

PI Interface for GE iBatch Batch

Version 3.0.x

OSIsoft, LLC

777 Davis St., Suite 250

San Leandro, CA 94577 USA

Tel: (01) 510-297-5800

Fax: (01) 510-357-8136

Web: http://www.osisoft.com

OSIsoft Australia • Perth, Australia

OSIsoft Europe GmbH • Frankfurt, Germany

OSIsoft Asia Pte Ltd. • Singapore

OSIsoft Canada ULC • Montreal & Calgary, Canada

OSIsoft, LLC Representative Office • Shanghai, People’s Republic of China

OSIsoft Japan KK • Tokyo, Japan

OSIsoft Mexico S. De R.L. De C.V. • Mexico City, Mexico

OSIsoft do Brasil Sistemas Ltda. • Sao Paulo, Brazil

OSIsoft France EURL • Paris, France

PI Interface for GE iBatch Batch

Copyright: © 2009-2013 OSIsoft, LLC. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means,

mechanical, photocopying, recording, or otherwise, without the prior written permission of OSIsoft, LLC.

OSIsoft, the OSIsoft logo and logotype, PI Analytics, PI ProcessBook, PI DataLink, ProcessPoint, PI Asset Framework (PI AF), IT

Monitor, MCN Health Monitor, PI System, PI ActiveView, PI ACE, PI AlarmView, PI BatchView, PI Coresight, PI Data Services, PI

Event Frames, PI Manual Logger, PI ProfileView, PI WebParts, ProTRAQ, RLINK, RtAnalytics, RtBaseline, RtPortal, RtPM,

RtReports and RtWebParts are all trademarks of OSIsoft, LLC. All other trademarks or trade names used herein are the property of

their respective owners.

U.S. GOVERNMENT RIGHTS

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the OSIsoft, LLC license agreement and

as provided in DFARS 227.7202, DFARS 252.227-7013, FAR 12.212, FAR 52.227, as applicable. OSIsoft, LLC.

Published: 11/2013

http://www.osisoft.com/

PI Interface for GE iBatch Batch iii

Table of Contents

Terminology... v

Chapter 1. Introduction .. 1

Supported Features... 2
Diagram of Hardware Connection ... 5

Chapter 2. Principles of Operation .. 7

Interface Modes ... 7
Multiple Data Sources ... 8
Event Journals as Data Source ... 8
Recipe Model .. 9
PI Batch Database Methodology ... 10
PIModule Creation ... 18
PI AF Event Frames Methodology .. 18
PI AF Element Creation... 23
Foreign Language Support ... 24
Initialization File ... 24
Event Logging ... 25
Recipe Templates ... 40
Merging Multiple Source Batches into a Single PIBatch 45
Linking BES Batches to MES Batches .. 46
Loss of Connectivity .. 47
Data Preprocessing ... 47
Data Recovery ... 49
Data Analysis .. 49
PI Data Deletion .. 50
EVT Source – Event Based Time Ordered Processing 50
Excluding Recipes From Processing .. 51
Excluding Units From Processing ... 52
Excluding Phases From Processing ... 52
Excluding Phase States From Processing .. 52

Chapter 3. Installation Checklist .. 55

Data Collection Steps .. 55
Interface Diagnostics ... 56

Chapter 4. Interface Installation ... 61

Naming Conventions and Requirements .. 61
Interface Directories .. 62
Interface Installation Procedure .. 62
Installing the Interface as a Windows Service .. 62

Table of Contents

iv

Service Tab ... 62

Chapter 5. Digital States ... 65

Chapter 6. PointSource .. 67

Chapter 7. PI Point Configuration .. 69

Interface-specific Points .. 69

Chapter 8. Startup Command File ... 71

Configuring the Interface with PI Event Frames Interface Manager 71
Interface Selection Tab ... 71
File Selection Tab .. 71
Server Information Tab.. 72
Source ... 73
Filters Tab ... 73
Time Settings Tab ... 73
Operational Settings Tab .. 75
Save Settings Tab ... 77
Test Configuration Tab .. 77
Configuring Interface Startup Files .. 77
Command-line Parameters ... 78
Sample PIGEIB.bat File .. 90
Initialization File Parameters ... 91

Chapter 9. Interface Node Clock .. 93

Chapter 10. Security ... 95

Chapter 11. Starting and Stopping the Interface .. 97

Starting Interface as a Service .. 97
Stopping the Interface Running as a Service .. 97

Chapter 12. Failover ... 99

Appendix A. Error and Informational Messages ... 101

Message Logs ... 101
Messages .. 101
System Errors and PI Errors ... 105

Appendix B. Technical Support and Resources ... 107

PI Interface for GE iBatch Batch v

Terminology

To understand this interface, familiarize yourself with the terminology used in this manual.

Interface Node

A computer on which the PI API, the PI SDK, or both are installed, and PI Server programs

are not installed.

PI API

A library of functions that enable applications to communicate and exchange data with the PI

Server.

PI Collective

Two or more replicated PI Servers that collect data concurrently. Collectives are part of the

High Availability environment. When the primary PI Server in a collective becomes

unavailable, a secondary collective member node seamlessly continues to collect and provide

data access to your PI clients.

PIHOME

The directory that is the common location for PI 32-bit client applications. The [PIHOME]

directory tree is defined by the PIHOME entry in the pipc.ini configuration file. This

pipc.ini file is an ASCII text file, which is located in the %windir% directory.

On a 32-bit operating system a typical PIHOME is C:\Program Files\PIPC.

On a 64-bit operating system a typical PIHOME is C:\Program Files (x86)\PIPC.

PI interfaces reside in a subdirectory of the Interfaces directory under PIHOME.

For example, files for the Modbus Ethernet Interface are in

[PIHOME]\PIPC\Interfaces\ModbusE.

This document uses [PIHOME] as an abbreviation for the complete PIHOME or PIHOME64

directory. For example, ICU files in [PIHOME]\ICU.

PIHOME64

The directory that is the common location for PI 64-bit client applications on a 64-bit

operating system.

A typical PIHOME64 is C:\Program Files\PIPC.

PI interfaces reside in a subdirectory of the Interfaces directory under PIHOME64.

For example, files for a 64-bit Modbus Ethernet Interface are found in

 C:\Program Files\PIPC\Interfaces\ModbusE.

This document uses [PIHOME] as an abbreviation for the complete PIHOME or PIHOME64

directory. For example, ICU files in [PIHOME]\ICU.

Introduction

vi

PI SDK

A library of functions that enable applications to communicate and exchange data with the PI

Server. Some PI interfaces, in addition to using the PI API, require the PI SDK.

AF SDK

A library of functions that enable applications to communicate and to exchange data with the

AF Server. Some PI interfaces, in addition to using the PI API, PI-SDK, require the AF SDK.

PI Server Node

A computer on which PI Server programs are installed. The PI Server runs on the PI Server

Node.

PI SMT

PI System Management Tools. PI SMT is the program you use for configuring PI Servers. A

single copy of PI SMT manages multiple PI Servers. PI SMT runs on either a PI Server Node

or a PI Interface Node.

Pipc.log

The file to which OSIsoft applications write informational and error messages. While a PI

interface runs, it writes to the pipc.log file. The ICU provides easy access to the pipc.log.

Point

The basic building block for controlling data flow to and from the PI Server. For a given

timestamp, a PI point holds a single value.

A PI point does not necessarily correspond to a "data collection point" on the foreign device.

For example, a single "point" on the foreign device can consist of a set point, a process value,

an alarm limit, and a discrete value. These four pieces of information require four separate PI

points.

Service

A Windows program that runs without user interaction. A Service continues to run after you

have logged off as a Windows user. A Service has the ability to start up when the computer

itself starts up.

The ICU enables you to configure a PI interface to run as a Service.

Tag (Input Tag and Output Tag)

The name of the PI point. There is a one-to-one correspondence between the name of a point

and the point itself. Because of this relationship, PI System documentation uses the terms

"tag" and "point" interchangeably.

Interfaces read values from a device and write these values to an Input Tag. Interfaces use an

Output Tag to write a value to the device.

PI Interface for GE iBatch Batch 1

Chapter 1. Introduction

This manual describes the operation of the PI Interface for GE iBatch Batch. The primary

objective of the Batch Interface is to collect batch data from the GE iBatch system through

Event Journals (EVT files) and store them in the PI Batch Database or PI AF Database (as

event frames). In addition to collecting batch data, the interface collects associated batch data

to PI Tags and PI Batch properties.

The flow of data in the interface is unidirectional: data can only be read from the specified

data source and written to the PI Server. This interface can read data from multiple batch

data sources simultaneously. By design, the interface does not edit or delete source data.

The Batch Interface is a scan-based interface that populates the AF Database (event frames

and elements) or the PI Batch Database and PI Module Database. In addition to batch data,

the interface can populate the PI Point Database. PI Point creation, commonly known as tag

creation and event population, is controlled by using tag templates. All modules, tags, tag

aliases, and health tags are automatically created on the PI server. The Interface does not use

the PI API Buffering Service, because batch and tag data is already buffered by the source

historian databases. To maximize performance, the interface writes events to PI tags in

bulk—that is, it writes all events per interface scan.

Reference Manuals

OSIsoft

 PI Data Archive Manual

 PI Server System Management Guide

 PI SDK User Manual

Vendor

Review the pertinent documentation regarding the particular Batch Executive System (BES)

at your facility. Maintain familiarity with the contents and format of the source data so that

you can choose appropriate options and features for the interface.

Introduction

2

Supported Features

Feature Support

Part Number PI-IN-GE-IB-NTI

* Platforms 32-bit Interface 64-bit Interface

Windows XP

 32-bit OS Yes No

 64-bit OS Yes (Emulation Mode) No

Windows 2003 Server

 32-bit OS Yes No

 64-bit OS Yes (Emulation Mode) No

Windows Vista

 32-bit OS Yes No

 64-bit OS Yes (Emulation Mode) No

Windows 2008

 32-bit OS Yes No

Windows 2008 R2

 64-bit OS Yes (Emulation Mode) No

Windows 7

 32-bit OS Yes No

 64-bit OS Yes (Emulation Mode) No

Windows 2012

 64-bit OS Yes (Emulation Mode) No

Windows 8

 32-bit OS Yes No

 64-bit OS Yes (Emulation Mode) No

Auto Creates PI Points Yes

Point Builder Utility No

ICU Control No. Note: To configure the interface, use PI
Event Frames Interface Manager (included)

PI Point Types Integer / Float32 / String

Sub-second Timestamps Yes

Sub-second Scan Classes No

Automatically Incorporates PI Point
Attribute Changes

No

Exception Reporting No

Outputs from PI No

Inputs to PI Event and Scan-based

Supports Questionable Bit No

Supports Multi-character PointSource Yes

Maximum Point Count None

* Uses PI SDK Yes

PINet String Support N/A

PI Interface for GE iBatch Batch 3

Feature Support

* Source of Timestamps Device

 History Recovery Yes

UniInt-based

 * Disconnected Startup

 * SetDeviceStatus

No

No

Yes

 Failover Yes

* Vendor Software Required on PI
Interface Node/PINet Node

Yes

* Vendor Software Required on
Foreign Device

Yes

* Vendor Hardware Required No

Additional PI Software Included with
Interface

No

Device Point Types String/Integer/Float

Serial-Based Interface No

*See paragraphs below for further explanation.

Platforms

The Interface runs on the above mentioned Microsoft Windows operating systems. Newer

platforms might not be supported. Please contact OSIsoft Technical Support for more

information.

PI SDK

The PI SDK and the PI API are bundled and must be installed on each PI Interface node. The

PI Interface for GE iBatch Batch makes PI SDK calls to access the PI Module Database and

PI Batch Database. The Interface requires PI SDK version 1.3.4.333 or higher to be installed.

The Interface uses PI API to log messages in the local pipc.log file. It does not require a PI

API connection to the PI Server.

AF SDK

The AF SDK must be installed on each PI Interface node. The interface makes AF SDK calls

to access AF elements and AF event frames. The interface requires AF SDK version 2.5.x or

higher to be installed prior the execution of the interface.

Source of Timestamps

The timestamp accompanying the record is used as the source of the timestamp for the data to

be placed into the PI system. For the health tags, the Interface uses local system time at the

time the value is being recorded.

History Recovery

The operation of the Batch Interface can be interrupted without loss of data. While the

Interface is offline, the data is being buffered by the data sources such as Event Journal files.

The Interface can recover data, provided the data is still available in the data sources. If the

interruption occurred while the interface was running, the data is recovered automatically

without user intervention. To perform historical data recovery, the Interface must be run in

Recovery mode. In this mode, the Interface can recover data for any time period specified

Introduction

4

by you. The recovery mode is enabled by specifying the recovery time period through the

command line parameters /rst=<date and time> (required) and

/ret=<date and time> (optional). Data recovery is limited by BES historical data

availability and a few other factors on the PI Server, including the number of licensed tags

and the size and time frame of PI archives into which data is backfilled. Refer to Data

Recovery section for more information.

SetDeviceStatus

The Health Point with the attribute ExDesc = [UI_DEVSTAT] tracks the status of the source

devices. This tag is automatically created and configured by the interface if its missing on

startup. The following events can be written into the tag:

 "Good" - the interface is properly communicating and reading data from the data sources.

 The following events represent proper communication with the data sources. This

message is displayed on successful connection to each source.

"2 | Connected/No Data | EVT Directory Monitor: <directory name> Initialized."

 The following list of events represents the failure to communicate with either the Event

Journal file directory or Position directory, or failure to read data from the Event Journal

File:

"3 | 1 device(s) in error | Error monitoring directory (onError): <directory name>"

"3 | 1 device(s) in error | Error monitoring directory: <directory name>"

"3 | 1 device(s) in error | Failed to start directory monitoring thread: <directory

name>"

"3 | 1 device(s) in error | Error in scanning directory: <directory name>"

"3 | 1 device(s) in error | Error obtaining EVT files EOF."

"3 | 1 device(s) in error | Error getting current EVT file timestamp."

"3 | 1 device(s) in error | Error reading EVT file: <filename>."

"3 | 1 device(s) in error | Error while reading EVT file."

Vendor Software Required

The Batch Executive System (BES) and its accompanying support software are required for

proper operation of this Batch interface.

Device Point Types

The interface receives data from the source as string data, and coerces the string data into

numerical equivalents according to Tag Templates if defined.

PI Interface for GE iBatch Batch 5

Diagram of Hardware Connection

Figure 1. Schematic of Recommended Hardware and Software Configuration for Batch interface with

Event Files as sources.

Introduction

6

Figure 1b. Schematic of Recommended Hardware and Software Configuration for Batch interface

with event files as data source and AF Server as host for asset and batch data.

The Batch interface can be installed on the same node as the batch execution system (BES) or

on a completely separate node. To minimize contention for system resources, do not install

the interface on a node where the PI Server is running. Contact the vendor of your BES for

recommendations about installing third-party software such as the Batch Interface on the

same node as the GE iBatch Executive.

PI Interface for GE iBatch Batch 7

Chapter 2. Principles of Operation

This section describes the primary logic of the Batch interface.

Interface Modes

The Interface can be run in five different modes:

 RealTime (default)

 Recovery

 Preprocess

 Statistics

 Delete

RealTime mode is the default mode of operation and Recovery mode is designed to recover

historical batch and tag data, provided the data still exists on the source. The principal

difference between RealTime and Recovery modes is that, in RealTime mode, the interface

synchronizes newly-acquired data from the source with the PI Server at the end of each scan,

regardless of batch completion on the source. In Recovery mode, the interface synchronizes

the batch only when it has completed on the source—that is, when the end time is known.

In Recovery mode, open batches are processed only when there are no completed batches left

to be processed, and processing has reached the current time. The interface starts in Recovery

mode. Recovery starts from the timestamp of the event last processed to the PI Server before

shutdown and continues until the current time. If recover end time is omitted, the interface

switches to Realtime. If an end time is specified, the interface recovers data for the specified

time span and then exits.

Preprocess mode is designed for situations when source data must be written to PI archives

using timestamps that are earlier than the primary PI archive. Due to the nature of the PI

Server, newly-added tags, units and modules are indexed (referenced) only in the primary PI

archive. Older archives do not include these modules, units and tags. In Preprocess mode,

the interface creates modules, units, tags and tag aliases without processing batch data and

adding events into the tags. After preprocessing, you must reprocess older archives with the

offline archive utility. Please refer to the PI Server System Management Guide for details on

archive reprocessing procedure (note that these procedures have changed with PI Server

2012). Preprocessing creates indexes for newly-added units, modules, tags in each

reprocessed archive. You must run the interface in preprocess mode before writing new batch

data to older PI archives. To run the interface in preprocess mode, specify the

/mode=noupdate command line parameter in conjunction with the Recovery Start Time

switch (/rst=<date and time>. To ensure all tags and modules are created, omit the

Recovery End Time /ret=<date and time> parameter.

In Statistics mode, the interface compares source data with the PI server data. In this mode

the interface does not write or modify any data on the PI Server. Upon completion, the

interface reports its results and exits. To run the interface in statistics mode, specify the start

time, end time if desired, and the /mode=stat) command line parameter.

Principles of Operation

8

In Delete mode, the interface cleans PI archives based on specified source data only, leaving

data from all other sources intact. Use delete mode only if the interface is unable to

synchronize source batch data with the PI server. To run the interface in delete mode, specify

start and end time and the /mode=delete command line parameter.

Multiple Data Sources

The Batch interface can process data coming from multiple sources simultaneously. This

parallel processing is designed primarily for processing data from distributed-control Batch

Execution Systems. For example, the control logic of a manufacturing process can be split

between upstream and downstream segments, with each segment controlled by a separate GE

iBatch Batch Executive system. Even though the logical batch is the same, the actual batch-

related data is split between two batch historians. This interface can merge data for such

batches and store it in a single PI batch. Refer to Merging Multiple Source batches into a

Single PIBatch for more details.

Parallel data processing also solves the problem of shared unit control, where overlapping

batch recipes access same unit in different stages of their production cycles. This solution is

achieved by acquiring data for the same time frame from multiple sources and combining

time-ordered data using a single interface instance.

Data source(s) are configured in the INI file associated with the interface instance. The full

path to the directory with EVT files is sufficient to configure a data source.

Table 1. Data source usage and description.

Object
Name

Property name Description

Source[#] Defines the interface data source, where # is
the index of the source. Must be a positive
integer.

.evtdir=

[directory path]

Required for EVT data Source

Defines the Event File journal directory
associated with particular source.

Example:

Source[1].evtdir = D:\TEST\RELEASE\test_1

Source[2].evtdir = D:\TEST\RELEASE\test_2

Source[3].evtdir = D:\TEST\RELEASE\test_3

Event Journals as Data Source

Event journals are files that are generated directly by a GE iBatch Batch Execution System

(BES). Each file represents execution of particular recipe and contains a log of batch events

as well as batch related data. The interface expects that each record (row) in the event file

will contain at least 19 tab-delimited columns which contain the following information in the

following order:

 Column1: Timestamp (either LclTime or GMTTime)

 Column2: BatchID

 Column3: Recipe

 Column4: Descript

 Column5: Event

 Column6: PValue

 Column7: EU

 Column8: Area

 Column9: ProcCell

PI Interface for GE iBatch Batch 9

 Column10: Unit

 Column11: Phase

 Column12: PhaseDesc

 Column13: UserID

 Column14: UniqueID

Recipe Model

The Recipe model, which describes batch processes, is a hierarchy of the procedures that are

performed during the execution of a recipe, as shown in the following figure. In the S88

standard, the use of procedures and unit procedures is optional: a recipe can consist solely of

operations and phases.

Figure 2. Recipe Model hierarchy

Equipment Model hierarchy

The Batch interface uses the S88 terminology and hierarchy as a framework to collate and

store information in a structured manner in the PI Server (as Module and Batch databases) or

the AF Server (as elements and event frames).

The interface maps a unit procedure to a PI UnitBatch. Only one unit procedure can be active

in a unit at any time. This approach restricts the configuration of recipes that can be run by

the BES, if the interface is to process the resultant data and populate the BDB in a meaningful

manner. If there are overlapping Unit Procedures on the same unit, the interface closes the

conflicting PI UnitBatches, although the data is still processed into closed PI UnitBatches.

The actual end time for truncated UnitBatch is stored in its Product property. The actual

Product is appended by the keyword “_TrueEndUTC=”, followed by the actual End Time for

the specific unit batch specified as UTC seconds.

When the interface is configured to store batch data in the AF server, there are no restrictions

on how the batch data can be stored, because AF event frames support parallel unit

procedures natively.

Process Cell

Unit

Equipment Module

Control Module

Area

Procedure

Unit Procedure

Operation

Phase

Principles of Operation

10

If the recipe is divided into multiple smaller unit procedures or operations, enable merging for

the interface. Please refer to the Merging Multiple Source batches into a single PIBatch

section for more information on how the merge works.

PI Batch Database Methodology

The PI Module and Batch Databases are used to organize and store batch data. Further

discussion of these databases can be found in the PI 3.3 Data Archive Manual and the PI

SDK tutorial documentation. To represent recipe procedures, unit procedures, operations,

phases, phase states and phase steps, this interface creates PIBatch, PIUnitBatch and

hierarchy of PISubBatch objects in the PI Batch Database (Fig. 4). Each of the objects

created in the PI Batch Database has the following properties:

 Name (PISubBatch)

 Batch ID (PIBatch and PIUnitBatch objects only)

 Start time

 End time

In a PIBatch the name is stored in the Recipe property and, in a PIUnitBatch, the Procedure

property stores the name of the corresponding recipe level. If illegal characters (* ' ? | ` ") are

encountered in the BatchID, Name, Product, Recipe or Procedure fields, they are replaced

with the underscore “_” character.

Each object in the PI Batch Database represents a specific level of the Recipe Model.

However, the relationship between the PI Batch Database and the Recipe Model is

complicated by the possibility of building a recipe without the procedure or unit procedure

levels. In cases where the highest recipe level is an operation or phase (that is, neither the

procedure nor unit procedure levels are defined), the interface still creates PIBatch and

PIUnitBatch objects.

Figure 3. Schematic of PI Batch Database organization.

PI Interface for GE iBatch Batch 11

PIBatch

The PIBatch object is created for each batch defined in the data source. All records

associated with the source batch can be recorded in the PIProperties collection of the PIBatch

or in PI Points. The root PIProperty nodes are always the UniqueID of the batches which is

assigned automatically by the Batch Executive. The interface stores the following batch

properties under UniqueID: BatchID, Product, Formula Name, Recipe, Recipe Type, Start

Time UTC, End Time UTC, Interface Name, Interface ID, DataSource, and events defined by

the client. The underlying structure of the PIProperties collection is organized to reflect the

hierarchy of the Recipe Model described by the data source where the Recipe names create

hierarchical PIProperty nodes. Events of interest are stored in lists under appropriate Recipe

node. Each PIProperty event name is defined as ‘Event_<event count>’, where <event count>

is the current number of events already stored under specific node. This method of naming

events is dictated by the PIProperty rule, which states that each event name under the same

node must be unique. The PIProperty value can be defined through the use of Property

templates. Please refer to Property Template section below for description and configuration

steps.

The PIBatch represents the procedure within the recipe. Each PIBatch contains a collection

of associated PI UnitBatches (which correspond to the Unit Procedures in the recipe).

The PIBatch object can represent a merged object, which contains multiple source batches

with identical BatchIDs or a common subset of characters in the BatchID. The PI Batch

Product and Recipe properties contain data associated with the first source batch that started

the merged PI Batch. Use PIProperties to retrieve original source batch properties. For each

merged source batch, the interface creates a node named using the UniqueID of the source

batch containing the original batch properties.

Principles of Operation

12

Note: Because the source batch can terminate unexpectedly without proper
unloading by the operator, the interface maintains this batch in the local memory for
100 days. After 100 days, the batch is considered abandoned and the interface
closes it with the latest known timestamp for this particular batch. The abandon
timeout can be changed using the /abto=<days> (Abandoned Batch Time Out)

command line parameter.

PI Batch Start Event Combinations

Data Source PIBatch Start-Triggering Event(s)

GE iBatch EVT The batch recipe event containing: [Event] field = “System Message” and
[Pvalue] field = “Beginning Of BATCH”. The associated [EU] field =
“Procedure” / “Unit Procedure” / “Operation” / “Phase” determines the type of
the particular recipe.

PI Interface for GE iBatch Batch 13

PI Batch End Event combinations

Data Source PIBatch End-Triggering Event(s)

GE iBatch EVT The first out of two recipe events is used to set an End Time for PIBatch
object.

1) The batch recipe event containing [Event] field = “System Message”
and [PValue] field = “End Of BATCH”

2) The batch recipe event containing: [Event] field = “State Change”
and [PValue] field = “REMOVED”/ ”COMPLETE” / ”ABORTED”

PIUnitBatch

A PIUnitBatch is created for each unit procedure defined in the data source. The start and

end times of a PIUnitBatch are intended to reflect the start and completion of physical

processing within a unit.

The PIUnitBatch properties do not change if the parent object is a merged PI Batch. A

PIUnitBatch always contains the original BatchID and Procedure name as defined in the

source, unless overridden using the /tbid command line parameter, which enforces a

stripped BatchID to be used for PIUnitBatch objects and for all events to be stored in

PIPoints and PIProperties.

When Operation- or Phase-level recipes are run, the interface uses the Operation/Phase name

as the PIUnitBatch Procedure name.

PI UnitBatch Start Event Combinations

Data Source PIBatch Start-Triggering Event(s)

GE iBatch EVT For Procedure, Unit Procedure level recipes, the following two events must
be preset to set the Start Time for PIUnitBatch. The latest timestamp is used
as the start time.

1) The batch recipe event containing [Event] field = “System Message”
and [Descript] field = “Unit Procedure Started”.

2) The arbitration event containing [Event] field = “System Message”,
[Descript] field = “Acquiring Resource:”. The [PValue] field contains
the actual unit name.

For Operation level recipes the following two events must be present to start
PIUnitBatch:

3) The batch recipe event containing [Event] field = “System Message”
and [Descript] field = “Operation Started”.

4) The arbitration event containing [Event] field = “System Message”,
[Descript] field = “Acquiring Resource:”. The [PValue] field contains
the actual unit name.

For Phase level recipes, single event is used to set the Start Time for
PIUnitBatch containing [Event] field = “State Change”, [PValue] field =
“RUNNING”.

The [Recipe] field contains the batch recipe hierarchy.

Principles of Operation

14

PI UnitBatch End Event combinations

Data Source PIBatch End-Triggering Event(s)

GE iBatch EVT For Procedure, Unit Procedure level recipes, the first out of the following two
events is used to set an End Time for PIUnitBatch:

1) The batch recipe event containing [Event] column = “System
Message” and [Descript] column = “Unit Procedure Finished”.

2) The arbitration event containing [Event] field = “System Message”,
[Descript] field = “Releasing Resource:”. The [PValue] field contains
the actual unit name.

For Operation level recipes the first out of the following two events is used to
set an End Time for PIUnitBatch:

3) The batch recipe event containing [Event] field = “System Message”
and [Descript] field = “Operation Finished”.

4) The arbitration event containing [Event] field = “System Message”,
[Descript] field = “Releasing Resource:”. The [PValue] field contains
the actual unit name.

For Phase level recipes, single event is used to set an End Time for the
PIUnitBatch, containing [Event] field = “State Change” and [PValue] field =
“COMPLETED” / “ABORTED” / “STOPPED”.

5) The [Recipe] field contains the batch recipe hierarchy.

PISubBatches

Operation

A PISubBatch is created for each source operation found within the data source as child for

PIUnitBatch object.

Note: The operation and phase level recipes populate upper levels of PIBatch
Database hierarchy automatically with PIUnitBatch Procedure property and
PISubBatch operation name as the name of the source Operation/Phase recipe
object.

PISubBatch Operation Start Event

Data Source PISubBatch Operation Start-Triggering Event(s)

GE iBatch EVT For Procedure, Unit Procedure, Operation level recipes, the batch recipe
event containing [Event] field = “System Message” and [Descript] field =
“Operation Started” is used to set the Start Time for PISubBatch operation
level object.

For Phase level recipes the batch recipe event containing [Event] field =
“State Change” and [PValue] field = “RUNNING” is used to set the Start Time
for PISubBatch operation level object.

The [Recipe] field contains the batch recipe hierarchy.

PISubBatch Operation End Event

Data Source PISubBatch Operation End triggering event(s)

GE iBatch EVT For Procedure, Unit Procedure, Operation level recipes, the first event out of
two following events is used to set an End Time for PISubBatch operation

PI Interface for GE iBatch Batch 15

Data Source PISubBatch Operation End triggering event(s)

level object:

1) the batch recipe event containing [Event] field = “System Message” and
[Descript] field = “Operation Finished”

2) The batch recipe event containing [Event] field = “State Change” and
[PValue] field = “REMOVED” (at Operation level). Note, this event is
used due to possibility that some “Operation Finished” events are not
present in EVT data source.

For Phase level recipes the batch recipe event containing [Event] field =
“State Change” and [PValue] field = “RUNNING” is used to set the Start Time
for PISubBatch operation level object.

The [Recipe] field contains the batch recipe hierarchy.

Phase

A PISubBatch is created for each phase found within the data source as child for

Operation level PISubBatch object.

Note: The phase level recipes populate upper levels of PIBatch Database hierarchy
automatically with PIUnitBatch Procedure property and PISubBatch operation name
as the name of the source Phase recipe object.

PISubBatch Phase Start triggering events

Data Source PISubBatch Phase Start triggering event(s)

GE iBatch EVT For Procedure, Unit Procedure, Operation, Phase level recipes, the batch
recipe event containing [Event] field = “State Change” and [PValue]
containing any value except: IDLE, READY, COMPLETE, ABORTED,
REMOVED, STOPPED is used to set the Start Time for PISubBatch phase
level object.

The [Recipe] field contains the batch recipe hierarchy.

PISubBatch Phase End triggering events

Data Source PISubBatch Phase End triggering event(s)

GE iBatch EVT For Procedure, Unit Procedure, Operation, Phase level recipes, the batch
recipe event containing [Event] field = “State Change” and [PValue] field =
“COMPLETE” or ”STOPPED” or ”ABORTED” or “REMOVED” is used to set
an End Time for PISubBatch phase level object.

The [Recipe] field contains the batch recipe hierarchy.

Phase State

A PISubBatch is created for each phase state found within the data source as child for

Phase level PISubBatch object. All Phase States are sequential; start of new Phase State

ends the previous Phase State. Note, the self-terminating Phase States which set its End

Times are COMPLETE, ABORTED, STOPPED and REMOVED.

Principles of Operation

16

PISubBatch Phase State triggering events

Data Source PISubBatch Phase State triggering event

GE iBatch EVT The batch recipe event containing [Event] field = “State Change” and
[PValue] field = <State Name>. The [Recipe] field contains the batch recipe
hierarchy.

Phase Step

A PISubBatch is created for each phase step found within the data source as a child for

the Phase State level PISubBatch object. Phase Steps are not S88 complaint and are

custom to each particular implementation and configuration of the Batch Execution

System. By default this level of PISubBatches is not enabled. To enable this feature use

the optional switch /ras=<Start Substring>, <End Substring> (Report As

Step). The Phase Steps are always created beneath the first PISubBatch Phase State =

“RUNNING”, regardless if the parent Phase State is ended or not. The Phase Step name

and start/stop events are coming from the “Descript” column. The triggering event is

“Report”. The Phase Steps do not create the higher level PI Batches, UnitBatches and

SubBatches, if the parent Phase is not found. If the Phase Step was not closed by the

appropriate closing event, it will be closed by the end of the parent Operation level PI

SubBatch. 0-duration Phase Steps are ignored. Multiple sequential Start/End events are

ignored except the first one.

PISubBatch Phase Step Start triggering events

Data Source PISubBatch Phase State Start triggering event

GE iBatch EVT The following two events can set the Start Time for PISubBatch phase step
object.

1) The event containing [Event] field = “Report” and [Descript] field

containing <Start Substring>. The Phase Step name is determined as

the prefix substring to <Start Substring> in [Descript] field.

2) The event containing [Event] field = “Report” and [PValue] field

containing <Start Substring>. The Phase Step name is determined as

the prefix substring to <Start Substring> in [PValue] field.

The [Recipe] field contains the batch recipe hierarchy.

PISubBatch Phase Step End triggering events

Data Source PISubBatch Phase State Start triggering event

GE iBatch EVT The following two events can set an End Time for PISubBatch phase step
object.

1) The event containing [Event] field = “Report” and [Descript] field

containing <End Substring>. The Phase Step name is determined

as the prefix substring to <End Substring> in [Descript] field.

2) The event containing [Event] field = “Report” and [PValue] field

containing <End Substring>. The Phase Step name is determined as

the prefix substring to <End Substring> in [PValue] field.

The [Recipe] field contains the batch recipe hierarchy.

PI Interface for GE iBatch Batch 17

Template Placeholders

The Batch interface uses templates to specify what is stored in PI Batch Properties or PI AF

Attributes, and PI Points. Templates can also define the equipment hierarchy structure in the

PI Module Database or PI AF. A template defines the custom name and/or value structure

applied to particular PI object. The template is defined using a combination of a free text and

placeholders. The placeholder can be referred as to the name of the column in EVT data

source, except the Recipe column which is broken down into subcolumns, such as Procedure,

UnitProcedure, Operation and Phase.

Figure 4. Example of Placeholders and associated EVT columns

Example template:

Sample [Time] | [Descript]-[BatchID]:[Event]__pvalue:[PVal][EU]

This structure contains the free text and the placeholder combination. Assume that the

incoming event is the row number 6 (Figure 8), which is Recipe Header. Then using the

template structure we can replace placeholders with the actual data from the associated

columns to create the following text:

Sample 2007/12/11 05:19:12:184 | Product Code:Recipe

Header__pvalue:UNDEFINED

Note, in this example [EU] placeholder was replaced with BLANK value since the source

row did not have the associated column populated.

Principles of Operation

18

PIBatch and PIUnitBatch Product Property

The ProductID information coming from Event Journal files is stored as the PValue in the

row that contains the description “Product Code”. This event is typically a Recipe Header

event.

PIModule Creation

The interface automatically creates modules and units as required. PI Units (PIModules with

the IsUnit flag set to true) are created if needed when they are first encountered in the data

source. The interface maintains only the unit modules. By default, the placement of these

modules is at the root level of the Module DB. You can define the root Starting Module Path

using the /smp command line parameter. The following figure shows the default structure of

the PI module hierarchy created by the interface.

Figure 5. Interface PI Module DB Structure

The Batch Interface references PI tags at the unit and phase PIModules through tag aliases if

the tag name contains the unit module name or unit module name mask.

If this default equipment hierarchy is not feasible, you can specify a custom hierarchy using

the Recipe[2].ModulePath template, which is defined in the INI file associated with a specific

interface instance.

Note: To override the default module path, specify

Recipe[2].ModulePath=<custom equipment path>.

PI AF Event Frames Methodology

In this approach, PI Event Frames organize and store the batch data. The event frame

hierarchy supports the storage of source batch data with no data manipulation. At any level of

the hierarchy, each event frame has its own set of attributes, which provide the ability to store

source batch attributes under a specific event frame regardless of its depth. This approach is a

major improvement over the PI Batch database, where only the top level object (PIBatch) can

contain attributes (PIProperties).

Each event frame has the following fields:

 Name

 Description

 Start Time

 End Time

 Template

 Category

 Event Specific Attributes

PI Interface for GE iBatch Batch 19

 Referenced elements (such as Unit, Phase Module)

In the root-level event frame, the Name field contains the source batch BatchID. For lower-

level event frames, the Name field contains the actual recipe name, such as UnitProcedure,

Operation, Phase, etc. To maintain compatibility with the way data is stored in PI Batch

Database, the other source batch properties are stored as event frame attributes. For

Procedure-level recipe, source batch Product and Recipe properties are stored as event frame

attributes. For UnitProcedure-level recipes, the source batch BatchID and Product are stored

as event frame attributes.

Any illegal characters (* ‘ ? | ` “) in the Name field are replaced with underscores. Each

object in the event frame represents a specific level of the Recipe Model. However, the

relationship between the event frames and the Recipe Model is complicated by the possibility

of representing a recipe that lacks procedure or unit procedure levels. If the highest recipe

level is an operation or phase (that is, neither procedure nor unit procedure levels are

defined), event frames that correspond to Procedure and UnitProcedure level must be still

created by the interface.

Figure 6. Schematic of AF event frames organization.

Principles of Operation

20

Procedure

The root event frame is created for each batch defined in the data source, and represents the

Procedure in the Recipe. Each root event frame contains a collection of associated child

event frames that correspond to the Unit Procedures in the recipe. All records associated with

the source batch can be recorded in the Attributes collection of the event frame or in PI

Points. Because source batches can have identical BatchID and Recipe Names within the

same timeframe, the interface stores additional information in the Extended Properties of the

root event frame to match the source batch with an event frame. The Extended Properties are

a flat Name-Value collection. The Name is the BatchID of the source batch, which is

automatically assigned by the Batch Executive, and the value is the XML structure containing

the following batch properties: BatchID, Product, Formula Name, Recipe, Recipe Type, Start

Time UTC, End Time UTC, Interface Name, Interface ID, DataSource.

To maintain compatibility with PI Batch database, the root event frame Name is the BatchID

of the source batch. The “Recipe” (Procedure Name) and “Product” properties are stored as

the searchable attributes of the event frame. Below is the source batch property mapping to an

AF event frame.

Source Procedure
Properties

Event Frame Fields Event Frame
Attributes

Referenced
Elements

BatchID Name

Procedure Name Recipe

Product Product

Start Time Start Time

End Time End Time

 Template=”Procedure” default Attributes:
Recipe, Product

 Category=”OSIBatch”

The Procedure-level event frame can represent a merged object, which contains multiple

source batches with identical BatchIDs or a common subset of characters in its BatchID. The

Product and Recipe attributes contain data associated with the first source batch that started

the merged event frame. For each merged source batch, the interface creates a node in

Extended Properties of the event frame, named with the UniqueID of the source batch and the

value containing the XML containing the original source batch properties.

Note: A source batch can terminate unexpectedly without proper unloading by the
operator. The interface maintains such a batch in the local memory for 100 days,
after which the batch is considered abandoned and the interface closes the batch
with the latest known time stamp for this particular batch. The abandon timeout can
be changed using the command line parameter /abto=<days> (Abandoned Batch

Time Out).

UnitProcedure

A UnitProcedure-level event frame is created for each unit procedure as defined in the data

source. Each UnitProcedure-level event frame is created as a child of the Procedure-level

event frame and contains the subset of event frames that represent the source batch

Operation-level recipe. The start and end times of an event frame are intended to reflect the

onset and completion of physical processing in a unit. The parallel UnitProcedures are

PI Interface for GE iBatch Batch 21

supported completely by AF event frames. That is, the event frame End Time reflects the

actual end time of the source UnitProcedure,

The name field of the UnitProcedure-level event frames reflects an actual source batch

UnitProcedure name. To maintain compatibility with PI Batch database, the interface stores

the “BatchID” and the “Product” source batch properties as searchable attributes of the event

frame. The following table shows how a source unit procedure is mapped to event frame

fields and attributes.

Source
UnitProcedure
Properties

AF Event Frame Fields AF Event Frame
Attributes

Referenced
Elements

BatchID BatchID

UnitProcedure Name Name Procedure

Product Product

Start Time Start Time

End Time End Time

Unit Unit

 Template=”UnitProcedure” default Attributes:
BatchID, Procedure,
Product

 Category=”OSIBatch”

The UnitProcedure-level event frame properties do not change if the parent object is a

merged event frame. UnitProcedure event frames always contains the original BatchID and

Procedure name as defined in the source, unless the /tbid parameter was specified in the

command line. This parameter configures a stripped BatchID to be used for UnitProcedure

event frames objects and for all events to be stored in PIPoints and event frame attributes.

When Operation or Phase-level recipes are run, the interface uses the Operation/Phase name

as the UnitProcedure-level event frame name.

Operation Level

An Operation-level event frame is created for each Operation as defined in the data source.

Each Operation-level event frame is created as a child of the UnitProcedure-level event

frame, and contains the subset of event frames that represent the source batch Phase-level

recipe.

The Name field of these event frames reflects the source recipe Basic Function name. The

following table shows how a source operation recipe is mapped to event frame fields and

attributes.

Source Operation
Properties

Event Frame Fields Event Frame
Attributes

Referenced
elements

Operation Name Name

Start Time Start Time

End Time End Time

Unit Unit

 Template name
depends on the level in
hierarchy. For Operation
level

Principles of Operation

22

Template=”Operation”,
for Phase:
Template=”Phase”, etc.

 Category=”OSIBatch”

Phase

A Phase-level event frame is created for each Phase, as defined in the data source. Each

Phase-level event frame is created as a child of the Operation-level event frame and contains

the subset of event frames that represent the source batch Phase States-level recipe.

The name field of the Phase-level event frame reflects an actual source recipe Phase name.

Below is the source phase recipe mapping to event frame fields and attributes:

Source Phase
Properties

AF EventFrame Fields AF EventFrame
Attributes

Referenced
elements

Phase Name Name

Start Time Start Time

End Time End Time

Unit Unit

Phase Module Phase Module

 Template=”Phase”

 Category=”OSIBatch”

Phase State

A Phase State-level event frame is created for each Phase State, as defined in the data source.

Each Phase State-level event frame is created as a child of the Phase-level event frame and, if

configured, can contain the subset of event frames that represent the Phase Step objects. All

Phase States are sequential; the start of new Phase State ends the previous Phase State.

The self-terminating Phase States that set its end times are COMPLETE, ABORTED and

STOPPED. These Phase States have a zero-duration timeframe.

The name field of the Phase State event frames reflects an actual source recipe Phase State

name. Below is the mapping of source phase state to event frame fields and attributes:

Source Phase
State Properties

AF EventFrame Fields AF EventFrame
Attributes

Referenced
Elements

Phase State Name

Start Time Start Time

End Time End Time

Unit Unit

Phase Module Phase Module

 Template=”Phase State”

 Category=”OSIBatch”

Phase Step

An event frame is created for each Phase Step found in the data source as a child of the Phase

State-level event frame. Phase Steps are not S88-compliant and are unique to each particular

PI Interface for GE iBatch Batch 23

implementation and configuration of the Batch Execution System. By default, this level of

event frames is not enabled. To enable this feature, specify the optional switch /ras=<Start

Substring>, <End Substring> (Report As Step). Phase Steps are always created

beneath the first Phase State EventFrame Name = “RUNNING”, regardless of whether the

parent Phase State is ended. The Phase Step name and start/stop events come from the

“Descript” column. The triggering event is “Report”. If the parent Phase is not found, Phase

Steps do not create the higher-level Procedure-, UnitProcedure-, Operation- or Phase-level

event frames. If the Phase Step was not closed by the appropriate closing event, it is closed by

the end of the parent Operation-level event frame. Zero-duration Phase Steps are ignored.

Multiple sequential Start/End events are ignored, except the first one.

Below is the source phase step mapped to event frame fields and attributes:

Phase Step
Properties

AF EventFrame Fields AF EventFrame
Attributes

Referenced
elements

Unit Unit

Phase Module Phase Module

 Template=”Phase Step”

 Category=”OSIBatch”

PI AF Element Creation

The interface creates the PI AF elements that represent the source equipment hierarchy. PI

AF elements are created if needed when they are first encountered in the data source. The

following elements in the equipment hierarchy are maintained by the interface: Area, Process

Cell, Unit and Phase Module. By default, these elements reside at the root level of the

element collection. You can define an optional starting element path under which the

equipment hierarchy is created by specifying the /smp command line parameter. The default

structure of the PI AF elements hierarchy used by the interface is depicted in the following

figure.

Interface PI AF Element Structure

The interface automatically references PI tags for the unit and phase modules PI AF elements

through tag aliases if tag names contain unit and phase module names. If the tag name refers

to the unit and not the phase module, only the Unit Alias for this tag is created.

If the default equipment hierarchy is not feasible for any reason you can create a custom

equipment hierarchy using an equipment template, which is specified in the INI file

associated with the interface instance.

Principles of Operation

24

Foreign Language Support

The Batch interface supports languages other than English using a look-up table for

parameters and values. No translation is required to populate the PI Batch and PI Module

database.

The language translation syntax is as follows:

translate: <English value> = <translation>

Using translations, the interface can create and populate PI Tags and PI Properties from

templates defined using the native language. For example, consider the following tag

template:

Tag[1].Name = [UnitID] abc_[Parameter,value=”Bericht”]

Tag[1].Value = [Value]:def

Tag[1].type = string

Tag[1].unitalias = Some Bericht

Tag[1].Descriptor = Bericht for Unit: [UnitID]

Tag[1].EngUnits = just text

Property[1].Value = [TimeStamp] [Parameter,value=”Bericht”]

[UnitID]-[Value]

These templates are triggered by “Bericht” (the German word for “Report”), which is found

in the data source, and the tag name and PI Property value are based on the native language

parameter name. For example, for a row with a unit field containing “U101” and an

associated value field containing “testing”, the resulting PI Tag name is “U101 abc_Bericht”

and the resulting tag value is “testing:def”.

With the use of language translations we can create tag where foreign word/phrase is replaced

with translated word/phase. For example:

 translate: "Bericht" = "Report"

 translate: "testing" = "1"

The resulting tag name is "U101 abc_Report" and the resulting tag value is "1:def".

The same logic applies to property template definitions. Translations are not case-sensitive.

Language translations don’t have to be defined before tag or property templates; they can be

defined anywhere in the INI file.

Initialization File

The initialization (INI) file is where you specify the interface configuration, including data

sources, translations, and templates for products, equipment, tags and properties. The INI file

is named PIGEIB<serviceid>.ini. Specify each parameter on its own line, using the

syntax parameter = setting. Precede comments with two forward slashes (//).

Following is an example INI file. For details about specific settings, refer to the descriptions

of templates and batch data processing in this chapter.

[General]

[Source Template]

source[1].evtdir = “C:\test\evt”

source[1].evtdir = \\testbox2\journals\evt

PI Interface for GE iBatch Batch 25

// [Basic Tag template, triggered on Event=Report, aliases are

created as tag name]

Tag[1].Name = [Unit]_[PhaseModule]_Report

Tag[1].Value = [Pval]

Tag[1].Type = float

// [Tag template with custom aliases, triggered on Event=Owner

Change]

Tag[2].Name = [Unit]_[PhaseModule]_Owner Change

Tag[2].Value = [time]_[Descript]

Tag[2].Type = string

Tag[2].unitalias = [PhaseModule] Owner Change Me

Tag[2].phasealias = Owner Change Me

// [Tag template with custom aliases, triggered on set of

events defined as triggers]

// [Note: Unitalias and Phasealias are NOT going to be created

since there are no Unit or Phase

// Module defined in the tag name]

Tag[3].Name = Generic Tag

Tag[3].Value = [time]_[Event]_[BatchID]_[pval]

Tag[3].Type = string

Tag[3].trigger = Report

Tag[3].trigger = Owner Change

Tag[3].trigger = Operator Prompt

Tag[3].unitalias = [phasemodule] abcd

Tag[3].phasealias = testing

[Property Template]

Property[1].Value = [Time] State Change [Descript] [pval]

Event Logging

The interface can store incoming events to the PI Properties hierarchy of the PI Batch or AF

Event Frame Attributes when the events match triggering events defined in Property

Templates. The interface can create new PI Tags (and link them to a unit and phase module

with a PI Aliases) when incoming events match triggering events defined in Tag Templates.

In the following sections, “Placeholder” indicates the data source column name that is

available to interface. The placeholder is normally delimited by square brackets []. Angle

brackets (< >) indicate an exact match in any field of an incoming event. All placeholders are

replaced by the actual field data during processing.

The following tables describe supported placeholders.

Principles of Operation

26

Generic Placeholders

Place Holder Description

[TIMESTAMP] or [TIME] Timestamp of the event. For internal interface events [EVENT,
value=”PIEVENT”] this placeholder refers either to start or end of the
destination time interval. For all other events this placeholder contains
the timestamp of the event..

[TAG] Refers to PI Server PI Point.

Data Source - Parameter Data Placeholders

Placeholder Description

[DESCRIPT] Description

[EVENT] Event

[PVAL] Parameter value

[EU] Engineering units

[AREA] Process area

[PROCESSCELL] Process cell

[UNIT] Unit name

[PHASEMODULE] Phase name

[USERID] or [USER] User name

[UNIQUEID] UniqueID

Interface Internal Placeholders

These placeholders are applicable when the triggering expression contains
[Parameter, value=”PIEVENT”].

Place Holder Description

[BATCHID] String value that is stored as PIBatch BatchID and PIUnitBatch
BatchID property.

For a top-level Event Frame, it is the Name property. For second-level
Event Frame, it refers to the Attribute “BatchID”.

[PROCEDURE] Refers to value stored at level=1 of the batch hierarchy. For PIBatch
DB this is PIBatch “Recipe” property.

For AF Database, this is top level Event Frame “Recipe” Attribute.

[UNITPROCEDURE] Refers to value stored at level=2 of the batch hierarchy. For PIBatch
DB this is PIUnitBatch “Procedure” property.

For AF Database, this is Event Frame “Name” property.

[OPERATION] Refers to value stored at level=3 of the batch hierarchy. For PIBatch
DB this is PISubBatch “Name” property.

For AF Database, this is Event Frame “Name” property.

[PHASE] Refers to value stored at level=4 of the batch hierarchy. For PIBatch
DB this is PISubBatch “Name” property.

For AF Database, this is Event Frame “Name” property.

[PHASESTATE] Refers to value stored at level=5 of the batch hierarchy. For PIBatch
DB this is PISubBatch “Name” property.

For AF Database, this is Event Frame “Name” property.

[PHASESTEP] Refers to value stored at level=6 of the batch hierarchy. For PIBatch
DB this is PISubBatch “Name” property.

For AF Database, this is Event Frame “Name” property.

PI Interface for GE iBatch Batch 27

Place Holder Description

[UNIT] Refers to the name of the unit.

For Module DB this is PIModule “Name” property.

For AF Database, this is AF Element “Name” property.

The following wildcards can be used in any property field of Tag or Property Templates.

Wildcard Description

single digit numerical value (0-9)

@ single alpha character (a-z, A-Z)

? any single valid symbol

* An array of valid symbols

! repeat previous mask symbol

For example:

Tag[1].Name = [Parameter, value=”Temp_Sens*”

Note that specifying [Parameter] in a trigger expression is

equivalent to specifying [Parameter, value=”*”]. For maximum

efficiency, specify an exact match. For example:

Tag[1].Trigger = [Parameter, value=”Recipe Data”]

Advanced Parsing Parameters

Each placeholder can contain parameters that parse incoming data. The syntax is as follows:

[placeholder, <comma-separated parameter list>]

The names of parameters, placeholders, and value substrings are not case-sensitive. If

additional parameters are used for at least one placeholder, then in case of resulting substring

returning empty set, the whole template will be set to blank. To search all the fields of an

incoming event, specify the * wildcard for the placeholder.

The following table lists valid parameters.

Parameter Description

VALUE=”substring” or

“mask”
Defines the value to search for in a particular column. Masks are
allowed. If ‘*’ (search all event fields) is used instead of Name of
Placeholder [*,value=”test”] is equivalent to <test>

LBE=”substring”

Optional

Left Bound Exclusive substring. Defines the left bound of the target

substring value. The resulting substring does not include the LBE
defined boundary substring.

LBI=”substring”

Optional

Left Bound Inclusive substring. Defines the left bound of the target

substring value. The resulting substring includes the LBI defined
boundary substring.

RBE=”substring”

Optional

Right Bound Exclusive substring. Defines the right bound of the
target substring value. The resulting substring does not include the
RBE defined boundary substring.

RBI=”substring”

Optional

Right Bound Inclusive substring. Defines the right bound of the target
substring value. The resulting substring includes the RBI defined
boundary substring.

Delim=”substring”

Optional

Delimiter character or substring. Must be used in conjunction with the
Count parameter. This parameter defines the field separator. If used,
it narrows the resulting substring to the substring contained within
delimiters, where the starting delimiter index is specified by the count

Principles of Operation

28

Parameter Description

parameter.

Note: Right and left boundary substrings can be specified as well, to

parse the delimited substring.

Count=#

Optional

Index of the delimiter from which to start parsing. Must be used in
conjunction with the Delim parameter.

For example, assume that [Value] column field contains the following data:

|U:browntod|C:SP_CHARGE_AMOUNT|O:1200|N:1123|E:kg|M:Local

The following table shows examples of placeholder parameter combinations and the resulting

data.

Placeholder syntax Resulting substring

[value] |U:browntod|C:SP_CHARGE_AMOUNT|O:1
200|N:1123|E:kg|M:Local

[value, lbe=”N:”] 1123|E:kg|M:Local

[value, lbi=”N:”] N:1123|E:kg|M:Local

[value, rbe=”tod”] |U:brown

[value, rbi=”tod”] |U:browntod

[value, lbe=”U:”, rbe=”|”] Browntod

[value, lbi=”U:”, rbe=”|”] U:browntod

[value, lbe=”O:”, rbi=”kg”] 1200|N:1123|E:kg

[value, delim=”|”,count=3] O:1200

[value, delim=”|”,count=3,lbe=”O:”] 1200

[value,
delim=”|”,count=2,lbe=”C:SP”,rbe=”UNT”]

_CHARGE_AMO

[value, delim=”|”,count=6,lbe=”M:”] Local

Attribute/Property Templates

When the interface is configured to use a PI AF Server, batch data is stored as event frames

and batch-associated data is stored in AF attributes. AF attributes are part of each event frame

that enable batch data to be stored with the each event. All levels of the event frame hierarchy

can store batch data in AF attributes.

When the interface is configured to run only against the PI Server, batch-recipe-associated

data can be stored at the PIBatch level (root level) of the recipe hierarchy only by using the

PIProperties collection, due to PI Server limitations. To maintain the recipe hierarchy,

PIProperties are organized as a recipe tree, where each PIProperty node is the name of the

recipe level, (procedure, unit procedure, operation, or phase). The data is stored in name-

value lists under each node.

Note: The batch PI Properties collection has a limitation of 1Mb per PIBatch object.
To avoid this limitation, do not store all incoming events into a batch PIProperties
collection.

By default the interface does not store batch associated data in PIProperties. To store data in

PIProperties, use Property Templates that define the subset of events and the associated

PIProperty value structure for each event to be stored in PIProperties. The Property

PI Interface for GE iBatch Batch 29

Templates are not case sensitive and are defined in the INI file associated with the interface

instance. The Property Template can define only PIProperty values, not PIProperty names.

Each PIProperty event name under the same PIProperty node must be unique. Event names

are assigned as “Event_<event count>”, where <event count> is the current number of events

already stored under the PI Property node. To configure the templates, use the

Attribute[index] or Property[index] keywords as follows:

Property[index].Name = free text with or without placeholders

(hierarchy supported) (optional)

Property[index].Value = free text with or without placeholders

Property[index].Trigger = free text with or without placeholders

Property[index].Translate = true/false (default: false)

Property[index].EngUnits = free text with or without placeholders

(AF only)

Property[index].Type = integer/float/string/auto

Property[index].Category = free text with or without placeholders

(AF only)

Attribute[index].Name = free text with or without placeholders

(hierarchy supported) (optional)
Attribute[index].Value = free text with or without placeholders

Attribute[index].Trigger = free text with or without placeholders

Attribute[index].Translate = true/false (default: false)

Attribute[index].EngUnits = free text with or without

placeholders (AF only)

Attribute[index].Type = integer/float/string/auto

Attribute[index].Category = free text with or without

placeholders (AF only)

Specify placeholder names in square brackets. The triggering expression must be embedded

in the Value Structure or specified through explicit Trigger(s). Specifying multiple

placeholders in a single triggering expression is treated as AND logic and specifying multiple

trigger expressions is treated as OR logic.

If the source Engineering Units (UOM) do not match the AF Server Units of Measure

(UOM), define a conversion using the UOMMAP keyword. The syntax is as follows:

UOMMAP: <Source UOM> = <AF UOM>

Example:

UOMMAP: \\B0\\C = DEGC

To write Properties under the UniqueID PIProperty node, regardless of the source recipe

sublevel from which the triggering event originated, specify “$” as the first element in name

path, as shown below:

Property[1].Name = $\[Parameter]

Attribute[1].Name = $\[Parameter]

To write Properties under the PIBatch root PIProperties, regardless of the level of the source

recipe from which the triggering event originated, specify the @ symbol as the first element

in name path, as shown below:

Property[1].Name = @\[Parameter]

Attribute[1].Name = @\[Parameter]

Principles of Operation

30

Property Template Description

Template Name Allowed
Placeholders

Description

Property[#].Name

Or

Attribute[#].Name

Optional

[TIME]

[BATCHID]

[PROCEDURE]

[UNITPROCEDURE]

[OPERATION]

[PHASE]

[PHASESTATE]

[PHASESTEP]

[DESCRIPT]

[EVENT]

[PVAL]

[EU]

[AREA]

[PROCESSCELL]

[UNIT]

[PHASEMODULE]

[USERID] or [USER]

[UNIQUEID]

[*,value=”Exact Field”],

[*,value=”Field Mask”],

 or advanced parsing

Defines the Name structure of the PIProperty.
The triggering expression or Event Type must be
embedded in the value structure. PIProperty
Names under the same PIProperty must be
unique.

If Template Property - Name is not defined, the
PI Property names are created automatically by
the interface as

Event_(Same Node Event Count).

If Name is defined and there is an event that
results in a PIProperty Name already existing in
PI Server, the interface replaces the existing
PIProperty value with the new one.

Each incoming event can trigger multiple
Property Templates, if defined in each template
as a triggering event.

In the Name property, the hierarchy of names is
supported.

Example

Property[1].Name =

Materials\[Parameter]

If the Property Template is triggered, the
interface creates under proper Recipe PIProperty
– PI Property “Materials” and as child property –
the value of the [Parameter] placeholder.

By default all properties are placed under the
particular recipe nodes in PIProperties that
correspond to the recipe structure created in
PIBatch database.

Starting with version 2.0.0.1, parameter data
from any level of the source recipe hierarchy can
be placed at the root level of the PIBatch
PIProperties object by specifying the $ as the
first node name in path. For example:

Property[1].Name = $\[Parameter]

If [Parameter]=”Recipe Data” and the Property
Template is triggered, the interface creates the
property named as “Recipe Data” under the
specific root UniqueID PIProperty

Property[#].Value

Or

Attribute[#].Value

Required

Same as for Name.

And

[TAG]

Defines the value structure of the PI Property.
The triggering expression or Parameter Name
must be embedded in the value structure.
Because PI Property Names under the same PI
Property Node must be unique, the property
names are created automatically by the
interface. Each incoming event can trigger
multiple Property Templates, if defined in each
template as a triggering event.

Property Template Value is a string with optional
placeholders. The placeholder is the name of the
source column. For each incoming event, the
placeholder is replaced by the corresponding

PI Interface for GE iBatch Batch 31

Template Name Allowed
Placeholders

Description

field from the event structure.

You can specify the exact value or a value mask
using wildcards. If no match is found in
predefined/any event fields, the whole property
template is ignored.

For the “State Change” parameter, the Property
Template can be defined as follows:

Property[1].Value = [BatchID] |

event: [Parameter, value=“State

Change”] | val: [Value]

Or using a mask:

Property[1].Value = [BatchID] |

event: [Parameter, value=“State

Ch*”] | val: [Value]

Property[#].Trigger

Or

Attribute[#].Trigger

Optional

Same as for Name
Property except

[TIME]

Defines the triggering expression or Parameter
Name that used to create and populate PI
Properties. If trigger is defined, it overrides any
triggering expression in Value property. You can
define multiple triggers for a single template
property.

To trigger a particular template, the interface
uses the placeholders embedded in the
expression, which are treated as AND logic. Use
multiple triggering expressions to create OR
logic.

Example:

Property[1].Trigger =

[Parameter, value=”State

Change”]

Property[1].Trigger = [Value,

value=”test”]

Using mask:

Property[1].Trigger =

[Parameter, value=”State Ch*”]

Property[1].Trigger = [Value,

value=”tes*”]

Property[#].Translate

Or

Attribute[#].Translate

Optional

Values:

true/false

To enable translation, set to true.

Property[#].Type

Or

Attribute[#].Type

Optional

String

Float

Integer

Defines the type of the PIProperty or AF Attribute
depending on whether the PI Server or AF
Server hosts batch data.

Property[#].Category

Or

Attribute[#].Category

Optional

Same as for Name
property

Defines the AF Attribute Category property. This
property can be used for grouping of the
attributes.

Principles of Operation

32

Template Name Allowed
Placeholders

Description

AF Only

Attribute[#].UOM

Or

Attribute [#].EngUnits

Or

Attribute[#].EU

Optional

AF Only

Same as for Name
property

Defines the Engineering Units (Units of Measure)
for the specific AF Attribute. Allowed
placeholders are not case sensitive.

For example, assume the Property Template is defined in in the INI file as follows:

Property[1].Value=[TimeStamp]: Parameter:<REAC_TEMP*> |

V:[Value]_Testing

The index (1) identifies the template that was used to create this particular PIProperty event

structure. The text string after the equal sign (=) specifies the structure.

Following is an incoming event from the data source:

[TimeStamp]=”12/01/2008 12:01:05”

[Parameter]=REAC_TEMP_SP

[Value]=25.00000

After the interface processes the event using the example template, the following PIProperty

value is added to the PIBatch object:

12/01/2008 12:01:05: Parameter:REAC_TEMP_SP | V:25.0000_Testing

Tag Templates

The Batch interface can store batch-associated data in PI Points, commonly known as tags.

Every Event Type emitted by the data source can be recorded in the PI Server. By default,

interface does not create tags or populate them with events. You enable this functionality by

defining Tag Templates in the INI file associated with each interface instance. The INI file

must have the same filename and an extension of INI. By default the INI file is located in the

same directory as the startup file. If it is in a different directory, specify its location using the

/inifile=<full path filename> command line parameter.

Using Tag Templates you can define structures for tag name, tag data type, tag value, unit

alias name, phase module alias name, engineering units and descriptor properties. The

timestamp for each tag event is obtained directly from the data source. The tag name

structure, tag value structure and tag type properties must be configured; all other properties

are optional. If only tag name is defined, define the triggering “parameter name” as part of

the tag name structure. If an explicit trigger is defined, the tag creation and population is

based on the parameter type defined in the .Trigger property, overriding the parameter name

in tag name (if defined). Multiple tag templates can be triggered by the same source

“parameter name” and a single template can be triggered by multiple source “parameter

names”.

Multiple tag templates can write to the same PI tag (if the .Name attribute of the tag

templates resolves to the same PI tag name), which is useful when you want different values

to be written to the same PI tag depending on the trigger for each.

PI Interface for GE iBatch Batch 33

Note: Explicit triggers override the Tag Name embedded triggering.

You can specify the tag value type. Valid types are float, integer and string. If the value type

is not specified, the batch interface creates a string PI Point and treats all event values as

strings.

Tag[index].<Property> = Free text

The index also serves as the Location2 value in the PI Point attributes and identifies which

Tag Template created the point.

Possible Tag Template <Property> definitions:

Tag[index].Name = Name structure (with embedded triggering Event

Type or Event Type Mask or Expression)

Tag[index].Value = Event value structure as free text

Tag[index].Trigger = Event Type or Event Type mask or Expression

Tag[index].Type = string/integer/float

Tag[index].UnitAlias = unit tag alias name structure (default: as

.Name)

Tag[index].Descriptor = value structure as free text (default:

blank)

Tag[index].EngUnits = value structure as free text (default:

blank)

Tag[index].Translate = true/false (default: false)

Tag[index].Annotation = free text with or without placeholders

Tag[index].Annotation2 = free text with or without placeholders

If the name structure contains placeholders, the tag template is triggered only if the incoming

event contains values for all the placeholders in the name structure.. The event value structure

does not have this limitation: placeholders can be replaced with empty fields unless you have

configured advanced field value parsing.

The following table lists the properties, values and placeholders that can be used to define

value/name structures.

Tag Template Description

Template Property
Name

Allowed
Placeholders

Description

Tag[#].Name

Required

[BATCHID]

[PROCEDURE]

[UNITPROCEDURE]

[OPERATION]

[PHASE]

[PHASESTATE]

[PHASESTEP]

[DESCRIPT]

[EVENT]

[PVAL]

[EU]

[AREA]

[PROCESSCELL]

[UNIT]

[PHASEMODULE]

[USERID] or [USER]

Defines the name structure of the tag. The triggering
Parameter or expression can be specified in either the
Tag[#].Name or in Tag[#].Trigger properties.

The tag name structure can contain the exact word or
phrase (specified within angled brackets <…> or as
[*,value=”…”]) to be found in any fields of the incoming
event. If the column is known, use the advanced parsing
described above. For example, desired column is “Event”
and value is “Report”, the placeholder can be defined as
[Event,value=”Report”]. The word or phrase can be also
detected by specifying a mask with wildcards.

For example, assume the incoming Descript column
contains a field called B10_OP_CIP100. To create a tag
when this descriptor is encountered, specify the tag
name template as follows:

Tag[1].Name = [unitid]

<B10_OP_CIP100> REPORT_RATE.

Or, using a mask:

Principles of Operation

34

Template Property
Name

Allowed
Placeholders

Description

[UNIQUEID]

[*,value=”Exact Field”],

[*,value=”Field Mask”],

 advanced parsing

Tag[1].Name = [unitid] <B10_OP_CI*>

REPORT_RATE.

The triggering event can be specified using mask; for
example:

Tag[1].Name = [unitid] <B10_OP_CI*>

<REPORT_R*>

Each incoming event can be used to create/populate
multiple PI Tags, if it is defined as a triggering event in
multiple Tag Templates.

Tag[#].Value

Required

Same as Name, and

[TIME]

[TAG]

Defines the event value structure for the specific PI
Point. The event timestamp is taken from the incoming
event’s [TimeStamp] field.

Tag[#].Type

Required

String

Float

Integer

Defines the type of the PI Point to be created and how to
treat the events written to this tag. For Compliance Suite
tag template, this property must be set to “string”

Tag[#].Trigger

Optional

Same as for Name
property except
[TIME]

Defines the triggering parameter name or expression
used to create and populate PI tags. If a trigger is
defined, it overrides any triggering parameter or
expression in the Name property. There can be multiple
triggers defined for a single template tag.

Placeholders in expressions trigger particular templates.
Placeholders are treated as AND logic. To specify OR
logic, use multiple triggering expressions..

Example:

Tag[1].Trigger = State Change

Using a mask:

Tag[1].Trigger = State Ch*

Using a triggering expression with two placeholders:

Tag[1].Trigger=[Event,value=”State*]

[Pval,value=RUNNING”]

This expression triggers the tag template only if both
conditions are met.

Tag[#].UnitAlias

Optional

Same as for Name
property

Defines the unit-level alias name structure for a specific
template tag. The field can be specified as an exact
phrase or using a mask. Starting with interface version
1.0.1.0, an optional sub unit module path can be
specified in the alias name. Use backslashes to separate
parent and child modules and use the pipe (“|”) symbol to
separate the module path and the actual alias name.

By default, the interface uses the Name property as the
unit-level alias name and the [unitid] module as the alias
location. The names for PI Aliases must be unique.

Starting with version 1.0.2.0, you can create aliases on
PI modules based on an absolute module path: specify
the ‘$’ sign as the first module in the module path. ‘$’
stands for root module, which can be specified using the
/smp=<Start Module Path> command line parameter. If
the /smp is omitted, ‘$’ defaults to the PI MDB root node.

Example 1: This alias is going to be created on

particular [Unitid] module with alias name as State

alias

Tag[1].UnitAlias = State alias

Example 2: This alias is going to be created under

[Unitid]\ABC\def with alias name template as

PI Interface for GE iBatch Batch 35

Template Property
Name

Allowed
Placeholders

Description

State alias

Tag[2].UnitAlias = ABC\def | State

alias

Example 3: If no module root is specified and

[Unitid]=”U101, the interface is going to create hierarchy
as (PI MDB) \ abc_U101 And place an alias under
“abc_U101” node.

Tag[3].UnitAlias = $ \ abc_[Unitid] |

State alias

Tag[#].Descriptor

Optional

Same as for Name
property

Defines the Tag Descriptor structure for the specific PI
Point.

Tag[#].EngUnits

Optional

Same as for Name
property

Defines the Engineering Units (EngUnits) structure for
the specific PI Point.

Tag[#].Translate

Optional

Values: true/false Set to true to enable translation of words and phrases in
Name, Value, UnitAlias, PhaseAlias, Descriptor and
EngUnits.

Tag[#].Annotatio

n

Optional

Same as Name
property

Enables you to annotate each value written to PI Server
using the specific Tag Template. The annotation is
written to PI as a string value.

Example: Tag[1].Annotation = [BatchID]

Tag[#].Annotatio

n2

Optional

Same as Name
property

Enables you to annotate each value written to PI Server
using the specific Tag Template. The annotation is
written to PI as a NameValue object.

Example: Tag[1].Annotation2 = [BatchID]

Example:

The Tag Template is defined in INI file as follows:

Tag[1].Name= Test Set Point [Unitid] [Parameter,value=”REAC_TEMP*”]

Tag[1].Value= P: [Parameter] | V:[Value] | Testing

Tag[1].Type = string

Tag[1].UnitAlias = Temperature Set point for [Parameter]

Tag[1].EngUnits = oC

Tag[1].Descriptor = Sample Temperature Set Point for

Reactor:[Unitid]

Tag[1].Annotation=[BatchID]

Assume that incoming event from data source contains the following data:

[BatchID]=Batch_123

[TimeStamp]=”12/01/2008 12:01:05.123”

[Parameter]=REAC_TEMP_SP

[Value]=25.00000

[Unitid]=U101

The resulting PI Tag name is “Test Set Point U101 REAC_TEMP_SP”

Because the [Unitid] placeholder is defined in Tag Name Template, the interface finds or

adds the following alias for PI Tag on unit U101: “Temperature Set point for

REAC_TEMP_SP”.

Principles of Operation

36

When the PI Tag and alias are verified, the following event value is added to the point:

Event Timestamp Event Value

12/01/2008 12:01:05.123 P: REAC_TEMP_SP | V:25.00000 | Testing

Because the Annotation property is define in the tag template, the preceding value is

annotated with the text “Batch_123”

Example

In the following scenario, the parameter name must not be in the tag name and the tag type

must be float. The following template configures the desired behavior:

Tag[1].Name= Test Set Point [Unitid]

Tag[1].Value= [Value]

Tag[1].Type = float

Tag[1].Trigger = [Parameter,value=”REAC_TEMP*”]

Tag[1].UnitAlias = Temperature Set point for [Parameter]

Tag[1].EngUnits = oC

Tag[1].Descriptor = Sample Temperature Set Point for

Reactor:[Unitid]

The interfaces uses the preceding template to process the following incoming event:

[TimeStamp]=”12/01/2008 12:01:05.123”

[Parameter]=REAC_TEMP_SP

[Value]=25.00000

[Unitid]=U101

The Tag template is triggered when the parameter = “REAC_TEMP_SP” is found in the

incoming event. When the template is triggered, the actual PI Tag name is set to “Test Set

Point U101”. Because the [Unitid] placeholder is defined, the interface finds or adds the

following alias for the PI Tag on unit U101: “Temperature Set point for REAC_TEMP_SP”.

When the PI Tag and alias are verified, the following event value is added to the point:

Event TimeStamp Event Value

12/01/2008 12:01:05.123 25.0

Tag Templates – Logging PI Batch Database Activity

The Batch Interface can log its activity in the PI Batch database by generating its own

PIEvents. These events are based on the logic that the interface uses to trigger PI Batches,

PIUnitBatches, and PISubBatches (Operations, Phases). You can configure Tag Templates

triggered by these PIEvents to write batch-triggering data to PI tags, which can be used for

reporting purposes in PI client tools.

PIEvent records have the following placeholders and values, which can be used in the

.Trigger attribute of the tag template:

Placeholder Values Description

[EVENT] PIEVENT All PIEvents must trigger on [EVENT,
value="PIEVENT"]

[DESCRIPT] BATCH

UNITBATCH

OPERATION

PHASE

The DESCRIPT column contains the batch
level you want to trigger on. For example:

[DESCRIPT,

value="UNITBATCH"]

PI Interface for GE iBatch Batch 37

Placeholder Values Description

Or

[DESCRIPT, value="PHASE"]

[PVAL]

Or

[VALUE]

START

END

The PVAL column contains either the start
event or end event associated with the
defined DESCRIPT. For example:

[PVAL, value="START"]

Or

[PVAL, value="END"]

Multiple tag templates can write to the same PI tag, if the .Name attribute of the tag templates

resolves to the same PI tag name. This feature is useful when you want different values to be

written to the same PI tag dependent on the trigger for each. For example, a value of 1 can be

written to the tag when the UnitBatch starts and a value of 0 can be written to the same tag

when the UnitBatch ends.

The following placeholders are useful when defining the tag template (especially for the

.Value tag template attribute):

Placeholder Description

[BATCHID] The Batch ID Name

[PRODUCT] The Product Name

[PROCEDURE] The PIBatch Procedure (Recipe) Name

[UNITPROCEDURE] The PIUnitBatch Procedure Name

[OPERATION] The Operation Name

[PHASE] The Phase Name

[PHASESTATE] The Phase State Name

[PHASESTEP] The Phase Step Name

PIEVENT Example 1: PIBatch Active Tag

Tag[11].Name=BESName:PIEvent.Batch.Active

Tag[11].Value=BATCH START: [BatchID] |Prod: [PRODUCT] |Rec:

[PROCEDURE]

Tag[11].Trigger=[EVENT,value="PIEVENT"] [DESCRIPT, value="BATCH"]

[PVAL,value="START"]

//// SAME TAG

Tag[12].Name=BESName:PIEvent.Batch.Active

Tag[12].Value=BATCH END: [BATCHID] |Prod: [PRODUCT] |Rec:

[PROCEDURE]

Tag[12].Trigger=[EVENT,value="PIEVENT"] [DESCRIPT, value="BATCH"]

[PVAL,value="END"]

Principles of Operation

38

PIEVENT Example 2: PIUnitBatch Active Tag

Tag[21].Name=BESName:[UNIT].PIEvent.UnitBatch.Active

Tag[21].Value=1

Tag[21].Type=integer

Tag[21].UnitAlias=PIEvent.UnitBatch.Active

Tag[21].Trigger=[EVENT,value="PIEVENT"] [DESCRIPT,

value="UNITBATCH"] [PVAL,value="START"]

//// SAME TAG

Tag[22].Name=BESName:[UNIT].PIEvent.UnitBatch.Active

Tag[22].Value=0

Tag[22].Type=integer

Tag[22].UnitAlias=PIEvent.UnitBatch.Active

Tag[22].Trigger=[EVENT,value="PIEVENT"] [DESCRIPT,

value="UNITBATCH"] [PVAL,value="END"]

PIEVENT Example 3: PIUnitBatch BatchID Tag

Tag[31].Name=BESName:[UNIT].PIEvent.UnitBatch.BatchID

Tag[31].Value=[BATCHID]

Tag[31].UnitAlias=PIEvent.UnitBatch.BatchID

Tag[31].Trigger=[EVENT,value="PIEVENT"] [DESCRIPT,

value="UNITBATCH"] [PVAL,value="START"]

//// SAME TAG

Tag[32].Name=BESName:[UNIT].PIEvent.UnitBatch.BatchID

Tag[32].Value=Inactive

Tag[32].UnitAlias=PIEvent.UnitBatch.BatchID

Tag[32].Trigger=[EVENT,value="PIEVENT"] [DESCRIPT,

value="UNITBATCH"] [PVAL,value="END"]

PIEVENT Example 4: Phase Active Tag

Tag[41].Name=BESName:[UNIT].PIEvent.Phase.Active

Tag[41].Value=PHASE START:

[PROCEDURE]\[UNITPROCEDURE]\[OPERATION]\[PHASE]

Tag[41].UnitAlias=PIEvent.Phase.Active

Tag[41].Trigger=[EVENT,value="PIEVENT"] [DESCRIPT, value="PHASE"]

[PVAL,value="START"]

//// SAME TAG

Tag[42].Name=BESName:[UNIT].PIEvent.Phase.Active

Tag[42].Value=PHASE END:

[PROCEDURE]\[UNITPROCEDURE]\[OPERATION]\[PHASE]

Tag[42].UnitAlias=PIEvent.Phase.Active

Tag[42].Trigger=[EVENT,value="PIEVENT"] [DESCRIPT, value="PHASE"]

[PVAL,value="END"]

PI Interface for GE iBatch Batch 39

Using PI Tags as Data Sources

You can configure existing PI Tags as input data sources. Based on the batch event-triggering

mechanism, the interface can read data from PI Tags and write results into new data

structures defined by Tag and Property Templates. To configure a tag as a data source, use

the following syntax:

[Tag, Name=”PI Tag Name”, <list of parameters delimited by comma>

Valid parameters are as follows:

Parameter Description

Name="string"

Required

The name of the PI Tag from which data is retrieved.

Range="substring"

Optional

The time frame for which the data is queried. It can be number of
events, time frame or “PIOBJECT”. “PIOBJECT” instructs the
interface to use the time frame of the related PI
batch/unitbatch/subbatch object

Examples:

Range=”10”: The last ten events from triggered batch event
timestamp

Range=”10d”: The events for last 10 days.

Range=”PIOBJECT”: The events for the time frame of the
related batch object start and end times are retrieved.

Func=”substring”

Optional

In conjunction with Range parameter, specifies the aggregation
function to be used on retrieved data. Possible values for this
parameter:

“MIN”: Minimum value over the range.

“MAX”: Maximum value over the range.

“TOTAL”: Sum of values over the range.

“MID”: Average of values over the range.

Advanced parsing parameters can be used in the [Tag] placeholder.

Property Template Example:

Property[1].Name = TestTagCalc

Property[1].Value = total:[Tag, name="sinusoid", range="10d",

func="TOTAL"] and min:[Tag, name="test_data_1", range="10d",

func="MIN"]

Property[1].Trigger = [Parameter, value="PIEVENT"] [Descript,

value="BATCH"] [Value, value="START"]

In this example, the Property Template is triggered on the internal event that is thrown when

the PI Batch is created (started). This template creates a PI Property named “TestTagCalc”

under the batch with string values from two tags: “sinusoid” and “test_data_1”. If, for the

specified time range, the sum of event values for “sinusoid” is 1000 and the minimum for

“test_data_1” is -25.123, the following name and value combination is written to PI Batch

Properties:

TestTagCalc = total:1000 and min:-25

Principles of Operation

40

Tag Template Example 1:

Tag[1].Name = Global Tester 1

Tag[1].Value = [Tag,name="test4_data", range="10d", func="total"]

Tag[1].Trigger = [Parameter, value="PIEVENT"] [Descript,

value="BATCH"] [Value, value="START"]

In this example, the Tag Template is triggered on the internal event that is thrown when the

PI Batch is created (started). The result is written to a PI Tag named “Global Tester 1”. If, for

the time range, the sum of event values for the “test4_data” PI Tag is 1234, the following

value is written to “Global Tester 1”:

Timestamp: (batch start)

Value: 1234

Tag Template Example 2:

Tag[2].Name = Global Tester 2

Tag[2].Value = [Tag,name="test2_data", range="PIOBJECT",

func="total"]

Tag[2].Trigger = [Event,value="PIEVENT"] [Descript,

value="BATCH"] [Value, value="START"]

The result is calculated for the batch’s full time range.

Tag Template Example 3:

Tag[3].Name = Global Tester 3

Tag[3].Value = [Tag,name="test2_data]

Tag[3].Trigger = [Parameter, value="State Change"] [Descript,

value="running"]

The Tag Template is triggered on the Siemens batch event “State Change” when the

descriptor field is “RUNNING”. The resulting tag name is “Global Tester 3” and the value is

taken from PI Tag “test2_data” at the timestamp of the Siemens batch event.

Recipe Templates

Starting with version 2.0.0.1, the interface supports recipe templates. Recipe templates enable

you to redefine the recipe name convention used for PIBatch, PIUnitBatch and PISubbatch

object definitions. The syntax for recipe templates is as follows:

Recipe[index].Name= Free text
Recipe[index].BatchID = Free text

Recipe[index].ModulePath = Free text defining path

Recipe[index].Product = Free text

Recipe[index].ProductTrigger = Triggering expression

Recipe[index].Translate= true/false or 1/0

Recipe[index].Merge = true/false or 1/0

Recipe[index].Category = Free text

Recipe[index].Category[Index2].Name = Free text

Recipe[index].Category[index2].Trigger = Free text

Recipe[index].Template = Free text

Recipe[index].Template[Index2].Name = Free text

Recipe[index].Template[index2].Trigger = Free text

Recipe[index].Attribute[index2] – Enables you to define an

attribute template for specific Recipe level.

PI Interface for GE iBatch Batch 41

The index specifies the level in the recipe hierarchy, starting at 1 for procedure. The

following table lists the placeholders that can be used in a Name template.

Template Name Allowed Placeholders
in Value

Value Description

Recipe[#].Name

Required

 [BATCHID]

[PROCEDURE]

[UNITPROCEDURE]

[OPERATION]

[PHASE]

[PHASESTATE]

[PHASESTEP]

[DESCRIPT]

[EVENT]

[PVAL]

[EU]

[AREA]

[PROCESSCELL]

[UNIT]

[PHASEMODULE]

[USERID] or [USER]

[*,value=”Exact Field”],

[*,value=”Field Mask”],

 advanced parsing

Defines the naming convention used by the
interface to create PIBatch, PIUnitBatch and
PISubbatch objects. The index (#) specifies
the level in the recipe hierarchy as follows:

1: Procedure (PIBatch Recipe field)

2: Unit Procedure (PIUnitBatch Procedure)

3: Operation (PISubBatch Name field)

4: Phase (PISubBatch Name field)

Defaults:

Recipe[1].Name=[Procedure]

Recipe[2].Name = [UnitProcedure]

Recipe[3].Name=[Operation]

Recipe[4].Name=[Phase]

Example

Recipe[1].Name =

abc_[Procedure]

If the incoming event’s [Procedure] field
contains the value “Test”, the PIBatch Recipe
field is set to “abc_Test”.

Recipe[#].BatchID

Optional

Same as Name Specifies the BatchID of the Recipe object.
Supports the PIBatch BatchID and
PIUnitBatch BatchID fields.

Recipe[#].Descriptor

Optional

AF Only

Same as Name Specifies the AF event frame Descriptor
property for the source Recipe object.

Recipe[#].ModulePath

Optional

Same as Name Specifies the Module path of the Recipe
object. Supports PIUnitBatch (level 2) only.
The end module in the path is always treated
as the Unit and marked as a PIUnit in the PI
Module Database.

Recipe[#].Product

Optional

Same as Name Specifies the Product of the Recipe object.
Supports the PIBatch and PIUnitBatch Product
field. If ProductTrigger is not defined, this
template is populated based on the data in the
event that creates the Recipe object.

Recipe[#].ProductTrigger

Optional

Same as Name Populates the Product field of the particular
Recipe object after the object is created.
Useful when the Product is defined by a
separate event. Example:

Recipe[1].Product = [Value]

Recipe[1].ProductTrigger =

[Parameter, Value=”Recipe

Header”] [Descript,

value=”Product Name”]

Recipe[#].Translate

Optional

True (1)

False (0)

Enable/disable translation of Names. By
default, translation is disabled.

Principles of Operation

42

Template Name Allowed Placeholders
in Value

Value Description

Recipe[#].Merge

Optional

True (1)

False (0)

Enables/disables merging of same-named
objects under the same parent. Disabled by
default.

Recipe[#].Category

Optional

AF Only

Same as Name For each recipe level, defines the AF Event
Frame Category. If the event that creates an
event frame contains insufficient information,
no category is assigned. To assign Category
to an event frame after its creation, use the
dynamic Category[x] property

Recipe[#].Category[x].Name

Optional

AF Only

Same as Name For each recipe level, this dynamic property
enables you to define the AF event frame
Category based on any event that is related to
particular recipe item. This property can create
as many categories as desired. Index (x) is a
positive integer that binds Name and
Trigger(s) subproperties for a specific
Category[x] property. If AF Category does not
exist on the AF Server, the interface creates it.
This property must be used with
Recipe[#].Category[x].Trigger

Example:

Recipe[1].Category[10].Name =

SCR

Recipe[1].Category[10].Trigger

= [Descript, value="Formula

Name"] [Pval, value="SCR

20051"]

Recipe[#].Category[x].Trigger

Optional

AF Only

Same as Name Defines the triggering expression for a specific
recipe category. There can be multiple triggers
for a single Recipe[#].Category[x].Name. This
property must be used with
Recipe[#].Category[x].Name

Example:

Recipe[1].Category[10].Name =

SCR

Recipe[1].Category[10].Trigger

= [Descript, value="Formula

Name"] [Pval, value="SCR

20051"]

Recipe[1].Category[10].Trigger

= [Descript, value="Formula

Name"] [Pval, value="SCR

20051_01"]

Recipe[1].Category[10].Trigger

= [Descript, value="Formula

Name"] [Pval, value="SCR

20051_02"]

PI Interface for GE iBatch Batch 43

Template Name Allowed Placeholders
in Value

Value Description

Recipe[#].Template

Optional

AF Only

Same as Name For each recipe level, this property enables
you to define the AF event frame template. If
sufficient information is not available in the
event that creates an event frame, no AF
template is assigned. To assign a template to
an event frame after its creation, use the
dynamic Template[x] property

Recipe[#].Template[x].Name

Optional

AF Only

Same as Name For each recipe level, this dynamic property
enables you to define the AF event frame
template based on any event that is related to
particular recipe item. This property can
assign only one AF template to a particular AF
event frame. The interface uses the first
matching Recipe[#].Template[x] property to be
assigned to an event frame. This property
must be used with
Recipe[#].Template[x].Trigger.

The index (x) is a positive integer that binds
the Name and Trigger subproperties for the
Template[x] property.

Example:

Recipe[1].Template[10].Name =

BATCH_A

Recipe[1].Template[10].Trigger

= [Descript, value="Formula

Name"] [Pval, value="SCR

20051"]

Recipe[#].Template[x].Trigger

Optional

AF Only

Same as Name Defines the triggering expression for the AF
event frame template. You can define multiple
triggers for a single Recipe[#].Template[x].
This property must be used with
Recipe[#].Template[x].Name

Example:

Recipe[1].Template[10].Name =

BATCH_A

Recipe[1].Template[10].Trigger

= [Descript, value="Formula

Name"] [Pval, value="SCR

20051"]

Recipe[1].Template[10].Trigger

= [Descript, value="Formula

Name"] [Pval, value="SCR

20051_01"]

Recipe[1].Template[10].Trigger

= [Descript, value="Formula

Name"] [Pval, value="SCR

20051_02"]

Default (precompiled) Recipe Templates:

// batch

Recipe[1].Name = [Procedure]

Recipe[1].BatchID = [BatchID]

Principles of Operation

44

Recipe[1].Product = [Pval]

Recipe[1].ProductTrigger = [Event,value="Recipe

Header"][descript,value="Product Code"]

Recipe[1].Category = OSIBatch

Recipe[1].Template = Procedure

// unitbatch

Recipe[2].Name = [UnitProcedure]

Recipe[2].BatchID = [BatchID]

Recipe[2].Product = [Pval]

Recipe[1].ProductTrigger = [Event,value="Recipe

Header"][descript,value="Product Code"]

Recipe[2].ModulePath = [Area]\[ProcessCell]\[Unit]
Recipe[2].Category = OSIBatch

Recipe[2].Template = UnitProcedure

// subbatches

Recipe[3].Name = [Operation]

Recipe[3].Category = OSIBatch

Recipe[3].Template = Operation

Recipe[4].Name = [Phase]

Recipe[4].Category = OSIBatch

Recipe[4].ModulePath = [Area]\[ProcessCell]\[Unit]\[PhaseModule]

Recipe[4].Template = Phase

Recipe[5].Name = [PhaseState]

Recipe[5].Category = OSIBatch

Recipe[5].Template = PhaseState

Recipe[6].Name = [PhaseStep]

Recipe[6].Category = OSIBatch

Recipe[6].Template = PhaseStep

Recipe Template Example 1:

In this example, Recipe Templates redefines the PIBatch Recipe to be the concatenation of

the Procedure and UniqueID fields from the data source. The PISubbatch Operation Name is

redefined as the concatenation of the UnitProcedure and Operation fields from the data

source.

Recipe[1].Name = [Procedure]_[UniqueID]

Recipe[3].Name = [UnitProcedure]_[Operation]

Recipe Template Example 2:

In this example, the Recipe Template defines the static PI AF Category

“CAT_UNITBATCH” for the UnitProcedure level. If it is missing, this category is created

and assigned to all UnitProcedure-level event frames regardless of the recipe type.

Recipe[2].Category = CAT_UNITBATCH

Recipe Template Example 3:

Recipe[1].Category[1].Name = PROC_A

Recipe[1].Category[1].Trigger = [Procedure, value="DVProc:1-*"]

Recipe[1].Category[2].Name = [Pval]

Recipe[1].Category[2].Trigger = [Descript, value="Product Code"]

PI Interface for GE iBatch Batch 45

In this example, the Recipe Template defines the dynamic PI AF Category for the root-level

AF event frame based on the value of Procedure or Product Code from the data source. If the

AF Category is not found on the AF Server, the interface creates it.

Recipe Template Example 4:

Recipe[2].Template = OSI_UnitProcedure

In this example, the Recipe Template defines the static PI AF Template

“OSI_UnitProcedure” for the UnitProcedure level. If missing, the PI AF Template is created

and assigned to all UnitProcedure-level event frames regardless of the recipe type.

Recipe Template Example 5:

Recipe[2].Template[1].Name = UP_A

Recipe[2].Template[1].Trigger = [UnitProcedure, value="UProc:1-

*"]

Recipe[2].Template[2].Name = UP_B

Recipe[2].Template[2].Trigger = [UnitProcedure, value="UProc:2-

*"]

In this example, the Recipe Template defines the dynamic PI AF Template for the

UnitProcedure-level AF event frame, based on the name of the UnitProcedure. If the AF

Template is not found on the AF Server, the interface creates it.

Merging Multiple Source Batches into a Single PIBatch

The Batch interface can merge multiple source batches that have the same BatchID into a

single PIBatch. To enable merging, specify the /merge command line parameter. When a

new batch is found on the source, the interface locates the identical batch in the local batch

cache and adds the new batch to the existing one. The/cachetime parameter specifies the

duration for which the interface keeps closed batches in the local memory, by default, one

day.

Note: The interface only merges batches that are within the cache time frame,
during which they are cached in local memory.

If no batch with the BatchID is found, the interface creates one. To configure the interface to

use a substring of the source batch BatchID as the BatchID for the new PIBatch, specify the

/bidm command line parameter. See Using /BIDM Parameter for details. Unit batches in a

merged batch always contain the original BatchID, Recipe and Product. Each merged batch

retains original information such as the full BatchID, Product, Recipe, Formula, and Start and

End times, in the PI Properties of the merged batch under the PIProperty node named using

the source batch UniqueID.

Configuring Batch IDs

To configure the PI batch ID, specify the /bidm (BatchID Mask) parameter. To define the

format of the ID, you specify a list of masks that extract substrings from the value in the

BatchID column in the data source. The order of importance depends on the position of the

mask in the list. The mask can consist of an array of valid symbols and wildcards.

Principles of Operation

46

The following wildcards can be specified in the BatchID mask.

Wildcard Description

Single digit numerical value, 0-9

@ Single alpha character, a-z, A-Z

? Any single symbol

! Repeat the previous mask symbol

* Any set of symbols

The following examples assume that the incoming BatchID column contains

“lot30112 / 90dev123 / 12345stp / ld567”.

Example Description Resulting Batch ID

/bidm=##### Five contiguous digits and no
characters in the substring.

Since there are two
matches, the first substring
is used and the result is

30112.

/bidm=###### Six contiguous digits and no
characters in the substring.
There is no match for this.

The complete string is used
as the BatchID.

/bidm=### Three contiguous digits and
no characters in the
substring.

Since there are two
matches, the first substring

is used and the result is 123.

/bidm=@@@##### Three contiguous characters
followed by five contiguous
digits.

lot30112.

/bidm=##@@@### Two digits, three characters,
and two more digits.

90dev123.

/bidm=#####@@@ Five digits followed by three
characters

12345stp.

/bidm=????? Any five characters lot30.

Linking BES Batches to MES Batches

Starting with version 3.0.1.x, the interface enables you to link (bind) Batch Execution

Systems batches with Manufacturing Execution System batches. This feature enables you to

use PI event frames to build an integrated structure that records the master-slave relationship

between the Manufacturing Execution System and its subordinate Batch Execution System.

For example, in an environment where an MES System - Werum PAS|X is launching BES

Batches (GE iBatch), the Batch interface always acts as an MES child when configured for

lining. For each BES (GE iBatch) batch, it attempts to find the corresponding parent MES

batch event frame that triggered the BES execution. The MES interface always acts as a

parent and, if configured for linking, it attempts to find a child BES batch event frame when

the event triggering the BES execution is acquired.

Note: This functionality is available only when the interface is configured to write
batch data to event frames.

PI Interface for GE iBatch Batch 47

Because the MES and BES interfaces work asynchronously, they require a common element

to resolve linkage. To configure this common element, specify the following command line

parameter in the startup batch file for both the MES and BES interfaces:

/link=<element path>

Although an MES batch can be accessed only as the root event frame, the BES batch can be

accessed as the root event frame and as the child of the MES event frame that represents the

MES processing step that triggered the BES execution.

Loss of Connectivity

The Batch Interface is designed to detect and recover from connection loss from either the

data sources or the PI Server, or both. If the connection is lost during processing, the Interface

suspends all actions until the PI and data sources are available again. If the data source

becomes unavailable, the interface to reconnect on every scan until it succeeds. If the PI

server is unavailable, the interface attempts to reconnect every minute (by default) until it

succeeds. You can configure the frequency of reconnection attempts and can specify a

maximum number of retries. The Interface logs the errors to the local pipc.log file.

During normal interface shutdown and startup, no data is lost. All data is buffered by the data

sources. If the Interface is interrupted before it can finish processing data from the source to

the PI Server, it saves the timestamp of the last good event it processed before shutdown. At

startup, the interface resumes processing data starting at the saved timestamp and, after

recovering this data, switches to real-time data collection.

Data Preprocessing

The Batch interface is designed to handle situations when the source data needs to be written

to PI archives that are earlier than the primary PI archive. Due to the nature of the PI Server,

the newly-added tags, units and modules are indexed (referenced) only in the primary PI

archive. Any older archive does not have knowledge of these modules, units and tags. In

Preprocess mode, the interface creates modules, units, tags and tag aliases but does not

process batch data or add events for the tags. After preprocessing, the interface stops and you

must reprocess older archives using the offline archive utility.

Note: The PI server does not allow any data to be written to older archives unless
the archives contain definitions for the units and tags of interest. Refer to the PI
Server System Management Guide for details on the archive reprocessing
procedure. Note that this procedure has changed in PI Server 2012.

Always run the interface in preprocess mode before writing new batch data to older PI

archives. Reprocessing creates indexes for newly-added units, modules, tags in each

reprocessed archive.

To run the interface in preprocess mode, specify the /mode=noupdate parameter with the

recovery start time (/rst) and optional recovery end time (/ret) parameters.

Principles of Operation

48

The following figure illustrates preprocessing for the time range 01/15/2005 12:00:00 to

06/20/2008 13:00:00.

First the interface is run in Preprocess mode to create tags and units in the PIPoint and

PIModule databases and references in the Primary archive. After reprocessing PI Archive

1, 2 and 3 with the PI Archive offline utility (piarchss), the PI archives 1, 2 and 3 now

contain references to the newly-created tags and units as shown in the figure below.

To backfill data into PI Points and the PI Batch database, you can now run the interface in

Recovery mode.

PI Interface for GE iBatch Batch 49

Data Recovery

The Batch Interface can recover historical data. Recovery mode can recover missing data for

existing PIModule, PIBatch and PIPoint objects, and it can recover data and create those

objects if they do not already exist. These objects include PI modules, PI units, unit-level

aliases, phase-level aliases, PIBatches, PIUnitBatches, PISubbatches (Operations, Phases,

Phase States and Phase Steps), PIProperties, PIPoints, PIPoint events. When a PI object

contains incorrect data (that is, incorrect according to the data source), the interface attempts

to correct the PI object to match the data from the source. If the interface cannot correct the,

the interface logs an error and you must delete the data and retry recovery.

To enable Recovery mode specify a recovery start time and optionally, and end time when

starting the interface. If no end time is specified, it prints the results of the recovery process

and changes to RealTime mode when recovery is complete. If end time is specified, the

interface exits after recovery. In Recovery mode, open batches are processed only when there

are no completed batches to be processed, that is, when the interface reaches the current time.

The following figure illustrates recovery of batches from the data source for the period from

12/15/2007 16:00:00 through 05/11/2008 2:00:05.

To recover these batches, specify the following command line parameters when you start the

interface:

/rst=”12/15/2007 16:00:00” and /ret=”05/11/2008 2:00:05”.

The interface recovers all batches that fall partly (Batch 1, Batch 3 and Batch 6) or entirely

(Batch 4 and 5) in the specified period. Batches outside the time frame (Batch 2 and 7) are

not recovered.

To recover data from 12/15/2007 16:00:00 until now (*), specify the following command line

parameter:

/rst=”12/15/2007 16:00:00”

The interface recovers Batch 7 as well the other batches, then switches to RealTime mode.

Data Analysis

In Statistics mode, the Batch interface compares batch data from the data source with batch

data in the PI server, logs its results, and exits. To run the interface in Statistics mode,

Principles of Operation

50

specify the /mode=stat command line parameter, start time (/rst) and optionally, end

time (/ret) are specified. If you omit end time, the interface analyses data from the

specified start time through the current system time.

PI Data Deletion

The Batch interface delete batch data stored in PI server based on the source data. The

interface leaves data from all other data sources intact. Delete batch data only if the interface

cannot synchronize source data with the PI server in Recovery mode. To delete data, specify

the /mode=delete command line parameter, plus start time and, optionally, end time for the

period of data to be deleted. If you omit end time, data is deleted from the specified start time

through the current system time.

EVT Source – Event Based Time Ordered Processing

The Batch interface processes EVT files based on the timestamps of each row within each

EVT file, rather than processing EVT files based on names. On each scan, the interface

performs a preliminary EVT directory scan to create a time ordered processing queue of all

active EVT files based on the current position’s timestamp within each file. It then scans each

EVT file for the end position. This strategy allows creating a fixed time frame common to all

EVT files. The interface will then read data, in the time frame, in time order. Any processing

delays due to network losses, server unavailability, slow scan rates, and non alphabetical file

naming can be handled gracefully by this approach. The following figure illustrates the

difference in alphabetical file name versus event time ordered processing.

PI Interface for GE iBatch Batch 51

There are four EVT files starting at different times and containing data written sequentially

by Batch Execution System. The vertical axis is the file time, where the t1 is the earliest time

and the t11 is the latest time. The alphabetical file name processing sequence is given in the

table below.

Order File

Name

Data Segments [start time – end time] written by the BES in parallel EVT files

t1 –

t2

t2 –

t3

t3 –

t4

t4 –

t5

t5 –

t6

t6 –

t7

t7 –

t8

t8 – t9 t9 –

t10

t10 – t11

1 File 1 X X X X

2 File 2 X X X

3 File 3 X X

4 File 4 X

The event time ordered processing is illustrated in the table below

Order File

Name

Data Segments [start time – end time] written by the BES in parallel EVT files

t1 –

t2

t2 –

t3

t3 –

t4

t4 –

t5

t5 –

t6

t6 –

t7

t7 –

t8

t8 – t9 t9 –

t10

t10 – t11

1 File 1 X

2 File 3 X

3 File 1 X

4 File 2 X

5 File 1 X

6 File 3 X

7 File 2 X

8 File 4 X

9 File 1 X

10 File 2 X

Excluding Recipes From Processing

To exclude particular recipes from being processed into the PI Server, specify the

skiprecipes command in the INI file, specifying the recipes to be skipped as a comma-

separated list. You can exclude the following levels: Procedure, UnitProcedure, Operation,

and Phase. You can use the following wildcards to specify masks for recipes to be excluded:

Wildcard Description

Single digit numerical value, 0-9

@ Single alpha character, a-z, A-Z

? Any single symbol

! Repeat the previous mask symbol

* Any set of symbols

Examples:

skiprecipes=recipe1,prc_*nt2

Principles of Operation

52

skiprecipes=“recipe 1”, “prc_paint 2”

Double-quote names that contain spaces.

Excluding Units From Processing

To aid in transfer of control between recipes, batches can use “virtual” or “dummy” units that

do not physically exist, which can result in overlapping PIUnitBatches and incorrect

PIUnitBatch end times. To exclude such units from processing by the interface, specify the

skipunits command in the INI file command, listing the units to be skipped based on the

value encountered in the [UNITID] field of each event. Specify units as a comma-separated

list. You can use the following wildcards to specify masks for units to be excluded:

Wildcard Description

Single digit numerical value, 0-9

@ Single alpha character, a-z, A-Z

? Any single symbol

! Repeat the previous mask symbol

* Any set of symbols

Examples:

skipunits=unit1,u*t2

skipunits=“unit 1”, “unit 2”

Excluding Phases From Processing

To exclude a phase from processing the file, specify the skipphases command in the INI

file command, listing the phases to be skipped based on the value encountered in the [Phase]

field of each event. Specify phases as a comma-separated list. You can use the following

wildcards to specify masks for phases to be excluded:

Wildcard Description

Single digit numerical value, 0-9

@ Single alpha character, a-z, A-Z

? Any single symbol

! Repeat the previous mask symbol

* Any set of symbols

Examples:

skipphases=phase_1,ph*2
skipphases=phase_1, ph*2

Excluding Phase States From Processing

To exclude a phase state from processing the file, specify the excludestates command in

the INI file command, listing the phase states to be skipped based on the value encountered in

the [PhaseState] field of each event. Specify phase states as a comma-separated list. You can

use the following wildcards to specify masks for phase states to be excluded:

Wildcard Description

Single digit numerical value, 0-9

PI Interface for GE iBatch Batch 53

@ Single alpha character, a-z, A-Z

? Any single symbol

! Repeat the previous mask symbol

* Any set of symbols

Examples:

excludestates = COMPLETE, ABO*NG

PI Interface for GE iBatch Batch 55

Chapter 3. Installation Checklist

If you are familiar with running PI data collection interface programs, this checklist helps you get

the Interface running. If you are not familiar with PI interfaces, return to this section after reading

the rest of the manual in detail.

This checklist summarizes the steps for installing this Interface. You need not perform a given

task if you have already done so as part of the installation of another interface. For example, you

only have to configure one instance of Buffering for every interface that runs on an Interface

Node.

The Data Collection Steps below are required. Interface Diagnostics are optional.

Data Collection Steps

1. Confirm that you can use PI SMT to configure the PI Server. You need not run PI SMT

on the same computer on which you run this Interface.

2. If you are running the Interface on an Interface Node, edit the PI Server's Trust Table to

allow the Interface to write data.

3. Run the installation kit for this Interface. This kit runs the PI SDK installation kit, which

installs both the PI API and the PI SDK. This kit also runs the PI Event Frames Interface

Manager installation kit, which installs a configuration tool for the interface.

4. If you are running the Interface on an Interface Node, check the computer’s time zone

properties. An improper time zone configuration can cause the PI Server to reject the data

that this Interface writes.

5. Run the PI Event Frames Interface Manager and configure a new instance of this

Interface. Essential startup parameters for this Interface are

Point Source (/PS=x)

Interface ID (/ID=#)

PI Server (/Host=host:port)

6. Define sources

7. Important point attributes and their purposes are:

Location1 specifies the Interface instance ID.

Location2 is the index of the tag

Location3 is the point type

Location4 specifies the scan class.

Location5 is not used by this interface

ExDesc contains the copy of tag name created by the interface.

InstrumentTag is the unit.

Installation Checklist

56

8. Start the Interface interactively with command line parameter /mode=stat (this mode

allows read only from the data sources and PI server) and confirm its successful

connection to the PI Server and data sources. If running interface interactively, add

switch /inifile=<full path to INI file>.

Note, this interface does not use the PI API, therefore PI Buffering
(pibufss/bufserv) is not required by the interface.

9. Confirm that the Interface collects data successfully.

10. Configure the Interface to run as a Service. Make sure that interface is NOT set as PI

Buffer dependent. Confirm that the Interface runs properly as a Service.

11. Restart the Interface Node and confirm that the Interface restarts.

Interface Diagnostics

The interface creates three types of tags that you can use to monitor its performance:

 Health tags

 Object counters

 Timers

All performance tags are named using the interface name as a prefix, with the service ID

appended as follows:

<Prefix> : PIGEIB_<ServiceID>

Health Monitoring Tags

There are two health tags: the heartbeat tag and the device status tag.

The heartbeat tag indicates whether the interface is running. By default, it is updated every 60

seconds. (To configure a higher frequency, specify the /scan command line parameter).. The

value of the heartbeat tag cycles from 1 to 15.

The device status tag is automatically configured and created if missing by the interface on

startup. The following events are written into the device tag:

 Good (Indicates that the interface is properly communicating and reading data from the

data sources.)

 1 | Starting”

 2 | Connected/No Data | EVT Directory Monitor: <directory

name> Initialized.

 3 | 1 device(s) in error | Error monitoring directory (onError):

<directory name>

 3 | 1 device(s) in error | Error monitoring directory: <directory

name>

 3 | 1 device(s) in error | Failed to start directory monitoring

thread: <directory name>

PI Interface for GE iBatch Batch 57

 3 | 1 device(s) in error | Error in scanning directory:

<directory name>

 3 | 1 device(s) in error | Error obtaining EVT files EOF.

 3 | 1 device(s) in error | Error getting current EVT file

timestamp.

 3 | 1 device(s) in error | Error reading EVT file: <filename>.

 3 | 1 device(s) in error | Error while reading EVT file.

Object Counters

Object counter tags monitor the number of different type objects read from the source and

written to the PI server. These tags are automatically created when interface first starts up,

and zeroed every time the interface is restarted thereafter. Archiving flag for these tags is

turned off. The following counter tags are provided.

Tag Name Loc3 ExcDesc Description

<Prefix>_EventReadCount 2 [UI_EVENTREADCOUNT] Number of events read from
the source since last startup.

<Prefix>_ErrorCount 3 [UI_ERRORCOUNT] Number of errors occurred
since last startup.

<Prefix>_SourceUnitCount 4 [UI_SOURCEUNITCOUNT] Number of Units found on the
data source(s) since startup.

<Prefix>_PIUnitCount 5 [UI_PIUNITCOUNT] Number of Units found and
added on the PI server since
startup.

<Prefix>_SourcePhaseModCount 6 [UI_SOURCEPHASEMODCOUNT] Number of Phase Module
found on the data source(s)
since startup.

<Prefix>_PIPhaseModCount 7 [UI_PIPHASEMODCOUNT] Number of Phase Module
found and added on the PI
Server since startup.

<Prefix>_SourceBatchCount 8 [UI_SOURCEBATCHCOUNT] Number of batches found on
the data source(s) since
startup.

<Prefix>_PIBatchCount 9 [UI_PIBATCHCOUNT] Number of PIBatch objects
found and added on the PI
server since startup.

<Prefix>_SourceUnitBatchCount 10 [UI_SOURCEUNITBATCHCOUNT] Number of unitbatches found
on the data sources(s) since
startup.

<Prefix>_PIUnitBatchCount 11 [UI_PIUNITBATCHCOUNT] Number of PIUnitBatch objects
found and added on the PI
server since startup.

<Prefix>_SourceSubBatchCount 12 [UI_SOURCESUBBATCHCOUNT] Total number of
operations+phases+phase
states found on the data
source since startup.

<Prefix>_PISubBatchCount 13 [UI_PISUBBATCHCOUNT] Total number of PISubBatch
objects founded and added to
the PI server since last startup.

<Prefix>_SourcePropertyNodeCount 14 [UI_SOURCEPROPNODECOUNT] Number of property nodes
found in data source(s) since
last startup

<Prefix>_PIPropertyNodeCount 15 [UI_PIPROPNODECOUNT] Number of PIProperty objects
(nodes) found and added to
the PI server since last startup.

Installation Checklist

58

Tag Name Loc3 ExcDesc Description

<Prefix>_SourcePropertyEventCount 16 [UI_SOURCEPROPEVENTCOUNT
]

Number of events to be written
to the batch properties found
on the data source(s) since last
startup.

<Prefix>_PIPropertyEventCount 17 [UI_PIPROPEVENTCOUNT] Number of
PIProperties(events) found and
added to the PI server since
last startup.

<Prefix>_SourceTagCount 18 [UI_SOURCETAGCOUNT] Number of tags found on the
data source(s) since last
startup

<Prefix>_PITagCount 19 [UI_PITAGCOUNT] Number of PIPoints found and
added to the PI server since
last startup.

<Prefix>_SourceTagEventCount 20 [UI_SOURCETAGEVENTCOUNT] Number of events to be written
into tags found on the data
sources(s) since last startup.

<Prefix>_PITagEventCount 21 [UI_PITAGEVENTCOUNT] Number of events written into
PIPoints on the PI server since
last startup.

<Prefix>_SourceTagAliasCount 22 [UI_SOURCETAGALIASCOUNT] Number of tag aliases to be
created based on the data
source(s) since last startup.

<Prefix>_PITagAliasCount 23 [UI_PITAGALIASCOUNT] Number of PIAliases found and
added to the PI server since
last startup.

<Prefix>_CachedBatchCount 24 [UI_CACHEDBATCHCOUNT] Number of batch objects
cached in the local memory.

<Prefix>_OpenBatchCount 25 [UI_OPENBATCHCOUNT] Subset of cached objects
which still have no end time
set.

<Prefix>_WaitingForEquipmentUB 34 [UI_UBWAITFOREQUIP] Number of UnitBatches which
do not have equipment
allocated yet. The allocation is
check at PI Server
synchronization routine.

Timers

Timer tags report how long per scan it took the interface to read the data source, cache local

data and synchronize cached data with PI server. The following timer tags are provided.

Tag Name Loc3 ExcDesc Description

<Prefix>_SourceReadTime 26 [UI_SOURCEREADTIME] The time per scan it took
the interface to read data
from data source(s).

<Prefix>_TagCacheTime 27 [UI_TAGCACHETIME] The time per scan it took
the interface to populate
local tag cache.

<Prefix>_BatchCacheTime 28 [UI_BATCHCACHETIME] The time per scan it took
the interface to populate the
local batch cache.

<Prefix>_EquipmentCacheTime 29 [UI_EQUIPCACHETIME] The time per scan it took
the interface to populate the
local equipment (module)
cache.

<Prefix>_BatchSyncTime 30 [UI_BATCHSYNCTIME] The time per scan it took

PI Interface for GE iBatch Batch 59

Tag Name Loc3 ExcDesc Description

the interface to synchronize
local batch cache with the
PI server.

<Prefix>_TagSyncTime 31 [UI_TAGSYNCTIME] The time per scan it took
the interface to synchronize
local tag cache with the PI
server.

<Prefix>_EquipmentSyncTime 32 [UI_EQUIPSYNCTIME] The time per scan it took
the interface to synchronize
local equipment cache with
the PI server.

<Prefix>_TotalTime 33 [UI_TOTALTIME] The total time per scan it
took the interface to read
data, cache it in the local
memory and synchronize
local cache wit PI server.

PI Interface for GE iBatch Batch 61

Chapter 4. Interface Installation

OSIsoft recommends that interfaces be installed on PI Interface Nodes instead of directly on

the PI Server node. A PI Interface Node is any node other than the PI Server node where the

PI Software Development Kit (PI SDK) has been installed (see the PI SDK manual). With

this approach, the PI Server need not compete with interfaces for the machine’s resources.

The primary function of the PI Server is to archive data and to service clients that request

data.

Note: Buffering is not recommended with the PI Interface for GE iBatch Batch. This
is due to the fact that the source data is already effectively buffered on the source.

In most cases, interfaces on PI SDK nodes should be installed as automatic services. Services

keep running after you logs off. Automatic services automatically restart when the computer

is restarted, which is useful in the event of a power failure.

The guidelines are different if an interface is installed on the PI Server node. In this case, the

typical procedure is to install the PI Server as an automatic service and interfaces as manual

services that are launched by site-specific command files when the PI Server is started.

Interfaces that are started as manual services are also stopped in conjunction with the PI

Server by site-specific command files. This typical scenario assumes that Bufserv is not

enabled on the PI Server node. Bufserv can be enabled on the PI Server node so that

interfaces on the PI Server node do not need to be started and stopped in conjunction with PI,

but it is not standard practice to enable buffering on the PI Server node.

Naming Conventions and Requirements

In the installation procedure below, it is assumed that the name of the interface executable is

PIGEIB.exe, the startup command file is called PIGEIB.bat, and the initialization file is

called PIGEIB.ini.

When Configuring the Interface Manually

When configuring the interface manually it is customary for you to rename the executable,

the startup command and initialization files when multiple copies of the interface are run. For

example, PIGEIB1.exe, PIGEIB1.bat and PIGEIB1.ini would typically be used for

interface number 1, PIGEIB2.exe, PIGEIB2.bat and PIGEIB2.ini for interface number

2, and so on. When an interface is run as a service, the executable and the command file must

have the same root name because the service looks for its command-line parameters in a file

that has the same root name.

Interface Installation

62

Interface Directories

Interface Installation Directory

The interface install kit will automatically install the interface to:

PIHOME\Interfaces\GEIB\

PIHOME is defined in the pipc.ini file.

Interface Installation Procedure

To install, run the appropriate installation kit.

 GEIB _#.#.#.#.exe

Installing the Interface as a Windows Service

The Batch interface service can be created with the PI Event Frames Interface Manager or

can be created manually.

Installing the Interface Service with the PI Event Frames Interface Manager

The PI Event Frames Interface Manager provides a user interface for creating, editing, and

deleting the interface service on the Service tab.

Service Tab

Settings for installing and running the interface as a Windows Service.

Setting Description

Display Name The name of service as displayed in the Services control Panel. To indicate that the service
is part of the OSIsoft suite of products, prefix the name with “PI”.

Logon as The Windows user account used to run the interface service.

Password Password for the Windows user account used to run the interface service.

Startup Type Configures whether the service starts automatically when the interface node is rebooted.

Dependencies Configures other services that the Batch interface requires in order to run.

Installing the Interface Service Manually

Help for installing the interface as a service is available at any time with the command:
PIGEIB.exe -help

Change to the directory where the PIGEIB.exe executable is located. Then, consult the

following table to determine the appropriate service installation command.

Windows Service Installation Commands on a PI Interface Node or a PI Server Node

without Bufserv implemented

Manual service PIGEIB.exe -install -depend tcpip

Automatic service PIGEIB.exe -install -auto -depend tcpip

PI Interface for GE iBatch Batch 63

*Automatic service with
service id

PIGEIB.exe -serviceid X -install -auto -depend tcpip

*When specifying service id, you must include an id number. It is suggested that this number

correspond to the interface id (/id) parameter found in the interface .bat file.

Check the Microsoft Windows services control panel to verify that the service was added

successfully. The services control panel can be used at any time to change the interface from

an automatic service to a manual service or vice versa.

PI Interface for GE iBatch Batch 65

Chapter 5. Digital States

For more information regarding Digital States, refer to the PI Server documentation.

Digital State Sets

PI digital states are discrete values represented by strings. These strings are organized in PI as

digital state sets. Each digital state set is a user-defined list of strings, enumerated from 0 to n

to represent different values of discrete data. For more information about PI digital tags and

editing digital state sets, see the PI Server manuals.

An interface point that contains discrete data can be stored in PI as a digital tag. A Digital tag

associates discrete data with a digital state set, as specified by you.

System Digital State Set

Similar to digital state sets is the system digital state set. This set is used for all tags,

regardless of type to indicate the state of a tag at a particular time. For example, if the

interface receives bad data from an interface point, it writes the system digital state

bad input to PI instead of a value. The system digital state set has many unused states that

can be used by the interface and other PI clients. Digital States 193-320 are reserved for

OSIsoft applications.

PI Interface for GE iBatch Batch 67

Chapter 6. PointSource

The PointSource is a unique, single or multi-character string that is used to identify the PI

point as a point that belongs to a particular interface. For example, the string EV may be used

to identify points that belong to the Batch Interface. To implement this, the PointSource

attribute would be set to EV for every PI Point that is configured for the Batch Interface.

Then, if /ps=EV is used on the startup command-line of the Batch Interface, the Interface

will search the PI Point Database upon startup for every PI point that is configured with a

PointSource of EV. Before an interface loads a point, the interface usually performs further

checks by examining additional PI point attributes to determine whether a particular point is

valid for the interface. For additional information, see the /ps parameter.

Case-sensitivity for PointSource Attributes

The PointSource character that is supplied with the /ps command-line parameter is not case

sensitive. That is, /ps=P and /ps=p are equivalent.

Reserved Point Sources

Several subsystems and applications that ship with the PI are associated with default

PointSource characters. The Totalizer Subsystem uses the PointSource character T, the Alarm

Subsystem uses G and @, Random uses R, RampSoak uses 9, and the Performance Equations

Subsystem uses C. Do not use these PointSource characters or change the default point source

characters for these applications. Also, if a PointSource character is not explicitly defined

when creating a PI point; the point is assigned a default PointSource character of Lab (PI 3).

Therefore, it would be confusing to use Lab as the PointSource character for an interface.

Note: Do not use a point source character that is already associated with another
interface program. However it is acceptable to use the same point source for multiple
instances of an interface.

PI Interface for GE iBatch Batch 69

Chapter 7. PI Point Configuration

The PI point is the basic building block for controlling data flow to and from the PI Server.

The batch interface automatically builds all points based on the information found in INI file.

Interface-specific Points

Process parameters are often specified in batch data sources. These parameters are typically

more easily viewed as a graphical trend. Points may be built to specify which events are to

be captured and stored in PI. Please refer to section Event Logging - Tag Template for

information on how to configure Tag Templates for specific event capturing.

PI Interface for GE iBatch Batch 71

Chapter 8. Startup Command File

Command-line parameters can begin with a / or with a -. For example, the /ps=E and –

ps=E command-line parameters are equivalent.

For Windows, command file names have a .bat extension. The Windows continuation

character (^) allows for the use of multiple lines for the startup command. The maximum

length of each line is 1024 characters (1 kilobyte). The number of parameters is unlimited,

and the maximum length of each parameter is 1024 characters.

Configuring the Interface with PI Event Frames Interface Manager

The PI Event Frames Interface Manager provides a graphical user interface for configuring

the interface. If the interface is configured with this tool, the batch file of the interface and the

interface settings file will be created and maintained by the PI Event Frames Interface

Manager and all configuration changes will be kept in that file. The procedure below

describes configuration using PI Event Frames Interface Manager to configure the Batch

Interface.

Interface Selection Tab

To create a new instance of the interface, perform the following steps:

1. Click Add Interface. A browse dialog is displayed.

2. Browse to the interface installation directory, select the executable for the interface,

and click Open to dismiss the browse dialog.

3. Click OK. The Interface field displays the name of the interface instance you

created.

The PI Event Frames Interface Manager can be used to manage multiple instances of the

interface.

File Selection Tab

The File Selection tab is used to select the interface settings file that stores settings and the

configuration for the interface instance:

 Interface Settings File (.INI): Contains the interface startup parameter and configuration

settings. Be sure to specify the .ini extension.

Startup Command File

72 72

Server Information Tab

The Server Information Tab is where you specify the PI Server and PI AF Server systems

that you intend to use with the interface instance. The interface stores data in PI Tags on a PI

Server. It can generate either batches in the PI Server Batch Database or event frames on a PI

AF Server.

PI Server (/HOST)

Specifies the PI Server node to which the interface writes PI tag data. Host is the IP

address of the PI Sever node or the fully qualified domain name of the PI Server

node. If the PI Server you want to use is not in the drop down list, you must add it to

the known servers table using the AboutPI-SDK application.

[PI Server] User and [PI Server] Password

For PI Servers version 3.4.380.36 and higher, use Windows Integrated Security for

authentication. Omit you name and password from these fields, and ensure that the

Windows account that runs the interface has sufficient permissions on the PI Server

to write data to PI Points.

For PI Servers prior to version 3.4.380.36, configure a trust on the PI Server that

permits access for you running the interface or interface service.

[PI Server] Port

The port number for TCP/IP communication. The default port (recommended) is

5450.

Use PI AF server

Check this box to create event frames on a PI AF server, instead of creating batches

in the PI Server Batch Database.

[PI AF] Host and Database (/AFHOST and /AFDATABASE)

The destination PI AF server node and database where you want the interface to

create event frames.

[PI AF] User and [PI AF] Password

If you are not using Windows Integrated Security for authentication (recommended),

enter you name and password for the Windows user account that you intend to use to

connect to PI AF.

PI Interface for GE iBatch Batch 73

Source

On this tab, you define the data sources from which the interface will read data. The interface

can read data from multiple data sources. To read from EVT file, add an EVT source, and

specify the directory where the EVT files are.

Filters Tab

This tab configures the Recipes, Units, Phases, or Phase States that should be excluded from

processing by the Batch Interface.

Skip Phases (/SKIPPHASES)

The interface will not process any event with the listed phases in the [Phase] or

[Phasemodule] column.

Skip Units (/SKIPUNITS)

The interface will not process any event with the listed units in the [Unit] column.

Skip Recipes (/SKIPRECIPES)

The interface will not process any event with the listed recipes in the appropriate column

([Procedure] for a procedure recipe, [UnitProcedure] for a unitprocedure recipe, etc.)

Exclude Phase States (/EXCLUDESTATES)

The interface will not write phase state events to the PI system with the listed phase state in

the [PhaseState] column.

Time Settings Tab

This tab configures the time settings that control how the Batch Interface handles server

connections and processes data.

Query Time Settings

Scan (/SCAN=<seconds>)

Specifies how frequently the interface scans the data source.

Cache time (/CACHETIME=<days>)

Specifies how long completed events are retained in memory. Default is one day.

Specify the maximum duration expected between event frames that need to be

merged, plus any desired margin of safety.

Startup Command File

74 74

The value can be specified as whole day or fraction of a day. For example, to release

completed batches when their end time is less than 7 days and 12 hours from current

time, specify the following cache time setting:

CACHETIME=7.5 days

Abandoned batch timeout (/ABTO=<days>)

Specifies how long event frames can remain open before being considered

abandoned. When this period (plus cache time) elapses, the interface writes an end

time to the event to close it. Specify the maximum duration expected for events, plus

any desired margin of safety.

For example, if you set abandoned batch timeout to 50.5 days and cache time is

seven days, events open for 57.5 days are automatically closed. The following figure

illustrates timeout logic.

Maximum query time frame (/MAXQTF=<days>)

To help manage workload and memory usage, defines the maximum time frame for

queries. For example, if you specify 30 days and the interface queries for one year’s

worth of data, the interface issues 12 one-month queries rather than one (large) one-

year query.

Maximum stop time (/MAXSTOPTIME=<seconds>)

Specifies the maximum time allowed for the interface to properly shutdown. If the

shutdown process takes longer than the specified time, the interface is forced to

terminate immediately. The default value is 120 seconds.

Use local time stamps to process incoming events (/TS)

Applies the time on the local machine to events from the datasource. By default,

timestamps are recorded using GMT.

PI Connection Settings

PI connection timeout (/PICONNTO=<seconds>)

Override the default PI SDK Connection TimeOut property.

PI data access timeout (/PIDATO=<seconds>)

Override the default PI SDK Data Access TimeOut property.

PI Interface for GE iBatch Batch 75

Retry (/RETRY=<seconds>)

Specifies how long to wait before retrying a failed SDK attempt to write data to PI

Server. The default is 60 seconds.

Retry timeout (/RETRYTO=<seconds>)

Specifies timeout for failed SDK attempts to write data to PI Server. To avoid data

loss, set to 0 (default, no timeout).

SQL server Connection Settings

SQL connection timeout (/SQLCONNTO=<seconds>)

Override the default SQL connection timeout. The default is 60 seconds.

SQL data access timeout (/SQLDATO=<seconds>)

Override the default SQL data access timeout. The default is 100 seconds.

Operational Settings Tab

The settings on this tab configure the mode in which the Batch Interface runs and other,

related settings.

Runtime mode (/MODE=<mode>)

Interface modes are as follows:

Mode /MODE Flag Description

Realtime
(default)

REALTIME Scan data source to collect data in realtime

Recovery REALTIME
with /RST
specified

Scan data source and generate or correct events
accordingly. The Batch Interface always starts in
recovery mode, then switches to realtime mode.

Statistics STAT Compare data source history against events and report
results without updating any data.

Delete DELETE
with /RST and
/RET specified

Delete events for a specified period.

Perform one scan then stop (/SINGLERUN)

The interface performs one scan of active points, then exits.

Print result of first scan to file (/PRINT=<file name>)

The name of the text file to which the results of the first scan are printed. The results

include the event frame hierarchy tree, the tag list, and the equipment tree. This

Startup Command File

76 76

parameter is designed primarily for troubleshooting and configuration testing when

the interface is run in statistics mode.

Debug level (/DB=<#>)

Specifies level of detail for logging as follows:

 0: Log errors and warnings (default)

 1: Log errors, warnings and major successes

 2: Verbose logging

Numeric settings (/NS=<lang>)

Configures how numeric values are formatted by the interface, to enable the interface to

properly interpret numeric values based on the machine’s regional setting or a user-specified

language. Default is “English_UnitedStates”.

Interface ID (/ID=x)

Specifies the numeric interface instance identifier (maximum nine digits). To detect

PI points maintained by the interface instance, the interface matches this setting

against the value in the points’ Location1 attribute.

Point source (/PS=x)

Point source for the interface instance. Point source is not case sensitive. Corresponds

to the PointSource attribute of individual PI Points. The interface loads PI points

with the same point source.

Associate all reference elements with child Event Frames (/DPRETC)

When creating Event Frames in PI AF, by default all reference elements are

associated with child event frames.

Failover Settings

Failover tag (/FAILOVERTAG=x)

The tag on the PI Server that will be used to coordinate failover.

Failover identifier (/FAILOVERID=x)

The unique identifier of this interface in failover.

Failover swap time (/SWAPTIME=<seconds>)

How long an interface should be inactive before another interface will assume

writing data to the PI system.

PI Interface for GE iBatch Batch 77

Security Settings

Specify point security (/PTSEC=x)

Override the default ptsecurity of PIPoints created by the interface.

Specify data security (/DATASEC=x)

Override the default datasecurity of PIPoints created by the interface.

Save Settings Tab

Saves the configuration.

Test Configuration Tab

Tests the configuration settings. Specify test settings as follows, click Run Test, then check

the output file for results.

Field Description

BAT File The path to the interface .BAT file to run during the test execution.

Output File The path to the text file where the test results are written.

Start Time Start time for scanning.

End Time End time for scanning

Configuring Interface Startup Files

The interface has two startup configuration files; PIWPASXBatch.bat and PIGEIB.ini.

The .bat file is required and is the primary file for specifying interface configurations. The

INI file is used to specify the interface configurations, such as data sources, translations,

product template, equipment template, tag templates and property templates.

When using the .INI file, each parameter should be defined on separate line. There should be

only one equal (=) sign per line. Parameters can be disabled by prefixing the parameter lines

with two forward slashes (//)

When configuring the .bat startup file the continuation character ^ can be used to allow

multiple lines for defining parameters. The maximum length for a single line is 1024

characters (1 kilobyte). This is a Windows limitation.

Startup Command File

78 78

Command-line Parameters

This is a listing of the command-line parameters and their specific behavior with respect to

the PI Batch interface. This section gives more detailed information concerning the

parameters that may be specified when configuring the interface.

Parameter Description

/abto=<days>

Optional

Default: 100 days

(A)Bandoned (B)atch (T)ime(O)ut. Defines the time period

from the cached batches time frame into the past after which
the open batches are considered to be abandoned and can
be released from the interface’s local cache. The default
value is 100 days.

Example:

 If /abto=50.5 and /cachetime=7.1 then the

batches with last event occurred before

 NOW() – 7.1 days – 50.5 days will be considered abandoned
and removed from the local interface memory.

 --|--------------------------------[-cached batches time frame -] --->
Timeline

-57.6 days -7.1 days (current time)

/bidm=<list>

Optional

The /bidm switch (Batch ID Mask) is used to obtain a new

BatchID, which is a substring of the value in the source
BatchID field. The /bidm takes a list of masks as the input

value. Each BatchID mask can consist of an array of valid
symbols and wildcards. The following wildcards are
supported the interface:

- single digit numerical value (0-9)

@ - single alpha character (a-z, A-Z)

? – any single valid symbol

! – repeat previous BatchID mask symbol

* - any array of ? symbols.

Example:

Let’s say that the BatchID column in the event file is lot30112
/ 90dev123 / 12345stp / ld567.

The /bidm=”#####” will result in new BatchID 30112.

The /bidm=”##@!” will result in new BatchID 90dev.

The /bidm=”*##@!” will result in new BatchID lot30112 /

90dev.

The /bidm=”@@@@, #8dev4, #!” will result in new

BatchID 30112. Since the first and second masks could not
be found, third mask is used instead.

/CacheTime=<days>

Optional

Default: 1 day

Defines the time period for which the completed batches are

retained in the memory. [(*-cachetime) - *] The default

value is 1.0 day. The value can be specified as whole day or

fraction of the day.

Example:

/cachetime=7.5 days

In this case the interface is going to release completed

batches when their end time is going to be less than 7 days

and 12 hours from current time.

PI Interface for GE iBatch Batch 79

Parameter Description

/dac

Optional

The /dac Disable Arbitration Counters parameter informs

interface to release unit on the first Resource Release event

even though the number of Acquire events is higher than

number of Release events. By default, interface requires

number of Resource Release events to be the same as

Resource Acquire events for each unit to release the unit.

/DataSec=<string>

Optional

The /DataSec parameter specifies the PIPoint Data

Access Security rights. These rights are assigned to
interface-generated tags during point creation. This string has
different forms. If PIPoints are created on a PI Server
3.4.375.99 or earlier, it will have an owner, group, world
format.

Example:

/datasec=”o:rw g:r w:r”

If PIPoints are created on a PI Server 3.4.380.36 or later, it
must specify an Access Control List (ACL)

Example:

/datasec=”piadmin: A(r,w) | PIEngineers: A(r)”

/db=[#]

Optional

Default: 0

The /debug=[#] parameter specifies the Interface debug

logging message level. There are three levels that may be
assigned:

 0 – Log only errors and warnings.

 1 – Log errors, warnings and major success messages

 2 – Log ALL messages.

Log level two (2) is the most verbose setting; while level zero
(0) reports the least detail (it logs only error messages). The
default logging level is 0, to log errors and warnings only.

When testing the Interface, it may be necessary to use a
more verbose setting (1 or 2).

/dpretc

Optional

AF Only

By default, the interface propagates each event frame
element reference to its children event frames. This
functionality can be disabled by specifying the following
command line parameter:

/dpretc - (D)isable (P)ropagation of (R)eferenced (E)lements
(T)o (C)hilren.

/FailOverID=<string>

Optional

Configure the unique failover ID for the interface instance.

Must be used with the /FailOverTag parameter.

Example:

/FailOverID=”intf1”

/FailOverTag=<PI Point

Name>

Optional

Specifies the PI point that is used to track which interface
instance is primary.

Must be used with the /FailOverID parameter.

Example:

/FailOverTag=”Batch_FailoverTag”

/host=host:port The /host parameter is used to specify the destination PI

Startup Command File

80 80

Parameter Description

Required server node where the data is going to be stored. Host is

the IP address of the PI Sever node or the domain name of
the PI Server node. Port is the port number for TCP/IP

communication. The port is always 5450. It is recommended
to explicitly define the host and port on the command-line

with the /host parameter. Nevertheless, if either the host or

port is not specified, the interface will attempt to use defaults.

Examples:

The interface is running on a PI Interface Node, the

domain name of the PI home node is Marvin, and the

IP address of Marvin is 206.79.198.30. Valid /host

parameters would be:

/host=marvin

/host=marvin:5450

/host=206.79.198.30

/host=206.79.198.30:5450

/id=x

Required

The /id parameter is used to specify the interface identifier.

The interface identifier is a string that is no longer than 9
characters in length.

This interface uses the /id parameter to identify a particular

interface copy number that corresponds to an integer value
that is assigned to one of the Location code point attributes,
most frequently Location1. For this interface, use only
numeric characters in the identifier. For example,

/id=1

/IniFile=<UNC Path>

Optional

This parameter allows you to specify an alternate Path and
Filename for the INI file. If not specified, the interface will
expect to find the INI file in the same directory as, and expect
the INI file to have the same file name (but with an .INI
extension) as the interface executable.

/link=<Element Path>

Optional

AF Only

Link BES (GE iBatch) batches to MES (Werum PAS-X)
batches. Available only when the interface is configured to
write batch data to AF Server event frames. When configured
thus, the Batch interface always acts as MES child. For each
BES (GE iBatch) batch, it attempts to find the corresponding
parent MES batch event frame that triggered the BES
execution. Similarly, the MES interface always acts as a
parent and, if configured for linking, it always attempts to find
a child BES batch event frame when the BES execution
event is acquired.

Note: While MES batch can be accessed only as the root
event frame, the BES batch can be accessed as the root
event frame and as the child of the MES event frame that
represents the MES Basic Function that triggered the BES
execution.

Example:

The Batch interface must contain command line parameter:

 /link=MESCommon

WPASX interface must contain the same command line
parameter:

PI Interface for GE iBatch Batch 81

Parameter Description

/link=MESCommon

/MaxStopTime=<seconds>

Optional

Default: 120 seconds

The /maxstoptime parameter is used to set the

maximum time allowed for the Interface to properly
shutdown. The value must be given in seconds. If the
Interface shutdown process takes longer than the specified
time, the Interface will be forced to terminate immediately.

/MaxQTF=<days>

Optional

Maximum Query Time Frame. This parameter sets the
maximum time frame for each query made to source. The
value can be fractional.

Valid range of values: 0.001 to 180

Default: 30

Example:

if /rst=01/01/2005 and /ret=12/30/2007, then the

actual data time frame to be processed is ~2 years. This can
be very memory intensive and potential run out of memory.
With the help of this parameter, the interface is going to
break 2year query into smaller sub queries with time frame =
30 days each by default.

So the actual queries will be performed with the following
time frames:

[01/01/2005 – 31/01/2005]

[31/01/2005 – 02/03/2005]

[02/03/2005 - 01/04/2005]

Etc.

Startup Command File

82 82

Parameter Description

/Merge

Optional

The /merge switch allows the interface to merge multiple

source batches with same BatchID into one PIBatch.
Original data for each merged batch is stored in PIProperties
under PI Property Node named as UniqueID of the original
batch. This data includes: original BatchID, StartTime (UTC),
EndTime(UTC), Product and Formula Name. Merging time
frame is controlled by /cachetime switch, i.e. the interface

will only merge batches which are still cached in local
memory.

Note: If BatchID’s are different, use additional switch /bidm.

This switch allows to identify common subset of characters in
BatchID and then merging will be performed based on this
subset in addition to actual BatchID merging.

Example:

There are 5 running batches within /cachetime

timeframe:

Test12345_1, Test_12345_2, CleaningTest,
USPO12345_test, CleaningTest

With /merge switch defined: there will be:

4 separate batches:

Test12345_1, Test_12345_2, USPO12345_test

And 1 merged batch:

CleaningTest

With additional /bidm=##### switch defined, where # is

the wildcard for numerical values. There will be only 2
merged batches. Note: the unitbatches will have its original
BatchID’s:

Batch(1): 12345

UnitBatches: Test_12345_1

 Test_12345_2

 Test_12345_test

Batch(2): CleaningTest

UnitBatches: CleaningTest

 CleaningTest

Equivalent to Recipe Template definition in INI file:

Recipe[1].Merge = true

PI Interface for GE iBatch Batch 83

Parameter Description

/Mode=<mode>

Optional

Default: Normal

Possible values:

/Mode=normal

(or no switch defined)

/Mode=delete

/Mode=stat

/Mode=nodata

The /Mode parameter is used to set the running mode of the

Interface. There are four available modes:

Normal – (default) The Interface will perform realtime

processing. This mode is also used for historical data
recovery. To activate recovery mode, /rst switch has to be

defined in command line parameters. In Recovery mode, if
the /ret switch was not defined; the interface is going to
recover data until current time, then switch to realtime
processing automatically. If /ret switch was defined, then

the interface is going to stop on completion of recovery
process.

Stat – In this mode, the interface only compares source data

with the PI server data. Note, the interface does not write or
modify any data on the PI Server. On completion the
interface reports results and stops.

Delete – In this mode the interface cleans PI archives based

on specified source data only, leaving data from all other
sources intact. This mode should be used only if the interface
is unable to synchronize source batch data with the PI server.
This modes is used only in conjunction with Recovery mode
switches (/rst and /ret).

NoData – This mode is designed for situations when the

source data needed to be written to PI archives which are
earlier than the primary PI archive. Due to the nature of the
PI Server, the newly added tags, units and modules are
indexed (referenced) only in the primary PI archive. Any older
archive will not have any knowledge of these modules, units
and tags. In /Mode=NoData the interface creates only

modules, units, tags and tag aliases without processing batch
data and pushing events into the tags. On completion, the
interface stops and you has to reprocess older archives with
offline archive utility. The manual archive reprocessing
creates indexes for newly added units, modules, tags in each
reprocessed archive. This mode should be always used
before writing new batch data to older PI archives (other than
Primary).

/mop

Optional

The /mop Merge Operation switch allows to combine same
named operations running under the same UnitProcedure
into a single operation. The start time of the combined
operation is the start of the earliest operation and the end
time is the end time of the latest/ longest operation which was
merged.

Equivalent to Recipe Template definition in INI file:

Recipe[3].Merge = true

/mup

Optional

The /mup Merge Unit Procedures switch allows to combine
sequential multiple Unit Procedures with the name and
running on the same unit into a single UnitProcedure. The
merge will not occur if the Unit of interest was used by
another recipe between candidates for merging. The start
time of the combined Unit Procedure is the start of the
earliest Unit Procedure and the end time is the end time of
the latest/ longest Unit Procedure which was merged.

Equivalent to Recipe Template definition in INI file:

Recipe[2].Merge = true

/noarbitration This switch is used when the source Batch Executive System
(BES) provides batch data without equipment arbitration.

Startup Command File

84 84

Parameter Description

When this switch used, PI UnitBatches are created based on
source batch recipe data only.

/ns=[lang]

Optional

The /ns (Numeric Settings) switch allows the interface to

perform proper numerical conversions based on the
“Regional and Language Options” setting on local system or
based on user defined language.

This switch is particularly useful when the numerical
conventions differ (example a comma is used instead of a
decimal etc) from the default settings.

If the switch is not used, then the default settings of
“English_UnitedStates” is used.

If the switch is used without any language specification, i.e.
/ns, then the interface will use “Regional and Language

Options” settings specified on the Windows machine where
the interface is running. If the language specification is
passed as a value (/ns=lang), then the interface will use

that value as internal regional/language setting to perform
numerical conversions regardless of local system “Regional
and Language Options” setting.

If the switch contains invalid language, .i.e /ns=<invalid

language>, then the interface will exit.

The language can be passed by type as it is specified below
or by its abbreviation.

Language types (abbreviations):

chinese

chinese-simplified (chs)

chinese-traditional (cht)

czech (csy)

danish (dan)

belgian, dutch-belgian (nlb)

dutch (nld)

australian, english-aus (ena)

canadian, english-can (enc)

english

english-nz (enz)

english-uk (uk)

american, american-english, english-american, english-us,
english-usa, (enu) (us) (usa)

finnish (fin)

french-belgian (frb)

french-canadian (frc)

french (fra)

french-swiss (frs)

german-swiss, swiss (des)

german (deu)

gegerman-austrian (dea)

greek (ell)

hungarian (hun)

icelandic (isl)

italian (ita)

italian-swiss (its)

japanese (jpn)

korean (kor)

norwegian-bokmal (nor)

PI Interface for GE iBatch Batch 85

Parameter Description

norwegian

norwegian-nynorsk (non)

polish (plk)

portuguese-brazilian (ptb)

portuguese (ptg)

russian (rus)

slovak (sky)

spanish (esp)

spanish-mexican (esm)

spanish-modern (esn)

swedish (sve)

turkish (trk)

Examples:

/ns - will set the interface to use the local Windows

language/regional settings

/ns=italian

/ns=ita

Both switches will set the interface to use Italian

language/regional settings.

/PIConnTO=<seconds>

Optional

This parameter is used to change the current PI Connection
TimeOut property. By default the Interface uses the default
SDK settings.

/PIDATO=<seconds>

Optional

This parameter is used to change the current PI Data Access
TimeOut property. . By default the Interface uses the default
SDK settings.

/PIPswd=<password>

Optional

Default: Use Trust Table

The /PIPswd parameter is used to explicitly specify you

password to establish the connection to the PI Server. If this
parameter is not specified, the Interface will try to use the
trust table.

Note: The /PIPswd parameter must be used in conjunction

with the /PIUser parameter.

/PIUser=<name>

Optional

Default: Use Trust Table

The /PIUser parameter is used to explicitly specify you

name to establish a connection to the PI Server. If this
parameter is not specified, the Interface will try to use the
trust table.

/Print=<file name>

Optional

Prints the results of first scan in flat text file. The results
include: Batch Tree, Tag List, and Equipment Tree. This
parameter is designed primarily for troubleshooting.

/ps=x

Required

The /ps parameter specifies the point source for the

interface. X is not case sensitive and can be any multiple

character string. For example, /ps=P and /ps=p are

equivalent.

The point source that is assigned with the /ps parameter

corresponds to the PointSource attribute of individual PI
Points. The interface will attempt to load only those PI points
with the appropriate point source.

/PtSec=<string>

Optional

The /PtSec parameter allows to specify the PIPoint Access

Security rights. These rights are assigned only to interface
generated tags during point creation. This string has different
forms. If PIPoints are created on a PI Server 3.4.375.99 or
earlier, it will have an owner, group, world format.

Example:

Startup Command File

86 86

Parameter Description

/ptsec=”o:rw g:r w:r”

If PIPoints are created on a PI Server 3.4.380.36 or later, it
must specify an Access Control List (ACL)

Example:

/ptsec=”piadmin: A(r,w) | PIEngineers: A(r)”

/restef

Optional

AF Only

(R)eferenced (E)lement (S)ecurity (T)o (E)vent(F)rame)
command line parameters enables an event frame with
references to inherit security settings from its Primary
Reference Element.

/ras=<start, stop>

Optional

The /ras Report As Step switch allows to use the “Report”

event to create Phase Steps under active Phase States. The
Phase Step name and start/stop events are obtained from
the “Descript” column.

Note: if the Phase Step left open, it is going to be closed by
the end of the parent operation, and not by the end of parent
phase or phase state.

Example: /ras=”-STRT, -STOP”

Event - Report:

Descipt Column: TEST123-STRT-B.

Triggers the start of the Phase Step "TEST123" under the
currently active Phase State.

Event - Report:

Descipt Column: TEST123-STOP-B.

Sets an end time on the Phase Step "TEST123", if it can be
found and regardless of what is the active Phase State.

PI Interface for GE iBatch Batch 87

Parameter Description

/ret=<date time>

Optional

The Recovery End Time /ret parameter is used to set the

target end time of the history data recovery process. The
Recovery End Time is approximate and interface is going to
recover all batches with start time before Recovery End Time
even though its end time might be beyond Recovery End
Time.The <datetime> should be provided in local interface
node time format.

Note: This command must be used in conjunction with the
optional switch: Recovery Start Time

/rst=<datetime>

Illustration:

 Recovery Recovery

 Start End

-----------|----------------|-----------

- time line

 [--A--]

 [-----B-----]

 [-------------C-----------------]

 [---D---]

 [---------E-------

]

 [---

F---*

Given Recovery Start – End timeframe, the interface is going
to recover batches: B, C, D, E. Batches A and F are going to
be ignored.

Examples:

/ret=”29-sep-2005 7:12:01 pm”

/ret=”07/20/2008 15:43:12”

/Retry=<seconds>

Optional

Default: 60 seconds

The /Retry switch specifies the retry time delay, in

seconds, for retrying a failed SDK attempt to write data to PI
Server. The default retry delay is set to 60 seconds.

/RetryTO=<seconds>

Optional

Default: 0 seconds

The Retry TimeOut /retryTO switch specifies the timeout,

in seconds, for retrying a failed SDK attempt to write data to
PI. The default timeout is set to 0 seconds (infinity).

Note: To prevent data loses, it is recommended NOT to use
the retry timeout switch.

Startup Command File

88 88

Parameter Description

/rst=<datetime>

Optional

The Recovery Start Time /rst parameter is used to set the

target start time of the history data recovery process. The
Recovery Start Time is approximate and an interface is going
to recover all batches which start time after Recovery Start
Time. In the boundary case when the batch start time is
before Recovery Start Time and the batch end time is after
Recovery Start Time, the interface is going to perform
recovery for such batches as well. The <datetime> should be
provided in local interface node time format.

Illustration:

 Recovery Recovery

 Start End

-----------|----------------|-----------

- time line

 [--A--]

 [-----B-----]

 [-------------C-----------------]

 [---D---]

 [---------E-------

]

 [---

F---*

Given Recovery Start – End timeframe, the interface is going
to recover batches: B, C, D, E. Batches A and F are going to
be ignored.

Examples:

/rst=”29-sep-2003 7:12:01 pm”

/rst=”05/21/2007 15:43:12”

/Scan=<seconds>

Optional

Default: 60 seconds

The /Scan parameter defines the time period between

Interface scans in terms of seconds.

Example:

/Scan=30

If the scanning frequency is set to 30 seconds, the Interface

will attempt to query and process data every 30 seconds.

Although, scan may be skipped if an abundance of data is

processed.

/SingleRun

Optional

This parameter forces the interface to perform only one scan

and then stop.

/smp=”PI Module Path”

or

/smp=”PI AF Element

Path”

Optional

The /smp switch designates an alternate PI Module path, or

PI AF element path if the PI AF database is used, to start
looking for a particular Equipment hierarchy. If this option is
not specified (i.e. the default) is to begin at the root level A
path must be specified. This path is of the syntax:

 \\<RootModule>\<SubModule>\<…>

e.g.

 \\MyEnterprise\MyPlant\

/SwapTime=<seconds>

Defines the amount of time in seconds that the current
primary interface must be unavailable before failover occurs.

PI Interface for GE iBatch Batch 89

Parameter Description

Optional

Default: 300 seconds.

Example: /swaptime=240

/tbid

Optional

Truncate BatchID. This parameter should be used in

conjunction with /bidm parameter. When this parameter is

enabled, all incoming events BatchID will be truncated

according to the mask defined in /bidm switch. PIBatch,

PIUnitBatch BatchID property will contain truncated

BatchID. Tag and Property templates using placeholder

[batchid] will replace it with truncated BatchID.

/tbse

Optional

The /tbse True Batch Start End switch informs the

interface to use actual top level recipe start/end events for

creating the PI Batch objects. The original (default) behavior

of the interface is to use the batch load/unload events. The

new functionality (/tbse) is supported for batches with S88

recipe types: Procedure, UnitProcedure, Operation, and

Phase.

/uidlist=<list>

Optional

This parameter allows to recover specific Manufacturing

Orders. If the switch is specified, on recovery completion the

interface stops. The value should be defined as the list of the

Manufacturing Order uniqueid’s, which can be obtained

from: PASX.ManufacturingOrder.EntityKey column

Note: This parameter overrides the recovery /rst and

/ret switches.

Example 1: /uidlist=5008424880

Example 2: /uidlist=5010350293,5011438395

Startup Command File

90 90

Sample PIGEIB.bat File

The following is an example file:

REM==

REM

REM PIGEIB.bat

REM

REM Sample startup file for the PI Interface for GE iBatch Batch

REM

REM==

REM

REM Sample command line

REM

 PIGEIB.exe ^

 /smp="\\Plant1" ^

 /host=XXXXXX:5450 ^

 /id=1 ^

 /ps=GEIB ^

 /retry=30 ^

 /cachetime=0.1 ^

 /abto=30 ^

 /scan=45

REM

REM end of PIGEIB.bat

PI Interface for GE iBatch Batch 91

Initialization File Parameters

The Initialization file: PIGEIB<serviceid>.ini is used to specify the interface

configurations, such as data sources, translations, product template, equipment template, tag

templates and property templates. Note, most of the command line parameters can be defined

in INI file. For example consider Recovery Start parameter /rst and /merge parameter.

The command line syntax:

/rst=”12/05/2008 12:05:23” /merge

Equivalent Initialization file defined parameters:

rst=12/05/2008 12:05:23

merge = true

Note: In the initialization file each parameter should be defined on separate line.

There should be only one equal (=) sign per line. Parameters can be disabled by

specifying two forward slashes (//)

//rst=12/05/2008 12:05:23

//merge = true

In this case, rst and merge parameters are disabled, therefore they are

considered to be undefined.

The initialization can contain any free text. The only lines that will be loaded by the interface

are lines with embedded equal sign and their continuation lines, if any. Sample INI files are

included with the interface installation.

PI Interface for GE iBatch Batch 93

Chapter 9. Interface Node Clock

Make sure that the time and time zone settings on the computer are correct. To confirm, run

the Date/Time applet located in the Windows Control Panel. If the locale where the interface

node resides observes Daylight Saving Time, check the box marked “Automatically adjust

clock for daylight saving changes”. For example,

In addition, make sure that the TZ environment variable is not defined. All of the currently

defined environment variables can be viewed by opening a Command Prompt window and

typing set. That is,

C:> set

Confirm that TZ is not in the resulting list. If it is, run the System applet of the Control

Panel, click the Environment Variable button under the Advanced Tab, and remove TZ from

the list of environment variables.

PI Interface for GE iBatch Batch 95

Chapter 10. Security

The PI Firewall Database and the PI Proxy Database must be configured so that the interface

is allowed to write data to the PI Server. See “Modifying the Firewall Database” and

“Modifying the Proxy Database” in the PI Server manuals.

Note that the Trust Database, which is maintained by the Base Subsystem, replaces the Proxy

Database used prior to PI version 3.3. The Trust Database maintains all the functionality of

the proxy mechanism while being more secure.

 See “Trust Login Security” in the chapter “Managing Security” of the PI Server System

Management Guide.

If the interface cannot write data to the PI Server because it has insufficient privileges, a

-10401 error will be reported in the pipc.log file. If the interface cannot send data to a PI2

Serve, it writes a -999 error. See the section Appendix A: Error and Informational Messages

for additional information on error messaging.

PI Server v3.3 and Higher

Security configuration using piconfig

For PI Server v3.3 and higher, the following example demonstrates how to edit the PI Trust

table:

C:\PI\adm> piconfig

@table pitrust

@mode create

@istr Trust,IPAddr,NetMask,PIUser

a_trust_name,192.168.100.11,255.255.255.255,piadmin

@quit

For the above,

Trust: An arbitrary name for the trust table entry; in the above example,

a_trust_name

IPAddr: the IP Address of the computer running the Interface; in the above example,

192.168.100.11

NetMask: the network mask; 255.255.255.255 specifies an exact match with IPAddr

PIUser: the PI user the Interface to be entrusted as; piadmin is usually an appropriate user

Security Configuring using Trust Editor

The Trust Editor plug-in for PI System Management Tools 3.x may also be used to edit the PI

Trust table.

Security

96 96

See the PI System Management chapter in the PI Server manual for more details on security

configuration.

PI Server v3.2

For PI Server v3.2, the following example demonstrates how to edit the PI Proxy table:

C:\PI\adm> piconfig

@table pi_gen,piproxy

@mode create

@istr host,proxyaccount

piapimachine,piadmin

@quit

In place of piapimachine, put the name of the PI Interface node as it is seen by PI Server.

PI Interface for GE iBatch Batch 97

Chapter 11. Starting and Stopping the Interface

This section describes starting and stopping the interface once it has been installed as a

service.

Starting Interface as a Service

If the interface was installed a service, it can be started from PI ICU, the services control

panel or with the command:

PIGEIB.exe -start

To start the interface service with PI Event Frames Interface Manager, use the “Start Interface

Service” button on the Service Tab.

A message will inform you of the status of the interface service. Even if the message

indicates that the service has started successfully, double check through the Services control

panel applet. Services may terminate immediately after startup for a variety of reasons, and

one typical reason is that the service is not able to find the command-line parameters in the

associated .bat or initialization .ini file. Verify that the root name of the .bat file, .ini

file and the .exe file are the same, and that the .bat file, .ini file and the .exe file are in

the same directory. Further troubleshooting of services might require consulting the

pipc.log file, Windows Event Viewer, or other sources of log messages. See the section

Appendix A: Error and Informational Messages for additional information.

Stopping the Interface Running as a Service

If the interface was installed a service, it can be stopped at any time from PI Event Frames

Interface Manager, the services control panel or with the command:

PIGEIB.exe -stop

The service can be removed by:

PIGEIB.exe -remove

To stop the interface service with PI Event Frames Interface Manager, use the “Stop Interface

Service” button on the Service Tab

PI Interface for GE iBatch Batch 99

Chapter 12. Failover

Multiple interfaces can be configured to run in failover mode. Failover requires that the

interfaces are configured identically, with identical BAT file, and identical INI file. Failover

requires the configuration of three additional parameters:

Parameter Name Value Type Description

/FailOverID 1. <string> 2. The unique ID of the particular interface instance. The
failover ID must be unique amongst the interfaces
configured in failover mode

/FailOverTag 3. <PIPoint Name> 4. This PI Point is used to coordinate among participating
interface instances which interface instance is primary.

/SwapTime 5. <time in
seconds>

6. The amount of time that the current primary interface
must be unavailable before failover occurs

When the interfaces are configured for failover, the current primary interface writes events to

the failover tag. Each event has a timestamp of the current time and a value which has the

format:

Failoverid | latest processed timestamp in UTC

Example:

interface1 | 1325376000

Each interface instance that is configured with this failover tag reads the current value of the

failover tag. If the latest-processed timestamp occurred within the swap time, the current

primary interface continues processing the data. If the latest-processed time stamp occurred

prior to the swap time, a backup interface instance assumes the primary role. The new

primary interface verifies the data and events in the cache time prior to the latest-processed

timestamp, then resumes processing current data in real time.

Example:

Interface instance BAT file #1:

PIGEIB.exe ^

/swaptime=30 ^

/failovertag="GEIB1_FailoverTag" ^

/failoverid="intf1" ^

/rti ^

/inifile="C:\GEIB\Test.ini" ^

/PS=EV ^

/ID=1 ^

Failover

100 100

/host=localhost2010 ^

/scan=10 ^

/cachetime=0.5 ^

/abto=10 ^

/db=1

Interface instance BAT file #2:

PIGEIB.exe ^

/swaptime=30 ^

/failovertag="GEIB1_FailoverTag" ^

/failoverid="intf2" ^

/rti ^

/inifile="C:\GEIB\Test.ini" ^

/PS=EV ^

/ID=1 ^

/host=localhost2010 ^

/scan=10 ^

/cachetime=0.5 ^

/abto=10 ^

/db=1

PI Interface for GE iBatch Batch 101

Appendix A. Error and Informational Messages

A string NameID is pre-pended to error messages written to the message log. Name is a non-

configurable identifier that is no longer than 9 characters. ID is a configurable identifier that

is no longer than 9 characters and is specified using the /id flag on the startup command

line.

Message Logs

The messages are logged in the local node log file PIHOME\dat\pipc.log.

Messages are written to log files at the following events:

 When the Interface starts many informational messages are written to the log. These

include the version of the Interface, the version of PI SDK, the version of the PI Server,

and the command-line parameters used.

 As the Interface processes batch-related data, messages are sent to the log if there are any

problems with data retrieval from the data source or data processing to the PI Server.

 If the /db is used on the command line, then various informational messages are written

to the log file.

Messages

The Batch interface logs all module, unit, alias, and point creation attempts for system

management and auditing purposes. In addition, there are various debug level messages

which may be logged using the /db=<level> switch in the interface startup file. See the

section on Interface Operation for more detail on this switch.

Initialization or Startup Errors

Generally, these errors will stop the interface from starting up – it is normal behavior for the

interface to exit since in many cases the proper startup state of the interface cannot be

achieved (or determined) when these errors occur. Generally, speaking if an interface

initialization error occurs, you should check to ensure that communications between the PI

server and interface node are existent (since many of the initial parameters need to be

synchronized – checked or created with or on the PI server).

"<source>: Memory Allocation Error, <error description>."

Errors, containing the message above, generally mean that the Interface node is out of

memory. Release some memory by closing unused applications.

"<source>: COM Error: [error number]: <error description>."

Error and Informational MessagesFailover

102 102

Errors, containing the message above, are COM generated errors. These errors can occur on

data retrieving from the data source as well as during processing of data to the PI Server.

Refer to PI SDK reference manual for PI related COM errors to resolve such errors.

"<source> object = NULL" or "<source> pointer = NULL"

Errors, containing the messages above, are memory allocation related errors. Generally mean

that the Interface node is out of memory. Release some memory by closing unused

applications and restart the interface.

"parse_argument_file: Error, Failed to open argument file: <argumentfile>”

This error means that the Interface failed to find the batch file associated with the specific

Interface instance. Make sure that the batch file is consistent with the serviceid of the

Interface. For example, on setup the service id is set as serviceid 4. In this case the batch

file must be named PIWPASXBatch4.bat.

"parse_argfile_line: Error, Found open quote (\") without closing quote on
command line...Terminating."

This error means that one of the command line parameters in the startup batch file has only

one opening quote without matching closing quote. Check the batch file for missing quotes.

"read_ini_file: Error, unable to locate Initialization file: <filename>"

Verify that initialization file named <filename> exists in the Interface directory.

"read_ini_file: Error, unable to open Initialization file in READ MODE:
<filename>"

Check the access properties of the initialization file named <filename>.

"read_startup_file: Error, unable to locate <startup file>: <filename>"

Verify that startup file named <filename> exists in the Interface directory.

"read_startup_file: Error, unable to open <startup file> in READ MODE:
<filename>"

Check the access properties of the startup file named <filename>.

"write_startup_file: Error, failed to open <startup file> for writing : <filename>,
Error: [errno=error number] :<error description>."

Check the access properties of the startup file named <filename>. Refer to error number and

description for the actual error description.

"[REQUIRED PARAMETERS]: Development Error: No Batch Executive System
defined. Please Contact OSIsoft technical support."

This is invalid build of the interface. Contact OSIsoft’s technical support to request a valid

build.

"[REQUIRED PARAMETERS]: Development Error: More than [1] Batch
Executive System defined. Please Contact OSIsoft technical support.”

The interface was build incorrectly; contact OSIsoft’s technical support to request a valid

build for required Batch Execution System.

PI Interface for GE iBatch Batch 103

"TemplateModuleList::Verify: Error, <error description>"

The errors containing message above mean that there is an incorrect data provided while

defining Equipment module structure. Refer to error description for hints and check your

input in initialization file.

"[REQUIRED PARAMETERS]: <error description>"

OR

"[MISSING REQUIRED COMMAND LINE PARAMETERS] : <error description>"

The errors containing message above generally mean that there are missing parameters in

either command line or in initialization file required for interface startup. Please refer to error

description to resolve the error.

"Main: Error, Failed to set Numerical Settings to : [language]"

The value provided for /ns switch in command line parameters is invalid, please check your

input.

"check_SDK_version: Error: Too Many fields in PI SDK Version"

The interface failed to identify the PI SDK version number. Please consult with OSIsoft

technical support to resolve this error.

"check_SDK_version: Error, This is an Old PI SDK Version, Please upgrade to
<minimum SDK version> or higher.”

The PI SDK version installed on the interface node is lower than the minimum required by

the interface version of the PI SDK. Please download and install new version of PI SDK.

"set_PISDK_GUID: Error, The Interface failed to identify itself to the PI Server,
appID = NULL. Terminating."

The interface failed to broadcast its Global Unique ID to the PI server. Please contact OSIsoft

technical support to resolve this error.

"OpenPIConnection: Error, PI Server <collective name\PI server name> is a
SECONDARY Server. The interface is designed to run only against PRIMARY
PI Server. Terminating."

The current version of the interface is designed to run only against primary server if used in

the Collective configuration. Change the /host switch value and restart the interface.

"netsafe::FindCreateMonitorTags: ERROR, Failed to Add <object description>"

Errors, containing the messages above, are memory allocation related errors. Generally mean

that the Interface node is out of memory. Release some memory by closing unused

applications and restart the interface.

"StartHealthMonitor: Error, Failed to start health monitor thread. [error
number]:<error description>"

This is windows related error, check error description.

"ReadCommandFile: ERROR, Unable to read Command file: <filename>,
REASON: NO reading privileges"

Error and Informational MessagesFailover

104 104

Check the access properties of the command file named <filename>.

"ReadCommandFile: ERROR, Unable to reset Command file: <filename>,
REASON: NO writing privileges”

Check the access properties of the command file named <filename>.

"mCOMThreadProc: ThreadID: [thread ID]: Error, Unable to retrieve passed
arguments... Terminating”

This error indicates that the interface node might be out of memory. Release some memory

by closing unused applications and restart the interface.

"The source IP address <server name> is not valid, <error description>“

The errors containing message above generally mean that the /host=<server name>

switch value is invalid. Please refer to error description and correct your input in command

line parameters.

"SourceList::AddUpdate: Error <error description>“

The errors containing message above mean that there is an incorrect data provided while

defining source[#] properties. Refer to error description for hints and check your input in

initialization file.

"TemplatePropertyList::Verify: Error, <error description>”

or

"TemplatePropertyList::Add: Error, <error description>”

The errors containing message above mean that there is an incorrect data provided while

defining Property[#] template value structure. Refer to error description for hints and check

your input in initialization file.

"TemplateTagList::Verify: Error, <error description>”

or

"TemplateTagList::AddUpdate: Error <error description>”

The errors containing message above mean that there is an incorrect data provided while

defining Tag[#] template properties. Refer to error description for hints and check your input

in initialization file.

Runtime Errors

Generally, Batch interface errors are triggered by some action that the interface takes while

interacting with the PI Server or reading data from the data source. Therefore, most (if not

all) errors will contain a variable portion of the message which is returned from either the PI

Server or the underlying PI SDK layers. PI server specific portions of messages will

generally contain a negative five-digit number (e.g. –10401 or –15001). These numbers are

often followed by a description. However, these error numbers can also be looked up using

the following command line commands:

 pidiag –e <error number>

or:

PI Interface for GE iBatch Batch 105

 pilogsrv –e <error number>

PI SDK numbers are generally eight-digit hexadecimal numbers (e.g. 0x000403a0). Again

specific descriptions for the error are generally appended to the error message, but can also be

obtained by using the “Error Lookup” function in the AboutPI SDK.exe application installed

when the PI SDK is installed.

"<source>: Memory Allocation Error, <error description>."

Errors, containing the message above, generally mean that the Interface node is out of

memory. Release some memory by closing unused applications.

"<source>: COM Error: [error number] : <error description>."

Errors, containing the message above, are COM generated errors. These errors can occur on

data retrieving from the data source as well as during processing of data to the PI Server.

Refer to PI SDK reference manual for PI related COM errors to resolve such errors.

"<source>: Critical Error, <error description>."

"<source> object = NULL" or "<source> pointer = NULL"

Errors, containing the messages above, are memory allocation related errors. Generally mean

that the Interface node is out of memory. Release some memory by closing unused

applications and restart the interface.

System Errors and PI Errors

System errors are associated with positive error numbers. Errors related to PI are associated

with negative error numbers.

Error Descriptions

On Windows, descriptions of system and PI errors can be obtained with the pidiag utility:

\PI\adm\pidiag –e error_number

PI Interface for GE iBatch Batch 107

Appendix B. Technical Support and Resources

You can read complete information about technical support options, and access all of the

following resources at the OSIsoft Technical Support Web site:

http://techsupport.osisoft.com (http://techsupport.osisoft.com)

Before You Call or Write for Help

When you contact OSIsoft Technical Support, please provide:

Product name, version, and/or build numbers

Computer platform (CPU type, operating system, and version number)

The time that the difficulty started

The log file(s) at that time

Help Desk and Telephone Support

You can contact OSIsoft Technical Support 24 hours a day. Use the numbers in the table

below to find the most appropriate number for your area. Dialing any of these numbers will

route your call into our global support queue to be answered by engineers stationed around

the world.

Office Location Access Number Local Language Options

San Leandro, CA, USA 1 510 297 5828 English

Philadelphia, PA, USA 1 215 606 0705 English

Johnson City, TN, USA 1 423 610 3800 English

Montreal, QC, Canada 1 514 493 0663 English, French

Sao Paulo, Brazil 55 11 3053 5040 English, Portuguese

Frankfurt, Germany 49 6047 989 333 English, German

Manama, Bahrain 973 1758 4429 English, Arabic

Singapore 65 6391 1811

86 021 2327 8686

English, Mandarin

Mandarin

Perth, WA, Australia 61 8 9282 9220 English

http://techsupport.osisoft.com/

Failover

108 108

Support may be provided in languages other than English in certain centers (listed above)

based on availability of attendants. If you select a local language option, we will make best

efforts to connect you with an available Technical Support Engineer (TSE) with that language

skill. If no local language TSE is available to assist you, you will be routed to the first

available attendant.

If all available TSEs are busy assisting other customers when you call, you will be prompted

to remain on the line to wait for the next available TSE or else leave a voicemail message. If

you choose to leave a message, you will not lose your place in the queue. Your voicemail

will be treated as a regular phone call and will be directed to the first TSE who becomes

available.

If you are calling about an ongoing case, be sure to reference your case number when you call

so we can connect you to the engineer currently assigned to your case. If that engineer is not

available, another engineer will attempt to assist you.

Search Support

From the OSIsoft Technical Support Web site, click Search Support.

Quickly and easily search the OSIsoft Technical Support Web site’s Support Solutions,

Documentation, and Support Bulletins using the advanced MS SharePoint search engine.

Email-based Technical Support

techsupport@osisoft.com

When contacting OSIsoft Technical Support by email, it is helpful to send the following

information:

Description of issue: Short description of issue, symptoms, informational or error

messages, history of issue

Log files: See the product documentation for information on obtaining logs pertinent to

the situation.

Online Technical Support

From the OSIsoft Technical Support Web site, click Contact us > My Support > My Calls.

Using OSIsoft’s Online Technical Support, you can:

Enter a new call directly into OSIsoft’s database (monitored 24 hours a day)

View or edit existing OSIsoft calls that you entered

View any of the calls entered by your organization or site, if enabled

See your licensed software and dates of your Service Reliance Program agreements

mailto:techsupport@osisoft.com

PI Interface for GE iBatch Batch 109

Remote Access

From the OSIsoft Technical Support Web site, click Contact Us > Remote Support Options.

OSIsoft Support Engineers may remotely access your server in order to provide hands-on

troubleshooting and assistance. See the Remote Access page for details on the various

methods you can use.

On-site Service

From the OSIsoft Technical Support Web site, click Contact Us > On-site Field Service Visit.

OSIsoft provides on-site service for a fee. Visit our On-site Field Service Visit page for more

information.

Knowledge Center

From the OSIsoft Technical Support Web site, click Knowledge Center.

The Knowledge Center provides a searchable library of documentation and technical data, as

well as a special collection of resources for system managers. For these options, click

Knowledge Center on the Technical Support Web site.

The Search feature allows you to search Support Solutions, Bulletins, Support Pages,

Known Issues, Enhancements, and Documentation (including user manuals, release

notes, and white papers).

System Manager Resources include tools and instructions that help you manage: Archive

sizing, backup scripts, daily health checks, daylight savings time configuration, PI

Server security, PI System sizing and configuration, PI trusts for Interface Nodes, and

more.

Upgrades

From the OSIsoft Technical Support Web site, click Contact Us > Obtaining Upgrades.

You are eligible to download or order any available version of a product for which you have

an active Service Reliance Program (SRP), formerly known as Tech Support Agreement

(TSA). To verify or change your SRP status, contact your Sales Representative or Technical

Support (http://techsupport.osisoft.com/) for assistance.

OSIsoft Virtual Campus (vCampus)

The OSIsoft Virtual Campus (vCampus) Web site offers a community-oriented program that

focuses on PI System development and integration. The Web site's annual online

subscriptions provide customers with software downloads, resources that include a personal

development PI System, online library, technical webinars, online training, and community-

oriented features such as blogs and discussion forums.

OSIsoft vCampus is intended to facilitate and encourage communication around PI

programming and integration between OSIsoft partners, customers and employees. See the

OSIsoft vCampus Web site, http://vCampus.osisoft.com (http://vCampus.osisoft.com) or

contact the OSIsoft vCampus team at vCampus@osisoft.com for more information.

http://techsupport.osisoft.com/
http://vcampus.osisoft.com/

