enter the corresponding physical values for the sampled minimum and maximum.

Depending on the direction of the force, it may be, that the digit-value of the stressed component is below the digit-value of the unstressed component. Please pay attention to that. Now you click on **<Refresh Minimum>** when the component has the lower digit value (unstressed or stressed with the

defined weight). After that you set the second state (stressed or unstressed) and click on <**Refresh Maximum**>. Then click <**OK**>.

	Move the sensors to mi	inimum and maximum position and click OK		
	Refresh <u>M</u> imimum	Refresh M <u>a</u> ximum		
	Minimum	Maximum	Delta	Change
)1 AN#1	Scanning 27005,0 / 27005	Scanning 27020,0 / 27020	15	ঘ

Enter the values in the next window.

For example "0" as the lower physical value, as the component is unstressed, and "98.1" as the upper physical value, as the component is stressed with a weight of 10 kg (=98.1 N).

	0.000	~ V II
Eixpoint digits	t <u>D</u> igits	t∙ ⊼oit
Lower physical value		
Value		Volt
26958	at	2.056764
Upper physical value		
Value		Volt
27020	at	2.061494

Click on **<OK>** and confirm the calibration with **<Apply>**.

Step 5: Set the channel to zero

Before you use the system you should set the strain gauge channels to zero. Therefor it is useful to use the auto-zero function. You can enable this function in tab *General* of the channel.

System Logger Logger Logger BC-SG2 Interfaces Channels Analog An	General Analysis	Fixpoint-Formula Parameter Data type Telemetry Sensor	
		Name AN#1 Dimension Short cut	
		Channel-Type Analog Channel-Mode Recording IV	
		Use table	

Then you simply hit the auto-zero button and the channels, which have the auto-zero function enabled, will be set to zero.

