ORBacus

For C++ and Java

Copyright (c) 1998 Object-Oriented Concepts, Inc. All Rights Reserved.

“Object—Oriented Concepts”, “ORBacus” and “JThreads/C++" are trademarks or regis-
tered trademarks of Object—Oriented Concepts, Inc.

“OMG”, “CORBA", and “Object Request Broker” are trademarks or registered trade-
marks of the Object Management Group.

“Java’ is a trademark of Sun Microsystems, Inc.
“Netscape” is a registered trademark of Netscape Communications Corporation.

Other names, products, and services may be the trademarks or registered trademarks of
their respective holders.

ORBacus

CHAPTER 1

CHAPTER 2

CHAPTER 3

Introduction 11

What is ORBacus? 11
How isit licensed? 12
About thisDocument 12
Getting Help 12

Getting Sarted 15

The “Hello World” Application 15
The IDL Code 16
Implementing the Example in C++ 16
Implementing the Server 17
Implementing the Client 19
Compiling and Linking 20
Running the Application 21
Implementing the Example in Java2l
Implementing the Server 21
Implementing the Client 23
Compiling 24
Running the Application 24
Summary 25
Where to go from here 25

The ORBacus Code Generators

Overview 27
Synopsis 27
Description 28
Options for idl 29
Options for jidl 31
Options for hidl 32
Options for ridl 32
Options for irserv 33
Options for irfeed 34
Options for irdel 34
Options for irgen 34

27

ORBacus

The IDL-to-C++ Translator and the Interface Repository 35
Include Statements 35

Documenting IDL Files 36

Using javadoc 39

cHAPTER 4 ORB and BOA Initialization 43

ORSB Initidization 43
Initializing the C++ ORB 43
Initializing the Java ORB for Applications 43
Initializing the Java ORB for Applets 44
BOA Initialization 44
Initializing the C++ BOA 44
Initializing the Java BOA 44
Configuring the ORB and BOA 45
Properties 45
Command-line Options 48
Filtering Command-line Options 49
Using a Configuration File 50
Defining Propertiesin Java 50
Precedence of Properties 51
Advanced Property Usage 52
Server Event Loop 56
Mixed Client/Server Applications 56
Deactivating the Server 57
Applets 59
Adding ORBacus Appletsto Web Pages 59
Defining ORB and BOA Options for an Applet 59
Defining the ORB Class Parameters 60
Security Issues 60

cHAPTER5 CORBA Objects 61

Overview 61
Implementing Servants 62
Implementing Servants using Inheritance 63
Implementing Servants using Delegation 65
Creating Servants 69

ORBacus

CHAPTER 6

CHAPTER 7

Creating Servantsusing C++ 69
Creating Servantsusing Java 70

Connecting Servants 71
Connecting Servantsusing C++ 71
Connecting Servantsusing Java 71
Named Servants 72

Factory Objects 73
Factory Objectsusing C++ 74
Factory Objectsusing Java 75
Caveats 76

Getting a Servant from aReference 77
Getting a Servant usng C++ 77
Getting a Servant using Java 79

Locating Objects 81

Obtaining Object References 81
Lifetime of Object References 83
Hostname 84
Port Number 84
Object Key 84
Stringified Object References 85
UsingaFile 85
UsingaURL 87
Using Applet Parameters 88
Connecting to Named Objects 88
Using theiiop:// Notation 89
Using get_inet_object 89
Initial Services 90
Resolving an Initial Service 90
Providing IORs of Initial Services 92

Reference Counting 95

What is Reference Counting? 95
Reference Counting in Java 95

Reference Counting in C++ 96
Marshalling Issues 96

ORBacus

CHAPTER 8

CHAPTER 9

Releasing Proxies and Servants 98
Global Object References 99
Cyclic Object Dependencies 100

C++ Mapping Notes 105

Reserved Names 105
Mapping of Modules 105
Extensions 106
Extensionsto the Sring Type 106
Extensionsto _var Types 106
Extensions to Sequence Types 107
C++ Mapping Tips& Tricks 108
CORBA Srings 108
Object References 112

Concurrency Models 117

Introduction 117
What is a Concurrency Model? 117
Why different Concurrency Models? 117
ORBacus Concurrency Models Overview 118
Single-Threaded Concurrency Models 118
Blocking Clientsand Servers 118
Reactive Clientsand Servers 119
Multi-Threaded Concurrency Models 122
Threaded Clientsand Servers 122
Thread-per-Client Server 123
Thread-per-Request Server 124
Thread Pool Server 124
Performance Comparisons 125
Sample Application 125
Regular Method Invocations 126
Nested Method Invocations 127

Selecting Concurrency Models 128

ORBacus

CHAPTER 10

CHAPTER 11

CHAPTER 12

The Reactor 131

What isaReactor? 131
Available Reactors 131
The X11 Reactor 132
The Windows Reactor 133
Writing a Custom Event Handler 134
Using Timers 135

The Open Communications Interface

What is the Open Communications Interface? 137
Interface Summary 137

Buffer 137

Transport 138

Acceptor and Connector 138

Connector Factory 138

The Registries 138

The Info Objects 138

Class Diagram 139
OCI Reference 139

OCI for the Application Programmer 140
A “Converter” Class for Java 140
Getting Hostnames and Port Number$41l
Finding out a Client's IP Address142
Finding out a Server’s IP Addressl44

Using Policies 147

Overview 147

Supported Policies 148

Examples 148
Connection Reuse Policy at ORB Levé&l9
Connection Reuse Policy at Object Levéb0

137

ORBacus

CHAPTER 13

CHAPTER 14

APPENDIX A

ORBacus Basic Services 151

Configuring and Using aBasic Service 151
Starting the Service 152
Connecting to the Service 152
Object Names for the Basic Services 153
The Naming Service 154
Properties 154
Command-line Options 154
Creating Bindings 155
Name Resolution 156
Persistence 157
A Smple Example 157
The Property Service 162
Command-line Options 163
Creating Properties 163
Querying for Properties 164
Deleting Properties 165
A Smple Example 166
The Event Service 168
Properties 168
Command-line Options 169
Diagnostics 169
The Event Channel 169
Event Suppliers and Consumers 170
Event Channel Policies 171
A Smple Example 171

Exceptions and Error Messages 177

CORBA System Exceptions 177
Non-Compliant Application Asserts 180

ORBacus Policy Reference 185

Module SSL 185
Interface SSL::ConnectPolicy 186
Module OB 187

ORBacus

APPENDIX B

APPENDIX C

Interface OB::ProtocolPolicy 188
Interface OB::ConnectionReusePolicy 189
Interface OB::ReconnectPolicy 190
Interface OB::TimeoutPolicy 191

Open Communications Interface Reference

Module OCI

Interface OCI:
Interface OCI:
Interface OCI:
Interface OCI:
Interface OCI:
Interface OCI::
Interface OCI:
Interface OCI:
Interface OCI:
Interface OCI:
Interface OCI:
Interface OCI:
Interface OCI:
Interface OCI:
Interface OCI:

:Buffer
:Transport 198
:Transportinfo 202
:CloseCB 204
:Connector

193
196

205
Connectorinfo 207

:ConnectCB 208
:Acceptor
:Acceptorinfo 212
‘AcceptCB 213
:ConFactory 214
:ConFactorylnfo 217
:ConFactoryRegistry 218
:AccRegistry 220
:Current

209

222

Module OCI::IIOP 223

Interface OCI:
Interface OCI:
Interface OCI:
Interface OCI:

:I1OP::Transportinfo 224
:[1OP::Connectorinfo 225
:[1OP::Acceptorinfo 226
:I10OP::ConFactorylnfo 227

Royalty-Free Public License Agreement

References 235

193

229

ORBacus

10

ORBacus

e IOEroduction

1.1 What is ORBacus?

ORBAcus s an Object Request Broker (ORB) that is compliant with the Common Object
Request Broker Architecture (CORBA) specification as defined in “The Common Object
Request Broker: Architecture and Specification” [2] and “IDL/Java Language Mapping”

[3].

These are some of the highlights of the QR8s 3.1 release:

* Full CORBA IDL support

* Complete CORBA IDL-to-C++ mapping

* Complete CORBA IDL-to-Java mapping

* Includes the Basic CORBA Servicdaming, Event andProperty
* Pluggable Protocols with [IOP as the default plug-in

» Single- and Multi-Threaded support with several concurrency maslekking,
Reactive, Threaded, Thread-per-Client, Thread-per-Request andThread Pool

* Nested method invocations, even in the single-threaded version
* Support for timeouts
* Seamless event loop integration with X11 and Windows

* Full support for dynamic programming: Dynamic Invocation Interface, Dynamic
Skeleton Interface, Interface Repository and DynAny

ORBacus 11

I ntroduction

12

1.3

14

* IDL-to-HTML and IDL-to-RTF translators for generating “javadoc”-style
documentation

This version of ORBcus has the following limitations:

* Only persistent (i.e., manually launched) servers are currently supported.

For platform availability, please refer to the OR®IS home page attt p: //
www. ooc. com ob/ .

How isit licensed?

ORBacusis licensed as “free for non-commercial use.” See the license agreement in
Appendix C for details. For information on commercial licenses, please see the pricing
information on our Web site, or contaatppor t @oc. com

About this Document

This manual is - except for the “Getting Started” chapter - no replacement for a good
CORBA book. This manual also does not contain the precise specifications of the
CORBA standard, which are freely available on-line. A good grasp of the CORBA speci-
fications in [2] and [3] is absolutely necessary to effectively use this manual. In particular,
the chapters in [2] covering CORBA IDL and the IDL-to-C++ mapping should be studied
thoroughly.

Do not expect any of the introductory CORBA books to provide a reference for the IDL-
to-C++ mapping. The books that are currently available only give an overview and are
neither complete nor up-to-dafehere is no substitute for the official CORBA specifica-

tion asdefined in [2].

What this manual does contain, however, is informatiohcwnORBACUS implements

the CORBA standard. A shortcoming of the current CORBA specification is that it leaves

a high degree of freedom to the CORBA implementation. For example, the precise seman-
tics of a oneway call are not specified by the standard.

To make it easier to get started with ORBs, this manual contains a “Getting Started”
chapter, explaining some ORBUS basics with a very simple example.
Getting Help

Should you need any assistance with QR&s, do not hesitate to contact us at
support @oc. com You might also consider joining our ORBUS mailing list. To do
S0, send a messagentsj or dono@oc. com(notob@oc. conj with

12

ORBacus

Getting Help

subscri be ob

in the body (not in the Subj ect : field) of your message. To unsubscribe, use

unsubscri be ob

in the body of your message. To send a message to the list, mail to ob@oc. com(not
maj or dono@oc. com).

An archive of the ORBAcuUs mailing list can be found at ht t p: / / www. ooc. cont ob/
mailing-list.htm .

ORBacus

13

I ntroduction

14

ORBacus

CHAPTER 2

Getting Sarted

2.1

The “Hello World” Application

The example described in this chapter is founded on a well-known application: A “Hello
World!” program presented here in a special client-server version.

Many books on programming start with this tiny demo program. In introductory C++
books you'll probably find the following piece of code in the very first chapter:

/]l C++

#i ncl ude <i ostream h>

int

main(int, char*[], char*[])

{
cout << "Hello World!'" << endl;
return O;

}

Or in introductory Java books:

/1 Java

public class Geeter

{

public static void main(String args[])

ORBacus 15

Getting Started

2.2

2.3

DN WNRKR

w

Systemout.println("Hello World!");

}

These applications simply print “Hello World!” to standard output and that is exactly what
this chapter is about: Printing “Hello World!” with a CORBA-based client-server applica-
tion. In other words, we will develop a client program that invokiesl & o operation on

an object in a server program. The server responds by printing “Hello World!” on its stan-
dard output.

The IDL Code

How do we write a CORBA-based “Hello World!” application? The first step is to create a
file containing our IDL definitions. Since our sample application isn't a complicated one,
the IDL code needed for this example is simple:

/1 1D

interface Hello

{
}s

An interface with the namieel | o is defined. An IDL interface is conceptually equivalent
to a pure abstract class in C++, or to an interface in Java.

void hello();

The only operation defined fl | o, which neither takes any parameters nor returns any
value.

Implementing the Examplein C++

The next step is to translate the IDL code to C++ using the IDL-to-C++ translator. Save
the IDL code shown above to a file called | o. i dl . Now translate the code to C++
using the following command:

idl Hello.idl

This command will create the fileé®l | 0. h, Hel | 0. cpp, Hel | o_skel . h and
Hel | o_skel . cpp.

16

ORBacus

Implementing the Examplein C++

2.3.1 Implementing the Server

To implement the server, we need to define an implementation class for the Hel | o inter-
face. To do this, we create aclass Hel | o_i npl that is derived from the “skeleton” class
Hel | o_skel , defined in the filedel | o_skel . h. The definition forHel | o_i npl looks

like this:

1 /] C++

2

3 #include <Hel |l o_skel . h>
4

5 class Hello_inpl : public Hell o_skel
6 {

7 public:

8

9 virtual void hello();
10 };

w

Since our implementation class derives from the skeleton igéd$_skel , we must
include the fileHel | o_skel . h.

5 Here we defingkl | o_i npl as a class derived froRel | o_skel .

9 Our implementation class must implement all operations from the IDL interface. In this
case, this is just the operatibal | o.

The implementation forel | o_i npl looks as follows:

1 /] C++

2

3 #i nclude <OB/ CORBA. h>

4 #include <Hello_inpl.h>

5

6 void

7 Hello_inpl::hello()

8 {

9 cout << "Hello Wwrld!l'" << endl;
10 }

3 We must includeéB/ CORBA. h, which contains definitions for the standard CORBA

classes, as well as for other useful things.

4 We must also include théel | o_i npl class definition, contained in the header file
Hel l o_i npl . h.

ORBacus 17

Getting Started

O N OGN WNR

11,13

Thehel | o function simply prints “Hello World!” on standard output.

Save the class definition el | o_i npl in the fileHel | o_i npl . h and the implementa-
tion ofHel | o_i npl in the fileHel | o_i npl . cpp.

Now we need to write the serversi n program, which looks like this:

/] C++
#i ncl ude <OB/ CORBA. h>
#i nclude <Hell o_i npl . h>
#i ncl ude <fstream h>
int
main(int argc, char* argv[], char*[])
{
CORBA _ORB var orb = CORBA ORB init(argc, argv);
CORBA BOA var boa = orb -> BOA_ init(argc, argv);
Hell o_var p = new Hel lo_i npl;
CORBA String_var s = orb -> object_to_string(p);
const char* refFile = "Hello.ref";
of stream out (refFile);
out << s << endl;
out. close();
boa -> inpl _is_ready(CORBA | npl enentationDef:: _nil());
}

Several header files are included. Of th&®# CORBA. h provides the standard CORBA
definitions, andHel | o_i npl . h contains the definition of thieel | o_i npl class.

The first thing a CORBA program has to do is to initialize the ORI the BOA This

is done byCORBA_ORB_i ni t andBQOA_i ni t . Both operations expect the parameters with
which the program was started. These parameters may or may not be usedRByahe
BOA, depending on the CORBA implementation. ORBSs recognizes certain options
that will be explained later.

1. Object Request Broker
2. Basic Object Adapter

18

ORBacus

Implementing the Examplein C++

14

16-20

22

232

© O NN WNR

R R R RRRRRR
N UANWNRKRO

Aninstance of Hel | o_i npl iscreated. Hel | o_var, likeall _var types, is a “smart”
pointer, i.e.p will release the object created tww Hel | o_i npl automatically whep
goes out of scope.

The client must be able to access the implementation object. This can be done by saving ¢
“stringified” object reference to a file which can be read by the client and converted back
to the actual object referent&@he operatiombj ect _to_string() converts a CORBA

object reference into its string representation.

Finally, in order to react to incoming requests, the server must enter its event loop. This is
done by calling npl _i s_r eady. Since ORBcus does not use the

CORBA_| npl emrent at i onDef argumentCORBA | npl ement ati onDef:: _nil () can

be used as a dummy argument.

Save this to a file with the nanser ver . cpp.

Implementing the Client

Writing the client requires less work than writing the server, since the client, in this exam-
ple, only consists of theai n function. In several respects the clients n is similar to
the server'smi n function:

/]l C++

#i ncl ude <OB/ CORBA. h>
#i ncl ude <Hel |l 0. h>

#i ncl ude <fstream h>

int
main(int argc, char* argv[], char*[])

{
CORBA ORB var orb = CORBA ORB init(argc, argv);

const char* refFile = "Hello.ref";
ifstreamin(refFile);

char s[1000];

in >> s;

CORBA _(hj ect_var obj = orb -> string_to_object(s);

1. If your application contains more than one object, you do not need to save object references for
all objects. Usually you save the reference of one object which provides operations that can sub-
sequently return references to other objects.

ORBacus 19

Getting Started

19
20
21
22

11

13-17

19

21

233

Hell o_var hello = Hello:: _narrow obj);
hello -> hello();
}
In contrast to the server, the client does not need to include Hel | o_i npl . h. Only the gen-

erated file Hel | 0. h is needed.

Likethe server'simplementation of mai n, theclient'smai n startswith theinitialization of
the ORB. It’s not necessary to initialize the BOA, because the BOA is only needed by
server applications.

The “stringified” object reference written by the server is read and converted to a
CORBA_hj ect object reference.

The_nar r ow operation generatesHa! | o object reference from tHeORBA bj ect
object reference.

Finally, thehel | o operation on theel | o object reference is invoked, causing the server
to print “Hello World!”.

Save this into the fil€l i ent . cpp.

Compiling and Linking

Both the client and the server must be linked with the compigétlo. cpp, which usu-
ally has the nameel | 0. o under Unix andHel | 0. obj under Windows. The compiled
Hel | o_skel . cpp andHel | o_i npl . cpp are only needed by the server.

Compiling and linking is to a large degree compiler- and platform-dependent. Many com-
pilers require unique options to generate correct code. To buildh@RBrograms, you

must at least link with the ORBuUS library | i bOB. a (Unix) orob. | i b (Windows).
Additional libraries are required on some systems, sudhbascket . a andl i bnsl . a

for Solaris omsock32. I'i b for Windows.

The ORBrcus distribution comes with variolREADVE files for different platforms which
give hints on the options needed for compiling and the libraries necessary for linking.
Please consult the®READVE files for details.

1. Although CORBA'sT: : _narr owfor aninterface T workssimilar todynami c_cast <T>()
for aplain C++ class T, dynam c_cast <T>() must not be used for CORBA object refer-
ences.

20

ORBacus

Implementing the Examplein Java

234

24

241

R O ©W NN WNR

[Y

$]

Running the Application

Our “Hello World!” application consists of two parts: the client program and the server
program. The first program to be started is the server, because it must create the file

Hel | o. ref that the client needs in order to connect to the server. As soon as the server is
running, you can start the client. If all goes well, the “Hello World!” message will appear
on the screen.

Implementing the Example in Java

In order to implement this application in Java, the interface specified in IDL is translated
to Java classes similar to the way the C++ code was created. ThecORBL-to-Java
translatoyj i dl is used like this:

jidl --package hello Hello.idl

This command results in several Java source files on which the actual implementation will
be based. The generated files lagél o. j ava, Hel | oHel per . j ava,

Hel | oHol der . j ava, St ubFor Hel | 0. j ava and_Hel | ol npl Base. j ava, all generated

in a directory with the nameel | o.

Implementing the Server

The server'sel | o implementation class looks as follows:

[/ Java
package hel | o;
public class Hello_inpl extends _Hell ol npl Base
{

public void hello()

{

Systemout.println("Hello World!");

}

}

The implementation clas#! | o_i npl must inherit from the generated class
_Hel I ol npl Base.

As with the C++ implementation, thel | o method simply prints “Hello World!” on
standard output.

Save this class to the filgel | o_i npl . j ava.

ORBacus 21

Getting Started

O N OGN WNR

33
34

9-12

We a'so have to write a class which holds the server’'s mai n method. We call this class
Server, savedinthefile Server. j ava:

[/ Java
package hel | o;

public class Server

{
public static void main(String args[])
{
org. ong. CORBA. ORB orb =
org. ong. CORBA. ORB.init(args, new java.util.Properties());
or g. ong. CORBA. BQA boa =
orb.BOA init(args, new java.util.Properties());
Hello_inpl p = new Hello_inpl();
try
{
String ref = orb.object_to_string(p);
String refFile = "Hello.ref";
java.io.PrintWiter out = new PrintWiter(
new java.io.FileCQutputStream(refFile));
out.println(ref);
out. flush();
}
catch(java.io.| CException ex)
{
System.err.printin("Can't write to " +
ex.getMessage() + "";
System.exit(1);
}
boa.impl_is_ready(null);
}
}

The ORB and BOA must beinitialized. Thisis done using ORB.init and

ORB.BOA_init . Notethat all standard CORBA definitions are in the package
org.omg.CORBA . That is, you must either import this package, or, as shown in our exam-
ple, you must use org.omg.CORBA explicitly.

22

ORBacus

Implementing the Examplein Java

14

16- 30

32

242

O NN WNR

©

31
32

9-10

Aninstance of Hel | o_i npl iscreated. Thisinstanceis released automatically whenitis
not used anymore.

The object reference is “stringified” and written to a file.

Finally, the server enters its event loop to receive incoming requests.

Implementing the Client

Save this to a file with the nan@i ent . j ava:

[/ Java
package hel | o;

public class dient

{

public static void main(String args[])
{
org. ong. CORBA. ORB orb =
org. ong. CORBA. ORB.init(args, new java.util.Properties());

String ref = null;
try
{

String refFile = "Hello.ref";
java.io.Buf feredReader in =

new j ava.i o. Buf f eredReader (new Fil eReader (refFile));
ref = in.readLine();

}

catch(java.io.| CException ex)

{

System.err.printin("Can't read from ™ +
ex.getMessage() + "");
System.exit(1);
}

org.omg.CORBA.Object obj = orb.string_to_object(ref);
Hello p = HelloHelper.narrow(obj);
p-hello();

}

The ORB isinitialized. BOA initialization is not necessary for clients.

ORBacus 23

Getting Started

12-26

28

30

24.3

24.4

The stringified object referenceis read and converted to an object.

The object reference is “narrowed” to a referenceHeld o object. A simple Java cast
doesn’t work here, since it is possible that the client has to ask the server whether the
object is really of typekel | o.

Finally thehel | o operation is invoked, causing the server to print “Hello World!” on
standard output.

Compiling
To compile the implementation classes and the classes generated by theUSRBE.-
to-Java translator, ugevac (or the Java compiler of your choice):

javac *.java hello/*.java

Ensure that youELASSPATH environment variable includes the OR®S Java classes,
i.e., theOB. j ar file. If you are using the Unix Bourne shell or a compatible shell, you can
do this with the following commands:

CLASSPATH=your _or bacus_di rectory/|ib/OB.jar: $CLASSPATH
export CLASSPATH

Replaceyour _or bacus_di r ect ory with the name of the directory where ORRIS is
installed.

If you are running ORBcuUs on a Windows-based system, you can use the following
command within the Windows command interpreter:

set CLASSPATH=your _or bacus_directory/lib/OB.jar; UCLASSPATHY%

Note that for Windows you must use “;” and not “:” as the delimiter.

Running the Application
The “Hello World” Java server is started with:
java hel |l o. Server

And the client with:

java hello.dient
Again, make sure that yo@ ASSPATH environment variable includes thB. j ar file.

You might also want to use a C++ server together with a Java client (or vice versa). This is
one of the primary advantages of using CORBA: If something is defined in CORBA IDL,

24

ORBacus

Summary

2.5

2.6

the programming language used for the implementation isirrelevant. CORBA applica-
tions can talk with each other, regardless of the language they are written in.

ummary

At this point, you might be inclined to think that this isthe most complicated method of
printing a string that you have ever encountered in your career as a programmer. At first
glance, a CORBA-based approach may indeed seem complicated. On the other hand,
think of the benefits this kind of approach has to offer. You can start the server and client
applications on different machines with exactly the same results. Concerning the commu-
nication between the client and the server, you don't have to worry about platform-specific
methods or protocols at all, provided there isa CORBA ORB available for the platform
and programming language of your choice. If possible, get some hands-on experience and
start the server on one machine, the client on another’. As you will see, CORBA-based
applications run interchangeably in both local and network environments.

Onelast point to note: you likely won't be using CORBA to develop systems as simple as

our “Hello, World!” example. The more complex your applications become (and today’s

applicationsare complex), the more you will learn to appreciate having a high-level
abstraction of your applications' key interfaces captured in CORBA IDL.

Where to go from here

To understand the remaining chapters of this manualpystihave read the CORBA

specifications in [2] and [3]. You will not be able to understand the chapters that follow
without a good knowledge of CORBA in general, CORBA IDL and the IDL-to-C++ and

IDL-to-Java mappings.

1. Notethat after the startup of the server program, you have to copy the stringified object refer-
ence, i.e, thefileHel | o. r ef , to the machine where the client program isto be run.

ORBacus 25

Getting Started

26

ORBacus

The ORBacus Code

CHAPTER 3
3.1 Overview
ORBAcus includes the following code generators and I nterface Repository tools:
idl The ORBAcUS IDL-to-C++ Trandator
jidl The ORBAcUS IDL-to-Java Transl ator
hi dI The ORBAcuUS IDL-to-HTML Trandlator
ridl The ORBAcUS IDL-to-RTF Translator
irserv The ORBAcuUS Interface Repository Server
irfeed The ORBAcuUS Interface Repository Feeder
i rdel The ORBAcuUS Interface Repository Deleter
i rgen The ORBAcuUS Interface Repository C++ Code Generator
3.2 Synopsis

i dl [optiong] idl-files...
jidl [options] idl-files...

hi dl [optiong] idl-files...

ORBacus

27

The ORBacus Code Generators

3.3

ri dl [optiong] idl-files...

i rserv [optiong] [idl-files...]

i rfeed [options] idl-files...

i rdel [options] scoped-name...

i r gen name-base

Description

i dl isthe ORBAcuUs IDL-to-C++ translator. It translates IDL filesinto C++ files. For
each IDL file, four C++ files are generated. For example,

idl MFile.idl

produces the following files:

MyFile.h Header file containingyFi | e. i dl 's translated data types
and interface stubs

MyFil e.cpp Source file containingyFi | e. i dl 's translated data types
and interface stubs

MyFil e_skel . h Header file containing skeletons fiyFi | e. i dl s interfaces

MyFi | e_skel . cpp Source file containing skeletons figyFi | e. i dl 's interfaces

jidl translates IDL filesinto Javafiles. For every construct inthe IDL filethat mapsto a
Javaclass or interface, a separate classfile is generated. Directories are automatically cre-
ated for those IDL constructs that map to a Java package (e.g., anodul e).

jidl canalsoadd comments from the IDL file starting with / ** to the generated Java
files. Thisalows you to use thej avadoc tool to produce documentation from the gener-
ated Java files. See “Using javadoc” on page 39 for additional information.

hi dl creates HTML files from IDL files. An HTML file is generated for each module and
interface defined in an IDL file. Comments in the IDL file are preserved anadoc

style keywords are supported. The section “Documenting IDL Files” on page 36 provides
more information.

ri dl creates Rich Text Format (RTF) files from IDL files. An RTF file is generated for
each module and interface defined in an IDL file. Comments in the IDL file are preserved

28

ORBacus

Optionsfor idl

34

and j avadoc style keywords are supported. The section “Documenting IDL Files” on
page 36 provides more information.

i rserv is the Interface Repository Server. Together witheed, a program that feeds

the Interface Repository with IDL code, aindgen, the Interface Repository C++ Code
Generator, it is possible to generate C++ code directly from the contents of an Interface
Repository. See “The IDL-to-C++ Translator and the Interface Repository” on page 35 for
an example.

Options for idl

-h, --help

Show a short help message.

-v, --version

Show the ORRBcus version number.

-e, --cpp NAME

UseNAME as the preprocessor program.

-d, --debug

Print diagnostic messages. This option is for @RBs internal debugging purposes only.
- DNAVE

DefinesNAME asl. This option is directly passed to the preprocessor.

- DNAVE=DEF

DefinesNAME asDEF. This option is directly passed to the preprocessor.

- UNAME

Removes any definition foYAVE. This option is directly passed to the preprocessor.
-IDIR

AddsDI Rto the include file search path. This option is directly passed to the preprocessor.
--no-skel et ons
Don't generate skeleton classes.

--no-type-codes

ORBacus 29

The ORBacus Code Generators

Don’t generate type codes and insertion and extraction functions for the Any type. Use of
this option will cause the translator to generate more compact code.

--locality-constrained

Generate locality-constrained objects.

--no-virtual -inheritance

Don't use virtual C++ inheritance. If you use this option, you cannot use multiple interface
inheritance in your IDL code, and you also cannot use multiple C++ inheritance to imple-
ment your servant classes.

--tie
Generate tie classes for delegate-based interface implementations. Tie classes depend on

the corresponding skeleton classes, i.e., you must net use skel et ons in combina-
tion with--tie.

--c-suffix SUFFI X

UseSUFFI X as the suffix for source files. The default valuedgp.
--h-suffix SUFFI X

UseSUFFI X as the suffix for header files. The default valuets

--all

Generate code for included files instead of insettingc! ude statements. See “Include
Statements” on page 35.

--no-relative

When generating codiedl assumes that the samie options that are used withil are
also going to be used with the C++ compiler. Therefaile will try to make all

#i ncl ude statements relative to the directories specified withThe option - no-

rel ati ve suppresses this behavior, in which cagle will not make#i ncl ude state-
ments for included files relative to the paths specified with theption.

--header-dir DR

This option can be used to makiencl ude statements for header files relative to a spe-
cific directory.

--ot her-header-dir DR

This option works like - header - di r, but it only applies to header files for included IDL
files.

ORBacus

Optionsfor jidl

35

--output-dir DR

Write generated files to directory DIR.
--dl I -inport DEF

Put DEF in front of every symbol that needs an explicit DLL import statement.

Options for jidl
-h, --help

-v, --version
-e, --cpp NAME
-d, --debug

- DNAME

- DNAME=DEF

- UNAME

-IDIR

--no-skel et ons
--locality-constrained
--all

--tie

These options are the same asfor thei dI command.

--no-conmment s

The default behavior of j i dI isto add any comments from the IDL file starting with / **
to the generated Java files. Specify this option if you don't want these comments added to
your Java files.

- - package PKG

Specifies a package name for the generated Java classes. Each class will be generated r
ative to this package.

--prefix-package PRE PKG

Specifies a package name for a particular p}eﬁmch class with this prefix will be gener-
ated relative to the specified package.

- - aut o- package

1. Prefix refersto the value of the #pr agnma pr ef i x statement in an IDL file. For example, the
statement #pr agma prefi x ooc. comdefines “ooc.com” as the prefix. The prefix is
included in the Interface Repository identifiers for all types defined in the IDL file.

ORBacus 31

The ORBacus Code Generators

3.6

3.7

Derives the package names for generated Java classes from the IDL prefixes. The prefix
ooc. com for example, resultsin the package com ooc.

--output-dir DR
Specifies adirectory wherej i dl will place the generated Javafiles. Without this option
the current directory is used.

--cl one

Generates a cl one method for struct, union, enum and exception types.

Options for hidl

-h, --help

-V, --version
-e, --cpp NAME
-d, --debug

- DNAMVE

- DNAVE=DEF

- UNAMVE

-IDR

These options are the same asfor thei dI command.

--no-sort

Don't sort symbols alphabetically.
--output-dir DR

Write HTML files to the directory DIR.

Options for ridl

-h, --help

-V, --version
-e, --cpp NAME
-d, --debug

- DNAMVE

- DNAVE=DEF

- UNAMVE

-IDR

These options are the same as fori tile command.

--no-sort

32

ORBacus

Optionsfor irserv

Don't sort symbols alphabetically.
--output-dir DR

Write RTF files to the directory DIR.
--single-file FILE

Create a singler t f file called FILE.

--W t h-i ndex

Create index entries.

--font NAME

Use font NAME as the font for the text body.

--literal -font NAME

Use font NAME as the font for literals.
--title-font NAME

Use font NAME as the font for the title.
- - headi ng- f ont NAME

Use font NAME as the font for headings.
--font-size SIZE

Text body font size in points.

--literal-font-size SIZE

Literal font size in points.

--title-font-size SIZE

Title font size in points.

- - headi ng-font-size SIZE

Heading font size in points.

Optionsfor irserv

-h, --help

-V, --version
-e, --cpp NAME
-d, --debug

ORBacus

The ORBacus Code Generators

- DNAME
- DNAME=DEF
- UNAME
-IDR

These options are the same asfor thei dI command.
-i, --ior
Print the stringified 1OR of the Interface Repository on standard output.

The argumentstoi r ser v are zero or more IDL files. If no IDL files are specified on the
command line, the Interface Repository server can be populated dynamically using the
i rf eed command.

3.9 Optionsfor irfeed

-h, --help

-v, --version
-e, --cpp NAME
-d, --debug

- DNAME

- DNAME=DEF

- UNAME

-IDIR

These options are the same asfor thei dI command.

The argumentstoi r f eed are one or more IDL files.

3.10 Optionsfor irdel

-h, --help
-v, --version

These options are the same asfor thei dI command.

The argumentstoi r del are one or more scoped names. A scoped name has the form
“X::Y::Z". For example, an interface defined in a modul&ican be identified by the
scoped name “M::|".

3.11 Optionsfor irgen

-h, --help
-v, --version
--no-skel et ons

ORBacus

The IDL-to-C++ Translator and the Interface Repository

3.12

3.13

--no-type-codes
--locality-contrained
--no-virtual -inheritance
--tie

--c-suffix SUFFI X
--h-suffix SUFFI X
--header-dir DR

--ot her-header-dir DR
--output-dir DR

These options are the same asfor thei dI command.

The argument toi r gen is the pathname to use as the base name of the output filenames.
For example, if the pathname you supply isout put / fi | e, theni r gen will produce
output/file.cpp,output/file.h,output/file_skel.cppandoutput/
file_skel.h.

Notethat i r gen will generate code for all of the type definitions contained in the I nter-
face Repository server.

The IDL-to-C++ Translator and the Interface Repository

The ORBAcUS IDL-to-C++ and IDL-to-Javatranglators internally use the Interface
Repository for generating code. That is, these programs have their own private Interface
Repository that is fed with the specified IDL files. All code is generated from that private
Interface Repository.

Itisalso possible to generate C++ code from a global Interface Repository. First, the com-
mand i r ser v must be used to start the Interface Repository. Then the Interface Reposi-
tory must be fed with the IDL code, using the command i r f eed. Finaly, thei r gen
command can be used to generate the C++ code. For example:

irserv --ior > IntRep.ref &
irfeed - ORBrepository ‘catIntRep.ref file.idl
irgen -ORBrepository ‘cat IntRep.ref* file

The IDL-to-C++ translator idl performsall these steps at once, in asingle process with a
private | nterface Repository. Thus, you only have to run a single command:

idl file.idl

Include Satements

If you usethe #include statement in your IDL code, the ORBACUS IDL-to-C++ transla-
tor idl will not create code for included IDL files. The translator will insert the appropri-

ORBacus 35

The ORBacus Code Generators

3.14

ate#i ncl ude statementsin the generated header files instead. Please note that there are
several restrictions on where to place the #i ncl ude statementsin your IDL filesfor this
feature to work properly:

* #i ncl ude may only appear at the beginning of your IDL files. #ilhcl ude
statements must be placed before the rest of your IDL tode.

» Type definitions, such asterface orstruct definitions, may not be split among
several IDL files. In other words, ro ncl ude statement may appear within such
definitions.

If you don’t want these restrictions to be applied, you can use the translator-optidn

with i dl . With this option the IDL-to-C++ translator treats code from included files as if
the code appeared in your IDL file at the position where it is included. This means that the
compiler will not placeti ncl ude statements in the automatically-generated header files,
regardless of whether the code comes directly from your IDL file or from files included by
your IDL file.

Note that when generating code from an Interface Repository iusgey, the translator
behaves identically todl with the--al | option. In other words, the gen command

will not place#i ncl ude statements in the generated files, but rather generates code for all
IDL definitions in the Interface Repository.

Documenting IDL Files

With the ORB\cus IDL-to-HTML and IDL-to-RTF translatorsyi dl andri dl , you can
easily generate HTML and RTF files containing IDL interface descriptions. The transla-
tors will generate a nicely-formatted file for each IDL module and interface. Figure 3.1
shows an HTML example and Figure 3.2 an RTF example.

The formatting syntax supported biydl andri dI is similar to that used hyavadoc.
The following keywords are recognized:

@ut hor aut hor
Denotes the author of the interface.

@xception exception-nane description

Adds an exception description to the exception list of an operation.

@rember nenber-nane description

1. Preprocessor statements like #def i ne or #i f def may be placed before your #i ncl ude
statements.

36

ORBacus

Documenting IDL Files

L Documentation for “0CI" - Hetscape

File Edit “iew Go Communicator Help

(43D baall o

w§ " Bookmarks A Lacation: [fle:///Cl/rl/cpp/ob/idl/OC] kil =l

The Cpen Comunurications Interface (OCT). The defintions i this module provide a uniform mterface to network
protocols. This allows for easy plug-in of new protocols or other comumunication mechanisms mto ORBs that implement
the OCL Furthermore, protocol implementations need only to be written once and can then be reuzed with all OCI
compliant ORBs. For more mformation, please see the OCT documentation.

Module OCI }

Module Index

IoP

Thiz module contains mnterfaces to gather mformation on the IIOP OCT plug-in.
Interface Index

AccRegstry

A regstry for Acceptors.
AcceptCB

An nterface for an accept callback object.
Acceptor

An mterface for an Acceptor object, which 15 used by CORBA servers to accept clhient connection requests.
AcceptorInfo

Information on an OCT Acceptor ohject.
Buffer

An interface for a buffer.
CloseCB

An nterface for a cloze callback object.
ConFactory

4 factory for Connector objects.
ConFactoryInfo

’?| | Documernt: Do

Figure 3.1: Documentation generated with the IDL-to-HTML translator

Adds a member description to the member list of a struct, union, enum or exception type.

@ar am par anet er- nane description

Adds a parameter description to the parameter list of an operation.

@eturn description

Adds descriptive text for the return value of an operation.

ORBacus 37

The ORBacus Code Generators

W Microsoft Word - ociref M= 3

iﬁﬁile Edit Wiew Insert Format Tools Table Window Help _|ﬁ||1||

D@n|§@9|%ﬁ®|ﬂvﬂv%@| .@|mq1oo%v@

EiE|O-4-A-

Marmal = | Times Mew Roman = 14 =

nru =

Module OCI

The Open Communications Interface (OCT). The definitions in this module provide a uniform interface to
network protocols. This allows for easy plug-in of new protocols or other communication mechanisms into
(ORBs that implement the OCI. Furthermore, protocol implementations need only to be written once and
can then be reused with all OCI compliant ORBs. For more information, please see the OCT documentation.

Aliases

BufferSeq
typedef sequence<Buffer> Bufferiedq;

Alias for a sequence of buffers.

I0R
typedef IOP::IO0R IOR:

Alias for an IOR.

ProfileId
typedef IO0P::Profileld Profileld:

Alias for a profile id.

ProfileIdSeqy
typedef sequence<Profileld> ProfileldSedq:;

Alias for a sequence of profile ids.

OhjeciEey
typedef sequence<octet> ObjectEey:

Alias for an object key, which is a sequence of octets.

I:]EIEII I<I I 3
[Page 7 sec 1 7iE At Ln Cal =i El E

W e S
[

H DA

N

Figure 3.2: Documentation gener ated with the IDL-to-RTF translator

@ee reference

Adds a “See also” note.

@i nce since-text

Comment related to the availability of new features.

@er sion version

The interface’s version number.

38

ORBacus

Using javadoc

3.15

Likej avadoc, hi dl andri dl usethefirst sentence in the documentation comment as
the summary sentence. This sentence ends at the first period that is followed by a blank,
tab or line terminator, or at the first @

ri dl understands most basic HTML tags and will produce an equivalent format in the
generated RTF files. The following HTML tags are supported:

 <CODE> <EM; <HR> <P> <U>

Using javadoc

If not explicitly suppressed with the - - no- conment s option, the ORBAcuS IDL-to-Java
trandator j i dl adds comments starting with/ ** from the IDL file to the generated Java
files, so that j avadoc can be used to generate documentation (as long as the comments
arein aformat compatible withj avadoc).

Here is an example showing how to include documentation in an IDL interface description
file. Let's assume we have an interfacen a modulevt

/1 1DL
nmodul e M
{

/

This is a coment related to interface |.

*
*
*
*
* @ut hor Une Sei net
*
* @ersion 1.0

*

*

*/
nterface |

/**

*

* This comment describes exception E

*

**/

exception E { };

/**

*

ORBacus 39

The ORBacus Code Generators

The description for operation S.

@aram arg A dunmy argunent.

*

*

*

*

* @eturn A dummy string.

*

* @xception E Rai sed under certain circumnstances.
*
*

*/
string S(in long arg)
raises(E);

}
}

When running j i dl on this file the commentswill automatically be added to the gener-
ated JavafilesM | . j ava and M | Package/ E. j ava. For | . j ava the generated code
looks as follows:

[/ Java
package M

/1

// 1DL:M1:1.0
/1

/**

* This is a comment related to interface |.

*

* @ut hor Une Sei net
*

* @ersion 1.0

*

**/

public interface | extends org.ong. CORBA. Ohj ect
{

/1

// 1DL:M1/S:1.0

/1

/**

* The description for operation S.

*

@aram arg A dunmy argunent.

*
*

40

ORBacus

Using javadoc

@eturn A dummy string.

*
*
* @xception M I Package. E Rai sed under certain circunstances.
*
*

*/
public String
S(int arg)

throws M | Package. E;
}

Notethatj i dl automatically inserts the fully-qualified Java name for the exception E, in
thiscase M | Package. E.

These are the contents of | Package/ E. j ava:

[/ Java
package M | Package;

I
// IDL:MI/E 1.0
I

/**
*
* This conment describes exception E
*

* %
/
final public class E extends org.ong. CORBA. User Excepti on

{
public
E()
{
}
}

Now you can usej avadoc to extract the comments from the generated Java files and pro-
duce nicely-formatted HTML documentation.

For additional information please refer to thej avadoc documentation.

ORBacus 41

The ORBacus Code Generators

42

ORBacus

ORB and BOA

CHAPTER 4
4.1 ORB Initialization
4.1.1 Initializing the C++ ORB
In C++ the ORB isinitialized with CORBA_ORB_i ni t () . For example:
/] C++
int min(int argc, char* argv[], char*[])
{
CORBA ORB var orb = CORBA ORB init(argc, argv);
...
}
The CORBA_ORB_i ni t () call interprets arguments starting with - ORB. All of these argu-
ments, passed through the ar gc and ar gv parameters, are automatically removed from
the argument list.
4.1.2 Initializing the Java ORB for Applications

A Java application can initialize the ORB in the following manner:

[/ Java
i mport org.ong. CORBA. *;
public static void main(String args[])

{

ORBacus 43

ORB and BOA Initialization

4.1.3

4.2

4.2.1

4.2.2

ORB orb = ORB.init(args, new java.util.Properties());
/1

}

The ORB. i nit () cdl interprets arguments starting with - ORB. Unlike the C++ version,
these arguments are not removed (see “Filtering Command-line Options” on page 49 for
more information).

Initializing the Java ORB for Applets

A different overloading oERB. i ni t () is provided for use by applets:

/] Java

i mport org.ong. CORBA. *;

public void init()

{
ORB orb = ORB.init(this, new java.util.Properties());
/1

}

See “Applets” on page 59 for more information on using @8 in an applet.

BOA Initialization

Initializing the C++ BOA

In C++ the BOA is initialized withCORBA_ORB: : BOA_i ni t (). For example:

/] C++

int main(int argc, char* argv[], char*[])

{
CORBA ORB var orb
CORBA BOA var boa
/1

CORBA_ORB_init(argc, argv);
orb -> BOA init(argc, argv);

}

BOA_i ni t () removes all arguments starting withA passed through the gc andar gv
parameters.

Initializing the Java BOA

In Java the BOA initialization looks like this:

[/ Java
i mport org.ong. CORBA. *;

ORBacus

Configuring the ORB and BOA

4.3

43.1

public static void main(String args[])

{
ORB orb = ORB.init(args, new java.util.Properties());
BOA boa = orb.BOA_init(args, new java.util.Properties());
11

}

Configuring the ORB and BOA

ORBAcus applications can tailor the behavior of the ORB and BOA objects using a col-
lection of properti&sl. These properties can be defined in a number ways:

» using a configuration file

* using system properties (Java)
» using command-line options

e programmatically at run-time

Properties

The ORBurcus configuration properties are described in the sections below. Unless other-
wise noted, every property can be used in both C++ and Java applications.

ORB Properties

ooc.orb.add_iiop_connector
Value:true,fal se

Determines whether the ORB should register an [IOP connector during initialization. The
default value is r ue.

ooc.orb.conc_model
Value:bl ocki ng, reacti ve,t hreaded

Selects the client-side concurrency model. The reactive concurrency model isnot currently available
in ORBAcCuUS for Java. The default valueis bl ocki ng for both C++ and Java applications. See
Chapter 9 for more information on concurrency models.

1. Notethat these properties have nothing to do with the Property Service as described in “The
Property Service” on page 162.

ORBacus 45

ORB and BOA Initialization

ooc.orb.id

Value: id

Specifies the identifier of the ORB to be used by the application. The only valid identifier
isCB_ORB.

ooc.orb.trace level

Value: level >=0

Defines the output level for diagnostic messages printed by ORBAcus. A level of 1 pro-
duces information about connection events. The default level is 0, which produces no out-
put.

00cC.ser vice.name
Value: ior

Adds an initial service to the ORB'’s internal list. This list is consulted when the applica-
tion invokes the ORB operatioresol ve_i ni ti al _ref er ences. nameis the key that

is associated with a stringified IOR created ugibgect _t o_st ri ng. For example, the
propertyooc. ser vi ce. NanmeSer vi ce adds “NameService” to the list of initial services.
See “Stringified Object References” on page 85 and “Initial Services” on page 90 for
more information.

BOA Properties

ooc.boa.add_iiop_acceptor
Vaue: true,fal se

Determines whether the BOA should register an IIOP acceptor during initialization. The
default value is r ue.

ooc.boa.conc_model

Value:bl ocki ng, reactive, threaded,t hread_per _client,
t hread_per_request,thread_pool

Sel ects the server-side concurrency model. The reactive concurrency model is not availablein
ORBAcuUsfor Java. The default valueisr eact i ve for C++ applicationsandt hr eaded for Java
applications. See Chapter 9 for more information on concurrency models. If this property is set to

46

ORBacus

Configuring the ORB and BOA

t hr ead_pool , thenthe property ooc. boa. t hr ead_pool determines how many threadsarein
the pool.

ooc.boa.disable_iiop_acceptor
Value: true,fal se

Determines whether the BOA should disable the I|OP acceptor after registering it. The
default valueisf al se.

ooc.boa.host
Value: hostname

Explicitly defines the hostname to be used in object references generated by the BOA. The
default valueis the canonical hostname of the machine. This property is especially useful
if ahost has more than one name. Note that this property isignored if ooc. boa. nuneri c
istrue.

ooc.boa.id
Value: id

Specifiesthe identifier of the BOA to be used by the application. The only valid identifier
isCB_BOQA.

ooc.boa.numeric
Value: true, f al se

If t r ue, the BOA will generate object references that contain an internet (IP) addressin dotted dec-
imal notation instead of the canonical hostname. The default valueisf al se.

ooc.boa.port
Value: 0 <= port <= 65535

Specifiesthe port number on which the server should listen for new connections. If no port
is specified, one will be selected automatically by the BOA. Use this property if you plan
to publish an IOR (e.g., in afile, anaming service, etc.) and you want that IOR to remain
valid across executions of your server. Without this property, your server islikely to use a
different port number each time the server is executed. See Chapter 6 for more informa-
tion.

ORBacus 47

ORB and BOA Initialization

ooc.boa.thread_pool
Value:n>0

Determines the number of threads to reserve for servicing incoming requests. The default
valueis 10. This property isonly effectivewhen the ooc. boa. conc_nodel property has
thevaluet hread_pool .

4.3.2 Command-line Options
There are equivalent command-line options for many of the ORBACUS properties. The
options and their equivalent property settings are shown in Table 4.1. Refer to “Proper-
ties” on page 45 for a description of the properties.
Option Property
- OAbl ocki ng ooc. boa. conc_nodel =bl ocki ng

- OAdi sabl e_i i op_acceptor ooc. boa. di sabl e_i i op_accept or =t rue

- OAhost host ooc. boa. host =host
-OAidid ooc. boa. i d=id
- OAnuneric ooc. boa. nuneri c=true
- OAport port ooc. boa. port =port
-QAreactive ooc. boa. conc_nodel =reacti ve
- OAt hr eaded ooc. boa. conc_nvodel =t hr eaded
- OAt hr ead_per _client ooc. boa. conc_nodel =t hread_per _cli ent
- OAt hr ead_per _request ooc. boa. conc_nodel =t hread_per _r equest
- OAt hr ead_pool n ooc. boa. conc_nodel =t hr ead_pool
ooc. boa. t hread_pool =n
- ORBbIl ocki ng ooc. or b. conc_nodel =bl ocki ng
-ORBi d id ooc. orb. i d=id
- ORBnani ng ior ooc. servi ce. NaneSer vi ce=ior
- ORBreacti ve ooc. or b. conc_nodel =reacti ve
- ORBr eposi tory ior ooc. service. I nterfaceRepository=ior

Table 4.1: Command-line Options

48

ORBacus

Configuring the ORB and BOA

Option Property

- ORBser vi ce nameior 0o0cC. servi ce. hame=ior

- ORBt hr eaded ooc. or b. conc_nodel =t hr eaded
-ORBtrace_| evel level ooc.orb.trace_| evel =level

4.3.3

DN WNR

2,3

Table 4.1: Command-line Options

A few additional command-line options are supported that do not have equivalent proper-
ties. These options are described in Table 4.2.

Option Description
- ORBver si on Causes the ORB to print its version to standard output.
-ORBl i cense Causes the ORB to print its license to standard output.

Table 4.2: Additional Command-line Options

Filtering Command-line Options

In C++, al command-line options recognized by ORBAcuUs are automatically removed
from the ar gv array after initializing the ORB and BOA.

In Java, command-line options are not automatically removed by ORBAcus. If you would
like to have ORBAcus-specific options removed from the argument list, you will need to
do so using two additional methods.

The example below demonstrates how to remove the ORB and BOA optionsin Java

[/ Java
org. ong. CORBA. ORB orb org. onmg. CORBA. ORB.init(args, null);
or g. ong. CORBA. BQA boa orb.BOA init(args, null);
String[] noOrbArgs = ((com ooc. CORBA. ORB)orb).filter_options(args);
String[] noBoaArgs =
((com ooc. CORBA. BOA) boa) . fil ter_opti ons(noOrbArgs);

Initialize the ORB and BOA.

Remove the ORB options (i.e., options starting with - ORB) from ar gs. The array
noOr bAr gs contains the filtered options.

ORBacus 49

ORB and BOA Initialization

5,6 Removethe BOA options (i.e., options starting with - OA). By passing noOr bAr gs to this
method, we ensure that both ORB and BOA options have been removed.

Note that the casts for the ORB and BOA are necessary becausefi | t er_opti ons isan
ORBAcus-specific operation, which only exists in the ORB and BOA classesresiding in
the com ooc. CORBA package, and not in the or g. onmg. CORBA package.

4.3.4 Usinga Configuration File
A convenient way to define a group of propertiesisto use a configuration file. A sample
configuration file is shown below:

Concurrency nodel s

ooc. orb. conc_nodel =t hreaded
ooc. boa. conc_nodel =t hr ead_pool
ooc. boa. t hr ead_pool =5

Initial services

ooc. servi ce. NameSer vi ce=i i op: // myhost : 5000/ Def aul t Nani ngCont ext
ooc. servi ce. Event Servi ce=iiop:// myhost: 5001/ Def aul t Event Channel
ooc. service. Tradi ngServi ce=i i op: // nyhost: 5002/ Tr adi ngServi ce

You can define the name of the configuration file! using a command-line option, an envi-
ronment variable (C++), or a system property (Java):
* Command-line option:
- ORBconf i g filename
» Environment variable:
ORBACUS_CONFI G=filename
* Java system property:
ooc. conf i g=filename

The file is read once when the ORB is initialized, and is not read again for the lifetime of
the application process.

4.3.5 Defining Propertiesin Java

Java applications can use the standard Java mechanism for defining system properties,
because ORBcus will also search the system properties during ORB and BOA initializa-
tion.

1. ORBAcuUSs for Java aso accepts a URL specification asthe filename.

ORBacus

Configuring the ORB and BOA

a N OWN R

a N W N R

4.3.6

For example:

[/ Java

java.util.Properties props = System getProperties();

props. put ("ooc. orb. conc_nodel ", "threaded");

props. put ("ooc. boa. port", "10000");

org. ong. CORBA. ORB orb = org. ong. CORBA. ORB.init(args, null);

Obtain the system properties.
Define ORBACUS properties.
Initialize the ORB.

Java virtual machines typically allow you to define system properties on the command
line. For example, using Sun’s JVM you can do the following:

java - Dooc. boa. port =5000 MySer ver
You can also use theava. uti | . Properti es object that is passed to the

or g. ong. CORBA. ORB. i ni t () andor g. ong. CORBA. ORB. BOA_i ni t () methods to
provide ORB\cuUs property definitions:

[/ Java
java.util.Properties props = new java.util.Properties();
props. put ("ooc. boa. nuneric", "true");

or g. ong. CORBA. ORB orb
or g. ong. CORBA. BQA boa

org. ong. CORBA. ORB. i nit(args, props);
orb.BOA init(args, props);

Create g ava. util . Properties object to hold our properties.
Define ORBrCUS properties.

Initialize the ORB and BOA using theva. uti | . Properti es object.

Precedence of Properties

Given that properties can be defined in several ways, it's important to establish the order
of precedence used by ORBUs when collecting and processing the property definitions.
The order of precedence is listed below, from lowest to highest. Properties defined at a
higher precedence override the same properties defined at a lower precedence.

» Configuration file
» User-supplied properties (Java only)
» System properties (Java only)

ORBacus 51

ORB and BOA Initialization

» Command-line options
For example, a property defined using a command-line option overrides the same property
defined in a configuration file.

4.3.7 Advanced Property Usage

If you need explicit control of the properties from within your application, you may also
elect to use ORBcuUs-specific classes to create and retrieve property definifions.

In Java, this class tsom ooc. CORBA. Properti es, and in C++ the class is
OBPr oper ti es. These classes are used internally by @&Bs, but you can also use
them in your applications.

[/ Java
package com ooc. CORBA;

cl ass Properties

{
public static Properties init(String[] args);
public static Properties instance();
public String getProperty(String key);
public void setProperty(String key, String value);
public String[] getKeys(String prefix);
public String[] getKeys();

}

/]l C++

cl ass OBProperties

{

public:

static OBProperties* init(int& argc, char** argv);
static OBProperties* instance();

typedef OBStrSeq KeySeq;

voi d set Property(const char* key, const char* val ue);
const char* getProperty(const char* key);

KeySeq get Keys(const char* prefix);

KeySeq get Keys();

1. TheProperti es classis probably more useful for C++ applications, since Java applications
can use system properties to achieve the same effect.

ORBacus

Configuring the ORB and BOA

© 0NN WNR

a N W N R

s
In the discussion below, these classes are referred to generically asthe Pr operti es class.

To useaProperti es class correctly, you must be aware of the initialization steps taken
by the ORB and BOA objects. The Propert i es classisaSngleton class, in that only one
instance of the classis allowed. The ORB initializesthe Pr operti es object during its
own initialization. However, if you need to usethePr oper t i es classbefore the ORB has
been initialized (e.g., if you need to define an ORB property), then you will need to initial-
izethe Proper ti es class manualy.

Defining ORB Properties

The code below demonstrates a situation where an application needs to define a property
prior to initializing the ORB. First, we’'ll show the example in C++:

/] C++
#i ncl ude <OB/ CORBA. h>
#i ncl ude <OB/ Properties. h>

/1
OBProperties* properties = OBProperties::init(argc, argv);

properties -> setProperty("ooc.orb.conc_nodel", "reactive");
CORBA _ORB var orb = CORBA ORB init(argc, argv);

Include the necessary header files.

The call toOBProperti es::init() creates théBpProperti es object and initializes it
with the contents of a configuration file (if necessary).

Set the ORB concurrency model using a property.
Initialize the ORB.

The code looks very similar in Java:

[/ Java
com ooc. CORBA. Properties properties =
com ooc. CORBA. Properties.init(args);
properties. setProperty("ooc. orb.conc_nodel", "threaded");
org. ong. CORBA. ORB orb = org. ong. CORBA. ORB.init(args, null);

Creates theom ooc. CORBA. Propert i es object and initializes it with the contents of a
configuration file (if necessary).

ORBacus 53

ORB and BOA Initialization

Q © O NN WNHR

~

N
©w

DN WN R

N

Set the ORB concurrency model using a property.
Initialize the ORB.
Defining BOA Properties

In a situation where you don’t need access tcPtteper t i es object until after the ORB
has been initialized, you can simply do the following:

/] C++
#i ncl ude <OB/ CORBA. h>
#i ncl ude <OB/ Properties. h>

11

CORBA ORB var orb = CORBA ORB init(argc, argv);
OBProperties* properties = OBProperties::instance();
properties -> setProperty("ooc.boa.conc_nodel", "reactive");
CORBA BOA var boa = orb -> BOA_ init(argc, argv);

Include the necessary header files.

Initialize the ORB. The ORB will initialize ther oper ti es object.

Obtain theOBPr oper ti es instance.

Set the BOA concurrency model using a property and initialize the BOA.

Note that in this example we are defining a BOA property prior to initializing the BOA.
Also note that th@r oper ti es object has already been initialized by the ORB, so the
application simply needs to obtain a pointer to the object using#teance method.

Here’s the same example in Java:

[/ Java
org. ong. CORBA. ORB orb = org. ong. CORBA. ORB.init(args, null);
com ooc. CORBA. Properties properties =

com ooc. CORBA. Properties.instance();
properties. setProperty("ooc. boa.conc_nodel", "threaded");
or g. ong. CORBA. BGA boa = orb.BOA init(args, null);

Initialize the ORB. The ORB will initialize ther oper t i es object.
Obtain thePr oper ti es instance.

Set the BOA concurrency model using a property and initialize the BOA.

54

ORBacus

Configuring the ORB and BOA

© 0NN WNR

N
©w

Application-specific Properties

Another situation wherethe Pr oper ti es class can be useful is if you'd like to obtain
application-specific properties from the OR&JS configuration file. Suppose your con-
figuration file looks as follows:

ORBacus configuration file
ooc. orb. conc_nodel =t hreaded

Application-specific settings
acne. wi dget _count =20

The following C++ example demonstrates how to access your application-specific proper-
ties:

/] C++
#i ncl ude <OB/ CORBA. h>
#i ncl ude <OB/ Properties. h>

/1
CORBA ORB var orb = CORBA ORB init(argc, argv);

OBProperties* properties = OBProperties::instance();
const char* value = properties -> getProperty("acne.w dget_count");

Include the necessary header files.
The ORB must be initialized so that the configuration file is processed.
Obtain theOBPr oper ti es instance and then retrieve the value of the property.

And in Java:

[/ Java
org. ong. CORBA. ORB orb = org. ong. CORBA. ORB.init(args, null);
com ooc. CORBA. Properties properties =
com ooc. CORBA. Properties.instance();
String value = properties.getProperty("acnme.w dget_count");

The ORB must be initialized so that the configuration file is processed.
Obtain thePr oper ti es instance and then retrieve the value of the property.

Finally, it is important to remember the precedence rules forKaR8properties. Specif-
ically, command-line options willlways override any existing property definitions,
including those you set within your application.

ORBacus 55

ORB and BOA Initialization

4.4

441

Server Event Loop

A server’s event loop is entered by callB@A: : i mpl _i s_r eady. For example, in
Javal

/1l Java
org. ong. CORBA. BOA boa = ... // Get the BOA sonehow
boa.inmpl _is_ready(null);

And in C++:

/] C++
CORBA BOA var boa = ... // Get the BOA sonehow
boa -> inpl _is_ready(CORBA | npl enentationDef:: _nil());

i mpl _i s_ready only returns, if:

» The blocking concurrency model (see Chapter 9) has been chosen for the server, and
the client disconnects.

* deactivate_inpl iscalled (see “Deactivating the Server” on page 57).

Mixed Client/Server Applications

In case the reactive or one of the threaded concurrency models has been chosen (see Chap-
ter 9) it is possible to service requests without callimgl _i s_r eady. This is especially

useful in mixed client/server applications. For example, consider a mixed client/server
program that wants to invoke operations on a server in the programmsunction, but

still wants to be able to receive “callbacks” from this server. In order to receive these
“callback” requests, usuallypl _i s_r eady would have to be called imai n. However,

this is not possible, sinéempl _i s_r eady blocks, which makes it impossible for the

mixed client/server program to invoke operations on the server after the call to

i mpl _i s_ready.

To solve this problem, ORRUS provides the operatiomi t _ser vers. Here’s how
init_servers is called in Java:

[/ Java
org. ong. CORBA. BOA boa = ... // Get the BOA sonehow
((com ooc. CORBA. BOA) boa) . i nit_servers();

1. Theargumenttoi npl _i s_r eady iscurrently unused by ORBACUS, therefore the “dummy”
argumenhul | (Java) OICORBA_| npl ement ati onDef :: _ni | () (C++) is used.

56

ORBacus

Server Event L oop

Thisissimilartoi npl _i s_r eady, except thati ni t _server s doesnot block. Note that
the cast for the BOA is necessary becausei ni t _server s is an ORBAcUS-specific oper-
ation, which only existsin com ooc. CORBA. BOA, and not in or g. ong. CORBA. BOA.

The C++ version look similar:

/] C++
CORBA BOA var boa = ... // Get the BOA sonehow
boa -> init_servers();

4.4.2 Deactivating the Server

A server can be deactivated with acall to BOA: : deact i vat e_i npl . This causes

BOA: : i npl _i s_r eady toreturn. For example, consider a server which can be shut down
by aclient by calling adeact i vat e operation on one of the server’s objects. First the
IDL code:

/1 1DL
i nterface ShutdownObj ect

{
b

On the server sidshut downObj ect can be implemented like this:

voi d deactivate();

1 /] C++
2
3 class ShutdownObject_inpl : public virtual ShutdownObject_skel

4 {

5 CORBA BOA var boa_;

6

7 public:

8

9 Shut downChj ect _i npl (CORBA_BOA ptr boa)
10 : boa_(CORBA BOA:: _duplicate(boa))
11 {
12 }
13
14 virtual void deactivate()
15 {
16 boa_ -> deactivate_inpl (CORBA | npl enentationDef:: _nil());
17 }
18 };

ORBacus 57

ORB and BOA Initialization

R O ©W NN WNR

[Y

A servant classfor Shut downObj ect isdefined. For more information on how to imple-
ment servant classes, see Chapter 5.

A BOA isneeded tocall deactivate_inpl.
The constructor initializes the BOA member.
deacti vate callsdeacti vat e_i npl onthe BOA.

Here’s themai n code for this example:

/]l C++

int main(int argc, char* argv[], char*[])

{
CORBA _ORB var orb = CORBA ORB init(argc, argv);
CORBA BOA var boa = orb -> BOA init(argc, argv);
Shut downQhj ect _var shut downCbj = new Shut downCbj ect _i npl (boa);
boa -> inpl _is_ready(CORBA | npl enentationDef:: _nil());
return O;
}

ORB and BOA initialization.
The shutdown object is created.

Thei npl _i s_ready main event loop is entered. This call only returrieiict i vat e is
called.

The server was deactivated,rsn n can now return.

The client can use th#eact i vat e call as shown below:

/]l C++

int main(int argc, char* argv[], char*[])

{
CORBA _ORB var orb = CORBA ORB init(argc, argv);
Shut downObj ect _var shutdownCbj = ... // Get a reference sonehow
try
{

shut downObj -> deactivate();

ORBacus

Applets

12 }

13 catch(const CORBA_COWM FAI LURE& ex)
14 {

15 }

16

17 return O;

18 }

5 Initialize the ORB.

7 Get a reference to the server’s shutdown object somehow, for example by reading in a
“stringified” object reference (see “Stringified Object References” on page 85).

9-15 Calldeact i vat e on the shutdown objecZOMM _FAI LURE exceptions must be ignored,
since the server may shut down immediately, without any chance for a proper reply mes-
sage to be delivered back to the client. Therefore, the client will usually get a
COWM _FAI LURE exception at this point.

45 Applets

45.1 Adding ORBacus Appletsto Web Pages

Like any other applet, ORRUS applets can be added to HTML pages withARBLET
tag:

<APPLET CODE="Client.class” ARCHIVE="0OB.jar” WIDTH=500 HEIGHT=300>
</APPLET>

It is necessary to tell the Web browser where to find the ORBAcuUS Java classes. Thisis
best done with the ARCHIVEattribute as shown above. An alternative isto use the
CODEBASHttribute and to extract the OB.jar archive in the directory defined by
CODEBASH-or more information, please consult your Java Development Kit documenta-
tion.

45.2 Defining ORB and BOA Optionsfor an Applet

The PARAMag isused in HTML to define parametersfor an applet. When initialized by an
applet, the ORB looks for the parameters ORBparams and BOAparams, whose vaues
should be command-line options separated by spaces.

For example, the HTML code below uses the -ORBconfig option to specify the URL of
the ORB configuration file:

<APPLET CODE="Client.class” ARCHIVE="0OB.jar” WIDTH=500 HEIGHT=300>

ORBacus 59

ORB and BOA Initialization

45.3

454

<PARAM NAME="ORBparams” VALUE="-ORBconfig http://www/orb.cfg">
</APPLET>

Your applet can aso define ORBAcCUS configuration properties using Java system proper-
ties, or using the java.util.Properties object passed to

org.omg.CORBA.ORB.init() . See “Configuring the ORB and BOA” on page 45 for
more information.

Defining the ORB Class Parameters

Some Web browsethave a built-in ORB. In order to use OR®Is instead of this built-
in ORB, you must set the following applet parameters:

<APPLET CODE="Client.class” ARCHIVE="0OB.jar” WIDTH=500 HEIGHT=300>
<PARAM NAME="org.omg.CORBA.ORBClass”
VALUE="com.ooc.CORBA.ORB">
<PARAM NAME="org.omg.CORBA.ORBSingletonClass”
VALUE="com.ooc.CORBA.ORBSingleton">
</APPLET>

Security Issues

Web browsers generally place several security restrictions on applets that you need to be
aware of when developing an applet using ORBAcus:

* Applets can only communicate with the host from which the applet was downloaded.
* Applets cannot accept connections from any host.

The first limitation forces you to run any CORBA server applications that your applet
communicates with on your Web server hfo$he second limitation prevents your applet
from acting as a CORBA server, which is often necessary when a client wishes to receive
callbacks from a server.

These limitations are the most common causes of security exceptions in an applet. You
must ensure that any object references used by your applet refer to objects on the Web
server host. Furthermore, you must not attempt to enable CORBA server functionality in
your applet by initializing the BOA.

1. For example, Netscape v4 has a built-in ORB.

2. Netscape v4 also does not normally allow CORBA appletsto beloaded from alocal (i.e., filesys-
tem) HTML file, causinga Securi t yExcept i on when the applet attempts to connect to the
CORBA server. To workaround this problem, CORBA applets must be downloaded from a Web
server.

60

ORBacus

CHAPTER 5

CORBA Objects

5.1

Overview

A CORBA object is an object with an interface defined in CORBA IDL. CORBA objects
have different representationsin clients and servers.

» A server implements a CORBA object in a concrete programming language, for
example in C++ or Java. This is done by writing raplementation class for the
CORBA object and by instantiating this class. The resulting object is cadbzdaamt.

» Aclient that wants to make use of a servant implemented by a server creates an object
that delegates all operation calls to the servant via the ORB. Such an object is called a

proxy.

When a client invokes a method on the local proxy object, the ORB packs the input
parameters and sends them to the server, which in turn unpacks these parameters and
invokes the actual method on the servant. Output parameters and return values, if any, fol
low the reverse path back to the client. From the client’'s perspective, the proxy acts just
like the servant since it hides all the communication details within itself.

A servant must somehow be connected to the ORB, so that the ORB can invoke a methoc
on the servant when a request is received from a client. This connection is handled by the
object adapter, as shown in Figure 5.1.

ORBAcus comes with an object adapter called the “Basic Object Adapter” (BOA). Unfor-
tunately, the specification for the BOA [2] is quite incomplete, leaving a lot of freedom to

ORBacus 61

CORBA Objects

5.2

O N OGN WNR

Client

Proxy

\

Ser ver

Servant

bject
Adapter

ORB

Figure5.1: Servants, Proxiesand the Object Adapter

ORB implementors.l Therefore all BOAs are in fact more or less vendor specific. Itis
therefore necessary to have a chapter explaining how servants are implemented in ORB A-
cus and how they are connected to the ORBACUS BOA implementation.

Implementing Servants

In this chapter, we will implement servant classes (or “implementation classes”) for the

IDL interfaces defined below:

/1 1D

interface A

{
}s

void op_a();

interface B

{
}s

void op_b();

interface |l : A B

{

1. Because of these problems, the OMG is currently defining a new object adapter, the so-called
“Portable Object Adapter” (POA). Future versiondQRBACUS will implement the POA.

62

ORBacus

Implementing Servants

O N OGN WNR

void op_i();
H

An interface A is defined with the operation op_a.

An interface B is defined with the operation op_b.

Interface | isdefined, which is derived from A and B. It aso defines a new operation
op_i.

Implementing Servantsusing Inheritance

ORBAcus for C++ and ORBAcus for Java both support the use of inheritance for inter-
face implementation. To implement an interface using inheritance, you write a servant
classthat inherits from a skeleton class generated by the IDL translator. By convention,
the name of the servant class should be the name of the interface with the suffix _i npl ,
e.g., for aninterface | , the implementation classis named | _i npl 1

Inheritance using C++

In C++, | _i npl must inherit from the skeleton class | _skel that was generated by the
IDL-to-C++ trandator. If I inherits from other interfaces, for example from the interfaces
Aand B, then | _i npl must aso inherit from the corresponding implementation classes
A _inpl andB_i npl .

/] C++
class A inpl : virtual public A skel
{
public:
virtual void op_a();
H
class B inpl : virtual public B_skel
{
public:
virtual void op_b();
H
class | _inpl : virtual public I_skel,

virtual public A_inpl,

1. These naming rules are not mandatory, they are just a recommendation.

ORBacus 63

CORBA Objects

17
18
19
20
21

© NN WNR

w

virtual public B_inpl
{
public:
virtual void op_i();
1
The servant class A_i npl isdefined, inheriting from the skeleton class A_skel . If op_a

had any parameters, these parameters would be mapped according to the standard DL -to-
C++ mapping rules[2].

Thisisthe servant classfor B_i npl .

The servant classfor | _i npl isnot only derived from I _skel , but also from the servant
classes A i npl and B_i npl .

Notethat vi rt ual publ i ¢ inheritance must be used. The only situation in which the
keyword vi rt ual isnot necessary isfor an interface | which does not inherit from any
other interface and from which no other interface inherits. This means that the implemen-
tation class| _i npl only inherits from the skeleton class| _skel and no implementation
classinheritsfrom 1 _i npl .

Itis not strictly necessary to have an implementation class for every interface. For exam-
ple, it issufficient to only havetheclass| _i npl aslongas| _i npl implements all inter-
face operations, including the operations of the base interfaces:

/]l C++

class | _inpl : virtual public I_skel
{
public:

virtual void op_a();

virtual void op_b();

virtual void op_i();

}s

Now I _i npl isonly derived from | _skel , but not from the other servant classes.

I _i mpl must implement all operationsfrom the interface | aswell asthe operations of all
interfaces fromwhich I is derived.

Inheritance using Java

Severdl files are generated by the ORBAcus IDL-to-Javatrandator for an interfacel
including:

64

ORBacus

Implementing Servants

© O N O AN WNR

R R R RRR
AN WNRO

16

* 1.java, which defines a Java interfaceontaining public methods for the
operations and attributes lof and

 _IInpl Base. j ava, which is an abstract skeleton class that serves as the base class
for servant classes.

In contrast to C++, Java’s lack of multiple inheritance currently makes it impossible for a
servant class to inherit operation implementations from other servant classes. For our
interfacel it is therefore necessary to implement all operations in a single servant class
I _i mpl , regardless of whether those operations are defineairin an interface from
which| is derived.

/1 Java

public class | _inpl extends _IInpl Base

{
public void op_a()

{
}

public void op_b()

{
}

public void op_i()
{

}
}

The servant class i npl is defined, which implementsy_i , as well as the inherited
operationsop_a andop_b.

Implementing Servants using Delegation

Sometimes it is not desirable to use an inheritance-based approach for implementing an
interface. This is especially true if the use of inheritance would result in an implementa-
tion being incompatible with existing legacy code. Therefore, another alternative is avail-
able for implementing servants which does not use inheritance. A special class, known as
atieclass, can be used to delegate the implementation of an interface to another class.

ORBacus 65

CORBA Objects

Delegation using C++

The ORBAcuUS IDL-to-C++ translator can automatically generate atie classfor an inter-
facein the form of atemplate class. A tietemplate classis derived from the corresponding
skeleton class and has the same name as the skeleton, with the suffix _t i e appended.

For the interface | from the C++ example above, the template | _skel _t i e isgenerated
and must be instantiated with a class that implements all operations of | . By convention,
the name of this class should be the name of the interface with _i npl _tie appended.l

In contrast to the inheritance-based approach, it is not necessary that the class implement-
ing | 's operations, i.el,_i npl _ti e, be derived from any skeleton class. Instead, an
instance of _skel _ti e delegates all operation callsitoi npl _ti e, as shown in Figure
5.2.

| _skel
|
1 I |
|_skel_tie [_impl
?delegates to
| _impl_tie

Figure5.2: Class Hierarchy for Inheritance and Delegation I mplementation in C++

1. Again, you are free to choose whatever name you like. Thisisjust a recommendation.

66

ORBacus

Implementing Servants

© O N O AN WNR

w

O N OGN WNR

Hereisour definition of | _i npl _ti e:

/]l C++

class | _inpl_tie

{

public:
virtual void op_a();
virtual void op_b();
virtual void op_i();

}s

I _i npl _ti e isdefined, which is not derived from any other class.

I _impl _ti e mustimplement al of | 's operations, including inherited operations.

A servant class far can then be defined using theskel _ti e template:

/] C++
typedef | _skel _tie< |_inpl_tie > | _inpl;

The servant class i npl is defined as a template instance ofkel _ti e, parameter-
ized withl _i npl _tie.

Delegation using Java

The ORB:rcus IDL-to-Java translator generates two additional files to support delegation-
based servant implementation for an interface

* | Operations.java, an interface that defines public methods for all attributes and
operations of , and

* _IInpl Base_ti e. java, the tie class that inherits from | npl Base and delegates
all requests to an instanceldper at i ons.

To implement our servant class using delegation, we need to write a class that implements
thel Oper at i ons interface:

[/ Java
public class | _inpl _tie inplements | OQperations
{

public void op_a()

{

}

ORBacus 67

CORBA Objects

9 public void op_b()

10 {

11 }

12

13 public void op_i()
14 {

15 }

16 }

3 Theservant class| _i npl _ti e isdefined to implement the | Oper at i ons interface.
5-15 | _i npl _ti e mustimplement all of | 's operations, including inherited operations.

Figure 5.3 illustrates the relationship between the classes generated by the IDL-to-Java
translator and the servant implementation classes.

|

_lImplBase
| _impl _lImplBase tie %delegates i | Operations
| _impl_tie

Figure5.3: Class Hierarchy for Inheritance and Delegation mplementation in Java

ORBacus

Creating Servants

5.3

53.1

N

Creating Servants

Servants are created the same way in both C++ and Java: once your servant classis writ-
ten, you simply instantiate a servant with new.

Creating Servantsusing C++

Hereishow to create servants using C++:

/] C++
I _var inpl = new | _inpl;
| _var anotherlnmpl = new | _inpl;

Two servants, i npl and anot her I npl , are created with new.

In case the servant class was written using the del egation approach, an object of the class
implementing | 's operations must be passed to the servant’s constructor:

/] C++
| _inmpl_tie* inpl = new | _inpl_tie;
| _var tie = new | _skel tie< I_inpl_tie >(inpl, CORBA TRUE);

Anewl _inpl _tieiscreated witmew

Aninstance of _skel _ti e parameterized with_i npl _ti e is created, takingnpl as a
parameter. All operation calls ta e will then be delegated fonpl .

In this example, the lifetime ofpl is coupled to the lifetime of the servaite. That is,
whent i e is destroyeddel et e i npl is called. In case you don't want the lifetime of
i mpl to be coupled to the lifetime of e, for example because you want to creatgl
on the stack and not on the heap (making it illegal todedlet e oni npl), use the fol-
lowing code:

/]l C++

| _inmpl_tie inpl;
I _var tie = new | _skel _tie< |_inpl _tie >(& nmpl, CORBA FALSE);

A newl _i npl _ti e is created, this time on the stack, not on the heap.

An instance of _skel _ti e is created. ThEORBA_FAL SE parameter tellsi e not to call
del et e oni npl .

ORBacus 69

CORBA Objects

53.2

N

O NN WNR

Creating Servants using Java

This example demonstrates how to create servants using Java:

/1l Java

I impl = new | _inpl ();
I anotherlnmpl = new | _inpl();

Two servants, i npl and anot her I npl , are created with new.

In case the servant class was written using the delegation approach, an object implement-
ing the | Oper at i ons interface must be passed to the servant’s constructor:

/1 Java

I _inpl_tie inpl = new | _inpl_tie();
_llnplBase_tie tie = new _IIlnplBase_tie(inpl);

Anewl _inpl tieiscreated.

An instance of | I npl Base_t i e is created, takingnpl as a parameter. All operation
calls tot i e will then be delegated iawpl .

Every tie class generated by the IDL-to-Java translator includes methods for accessing and
changing the implementation object:

[/ Java
public class _Ilnpl Base_tie extends _I|InplBase
{
public | Cperations _delegate() { ... }
public void _del egate(l Operations delegate) { ... }
}

The tie class for interfadeis defined.
This method returns the current delegate (i.e., implementation) object.

This method changes the delegate object.

70

ORBacus

Connecting Servants

5.4

54.1

N WN R

N

54.2

N W N R

N

Connecting Servants

Servants must be connected to the object adapter in order to receive requests from clients.
Usually thisis done automatically whenever an object reference to aservant is passed to a
client as a parameter or return value. Servants are a so connected implicitly when used in
callsto operationslike obj ect _t o_st ri ng. However, it isalso possible to connect a ser-
vant explicitly.

Connecting Servantsusing C++

The following code shows how to explicitly connect a servant:

/] C++

CORBA ORB var orb = ... // Get a reference to the ORB sonehow
I _var inpl = new | _inpl;

orb -> connect (inpl);

To connect a servant, we need the ORB.
A new servanti npl iscreated.

The new servant is connected to the object adapter.

A servant can also be disconnected from the object adapter. Thisis done with the
di sconnect call:

/] C++
orb -> disconnect (i npl);

The servant i npl is disconnected from the object adapter. From now on, requests from
clients to this servant will cause an OBJECT_NOT_EXI ST exception to be raised.

Connecting Servants using Java

Thisishow Java servants are explicitly connected to the object adapter:

[/ Java

org.ong. CORBA.ORB orb = ... // Get a reference to the ORB sonmehow
I impl = new | _inpl ();

orb. connect (i npl);

To connect a servant, we need the ORB.

A new servanti npl iscreated.

ORBacus 71

CORBA Objects

The new servant is connected to the object adapter.

A servant can also be disconnected from the object adapter. Thisis done with the
di sconnect call:

/1 Java

2 orb.disconnect(inpl);

54.3

The servant i npl is disconnected from the object adapter. From now on, requests from
clients to this servant will cause an OBJECT_NOT_EXI ST exception to be raised.

Named Servants

ORBAcusfor C++ and ORBAcuUs for Java support the notion of named servants, in which
anameis assigned to a servant when it is connected to the object adapter, allowing aclient

to identify aservant by its name. The ORB operation get _i net _obj ect isused on the

client side to resolve a named servant within a specific server (see “Connecting to Named
Objects” on page 88).

For named servants, a parameter for the servant's name must be provigletetet . For
example, in C++:

/] C++

CORBA ORB var orb = ... /] Get a reference to the ORB sonehow
orb -> connect (inpl, "MyName");

And in Java;

[/ Java

org.ong. CORBA.ORB orb = ... // Get a reference to the ORB sonmehow

((com ooc. CORBA. ORB) or b) . connect (i mpl, "M/Nane");

In both examples, the servantpl is connected to the object adapter, using the name
“MyName”.

The cast t@om ooc. CORBA. ORB is necessary because the Java overloadingrofect
in support of named servants is an ORBs-specific extension and is not available in
or g. ong. CORBA. ORB.

The name assigned to a servant must be unique among all servants in a server. In case the
name is already in use, th&V_| DENT exception is raised.

72

ORBacus

Factory Objects

9.5

Q©W N ANWNR

Factory Objects

It is quite common to use the Factory [10] design pattern in CORBA applications. In short,
afactory object provides access to one or more additional objects. In CORBA applica-
tions, a factory object can represent afocal point for clients. In other words, the object ref-
erence of the factory object can be published in awell-known location, and clients know
that they only need to obtain this object reference in order to gain accessto other objectsin
the system, thereby minimizing the number of object references that need to be published.

The Factory pattern can be applied in awide variety of situations, including the following:

» Security - A client is required to provide security information before the factory
object will allow the client to have access to another object.

» Load-balancing - The factory object manages a pool of objects, often representing
some limited resource, and assigns them to clients based on some utilization
algorithm.

» Polymorphism - A factory object enables the use of polymorphism by returning
object references to different implementations depending on the criteria specified by a
client.

These are only a few examples of the potential applications of the Factory pattern. The
examples listed above can also be used in any combination, depending on the require-
ments of the system being designed.

A simple application of the Factory pattern, in which a new object is created for each cli-
ent, is illustrated below. The implementation uses the following interface definitions:

/1 1DL
interface Product

{
}s

voi d destroy();

interface Factory

{
}s

ThePr oduct interface is defined. Thiest r oy operation allows a client to destroy the
object when it is no longer needed.

Product createProduct();

TheFact ory interface is defined. Ther eat ePr oduct operation returns the object ref-
erence of a newr oduct .

ORBacus 73

CORBA Objects

55.1

© N O N WNR

R R R RRRR
S A WNRKRO

7-8

14

QO © O N U NANWNR

Factory Objectsusing C++

First, we'll implement thér oduct interface:

/] C++
cl ass Product _inmpl : public virtual Product_skel
{

CORBA _ORB var orb_;

public:
voi d Product _i npl (CORBA_ORB ptr orb)
orb_(CORBA ORB:: _duplicate(orb))

{
}
virtual void destroy()
{
orb_ -> disconnect(this);
}

}s

Servant clasBr oduct _i npl is defined as an implementation of #veduct interface.

The constructor takes an ORB parameter and saves it for later use.

Thedest r oy operation disconnects the object from the object adapter. A side-effect of
disconnecting the object is that the object adapter no longer holds a reference to the ser-
vant. If there are no other references to this servant in the server, then the servant will be
destroyed. See “Releasing Proxies and Servants” on page 98 for more information.

Next, we'll implement the factory:

/] C++
class Factory_inmpl : public virtual Factory_skel
{

CORBA ORB var orb_;

public:
void Factory_inpl (CORBA_ORB ptr orb)
orb_(CORBA ORB:: _duplicate(orb))
{
}

virtual Product _ptr createProduct()

{

74

ORBacus

Factory Objects

14
15
16
17
18

7-8

14-16

5.5.2

O NN WNR

Product _ptr result = new Product _i npl (orb_);
orb_ -> connect(result);
return result;
}
H
Servant class Fact or y_i npl isdefined as an implementation of the Fact ory interface.

The constructor takes an ORB parameter and savesit for later use.

Thecr eat eProduct operation instantiates anew Pr oduct servant, connectsit to the
object adapter, and returns an object reference to the client. Use of theconnect operation
is optional; an object will be connected automaticaly if it has not aready been connected
at the time areference to the object is transmitted to aclient.

Users familiar with other CORBA implementations may think thereis an error in the
cr eat ePr oduct method because _dupl i cat e isnot being used. However, the codeis
correct. See Chapter 7 for a complete discussion of reference counts.

Factory Objectsusing Java

Here is our Javaimplementation of the Pr oduct interface:

[/ Java
public class Product_inpl extends _Productl npl Base
{

or g. ong. CORBA. ORB orb_;

publ i c Product_inpl (org. ong. CORBA. ORB or b)

{
orb_ = orb;
}
public void destroy()
{
orb_.disconnect(this);
}

}

Servant class Pr oduct _i npl isdefined as an implementation of the Pr oduct interface.

The dest r oy operation disconnects the object from the object adapter. Aslong as no

other referencesto the servant are held in the server, the object will be eligible for garbage
collection. See “Reference Counting in Java” on page 95 for more information on garbage
collection of servant objects.

ORBacus 75

CORBA Objects

QW N ANWNR

13-16

5.5.3

Here’s our implementation of the factory:

[/ Java
public class Factory_inpl extends _Factoryl npl Base
{

or g. ong. CORBA. ORB orb_;

public Factory_inpl (org. ong. CORBA. ORB or b)

{
orb_ = orb;
}
public Product createProduct()
{
Product result = new Product _inpl (orb_);
orb_.connect(result);
return result;
}

}

Servant clasfact ory_i npl is defined as an implementation of et ory interface.

Thecr eat ePr oduct operation instantiates a néwoduct servant, connects it to the
object adapter, and returns an object reference to the client. Like in the C++ version, the
explicit call toconnect is optional.

Caveats

In these simple examples, the factory objects do not maintain any references to the
Product servants they create; it is the responsibility of the client to ensure that it destroys
aProduct object when itis no longer needed. This design has a significant potential for
resource leaks in the server, as it is quite possible that a client will not destroy its Product
objects, either because the programmer who wrote the client forgot to iwokeoy, or
because the client program crashed before it had a chance to clean up. You should keep
these issues in mind when designing your own factory ob}ects.

1. Two possible strategies for handling thisissueinclude: time-outs, in which aservant that has not
been used for some length of time is automatically released; and expiration, in which an object
referenceisonly valid for a certain length of time, after which a client must obtain a new refer-
ence. The implementation of these solutionsis beyond the scope of this manual.

76

ORBacus

Getting a Servant from a Reference

56 Getting a Servant from a Reference

In some situationsit may be necessary to obtain the servant implementation object of an
object reference (typically because you need to invoke a method on the servant implemen-
tation object that is not available viaits IDL interface).

In ORBACUS, servant classes are derived from skeleton classes, which are derived from
proxy classes (so-called “stub” classes). Therefore, you can simply cast an object refer-
ence to its servant class.

56.1 Gettinga Servant using C++

In C++,dynam c_cast <> can be used to obtain a pointer to the servant, as shown below:

1 /] C++

2

3 class I_inpl : virtual public |I_skel

4 {

5}

6

7 void foo(l_ptr ref)

8 {

9 I _inmpl* p = dynam c_cast<I|_inmpl*>(ref);

10

11 if(p)

12 {

13 // The inplementation for ref is in the same process
14 }

15 el se

16 {

17 /1 The inplementation for ref is not in the same process
18 }

19 }

3 A servant class for an interfatds defined.
7 The operatiori oo takes an object referencef to an object as a parameter.
9 dynam c_cast <> is used omef to get a pointer to an i npl .

11-18 The call todynam c_cast <> returns a pointer to the servant if the object referred to by
ref was local, or a null pointer otherwise.

ORBacus 77

CORBA Objects

O N OGN WNR

NNNRRRRRRRRRR
NROOWONOODOOANWNRKOO

23

In case your compiler does not support RTTI 1 you can use the 0B_MAKE_NARROW | MPL
macros from the ORBAcUS header file Nar r ow_i npl . h to obtain a pointer to a servant
class:

/] C++
#i ncl ude <OB/ Narrow_i npl . h>
class | _inpl : virtual public I_skel
{
OB_MAKE_NARROW | MPL(| _i npl)
H
OB_MAKE_NARROW | MPL_1(I _inpl, | _skel)
void foo(l_ptr ref)
{
| _impl* p =1 _inpl::_narrow_inpl(ref);
if(p)
{
/1 The inplenentation for ref is |ocal
}
el se
/1 The inplementation for ref is not | ocal
}
}

Thefile <OB/ Narr ow_i npl . h> must be included for the definitions of the
OB_MAKE_NARROW | MPL macros.

A servant classfor | isdefined with OB_ MAKE_NARROW | MPL as shown.

The only other differenceisthat now | _i npl : : _narrow_i npl must be used instead of
dynam c_cast <>.

The macro OB_ MAKE_NARROW | MPL_1 can only be used if the servant class has exactly
one super class (the skeleton class). If the servant class has two or more super classes, use
the macro OB_MAKE_NARROW | MPL_n, where n isthe number of super classes. For exam-
ple:

1. RunTime Type Identification.

78

ORBacus

Getting a Servant from a Reference

Q © NN WNR

~

10

5.6.2

O N OGN WNR

R kR R RRR
G AN WNRKROO

16
17
18

3-5

/] CH++

class C.inpl : virtual public C skel,
virtual public A_inpl,
virtual public B_inpl

{

OB_MAKE_NARROW | MPL(C i npl)
}s

OB_MAKE_NARROW I MPL_3(C_inmpl, C_skel, A inpl, B_inpl)

C i npl isderived from three classes, C skel , A i npl and B_i npl .

Now OB_MAKE_NARROW | MPL_3 must be used, with the names of all super classes as
arguments.

If you are using ORBAcuUS on multiple platforms, where some support RTTI and others
don't, it might be best to always usB/ Nar r ow_i npl . h, since_narr ow_i npl will
automatically useélynani c_cast <> on those platforms where it is available.

Getting a Servant using Java

This example demonstrates how to cast an object reference to the servant class in Java:

[/ Java
public class | _inmpl extends _IInpl Base
{
}
public void foo(l ref)
{
try
{
I _inmpl inmpl = (I _inpl)ref;
/1 The inplenentation for ref is |ocal
}
catch(C assCast Exception ex)
{
/1 The inplementation for ref is not |ocal
}
}

Servant class_i npl is defined.

ORBacus 79

CORBA Objects

7 Themethod f oo takes an object referencer ef toan | object as a parameter.

11 Anattemptismadetocastref tol _i npl . If this cast succeeded, then the servant islocal
(i.e., the servant is in the same address space as the program).

16 |f the cast failed, then Cl assCast Except i on will be thrown, indicating that the servant
is not in the same address space as the program. In other words, the referencer ef isreally
the proxy for aremote object, therefore you cannot obtain areference to the servant.

80

ORBacus

CHAPTER 6

Locating Objects

6.1

© O NN WNR

7-10

N

Obtaining Object References

Using CORBA, an object can obtain a reference to another object in a multitude of ways.
One of the most common ways is by receiving an object reference as the result of an oper-
ation, as demonstrated by the following example:

/1 1DL
interface A

{
}s

interface B

{
}s

Aninterface A is defined.

A getA();

An interface B is defined with an operation returning an object reference to an A.

On the server side, A and B can be implemented in C++ as follows:

/] C++
class A inpl : virtual public A skel
{

ORBacus 81

Locating Objects

4}
5
6 class B_inpl : virtual public B_skel
7 {
8 A var a_;
9
10 public:
11
12 void B_inpl ()
13 {
14 a_ = new A inpl;
15 }
16
17 virtual A ptr getA()
18 {
19 return A:: _duplicate(a);
20 }
21 };
2-4 Theservant class A i npl isdefined, which inherits from the skeleton class A _skel .
6-21 Theservant classB_i npl isdefined, which inherits from the skeleton class B_skel .
12-15 B_i npl 's constructor creates a néwi npl servant.
17-20 get Areturns an object reference to the npl servant.
In Java, the interfaces can be implemented like this:
1 /] Java
2 public class A_inpl extends _Al npl Base
3 {
4}
5
6 public class B_inpl extends _BI npl Base
7 {
8 A a_;
9
10 public B_inpl ()
11 {
12 a_ = new A inpl();
13 }
14
15 A get A()
16
17 return a_;
82 ORBacus

Lifetime of Object References

10-

15-

6.2

13

18

N

N

}

The servant class A i npl isdefined, which inherits from the skeleton class _Al npl Base.

The servant class B_i npl isdefined, which inherits from the skeleton class _BI npl Base.
B_i mpl 's constructor creates a néwi npl servant.
get A returns an object reference to the npl servant.

A client written in C++ could use code like the following to get referencas to

/] C++
B var b /] Get a B object reference sonehow
Avar a = b -> getA();

Invokeget A to obtain an object reference for an

And in Java:

[/ Java
Bb=...// Gt a B object reference sonmehow
A a = b.getA();

Invokeget A to obtain an object reference for an

In this example, once your application has a referencetobgect, it can obtain a refer-
ence to am object usingjet A. The question that arises, however, is How do | obtain a
reference to 8 object? This chapter answers that question by describing a number of
ways an application cavootstrap its first object reference.

Lifetime of Object References

All of the strategies described in this chapter involve the publication of an object reference
in some form. A common source of problems for newcomers to CORBA is the lifetime
and validity of object references. Using IIOP, an object reference can be thought of as
encapsulating several pieces of information:

* hostname
e port number
* object key

If any of these items were to change, any published object references containing the old
information would likely become invalid and their use might result inn OBJREF

ORBacus 83

Locating Objects

6.2.1

6.2.2

6.2.3

exception being raised. The sections below discuss each of these components and describe
the steps you can take to ensure that a published object reference remains valid.

Hostname

By default, the hostname in an object reference is the canonical hostname of the host on
which the server is running. Therefore, running the server on anew host invalidates any
previously published object references for the old host.

ORBAcus providesthe - OAhost option to alow you to override the hostname in any
object references published by the server. This option can be especially helpful when used
in conjunction with the Domain Name System (DNS), in which the - OAhost option spec-
ifies a hostname alias that is mapped by DNS to the canonical hostname.

See “Configuring the ORB and BOA” on page 45 for more information on@ARost
option.

Port Number

Each time a server is executed, the BOA selects a new port number on which to listen for
incoming requests. Since the port number is included in published object references, sub-
sequent executions of the server could invalidate existing object references.

To overcome this problem, ORBuUS provides the QAport option that causes the BOA
to use the specified port number. You will need to select an unused port number on your
host, and use that port number every time the server is started.

See “Configuring the ORB and BOA” on page 45 for more information on@agor t
option.

Object Key

Each object created by a server is assigned a unique key that is included in object refer-
ences published for the object. Furthermore, the order in which your server creates its
objects affects the keys assigned to those objects.

To ensure that your objects always have the same keysa@RBllows you to specify a
unigue name to be used as the key for an object. See “Named Servants” on page 72 for
more information.

84

ORBacus

Sringified Object References

6.3

6.3.1

N N WNRKR

w

Sringified Object References

The CORBA specification defines two operations on the ORB interface for converting
object references to and from strings.

/1 1DL
nodul e CORBA

{
interface ORB

{
string object_to_string(in Object obj);
Obj ect string_to_object(in string ref);
H
H

Using “stringified” object references is the simplest way of bootstrapping your first object
reference. In short, the server must create a stringified object reference for an object and
make the string available to clients. A client obtains the string and converts it back into an
object reference, and can then invoke on the object.

The examples discussed in the sections below are based on the IDL definitions presented
at the beginning of this chapter.
Using a File

One way to publish a stringified object reference is for the server to create the string using
obj ect _to_string and then write it to a well-known file. Subsequently, the client can
read the string from the file and use it as the argumesttritong_t o_obj ect . This

method is shown in the following C++ and Java examples.

First, we’ll look at the relevant server code:

/] C++

CORBA ORB var orb = ... // Get a reference to the ORB sonehow
B var inpl = new B_inpl;

CORBA _String_var s = orb -> object_to_string(inpl);

of stream out ("obj ect.ref")

out << s << endl;

out. close();

A servant for the interface is created.
The object reference of the servant is “stringified”.

The stringified object reference is written to a file.

ORBacus 85

Locating Objects

O N OGN WNR

In Java, the server code looks like this:

[/ Java
org.ong. CORBA.ORB orb = ... // Get a reference to the ORB sonmehow
B inmpl = new B_inpl ();
String ref = orb.object_to_string(inpl);
java.io.PrintWiter out = new PrintWiter(
new java.io. Fil eQut put Strean("object.ref"));
out.println(ref);
out. flush();

A servant for the interface B is created.
The object reference of the servant is “stringified”.

The stringified object reference is written to a file.

Now that the stringified object reference resides in a file, our clients can read the file and

convert the string to an object reference:

/] C++

CORBA ORB var orb = ... // Get a reference to the ORB sonehow
ifstreamin("object.ref");

char s[1000];

in >> s;

CORBA_(bj ect_var obj = orb -> string_to_object(s);

B var b = B::_narrow obj);

The stringified object reference is read.
string_t o_obj ect creates an object reference from the string.

Since the return value et ri ng_t o_obj ect is of typeCORBA_(hj ect _ptr,
B: : _narrow must be used to getBapt r (which is assigned to a self-managedar,
in this example).

[/ Java
org.ong. CORBA.ORB orb = ... // Get a reference to the ORB sonmehow
java.io.Buf feredReader in =

new j ava.i o. Buf f eredReader (new Fi | eReader ("object.ref"));
String ref = in.readLine();
or g. ong. CORBA. Obj ect obj = orb.string_to_object(ref);
B b = BHel per. narrow obj);

The stringified object reference is read.

86

ORBacus

Sringified Object References

6.3.2

O NN WNR

16

17

string_to_obj ect creates an object reference from the string.

Use BHel per. narr owto narrow the return value of st ri ng_t o_obj ect toB.

Usinga URL

It is sometimes inconvenient or impossible for clients to have access to the same filesys-
tem as the server in order to read a stringified object reference from afile. A more flexible
method isto publish the reference in afile that is accessible by clientsasaURL. Your cli-
ents can then use HTTP or FTP to obtain the contents of the file, freeing them from any
locd filesystem requirements. This strategy only requires that your clients know the
appropriate URL, and is especially suited for usein applets.

Note: This example will only be shown in Java, because of its built-in support for URLS,
but the strategy can also be used in C++.

[/ Java
i mport java.io.*;
i mport java.net.?*;

String location = "http://ww. nywebserver/object.ref";
org.ong. CORBA.ORB orb = ... // Get a reference to the ORB sonmehow
URL url = new URL(l ocation);

URLConnection conn = url.openConnection();
Buf f eredReader in =
new Buf f er edReader (
new | nput St reanReader (conn. get | nput Stream()));
String ref = in.readLine();
in.close();

or g. ong. CORBA. Obj ect object = orb.string_to_object(ref);
B b = BHel per. narrow object);

I ocati on isthe URL of the file containing the stringified object reference.
Read the string from the URL connection.
Convert the string to an object reference.

Narrow the reference to a B object.

ORBacus 87

Locating Objects

6.3.3

6.4

a N W N R

Using Applet Parameters

In addition to using the URL method described in the previous section, an applet can also
use an applet parameter to obtain a stringified object reference. The following HTML
illustrates this concept:

<APPLET CODE="Cl i ent.class" ARCHI VE="OB.jar" W DTH=500 HEI GHT=300>
<PARAM NAME="ref" VALUE="I|OR 000012031...">
</ APPLET>

The stringified object reference isinserted directly into the HTML file and passed to the
applet as a parameter. The applet can retrieve this parameter and convert it to an object
reference as shown below:

[/ Java

org.ong. CORBA.ORB orb = ... // Get a reference to the ORB sonmehow
String ref = getParanmeter("ref");

or g. ong. CORBA. Obj ect object = orb.string_to_object(ref);

B b = BHel per. narrow object);

Obtain the applet parameter r ef .
Convert the string to an object reference.
Narrow the object reference to a B object.

The presence of the stringified object reference in the HTML file could present a mainte-
nance problem. One solution is for the server to write the entire HTML file, thereby ensur-
ing that the object reference is always up to date. You can find an example of this
approach in the deno/ hel | o subdirectory.

See “Applets” on page 59 for more information on using @8 in applets.

Connecting to Named Objects

In some applications, it may be necessary for the client to have no resource dependencies
(e.g., files, URLs, etc.) in order to bootstrap an object reference. In this case, you can use
the ORBrcus-specifici i op: // notation for IORs or the ORB operation

get _i net _obj ect . The only prerequisites are that the object must have been assigned a
name by the server (see “Named Servants” on page 72), and the client must be able to
determine the hostname and port number of the server and the name of the desired object.

The services included with ORBUS all use named objects that can be accessed using
get _i net _obj ect . The names for these objects can be found in “Object Names for the
Basic Services” on page 153.

88

ORBacus

Connecting to Named Objects

6.4.1 Usingtheiiop:// Notation

The standard string representation of an object referenceis completely opague and can be
quite long, making it difficult to use. ORBACUS also supports a non-standard but more
human-friendly string representation of an object reference that uses URL notation:

iiop://hostnane: port/object-nane

Thisnotation is only suitable for referring to named objects, but it can be used anywhere a
normal stringified object reference is expected.

6.4.2 Using get_inet_object

The ORB operation get _i net _obj ect isdefined asfollows:

/1 1DL
nmodul e CORBA
{
interface ORB
{
Obj ect get_inet_object(in string host,
i n unsigned short port,
in string nane);
I
b
Here’s an example of usingt _i net _obj ect in C++:
1 /] C++
2 CORBA ORB var orb = ... // Get a reference to the ORB sonehow
3 CORBA _(bject_var obj = orb->get_inet_object(host, port, "MyNane");
4 B var b = B::_narrow obj);
3 get _inet _obj ect is called with the hostname, the port number and the object name,

which in this case is “MyName”.

4 Aswithstring_to_object, the reference returned bgt _i net _obj ect must be nar-
rowed to &B reference.

Here is an identical implementation in Java:

1 // Java
org.ong. CORBA.ORB orb = ... // Get a reference to the ORB sonmehow
3 org.ong. CORBA. Obj ect obj =

N

ORBacus 89

Locating Objects

4 ((com ooc. CORBA. ORB) or b) . get _i net _obj ect (host, port, "MNane");
5 B b = BHel per.narrow obj);
3-4 Theoperation get _i net _obj ect isonly definedin com ooc. CORBA. ORB (becauseit is
ORBAcus-specific), therefore the cast is necessary.
5 Agan, we must narrow to the derived type B.
6.5 Initial Services
The CORBA specification provides another standard way to bootstrap an object reference
through the use of initial services, which denote a set of unique services whose object ref-
erences, if available, can be obtained using the ORB operation
resol ve_initial _references, whichisdefined asfollows:
/1 1DL
nmodul e CORBA
{
interface ORB
{
typedef string Objectld;
exception InvalidNane {};
Obj ect resolve_initial _references(in Objectld identifier)
rai ses(I nval i dNane) ;
b
b
Initial services areintended to have well-known names, and the OMG has standardized
the names for some of the CORBAservices [4]. For example, the Naming Service has the
name “NameService”, and the Trading Service has the name “TradingService”.
6.5.1 Resolving an Initial Service
An example in which the ORB is queried for a Naming Service object reference will dem-
onstrate how to useesol ve_i ni ti al _ref er ences. The example assumes that the
ORB has already been initialized as usual. First the Java version:
1 /] Java
2 org.ong. CORBA. Obj ect obj = null;
3 org.ong. CosNani ng. Nam ngCont ext ctx = null;
4
5 try
6 {
90 ORBacus

Initial Services

Q©W N O ANWNR

obj = orb.resolve_initial_references("NameService");

}
catch(or g. ong. CORBA. ORBPackage. | nval i dNanme ex)

{

/! An error occured, service is not available

}
if(obj == null)
/'l The object reference is invalid
}
ctx = org.ong. CosNani ng. Nam ngCont ext Hel per. narrow(obj);

if(ctx == null)

{
}

/'l This object does not inplenment a Nani ngContext

And here’s the C++ version:

/] C++
CORBA_(bj ect _var obj;
CosNami ng_Nani ngCont ext _var ctx;
try
{
obj = orb -> resolve_initial _references("NanmeService");
}
cat ch(CORBA | nval i dNanme&)
{
/!l An error occured, service is not available
}
i f (CORBA: : object_is_nil(obj))
{
/'l The object reference is invalid
}

ctx = CosNami ng_Nani ngCont ext: : narrow ctx);
i f (CORBA: :0object_is_nil(ctx))

/] This object does not inplenment Nam ngContext

ORBacus

91

Locating Objects

19-2

6.5.2

3

N WN R

Try to resolve the name of a particular service. If a service of the specified nameis not
known to the ORB, an | nval i dNane exception is thrown.

The service type was known. Now the object reference has to be narrowed to the particular
service type. If thisfails, the serviceis not available.

ORBAcus allows you to define your own initial services, as described in the next section.
However, these are the recommended names for the services included with ORBAcUS:

NaneSer vi ce
PropertyServi ce
Event Ser vi ce

Providing | ORs of Initial Services

When starting a program that makes use of an initial service, the object references of the
objects implementing these services have to be registered with the ORB. ORBACUS sup-
portsthe - ORBser vi ce command-line option for adding an initial service:

-ORBservice name | OR

The - ORBconf i g option is an alternative method for defining alist of initial services, and

is often preferable when a number of services must be defined. See “Configuring the ORB
and BOA” on page 45 for more information on th@RBser vi ce and- ORBconf i g

options.

In addition to using command-line parameters, a program can also add to the list of initial
services using the ORBuUS-specific ORB operatioadd_i ni ti al _reference:

/1 1DL
nmodul e CORBA
{

interface ORB

{

void add_initial _reference(in Objectld identifier,
in Object obj);

I
b
For example, in C++:
/] C++
CORBA ORB var orb = ... // Get a reference to the ORB sonehow
CORBA_(bject_var obj = ... // CGet a name service reference sonehow

orb -> add_initial _reference("NanmeService", obj);

92

ORBacus

Initial Services

N WN R

w

Or in Java:

[/ Java

org.ong. CORBA.ORB orb = ... // Get a reference to the ORB sonmehow
org. ong. CORBA. Obj ect obj =...// Get a nane service reference sonehow

((com ooc. CORBA. ORB) orb) . add_i niti al _reference("NaneService", obj);

Get areference to the naming service, for example by reading a stringified object refer-
ence and converting it with st ri ng_t o_obj ect, or by using get _i net _obj ect, or by
any other means.

Add the reference to the ORB’s list of initial references. In Java, it's necessary to cast the
ORB tocom ooc. CORBA. ORB, sinceadd_i ni ti al _r ef erence is an ORB.cUs-spe-
cific extension and thus is not supported vaitly. ong. CORBA. ORB.

ORBacus 93

Locating Objects

94

ORBacus

CHAPTER 7

Reference Counting

7.1

1.2

What is Reference Counting?

Reference counting is a commonly-used technique to manage CORBA servant and proxy
objects. In general, areference count is an integer va ue associated with an object. The
counter isinitialized to 1, and will be incremented and decremented during the life of the
object. When the counter reaches zero, the object is destroyed.

Unlike some distributed object technologies, most notably Microsoft’s Distributed Com-
ponent Object Model (DCOM), CORBA reference counting mechanisms typically are not
distributed. In other words, the reference count of a proxy is independent of the reference
count of its corresponding servant. Therefore, if the reference count of a proxy reaches
zero, the proxy object is destroyed, but the servant is unaffected. Similarly, the reference
counts of any proxy objects for a servant are not affected when that servant’s reference
count reaches zero and the servant is subsequently destroyed.

Reference Counting in Java

ORBAcus for Java does not need to use reference counting because the standard Java ge
bage collector performs this activity automatically. However, there is one issue that
should be mentioned regarding garbage collection of servant objects.

In Java, the garbage collector does not reclaim an object until there are no more reference
to that object held by the program. When you use the O&Bisect method to connect

ORBacus 95

Reference Counting

a servant to the object adapter, the ORB will keep areference to your servant. Therefore,

in order for your servant to be eligible for garbage collection, you must eliminate al refer-

ences to the servant in your server code, and you must use the @RB&nect

method to ensure that the ORB no longer holds a reference to the servant. Although use of
connect is optional, because the ORB will automatically connect objects when neces-
sary, use ofli sconnect is always required.

7.3 Reference Counting in C++

ORBAcus for C++ implements servants and proxies as reference-counted objects. The
reference-counting semantics used by @QR®&s for C++ are outlined in Table 7.1.

new Servant _i npl Reference count of new servant is initialized to 1

ORB: :string_to_object Reference count of proxy is initialized to 1

ORB: : get _i net _obj ect Likestring_t o_obj ect, reference count of proxy Is
initialized to 1

ORB: : connect (servant) Reference count of servant is incremented by 1, since a

reference to the servant is added to the object adpter.

ORB: : di sconnect (servant) | Reference count of servant is decremented by 1, since
the object adapter’s reference to the servant is

removed’

_duplicate(obj) Reference count of servant or proxy is incremented
by 1

CORBA r el ease(obj) Reference count of servant or proxy is decremented
by 1

Table 7.1: C++ Reference Counting Semantics

a Thereference count is only incremented by 1 after the first (implicit or explicit) cal to
connect . Subseguent callsto connect do not affect the reference count.

b. If the servant is already disconnected, calling di sconnect again does not change the
reference count.

7.3.1 Marshalling I ssues

When a server returns the object reference of a servant to a client, either as a return value
or as arout ori nout parameter, the marshalling code automatically decrements the ser-

96 ORBacus

Reference Counting in C++

© O N O AN WNR

10

© NN WNR

R R R R
W N RO

14
15
16
17
18
19
20
21
22
23
24
25

vant's reference count by 1. Therefore, you will need to_dsel i cat e if you wish to
preserve the existing reference count of your servant, as shown in the following example.

/1 1D

interface A

{
}s
interface B
{

A getA();
}s

InterfacesA andB are defined.
The operatioryet A returns a reference to an objectof

Here is our implementation:

/] C++
class A inpl : public virtual A skel
{
H
class B inpl : public virtual B_skel
{

A var a_;

CORBA ORB var orb_;
public:

void B_i npl (CORBA_ORB _ptr orb)
orb_(CORBA ORB:: _duplicate(orb))

{
a_ = new A inpl;
orb_ -> connect(a_);
}
virtual A ptr getA()
{
return A:: _duplicate(a);
}

}s

ORBacus 97

Reference Counting

7-2

14-1

21-2

732

5

9

4

N

N

Servant class A i npl isdefined.
Servant classB_i npl isdefined.

TheB_i npl constructor saves areference to the ORB, instantiates A_i npl and connects
it to the object adapter. It is not strictly necessary to invoke connect , because the object
will be connected automatically when the object’s reference is returned to a client.

Upon entry tayet A, the reference count af is 2 (the initial value is 1 upon construction,
and is incremented to 2 when connected). To maintain this wgug,duplicatesa_,

which increments the reference count to 3. The marshalling code that returns the reference

will decrement the reference count back to 2.

For more information on using object referenceisrgs nout , out and return values, see
“Object References” on page 112.

Releasing Proxies and Servants

The reference count of a servant is incremented by 1 when the servant is (implicitly or
explicitly) connected to the object adapter (see “Connecting Servants using C++" on
page 71). Thereforgou must disconnect a servant from the object adapter prior to
releasing it with CORBA_r el ease in order to ensure that its reference count reaches zero.
See “Factory Objects using C++” on page 74 for an example that properly manages the
reference count of a servant.

It is important to remember to never wi et e to destroy proxies or servants. Use only
CORBA_r el ease. For example, the following code callidg! et e on a proxy obtained
with string_t o_obj ect is wrong:

const char* s = ... // Ootain a stringified reference sonehow
CORBA bhject_ptr p = orb -> string_to_object(s);
delete p; // Wong!

This line is wrong. Instead affel et e, CORBA r el ease must be used.

This is the correct version:

const char* s = ... // Ootain a stringified reference sonehow
CORBA bhject_ptr p = orb -> string_to_object(s);
CORBA rel ease(p);

OK, CORBA rel ease is used.

You should use self-managed types whenever possible:

98

ORBacus

Reference Counting in C++

DN WNRKR

$]

7.3.3

© O N O AN WNR

~

const char* s = ... // Oobtain a stringified reference sonehow
CORBA bhject_var p = orb -> string_to_object(s);

No CORBA r el ease isnecessary, sincethe _var will automaticaly call
CORBA r el ease upon destruction.

You should also avoid allocating servants on the stack. If you do so, the servant will be
destroyed if the stack unwinds, without any callsto CORBA_r el ease. Thefollowing code
demonstrates the problem:

/]l C++

void f()
{

}

Upon return from f , i npl is destroyed without the proper call to CORBA_r el ease.

I _impl inpl; // Wong!

Global Object References

You should never have global _var type object references, because you can never tell
exactly when and in which order they will be destroyed. For example, it is possible that a
_var reference could be destroyed after the ORB was destroyed. Here'’s an example.

I_var impl; // Don't do this!

int

main(int argc, char* argv[], char*[])

{
CORBA_ORB_var orb = CORBA_ORB_init(argc, argv);
impl = new |_impl;
return O;

}

A global object reference _var typeis created.
The ORB isinitialized.
Thel_var object referenceisinitialized with a new servant.

Upon return, the ORB is destroyed (since orb is destroyed, causing CORBA_release to
be called for the ORB). However, impl isstill alive, and therefore the servant is not

ORBacus 99

Reference Counting

734

O NN WNR

10-17

19-25

destroyed, meaning that thereisstill aservant, but no ORB anymore. Thiswill most likely
result in acrash.

The ORB must be the last object to be destroyed! In addition to the technical justification
for avoiding global object references, it is generaly abad programming style to have glo-
bal object references.

Cyclic Object Dependencies

Consider the following code:

class X inpl : virtual public X skel
{
Y_var y_;
public:
void setY(Y_ptr y) { y_ = Y:: duplicate(y); }
H
class Y_inpl : public Y_skel
{
X var x_;
public:
void set X(X_ptr x) { x_ = X :_duplicate(x); }
H
void f()
{
X var x = new X_inpl;
Y_var y = new Y_i npl;
X -> setY(y);
y -> set X(x);
}

A servant class X_i npl isdefined, which hasaY_var data member that can be set with
setY.

Ditto, but aservant class Y_i npl with adatamember X_var is defined.

Thefunctionf creates new X and Y servants. It stores the reference of the X servant in the
Y servant and vice versa.

100

ORBacus

Reference Counting in C++

O N GANWNR

R R R KRR
AN WNROO

Herethe X_i npl hasareferencetotheY_i npl andtheY_i npl has areferenceto the
X_i mpl , what is known as a “cyclic object dependency.” This means that fwretarns,
even though andy get destroyed, the objects they are referring tmatrdestroyed since

the reference count never becomes zero. Why? Let's take a deeper look into what happen

in the example program:

X var x = new X_i npl

The initial reference count of the i npl after thenewis 1.
Y_var y = new Y_i npl

Same as above, the initial reference count ofrtheml is 1.
X -> set Y(y)

After set Y, the reference count of thei npl is 2.

y -> set X(x)

After set X, the reference count of thei npl is 2.

return

x andy get destroyed and therefore dalRBA_r el ease on their contents, so the refer-
ence count of th& i npl and they_i npl is 1. This means that after the returri dhe
X_i mpl and they_i npl will live forever.

This problem can be solved by addinget easel nt er nal function' to at least one of
the two interface implementations. For example:

class X inpl : public X skel

{
Y_var y_;
public:
void setY(Y_ptr y) { y_ = Y:: duplicate(y); }
H
class Y_inpl : public Y_skel // Inplements interface Y
{
X var x_;
public:

1. Of course you are free to choose whatever name you like.

ORBacus 101

Reference Counting

15
16
17
18
19
20
21
22
23
24
25
26
27

10-18

26

void set X(X_ptr x) { x_ = X :_duplicate(x); }
void releaselnternal () { x_ = X:_nil(); }
H
void f()
{
X var x = new X_inpl;
Y_var y = new Y_i npl;
X -> setY(y);
y -> set X(x);
y -> rel easelnternal ();
}
Same as before
Ther el easel nt er nal operation has been added.

rel easel nternal iscaledbeforef returns.

Now both the X_i npl and the Y_i npl get destroyed at the return of f :
X var x = new X_i npl

Theinitial reference count of the X_i npl after thenewis 1.
Y_var y = new Y_i npl

Same as above, the initia reference count of the Y_i npl is1.
X -> set Y(y)

After set Y, the reference count of the Y_i npl is2.

y -> set X(x)

After set X, the reference count of the X_i npl is2.

y -> rel easel nternal ()

Ther el easel nt er nal function setsthex_ value of the Y_i npl toX: : _ni | . Assign-
ment to a_var object reference causes CORBA r el ease to be caled on its contents. So
now the reference count of the X_i npl is 1.

return

x andy are destroyed and therefore call CORBA_r el ease on their contents. That means
that the reference count of the X_i npl becomes zero, resulting in X_i npl being
destroyed. This of course also eliminates X_i npl 's y_ data member, causing

102

ORBacus

Reference Counting in C++

CORBA rel ease tobecalledontheY_i npl . Sothe Y_i npl ’s reference count also
becomes zero and thei npl is also destroyed.

ORBacus 103

Reference Counting

104 ORBacus

C++ Mapping Notes

CHAPTER 8
ORBAcus implements the I DL-to-C++ mapping as described in [2]. The standard | DL-to-
C++ mapping is not atopic of this manual. Pleaserefer to [2] for the exact specifications.
8.1 Reserved Names
All names starting with OB, _0OB_ or _ob_ arereserved by ORBAcus for internal use and
must not be used asidentifiers.
8.2 Mapping of Modules

Generally, IDL modules are mapped to C++ namespaces. However, since most C++ com-
pilers currently do not support namespaces, the IDL-to-C++ mapping defines two alterna
tives. The first one maps modules to C++ classes, implying that nested classes are heeded
for interfaces or other modules defined within a module. The second aternative isto map
modulesto name prefixes, e.g., the name of an interfacel inamodule Mismappedto M | .

ORBAcus uses the name prefix mapping alternative for the following reasons:

» As mentioned earlier, C++ namespaces are not widely available yehc@RB/as
designed to be portable among a variety of C++ compilers. Therefore using
namespaces was not possible.

1. Who wants to use such ugly names anyway?

ORBacus 105

C++ Mapping Notes

8.3

8.3.1

8.3.2

DN WN R

~

» Although nested classes are available with most C++ compilers, this mapping
alternative has the disadvantage that modules cannot be “reopened” (since classes
cannot be reopened). That is, it is not possible to define in one IDL file one part of a
module and in another IDL file another part of the same module.

Extensions

ORBAcus provides several extensions to the standard IDL-to-C++ mapping. If you are
concerned about source code compatibility with CORBA-compliant ORBs from other
vendors, you should not use these extensions. However, if you plan to use your source
code exclusively with ORBcus these extensions will reduce programming overhead.

Extensionsto the String Type

The ORBACUSCORBA_St ri ng_var type provides theper at or += for appending to the
string. The argument toper at or += can be of typeonst char*, char andunsi gned
char as well ashort, unsi gned short,int,unsigned int,|ongandunsigned

| ong. For example:

CORBA _String_var s;
s += "abc";

s +='X;

s+="y

s+='7";

S += 12345;

s isempty.

s is"abc".

s is"abex".

s is"abexy".
s is"abexyz".

s is"abexyz12345".

Extensonsto _var Types

All _var types have the following additional member functions:

e in: This function converts thevar type to a type suitable fom parameters.
* inout: This function converts thevar type to a type suitable fomout parameters.

106

ORBacus

Extensions

8.3.3

» out: This function converts thevar type to a type suitable fout parameters. As a
side effect, this function ensures that the value held byvhe is released or freed,
by either callingCORBA st ri ng_f r ee (in case of a stringlORBA _r el ease (in
case of an object reference)d®l et e (in case of types like sequences, variable-
length structs etc.).

* _retn: This function converts thevar type to a type suitable for function return
values. The ret n function also removes the value that is held by the type
without destroying it, i.e., without callindgl et e, CORBA_string_free or
CORBA r el ease on its value. For example consider a funcfiothat returns its
threei n string arguments as a single string:

char *
f(const char* sl1, const char* s2, const char* s3)
{

CORBA String_var s = sl1;

S += s2;

S += s3;

return s._retn();

}

Please note that these functions are not covered by the CORBA 2.0 version of the IDL-to-
C++ mapping, but it is likely that they will become a part of the standard for the next
major mapping revision.

Extensionsto Sequence Types

All unbounded non-array sequences (for example unbounded string, struct and object ref-
erence sequences) have an additionakr t , append andr emove member function. For
a sequence and a value, thes. i nsert (v) ands. append(v) behave as follows:

s.length(s.length() + 1);
/1 Somehow shift sequence contents one to the right
s[0] = v;

and

s.length(s.length() + 1)
s[s.length() - 1] = v;

respectively.

Please note that ORBUS's sequence implementation does not really shift the contents of
the sequence. It is rather implemented as a “double ended queue” (like the Standard Tem
plate Library’s “dequeue”), and therefore needs no value shifting. That isysleet

function is as efficient as theppend function.

ORBacus 107

C++ Mapping Notes

84

84.1

N WN R

~

N W N R

~

C++ Mapping Tips & Tricks

Unfortunately, the official CORBA IDL-to-C++ mapping is alittle compli cated.! The
traps & pitfallsjustify devoting a section of the ORBAcUs manual to how to avoid the
most common mistakes.

Note that compared to the IDL-to-C++ mapping, the IDL-to-Java mapping is nice, clean
and easy to understand, so it's not really necessary to have a “Java Mapping Tips &
Tricks”. The official mapping specification [3] is completely sufficient.

CORBA Srings

When using CORBA strings, always remember the following rules.

CORBA-Specific Sring Functions

Use the CORBA-specific string functio@SORBA st ri ng_al | oc,
CORBA_string_free andCORBA_string_dup if you're dealing with CORBA strings.
Never usenew, del et e, mal | oc, fr ee, st r dup or similar functions.

For example, the following code is incorrect:

char* s1 = strdup("Hello!"); // Wong!

/I Allocate a string for 10 characters + trailing '\0’ ...
String_var s2 = malloc(11); // Wrong!

Error, CORBA_string_dup must be used instead of strdup
No! CORBA string_alloc ~ must be used!

Thisisthe correct version:

char* s1 = CORBA_string_dup("Hello!");

/I Allocate a string for 10 characters + trailing "\0’ ...
CORBA_String_var s2 = CORBA_string_alloc(10);

OK, CORBA_string_dup isfine.

1. Notethat OOC did not invent this mapping. We just had to implement it exactly as specified to
be CORBA compliant.

108

ORBacus

C++ Mapping Tips & Tricks

OK. Note that CORBA st ri ng_al | oc (unlikenmal | oc) adds an additional character for
the trailing “\0” automatically.

This code is wrong, too:

free(s2); // Wong!

No! UseCORBA string_free!

And again, the corrected version:

CORBA string_free(sl);

This is OK. Note that there is no need to fseeexplicitly sinceCORBA_St ri ng_var
types release the string they manage automatically wheTOlBA_St ri ng_var type is
destroyed.

Initialization and Assignment from char* and const char*

Initialization of aCORBA_St ri ng_var type or assignment to@RBA _Stri ng_var type
from achar * type valueconsumes that value. That means that if the
CORBA_String_var is destroyed, the value from which theRBA_Stri ng_var was
initialized or that was assigned to th@RBA_St ri ng_var will also be destroyed.

Initialization of aCORBA_St ri ng_var type or assignment to@RBA _Stri ng_var type
from aconst char * type valueduplicates that value. This means that if the
CORBA_String_var is destroyed, the value from which theRBA_Stri ng_var was
initialized or that was assigned to th@RBA_St ri ng_var is not destroyed.

Note that for compatibility reasons with C the type of string literals in C¢hds*, not
const char*. So the following code is wrong:

CORBA_String_var s = "Hello!"; // Wong!

Error, since “Hello!” ischar *, notconst char*.

The following code is OK:

CORBA _String_var sl = CORBA string_dup("Hello!");

2 CORBA String_var s2 = (const char*)"Hello!";

OK, s1 consumes the value returned®@RBA st ri ng_dup.

ORBacus 109

C++ Mapping Notes

a N W N R

OK, s2 will implicitly duplicate “Hello!”.

Initialization and Assignment from CORBA Sring var

Initialization of aCORBA_St ri ng_var type or assignment to@RBA _Stri ng_var type
from anothelICORBA_St ri ng_var type value automatically duplicates that value. This
means that it is not necessary to use explicit calB®RBA_ st ri ng_dup. The following
examples are correct:

CORBA String_var sl CORBA_string_dup("ABC");
CORBA String_var s2 s1;
CORBA String_var s3 = CORBA string_dup(sl);

OK, s2 will implicitly duplicate “ABC”.
Also OK, explicit duplication.

Note that string elements of a structure, elements of a string array and elements of a string
sequence behave exactly like B@RBA Stri ng_var type, i.e., you can deliberately

assign between these types or use one of these types to initialize any other of these types.
There is no need to calDRBA st ri ng_dup explicitly.

Srings as Parameters and Return Values

If a function is called returning a string value viacann ori nout parameter or as a return
value, the callee mudtplicate and the caller muselease this value. The duplication can
be done usin@ORBA_st ri ng_dup and the release by either explicitly calling
CORBA_string_free or by assigning the value totC&RBA_St ri ng_var . For example:

/1 1DL
interface |

{
}s

An operatiorop is defined with amut string argument, ainnout string argument and a
string return value.

string op(out string os, inout string ios);

The following implementation df’'s op operation is wrong:

1. In code generated by the ORBACUS IDL-to-C++ translator, array and structure string elements
are actually of type CORBA_St ri ng_var . String sequence elements are not of type
CORBA_Stri ng_var (for technical reasons), but the type used for string sequence elements
behaves exactly likethe CORBA_Stri ng_var type.

110

ORBacus

C++ Mapping Tips & Tricks

O NN WNR

©

8,9, 10

O N N WNR

©

DN WN R

/] C++
class | _inpl : virtual public I_skel
{
public:
virtual char* op(char*& os, char*& i os)
{
/!l Wong, ios is not freed
ios = "abc"; // Wong!
os = "def"; // Wong!
return "ghi"; // Wong!
}
};

Forgot to freethei nout string parameter i os.

Wrong. Strings must be duplicated.

Here isthe correct version:

/] C++
class | _inpl : virtual public I_skel
{
public:
virtual char* op(char*& os, char*& i os)
{
CORBA string_free(ios);
ios = CORBA string_dup("abc");
0s = CORBA string_dup("def");
return CORBA string_dup("ghi");
}
}s

Now i os isfreed.
All String values are now duplicated.

Here is an example showing how to use string out , i nout or return values on the calling
sideif CORBA string_free isused:

/] C++
I_ptr i = ... /] Get areference to an | sonehow

char* out;
char* inQut = CORBA_string_dup("This is my inout arg");
char* result;

ORBacus 111

C++ Mapping Notes

10
11
12

10-12

O N OGN WNR

8.4.2

result =i -> op(out, inCut);

CORBA string_free(out);
CORBA string_free(inCut);
CORBA string_free(result);

The parameters are defined. A value must be assigned to thei nout parameter. Of course
valuesto i n parameters must also be assigned, but our example does not have any i n
parameters.

op iscaled.
All out andi nout parameters, aswell asthe return value, must be freed.

Here isthe same example, but with self-managed CORBA_St ri ng_var typesinstead of
explicitly callsto CORBA_string_free:

/] C++
l_ptr i = ... /] Get areference to an | sonehow

CORBA_String_var out;
CORBA String_var inQut = CORBA string dup("This is nmy inout arg");
CORBA _String_var result;

result =i -> op(out, ios);

CORBA _String_var isused instead of char *.

After the call to op, no explicit callsto CORBA_stri ng_f r ee are necessary, since the
CORBA_String_var type destroys its contents automatically.

Since method two in this example is much less error prone, you should always use the
self-managed type CORBA_Stri ng_var insuch acase.
Object References

If you use CORBA object references, i.e., _ptr and _var typesfor specific interfaces,
keep the following in mind.

Object References as Parameters and Return Values

If afunction returning an object reference viaan out or i nout parameter or asareturn
valueis called, the callee must duplicate and the caller must release the reference. As
described above, an object reference to an object of type (i.e., an object with the inter-

112

ORBacus

C++ Mapping Tips & Tricks

© O N O AN WNR

O NN WNR

NRRRRRRRRRR
QO O N ANWNRKROCO

~
5]

16-18

facel) isduplicated with 1 : : _dupl i cat e and released with CORBA r el ease. Thisis
quite similar to strings as parameters and return values. For example:

/1 1DL
interface |

{
}s

interface A

{
}s

Aninterface! isdefined.

I op(out | oref, inout | ioref);

Aninterface Ais defined, having an operation op, which returnsan | and hasan1 i n and
i nout parameter.

Thisimplementation of the op operation is wrong:

/] C++
class A inpl : virtual public A skel
{
| _var nyref;
public:
A_ipl ()
{
nyref = ... // Initialize nyref sonehow
}
virtual | _ptr op(l_ptr& oref, | _ptr& ioref)
{
/1 Wong, ioref is not released
ioref = nyref; // Wong!
oref = nmyref; // Ditto!
return nyref; // Ditto!
}
H

Forgot to freethei nout object reference parameter i or ef .

Wrong. Object references must be duplicated.

ORBacus 113

C++ Mapping Notes

Q © O N U NANWNR

15

16-18

© 0NN WNR

N R R
N R O

n
o

Thisversion is correct:

/] C++
class A inpl : virtual public A skel
{
| _var nyref;
public:
A_impl ()
{
nyref = ... // Initialize nyref sonehow
}
virtual | _ptr op(l_ptr& oref, | _ptr& ioref)
{
CORBA rel ease(ioref);
ioref = 1:: _duplicate(nyref);
oref = 1:: duplicate(nyref);
return |:: _duplicate(nyref);

}s

Now i or ef isreleased.
All object references are now duplicated.

The first example on how to use object reference out , i nout or return values on the call-
ing side uses explicit callsto CORBA r el ease:

/] C++

Aptr a=... /] Gt areference to an A sonehow

| _ptr out;

| _ptr inQut = ... // CGet a reference to an | sonmehow

| _ptr result;
result = a -> op(out, inCut);
CORBA rel ease(out);

CORBA rel ease(inCut);
CORBA rel ease(result);

The parameters are defined. A value must be assigned to the i nout parameter.

114

ORBacus

C++ Mapping Tips & Tricks

10-12

O NN WNR

© O N OGN WNR

op iscaled.
All out andi nout parameters, aswell asthe return value, must be released.

The second example uses self-managed | _var types:

/] C++

Aptr a=... /] Gt areference to an A sonehow

| _var out;

| _var inQut = ... /] Get areference to an | sonehow
I _var result;

result =i -> op(out, ios);

| _var isusedinstead of I _ptr.

After the call to op, no explicit callsto CORBA_r el ease are necessary, sincethel _var
type destroys its contents automatically.

We recommend that you use method two with the self-managed types, since this method is
much less error prone.

Differences between Sring_var and Object Reference var Types

Thereisaslight but important difference between St ri ng_var and object reference
_var typesregarding their initialization or assignment from i n parameters. Consider the
following IDL code:

/1 1DL
interface Y

{
}s

interface X

{
}s

void init(in string s1, in string s2, in Yyl, inY y2);

Herethei ni t function isused to initialize an X with two strings and two Y object refer-
ences. The following code shows the difference between _var type assignments from
strings and from object references:

/] C++
class X inpl : virtual public X skel

ORBacus 115

C++ Mapping Notes

15

16

{
CORBA _String_var sl_;
CORBA _String_var s2_;
Y_var yl_;
Y_var y2_;
public:
void init(const char* sl1, const char* s2, Y ptr yl, Y ptr y2)
{
sl = sl;
s2_ = CORBA string_dup(s2);
yl =vyl1; // Wong!
y2_ = Y:: _duplicate(y2);
}
}

OK, CORBA_String_var automatically duplicatesconst char *.

Explicit duplication is also OK, asthe CORBA_St ri ng_var consumes the duplicated
string returned from CORBA_st r i ng_dup, which returns a string of type char *.

Thisiswrong, Y_var consumes the value of typeY_ptr. ThereforeY: : _dupli cate
must be used.

Thisiscorrect now, sinceY: : _dupl i cat e was used.

The reason for this behavior is that there is no such thing as a constant object reference for
i n parameters. Thereforeit is not possible for the object reference _var typeto distin-
guish between assignments from regular object references and i n object references.

116

ORBacus

CHAPTER 9

Concurrency Modds

9.1

911

912

Introduction

What isa Concurrency Model?

A concurrency model describes how an Object Request Broker (ORB) handles communi-
cation and request execution. There are two main categories of concurrency models, sin-
gle-threaded concurrency models and multi-threaded concurrency models.

Single-threaded concurrency models describe how an ORB behaveswhile arequest is sent
or received in a single-threaded environment. For example, one model is to simply let the
ORB block on sending and receiving messages. Another model isto let the ORB do some
work while sending and receiving messages, for example to receive user input through a
keyboard or a GUI, or to simply transfer buffered messages.

Multi-threaded concurrency model s describe how the ORB makes use of multiple threads,

for example to send and receive messages “in the background.” Multi-threaded concur-
rency models also describe how several threads can be active in the user code and the
strategy the ORB employs to create these threads.

Why different Concurrency Models?

There is no “one size fits all” approach with respect to concurrency models. Each concur-
rency model provides a unique set of properties, each having advantages and disadvan-

ORBacus 117

Concurrency Models

9.13

9.2

921

tages. For example, applications using callbacks must have aconcurrency model that
allows nested method invocations to avoid deadlocks. Other applications must be opti-
mized for speed, in which case a concurrency model with the least overhead will be cho-
sen.

Some ORBs are highly specialized, providing only the most frequently used concurrency
models for a specific domain. ORBAcuUS takes a different approach by supporting several
concurrency models.

ORBacus Concurrency Models Overview

ORBAcus alows different concurrency models to be established for the client and server
activities of an application. The client-side concurrency models are Blocking, Reactive
and Threaded. The server-side concurrency models are Blocking, Reactive, Threaded,
Thread-per-Client, Thread-per-Request and Thread Pool.

Sngle-Threaded Concurrency Models

Blocking Clientsand Servers

The blocking concurrency model is the simplest one. For the client, “blocking” means that
the ORB blocks while sending requests to or receiving replies from a server.

A special case are oneway requésthich do not block the ORB. If the ORB determines
that sending the oneway request would cause blocking, it puts the oneway request into a
request buffer. Whenever the client tries to send another request to the same server, this
buffer’s contents are sent first.

Blocking servers block the ORB while receiving a request or sending a reply. Addition-
ally, since the ORB blocks on a connection after accepting it with a cadldikept , the

ORB cannot accept any new connections. Therefore a blocking server can only serve one
client at a time. This is shown in Figure 9.1.

Because of its simplicity, the blocking concurrency models are the fastest models avail-
able. There is no overhead, neither for calls to operationsdikect 2 (because the ORB

1. A oneway request is arequest for which no reply isreceived. Therefore a oneway request cannot
return any results and there is no guarantee that a oneway request was properly executed by a
server.

2. sel ect isused for synchronous 1/0 multiplexing. For moreinformation, seethesel ect Unix
manual page.

118

ORBacus

Single-Threaded Concurrency M odels

9.2.2

connect

f() - = —— @ accept
B — N .
@ dispatch

<

A

connect

90 |
| dispatch

- 4—‘

disconnect

—"_ - - — close T
.

Client A Server Client B

Figure9.1: Blocking Server

is alowed to block on a single connection), nor for any thread creation or context
switches.

Reactive Clientsand Servers

Reactive servers use calls to operations like sel ect in order to simultaneously accept
incoming connection requests, to receive requests from multiple clients and to send back
replies. Thismeans that areactive server can handle more than one client at atime. Thisis
shown in Figure 9.2. Reactive servers are the most common server types for single-
threaded client/server applications.

Reactive clients also use operations like sel ect to avoid blocking. This meansthat while
arequest to aserver is sent or areply from that server is received, the client can simulta-
neously send buffered requests to other servers or receive and buffer replies. Thisisvery
useful for oneway operations or the Dynamic Invocation Interface (DIl) operation
send_def err ed in combination with get _r esponse or pol | _r esponse.

However, the main advantage of areactive client becomes apparent if it is used together
with areactive server in mixed client/server applications. A mixed client/server applica-

ORBacus 119

Concurrency Models

connect

_____ R E accept
f()

¢ dispatch

[]

| connect

| <_ _____
accept
i
f0

dispatchlpm. B

A

Y

disconnect

—— - EE close
disconnect

close - T T

Client A Server Client B

Figure 9.2: Reactive Server

tion isaprogram that is both a client and server at the same time. Without the reactive
concurrency model it is not possible to use nested method calls in single-threaded applica-
tions, which are absolutely necessary for most kinds of callbacks.

Consider two programs A and B, both mixed client/server applications. First A triesto call
amethod f on B. Before this method returns, B calls back A by invoking method g. This
scenario is quite common, and for example is used in the popular Model-View-Control ler
pattern [7].

1. For moreinformation onsend_def err ed, get _response andpol | _r esponse, seethe
chapter “The Dynamic Invocation Interface” in [2].

120

ORBacus

Single-Threaded Concurrency M odels

For blocking client/servers this scenario is shown in Figure 9.3. Asyou can see, the call-

| |
f() -
dispatch
: : 90 -
Client/Server A Client/Server B

Figure9.3: Blocking Client/Server

back g from B to A does not succeed, because A blocks while waiting for areply for f
from B. In contrast, if the reactive concurrency model for the client and the server is used,
A can dispatch incoming requests while waiting for B’s replyffofhis is shown in Fig-
ure 9.4.

1 1
f()
; ¢ dispatch
dispatch Lpm B
.

-t |«

T 1
Client/Server Client/Server

Figure 9.4: Reactive Client/Server

The reactive concurrency models are also very fast. There is no overhead for thread cre-
ation or context switching. Only an additional call to an operationsikect is needed
before operations such ssnd, r ecv oraccept can be used by the ORB.

ORBacus 121

Concurrency Models

9.3 Multi-Threaded Concurrency Models

9.3.1 Threaded Clientsand Servers

A threaded client uses two separate threads for each connection to a server, one for send-

ing requests and another for receiving replies. In contrast to ablocking server, this model

has the advantage that oneway requests can be sent “in the background”, i.e., without
blocking the user thread execution. The separate receiver thread allows messages to be
received and buffered for later retrieval by the user thread with DIl operations such as
get _response orpol | _response.

Like a threaded client, a threaded server uses separate threads for receiving requests from
clients and sending replies. Additionally, there is a separate thread dedicated to accepting
incoming connection requests, so that a threaded server can serve more than one client at a
time.

ORBAcus'’s threaded server concurrency model allows only one active thread in the user
code. This means that even though many requests can be received simultaneously, the
execution of these requests is serialized. This is shown in Figure 9.5. (For simplicity, the

1) ﬁ_‘ L 1

f‘h_() _®< -

Y

T 7_‘ T T
Client A Threaded Server Client B

Figure 9.5: Threaded Server

“dispatch” arrows and the corresponding return arrows are omitted in this and all follow-

1. Instead of directly using operationslikesel ect , ORBACUS uses a Reactor to provide for flex-
ible integration with existing event loops and to allow theinstallation of user supplied event han-
dlers. See Chapter 10 for more information.

122 ORBacus

Multi-Threaded Concurrency Models

932

ing diagrams.) In the example, the threaded server has two clients connected to it and thus
two receiver threads (sender threads not shown). First A callsf on the server. If, before f
returns, B triesto call another operation g, thisrequest is delayed until f returns. The same
is true for A's call toh, which must wait unti§ returns.

Allowing only one active thread in user code has the advantage of the user code not hav-
ing to take care of any kind of thread synchronization. This means that the user code can
be written as if for a single threaded system, but without losing the advantage of the ORB
optimizing its operation by using multiple threads internally.

The threaded concurrency model is still fast. No calls to operationsdikect are

required. Time consuming thread creation is only necessary when a new client is connect
ing, but not for each request. However, thread context switching makes this approach
slower than the blocking concurrency model, at least on a single-processor computer.

Thread-per-Client Server

The thread-per-client server concurrency model is very similar to the threaded server con-
currency model, except that the ORB allows one active thread-per-client in the user code.
This is shown in Figure 9.6. A's call foand B’s call tay are carried out simultaneously,

1) ;L‘ 1 .
90 |
hes] ||
- [
—l_‘ 7_‘ T T
Client A Thread-per-Client Client B
Server

Figure 9.6: Thread-per-Client Server

each in its own thread. However, if A tries to call another operatiéor example by

sending requests from different threads in a multi-threaded client or by using the DIl oper-
ationsend_def err ed in a single-threaded client) as longfalsas not finished yet, the
execution oh is delayed untif returns.

ORBacus 123

Concurrency Models

The thread-per-client model is still efficient. Like with the threaded concurrency model,
no threads need to be created, except when new connections are accepted.

9.3.3 Thread-per-Request Server

If the thread-per-request server concurrency model is chosen, the ORB creates a new
thread for each request. Thisis shown in Figure 9.7. (For simplicity there are no separate

. ‘ . .

f0)

90
" -
0 -
T T T T
Client A Thread-per-Request Client B
Server

Figure 9.7: Thread-per-Request Server

arrows for dispatch and thread creation in the diagram.) With the thread-per-request
model, requests are never delayed. When they come in, a new thread is created and the
request is executed in the user code using thisthread. On return, the thread is destroyed.

Besides using areactive client together with areactive server, the thread-per-request
server in combination with athreaded client is the only other model that allows nested
method calls with an unlimited nesting level. The thread pool model also alows nested
method calls, but the nesting level islimited by the number of threads in the pool.

The thread-per-request concurrency model is inefficient. The main problem results from
the overhead involved in creating new threads, namely one for each request.

9.3.4 Thread Pool Server

The thread pool model uses threads from a pool to carry out requests, so that threads have
to be created only once and can then be reused for other requests. Figure 9.8 shows an

124 ORBacus

Performance Comparisons

94

94.1

f0

A A A A |

T T

Client Thread Pool
Server

Figure 9.8: Thread Pool Server

example with one client and a thread pool server with three threads in the pool. (Sender
and receiver threads are not shown.) The first three operation calls f , g and h can be car-
ried out immediately, since there are three threads in the pool. However, the fourth request
i isdelayed until at least one of the other requests returns.

Since there is no time-consuming thread creation, the thread pool concurrency model per-
forms better than the thread-per-request model. The thread pool is a good trade-off if on
the one hand frequent thread creation and destruction result in unacceptabl e performance,
but on the other hand delaying the execution of concurrent method callsis also not
desired.

Performance Comparisons

Sample Application

In order to measure the performance overhead introduced by a given concurrency model,
it isimportant to keep al other overhead not directly related to the concurrency model
minimal. Therefore the sample application for performance measurements only consists of
asingle interface with a single operation with no parameters and return values:

/1 1DL
interface |
void f()

ORBacus 125

Concurrency Models

94.2

}

This ensures that any additional overhead for parameter marshalling or request dispatch-
ingisminimal.

All tests have been performed with ORBAcus for C++ version 3.1.1 on aLinux 2.0.35
based machine, libc 5.4.33, Pl1 400 MHz, 128 MB memory, egcs 1.0.3a C++ compiler,
with optimization (compiled with - O2 - DNDEBUG), shared libraries, and no debug code.

Regular M ethod | nvocations

The first test scenario is a server that is used by asingle client. Table 9.1 showsthe time

Blocking | Reactive |Threaded

0.20ms 0.25ms 0.28 ms

Blocking
Reactive 0.25ms 0.29 ms 0.33ms
Threaded 0.26 ms 0.31ms 0.37ms

Thread-per-Client 0.25ms 0.30 ms 0.36 ms

Thread-per-Request 0.63 ms 0.68 ms 0.71ms

Thread Pool 0.31ms 0.39 ms 0.42 ms

Table 9.1: Regular Method I nvocations

needed for asingle call tof . Inthisand all following tables, the different columns corre-
spond to the client side concurrency models and the different rows to the server side con-
currency models.

The clear winners are the blocking concurrency models, which are fastest. Second fastest
are the reactive concurrency models, followed by the different threaded concurrency mod-
es.

Note that Table 9.1 shows the performance results for athread safe version of ORBACUS.

In case no threads are used at all, i.e., if no multi-threaded concurrency model is chosen

and if multiple threads are not used in application code, then it's also possible to use a
non-thread-safe version of ORBuUS. Table 9.2 shows that such a version is much faster

126

ORBacus

Performance Comparisons

Blocking | Reactive

Blocking 0.16 ms 0.20ms

Reactive 0.20ms 0.23ms

Table 9.2: Non-Thread-Safe Ver sion

than a thread-safe one, because there is no additional overhead for any thread synchroniza-
tion.

9.4.3 Nested Method Invocations

Asalready pointed out, nested methods invocations are only possible with the following
concurrency model combinations:

* reactive client / reactive server

» threaded client / thread-per-request server

» threaded client / thread pool server

Table 9.3 shows the performance results for a nesting level of 100. That is, in the test

Reactive | Threaded

Reactive 2.78 ms na
Thread-per-Request n/a 3.39ms
Thread Pool n/a 3.23ms

Table 9.3: Nested M ethod I nvocations

applications there are two mixed client/servers, each of them implementing the IDL code
of the test application. The first client/server célisn the second, ariefore f returns,

the second client/server caflon the first client/server, then the first client/server f on the
second again and so on. This is repeated until each client/serverf caligtie other cli-
ent/server 50 times, which corresponds to a total nesting level of 100.

ORBacus 127

Concurrency Models

9.5

Again, the clear winner is a single-threaded concurrency model, namely the reactive con-
currency model. Here the difference between single-threaded and multi-threaded concur-
rency modelsis very significant, because thereis ahuge overhead for creating threads and
thread context switches in the multi-threaded concurrency models.

The maximum nesting level for the reactive concurrency model is usually much higher
than for the thread-per-request and thread pool concurrency models. Thereason isthat the
maximum nesting level for thread-per-request and thread pool is determined by the maxi-
mum number of threads allowed per process, whereas the reactive concurrency model is

only limited by the maximum stack size per process.

Sl ecting Concurrency Models

Concurrency models can be selected either by command-line parameters (see Chapter 4),
or with the operations ORB: : conc_nodel and BQA: : conc_nodel . The default concur-

rency models are shown in Table 9.4.

Client Server
Java Blocking | Threaded
C++ Blocking Reactive

Table 9.4: Default Concurrency Models

For example, hereis how to establish the concurrency models in C++:

/] C++
CORBA ORB var orb
CORBA BOA var boa

/1l Get a reference to the ORB sonehow
/1 Get a reference to the BOA sonehow
orb -> conc_nodel (CORBA_ORB: : ConcModel Thr eaded)

boa -> conc_nodel (CORBA_BQA: : ConcModel Thr eadPer Request)

Other possible parameters for ORB: : conc_nodel are:

ConcModel Bl ocki ng
ConcMbdel Reacti ve
ConcMbdel Thr eaded

And for BOA: : conc_nodel :

ConcModel Bl ocki ng
ConcModel Reacti ve

128

ORBacus

Selecting Concurrency Models

ConcMbdel Thr eaded
ConcMbdel ThreadPer Cl i ent
ConcModel Thr eadPer Request
ConcMbdel Thr eadPool

In Java, the example looks like this:

/1l Java
org.ong. CORBA.ORB orb = ... // Get a reference to the ORB sonmehow
org.ong. CORBA. BOA boa = ... // Get a reference to the BOA sonmehow

((com ooc. CORBA. ORB) or b) . conc_nodel (
com ooc. CORBA. ORB. ConcModel . ConcMbdel Thr eaded)
((com ooc. CORBA. BOA) boa) . conc_nodel (
com ooc. CORBA. BQA. ConcModel . ConcModel Thr eadPer Request)

The caststo com ooc. CORBA. ORB and com ooc. CORBA. BOA are necessary becausethe
conc_nodel operations are ORBAcUs-specific and are not available in the classes
or g. omg. CORBA. ORB and or g. ong. CORBA. BOA, respectively.

In case the thread pool concurrency model has been selected, it’s also hecessary to specil
the number of threads in the thread pool. This can be done with the operation
BOA: : conc_nodel _t hread_pool :

/] C++
CORBA BOA var boa = ... // Get a reference to the BOA sonehow
boa -> conc_nodel _t hread_pool (10);

This allocates 10 threads for the thread pool. Here is the same example in Java:

[l Java
org.ong. CORBA. BOA boa = ... // Get a reference to the BOA sonmehow
((com ooc. CORBA. BOA) boa) . conc_nodel _t hread_pool (10);

ORBacus 129

Concurrency Models

130 ORBacus

CHAPTER 10

The Reactor

10.1

10.2

What is a Reactor?

In “reactive” mode (see “Reactive Clients and Servers” on page 119)AQRRIses a
so-called “Reactor” for event dispatching [6]. Simply speaking, the Reactor is an instance
in ORBAcuUS (a singleton) where special objects — so-called event handlers — can regis-
ter if they are interested in specific events. These events can be network events, such as &
event signaling that data are ready to be read from a network connection.

Again, this chapter only applies to ORBus when used with reactive concurrency mod-
els. If you use ORBcus with any other concurrency model, for example “blocking” or
any of the multi-threaded models, the following examples are not applicable. Also, since
ORBacus for Java currently doesn’t support the reactive model at all, the following only
applies to ORBcus for C++.

Available Reactors

Currently there are three Reactors supported by AaRB:

» The standard “select” Reactor which relies on the Berkeley Sooiietst function.

* A special Reactor for use with the X11 Window System. This Reactor handles X11
events (which for example can trigger X11 callbacks) and CORBA network events
simultaneously.

ORBacus 131

The Reactor

» A special Reactor for use with Microsoft Windows 95 or Windows NT. This Reactor
handles Windows messages and CORBA network events simultaneously.

The “default” Reactor is the “select” Reactor. If one of the other Reactors is to be used, it
must be initialized explicitly.

10.2.1 The X11 Reactor

An application that wants to use the X11 Reactor simply has to call the function
OBX11I ni t beforethe ORB is initialized withCORBA ORB_i ni t . For example:

1 #include <X11/Intrinsic.h>

2

3 #include <OB/ CORBA. h>

4 #include <OB/ X11. h>

5

6 int

7 main(int argc, char* argv[], char*[])

8 {

9 Xt AppCont ext appCont ext ;
10 W dget topLevel = XtApplnitialize(&ppContext,
11 "MyApplication",
12 0, O,
13 &argc, argv,
14 0, 0, 0);
15
16 OBX11l ni t (appCont ext) ;
17
18 CORBA _ORB var orb = CORBA ORB init(argc, argv);
19 CORBA BOA var boa = orb -> BOA init(argc, argv);
20
21 /] Nore application code ...
22
23 boa -> inpl _is_ready();
24
25 return O;
26 }

1-4 Include header files.
6- 7 Define themai n function.
9-14 Initialize X11 application.

16 Use the X11 application context to initialize the X11 Reactor.

132 ORBacus

Available Reactor s

18-19

23

10.2.2

O N OGN WNR

R Rk RkRRRRRRR
© N AN WNRKROO

20

10

12-14

18

Initialize ORB and BOA as usual.

Enter the CORBA event loop. Thisloop will now also dispatch X11 events. Alternatively,
the standard X 11 event loop may be called, which will then also dispatch CORBA events.

The Windows Reactor

For the Windows Reactor, the function OBW ndows| ni t must be called, aso before the
ORB isinitialized. For example:

#i ncl ude <W ndows. h>

#i ncl ude <OB/ CORBA. h>
#i ncl ude <OB/ W ndows. h>

int W NAPI
W nMai n(H NSTANCE hl nst ance, HI NSTANCE hPrevl nst ance,
LPSTR | pszArgs, int nW nhMbde)

{
OBW ndowsl ni t (hl nst ance) ;
int dumy = 0;
CORBA ORB var orb = CORBA ORB init(dumy, O0);
CORBA BOA var boa = orb -> BQOA init(dumy, 0);
/'l Nore application code ...
boa -> inpl _is_ready();
return O;
}

Include header files.

Define the W nMai n function.

Use the Windows application instance to initialize the Windows Reactor.
Initialize ORB and BOA as usual.

Enter the CORBA event loop, which now also dispatches Windows events. The standard
Windows event loop may also be called, which will then also dispatch CORBA events.

ORBacus 133

The Reactor

10.3

© 0NN WNR

WWWwWwwWwWWNNNNNNMNNMNMNNNRRRRRRRRRR
GORNWNRKRKOOONODAONWNRIOOONOGNWNRKRO

Writing a Custom Event Handler

ORBAcus in reactive mode includes support for customized event handlers. This means
that while your application isrunning, it can react to events like keyboard events. In order
to implement your own ORBAcuUs event handler, you must derive a class from

OBEvent Handl er and overload the handl eEvent and handl eSt op member functions.
The constructor of the derived class must ensure that objects of this class are registered
with the Reactor. This isan example for an event handler that listens to keyboard events:

#i ncl ude <OB/ Reactor. h>

cl ass MyEvent Handl er : public OBEvent Handl er

{
public:

MyEvent Handl er () ;
vi rtual ~MyEvent Handl er () ;

virtual voi d handl eEvent (CORBA_ULong) ;
virtual void handl eStop();

}s

MyEvent Handl er: : MyEvent Handl er ()
{

OBReactor* Reactor = OBReactor::instance();

Reactor -> regi sterHandler(this, OBEventRead, 0);

}

M/Event Handl er: : ~MyEvent Handl er ()
{

OBReactor* Reactor = OBReactor::instance();
Reactor -> unregisterHandler(this);

}

voi d
MyEvent Handl er: : handl eEvent (OBMask mask)
{

assert (mask == OBEvent Read);

char c;
cin.read(&c, 1);

// Handl e character input here ...

134

ORBacus

Using Timers

36
37
38
39
40

14-18

20-24

26- 35

37-40

10.4

voi d

MyEvent Handl er: : handl eSt op()
{

}

The header file for the reactor isincluded. Thisfile also contains the definition of
OBEvent Handl er.

An event handler MyEvent Handl er isdefined, which has a constructor, a destructor, a
handl eEvent and ahand| eSt op operation.

The constructor registers the event handler with the Reactor singleton. Only “read” events
are requested.

The destructor unregisters the event handler with the Reactor singleton.

The ORB:cus Reactor calls theandl eEvent function each time a read event from stan-
dard input is pending.

handl eSt op is not used by this event handler.

Using Timers

Often an application may wish to perform tasks on a regular timed basis. The reactor pro-
vides an API for the integration of timed tasks into an @& application.

In order to have a timed task a class must be created that inherits from tleBTlass .
The clasOBTi mer provides a pure-virtual methadt i fy that is called when the timer
expires.

For the timer to be notified it must first be enabled. To do thiathévat e method is

called. This method takes two parameters. A timeval, and a boolean flag. The boolean flag
indicates whether the timeval is a relative or absolute - true indicates a relative value. The
timeval contains two membetsy_sec andt v_usec. Note that the timer is only as accu-
rate as the underlying operating system, so microsecond accuracy is not necessarily
offered.

Theact i vat e method causes the timer to be notified once. If a recurring timer is desired
theacti vat e method should be invoked before th#t i f y method is completed.

Thest op method is provided to cancel the next notification.

#i ncl ude <OB/ Ti mer. h>
cl ass Custonili mer : public OBTi ner

ORBacus 135

The Reactor

16
17
18
19
20
21
22
23
24
25
26
27

{
voi d register()
{
struct tineval tv;
tv.tv_sec = 10;
tv.tv_usec = 0;
/1
// Call notify() nethod in 10 seconds
/1
activate(tv, true);
}
public:
Cust omTi mer ()
{
register();
}
virtual void notify()
{
cout << "Notify called" << endl;
register();
}
H

Thefile OB/ Ti mer . h must be included to use the timer classes.

A class Cust onili mer isdefined that inherits from OBTi ner .

The private method r egi st er causes the timer to be notified every 10 seconds.
The constructor callsther egi st er method.

Thenoti fy method is called every 10 seconds. A string is displayed, and the timer isre-
registered.

136

ORBacus

aweenn 111E OPEN
Conmmunications Interface

11.1 Wnat isthe Open Communications I nterface?

The Open Communications I nterface (OCI) defines common interfaces for pluggable pro-
tocols. It supports connection-oriented, reliable “byte-stream” protocols. That is, protocols
which allow the transmission of a continuous stream of bytes (octets) from the sender to
the receiver.

TCP/IP is one possible candidate for an OCI plug-in. Since A&gRBuses GIOP, such a
plug-in then implements the IIOP protocol. Other candidates are SCCP (Signaling Con-
nection Control Part, part of SS.7) or SAAL (Signaling ATM Adaptation Layer).

Non-reliable or non-connection-oriented protocols can also be used if the protocol plug-in
itself takes care of reliability and connection management. For example, UDP/IP can be
used if the protocol plug-in provides for packet ordering and packet repetition in case of a
packet loss.

11.2 Interface Summary

11.2.1 Buffer

An interface for a buffer. A buffer can be viewed as an object holding an array of octets
and a position counter, which determines how many octets have already been sent or
received.

ORBacus 137

The Open Communications I nterface

11.2.2

11.2.3

11.2.4

11.2.5

11.2.6

Transport

The Transport interface allows the sending and receiving of octet streamsin the form of
Buffer objects. There are blocking and non-blocking send/receive operations available, as
well as operations that handle time-outs and detection of connection loss.

Acceptor and Connector

Acceptors and Connectors are Factories[10] for Transport objects. A Connector isused to
connect clients to servers. An Acceptor is used by a server to accept client connection
requests.

Acceptors and Connectors al so provide operations to manage protocol-specific IOR pro-
files. Thisincludes operations for comparing profiles, adding profiles to IORs or extract-
ing object keysfrom profiles.

Connector Factory

A Connector Factory is used by clients to create Connectors. No special Acceptor Factory
is necessary, since an Acceptor is created just once on server start-up and then accepts
incoming connection requests until it is destroyed on server shutdown. Connectors, how-
ever, need to be created by clients whenever a new connection to a server has to be estab-
lished.

TheRegistries

The ORB provides a Connector Factory Registry and the Object Adapter provides an

Acceptor Registry. These registries allow the plugging-in of new protocols. Transport,

Connector, Connector Factory and Acceptor must be written by the plug-in implementors.

The Connector Factory must then be registered with the ORB’s Connector Factory Regis-
try and the Acceptor must be registered with the Object Adapter’s Acceptor Registry.

TheInfo Objects

Info objects provide information on Transports, Acceptors and Connectors. A Transport
Info provides information on a Transport, an Acceptor Info on an Acceptor and a Connec-
tor Info on a Connector. To get information for a concrete protocol, these info objects
must benar r owd to an info object for this protocol, for example, in the case of an IIOP
plug-in, aCCl : : Transpor t | nf o must benarrowd to OCl : : I | OP: : Transport | nf o.

138

ORBacus

OCI Reference

11.2.7 ClassDiagram

Figure 11.1 shows the classes and interfaces of the OCI (except for the Buffer and Info

1 C ORB OA O 1
Connector Acceptor
Factory Reqistr
Registry egistry

L

n

Connector
Factory

Connector

Transport

Acceptor

|

n

[]

[

[]

1.3

createsp creates» < Creates
Pr O;g;?(l:' Protocol- Protocol- Protocol-
C?)Fr)mector Specific Specific Specific
Factory Connector Transport Acceptor

Figure 11.1: OCI Class Diagram

interfaces). ORBAcCUS provides abstract base classes for the interfaces Connector Factory,
Connector, Transport and Acceptor. The protocol plug-in must inherit from these classes

in order to provide concrete implementations for a specific protocol. ORBAcuUS also pro-
vides concrete classes for the interfaces Buffer, Connector Factory Registry and Acceptor
Registry. Instances of Connector Factory Registry and Acceptor Registry are provided by
the ORB and Object Adapter, respectively. Concrete implementations of the Connector
Factory must be registered with the ORB’s Connector Factory Registry, and concrete
implementations of the Acceptor must be registered with the Acceptor Registry.

OCI Reference

This chapter does not contain a complete reference of the OCI. It only explains OCI basics
and, in the remainder of this chapter, how it is used from the application programmer’s

ORBacus 139

The Open Communications I nterface

point of view for the most common tasks. For more information on how to use the OCI to
write your own protocol plug-ins, and for a complete reference, please refer to Appendix
B.

11.4 OCI for the Application Programmer
The following information only applies to the standard ORBAcus I10P plug-in. For other
plug-ins, like the ORBAcusS SSL plug-in, please refer to the plug-in's documentation.
11.4.1 A *“Converter” Class for Java
Asyou will seein the following examples, the OCI info objects return port numbers as
IDL unsi gned short valuesand IP addresses asan array of 4 IDL unsi gned oct et
values. Thisworks fine for C++, but in Java this causes a problem, because there are no
unsigned typesin Java. The Java mapping simply maps unsigned types to signed types.
Consider for example the |P address 126.127.128.129. |n Java, the OCI will return this as
126.127.-128.-127, because 128 and 129, if bit-wise mapped to the Java byt e type, are
-128 and -127.
To avoid this problem, we will use a helper class which converts port numbers and IP
addresses to Javai nt types. This helper class looks as follows:
1 // Java
2
3 final class Converter
4 {
5 static int port(short s)
6 {
7 if(s <0)
8 return Oxffff + (int)s + 1;
9 el se
10 return (int)s;
11 }
12
13 static int[] addr(byte[] bArray)
14 {
15 int[] iArray = new int[4];
16 for(int i =0 ; i <4 ; i++)
17 if(bArray[i] < 0)
18 i Array[i] = Oxff + (int)bArray[i] + 1;
19 el se
20 iArray[i] = (int)bArray[i];
21
140 ORBacus

OCI for the Application Programmer

11.4.2

O N N WNR

©

return i Array;

}
}s

Convertsshort port numberstoi nt .

Convertsbyt e[] IPaddressestoint[].

The converter classis used throughout the examplesin the sections below.

Getting Hostnames and Port Numbers

The following code fragments show how it is possible to find out on what hostnames and
port numbers a server islistening. First the C++ version:

/]l C++

OCl _AccRegi stry_var registry = boa -> get_acc_registry();
OCl _AcceptorSeq_var acceptors = registry -> get_acceptors();

for(CORBA ULlong i = 0 ; i < acceptors -> length() ; i++)
{
OCl _Acceptorlnfo_var info = acceptors[i] -> get_info();
OCl _I 1 OP_Acceptorinfo_var iioplnfo =
OCl _I 1 OP_Acceptorinfo::_narrow(info);

if(!CORBA_is_nil(iioplnfo))

{
CORBA String_var host = iioplnfo -> host();
CORBA _Ushort port = iioplnfo -> port();
cout << "host: " << host << endl|;
cout << "port: " << port << endl;

}

}
The Acceptor Registry is requested from the object adapter.

From the Acceptor Registry, the list of registered acceptors is requested.
Thef or loop iterates over all acceptors.
Theinfo object for the acceptor is requested and narrowed to an [1OP acceptor info object.

Thei f block isonly entered in case the info object really belongs to an [1OP plug-in.

ORBacus 141

The Open Communications I nterface

14- 18 The hostname and port number are requested from the I1OP acceptor info object and
printed on standard output.

The Javaversion is basically equivalent to the C++ code and looks as follows:

1 // Java

2

3 comooc. OCl . AccRegi stry registry =

4 ((com ooc. CORBA. BOA) boa) . get _acc_registry();

5 com ooc. OCl . Acceptor[] acceptors = registry.get_acceptors();
6

7 for(int i =0 ; i < acceptors.length ; i++)

8 {

9 com ooc. OCl . Acceptorlinfo info = acceptors[i].get_info();
10 com ooc. OCl . | | OP. Acceptorinfo iioplnfo =

11 com ooc. OCl . | | OP. Accept or | nf oHel per. narrow(i nfo);
12

13 if(iioplnfo !'= null)

14 {

15 String host = iioplnfo.host();

16 short port = Converter.port(iioplnfo.port());

17

18 Systemout.println("host: " + host);

19 Systemout.println("port: " + port);

20 }

21 }

3 The acceptor registry isreguested from the BOA. Since the standard BOA
or g. ong. CORBA. BQA does not provide a method for this, there must be a cast to
com ooc. CORBA. BOA.

5-15 Thisisequivalent to the C++ version.
16 The converter classisused to get a port number ini nt format.

18-19 Likeinthe C++ version, the hostname and port number are printed on standard output.

11.4.3 Finding out a Client’s IP Address

To find out the I P address of a client within a server method, the following code can be
used in a servant class method implementation:

1 /] C++

N

3 CORBA _(bject_var baseCurrent =

142 ORBacus

OCI for the Application Programmer

© 0 N G A

10
11
12
13
14
15
16
17
18
19
20

7-9

11

13-19

QO © O N U NANWNHR

orb -> resolve_initial _references("OCl Current");
OCl _Current _var current = OCl _Current::_narrow baseCurrent);

OCl _Transportinfo_var info = current -> get_oci _transport_info();
OCl _I1 OP_Transportlnfo_var iioplnfo =
OCl _I1 OP_Transportlnfo::_narrowinfo);

if(!CORBA_is_nil(iioplnfo))

{
OCl _I 1 OP_I net Addr rempteAddr = iioplnfo -> renote_addr();
CORBA _Ushort renotePort = iioplnfo -> remte_port();
cout << "Call from "
<< renpteAddr[0] << '.’ << renpteAddr[1] << '.’
<< renpteAddr[2] << ’'.’' << renoteAddr[3]
<< ":" << renotePort << endl;
}

The OCI current object is requested and nar r owd to the correcdCl : : Curr ent type.

The info object for the transport is requested mad owd to an IIOP transport info
object.

The remainder of the example code is only executed if this was really an IIOP transport
info object.

The address and the port of the client calling this operation are obtained and printed on
standard output.

The Java version looks as follows:

or g. ong. CORBA. Obj ect baseCurrent =
orb.resolve_initial _references("OClCurrent");
com ooc. OCl . Current current =
com ooc. OCl . Current Hel per. narrow(baseCurrent);

com ooc. OCl . Transportlnfo info = current.get_oci_transport_info();
com ooc. OCl . I | OP. Transportinfo iioplnfo =
com ooc. OCl . | | OP. Transport | nfoHel per. narrow(basel nf o) ;

if(iioplnfo !'= null)

{

int[] renoteAddr = Converter.addr(iioplnfo.renote_addr());
int renptePort = Converter.port(iioplnfo.remte_port());

Systemout.printin("Call from " +

ORBacus 143

The Open Communications I nterface

16
17
18
19
20

12-13

15-19

1144

QO © 0O N U NANWNHR

renoteAddr[0] + "." +
renoteAddr[1] + "." +
renoteAddr[2] + "." +
renoteAddr[3] + ":" + renptePort);
}
This code is equivalent to the C++ version.

Again, the port number must be converted from short toi nt .

Thisisalso equivalent to the C++ version.

Finding out a Server’s IP Address

To find out the server’s IP address and port that an object will attempt to connect to, the
following code can be used:

/] C++
CORBA_(bject_var obj = ... // Get an object reference somehow
OCl _ConnectorlInfo_var info = obj -> get_oci _connector_info();
OCl _I 1 OP_Connectorlnfo_var iioplnfo =

OCl _I | OP_Connectorl nfo::_narrowinfo);

if(!CORBA_is_nil(iioplnfo))

{
OCl _I 1 OP_I net Addr _var renoteAddr = iioplnfo -> renoteAddr();
CORBA _Ushort renotePort = iioplnfo -> remte_port();
cout << "WIIl connect to: "
<< renpteAddr[0] << '.’ << renpteAddr[2] << '.’
<< renpteAddr[2] << ’'.’ << renoteAddr[3]
<< ":" << renotePort << endl;
}

Get the OCI connector info and narrow to an IIOP connector info
Thei f block is only executed if this really was an IIOP connector info.
The address and port are obtained and displayed on standard output.

The Java version looks as follows:

/1 Java

144

ORBacus

OCI for the Application Programmer

org.ong. CORBA. Obj ect obj = ... // Get an object reference somehow

(org. ong. CORBA. port abl e. Obj ect | npl) obj ;
com ooc. CORBA. Del egat e obj Del egate =

3

4

5 org.ong. CORBA. portabl e. Ghjectl npl objlnmpl =

6

7

8 (com ooc. CORBA. Del egat e) obj | npl . _get _del egate();

9

10 com ooc. OCl . Connectorlnfo info =

11 obj Del egat e. get _oci _connector _info();

12 com ooc. OCl . |1 OP. Connectorlnfo iioplnfo =

13 com ooc. OCl . | | OP. Connect or | nf oHel per. narrow(i nfo);

14

15 if(iioplnfo !'= null)

16 {

17 int[] renoteAddr = Converter.addr(iioplnfo.renote_addr());
18 int renptePort = Converter.port(iioplnfo.remte_port());
19

20 Systemout.printIn("WIIl connect to: " +

21 renoteAddr[0] + " +

22 renoteAddr[1] + " +

23 renoteAddr[2] + " +

24 renoteAddr[3] + ":" + renptePort);

25 }

5-8 We need to retrieve the ORBAcCUS-specific Del egat e object so that we can get the con-
nector info.

10- 13 Get the OCI connector info and narrow to an [1OP connector info.
15 Theif block isonly entered if thisreally was an I[1OP connector info.

17-24 The address and port are obtained and displayed on standard output.

ORBacus 145

The Open Communications I nterface

146 ORBacus

CHAPTER 12

Usng Policies

12.1

Overview

The ORB and its services may allow the application developer to configure the semantics
of its operations. This configuration is accomplished in a structured manner through inter-
faces derived from the interface CORBA: : Pol i cy. For instance, the ORBAcus SSL plug-
in [13] allowsthe configuration of the cipher suites used for peer communications through
theinterface SSL: : Ci pher Sui t ePol i cy.

The configuration of these policy objects is accomplished at three levels:

* ORB Levd: These policies override the system defaults. The ORB has an initial
referenceORBPol i cyManager. A Pol i cyManager has a set of operations through
which the current set of overriding policies can be obtained, and new policies can be
applied.

e Thread Level: A standardPol i cyCur rent is defined with operations that allow the
querying and retrieval of policies that affect the current thread. These policies
override the policies set at the ORB level.

* Object Level: The object interface contains operations to retrieve and set policies for
itself. Policies applied at the object level override those applied at the thread level, or
the ORB level.

At present ORBcus does not support thread level policies.

ORBacus 147

Using Policies

12.2

12.3

For more information on Policies, the Pol i cyManager interface and the
CORBA: : Obj ect policy operations see [11] and [12].
Supported Policies

Thefollowing is abrief description of the policiesthat are currently supported. For a
detailed description, please refer to Appendix A.

SSL ::ConnectPolicy

This policy determines whether the ORB is permitted to establish an insecure communica-
tions channel between peers. The default for this policy ist r ue if the SSL plug-inis not
installed. If the SSL plug-in isinstalled, the default is f al se. For more information on
this policy, see [13].

OB::ConnectionReusePolicy

This policy determines whether the ORB is permitted to reuse a communications channel
between peers. If thispolicy isf al se then each object will have anew communications
channel to its peer. The default for thispolicy ist r ue.

OB::ProtocolPalicy

Thispolicy is used to force the selection of a particular protocol. If this policy is set, then
the protocol with the identified tag will be used, if possible. If it is not possible to use this
protocol, a CORBA: : NO_RESOURCES exception will be raised.

OB::ReconnectPolicy

If an object possesses this policy and the val ue flag of thispolicy ist r ue, then upon a
communications failure a reconnection will automatically be attempted. If this reconnec-
tion attempt fails a CORBA: : COMM_FAI LURE exception israised.

OB::TimeoutPolicy

If an object hasthis policy and no response is available for arequest after val ue millisec-
onds, a CORBA: : NO_RESPONSE exception is raised.

Examples

The following examples demonstrate how to set OB: : Connect i onReusePol i cy at both
the ORB level and the object level in C++ and Java. Setting a policy at the ORB level
means that the ORB will honor this policy for al newly created objects. Existing objects

148

ORBacus

Examples

1231

QO © O N ANWNR

7-9

10

maintain their current set of policies. Setting a policy at the object level overrides any
ORB level policies applied to that object.

Setting the connection reuse policy to f al se at the ORB level means that the ORB will
create a new connection from the client to the server for each new proxy object instead of
reusing existing ones. Setting the connection reuse policy to f al se at the object level
means that the client does not reuse connections to the server only for a particular proxy
object.

If the connection reuse policy isset tot r ue at some later point, communications channels
that were previously created with a connection reuse policy set to f al se will not be
reused. That is, the connection reuse policy is sticky, in the sense that the reuse policy that
was in effect at the time that a communi cations channel is created stays with it. Setting the
reuse policy at the object level means that for aclient the ORB will not reuse the commu-
nications channel that is associated with the proxy object.

Connection Reuse Policy at ORB Level

Our first example shows how the connection reuse policy can be set at the ORB level.
Firstin C++:

/] C++
CORBA_Any bool Any;
bool Any <<= CORBA_Any:: from bool ean(CORBA FALSE);
CORBA _PolicylList policies;
policies.length(1);
policies[0] = orb -> create_policy(OB_CONNECTI ON_REUSE, bool Any);
CORBA _(hj ect _var pnhj =

orb -> resolve_initial_references("ORBPolicyManager");
CORBA_Pol i cyManager _var pm = CORBA_Pol i cyManager: : _narrow(pmbj);
pm -> add_policy_overri des(policies);

Create an any and insert the value CORBA_FAL SE.
Create a sequence containing one policy object.

Ask the ORB to create a connection reuse policy. Pass the any that contains the value for
this policy.

Obtain the ORB level policy manager object.
Add the policies to the ORB level policy manager.

And hereisthe same example in Java:

ORBacus 149

Using Policies

Q © ®N N WNR

O N OGN WNR

7-8

© 0N OONWNR

~
'
©

[/ Java
or g. ong. CORBA. Any bool Any = orb.create_any();
bool Any. i nsert_bool ean(fal se);
org. ong. CORBA. Pol i cy[] policies = new org.ong. CORBA. Policy[1];
policies[0] =

orb. create_policy(com ooc. OB. CONNECTI ON_REUSE. val ue, bool Any);
or g. ong. CORBA. Pol i cyManager pm =

or g. ong. CORBA. Pol i cyManager Hel per . narr ow

orb.resolve_initial _references("ORBPol i cyManager"));

pm add_pol i cy_overrides(policies);

Thisisequivalent to the C++ version.

Connection Reuse Policy at Object L evel

And now the same example, but at the object level. C++ first:

/] C++
CORBA_Any bool Any;
bool Any <<= CORBA_Any:: from bool ean(CORBA FALSE);
CORBA _PolicyList policies(l);
policies.length(1);
policies[0] = orb -> create_policy(OB_CONNECTI ON_REUSE, bool Any);
CORBA _(hj ect _var newChj =
obj -> _set_policy_overrides(policies, CORBA ADD OVERRI DES);

Thisisthe same as in the example for the ORB level.

Set these policies on the object by using the set _pol i cy_overri des method. This
method returns a new object that has the set of policies applied.

And hereisthe same example in Java:

[/ Java
or g. ong. CORBA. Any bool Any = orb. create_any();
bool Any. i nsert_bool ean(fal se);
org. ong. CORBA. Pol i cy[] policies = new org.ong. CORBA. Policy[1];
policies[0] =

orb. create_policy(com ooc. OB. CONNECTI ON_REUSE. val ue, bool Any);
or g. ong. CORBA. Obj ect newObj =

obj._set_policy_overrides(policies,

or g. ong. CORBA. Set Overri deType. ADD_OVERRI DE) ;

Thisisequivalent to the C++ version.

150

ORBacus

ORBacusBagc Services

CHAPTER 13
This chapter describes the standard services included with the ORBAcus distribution:
* The Naming Service
* The Property Service
» The Event Service
These services are implemented compliant to [4] and available in C++ and Java versions.
Other services, such as the Trading Service “@®B Trader”, arenot included in the
standard ORBcus distribution. For more information on other services available from
Object-Oriented Concepts, please see our Web site.
This chapter does not provide a complete description of the haming, property and event
services. It only provides an overview, suitable to get you started. For more information,
please refer to the service specifications.

13.1 Configuring and Using a Basic Service

This section describes the steps necessary to start a service, publish its IOR, and connect
to the service from a client. We will use the Naming Service as an example, but the steps
outlined below are applicable to all of the services.

ORBacus 151

ORBacus Basic Services

1311

13.1.2

Sarting the Service

To start the C++ version of the Naming Service, type the following:

nanmeserv -i -QAport 10000 > naneserv.r ef

The Java version can be started like this:

java com ooc. CosNam ng. Server -i -QAport 10000 > naneserv.ref

Notice that we have specified a unique port number for the service, in order to ensure that
the object reference of the service remains valid across executions of the service (see
“Lifetime of Object References” on page 83).

The-i argument causes the service to dump its IOR to standard output, which we have
redirected to the fileaneserv. ref.

Connecting to the Service

Chapter 6 describes different strategies for locating objects, and these strategies can also
be used to locate services. For example, it's possible to read the stringified IOR from the
file naneserv. ref, convert it to an object usirgd ri ng_t o_obj ect and then narrow

this object reference to tf@asNani ng: : Nanmi ngCont ext interface.

A more common way is to usesol ve_i ni ti al _ref erences as shown in “Resolving

an Initial Service” on page 90. The references for the initial services can be defined using
the- ORBser vi ce option. Here’s a Unix example which uses “Bourne” shell command
substitution ‘command*) to obtain an IOR from afile:

java MyClient -ORBservice NameService ‘cat nameserv.ref*

On non-Unix operating systems, however, it can be inconvenient to handle IORs on the
command line, therefore it’s often easier to use ttRBconf i g option:

java MyClient -ORBconfig orb.cfg

The configuration fileor b. cf g could be written as follows:

ORB configuration file
ooc. servi ce. NaneSer vi ce=i i op:// myhost: 10000/ Def aul t Nam ngCont ext

Notice that we are using the ORBUs-specifici i op: // notation for specifying the IOR
of the Naming Service, but we also could have pasted the contentseafer v. r ef . See
“Using the iiop:// Notation” on page 89 for more information.

152

ORBacus

Configuring and Using a Basic Service

The IOR contains the name of the host where the naming service was started (“myhost”),
the port number that we specified when starting the service, and the name assigned to the
service’s primary objecDef aul t Nami ngCont ext .

13.1.3 Object Namesfor the Basic Services
Each of the Basic Services has a named primary object, which allows you to use the
i i op:// notation or the ORB operatiget _i net _obj ect to obtain a reference to the
service (see “Connecting to Named Objects” on page 88). The name and interface type of
each service’s primary object is shown in Table 13.1.
Object Name Interface Type
Naming . e - ;
Service Def aul t Nanm ngCont ext CosNami ng: : Nani ngCont ext
Event CosEvent Channel Adni n: :
Service Def aul t Bvent Channel Event Channel
Typed CosTypedE Ch | Adni n: :
Event Ser- | Def aul t TypedEvent Channel sTypedEvent Channel Adm n: :
. TypedEvent Channel
vice
Property CosPropertyService::
Service Def aul t PropertySet Def Factory Pr oper t ySet Def Fact or y
Interface))
. o | Defaul t Repository CORBA: : Repository
Repository

Table 13.1: Primary Object Names and I nterface Types

a ThelInterface Repository isnot a CORBA Service and therefore not described in this
chapter. However, the object name of the Interface Repository is shown here for
completeness.

The examples below illustrate how to connect to the Naming Service using
get _i net _obj ect . Here’s the C++ version:

/] C++
CORBA ORB var orb = ... // Get a reference to the ORB sonehow
CORBA _(bj ect _var obj =

orb -> get_inet_object("nmyhost", 10000, "Defaul t Nam ngContext");
CosNami ng_Nani ngCont ext _var ctx =

CosNami ng_Nani ngCont ext : : _narr ow(obj);

ORBacus 153

ORBacus Basic Services

13.2

1321

13.2.2

Andin Java:

[/ Java
org.ong. CORBA.ORB orb = ... // Get a reference to the ORB sonmehow
or g. ong. CORBA. Obj ect obj =
((com ooc. CORBA. ORB) or b) . get _i net _obj ect ("myhost", 10000,
" Def aul t Nam ngCont ext ") ;
or g. ong. CosNam ng. Nam ngCont ext ctx =
or g. ong. CosNanm ng. Nam ngCont ext Hel per. narrow obj) ;

For these examples to work, the Naming Service must have been started on the host
“myhost” using the port number 10000.

The Naming Service

A CORBA object is often represented by an object reference in the form of a “stringified”
IOR, a lengthy string that is difficult to read and cumbersome to use. It is much more nat-
ural to think of an object in terms of its name, which is a core feature of the CORBA Nam-
ing Service. In the Naming Service, objects are registered with a uniqgue name, which can
later be used to resolve its associated object reference.

Properties

The ORBrcus Naming Service supports the following properties:

ooc. nam ng. dat abase=FI LE Enables persistence for the server. All of the bindings cre-
ated by the server will be saved to the specified file. If you
are starting the server for the first time using this database,
you must also use the - s command-line option.

ooc. nam ng. ti meout =M NS Specifies the timeout in minutes after which a persistent
server automatically compacts its database. The default tim-
eout isfive minutes.

Command-line Options
The ORBrcus Naming Service supports the following command-line options:

-h

-—-help Display the command-line options supported by the server.

154

ORBacus

The Naming Service

13.2.3

"V . Display the version of the server.

--version

-1 Print the interoperable object reference (IOR) of the server to standard
--ior output.

-s

- _start Use this option only when starting a persistent server using a new database.
-d FILE

- _dat abase FILE Equivaent to theooc. nam ng. dat abase property.

-t MNS

- _timeout M NS Equivaent totheooc. nam ng. ti meout property.

Creating Bindings

Object references registered with the Naming Service are maintained in a hierarchical
structure similar to afilesystem. A filein afilesystem is analogous to an object binding in
the Naming Service. The equivalent for afolder in afilesystem is a naming context in
Naming Service terms. The pieces of information stored in a Naming Service are called
bindings. A binding consists of an object’'s name and its type, as defined in the
CosNani ng module:

/1 1DL
typedef string Istring;

struct NanmeConmponent

{
Istring id;
Istring kind;
}s

typedef sequence<NaneConponent > Nane;

enum Bi ndi ngType
{
nobj ect,
ncont ext

}s

struct Binding

{
Narme bi ndi ng_nane;
Bi ndi ngType bi ndi ng_type;

ORBacus 155

ORBacus Basic Services

1324

}s

Asyou can see, each name consists of one or more components, like afileis fully speci-

fied by its path in afilesystem. Each name component consists of two strings, i d and

ki nd, which could be likened to a file’'s name and its extension. Generally, the filesystem
analogy works very well when describing the Naming Service structures.

A new Naming Service entry, i.e., a binding, is created with the following operations:

/1 1DL
void bind(in Nane n, in Object obj)
rai ses(Not Found, Cannot Proceed, Invali dName, Al readyBound);

void bind_context (in Nane n, in Nam ngContext nc)
rai ses(not Found, Cannot Proceed, |nvali dNane);

Nam ngCont ext new_context();

Nam ngCont ext bi nd_new _context (i n Nane n)
rai se(Not Found, AlreadyBound, CannotProceed, |nvalidNane);

bi nd registers a new object with the Naming Service, whereas a new context is registered
with bi nd_cont ext . For each operation, an object reference aNah@a are expected as
parameters. If no exception was thrown, thed operation was successful. New naming
context objects are created witbw_cont ext orbi nd_new_cont ext .

Use theunbi nd operation to delete a particular binding:

/1 1DL
voi d unbind(in Nanme n)
rai ses(Not Found, Cannot Proceed, |nvali dNane);

Name Resolution

Besides registering objects, an equally important task of the Naming Service is name reso-
lution. A name is passed to thesol ve operation and an object reference is returned if
the name exists.

/1 1DL
Obj ect resolve(in Nane n)
rai ses(Not Found, Cannot Proceed, |nvali dNane);

Ther esol ve operation is only useful when a particular name is known in advance.
Sometimes it is necessary to ask for a list of all bindings registered with a particular nam-
ing context. The i st operation returns a list of bindings.

156

ORBacus

The Naming Service

13.2.5

13.2.6

/1 1DL
typedef sequence<Bi ndi ng> Bi ndi ngLi st;

void list(in unsigned | ong how_many,
out BindingList bl, out Bindinglterator bi);

If the number of bindingsis especially large, the Bi ndi ngl t er at or interfaceis provided

so that you don’t have to query for all available bindings at once. Simply get a certain
number of bindings specified wittow_nmany, and get the rest, if any, using the

Bi ndi nglterator.

/1 1DL
interface Bindinglterator

{

bool ean next_one(out Bi nding b);

bool ean next_n(in unsigned | ong how_many,
out Bi ndingLi st bl);

voi d destroy();
H

Make sure that you destroy the iterator object when it is no longer needed.

Per sistence

The ORBrcus Naming Service can optionally be used in a persistent mode in which all
bindings managed by the service are saved in a file. If you do not run the service in its per-
sistent mode, all of the bindings will be lost when the service terminates.

It is also important to note thathen using the service in its persistent mode, you
should always start the service on the same port (see “Configuring the ORB and BOA”
on page 45 for more information).

A Simple Example

ORBacus includes simple C++ and Java examples that demonstrate how to use the
CORBA Naming Service. These examples are located in the foddémng/ demo. We

will concentrate on the Java example, but the C++ example works similarly. The example
expects a Naming Service server to be already running and that the server’s initial refer-
ence can be resolved by the ORB. Because of its volume we have split the code into sev-
eral parts for the discussion below.

ORBacus 157

ORBacus Basic Services

Initialization

The first code fragment dealswith initializing the ORB and the BOA.

1 // Java

2

3 try

4 {

5 ORB orb = ORB.init(args, new java.util.Properties());
6

7 catch(SystenException ex)

8 {

9 // The ORB initialization failed

10 }

11

12 org. ong. CORBA. Obj ect obj = null;

13 try

14 {

15 obj = orb.resolve_initial_references("NameService");
16 }

17 catch(org. ong. CORBA. ORBPackage. | nval i dNane ex)

18

19 // There is no Nami ng Service available

20 }

21

22 if(obj == null)

23 {

24 /1 Something is wong with the Nam ng Service reference
25 }

26

27 Nam ngContext nc = Nami ngCont ext Hel per. narrow(obj);
28

29 if(nc == null)

30 {

31 /1 This is not a Nam ng Service reference at all
32}

33

34 BOA boa = orb.BOA init(args, new java.util.Properties());

3-10 Usually the applicationisinitialized in themai n method. In order to initidizethe ORB, its
i nit operation is called.

12-20 In the next step we try to connect to the Naming Service by supplying “NameService” to
resol ve_initial _references. If I nval i dName is thrown, there is no Naming Ser-
vice available because the ORB doesn’t know anything about this service.

158 ORBacus

The Naming Service

22-32 If calingresol ve_i ni tial _r ef er ences was successful, the object referenceis
checked and narrowed in order to verify that it's a Naming Service instance. If the
nar r ow operation returns a null reference, the object returned is not a Naming Service
instance but something else. This is considered to be an error because we explicitly askec
for a Naming Service instance.

34 Finally the BOA is initialized.

Binding

In the next step some sample bindings are created and bound to the Naming Service.

1 // Java

2

3 Naned a = new Named_i npl ();

4 Naned al = new Naned_inpl ();

5 Naned a2 = new Naned_inpl ();

6 Nanmed a3 = new Named_inpl ();

7 Narmed b = new Named_i npl ();

8 Naned c = new Named_i npl ();

9
10 try
11 {
12 NarmeConponent[] nclNane = new NaneConponent[1];
13 nclName[0] = new NanmeConponent () ;
14 nclName[0].id = "ncl";
15 nclName[0] . kind = "";
16 Nam ngCont ext ncl = nc. bi nd_new_cont ext (nclNane);
17
18 NarmeConponent[] nc2Nane = new NaneConponent[2];
19 nc2Name[0] = new NanmeConponent () ;
20 nc2Nanme[0].id = "ncl";
21 nc2Name[0] . kind = "";
22 nc2Nanme[1] = new NanmeConponent () ;
23 nc2Nanme[1].id = "nc2";
24 nc2Name[1] . kind = "";
25 Nam ngCont ext nc2 = nc. bi nd_new_cont ext (nc2Nane) ;
26
27 NarmeConponent [] aName = new NameConponent[1];
28 aName[0] = new NameConponent () ;
29 aName[0] .id = "a";
30 aName[0] . kind = "";
31 nc. bi nd(aNanme, a);
32

ORBacus 159

ORBacus Basic Services

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73 }

NarmeConponent [] alName = new NameConponent[1];
alName[0] = new NameConponent ();

alNarme[0].id = "al";

alNarme[0].kind = "";

nc. bi nd(alName, al);

NarmeConponent [] a2Nanme = new NameConponent[1];
a2Narme[0] = new NameConponent ();

a2Nare[0].id = "a2";

a2Name[0] . kind = "";

nc. bi nd(a2Nanme, a2);

NarmeConponent [] a3Nanme = new NameConponent[1];
a3Nanme[0] = new NameConponent ();

a3Nanme[0].id = "a3";

a3Nanme[0].kind = "";

nc. bi nd(a3Nanme, a3);

NarmeConponent [] bName = new NameConponent[2];
bNanme[0] = new NaneConponent () ;

bNane[0].id = "ncl";

bNane[0] . kind = "";

bNanme[1] = new NaneConponent () ;

bName[1] .id = "b";

bNane[1] . kind = "";

nc. bi nd(bNanme, b);

NarmeConponent [] cName = new NameConponent[3];
cName[0] = new NameConponent () ;
cName[0] .id = "ncl";

cName[O] . kind = "";

cName[1] = new NameConponent () ;
cName[1] .id = "nc2";

cName[1] . kind = "";

cName[2] = new NameConponent () ;
cName[2] .id = "c";

cName[2] . kind = "";

nc. bi nd(cNanme, c¢);

boa.inmpl _is_ready(null);

3-8 Severa sample objects are created that will later be bound to our Naming Service. These
objectsimplement an interface called Named. In this example, the details of thisinterface
are not important. Naned might even be an interface without any operations defined in it.

160

ORBacus

The Naming Service

10- 70 Create and bind some new contexts and bind the sampl e objects to these contexts. Each
binding name consists of several name components NameConponent that are similar to
the path components of afile located somewhere in afilesystem. Objects are bound with
the Naming Service'si nd operation; for contexts, the corresponding operation
bi nd_cont ext is used. In addition to the object’s IOR, both calls expect a unique bind-
ing name. If a name already exists faneadyBound exception is thrown. There are also
other exceptions you might encounter at this stage,lé.gegal Name if an empty string
was provided as part ofNaneConponent .

72 Everything is prepared now, so we can listen for requests by calflisig i s_r eady on
the BOA.

Unbinding

Some cleanup work should be done before exiting the program. Every binding is properly
unbound here.

/1l Java

nc. unbi nd(cNane) ;
nc. unbi nd(bNarne) ;
nc. unbi nd(aNane) ;
nc. unbi nd(nc2Nane) ;
nc. unbi nd(nclNane);

NN WNRKR

Exceptions

The final code fragment deals with exception handling.

1 // Java
2
3 catch(Not Found ex)
4 {
5 System.err.print("Got a ‘NotFound’ exception (*);
6 switch(ex.why.value())
7 {
8 case NotFoundReason._missing_nod:
9 System.err.print("missing node");
10 break;
11
12 case NotFoundReason._not_context:
13 System.err.print("not context");
14 break;
15

ORBacus 161

ORBacus Basic Services

16 case Not FoundReason. _not_obj ect:

17 Systemerr.print("not object");

18 br eak;

19 }

20

21 Systemerr.println(")");

22 ex. printStackTrace();

23 return 1;

24 }

25 cat ch(Cannot Proceed ex)

26 {

27 System.err.printin("Got a ‘CannotProceed’ exception");
28 ex.printStackTrace();

29 return 1;

30 }

31 catch(InvalidName ex)

32 {

33 System.err.printin("Got an ‘InvalidName’ exception");
34 ex.printStackTrace();

35 return 1;

36 }

37 catch(AlreadyBound ex)

38 {

39 System.err.printin("Got an ‘AlreadyBound’ exception");
40 ex.printStackTrace();

41 return 1;

42}

342 Catch exceptions. Don't ever forget to do this. It can be useful tprdailt St ackTr ace
on the exception object in order to get detailed information about the program flow caus-
ing the exception.

Now you should have a look at the complete example as it is provided in thedfetaér
nani ng as a part of the ORBus distribution.

13.3 The Property Service

The CORBA Property Servités another important CORBA service. With it, you can
annotate an object with extra attributes (cafieaperties) that were not defined by the

1. Notethat the Property Service has nothing to do with the properties used for configuration pur-
poses, as described in “Properties” on page 45.

162 ORBacus

The Property Service

object’s IDL interface. Properties can represent any value because they make use of the
powerful CORBAAny data type.

13.3.1 Command-line Options

The ORBucus Property Service supports the following command-line options:

: I_1h el p Display the command-line options supported by the server.

"V . Display the version of the server.

--version

: ' i or Print the interoperable object reference (I0OR) of the server to standard output.

13.3.2 Creating Properties

A property handled by the CORBA Property Service consists of two components, namely
the property’s name and its value. The name is simply a CORBA string and the associated
value is represented by a CORBAy:

/1 1DL
typedef string PropertyNang;

struct Property

{
PropertyName property_namne;
any property_val ue;

b

New properties are created using a factory object implementiriey thper t ySet inter-
face. A new property is created using tieéi ne_pr operty operation:

/1 1DL

voi d define_property(in PropertyNane, in any property_val ue)
rai ses(l nval i dPropertyNane, ConflictingProperty,
Unsupport edTypeCode, Unsupport edProperty,
ReadOnl yProperty);

As a property consists of a name-value pair, both the name and the value are the parame:
ters to this operation.

ORBacus 163

ORBacus Basic Services

13.3.3

Querying for Properties

Assoon as a property is defined, the Propert ySet can be queried for the property’s
value with theget _property_val ue operation:

/1 1DL
any get_property_value(in PropertyNanme property_nanme)
rai ses(PropertyNot Found, |nvalidPropertyNane);

For a particular property name this call either returng\tlyeassociated with this name or
throws an exception if a property with the name does not exist.

You can not only query for a particular property value, but also for a list of all the proper-
ties defined within &@r opertySet. Theget _al | _pr operti es operation serves this
purpose:

/1 1DL
void get _all _properties(in unsigned | ong how_nany,
out Properties nproperties, out Propertieslterator rest);

This operation works similar to the st call offered by the Naming Service. In both
cases the maximum number of items to be returned at once is specified. An iterator imple-
menting thePr oper ti eslt er at or interface gives access to the remaining items, if any.

/1 1DL
interface Propertieslterator

{

void reset();
bool ean next_one(out Property aproperty);

bool ean next_n(in unsigned | ong how_many,
out Properties nproperties);

voi d destroy();
H

If you are only interested in a list of property nhames you can get this list by calling
get _al |l _property_nanes:

/1 1DL

void get_all _property_nanmes(in unsigned |ong how _nany,
out PropertyNanes property_nanes,
out PropertyNaneslterator rest);

As withget _al | _properti es a list of names as well as an iterator is returned. This iter-
ator implements ther oper t yNanesl t er at or interface:

164

ORBacus

The Property Service

/1 1DL
interface PropertyNaneslterator

{

void reset();
bool ean next_one(out PropertyName property_nane);

bool ean next_n(in unsigned | ong how_many,
out PropertyNanes property_nanes);

voi d destroy();
H

The iterators should always be destroyed when they are no longer needed.

Sometimesit is useful to know of how many propertiesa Pr opert ySet consists of. This
information is provided by get _nunber _of _properti es:

/1 1D

unsi gned | ong get _nunber_of _properties();

Note that you have to be careful if you intend to use the return value of

get _nunber _of _properti es astheinput value for the how_many parameter of

get _al | _properti es inorder to get acomplete property list. You always haveto check
thePropertieslterator for properties that were not returned as part of the

Properti es sequence returned by get _al | _properti es, otherwise you might missa
property that was defined by another process between your calls to

get _number _of _propertiesandget_al |l _properties.

13.3.4 Deleting Properties

If a property has become obsolete it can be deleted from the Pr oper t ySet with
del ete_property:

/1 1DL
voi d del ete_property(in PropertyNane property_nane)
rai ses(PropertyNot Found, |nvalidProperty, FixedProperty);

As you might have guessed by this operation’s signature, there are properties that cannot
be deleted at all. This kind of property is calleEi aedPr operty. The Property Service
defines several other special property types, such as read-only properties. Please refer to
the OMG'’s Property Service [4] specification for details.

ORBacus 165

ORBacus Basic Services

13.3.5

O NN WNR

A Simple Example

The Property Service test suite, which is part of the ORBAcus distribution, provides a
good example of how to create properties and query for their values. The code below is
based on excerpts of thistest suite, which islocated in the directory pr operty/t est . We
will concentrate on an examplein Java here. Aswith the previous examples, the Java code
isvery similar to what is necessary in C++. The example demonstrates how to create prop-
erties and how to get alist of all the properties defined within aPr opert ySet .

/1 Java

or g. ong. CORBA. Obj ect obj = null;

try
{

}
catch(or g. ong. CORBA. ORBPackage. | nval i dNanme ex)
{

}

if(obj == null)

obj = orb.resolve_initial_references("PropertyService");

/!l An error occurred, Property Service is not avail able

/'l The object reference is invalid

}
PropertySet Factory factory = PropertySet FactoryHel per. narrow(obj);
if(factory == null)

{
}

/1 This object does not inplenment the Property Service

PropertySet set = factory.create_propertyset();

Any anylLong = orb.create_any();
Any Anylnt = orb.create_any();
Any anyShort = orb.create_any();
anyLong. insert_|ong(12345L);
anylnt.insert_int(6789);
anyShort.insert_short (0);

try
{

166

ORBacus

The Property Service

36 set.define_property(“LongProperty”, anyLong);
37 set.define_property(“IntProperty”, anylint);
38 set.define_property(“ShortProperty”, anyShort);
39 }

40 catch(ReadOnlyProperty ex)

41 {

42 /I An error occurred

43 }

44 catch(ConflictingProperty ex)

45 {

46 /I An error occurred

47 }

48 catch(UnsupportedProperty ex)

49 {

50 /I An error occurred

51 }

52 catch(UnsupportedTypeCode ex)

53 {

54 /I An error occurred

55 }

56 catch(InvalidPropertyName ex)

57 {

58 /I An error occurred

59 }

60

61 PropertiesHolder ph = new PropertiesHolder();

62
63
64
65
66
67
68
69
70
71

25

27-32

34-59

PropertiesiteratorHolder ih = new PropertiesiteratorHolder();
set.get_all_properties(0, ph, ih);

PropertyHolder h = new PropertyHolder();
while(ih.value.next_one(h))

{
}

/I The next property is now stored in h.value

ih.value.destroy();

Get a Property Service reference and check for errors.
The PropertySetFactory object isused to create aPropertySet instance.
Each property consists of a name and avalue in the form of a CORBA Any.

Three properties are defined. The first has the name “LongProperty” and stores a
value. The second one is called “IntProperty” and storésanThe remaining property

ORBacus 167

ORBacus Basic Services

61-69

71

134

134.1

representsashort value. If for some reason aproperty cannot be created, an exceptionis
thrown.

Now we try to get alist of all the properties that were previously defined. With

get _al | _properties thePropertySet returnsits properties. Aswe have set the
how_many parameter to 0, we have to usethe Properti esl t er at or for each item. Usu-
ally you provide a positive integer for how_many.

Theiterator has fulfilled its duty and can now be destroyed.

The Event Service

Sometimes applications have to exchange information without explicitly knowing about

each other. Often a server isn’'t even aware of the nature and number of clients that are
interested in the data the server has to offer. A special mechanism is required that provides
decoupled data-transfer between servers and clients. This issue is addressed by the
CORBA Event Service [4].

Properties

The ORBrcus C++ Event Service supports the following properties:

ooc. event . response_ti meout =ps Specifies the initial amount of time in microsec-
onds that the service will wait for aresponse. The
default value is 100000 .

ooc.event.response_increment=ps After each consecutive expiration of the response
timeout, the timeout value will be increased by the
specified number of microseconds. The default
valueis 100000 .

ooc.event.retry_timeout=pus Specifies the initial amount of time in microsec-
onds that the service will wait before trying again
after an error has occurred. The default vaue is
500000 .

ooc.event.retry_increment=us After each consecutive expiration of the retry tim-
eout, the timeout value will be increased by the
specified number of microseconds. The default
valueis 100000 .

ooc.event.max_events The maximum number of eventsin each event
queue. If thislimit is reached and another event is
received, the oldest event is discarded. The default
valueis 10.

168

ORBacus

The Event Service

134.2

134.3

134.4

ooc. event. max_retries The maximum number of times to retry before
giving up and disconnecting the proxy. The default
valueis10.

Command-line Options

The ORBAcus Event Service supports the following command-line options:

: I_1h el p Display the command-line options supported by the server.

-V . .

- -version Display the version of the server.

-1 Print the interoperabl e object reference (10R) of the server to standard
--ior output.

The C++ implementation of the Event Service supports both typed and untyped event
channels, therefore the following additional command-line options are provided to allow
you to select which kind of channel the server should create:

-t

--typed- servi ce Run atyped event service.

-u

. Run an untyped event service. Thisis the default behavior.
--untyped- service

Diagnostics

The C++ Event Service usesthe ORBACUS OBMessageVi ewer classto generate diagnos-
tic messages. You can activate these messages by setting the ooc. orb. trace_| evel
property to 2. Note that you must have compiled the ORBAcus distribution with the
OB_TRACE preprocessor macro defined in order to enable diagnostic messages. This
macro is defined by default.

The Event Channel

The Event Service distributes data in the form of events. The term event in this context
refers to a piece of information that is contributed by an event source. An event channel

ORBacus 169

ORBacus Basic Services

13.4.5

instance accepts thisinformation and distributes it to alist of objects that previously have
connected to the channel and are listening for events.

The Event Service specification defines two distinct kinds of event channels: untyped and
typed. Whereas an untyped event channel forwards every event to each of the registered
clientsin the form of aCORBA Any, atyped event channel works more selectively by
supporting strongly-typed events which allow for data filtering. We will only discuss the
untyped event channel here. For information on typed event channels, and more details on
the Event Service in general, please refer to the official Event Service specification [4].

Event Suppliersand Consumers

Applications participating in generating and accepting events are called suppliers and con-
sumers, respectively. To be more precise, there are two kinds of suppliers, namely push
suppliers and pull suppliers. The situation is similar with event consumers, in that there
are push consumers and pull consumers.

What's the difference between pushing events and pulling events? Let's have a look at the
consumer side first. There are consumers that have to be immediately informed when any
new events become available on the event channel. These consumers usually act as push
consumers. They implement tReshConsumer interface which ensures that the event
channel actively forwards events to them usingptieh operation:.

/1 1DL
interface PushConsuner

{
void push(in any data)
rai ses(Di sconnect ed) ;

voi d di sconnect _push_consuner();

b

The push consumer has a more or less passive role, only waiting for something to happen.
This is different than pull consumers, which (optionally) implemenpthé Consuner

interface. A pull consumer has a more active role and (usually periodically) polls the event
channel for new events. As these events may occur more frequently than they are polled
for by the pull consumer, some events might get lost. The buffering policy implemented

by the event channel determines whether events are buffered and what happens in case of
an event queue overflow. A client is typically implemented as a pull consumer when it is
not concerned about the possibility of lost events, e.g., if the client is only interested in the
most recent events.

170

ORBacus

The Event Service

13.4.6

13.4.7

N WN R

Like consumers, suppliers can also use push or pull behavior. Push suppliers are probably
the more common type, in which the supplier directly forwards data to the event channel
and thus plays the active role in the link to the channel. Pull suppliers, on the other hand,
are polled by the event channel and supply an event in response, if anew event is avail-
able. Pollingisdoneby thetry_pul | operation if it isto be non-blocking or by the
blocking pul | cal:

/1 1DL
interface Pull Supplier
{

any pull ()

rai ses(Di sconnect ed) ;

any try_pull (out bool ean has_event)
rai ses(Di sconnect ed) ;

voi d di sconnect _pul | _supplier();

b

Event Channel Policies

The untyped event channel implementation included in the ORBAcus distribution features
asimple event queue policy. Events are buffered in the form of aFIFO stack, i.e., acertain
number of events are stored and, in case of a buffer overflow, the oldest events are dis-
carded.

A Simple Example

In the Event Service example that comes with ORBAcuUS, two supplier and two consumer
clients demonstrate how to use an untyped event channel to propagate information. The
pieces of information transferred by this example are strings containing the current date
and time. After starting the Event Service server, you can start these clientsin any order.
The demo applications obtain the initial Event Service reference as already demonstrated,
i.e, by callingresol ve_i nitial _references. When started, each supplier will pro-
vide information about the current date and time and each client displays the event datain
its console window.

This is the push supplier’s main loop:

[/ Java
whil e(consuner_ !'= null)
{

ORBacus 171

ORBacus Basic Services

28 }

java.util.Date date = new java.util.Date();
String s = "PushSupplier says: " + date.toString();

Any any = orb_.create_any();
any.insert_string(s);

try
{
consuner _. push(any);
}
catch(Di sconnected ex)
{
/'l Supplier was disconnected from event channel
}
Thread. yiel d();
try
{
Thread. sl eep(1000);
}
catch(Il nterruptedException ex)
{
}

5-9 The current date and time isinserted into the Any.

11-18 Theevent data, in this example date and time, are pushed to the event channel. From the
push supplier’s view the event channel is just a consumer implementing the
PushConsuner interface.

20-27 After sleeping for one second, the steps above are repeated.

The example’s pull supplier works similarly to the push supplier, except that the event
channel explicitly polls the supplier for new events. This is done by githéror

try_pul | . The pull supplier doesn’t see anything from the event channel but an object
implementing theébul | Consuner interface. The following example shows the basic lay-
out of a pull supplier:

{

DN WN R

/1l Java

public Any
pul | ()

ORB orb = ORB.init();

172

ORBacus

The Event Service

© O NN WNR

R kR R RRR
AN WNRKRO

java.util.Date date = new java.util.Date();
String s = "Pull Supplier says: " + date.toString();

Any any = orb.create_any();
any.insert_string(s);

return any;

}
public Any
try_pul | (Bool eanHol der has_event)
{ has_event.val ue = true;
return pull ();
}

Date and time are inserted into the Any.

In this example new event data can be provided at any time, sotry_pul | aways sets
has_event totrue inorder to signal that an event is available. It then returns the actual
event data.

After examining the most important aspects of the event suppliers’ code, we are now
going to analyze the consumers’ code. The push consumer withsitsoperation is
shown first:

[/ Java
public void
push(Any any)
{

try

{

String s = any.extract_string();
System out. println(s);

}
cat ch(MARSHAL ex)
{
/1 1gnore unknown event data
}

ORBacus 173

ORBacus Basic Services

6- 14 The push consumerfsish operation is called with the event wrapped in a CORBA
In this code fragment it is assumed thatahg contains a string with date and time infor-
mation. In case thany contains another data typ@#®RSHAL exception is thrown.This
exception can be ignored here because other events aren’t of interest. After extracting the
string it is displayed in the console window.

In contrast to the push consumer, the pull consumer has to actively query the event chan-
nel for new events. This is how the pull consumer loop looks:

1 // Java

2

3 while(supplier_ != null)

4 {

5 Any any = nul | ;

6

7 try

8 {

9 any = supplier_.pull();
10 }
11 catch(Di sconnected ex)
12 {
13 /1 Supplier was diconnected from event channel
14 }
15
16 try
17 {
18 String s = any.extract_string();
19 System out. println(s);
20
21 cat ch(MARSHAL ex)
22 {
23 /1 1gnore unknown event data
24 }
25
26 Thread. yiel d();
27
28 try
29 {
30 Thread. sl eep(1000);
31 }
32 catch(Il nterruptedException ex)
33 {
34 }
35 }

174 ORBacus

The Event Service

5 A CORBA Any isprepared for later use.

7-14 Using pul |, the consumer pollsthe event channel for new events. The event channel acts
asapull supplier in this case. The pul | operation blocks until anew event is available.

16- 24 The consumer expects astring wrapped in a CORBA Any. The string value is extracted
and displayed. If an exception is raised the Any contained some other data type which is
simply ignored.

26- 34 After sleeping for one second the event channel is polled for the next event.

In all of these examples the event channel acts either as a consumer (if the clients are sup-
pliers) or asupplier (if the clients are consumers) of events. Actually each client is not
directly connected to the event channel but to a proxy that receives or sends events on
behalf of the channel. For more information on the Event Service and for the complete
definitions of the IDL interfaces, please refer to the official Event Service specification.

ORBacus 175

ORBacus Basic Services

176 ORBacus

wwoense EXCEPHIONS AN EFTOr
Messages

14.1 CORBA System Exceptions
The CORBA specification defines the standard system exceptions shown in Table 14.1.

UNKNOWN

Unknown exception type

BAD_PARAM

An invalid parameter was passed

NO_MEMORY

Failure to allocate dynamic memory

IMP_LIMT

Implementation limit was viol ated

COW _FAI LURE

Communication failure

| NV_OBJREF

Invalid object reference

NO_PERM SSI ON

The attempted operation was not permitted

I NTERNAL

Internal error in ORB

MARSHAL

Error marshalling a parameter or result

I NI TI ALI ZE

Failure when initializing ORB

NO_| MPLEMENT

Operation implementation unavailable

Table 14.1: Standard CORBA System Exceptions

ORBacus

177

Exceptionsand Error M essages

UNKNOWN

Unknown exception type

BAD_TYPECODE

Bad typecode

BAD_OPERATI ON

Invalid operation

NO_RESOURCES

Insufficient resources for arequest

NO_RESPONSE

Response to arequest is not yet available

PERSI ST_STORE

Persistent storage failure

BAD_| NV_ORDER

Routine invocation out of order

TRANSI ENT Transient failure, request can be reissued
FREE_MEM Cannot free memory

I NV_I DENT Invalid identifier syntax

I NV_FLAG Invalid flag was specified

I NTF_REPCS Error accessing interface repository
BAD_CONTEXT Error processing context object
OBJ_ADAPTER Failure detected by object adapter

DATA_CONVERSI ON

Error in data conversion

OBJECT_NOT_EXI ST

Non-existent object, references should be discarded

I NV_POLI CY

Invalid Policy

Table 14.1: Standard CORBA System Exceptions

178

ORBacus

CORBA System Exceptions

Table 14.2 shows the minor codes for the COMM_FAI LURE exception, and Table 14.3 the

OBM nor Recv

recv() faled

OBM nor Send

send() faled

OBM nor RecvZer o

recv() returned zero

OBM nor SendZer o

send() returned zero

OBM nor Socket

socket () failed

OBM nor Set sockopt

set sockopt () failed

OBM nor Get sockopt

get sockopt () failed

OBM nor Bi nd

bi nd() failed

OBM nor Li sten

bi nd() failed

OBM nor Connect

connect () failed

OBM nor Accept

accept () failed

OBM nor Sel ect

sel ect () failed

OBM nor Get host nanme

get host nane() failed

OBM nor Get host bynane

get host bynane()

OBM nor WBASt ar t up

WBASt ar t up() failed

OBM nor WBAQ eanup

WSAd eanup() failed

OBM nor NoG OP

Not a GIOP message

OBM nor UnknownMessage

Unknown GIOP message

OBM nor W ongMessage

Wrong GIOP message

OBM nor Cl oseConnecti on

Got a close connection message

OBM nor MessageEr ror

Got a message error message

Table 14.2: Minor Exception Codesfor COMM_FAILURE

minor codes for the | NTF_REPCS exception. No other minor codes are currently defined

by ORBAcCuUS.

ORBacus

179

Exceptionsand Error M essages

OBM nor Nol nt f Repos

Interface repository is not available

OBM nor | dExi st s

Repository id already exists

OBM nor NanmeExi st s

Name already exists

OBM nor Reposi t oryDest r oy

destroy() invoked onReposi t ory object

OBM nor Prim tiveDef Destr oy

destroy() invoked onPrimitiveDef object

OBM nor Attr Exi sts

Attribute is already defined in a base interface

D

OBM nor Oper Exi st's

Operation is already defined in a base interfa

ce

OBM nor LookupAnbi guous

Search name farookup() is ambiguous

OBM nor At t r Arbi guous

Attribute name collisions in base interfaces

OBM nor Oper Arbi guous

Operation name collisions in base interfaces

Table 14.3: Minor Exception Codesfor INTF_REPOS

14.2 Non-Compliant Application Asserts

If the ORBAcus library was compiled without the preprocessor definition - DNDEBUG
defined, ORBAcCUS tries to detect common programming mistakes that lead to non—com-
pliant CORBA applications. If such a mistake is found an error messages like this will

appear:

Non- conpl i ant application error detected:
Application used wong nenory allocation function

After detecting such an error, the OREs library dumps a core (Unix only) and prints
the file and line number where the error was detected. You can use the core dump in order
to track down the problem with a debugger.

The following error messages can appear:

Application reguested a feature that has not yet been implemented

This is not an application error. This error message appears if an application attempts to
use a feature that has not yet been implemented infO&SB In this case the only thing
that can be done is to wait for the next O®RBs version that has this particular feature

implemented.

180

ORBacus

Non-Compliant Application Asserts

Application used wrong memory allocation function

If this message appears, an incorrect memory allocation function has been used. A com-
mon mistake that leads to thiserror isto use mal | oc, st rdup and f r ee (or the newand
del et e operator) instead of CORBA_string_al | oc and CORBA_st ri ng_dup and
CORBA_st ri ng_f r ee for string memory management.

Memory that was already deallocated was deallocated again

This message indicates multiple memory deallocations. For example, if
CORBA_string_free iscalled twice on the same string, this message will be displayed.

Object was deleted without an object reference count of zero

This message appearsif an object was deleted by calling del et e on its object reference.
Never usethe del et e operator for that. Use CORBA r el ease instead.

Object was already deleted (object reference count was already zer o)

This message appearsif the number of r el ease operations on an object referenceis
higher than the number of _dupl i cat e operations.

Sequence length was greater than maximum sequence length

This message indicates that the application tried to set the length of a bounded sequenceto
avalue greater than its maximum length.

Index for sequence operator[]() or remove() function was out of range

This message appearsif the argument to the sequence member functions oper at or [] or
renpve exceeds the sequence length.

Null pointer was used to initialize T_var type

This message indicates an attempt to initialize a_var type with anull pointer.

operator->() wasused on null pointer or nil object reference

This message indicates an attempt to use oper at or - > on an uninitialized _var type.

ORBacus 181

Exceptionsand Error M essages

N WN R

N WN R

Application tried to dereference a null pointer

Some CORBA _var types have built-in conversion operatorsto a C++ reference type,
i.e, some_var typesfor type T have aconversion operator to T&. This message appearsif
an application uses this conversion operator on an uninitialized _var type.

Null pointer was passed as string parameter or return value

According to the IDL-to—C++ mapping specification, no null pointers may be passed as
string parameters or return values. This message appears if an application tries to do so.

Self assignment caused a dangling pointer

This message appears if the content ofar type is assigned to itself. For example, the
following code will lead to this error message:

/] Somehow get a pointer to a variable struct
AvVari abl eStruct _var var = ...

AvVariabl eStruct* ptr = var;

var = ptr;

This will result in a dangling pointer, becawse will free its own content on assignment.

Replacement of Any content by its own value caused a dangling pointer

This message appears if there is an attempt to replace the conterhgflanits own
value. For example:

char* s = CORBA_string_dup("Hello, world!");
CORBA_Any any;

any <<= s;

any <<= s;

Insertings into any twice will result in a dangling pointer, becauss will free its own
value (which iss) on assignment.

Invalid union discriminator type used

This message appears if the discriminator type argument to

CORBA_ORB: : cr eat e_uni on_t c denotes a type invalid for union discriminators. Valid
types have &0ORBA_TCKi nd that is one 0EORBA_t k_short, CORBA tk_ushort,
CORBA tk_Il ong, CORBA t k_ul ong, CORBA t k_char, CORBA_t k_bool ean or

CORBA tk_enum

182

ORBacus

Non-Compliant Application Asserts

Union discriminator mismatch

This message either indicates an attempt to set a union discriminator to an invalid value
with the _d modifier function or the use of awrong accessor function, i.e., an accessor
function that does not correspond to the type of the union’s actual value.

Uninitialized union used

If this message appears, an unitialized union (i.e., a union that was created with the defaul
constructor and that was not set to any legal value) was used.

Dynamic implementation object cannot be used as static implementation object

This message appears if an attempt is made to use a DSI object implementation as a regt
lar (i.e., static) implementation object.

ORBacus 183

Exceptionsand Error M essages

184 ORBacus

w=oxn ORBacus Policy Reference

Al Module SSL

Constants

CONNECT_POLICY
const CORBA:: PolicyType CONNECT_POLI CY = 1;

This policy type identifies the connection policy.
Enums

ConnectPolicyType
enum Connect Pol i cyType

{

Connect Secur e,
Connect | nsecure

}s

This enumeration is used to specify whether connection attempts should be secure or insecure.

ORBacus 185

ORBacus Policy Reference

A.2 Interface S9.::ConnectPolicy

interface ConnectPolicy
inherits from CORBA::Policy

The connection policy. This policy isused to specify whether secure or insecure connections are
used.

Attributes

value
readonly attribute ConnectPolicyType val ue;

If an object has a Connect Pol i cy set with val ue set to Connect Secur e, then only secure
connections will be used for that object.

186 ORBacus

Module OB

A.3 Module OB

Constants

PROTOCOL_POLICY
const CORBA:: PolicyType PROTOCOL_POLI CY = 2;

This policy type identifies the protocol policy.

CONNECTION_REUSE_POLICY
const CORBA:: Pol i cyType CONNECTI ON_REUSE POLI CY = 3;

This policy type identifies the connection reuse policy.

RECONNECT_POLICY
const CORBA:: Pol i cyType RECONNECT POLI CY = 4;

This policy type identifies the reconnect policy.

TIMEOUT_POLICY
const CORBA:: PolicyType TIMEQUT_POLI CY = 5;

This policy type identifies the timeout policy.

ORBacus 187

ORBacus Policy Reference

A.4 Interface OB::ProtocolPolicy

interface ProtocolPolicy
inherits from CORBA::Policy

The protocol policy. This policy is used to force the selection of a specific protocol.
Attributes

value
readonly attribute 10OP::Profileld val ue;

If aProt ocol Pol i cy is set, then the protocol with theidentified tag will be used, if possible.
If it is not possible to use this protocol, a CORBA: : NO_RESOURCES exception will be raised.

188 ORBacus

Interface OB::ConnectionReusePolicy

A5 Interface OB::ConnectionReusePolicy

interface ConnectionReusePolicy
inherits from CORBA::Policy

The connection reuse policy. This policy determines whether connections may be reused or are pri-
vate to specific objects.

Attributes

value
readonly attribute bool ean val ue;

If an object has a Connect i onReusePol i cy set with val ue set to FALSE, then other objects
will not be permitted to also use any connection made on behalf of this object.

ORBacus 189

ORBacus Policy Reference

A.6 Interface OB::ReconnectPolicy

interface ReconnectPolicy
inherits from CORBA::Policy

The reconnect policy. This policy determines if an object will automatically try to reconnect to a
server upon a communication failure.

Attributes

value
readonly attribute bool ean val ue;

If an object has aReconnect Pol i cy set with val ue set to TRUE, then upon a
CORBA: : COW _FAl LURE areconnection will automatically be attempted.

190 ORBacus

Interface OB::TimeoutPolicy

A7 Interface OB::TimeoutPolicy

interface TimeoutPolicy
inherits from CORBA::Policy

The timeout policy. This policy can be used to specify communication timeouts.
Attributes

value
readonly attribute unsigned |ong val ue;

If an object hasaTi neout Pol i cy set and no response to arequest is available after val ue
milliseconds, a CORBA: : NO_RESOURCE exception is raised.

ORBacus 191

ORBacus Policy Reference

192 ORBacus

waoxa OPEN COmMmuNications
| nterface Reference

B.1 Module OCI

The Open Communications Interface (OCI). The definitions in this module provide a uniform inter-
face to network protocols. This allows for easy plug-in of new protocols or other communication
mechanismsinto ORBs that implement the OCI. Furthermore, protocol implementations need only
to be written once and can then be reused with al OCI compliant ORBs. For more information,
please see the OCI documentation.

Aliases

Buffer Seq
typedef sequence<Buffer> BufferSeq;

Alias for a sequence of buffers.

IOR
typedef 10P::10R IOR

Aliasfor an IOR.

Profileld
typedef 10P::Profileld Profileld;

ORBacus 193

Open Communications I nterface Reference

Aliasfor aprofileid.

Profilel dSeq
typedef sequence<Profileld> Profil el dSeq;

Alias for a sequence of profileids.

ObjectKey
typedef sequence<octet> Obj ect Key;

Alias for an object key, which is a sequence of octets.

Handle
typedef |ong Handl e;

Alias for a system-specific handle type.

CloseCBSeq
typedef sequence<C oseCB> O oseCBSeq;

Alias for asequence of close callback objects.

ConnectCBSeq
typedef sequence<Connect CB> Connect CBSeq;

Alias for a sequence of connect callback objects.

Acceptor Seq
typedef sequence<Accept or> Acceptor Seq;

Alias for a sequence of Acceptors.

AcceptCBSeq
typedef sequence<Accept CB> Accept CBSeq;

Alias for a sequence of accept callback objects.

ConFactorySeq
typedef sequence<ConFactory> ConFact or ySeq;

194

ORBacus

M odule OCI

Alias for a sequence of Connector factories.

ORBacus 195

Open Communications I nterface Reference

B.2 Interface OCI::Buffer

interface Buffer

An interface for abuffer. A buffer can be viewed as an object holding an array of octets and a posi-
tion counter, which determines how many octets have already been sent or received. The IDL inter-
face definition for Buffer isincomplete and must be extended by the specific language mappings.
For example, the C++ mapping defines the following additional functions:
* Cctet* data(): Returnsa C++ pointer to thefirst element of the array of octets, which repre-
sents the buffer’s contents.
* Cctet* rest(): Similartodata(), this operation returns a C++ pointer, but to the n-th ele-
ment of the array of octets with n being the value of the position counter.

Attributes

length
readonly attribute unsigned |ong | ength;

The buffer length.

pos
attribute unsigned | ong pos

The position counter. Note that the buffer’s length and the position counter don't depend on each

other. There are no restrictions on the values permitted for the counter. Thisimplies that it’s
even legal to set the counter to values beyond the buffer’s length.

Operations

advance
voi d advance(in unsigned |ong delta);

Increment the position counter.

Parameters:
del t a - The vaue to add to the position counter.

rest_length
unsi gned long rest_length();

196

ORBacus

Interface OCI::Buffer

Returns the rest length of the buffer. The rest length is the length minus the position counter’s
value. If the value of the position counter exceeds the buffer’s length, the return value is unde-

fined.

Returns:
The rest length.

is full
bool ean is_full ();

Checksiif the buffer is full. The buffer is considered full if itslength is equal to the position

counter’s value.

Returns.
TRUE if the buffer is full, FALSE otherwise.

ORBacus 197

Open Communications I nterface Reference

B.3 Interface OCI::Transport

interface Transport

The interface for a Transport object, which provides operations for sending and receiving octet
streams. In addition, it is possible to register callbackswith the Transport object, which are invoked
whenever data can be sent or received without blocking.

See Also:
Connector
Acceptor

Attributes

tag
readonly attribute Profileld tag;

The profileid tag.

handle
readonly attribute Handl e handl e;

The "handle" for this Transport. The handle may only be used to determine whether the Trans-
port object is ready to send or to receive data, e.g., with sel ect () on Unix-based operating
systems. All other uses (e.g., calstoread() ,write(),cl ose()) arestrictly non-compliant.
A handle value of -1 indicates that the protocol plug-in does not support "selectable" Trans-
ports.

fragmentation
readonly attribute unsigned |ong fragnentation;

The Transport’s maximum packet size. The send and r ecei ve operations must not be used to
send packets larger than this size within asingle call. A value of 0 meansthat thereis no upper
limit for the packet size.

Operations

close
voi d cl ose();

Closes the Transport. send and r ecei ve must not be called after cl ose has been called.

198

ORBacus

Interface OCI:: Transport

shutdown
voi d shutdown();

Shuts down the Transport. After calling shut down, al callsto the send and r ecei ve opera-
tions result in an appropriate CORBA: : COMM_FAI LURE exception being raised.

receive
void receive(in Buffer buf
i n bool ean bl ock);

Receives a buffer’s contents.

Parameters:
buf - The buffer to fill.
bl ock - If set to TRUE, the operation blocks until the buffer isfull. If set to FALSE, the oper-
ation fills as much of the buffer as possible without blocking.

receive detect
bool ean recei ve_detect (in Buffer buf,
i n bool ean bl ock);

Similar to r ecei ve but it signals a connection loss by returning FALSE instead of raising
CORBA: : COW_FAI LURE.

Parameters:
buf - The buffer to fill.
bl ock - If set to TRUE, the operation blocks until the buffer isfull. If set to FALSE, the oper-
ation fills as much of the buffer as possible without blocking.

Returns.
FALSE if a connection loss is detected, TRUE otherwise.

receive timeout
void receive_tineout(in Buffer buf,
in unsigned | ong tineout);

Similar tor ecei ve butit is possible to specify atimeout. On return the caller can test whether
there was a timeout by checking if the buffer has been filled completely.

Par ameters:
buf - The buffer to fill.

ORBacus 199

Open Communications I nterface Reference

ti meout - Thetimeout value in milliseconds. A zero timeout is equivalent to calling
recei ve(buf, FALSE).

send
void send(in Buffer buf,
i n bool ean bl ock);

Sends a buffer’s contents.

Parameters:
buf - The buffer to send.
bl ock - If set to TRUE, the operation blocks until the buffer has completely been sent. If set
to FALSE, the operation sends as much of the buffer's data as possible without blocking.

send_detect
bool ean send_detect (i n Buffer buf,
i n bool ean bl ock);

Similar to send but it signals a connection loss by returning FALSE instead of raising
CORBA: : COW_FAI LURE.

Par ameters:
buf - The buffer tofill.
bl ock - If set to TRUE, the operation blocks until the entire buffer has been sent. If set to
FALSE, the operation sends as much of the buffer’s data as possible without blocking.

Returns.
FALSE if a connection loss is detected, TRUE otherwise.

send_timeout
void send_tineout (in Buffer buf,
in unsigned long timeout);

Similar to send but it is possible to specify atimeout. On return the caller can test whether there
was atimeout by checking if the buffer has been sent completely.

Parameters:
buf - The buffer to send.
ti meout - Thetimeout value in milliseconds. A zero timeout is equivalent to calling
send(buf, FALSE).

get_info

200

ORBacus

Interface OCI:: Transport

Transportinfo get _info();
Returns the information object associated with the Transport.

Returns:
The Transport information object.

ORBacus 201

Open Communications I nterface Reference

B.4 Interface OCI::Transportlnfo

interface Transportlnfo

Information on an OCI Transport object. Objects of this type must be narrowed to a Transport
information object for a concrete protocol implementation, for exampleto OCI : : | 1 OP: : Tr ans-
port I nf o in case the plug-in implements || OP.

See Also:
Transport

Attributes

tag
readonly attribute Profileld tag;

The profileid tag.

connector _info
readonly attribute Connectorlnfo connector_info;

The Connectorlnfo object for the Connector that created the Transport object that this Trans-
portinfo object belongs to. If the Transport for this Transportinfo was not created by a Connec-
tor, this attribute is set to the nil object reference.

acceptor_info
readonly attribute Acceptorlnfo acceptor_info;

The Acceptorinfo object for the Acceptor that created the Transport object that this Transport-
Info object belongs to. If the Transport for this Transportinfo was not created by an Acceptor,
this attribute is set to the nil object reference.

Operations

add_close cb
voi d add_cl ose_cb(in O 0seCB cbh);

Add acallback that is called before a connection is closed. If the callback has already been reg-
istered, this method has no effect.

ORBacus

Interface OCI::Transportinfo

Par ameters:
cb - The callback to add.

remove close cbh
voi d remove_cl ose_cb(in CloseCB cb);

Remove a close callback. If the callback was not registered, this method has no effect.

Par ameters:
cb - The callback to remove.

ORBacus 203

Open Communications I nterface Reference

B.5 Interface OCI::CloseCB

interface CloseCB
An interface for a close callback object.

See Also:
Transportinfo

Operations

close cb
void close_cb(in Transportinfo transport_info);

Cadlled before a connection is closed.

Parameters:
transport _i nf o - The Transportinfo for the new closeion.

204 ORBacus

I nterface OCI::Connector

B.6 Interface OCI::Connector

interface Connector

Aninterface for Connector objects. A Connector is used by CORBA clientsto initiate a connection
to aserver. It also provides operations for the management of IOR profiles.

See Also:
ConFactory
Transport

Attributes

tag
readonly attribute Profileld tag;

The profileid tag.
Operations

connect
Transport connect ();

Used by CORBA clients to establish a connection to a CORBA server. It returns a Transport
object, which can be used for sending and receiving octet streamsto and from the server.

Returns:
The new Transport object.

is_usable
Obj ectKey is_usable(in IORior);

Checks whether this Connector can be used for aspecific IOR. That is, the IOR must contain at
least one profile that matches this Connector.

Par ameters:
i or - The IOR to check for.

Returns:
The object key of the matching profile if the Connector can be used for the given IOR, or an

ORBacus 205

Open Communications I nterface Reference

empty object key otherwise.

is_usable with_policies
Obj ectKey is_usable_with_policies(in IOR ior,
in CORBA::PolicyList policies);

Checks whether this Connector can be used for a specific IOR with a given set of polcies. That
is, the lOR must contain at |east one profile that matches this Connector and the Connector must
also satisfy the provided list of policies for the given IOR.

Par ameters:
i or - ThelOR to check for.
pol i ci es - The policies that must be satisfied.

Returns:
The object key of the matching profile if the Connector can be used for the given IOR and
policies, or an empty object key otherwise.

get_info
Connectorlnfo get_info();

Returns the information object associated with the Connector.

Returns:
The Connector information object.

206

ORBacus

I nterface OCI::ConnectorInfo

B.7 Interface OCI::Connectorlnfo

interface ConnectorInfo

Information on a OCI Connector object. Objects of this type must be narrowed to a Connector
information object for a concrete protocol implementation, for exampleto OCl : : | | OP: : Connec-
t or | nf o in case the plug-in implements 11OP.

See Also:
Connector

Attributes

tag
readonly attribute Profileld tag;

The profileid tag.
Operations

add_connect_cb
voi d add_connect _cb(in Connect CB cb);

Add acallback that is called whenever anew connection is established. If the callback has
already been registered, this method has no effect.

Par ameters:
cb - The callback to add.

remove _connect_cb
voi d remove_connect _cb(in ConnectCB cb);

Remove a connect callback. If the callback was not registered, this method has no effect.

Par ameters:
cb - The callback to remove.

ORBacus 207

Open Communications I nterface Reference

B.8 Interface OCI::ConnectCB

interface ConnectCB
An interface for a connect callback object.

See Also:
ConnectorInfo

Operations

connect_cb
voi d connect _cb(in Transportlnfo transport_info);

Called after a new connection has been established. If the application wishesto reject the con-
nection CORBA: : NO_PERM SSI ON may be raised.

Parameters:
transport _i nf o - The Transportinfo for the new connection.

208

ORBacus

Interface OCI ::Acceptor

B.9 Interface OCI::Acceptor

interface Acceptor

An interface for an Acceptor object, which is used by CORBA servers to accept client connection
requests. It also provides operations for the management of 1OR profiles.

See Also:

AccRegistry
Transport

Attributes

tag
readonly attribute Profileld tag;

The profileid tag.

handle
readonly attribute Handl e handl e;

The "handle" for this Acceptor. Like with the handle for Transports, the handle may only be
used with operations like sel ect () . A handle value of -1 indicates that the protocol plug-in
does not support "selectable" Transports.

Operations

close
void cl ose();

Closesthe Transport. accept or | i st en must not be called after cl ose has been called.

shutdown
voi d shutdown();

Shuts down the Transport. After calling shut down, callsto accept orli sten resultinan
appropriate CORBA: : COVM _FAI LURE exception being raised.

listen
void listen();

ORBacus 209

Open Communications I nterface Reference

Sets the acceptor up to listen for incoming connections. Until this method is called on the accep-
tor, new connection requests should result in a connection request failure.

accept
Transport accept();

Used by CORBA servers to accept client connection requests. It returns a Transport object,
which can be used for sending and receiving octet streams to and from the client.

Returns:
The new Transport object.

add_profile
void add_profile(in ObjectKey key,
inout IORior);

Adds a new profile that matches this Acceptor to an IOR.
Parameters:

key - The object key to use for the new profile.

i or - ThelOR.

is local
Obj ectKey is_local(in IOCR ior);

Checks whether an IOR isfor alocal object, taking only profiles into account matching this
Acceptor.

Par ameters:
i or - The IOR to check for.

Returns.

If the IOR isfor alocal object, the object key for that local object, or an empty object key
otherwise.

get_info
Acceptorinfo get_info();

Returns the information object associated with the Acceptor.

Returns.

210 ORBacus

Interface OCI ::Acceptor

The Acceptor information object.

ORBacus 211

Open Communications I nterface Reference

B.10 Interface OCI::Acceptorinfo

interface Acceptor Info

Information on an OCI Acceptor object. Objects of this type must be narrowed to an Acceptor
information object for a concrete protocol implementation, for exampleto OCI : : | 1 OP: : Accep-
t or | nf o in case the plug-in implements 11OP.

See Also:
Acceptor

Attributes

tag
readonly attribute Profileld tag;

The profileid tag.
Operations

add_accept_cb
voi d add_accept _cbh(in Accept CB ch);

Add a callback that is called whenever a new connection is accepted. If the callback has already
been registered, this method has no effect.

Par ameters:
cb - The callback to add.

remove_accept_cb
voi d remove_accept_cb(in AcceptCB cbh);

Remove an accept callback. If the callback was not registered, this method has no effect.

Par ameters:
cb - The callback to remove.

ORBacus

Interface OCI::AcceptCB

B.11 Interface OCI::AcceptCB

interface AcceptCB
An interface for an accept callback object.

See Also:
Acceptorinfo

Operations

accept_cb
voi d accept_cb(in Transportlnfo transport_info);

Called after a new connection has been accepted. If the application wishes to reject the connec-
tion CORBA: : NO_PERM SSI ON may be raised.

Parameters:
transport _i nf o - The Transportinfo for the new connection.

ORBacus 213

Open Communications I nterface Reference

B.12 Interface OCI::ConFactory

interface ConFactory
A factory for Connector objects.

See Also:
Connector
ConFactoryRegistry

Attributes

tag
readonly attribute Profileld tag;

The profileid tag.
Operations

create
Connector create(in OR ior);

Creates anew Connector for agiven IOR. All connection specific datais taken from an IOR
profile that matches this Connector factory. If more than one profile matches, then which of

these profilesis used is implementation specific.

Parameters:

i or - The IOR from which the profile and connection data are extracted.

Returns:

The new Connector. A nil object reference isreturned if the IOR does not contain a profile

which matches this Connector factory.

create with_policies
Connector create_with_policies(in IOR ior,

i n CORBA: : PolicyList policies);

Creates anew Connector for agiven IOR, satisfing alist of policies. Likecr eat e, al connec-
tion specific data is taken from an 1OR profile that matches this Connector factory, and if more
than one profile matches, then which of these profilesis used isimplementation specific.

214

ORBacus

Interface OCI::ConFactory

Parameters:
i or - The IOR from which the profile and connection data are extracted.
pol i ci es - The policies that must be satisfied.

Returns:
The new Connector. A nil object reference isreturned if the IOR does not contain a profile
which matches this Connector factory or if the policies cannot be satisfied.

consider_with_palicies
bool ean consider_with_policies(in IOR ior,
i n CORBA: : PolicyList policies);

Determines whether this Connector factory can create a Connector for agiven IOR and agiven
list of policies.

Par ameters:
i or - ThelOR to consider.
pol i ci es - The policies that must be satisfied.

Returns:
TRUE if a Connector can be created for the IOR and the policies can be satisfied, FALSE oth-
erwise.
equivalent
bool ean equivalent(in IOR iorl,

in IOR ior2);

Checks whether two | ORs are equivalent, taking only profiles into account matching this Con-
nector factory.

Parameters:
i or1 - Thefirst IOR to check for equivalence.
i or 2 - The second IOR to check for equivalence.

Returns:
TRUE if the IORs are equivalent, FAL SE otherwise.

hash
unsi gned | ong hash(in ICR ior,
in unsigned | ong naxi num;

ORBacus 215

Open Communications I nterface Reference

Cadlculates a hash value for an IOR.

Par ameters:
i or - TheIOR to calculate ahash value for.
maxi mum- The maximum value of the hash value.

Returns:
The hash value.

get_info
ConFactorylnfo get_info();

Returns the information object associated with the Connector factory.

Returns:
The Connnector factory information object.

216

ORBacus

Interface OCI::ConFactorylnfo

B.13 Interface OCI::ConFactorylnfo

interface ConFactorylnfo
Information on an OCI ConFactory object.

See Also:
ConFactory

Attributes

tag
readonly attribute Profileld tag;

The profileid tag.
Operations

add_connect_cb
voi d add_connect _cb(in Connect CB cb);

Add acallback that is called whenever a new connection is established. If the callback has

already been registered, this method has no effect.

Par ameters:
cb - The callback to add.

remove _connect_cb

voi d remove_connect _cb(in ConnectCB cb);

Remove a connect callback. If the callback was not registered, this method has no effect.

Par ameters:
cb - The callback to remove.

ORBacus

217

Open Communications I nterface Reference

B.14 Interface OCI::ConFactoryRegistry

interface ConFactor yRegistry
A registry for Connector factories.

See Also:
Connector
ConFactory

Operations

add_factory
void add_factory(in ConFactory factory);

Adds a Connector factory to the registry.

Parameters:
f act ory - The Connector factory to add.

get_factory
ConFactory get_factory(in IOR ior);

Returns a suitable Connector factory for an IOR.

Parameters:
i or - The IOR to for which a Connector factory is requested.

Returns:
The Connector factory. A nil object reference isreturned if no Connector factory is regis-
tered which is able to create a Connector for the given IOR.

get_factory with_policies
ConFactory get_factory with_policies(in IORior,
i n CORBA:: PolicyList policies);

Returns a suitable Connector factory for an IOR. The Connector factory returned must satisfy a
list of policies.

Parameters:
i or - The IOR for which a Connector factory is requested.

218

ORBacus

Interface OCI::ConFactoryRegistry

pol i ci es - Thelist of policies which have to be satisfied.

Returns:
The Connector factory. A nil object reference isreturned if no Connector factory is regis-
tered which is able to create a Connector for the given IOR with the given list of policies.

get_factories
ConFact orySeq get _factories();

Returns a sequence of all registered Connector factories.

Returns:
A sequence with all registered Connector factories.

equivalent
bool ean equivalent(in IOR iorl,
in IOR ior2);

Checks whether two IORs are equivalent. It callsthe equi val ent operation of all registered
Connector factories. Two |ORs are considered equivalent, if all these calls return TRUE.

Parameters:
i or1 - Thefirst IOR to check for equivalence.
i or 2 - The second IOR to check for equivalence.

Returns:
TRUE if the IORs are equivalent, FAL SE otherwise.

hash
unsi gned | ong hash(in ICR ior,
in unsigned | ong naxi num;

Cadlculates an hash value for an IOR. This hash value is based on the return values of the hash
operations of al registered Connector factories.

Par ameters:
i or - ThelOR to calculate an hash valuefor.
maxi mum- The maximum hash value that is allowed.

Returns.
The hash value.

ORBacus 219

Open Communications I nterface Reference

B.15 Interface OCI::AccRegistry

interface AccRegistry
A registry for Acceptors.

See Also:
Acceptor

Operations

add_acceptor
voi d add_acceptor(in Acceptor Acceptor);

Adds an Acceptor to the registry.

Parameters:
Accept or - The Acceptor to add.

get_acceptors
Accept or Seq get _acceptors();

Returns a sequence of all registered Acceptors.

Returns:
A sequence of all registered Acceptors.

add_profiles
void add_profiles(in CbjectKey key,
inout IOR ior);

Adds new profilesto an |OR. For each registered Acceptor anew profileis added by calling the
Acceptor'sadd_prof i | e operation.

Par ameters:
key - The object key to use for the new profiles.
i or - ThelOR.

is local
Obj ectKey is_local(in IOCR ior);

220 ORBacus

Interface OCI::AccRegistry

Checks whether an IOR isfor alocal object. It callsthei s_| ocal operation of all registered
Acceptors. An IOR is considered local, if at |east one of these calls returns a non-empty object
key.

Par ameters:
i or - The IOR to check for.

Returns:

If the IOR isfor alocal object, the object key for that local object, or an empty object key
otherwise.

ORBacus 221

Open Communications I nterface Reference

B.16 Interface OCI::Current

interface Current
inherits from CORBA ::Current

Interface to access Transport and Acceptor information objects related to the current request.
Operations

get_oci_transport_info
TransportInfo get_oci_transport_info();

This method returns the Transport information object for the Transport used to invoke the cur-
rent request.

Returns:
The Transport information object.

get_oci_acceptor_info
Acceptorinfo get_oci_acceptor_info();

This method returns the Acceptor information object for the Acceptor which created the Trans-
port used to invoke the current request.

Returns:
The Acceptor information object.

222

ORBacus

Module OCI::IIOP

B.17 Module OCI::110P

This module contains interfaces to gather information on the 11OP OCI plug-in.
Aliases

InetAddr
typedef octet |netAddr[4];

Aliasfor an array of four octets. This aliaswill be used for addressinformation from the various
information classes. The address will always be in network byte order.

ORBacus 223

Open Communications I nterface Reference

B.18 Interface OCI::110OP::Transportlnfo

interface Transportinfo
inherits from OCI:: TransportInfo

Information on an 11OP OCI Transport object.

See Also:
Transport
Transportinfo

Attributes

addr
readonly attribute |netAddr

Thelocal 32 bit IP address.

port
readonly attribute unsigned

Thelocal port.

remote addr
readonly attribute |netAddr

The remote 32 bit | P address.

remote_port
readonly attribute unsigned

The remote port.

addr ;

short

port;

renot e_addr

short

renote_port,;

224

ORBacus

Interface OCI::11OP::ConnectorInfo

B.19 Interface OCI::110P::Connector|nfo

interface Connector | nfo
inherits from OCI::ConnectorInfo

Information on an 11OP OCI Connector object.

See Also:
Connector
ConnectorInfo

Attributes

remote addr
readonly attribute |net Addr renote_addr;

The remote 32 bit | P address to which this connector connects.

remote_port
readonly attribute unsigned short renpte_port;

The remote port to which this connector connects.

ORBacus 225

Open Communications I nterface Reference

B.20 Interface OCI::110P::Acceptorinfo

interface Acceptor Info
inherits from OCI::Acceptorinfo

Information on an 11OP OCI Acceptor object.

See Also:
Acceptor
Acceptorinfo

Attributes

host
readonly attribute string host;

Hosthame used for creation of 110P object references.

addr
readonly attribute |net Addr addr;

The local 32 bit I P address on which this acceptor accepts.

port
readonly attribute unsigned short port;

The local port on which this acceptor accepts.

ORBacus

Interface OCI::11OP::ConFactorylnfo

B.21 Interface OCI::110P::ConFactorylnfo

interface ConFactorylnfo
inherits from OCI::ConFactorylnfo

Information on an 11OP OCI Connector Factory object.

See Also:
ConFactory
ConFactorylnfo

ORBacus

227

Open Communications I nterface Reference

228 ORBacus

weoxe ROYaltY-Free Public
License Agreament

ORBAcus for C++ and Java can be freely used for non-commercial purposes as detailed
in the license agreement below. All commercia use is subject to a different license agree-
ment. For information on commercia licenses, please see the pricing information on our
Web site, or contact suppor t @oc. com

ROYALTY-FREE PUBLIC LICENSE AGREEMENT FOR ORBACUS
SOFTWARE

IMPORTANT-READ CAREFULLY: This Object-Oriented Concepts, Inc. Royalty-Free Public

License Agreement for ORBacus Software (“License”) is a legal agreement between you, the Lic-
ensee, (either an individual or a single entity) and Object-Oriented Concepts, Inc. for non-commer-
cially using, copying, distributing and modifying the Software and any work derived from the
Software, as defined hereinbelow. Any commercial use is subject to a different license.

By using, modifying or distributing the Software or any work derived from the Software, Licensee
indicates acceptance of this License, and agrees to be bound by all its terms and conditions for using
copying, distributing or modifying the Software and works derived from the Software.

No rights are granted to the Software except as expressly set forth herein. Nothing other than this
License grants Licensee permission to use, copy, distribute or modify the Software or any work
derived from the Software. Licensee may not use, copy, distribute or modify the Software or any
work derived from the Software except as expressly provided under this License. If Licensee does
not accept the terms and conditions of this License, do not use, copy, distribute or modify the Soft-
ware.

ORBacus 229

Royalty-Free Public License Agreement

In consideration for Licensee's forbearance of commercia use of the Software, Object-Oriented
Concepts, Inc. grants Licensee non-exclusive, royaty-free rights as expressy provided herein.

DEFINITIONS

The “Software” is the ORBacus software, including, but not limited to, the ORBacus Libraries and
Class Files, the ORBacus IDL-to-C++ and IDL-to-Java translators, associated media and printed
materials, and any included “on-line” documentation.

A “work derived from the Software” is any derivative work, as defined in 17 U.S.C. 8101, which is
derived from the Software, for example, code generated by the ORBacus IDL-to-C++ or IDL-to-
Java translators, a program which is linked with or otherwise incorporates the ORBacus Libraries or
Class Files, or a translation, improvement, enhancement, extension or other modification of the Soft-
ware.

To “use” means to execute (i.e. run) the Software.
To “copy” means to create one or more copies as defined in 17 U.S.C. §101.

To “distribute” means to broadcast, publish, transfer, post, upload, download or otherwise dissemi-
nate in any medium to any third party.

To “modify” means to create a work derived from the Software.

A “commercial use” is any copying, distribution or modification of the Software or any work

derived from the Software to any party where payment or other consideration is made in connection
with such copying, distribution or modification, whether directly (as in payment for a copy of the
Software) or indirectly (including but not limited to payment for some good or service related to the
Software, or payment for some product or service that includes a copy of the Software “without
charge”). However, the following actions which involve payment do not in and of themselves con-
stitute a commercial use:

(a) posting the Software on a public access information storage and retrieval service for
which a fee is received for retrieving information (such as an on-line service), provided that the fee
is not content-dependent. Such fees which are not content dependent include, but are not limited to,
fees which are based solely on the storage capacity required to store the information, and fees which
are based solely on the time required to transfer the information from/to the public access informa-
tion storage and retrieval service; and

(b) distributing the Software on a CD-ROM, provided that the Software is reproduced
entirely and verbatim on such CD-ROM, and provided further that all information on such CD-
ROM may be distributed in a manner which does not constitute a commercial use.

GRANT OF LICENSE.

LICENSE TO USE. Licensee may use the Software.

230

ORBacus

LICENSE TO COPY AND DISTRIBUTE. Licensee may copy and distribute litera (i.e., verbatim)
copies of the Software as Licensee receives it throughout the world, in any medium, provided that
Licensee distributes an unmodified, easily-readable copy of this License with the Software, and pro-
vided further that such distribution does not constitute acommercial use.

LICENSE TO CREATE WORKS DERIVED FROM THE SOFTWARE. Licensee may create
works derived from the Software, provided that any such work derived from the Software carries
prominent notices stating both the manner in which Licensee has created a work derived from the
Software (for example, notices stating that the work derived from the Software is linked with or oth-
erwise incorporates the ORBacus Libraries or Class Files or code generated by the ORBacus IDL-
to-C++ or IDL-to-Java translators, or notices stating that the work derived from the Softwareis an
enhancement to the Software which Licensee has created) and the date any such work derived from
the Software was created.

LICENSE TO COPY AND DISTRIBUTE WORKS DERIVED FROM THE SOFTWARE. Lic-
ensee may copy and distribute works derived from the Software throughout the world, provided that
Licensee distributes an unmodified, easily-readable copy of this License with such works derived
from the Software, and provided further that such distribution does not constitute a commercial use.
Licensee must cause any work derived from the Software that Licensee distributes to be licensed as
awhole and at no charge to al third parties under the terms of this License.

Any work derived from the Software must be accompanied by the complete corresponding machine-
readable source code of such work derived from the Software, delivered on a medium customarily
used for software interchange. The source code for the work derived from the Software means the
preferred form of the work derived from the Software for making modifications to it. For an execut-
able work derived from the Software, complete source code means all of the source code for all
modules of the work derived from the Software, all associated interface definition files and all
scripts used to control compilation and installation of all or any part of the work derived from the
Software. However, the source code delivered need not include anything that is normally distrib-
uted, in either source code or binary (object-code) form, with maor components (including but not
limited to compilers, linkers and kernels) of the operating system on which the executable work
derived from the Software runs, unless that component itself accompanies the executable code of the
work derived from the Software;

Furthermore, if the executable code or object code of the work derived from the Software may be
copied from a designated place, and if the source code of the work derived from the Software may
be copied from the same place, then the work derived from the Software shall be construed as
accompanied by the complete corresponding machine-readable source code of such work derived
from the Software, even though third parties are not compelled to copy the source code along with
the executable code or object code.

If the work derived from the Software normally reads commands interactively when run, Licensee
must cause the work derived from the Software, a each time it commences operation, to print or dis-
play an announcement including an appropriate copyright notice and either a notice consisting of the
verbatim warranty and liability provisions of this License, or a notice that Licensee, and not Object-
Oriented Concepts, Inc., provides a warranty. Such notice must also state that users may distribute
the Software and/or the work derived from the Software only under the conditions of this License,

ORBacus 231

Royalty-Free Public License Agreement

and must further state how to view the copy of this Licenseincluded with the work derived from the
Software.

Licensee may not impose any further restrictions on the exercise of therights granted herein by any
recipient of any work derived from the Software.

RESTRICTIONS.

Licensee acknowledges that the Software is protected by copyright laws and international copyright

treaties, aswell as other intellectual property laws and treaties. The Software is licensed, not sold.

All title and copyrightsin and to the Software, including but not limited to any images, photographs,
databases, animations, video, text and “applets” incorporated into the Software, the accompanying
printed materials, and any copies of the Software, are owned exclusively by Object-Oriented Con-
cepts, Inc.

Licensee may not sublicense, assign or transfer this License, the Software or any work derived from
the Software except as permitted by this License.

If Licensee distributes any written or printed material at all with the Software or any work derived
from the Software, such material must include either (a) a written copy of this License, or (b) a
prominent written indication that the Software or work derived from the Software is covered by this
License, and also written instructions for printing and/or displaying the copy of this License which is
provided on the distribution medium.

If using, copying, distributing and/or modifying the Software is restricted in certain countries for any
reason, Object-Oriented Concepts, Inc. may in the future add an explicit geographical distribution
limitation excluding those countries, so that using, copying, distributing and/or modifying is permit-
ted only in or among countries not thus excluded. In such case, this License incorporates the limita-
tion as if written in the body of this License.

LICENSE TO WORKS DERIVED FROM THE SOFTWARE.

Licensee hereby grants to Object-Oriented Concepts, Inc. a non-exclusive, non-transferable, royalty-
free right to use, copy, distribute and modify, with the right to sublicense at any tier, any and all
works derived from the Software that Licensee creates, provided such works derived from the Soft-
ware are distributed to Object-Oriented Concepts, Inc. by Licensee, and further provided that, if
such works derived from the Software comprise either code generated by the ORBacus IDL-to-C++
or IDL-to-Java translators or a program which is linked with or otherwise incorporates the ORBacus
Libraries or Class Files, such works derived from the Software would constitute works derived from
the Software independent of comprising code generated by the ORBacus IDL-to-C++ or IDL-to-
Java translators or a program which is linked with or otherwise incorporates the ORBacus Libraries
or Class Files, for example, a “bug fix” of the Software.

LIMITED WARRANTY.

NO WARRANTIES.

232

ORBacus

OBJECT-ORIENTED CONCEPTS, INC. EXPRESSLY DISCLAIMS ANY WARRANTY FOR

THE SOFTWARE. THE SOFTWARE IS PROVIDED TO LICENSEE “AS IS,” WITHOUT WAR-
RANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITA-
TION, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. THE
ENTIRE RISK AS TO THE USE, QUALITY AND PERFORMANCE OF THE SOFTWARE IS
WITH LICENSEE. SHOULD THE SOFTWARE PROVE DEFECTIVE, LICENSEE ASSUMES
THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

NO LIABILITY FOR GENERAL, SPECIAL, INDIRECT OR CONSEQUENTIAL
DAMAGES.

IN NO EVENT WILL OBJECT-ORIENTED CONCEPTS, INC., OR ANY OTHER PARTY WHO
MAY COPY, DISTRIBUTE OR MODIFY THE SOFTWARE AS PERMITTED HEREIN, BE
LIABLE FOR ANY GENERAL, SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES
WHATSOEVER (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF BUSI-
NESS PROFITS, BUSINESS INTERRUPTION, INACCURATE INFORMATION, LOSS OF
INFORMATION, OR ANY OTHER PECUNIARY LOSS) ARISING OUT OF THE USE OR
INABILITY TO USE THE SOFTWARE, EVEN IF OBJECT-ORIENTED CONCEPTS, INC. OR
SUCH OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

U.S. GOVERNMENT RESTRICTED RIGHTS.

The Software is provided with RESTRICTED RIGHTS. Use, duplication or disclosure by the Gov-
ernment is subject to restrictions as set forth in subparagraph (c)(1)(ii) of The Rights in Technical
Data and Computer Software clause at DFARS 252.227-7013 or subparagraphs (c)(1) and (2) of the
Commercial Computer Software-Restricted Rights 48 C.F.R. paragraph 52.227-19, as applicable.
Manufacturer is Object-Oriented Concepts, Inc./44 Manning Road/Billerica, MA 01821.

TERMINATION.

Any violation or any attempt to violate any of the terms and conditions of this License will automat-
ically terminate Licensee's rights under this License. Licensee further agrees upon such termination
to cease any and all using, copying, distributing and modifying of the Software and any work
derived from the Software, and further to destroy any and all of Licensee's copies of the Software
and any work derived from the Software.

However, parties who have received copies of the Software or copies of any work derived from the
Software, or rights, from Licensee under this License will not have their licenses terminated so long
as such parties remain in full compliance with this License.

LICENSE SCOPE AND MODIFICATION.

This License sets forth the entire agreement between Licensee and Object-Oriented Concepts, Inc.,
and supersedes all prior agreements and understandings between the parties relating to the subject

ORBacus 233

Royalty-Free Public License Agreement

matter hereof. None of the terms of this License may be waived or modified except as expressly
agreed in writing by both Licensee and Object-Oriented Concepts, Inc.

SEVERABILITY.

Should any provision of this License be declared void or unenforceable, the validity of the remain-
ing provisions shall not be affected thereby.

GOVERNING LAWS.

This Licenseis governed by the laws of the State of Massachusetts, U.S.A., and shall be interpreted
in accordance with and governed by the laws thereof.

Licensee hereby waives any and dl right to assert a defense based on jurisdiction and venue for any
action stemming from this License brought in U.S. District Court for the District of M assachusetts.

Should Licensee have any questions concerning this License, or if Licensee desires to contact
Object-Oriented Concepts, Inc. for any reason, please contact Object-Oriented Concepts, Inc. at:

Object-Oriented Concepts, Inc.
44 Manning Road
Billerica, MA 01821

234

ORBacus

References

(1

(2]

3]
[4]
[5]

(6]

[7]

(8]

9]

The ORBAcus Home Page, ht t p: / / www. ooc. com ob/ , Object-Oriented Concepts,
Inc.

The Common Object Request Broker: Architecture and Specification, Revision 2.0, OMG
Document 97-02-25

IDL/Java Language Mapping, OMG document 97-03-01
CORBAservices: Common Object Services Specification, OMG document 97-12-02

Marc Laukien and Robert Resendéstroduction to CORBA Distributed Objects, C/C++
Users Journal, April 1998

D. C. SchmidtReactor: An Object Behavioral Pattern for Concurrent Event Demultiplex-
ing and Event Handler Dispatching, in Pattern Languages of Program Design, Addison-
Wesley, 1995

Frank Buschman, Regine Meunier, Hans Rohnert, Peter Sommerlad, and Michakl Stal,
System of Patterns, John Wiley & Sons, Inc.

The JTHREADS/C++ Home Page, ht t p: / / www. ooc. coni j t ¢/, Object-Oriented Con-
cepts, Inc.

JTHREADS/C++ User’s Manua] Object-Oriented Concepts, Inc.

ORBacus 235

References

[10]

[11]
[12]

[13]

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides, Design Patterns, Addi-
son-Wesley, 1994

CORBA Messaging, OMG document 98-03-11

The Common Object Request Broker: Architecture and Specification, Revision 2.2, OMG
document 98-02-33

ORBacus SSL User’s Many@lbject Oriented Concepts, Inc.

236

ORBacus

	CHAPTER 1 Introduction
	1.1 What is ORBacus?
	1.2 How is it licensed?
	1.3 About this Document
	1.4 Getting Help

	CHAPTER 2 Getting Started
	2.1 The “Hello World” Application
	2.2 The IDL Code
	2.3 Implementing the Example in C++
	2.3.1 Implementing the Server
	2.3.2 Implementing the Client
	2.3.3 Compiling and Linking
	2.3.4 Running the Application

	2.4 Implementing the Example in Java
	2.4.1 Implementing the Server
	2.4.2 Implementing the Client
	2.4.3 Compiling
	2.4.4 Running the Application

	2.5 Summary
	2.6 Where to go from here

	CHAPTER 3 The ORBacus Code Generators
	3.1 Overview
	3.2 Synopsis
	3.3 Description
	3.4 Options for idl
	3.5 Options for jidl
	3.6 Options for hidl
	3.7 Options for ridl
	3.8 Options for irserv
	3.9 Options for irfeed
	3.10 Options for irdel
	3.11 Options for irgen
	3.12 The IDL-to-C++ Translator and the Interface Repository
	3.13 Include Statements
	3.14 Documenting IDL Files
	3.15 Using javadoc

	CHAPTER 4 ORB and BOA Initialization
	4.1 ORB Initialization
	4.1.1 Initializing the C++ ORB
	4.1.2 Initializing the Java ORB for Applications
	4.1.3 Initializing the Java ORB for Applets

	4.2 BOA Initialization
	4.2.1 Initializing the C++ BOA
	4.2.2 Initializing the Java BOA

	4.3 Configuring the ORB and BOA
	4.3.1 Properties
	4.3.2 Command-line Options
	4.3.3 Filtering Command-line Options
	4.3.4 Using a Configuration File
	4.3.5 Defining Properties in Java
	4.3.6 Precedence of Properties
	4.3.7 Advanced Property Usage

	4.4 Server Event Loop
	4.4.1 Mixed Client/Server Applications
	4.4.2 Deactivating the Server

	4.5 Applets
	4.5.1 Adding ORBacus Applets to Web Pages
	4.5.2 Defining ORB and BOA Options for an Applet
	4.5.3 Defining the ORB Class Parameters
	4.5.4 Security Issues

	CHAPTER 5 CORBA Objects
	5.1 Overview
	5.2 Implementing Servants
	5.2.1 Implementing Servants using Inheritance
	5.2.2 Implementing Servants using Delegation

	5.3 Creating Servants
	5.3.1 Creating Servants using C++
	5.3.2 Creating Servants using Java

	5.4 Connecting Servants
	5.4.1 Connecting Servants using C++
	5.4.2 Connecting Servants using Java
	5.4.3 Named Servants

	5.5 Factory Objects
	5.5.1 Factory Objects using C++
	5.5.2 Factory Objects using Java
	5.5.3 Caveats

	5.6 Getting a Servant from a Reference
	5.6.1 Getting a Servant using C++
	5.6.2 Getting a Servant using Java

	CHAPTER 6 Locating Objects
	6.1 Obtaining Object References
	6.2 Lifetime of Object References
	6.2.1 Hostname
	6.2.2 Port Number
	6.2.3 Object Key

	6.3 Stringified Object References
	6.3.1 Using a File
	6.3.2 Using a URL
	6.3.3 Using Applet Parameters

	6.4 Connecting to Named Objects
	6.4.1 Using the iiop:// Notation
	6.4.2 Using get_inet_object

	6.5 Initial Services
	6.5.1 Resolving an Initial Service
	6.5.2 Providing IORs of Initial Services

	CHAPTER 7 Reference Counting
	7.1 What is Reference Counting?
	7.2 Reference Counting in Java
	7.3 Reference Counting in C++
	7.3.1 Marshalling Issues
	7.3.2 Releasing Proxies and Servants
	7.3.3 Global Object References
	7.3.4 Cyclic Object Dependencies

	CHAPTER 8 C++ Mapping Notes
	8.1 Reserved Names
	8.2 Mapping of Modules
	8.3 Extensions
	8.3.1 Extensions to the String Type
	8.3.2 Extensions to _var Types
	8.3.3 Extensions to Sequence Types

	8.4 C++ Mapping Tips & Tricks
	8.4.1 CORBA Strings
	8.4.2 Object References

	CHAPTER 9 Concurrency Models
	9.1 Introduction
	9.1.1 What is a Concurrency Model?
	9.1.2 Why different Concurrency Models?
	9.1.3 ORBacus Concurrency Models Overview

	9.2 Single-Threaded Concurrency Models
	9.2.1 Blocking Clients and Servers
	9.2.2 Reactive Clients and Servers

	9.3 Multi-Threaded Concurrency Models
	9.3.1 Threaded Clients and Servers
	9.3.2 Thread-per-Client Server
	9.3.3 Thread-per-Request Server
	9.3.4 Thread Pool Server

	9.4 Performance Comparisons
	9.4.1 Sample Application
	9.4.2 Regular Method Invocations
	9.4.3 Nested Method Invocations

	9.5 Selecting Concurrency Models

	CHAPTER 10 The Reactor
	10.1 What is a Reactor?
	10.2 Available Reactors
	10.2.1 The X11 Reactor
	10.2.2 The Windows Reactor

	10.3 Writing a Custom Event Handler
	10.4 Using Timers

	CHAPTER 11 The Open Communications Interface
	11.1 What is the Open Communications Interface?
	11.2 Interface Summary
	11.2.1 Buffer
	11.2.2 Transport
	11.2.3 Acceptor and Connector
	11.2.4 Connector Factory
	11.2.5 The Registries
	11.2.6 The Info Objects
	11.2.7 Class Diagram

	11.3 OCI Reference
	11.4 OCI for the Application Programmer
	11.4.1 A “Converter” Class for Java
	11.4.2 Getting Hostnames and Port Numbers
	11.4.3 Finding out a Client’s IP Address
	11.4.4 Finding out a Server’s IP Address

	CHAPTER 12 Using Policies
	12.1 Overview
	12.2 Supported Policies
	12.3 Examples
	12.3.1 Connection Reuse Policy at ORB Level
	12.3.2 Connection Reuse Policy at Object Level

	CHAPTER 13 ORBacus Basic Services
	13.1 Configuring and Using a Basic Service
	13.1.1 Starting the Service
	13.1.2 Connecting to the Service
	13.1.3 Object Names for the Basic Services

	13.2 The Naming Service
	13.2.1 Properties
	13.2.2 Command-line Options
	13.2.3 Creating Bindings
	13.2.4 Name Resolution
	13.2.5 Persistence
	13.2.6 A Simple Example

	13.3 The Property Service
	13.3.1 Command-line Options
	13.3.2 Creating Properties
	13.3.3 Querying for Properties
	13.3.4 Deleting Properties
	13.3.5 A Simple Example

	13.4 The Event Service
	13.4.1 Properties
	13.4.2 Command-line Options
	13.4.3 Diagnostics
	13.4.4 The Event Channel
	13.4.5 Event Suppliers and Consumers
	13.4.6 Event Channel Policies
	13.4.7 A Simple Example

	CHAPTER 14 Exceptions and Error Messages
	14.1 CORBA System Exceptions
	14.2 Non-Compliant Application Asserts

	APPENDIX A ORBacus Policy Reference
	A.1 Module SSL
	A.2 Interface SSL::ConnectPolicy
	A.3 Module OB
	A.4 Interface OB::ProtocolPolicy
	A.5 Interface OB::ConnectionReusePolicy
	A.6 Interface OB::ReconnectPolicy
	A.7 Interface OB::TimeoutPolicy

	APPENDIX B Open Communications Interface Reference
	B.1 Module OCI
	B.2 Interface OCI::Buffer
	B.3 Interface OCI::Transport
	B.4 Interface OCI::TransportInfo
	B.5 Interface OCI::CloseCB
	B.6 Interface OCI::Connector
	B.7 Interface OCI::ConnectorInfo
	B.8 Interface OCI::ConnectCB
	B.9 Interface OCI::Acceptor
	B.10 Interface OCI::AcceptorInfo
	B.11 Interface OCI::AcceptCB
	B.12 Interface OCI::ConFactory
	B.13 Interface OCI::ConFactoryInfo
	B.14 Interface OCI::ConFactoryRegistry
	B.15 Interface OCI::AccRegistry
	B.16 Interface OCI::Current
	B.17 Module OCI::IIOP
	B.18 Interface OCI::IIOP::TransportInfo
	B.19 Interface OCI::IIOP::ConnectorInfo
	B.20 Interface OCI::IIOP::AcceptorInfo
	B.21 Interface OCI::IIOP::ConFactoryInfo

	APPENDIX C Royalty-Free Public License Agreement
	References

