
ORBacus
For C++ and Java

Version 3.1.1

2

is-

ks of
Copyright (c) 1998 Object-Oriented Concepts, Inc. All Rights Reserved.

“Object–Oriented Concepts”, “ORBacus” and “JThreads/C++” are trademarks or reg
tered trademarks of Object–Oriented Concepts, Inc.

“OMG”, “CORBA”, and “Object Request Broker” are trademarks or registered trade-
marks of the Object Management Group.

“Java” is a trademark of Sun Microsystems, Inc.

“Netscape” is a registered trademark of Netscape Communications Corporation.

Other names, products, and services may be the trademarks or registered trademar
their respective holders.
ORBacus

CHAPTER 1 Introduction 11

What is ORBacus? 11
How is it licensed? 12
About this Document 12
Getting Help 12

CHAPTER 2 Getting Started 15

The “Hello World” Application 15
The IDL Code 16
Implementing the Example in C++ 16

Implementing the Server 17
Implementing the Client 19
Compiling and Linking 20
Running the Application 21

Implementing the Example in Java 21
Implementing the Server 21
Implementing the Client 23
Compiling 24
Running the Application 24

Summary 25
Where to go from here 25

CHAPTER 3 The ORBacus Code Generators 27

Overview 27
Synopsis 27
Description 28
Options for idl 29
Options for jidl 31
Options for hidl 32
Options for ridl 32
Options for irserv 33
Options for irfeed 34
Options for irdel 34
Options for irgen 34
ORBacus 3

4

The IDL-to-C++ Translator and the Interface Repository 35
Include Statements 35
Documenting IDL Files 36
Using javadoc 39

CHAPTER 4 ORB and BOA Initialization 43

ORB Initialization 43
Initializing the C++ ORB 43
Initializing the Java ORB for Applications 43
Initializing the Java ORB for Applets 44

BOA Initialization 44
Initializing the C++ BOA 44
Initializing the Java BOA 44

Configuring the ORB and BOA 45
Properties 45
Command-line Options 48
Filtering Command-line Options 49
Using a Configuration File 50
Defining Properties in Java 50
Precedence of Properties 51
Advanced Property Usage 52

Server Event Loop 56
Mixed Client/Server Applications 56
Deactivating the Server 57

Applets 59
Adding ORBacus Applets to Web Pages 59
Defining ORB and BOA Options for an Applet 59
Defining the ORB Class Parameters 60
Security Issues 60

CHAPTER 5 CORBA Objects 61

Overview 61
Implementing Servants 62

Implementing Servants using Inheritance 63
Implementing Servants using Delegation 65

Creating Servants 69
ORBacus

Creating Servants using C++ 69
Creating Servants using Java 70

Connecting Servants 71
Connecting Servants using C++ 71
Connecting Servants using Java 71
Named Servants 72

Factory Objects 73
Factory Objects using C++ 74
Factory Objects using Java 75
Caveats 76

Getting a Servant from a Reference 77
Getting a Servant using C++ 77
Getting a Servant using Java 79

CHAPTER 6 Locating Objects 81

Obtaining Object References 81
Lifetime of Object References 83

Hostname 84
Port Number 84
Object Key 84

Stringified Object References 85
Using a File 85
Using a URL 87
Using Applet Parameters 88

Connecting to Named Objects 88
Using the iiop:// Notation 89
Using get_inet_object 89

Initial Services 90
Resolving an Initial Service 90
Providing IORs of Initial Services 92

CHAPTER 7 Reference Counting 95

What is Reference Counting? 95
Reference Counting in Java 95
Reference Counting in C++ 96

Marshalling Issues 96
ORBacus 5

6

Releasing Proxies and Servants 98
Global Object References 99
Cyclic Object Dependencies 100

CHAPTER 8 C++ Mapping Notes 105

Reserved Names 105
Mapping of Modules 105
Extensions 106

Extensions to the String Type 106
Extensions to _var Types 106
Extensions to Sequence Types 107

C++ Mapping Tips & Tricks 108
CORBA Strings 108
Object References 112

CHAPTER 9 Concurrency Models 117

Introduction 117
What is a Concurrency Model? 117
Why different Concurrency Models? 117
ORBacus Concurrency Models Overview 118

Single-Threaded Concurrency Models 118
Blocking Clients and Servers 118
Reactive Clients and Servers 119

Multi-Threaded Concurrency Models 122
Threaded Clients and Servers 122
Thread-per-Client Server 123
Thread-per-Request Server 124
Thread Pool Server 124

Performance Comparisons 125
Sample Application 125
Regular Method Invocations 126
Nested Method Invocations 127

Selecting Concurrency Models 128
ORBacus

CHAPTER 10 The Reactor 131

What is a Reactor? 131
Available Reactors 131

The X11 Reactor 132
The Windows Reactor 133

Writing a Custom Event Handler 134
Using Timers 135

CHAPTER 11 The Open Communications Interface 137

What is the Open Communications Interface? 137
Interface Summary 137

Buffer 137
Transport 138
Acceptor and Connector 138
Connector Factory 138
The Registries 138
The Info Objects 138
Class Diagram 139

OCI Reference 139
OCI for the Application Programmer 140

A “Converter” Class for Java 140
Getting Hostnames and Port Numbers141
Finding out a Client’s IP Address142
Finding out a Server’s IP Address144

CHAPTER 12 Using Policies 147

Overview 147
Supported Policies 148
Examples 148

Connection Reuse Policy at ORB Level149
Connection Reuse Policy at Object Level150
ORBacus 7

8

CHAPTER 13 ORBacus Basic Services 151

Configuring and Using a Basic Service 151
Starting the Service 152
Connecting to the Service 152
Object Names for the Basic Services 153

The Naming Service 154
Properties 154
Command-line Options 154
Creating Bindings 155
Name Resolution 156
Persistence 157
A Simple Example 157

The Property Service 162
Command-line Options 163
Creating Properties 163
Querying for Properties 164
Deleting Properties 165
A Simple Example 166

The Event Service 168
Properties 168
Command-line Options 169
Diagnostics 169
The Event Channel 169
Event Suppliers and Consumers 170
Event Channel Policies 171
A Simple Example 171

CHAPTER 14 Exceptions and Error Messages 177

CORBA System Exceptions 177
Non-Compliant Application Asserts 180

APPENDIX A ORBacus Policy Reference 185

Module SSL 185
Interface SSL::ConnectPolicy 186
Module OB 187
ORBacus

Interface OB::ProtocolPolicy 188
Interface OB::ConnectionReusePolicy 189
Interface OB::ReconnectPolicy 190
Interface OB::TimeoutPolicy 191

APPENDIX B Open Communications Interface Reference 193

Module OCI 193
Interface OCI::Buffer 196
Interface OCI::Transport 198
Interface OCI::TransportInfo 202
Interface OCI::CloseCB 204
Interface OCI::Connector 205
Interface OCI::ConnectorInfo 207
Interface OCI::ConnectCB 208
Interface OCI::Acceptor 209
Interface OCI::AcceptorInfo 212
Interface OCI::AcceptCB 213
Interface OCI::ConFactory 214
Interface OCI::ConFactoryInfo 217
Interface OCI::ConFactoryRegistry 218
Interface OCI::AccRegistry 220
Interface OCI::Current 222
Module OCI::IIOP 223
Interface OCI::IIOP::TransportInfo 224
Interface OCI::IIOP::ConnectorInfo 225
Interface OCI::IIOP::AcceptorInfo 226
Interface OCI::IIOP::ConFactoryInfo 227

APPENDIX C Royalty-Free Public License Agreement 229

References 235
ORBacus 9

10
 ORBacus

CHAPTER 1 Introduction
ject
g”
1.1 What is ORBacus?

ORBACUS is an Object Request Broker (ORB) that is compliant with the Common Object
Request Broker Architecture (CORBA) specification as defined in “The Common Ob
Request Broker: Architecture and Specification” [2] and “IDL/Java Language Mappin
[3].

These are some of the highlights of the ORBACUS 3.1 release:

• Full CORBA IDL support

• Complete CORBA IDL-to-C++ mapping

• Complete CORBA IDL-to-Java mapping

• Includes the Basic CORBA Services Naming, Event and Property

• Pluggable Protocols with IIOP as the default plug-in

• Single- and Multi-Threaded support with several concurrency models: Blocking,
Reactive, Threaded, Thread-per-Client, Thread-per-Request and Thread Pool

• Nested method invocations, even in the single-threaded version

• Support for timeouts

• Seamless event loop integration with X11 and Windows

• Full support for dynamic programming: Dynamic Invocation Interface, Dynamic
Skeleton Interface, Interface Repository and DynAny
ORBacus 11

Introduction

12

g

eci-
ular,
ied

L-
e

ves
man-
• IDL-to-HTML and IDL-to-RTF translators for generating “javadoc”-style
documentation

This version of ORBACUS has the following limitations:

• Only persistent (i.e., manually launched) servers are currently supported.

For platform availability, please refer to the ORBACUS home page at http://
www.ooc.com/ob/.

1.2 How is it licensed?

ORBACUS is licensed as “free for non-commercial use.” See the license agreement in
Appendix C for details. For information on commercial licenses, please see the pricin
information on our Web site, or contact support@ooc.com.

1.3 About this Document

This manual is - except for the “Getting Started” chapter - no replacement for a good
CORBA book. This manual also does not contain the precise specifications of the
CORBA standard, which are freely available on-line. A good grasp of the CORBA sp
fications in [2] and [3] is absolutely necessary to effectively use this manual. In partic
the chapters in [2] covering CORBA IDL and the IDL-to-C++ mapping should be stud
thoroughly.

Do not expect any of the introductory CORBA books to provide a reference for the ID
to-C++ mapping. The books that are currently available only give an overview and ar
neither complete nor up-to-date. There is no substitute for the official CORBA specifica-
tion as defined in [2].

What this manual does contain, however, is information on how ORBACUS implements
the CORBA standard. A shortcoming of the current CORBA specification is that it lea
a high degree of freedom to the CORBA implementation. For example, the precise se
tics of a oneway call are not specified by the standard.

To make it easier to get started with ORBACUS, this manual contains a “Getting Started”
chapter, explaining some ORBACUS basics with a very simple example.

1.4 Getting Help

Should you need any assistance with ORBACUS, do not hesitate to contact us at
support@ooc.com. You might also consider joining our ORBACUS mailing list. To do
so, send a message to majordomo@ooc.com (not ob@ooc.com) with
ORBacus

Getting Help
subscribe ob

in the body (not in the Subject: field) of your message. To unsubscribe, use

unsubscribe ob

in the body of your message. To send a message to the list, mail to ob@ooc.com (not
majordomo@ooc.com).

An archive of the ORBACUS mailing list can be found at http://www.ooc.com/ob/
mailing-list.html.
ORBacus 13

Introduction

14
 ORBacus

CHAPTER 2 Getting Started
llo
2.1 The “Hello World” Application

The example described in this chapter is founded on a well-known application: A “He
World!” program presented here in a special client-server version.

Many books on programming start with this tiny demo program. In introductory C++
books you'll probably find the following piece of code in the very first chapter:

// C++

#include <iostream.h>

int
main(int, char*[], char*[])
{

cout << "Hello World!" << endl;
return 0;

}

Or in introductory Java books:

// Java

public class Greeter
{

public static void main(String args[])
ORBacus 15

Getting Started

16

hat
ca-

tan-

e a
ne,

t

ny

ve
{
System.out.println("Hello World!");

}
}

These applications simply print “Hello World!” to standard output and that is exactly w
this chapter is about: Printing “Hello World!” with a CORBA-based client-server appli
tion. In other words, we will develop a client program that invokes a hello operation on
an object in a server program. The server responds by printing “Hello World!” on its s
dard output.

2.2 The IDL Code

How do we write a CORBA-based “Hello World!” application? The first step is to creat
file containing our IDL definitions. Since our sample application isn't a complicated o
the IDL code needed for this example is simple:

1 // IDL
2

3 interface Hello
4 {
5 void hello();
6 };

3 An interface with the name Hello is defined. An IDL interface is conceptually equivalen
to a pure abstract class in C++, or to an interface in Java.

5 The only operation defined is hello, which neither takes any parameters nor returns a
value.

2.3 Implementing the Example in C++

The next step is to translate the IDL code to C++ using the IDL-to-C++ translator. Sa
the IDL code shown above to a file called Hello.idl. Now translate the code to C++
using the following command:

idl Hello.idl

This command will create the files Hello.h, Hello.cpp, Hello_skel.h and
Hello_skel.cpp.
ORBacus

Implementing the Example in C++

is
2.3.1 Implementing the Server

To implement the server, we need to define an implementation class for the Hello inter-
face. To do this, we create a class Hello_impl that is derived from the “skeleton” class
Hello_skel, defined in the file Hello_skel.h. The definition for Hello_impl looks
like this:

1 // C++
2

3 #include <Hello_skel.h>
4

5 class Hello_impl : public Hello_skel
6 {
7 public:
8

9 virtual void hello();
10 };

3 Since our implementation class derives from the skeleton class Hello_skel, we must
include the file Hello_skel.h.

5 Here we define Hello_impl as a class derived from Hello_skel.

9 Our implementation class must implement all operations from the IDL interface. In th
case, this is just the operation hello.

The implementation for Hello_impl looks as follows:

1 // C++
2

3 #include <OB/CORBA.h>
4 #include <Hello_impl.h>
5

6 void
7 Hello_impl::hello()
8 {
9 cout << "Hello World!" << endl;

10 }

3 We must include OB/CORBA.h, which contains definitions for the standard CORBA
classes, as well as for other useful things.

4 We must also include the Hello_impl class definition, contained in the header file
Hello_impl.h.
ORBacus 17

Getting Started

18

h
6-10 The hello function simply prints “Hello World!” on standard output.

Save the class definition of Hello_impl in the file Hello_impl.h and the implementa-
tion of Hello_impl in the file Hello_impl.cpp.

Now we need to write the server's main program, which looks like this:

1 // C++
2

3 #include <OB/CORBA.h>
4 #include <Hello_impl.h>
5

6 #include <fstream.h>
7

8 int
9 main(int argc, char* argv[], char*[])

10 {
11 CORBA_ORB_var orb = CORBA_ORB_init(argc, argv);
12 CORBA_BOA_var boa = orb -> BOA_init(argc, argv);
13

14 Hello_var p = new Hello_impl;
15

16 CORBA_String_var s = orb -> object_to_string(p);
17 const char* refFile = "Hello.ref";
18 ofstream out(refFile);
19 out << s << endl;
20 out.close();
21

22 boa -> impl_is_ready(CORBA_ImplementationDef::_nil());
23 }

3-6 Several header files are included. Of these, OB/CORBA.h provides the standard CORBA
definitions, and Hello_impl.h contains the definition of the Hello_impl class.

11,13 The first thing a CORBA program has to do is to initialize the ORB1 and the BOA2. This
is done by CORBA_ORB_init and BOA_init. Both operations expect the parameters wit
which the program was started. These parameters may or may not be used by the ORB and
BOA, depending on the CORBA implementation. ORBACUS recognizes certain options
that will be explained later.

1. Object Request Broker

2. Basic Object Adapter
ORBacus

Implementing the Example in C++

ving a
ack

his is

am-
14 An instance of Hello_impl is created. Hello_var, like all _var types, is a “smart”
pointer, i.e., p will release the object created by new Hello_impl automatically when p
goes out of scope.

16-20 The client must be able to access the implementation object. This can be done by sa
“stringified” object reference to a file which can be read by the client and converted b
to the actual object reference.1 The operation object_to_string() converts a CORBA
object reference into its string representation.

22 Finally, in order to react to incoming requests, the server must enter its event loop. T
done by calling impl_is_ready. Since ORBACUS does not use the
CORBA_ImplementationDef argument, CORBA_ImplementationDef::_nil() can
be used as a dummy argument.

Save this to a file with the name Server.cpp.

2.3.2 Implementing the Client

Writing the client requires less work than writing the server, since the client, in this ex
ple, only consists of the main function. In several respects the client's main is similar to
the server's main function:

1 // C++
2

3 #include <OB/CORBA.h>
4 #include <Hello.h>
5

6 #include <fstream.h>
7

8 int
9 main(int argc, char* argv[], char*[])

10 {
11 CORBA_ORB_var orb = CORBA_ORB_init(argc, argv);
12

13 const char* refFile = "Hello.ref";
14 ifstream in(refFile);
15 char s[1000];
16 in >> s;
17 CORBA_Object_var obj = orb -> string_to_object(s);
18

1. If your application contains more than one object, you do not need to save object references for
all objects. Usually you save the reference of one object which provides operations that can sub-
sequently return references to other objects.
ORBacus 19

Getting Started

20

er

om-

.
19 Hello_var hello = Hello::_narrow(obj);
20

21 hello -> hello();
22 }

4 In contrast to the server, the client does not need to include Hello_impl.h. Only the gen-
erated file Hello.h is needed.

11 Like the server’s implementation of main, the client’s main starts with the initialization of
the ORB. It’s not necessary to initialize the BOA, because the BOA is only needed by
server applications.

13-17 The “stringified” object reference written by the server is read and converted to a
CORBA_Object object reference.

19 The _narrow operation generates a Hello object reference from the CORBA_Object
object reference.1

21 Finally, the hello operation on the hello object reference is invoked, causing the serv
to print “Hello World!”.

Save this into the file Client.cpp.

2.3.3 Compiling and Linking

Both the client and the server must be linked with the compiled Hello.cpp, which usu-
ally has the name Hello.o under Unix and Hello.obj under Windows. The compiled
Hello_skel.cpp and Hello_impl.cpp are only needed by the server.

Compiling and linking is to a large degree compiler- and platform-dependent. Many c
pilers require unique options to generate correct code. To build ORBACUS programs, you
must at least link with the ORBACUS library libOB.a (Unix) or ob.lib (Windows).
Additional libraries are required on some systems, such aslibsocket.a and libnsl.a
for Solaris or wsock32.lib for Windows.

The ORBACUS distribution comes with various README files for different platforms which
give hints on the options needed for compiling and the libraries necessary for linking
Please consult these README files for details.

1. Although CORBA’s T::_narrow for an interface T works similar to dynamic_cast<T>()
for a plain C++ class T, dynamic_cast<T>() must not be used for CORBA object refer-
ences.
ORBacus

Implementing the Example in Java

r

ver is
ar

ted

n will
2.3.4 Running the Application

Our “Hello World!” application consists of two parts: the client program and the serve
program. The first program to be started is the server, because it must create the file
Hello.ref that the client needs in order to connect to the server. As soon as the ser
running, you can start the client. If all goes well, the “Hello World!” message will appe
on the screen.

2.4 Implementing the Example in Java

In order to implement this application in Java, the interface specified in IDL is transla
to Java classes similar to the way the C++ code was created. The ORBACUS IDL-to-Java
translator jidl is used like this:

jidl --package hello Hello.idl

This command results in several Java source files on which the actual implementatio
be based. The generated files are Hello.java, HelloHelper.java,
HelloHolder.java, StubForHello.java and _HelloImplBase.java, all generated
in a directory with the name hello.

2.4.1 Implementing the Server

The server's Hello implementation class looks as follows:

1 // Java
2

3 package hello;
4

5 public class Hello_impl extends _HelloImplBase
6 {
7 public void hello()
8 {
9 System.out.println("Hello World!");

10 }
11 }

5 The implementation class Hello_impl must inherit from the generated class
_HelloImplBase.

7-9 As with the C++ implementation, the hello method simply prints “Hello World!” on
standard output.

Save this class to the file Hello_impl.java.
ORBacus 21

Getting Started

22
We also have to write a class which holds the server’s main method. We call this class
Server, saved in the file Server.java:

1 // Java
2

3 package hello;
4

5 public class Server
6 {
7 public static void main(String args[])
8 {
9 org.omg.CORBA.ORB orb =

10 org.omg.CORBA.ORB.init(args, new java.util.Properties());
11 org.omg.CORBA.BOA boa =
12 orb.BOA_init(args, new java.util.Properties());
13

14 Hello_impl p = new Hello_impl();
15

16 try
17 {
18 String ref = orb.object_to_string(p);
19 String refFile = "Hello.ref";
20 java.io.PrintWriter out = new PrintWriter(
21 new java.io.FileOutputStream(refFile));
22 out.println(ref);
23 out.flush();
24 }
25 catch(java.io.IOException ex)
26 {
27 System.err.println("Can't write to ‘" +
28 ex.getMessage() + "'");
29 System.exit(1);
30 }
31

32 boa.impl_is_ready(null);
33 }
34 }

9-12 The ORB and BOA must be initialized. This is done using ORB.init and
ORB.BOA_init . Note that all standard CORBA definitions are in the package
org.omg.CORBA . That is, you must either import this package, or, as shown in our exam-
ple, you must use org.omg.CORBA explicitly.
ORBacus

Implementing the Example in Java
14 An instance of Hello_impl is created. This instance is released automatically when it is
not used anymore.

16-30 The object reference is “stringified” and written to a file.

32 Finally, the server enters its event loop to receive incoming requests.

2.4.2 Implementing the Client

Save this to a file with the name Client.java:

1 // Java
2

3 package hello;
4

5 public class Client
6 {
7 public static void main(String args[])
8 {
9 org.omg.CORBA.ORB orb =

10 org.omg.CORBA.ORB.init(args, new java.util.Properties());
11

12 String ref = null;
13 try
14 {
15 String refFile = "Hello.ref";
16 java.io.BufferedReader in =
17 new java.io.BufferedReader(new FileReader(refFile));
18 ref = in.readLine();
19 }
20 catch(java.io.IOException ex)
21 {
22 System.err.println("Can't read from ‘" +
23 ex.getMessage() + "'");
24 System.exit(1);
25 }
26 org.omg.CORBA.Object obj = orb.string_to_object(ref);
27

28 Hello p = HelloHelper.narrow(obj);
29

30 p.hello();
31 }
32 }

9-10 The ORB is initialized. BOA initialization is not necessary for clients.
ORBacus 23

Getting Started

24

e

an

his is
L,
12-26 The stringified object reference is read and converted to an object.

28 The object reference is “narrowed” to a reference to a Hello object. A simple Java cast
doesn’t work here, since it is possible that the client has to ask the server whether th
object is really of type Hello.

30 Finally the hello operation is invoked, causing the server to print “Hello World!” on
standard output.

2.4.3 Compiling

To compile the implementation classes and the classes generated by the ORBACUS IDL-
to-Java translator, use javac (or the Java compiler of your choice):

javac *.java hello/*.java

Ensure that your CLASSPATH environment variable includes the ORBACUS Java classes,
i.e., the OB.jar file. If you are using the Unix Bourne shell or a compatible shell, you c
do this with the following commands:

CLASSPATH=your_orbacus_directory/lib/OB.jar:$CLASSPATH
export CLASSPATH

Replace your_orbacus_directory with the name of the directory where ORBACUS is
installed.

If you are running ORBACUS on a Windows-based system, you can use the following
command within the Windows command interpreter:

set CLASSPATH=your_orbacus_directory/lib/OB.jar;%CLASSPATH%

Note that for Windows you must use “;” and not “:” as the delimiter.

2.4.4 Running the Application

The “Hello World” Java server is started with:

java hello.Server

And the client with:

java hello.Client

Again, make sure that your CLASSPATH environment variable includes the OB.jar file.

You might also want to use a C++ server together with a Java client (or vice versa). T
one of the primary advantages of using CORBA: If something is defined in CORBA ID
ORBacus

Summary

y’s

w
d
the programming language used for the implementation is irrelevant. CORBA applica-
tions can talk with each other, regardless of the language they are written in.

2.5 Summary

At this point, you might be inclined to think that this is the most complicated method of
printing a string that you have ever encountered in your career as a programmer. At first
glance, a CORBA-based approach may indeed seem complicated. On the other hand,
think of the benefits this kind of approach has to offer. You can start the server and client
applications on different machines with exactly the same results. Concerning the commu-
nication between the client and the server, you don’t have to worry about platform-specific
methods or protocols at all, provided there is a CORBA ORB available for the platform
and programming language of your choice. If possible, get some hands-on experience and
start the server on one machine, the client on another1. As you will see, CORBA-based
applications run interchangeably in both local and network environments.

One last point to note: you likely won’t be using CORBA to develop systems as simple as
our “Hello, World!” example. The more complex your applications become (and toda
applications are complex), the more you will learn to appreciate having a high-level
abstraction of your applications' key interfaces captured in CORBA IDL.

2.6 Where to go from here

To understand the remaining chapters of this manual, you must have read the CORBA
specifications in [2] and [3]. You will not be able to understand the chapters that follo
without a good knowledge of CORBA in general, CORBA IDL and the IDL-to-C++ an
IDL-to-Java mappings.

1. Note that after the startup of the server program, you have to copy the stringified object refer-
ence, i.e., the file Hello.ref, to the machine where the client program is to be run.
ORBacus 25

Getting Started

26
 ORBacus

CHAPTER 3 The ORBacus Code
Generators
3.1 Overview

ORBACUS includes the following code generators and Interface Repository tools:

3.2 Synopsis

idl [options] idl-files...

jidl [options] idl-files...

hidl [options] idl-files...

idl The ORBACUS IDL-to-C++ Translator

jidl The ORBACUS IDL-to-Java Translator

hidl The ORBACUS IDL-to-HTML Translator

ridl The ORBACUS IDL-to-RTF Translator

irserv The ORBACUS Interface Repository Server

irfeed The ORBACUS Interface Repository Feeder

irdel The ORBACUS Interface Repository Deleter

irgen The ORBACUS Interface Repository C++ Code Generator
ORBacus 27

The ORBacus Code Generators

28

d

ides

r
rved
ridl [options] idl-files...

irserv [options] [idl-files...]

irfeed [options] idl-files...

irdel [options] scoped-name...

irgen name-base

3.3 Description

idl is the ORBACUS IDL-to-C++ translator. It translates IDL files into C++ files. For
each IDL file, four C++ files are generated. For example,

idl MyFile.idl

produces the following files:

jidl translates IDL files into Java files. For every construct in the IDL file that maps to a
Java class or interface, a separate class file is generated. Directories are automatically cre-
ated for those IDL constructs that map to a Java package (e.g., a module).

jidl can also add comments from the IDL file starting with /** to the generated Java
files. This allows you to use the javadoc tool to produce documentation from the gener-
ated Java files. See “Using javadoc” on page 39 for additional information.

hidl creates HTML files from IDL files. An HTML file is generated for each module an
interface defined in an IDL file. Comments in the IDL file are preserved and javadoc
style keywords are supported. The section “Documenting IDL Files” on page 36 prov
more information.

ridl creates Rich Text Format (RTF) files from IDL files. An RTF file is generated fo
each module and interface defined in an IDL file. Comments in the IDL file are prese

MyFile.h Header file containing MyFile.idl’s translated data types
and interface stubs

MyFile.cpp Source file containing MyFile.idl’s translated data types
and interface stubs

MyFile_skel.h Header file containing skeletons for MyFile.idl’s interfaces

MyFile_skel.cpp Source file containing skeletons for MyFile.idl’s interfaces
ORBacus

Options for idl

ce
5 for

.

ssor.
and javadoc style keywords are supported. The section “Documenting IDL Files” on
page 36 provides more information.

irserv is the Interface Repository Server. Together with irfeed, a program that feeds
the Interface Repository with IDL code, and irgen, the Interface Repository C++ Code
Generator, it is possible to generate C++ code directly from the contents of an Interfa
Repository. See “The IDL-to-C++ Translator and the Interface Repository” on page 3
an example.

3.4 Options for idl
-h, --help

Show a short help message.

-v, --version

Show the ORBACUS version number.

-e, --cpp NAME

Use NAME as the preprocessor program.

-d, --debug

Print diagnostic messages. This option is for ORBACUS internal debugging purposes only

-DNAME

Defines NAME as 1. This option is directly passed to the preprocessor.

-DNAME=DEF

Defines NAME as DEF. This option is directly passed to the preprocessor.

-UNAME

Removes any definition for NAME. This option is directly passed to the preprocessor.

-IDIR

Adds DIR to the include file search path. This option is directly passed to the preproce

--no-skeletons

Don’t generate skeleton classes.

--no-type-codes
ORBacus 29

The ORBacus Code Generators

30

se of

face
ple-

nd on

Don’t generate type codes and insertion and extraction functions for the Any type. U
this option will cause the translator to generate more compact code.

--locality-constrained

Generate locality-constrained objects.

--no-virtual-inheritance

Don't use virtual C++ inheritance. If you use this option, you cannot use multiple inter
inheritance in your IDL code, and you also cannot use multiple C++ inheritance to im
ment your servant classes.

--tie

Generate tie classes for delegate-based interface implementations. Tie classes depe
the corresponding skeleton classes, i.e., you must not use --no-skeletons in combina-
tion with --tie.

--c-suffix SUFFIX

Use SUFFIX as the suffix for source files. The default value is .cpp.

--h-suffix SUFFIX

Use SUFFIX as the suffix for header files. The default value is .h.

--all

Generate code for included files instead of inserting #include statements. See “Include
Statements” on page 35.

--no-relative

When generating code, idl assumes that the same -I options that are used with idl are
also going to be used with the C++ compiler. Therefore idl will try to make all
#include statements relative to the directories specified with -I. The option --no-
relative suppresses this behavior, in which case idl will not make #include state-
ments for included files relative to the paths specified with the -I option.

--header-dir DIR

This option can be used to make #include statements for header files relative to a spe-
cific directory.

--other-header-dir DIR

This option works like --header-dir, but it only applies to header files for included IDL
files.
ORBacus

Options for jidl

ed to

ted rel-

-

--output-dir DIR

Write generated files to directory DIR.

--dll-import DEF

Put DEF in front of every symbol that needs an explicit DLL import statement.

3.5 Options for jidl
-h, --help
-v, --version
-e, --cpp NAME
-d, --debug
-DNAME
-DNAME=DEF
-UNAME
-IDIR
--no-skeletons
--locality-constrained
--all
--tie

These options are the same as for the idl command.

--no-comments

The default behavior of jidl is to add any comments from the IDL file starting with /**
to the generated Java files. Specify this option if you don’t want these comments add
your Java files.

--package PKG

Specifies a package name for the generated Java classes. Each class will be genera
ative to this package.

--prefix-package PRE PKG

Specifies a package name for a particular prefix1. Each class with this prefix will be gener
ated relative to the specified package.

--auto-package

1. Prefix refers to the value of the #pragma prefix statement in an IDL file. For example, the
statement #pragma prefix ooc.com defines “ooc.com” as the prefix. The prefix is
included in the Interface Repository identifiers for all types defined in the IDL file.
ORBacus 31

The ORBacus Code Generators

32
Derives the package names for generated Java classes from the IDL prefixes. The prefix
ooc.com, for example, results in the package com.ooc.

--output-dir DIR

Specifies a directory where jidl will place the generated Java files. Without this option
the current directory is used.

--clone

Generates a clone method for struct, union, enum and exception types.

3.6 Options for hidl
-h, --help
-v, --version
-e, --cpp NAME
-d, --debug
-DNAME
-DNAME=DEF
-UNAME
-IDIR

These options are the same as for the idl command.

--no-sort

Don’t sort symbols alphabetically.

--output-dir DIR

Write HTML files to the directory DIR.

3.7 Options for ridl
-h, --help
-v, --version
-e, --cpp NAME
-d, --debug
-DNAME
-DNAME=DEF
-UNAME
-IDIR

These options are the same as for the idl command.

--no-sort
ORBacus

Options for irserv
Don’t sort symbols alphabetically.

--output-dir DIR

Write RTF files to the directory DIR.

--single-file FILE

Create a single .rtf file called FILE.

--with-index

Create index entries.

--font NAME

Use font NAME as the font for the text body.

--literal-font NAME

Use font NAME as the font for literals.

--title-font NAME

Use font NAME as the font for the title.

--heading-font NAME

Use font NAME as the font for headings.

--font-size SIZE

Text body font size in points.

--literal-font-size SIZE

Literal font size in points.

--title-font-size SIZE

Title font size in points.

--heading-font-size SIZE

Heading font size in points.

3.8 Options for irserv
-h, --help
-v, --version
-e, --cpp NAME
-d, --debug
ORBacus 33

The ORBacus Code Generators

34
-DNAME
-DNAME=DEF
-UNAME
-IDIR

These options are the same as for the idl command.

-i, --ior

Print the stringified IOR of the Interface Repository on standard output.

The arguments to irserv are zero or more IDL files. If no IDL files are specified on the
command line, the Interface Repository server can be populated dynamically using the
irfeed command.

3.9 Options for irfeed
-h, --help
-v, --version
-e, --cpp NAME
-d, --debug
-DNAME
-DNAME=DEF
-UNAME
-IDIR

These options are the same as for the idl command.

The arguments to irfeed are one or more IDL files.

3.10 Options for irdel
-h, --help
-v, --version

These options are the same as for the idl command.

The arguments to irdel are one or more scoped names. A scoped name has the form
“X::Y::Z”. For example, an interface I defined in a module M can be identified by the
scoped name “M::I”.

3.11 Options for irgen
-h, --help
-v, --version
--no-skeletons
ORBacus

The IDL-to-C++ Translator and the Interface Repository
--no-type-codes
--locality-contrained
--no-virtual-inheritance
--tie
--c-suffix SUFFIX
--h-suffix SUFFIX
--header-dir DIR
--other-header-dir DIR
--output-dir DIR

These options are the same as for the idl command.

The argument to irgen is the pathname to use as the base name of the output filenames.
For example, if the pathname you supply is output/file, then irgen will produce
output/file.cpp, output/file.h, output/file_skel.cpp and output/
file_skel.h.

Note that irgen will generate code for all of the type definitions contained in the Inter-
face Repository server.

3.12 The IDL-to-C++ Translator and the Interface Repository

The ORBACUS IDL-to-C++ and IDL-to-Java translators internally use the Interface
Repository for generating code. That is, these programs have their own private Interface
Repository that is fed with the specified IDL files. All code is generated from that private
Interface Repository.

It is also possible to generate C++ code from a global Interface Repository. First, the com-
mand irserv must be used to start the Interface Repository. Then the Interface Reposi-
tory must be fed with the IDL code, using the command irfeed. Finally, the irgen
command can be used to generate the C++ code. For example:

irserv --ior > IntRep.ref &
irfeed -ORBrepository ‘cat IntRep.ref‘ file.idl
irgen -ORBrepository ‘cat IntRep.ref‘ file

The IDL-to-C++ translator idl performs all these steps at once, in a single process with a
private Interface Repository. Thus, you only have to run a single command:

idl file.idl

3.13 Include Statements

If you use the #include statement in your IDL code, the ORBACUS IDL-to-C++ transla-
tor idl will not create code for included IDL files. The translator will insert the appropri-
ORBacus 35

The ORBacus Code Generators

36

 if
t the

es,
 by

r all

la-
1
ate #include statements in the generated header files instead. Please note that there are
several restrictions on where to place the #include statements in your IDL files for this
feature to work properly:

• #include may only appear at the beginning of your IDL files. All #include
statements must be placed before the rest of your IDL code.1

• Type definitions, such as interface or struct definitions, may not be split among
several IDL files. In other words, no #include statement may appear within such
definitions.

If you don’t want these restrictions to be applied, you can use the translator option --all
with idl. With this option the IDL-to-C++ translator treats code from included files as
the code appeared in your IDL file at the position where it is included. This means tha
compiler will not place #include statements in the automatically-generated header fil
regardless of whether the code comes directly from your IDL file or from files included
your IDL file.

Note that when generating code from an Interface Repository using irgen, the translator
behaves identically to idl with the --all option. In other words, the irgen command
will not place #include statements in the generated files, but rather generates code fo
IDL definitions in the Interface Repository.

3.14 Documenting IDL Files

With the ORBACUS IDL-to-HTML and IDL-to-RTF translators, hidl and ridl, you can
easily generate HTML and RTF files containing IDL interface descriptions. The trans
tors will generate a nicely-formatted file for each IDL module and interface. Figure 3.
shows an HTML example and Figure 3.2 an RTF example.

The formatting syntax supported by hidl and ridl is similar to that used by javadoc.
The following keywords are recognized:

@author author

Denotes the author of the interface.

@exception exception-name description

Adds an exception description to the exception list of an operation.

@member member-name description

1. Preprocessor statements like #define or #ifdef may be placed before your #include
statements.
ORBacus

Documenting IDL Files
Adds a member description to the member list of a struct, union, enum or exception type.

@param parameter-name description

Adds a parameter description to the parameter list of an operation.

@return description

Adds descriptive text for the return value of an operation.

Figure 3.1: Documentation generated with the IDL-to-HTML translator
ORBacus 37

The ORBacus Code Generators

38
@see reference

Adds a “See also” note.

@since since-text

Comment related to the availability of new features.

@version version

The interface’s version number.

Figure 3.2: Documentation generated with the IDL-to-RTF translator
ORBacus

Using javadoc
Like javadoc, hidl and ridl use the first sentence in the documentation comment as
the summary sentence. This sentence ends at the first period that is followed by a blank,
tab or line terminator, or at the first @.

ridl understands most basic HTML tags and will produce an equivalent format in the
generated RTF files. The following HTML tags are supported:

 <CODE> <HR> <P> <U>

3.15 Using javadoc

If not explicitly suppressed with the --no-comments option, the ORBACUS IDL-to-Java
translator jidl adds comments starting with /** from the IDL file to the generated Java
files, so that javadoc can be used to generate documentation (as long as the comments
are in a format compatible with javadoc).

Here is an example showing how to include documentation in an IDL interface description
file. Let’s assume we have an interface I in a module M:

// IDL

module M
{

/**
 *
 * This is a comment related to interface I.
 *
 * @author Uwe Seimet
 *
 * @version 1.0
 *
 **/
interface I
{

/**
 *
 * This comment describes exception E.
 *
 **/
exception E { };

/**
 *
ORBacus 39

The ORBacus Code Generators

40
 * The description for operation S.
 *
 * @param arg A dummy argument.
 *
 * @return A dummy string.
 *
 * @exception E Raised under certain circumstances.
 *
 **/
string S(in long arg)

raises(E);
};

};

When running jidl on this file the comments will automatically be added to the gener-
ated Java files M/I.java and M/IPackage/E.java. For I.java the generated code
looks as follows:

// Java

package M;

//
// IDL:M/I:1.0
//
/**
 * This is a comment related to interface I.
 *
 * @author Uwe Seimet
 *
 * @version 1.0
 *
 **/
public interface I extends org.omg.CORBA.Object
{

//
// IDL:M/I/S:1.0
//
/**
 *
 * The description for operation S.
 *
 * @param arg A dummy argument.
 *
ORBacus

Using javadoc
 * @return A dummy string.
 *
 * @exception M.IPackage.E Raised under certain circumstances.
 *
 **/

 public String
 S(int arg)

throws M.IPackage.E;
}

Note that jidl automatically inserts the fully-qualified Java name for the exception E, in
this case M.IPackage.E.

These are the contents of IPackage/E.java:

// Java

package M.IPackage;

//
// IDL:M/I/E:1.0
//
/**
 *
 * This comment describes exception E.
 *
 **/
final public class E extends org.omg.CORBA.UserException
{

public
E()
{
}

}

Now you can use javadoc to extract the comments from the generated Java files and pro-
duce nicely-formatted HTML documentation.

For additional information please refer to the javadoc documentation.
ORBacus 41

The ORBacus Code Generators

42
 ORBacus

CHAPTER 4 ORB and BOA
Initialization
4.1 ORB Initialization

4.1.1 Initializing the C++ ORB

In C++ the ORB is initialized with CORBA_ORB_init(). For example:

// C++
int main(int argc, char* argv[], char*[])
{

CORBA_ORB_var orb = CORBA_ORB_init(argc, argv);
// ...

}

The CORBA_ORB_init() call interprets arguments starting with -ORB. All of these argu-
ments, passed through the argc and argv parameters, are automatically removed from
the argument list.

4.1.2 Initializing the Java ORB for Applications

A Java application can initialize the ORB in the following manner:

// Java
import org.omg.CORBA.*;
public static void main(String args[])
{

ORBacus 43

ORB and BOA Initialization

44
ORB orb = ORB.init(args, new java.util.Properties());
// ...

}

The ORB.init() call interprets arguments starting with -ORB. Unlike the C++ version,
these arguments are not removed (see “Filtering Command-line Options” on page 49 for
more information).

4.1.3 Initializing the Java ORB for Applets

A different overloading of ORB.init() is provided for use by applets:

// Java
import org.omg.CORBA.*;
public void init()
{

ORB orb = ORB.init(this, new java.util.Properties());
// ...

}

See “Applets” on page 59 for more information on using ORBACUS in an applet.

4.2 BOA Initialization

4.2.1 Initializing the C++ BOA

In C++ the BOA is initialized with CORBA_ORB::BOA_init(). For example:

// C++
int main(int argc, char* argv[], char*[])
{

CORBA_ORB_var orb = CORBA_ORB_init(argc, argv);
CORBA_BOA_var boa = orb -> BOA_init(argc, argv);
// ...

}

BOA_init() removes all arguments starting with -OA passed through the argc and argv
parameters.

4.2.2 Initializing the Java BOA

In Java the BOA initialization looks like this:

// Java
import org.omg.CORBA.*;
ORBacus

Configuring the ORB and BOA

ther-

The
public static void main(String args[])
{

ORB orb = ORB.init(args, new java.util.Properties());
BOA boa = orb.BOA_init(args, new java.util.Properties());
// ...

}

4.3 Configuring the ORB and BOA

ORBACUS applications can tailor the behavior of the ORB and BOA objects using a col-
lection of properties1. These properties can be defined in a number ways:

• using a configuration file

• using system properties (Java)

• using command-line options

• programmatically at run-time

4.3.1 Properties

The ORBACUS configuration properties are described in the sections below. Unless o
wise noted, every property can be used in both C++ and Java applications.

ORB Properties

ooc.orb.add_iiop_connector

Value: true, false

Determines whether the ORB should register an IIOP connector during initialization.
default value is true.

ooc.orb.conc_model

Value: blocking, reactive, threaded

Selects the client-side concurrency model. The reactive concurrency model is not currently available
in ORBACUS for Java. The default value is blocking for both C++ and Java applications. See
Chapter 9 for more information on concurrency models.

1. Note that these properties have nothing to do with the Property Service as described in “The
Property Service” on page 162.
ORBacus 45

ORB and BOA Initialization

46

a-

.

he
ooc.orb.id

Value: id

Specifies the identifier of the ORB to be used by the application. The only valid identifier
is OB_ORB.

ooc.orb.trace_level

Value: level >= 0

Defines the output level for diagnostic messages printed by ORBACUS. A level of 1 pro-
duces information about connection events. The default level is 0, which produces no out-
put.

ooc.service.name

Value: ior

Adds an initial service to the ORB’s internal list. This list is consulted when the applic
tion invokes the ORB operation resolve_initial_references. name is the key that
is associated with a stringified IOR created using object_to_string. For example, the
property ooc.service.NameService adds “NameService” to the list of initial services
See “Stringified Object References” on page 85 and “Initial Services” on page 90 for
more information.

BOA Properties

ooc.boa.add_iiop_acceptor

Value: true, false

Determines whether the BOA should register an IIOP acceptor during initialization. T
default value is true.

ooc.boa.conc_model

Value: blocking, reactive, threaded, thread_per_client,
thread_per_request, thread_pool

Selects the server-side concurrency model. The reactive concurrency model is not available in
ORBACUS for Java. The default value is reactive for C++ applications and threaded for Java
applications. See Chapter 9 for more information on concurrency models. If this property is set to
ORBacus

Configuring the ORB and BOA
thread_pool, then the property ooc.boa.thread_pool determines how many threads are in
the pool.

ooc.boa.disable_iiop_acceptor

Value: true, false

Determines whether the BOA should disable the IIOP acceptor after registering it. The
default value is false.

ooc.boa.host

Value: hostname

Explicitly defines the hostname to be used in object references generated by the BOA. The
default value is the canonical hostname of the machine. This property is especially useful
if a host has more than one name. Note that this property is ignored if ooc.boa.numeric
is true.

ooc.boa.id

Value: id

Specifies the identifier of the BOA to be used by the application. The only valid identifier
is OB_BOA.

ooc.boa.numeric

Value: true, false

If true, the BOA will generate object references that contain an internet (IP) address in dotted dec-
imal notation instead of the canonical hostname. The default value is false.

ooc.boa.port

Value: 0 <= port <= 65535

Specifies the port number on which the server should listen for new connections. If no port
is specified, one will be selected automatically by the BOA. Use this property if you plan
to publish an IOR (e.g., in a file, a naming service, etc.) and you want that IOR to remain
valid across executions of your server. Without this property, your server is likely to use a
different port number each time the server is executed. See Chapter 6 for more informa-
tion.
ORBacus 47

ORB and BOA Initialization

48
ooc.boa.thread_pool

Value: n > 0

Determines the number of threads to reserve for servicing incoming requests. The default
value is 10. This property is only effective when the ooc.boa.conc_model property has
the value thread_pool.

4.3.2 Command-line Options

There are equivalent command-line options for many of the ORBACUS properties. The
options and their equivalent property settings are shown in Table 4.1. Refer to “Proper-
ties” on page 45 for a description of the properties.

Option Property

-OAblocking ooc.boa.conc_model=blocking

-OAdisable_iiop_acceptor ooc.boa.disable_iiop_acceptor=true

-OAhost host ooc.boa.host=host

-OAid id ooc.boa.id=id

-OAnumeric ooc.boa.numeric=true

-OAport port ooc.boa.port=port

-OAreactive ooc.boa.conc_model=reactive

-OAthreaded ooc.boa.conc_model=threaded

-OAthread_per_client ooc.boa.conc_model=thread_per_client

-OAthread_per_request ooc.boa.conc_model=thread_per_request

-OAthread_pool n ooc.boa.conc_model=thread_pool
ooc.boa.thread_pool=n

-ORBblocking ooc.orb.conc_model=blocking

-ORBid id ooc.orb.id=id

-ORBnaming ior ooc.service.NameService=ior

-ORBreactive ooc.orb.conc_model=reactive

-ORBrepository ior ooc.service.InterfaceRepository=ior

Table 4.1: Command-line Options
ORBacus

Configuring the ORB and BOA
A few additional command-line options are supported that do not have equivalent proper-
ties. These options are described in Table 4.2.

4.3.3 Filtering Command-line Options

In C++, all command-line options recognized by ORBACUS are automatically removed
from the argv array after initializing the ORB and BOA.

In Java, command-line options are not automatically removed by ORBACUS. If you would
like to have ORBACUS-specific options removed from the argument list, you will need to
do so using two additional methods.

The example below demonstrates how to remove the ORB and BOA options in Java:

1 // Java
2 org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init(args, null);
3 org.omg.CORBA.BOA boa = orb.BOA_init(args, null);
4 String[] noOrbArgs = ((com.ooc.CORBA.ORB)orb).filter_options(args);
5 String[] noBoaArgs =
6 ((com.ooc.CORBA.BOA)boa).filter_options(noOrbArgs);

2,3 Initialize the ORB and BOA.

4 Remove the ORB options (i.e., options starting with -ORB) from args. The array
noOrbArgs contains the filtered options.

-ORBservice name ior ooc.service.name=ior

-ORBthreaded ooc.orb.conc_model=threaded

-ORBtrace_level level ooc.orb.trace_level=level

Option Description

-ORBversion Causes the ORB to print its version to standard output.

-ORBlicense Causes the ORB to print its license to standard output.

Table 4.2: Additional Command-line Options

Option Property

Table 4.1: Command-line Options
ORBacus 49

ORB and BOA Initialization

50

e of

ies,
za-
5,6 Remove the BOA options (i.e., options starting with -OA). By passing noOrbArgs to this
method, we ensure that both ORB and BOA options have been removed.

Note that the casts for the ORB and BOA are necessary because filter_options is an
ORBACUS-specific operation, which only exists in the ORB and BOA classes residing in
the com.ooc.CORBA package, and not in the org.omg.CORBA package.

4.3.4 Using a Configuration File

A convenient way to define a group of properties is to use a configuration file. A sample
configuration file is shown below:

Concurrency models
ooc.orb.conc_model=threaded
ooc.boa.conc_model=thread_pool
ooc.boa.thread_pool=5

Initial services
ooc.service.NameService=iiop://myhost:5000/DefaultNamingContext
ooc.service.EventService=iiop://myhost:5001/DefaultEventChannel
ooc.service.TradingService=iiop://myhost:5002/TradingService

You can define the name of the configuration file1 using a command-line option, an envi-
ronment variable (C++), or a system property (Java):

• Command-line option:

-ORBconfig filename

• Environment variable:

ORBACUS_CONFIG=filename

• Java system property:

ooc.config=filename

The file is read once when the ORB is initialized, and is not read again for the lifetim
the application process.

4.3.5 Defining Properties in Java

Java applications can use the standard Java mechanism for defining system propert
because ORBACUS will also search the system properties during ORB and BOA initiali
tion.

1. ORBACUS for Java also accepts a URL specification as the filename.
ORBacus

Configuring the ORB and BOA

rder
s.
t a
For example:

1 // Java
2 java.util.Properties props = System.getProperties();
3 props.put("ooc.orb.conc_model", "threaded");
4 props.put("ooc.boa.port", "10000");
5 org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init(args, null);

2 Obtain the system properties.

3,4 Define ORBACUS properties.

5 Initialize the ORB.

Java virtual machines typically allow you to define system properties on the command
line. For example, using Sun’s JVM you can do the following:

java -Dooc.boa.port=5000 MyServer

You can also use the java.util.Properties object that is passed to the
org.omg.CORBA.ORB.init() and org.omg.CORBA.ORB.BOA_init() methods to
provide ORBACUS property definitions:

1 // Java
2 java.util.Properties props = new java.util.Properties();
3 props.put("ooc.boa.numeric", "true");
4 org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init(args, props);
5 org.omg.CORBA.BOA boa = orb.BOA_init(args, props);

2 Create a java.util.Properties object to hold our properties.

3 Define ORBACUS properties.

4,5 Initialize the ORB and BOA using the java.util.Properties object.

4.3.6 Precedence of Properties

Given that properties can be defined in several ways, it’s important to establish the o
of precedence used by ORBACUS when collecting and processing the property definition
The order of precedence is listed below, from lowest to highest. Properties defined a
higher precedence override the same properties defined at a lower precedence.

• Configuration file

• User-supplied properties (Java only)

• System properties (Java only)
ORBacus 51

ORB and BOA Initialization

52

perty

o
• Command-line options

For example, a property defined using a command-line option overrides the same pro
defined in a configuration file.

4.3.7 Advanced Property Usage

If you need explicit control of the properties from within your application, you may als
elect to use ORBACUS-specific classes to create and retrieve property definitions.1

In Java, this class is com.ooc.CORBA.Properties, and in C++ the class is
OBProperties. These classes are used internally by ORBACUS, but you can also use
them in your applications.

// Java
package com.ooc.CORBA;

class Properties
{

public static Properties init(String[] args);
public static Properties instance();

public String getProperty(String key);
public void setProperty(String key, String value);
public String[] getKeys(String prefix);
public String[] getKeys();

}

// C++
class OBProperties
{
public:

static OBProperties* init(int& argc, char** argv);
static OBProperties* instance();

typedef OBStrSeq KeySeq;

void setProperty(const char* key, const char* value);
const char* getProperty(const char* key);
KeySeq getKeys(const char* prefix);
KeySeq getKeys();

1. The Properties class is probably more useful for C++ applications, since Java applications
can use system properties to achieve the same effect.
ORBacus

Configuring the ORB and BOA

};

In the discussion below, these classes are referred to generically as the Properties class.

To use a Properties class correctly, you must be aware of the initialization steps taken
by the ORB and BOA objects. The Properties class is a Singleton class, in that only one
instance of the class is allowed. The ORB initializes the Properties object during its
own initialization. However, if you need to use the Properties class before the ORB has
been initialized (e.g., if you need to define an ORB property), then you will need to initial-
ize the Properties class manually.

Defining ORB Properties

The code below demonstrates a situation where an application needs to define a property
prior to initializing the ORB. First, we’ll show the example in C++:

1 // C++
2 #include <OB/CORBA.h>
3 #include <OB/Properties.h>
4

5 // ...
6

7 OBProperties* properties = OBProperties::init(argc, argv);
8 properties -> setProperty("ooc.orb.conc_model", "reactive");
9 CORBA_ORB_var orb = CORBA_ORB_init(argc, argv);

2,3 Include the necessary header files.

7 The call to OBProperties::init() creates the OBProperties object and initializes it
with the contents of a configuration file (if necessary).

8 Set the ORB concurrency model using a property.

9 Initialize the ORB.

The code looks very similar in Java:

1 // Java
2 com.ooc.CORBA.Properties properties =
3 com.ooc.CORBA.Properties.init(args);
4 properties.setProperty("ooc.orb.conc_model", "threaded");
5 org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init(args, null);

2,3 Creates the com.ooc.CORBA.Properties object and initializes it with the contents of a
configuration file (if necessary).
ORBacus 53

ORB and BOA Initialization

54

.
4 Set the ORB concurrency model using a property.

5 Initialize the ORB.

Defining BOA Properties

In a situation where you don’t need access to the Properties object until after the ORB
has been initialized, you can simply do the following:

1 // C++
2 #include <OB/CORBA.h>
3 #include <OB/Properties.h>
4

5 // ...
6

7 CORBA_ORB_var orb = CORBA_ORB_init(argc, argv);
8 OBProperties* properties = OBProperties::instance();
9 properties -> setProperty("ooc.boa.conc_model", "reactive");

10 CORBA_BOA_var boa = orb -> BOA_init(argc, argv);

2,3 Include the necessary header files.

7 Initialize the ORB. The ORB will initialize the Properties object.

8 Obtain the OBProperties instance.

9,10 Set the BOA concurrency model using a property and initialize the BOA.

Note that in this example we are defining a BOA property prior to initializing the BOA
Also note that the Properties object has already been initialized by the ORB, so the
application simply needs to obtain a pointer to the object using the instance method.

Here’s the same example in Java:

1 // Java
2 org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init(args, null);
3 com.ooc.CORBA.Properties properties =
4 com.ooc.CORBA.Properties.instance();
5 properties.setProperty("ooc.boa.conc_model", "threaded");
6 org.omg.CORBA.BOA boa = orb.BOA_init(args, null);

2 Initialize the ORB. The ORB will initialize the Properties object.

3,4 Obtain the Properties instance.

5,6 Set the BOA concurrency model using a property and initialize the BOA.
ORBacus

Configuring the ORB and BOA

oper-
Application-specific Properties

Another situation where the Properties class can be useful is if you’d like to obtain
application-specific properties from the ORBACUS configuration file. Suppose your con-
figuration file looks as follows:

ORBacus configuration file
ooc.orb.conc_model=threaded
Application-specific settings
acme.widget_count=20

The following C++ example demonstrates how to access your application-specific pr
ties:

1 // C++
2 #include <OB/CORBA.h>
3 #include <OB/Properties.h>
4

5 // ...
6

7 CORBA_ORB_var orb = CORBA_ORB_init(argc, argv);
8 OBProperties* properties = OBProperties::instance();
9 const char* value = properties -> getProperty("acme.widget_count");

2,3 Include the necessary header files.

7 The ORB must be initialized so that the configuration file is processed.

8,9 Obtain the OBProperties instance and then retrieve the value of the property.

And in Java:

1 // Java
2 org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init(args, null);
3 com.ooc.CORBA.Properties properties =
4 com.ooc.CORBA.Properties.instance();
5 String value = properties.getProperty("acme.widget_count");

2 The ORB must be initialized so that the configuration file is processed.

3-5 Obtain the Properties instance and then retrieve the value of the property.

Finally, it is important to remember the precedence rules for ORBACUS properties. Specif-
ically, command-line options will always override any existing property definitions,
including those you set within your application.
ORBacus 55

ORB and BOA Initialization

56

r, and

e Chap-

r

4.4 Server Event Loop

A server’s event loop is entered by calling BOA::impl_is_ready. For example, in
Java:1

// Java
org.omg.CORBA.BOA boa = ... // Get the BOA somehow
boa.impl_is_ready(null);

And in C++:

// C++
CORBA_BOA_var boa = ... // Get the BOA somehow
boa -> impl_is_ready(CORBA_ImplementationDef::_nil());

impl_is_ready only returns, if:

• The blocking concurrency model (see Chapter 9) has been chosen for the serve
the client disconnects.

• deactivate_impl is called (see “Deactivating the Server” on page 57).

4.4.1 Mixed Client/Server Applications

In case the reactive or one of the threaded concurrency models has been chosen (se
ter 9) it is possible to service requests without calling impl_is_ready. This is especially
useful in mixed client/server applications. For example, consider a mixed client/serve
program that wants to invoke operations on a server in the program’s main function, but
still wants to be able to receive “callbacks” from this server. In order to receive these
“callback” requests, usually impl_is_ready would have to be called in main. However,
this is not possible, since impl_is_ready blocks, which makes it impossible for the
mixed client/server program to invoke operations on the server after the call to
impl_is_ready.

To solve this problem, ORBACUS provides the operation init_servers. Here’s how
init_servers is called in Java:

// Java
org.omg.CORBA.BOA boa = ... // Get the BOA somehow
((com.ooc.CORBA.BOA)boa).init_servers();

1. The argument to impl_is_ready is currently unused by ORBACUS, therefore the “dummy”
argument null (Java) or CORBA_ImplementationDef::_nil() (C++) is used.
ORBacus

Server Event Loop
This is similar to impl_is_ready, except that init_servers does not block. Note that
the cast for the BOA is necessary because init_servers is an ORBACUS-specific oper-
ation, which only exists in com.ooc.CORBA.BOA, and not in org.omg.CORBA.BOA.

The C++ version look similar:

// C++
CORBA_BOA_var boa = ... // Get the BOA somehow
boa -> init_servers();

4.4.2 Deactivating the Server

A server can be deactivated with a call to BOA::deactivate_impl. This causes
BOA::impl_is_ready to return. For example, consider a server which can be shut down
by a client by calling a deactivate operation on one of the server’s objects. First the
IDL code:

// IDL
interface ShutdownObject
{

void deactivate();
};

On the server side, ShutdownObject can be implemented like this:

1 // C++
2

3 class ShutdownObject_impl : public virtual ShutdownObject_skel
4 {
5 CORBA_BOA_var boa_;
6

7 public:
8

9 ShutdownObject_impl(CORBA_BOA_ptr boa)
10 : boa_(CORBA_BOA::_duplicate(boa))
11 {
12 }
13

14 virtual void deactivate()
15 {
16 boa_ -> deactivate_impl(CORBA_ImplementationDef::_nil());
17 }
18 };
ORBacus 57

ORB and BOA Initialization

58
3 A servant class for ShutdownObject is defined. For more information on how to imple-
ment servant classes, see Chapter 5.

5 A BOA is needed to call deactivate_impl.

9-12 The constructor initializes the BOA member.

14-17 deactivate calls deactivate_impl on the BOA.

Here’s the main code for this example:

1 // C++
2

3 int main(int argc, char* argv[], char*[])
4 {
5 CORBA_ORB_var orb = CORBA_ORB_init(argc, argv);
6 CORBA_BOA_var boa = orb -> BOA_init(argc, argv);
7

8 ShutdownObject_var shutdownObj = new ShutdownObject_impl(boa);
9

10 boa -> impl_is_ready(CORBA_ImplementationDef::_nil());
11

12 return 0;
13 }

5,6 ORB and BOA initialization.

8 The shutdown object is created.

10 The impl_is_ready main event loop is entered. This call only returns if deactivate is
called.

12 The server was deactivated, so main can now return.

The client can use the deactivate call as shown below:

1 // C++
2

3 int main(int argc, char* argv[], char*[])
4 {
5 CORBA_ORB_var orb = CORBA_ORB_init(argc, argv);
6

7 ShutdownObject_var shutdownObj = ... // Get a reference somehow
8

9 try
10 {
11 shutdownObj -> deactivate();
ORBacus

Applets

 a

es-
12 }
13 catch(const CORBA_COMM_FAILURE& ex)
14 {
15 }
16

17 return 0;
18 }

5 Initialize the ORB.

7 Get a reference to the server’s shutdown object somehow, for example by reading in
“stringified” object reference (see “Stringified Object References” on page 85).

9-15 Call deactivate on the shutdown object. COMM_FAILURE exceptions must be ignored,
since the server may shut down immediately, without any chance for a proper reply m
sage to be delivered back to the client. Therefore, the client will usually get a
COMM_FAILURE exception at this point.

4.5 Applets

4.5.1 Adding ORBacus Applets to Web Pages

Like any other applet, ORBACUS applets can be added to HTML pages with the APPLET
tag:

<APPLET CODE=”Client.class” ARCHIVE=”OB.jar” WIDTH=500 HEIGHT=300>
</APPLET>

It is necessary to tell the Web browser where to find the ORBACUS Java classes. This is
best done with the ARCHIVE attribute as shown above. An alternative is to use the
CODEBASE attribute and to extract the OB.jar archive in the directory defined by
CODEBASE. For more information, please consult your Java Development Kit documenta-
tion.

4.5.2 Defining ORB and BOA Options for an Applet

The PARAM tag is used in HTML to define parameters for an applet. When initialized by an
applet, the ORB looks for the parameters ORBparams and BOAparams, whose values
should be command-line options separated by spaces.

For example, the HTML code below uses the -ORBconfig option to specify the URL of
the ORB configuration file:

<APPLET CODE=”Client.class” ARCHIVE=”OB.jar” WIDTH=500 HEIGHT=300>
ORBacus 59

ORB and BOA Initialization

60

ded.

t
ceive

ou
eb
y in
<PARAM NAME=”ORBparams” VALUE=”-ORBconfig http://www/orb.cfg”>
</APPLET>

Your applet can also define ORBACUS configuration properties using Java system proper-
ties, or using the java.util.Properties object passed to
org.omg.CORBA.ORB.init() . See “Configuring the ORB and BOA” on page 45 for
more information.

4.5.3 Defining the ORB Class Parameters

Some Web browsers1 have a built-in ORB. In order to use ORBACUS instead of this built-
in ORB, you must set the following applet parameters:

<APPLET CODE=”Client.class” ARCHIVE=”OB.jar” WIDTH=500 HEIGHT=300>
<PARAM NAME=”org.omg.CORBA.ORBClass”

VALUE=”com.ooc.CORBA.ORB”>
<PARAM NAME=”org.omg.CORBA.ORBSingletonClass”

VALUE=”com.ooc.CORBA.ORBSingleton”>
</APPLET>

4.5.4 Security Issues

Web browsers generally place several security restrictions on applets that you need to be
aware of when developing an applet using ORBACUS:

• Applets can only communicate with the host from which the applet was downloa

• Applets cannot accept connections from any host.

The first limitation forces you to run any CORBA server applications that your applet
communicates with on your Web server host.2 The second limitation prevents your apple
from acting as a CORBA server, which is often necessary when a client wishes to re
callbacks from a server.

These limitations are the most common causes of security exceptions in an applet. Y
must ensure that any object references used by your applet refer to objects on the W
server host. Furthermore, you must not attempt to enable CORBA server functionalit
your applet by initializing the BOA.

1. For example, Netscape v4 has a built-in ORB.

2. Netscape v4 also does not normally allow CORBA applets to be loaded from a local (i.e., filesys-
tem) HTML file, causing a SecurityException when the applet attempts to connect to the
CORBA server. To workaround this problem, CORBA applets must be downloaded from a Web
server.
ORBacus

CHAPTER 5 CORBA Objects
object
lled a

nd
y, fol-

just

ethod
y the

for-
 to
5.1 Overview

A CORBA object is an object with an interface defined in CORBA IDL. CORBA objects
have different representations in clients and servers.

• A server implements a CORBA object in a concrete programming language, for
example in C++ or Java. This is done by writing an implementation class for the
CORBA object and by instantiating this class. The resulting object is called a servant.

• A client that wants to make use of a servant implemented by a server creates an
that delegates all operation calls to the servant via the ORB. Such an object is ca
proxy.

When a client invokes a method on the local proxy object, the ORB packs the input
parameters and sends them to the server, which in turn unpacks these parameters a
invokes the actual method on the servant. Output parameters and return values, if an
low the reverse path back to the client. From the client’s perspective, the proxy acts
like the servant since it hides all the communication details within itself.

A servant must somehow be connected to the ORB, so that the ORB can invoke a m
on the servant when a request is received from a client. This connection is handled b
object adapter, as shown in Figure 5.1.

ORBACUS comes with an object adapter called the “Basic Object Adapter” (BOA). Un
tunately, the specification for the BOA [2] is quite incomplete, leaving a lot of freedom
ORBacus 61

CORBA Objects

62

e
ORB implementors.1 Therefore all BOAs are in fact more or less vendor specific. It is
therefore necessary to have a chapter explaining how servants are implemented in ORBA-
CUS and how they are connected to the ORBACUS BOA implementation.

5.2 Implementing Servants

In this chapter, we will implement servant classes (or “implementation classes”) for th
IDL interfaces defined below:

1 // IDL
2

3 interface A
4 {
5 void op_a();
6 };
7

8 interface B
9 {

10 void op_b();
11 };
12

13 interface I : A, B
14 {

Figure 5.1: Servants, Proxies and the Object Adapter

1. Because of these problems, the OMG is currently defining a new object adapter, the so-called
“Portable Object Adapter” (POA). Future versions of ORBACUS will implement the POA.

Proxy

Servant

Object
Adapter

ORB

Client Server
ORBacus

Implementing Servants
15 void op_i();
16 };

3-6 An interface A is defined with the operation op_a.

8-11 An interface B is defined with the operation op_b.

13-16 Interface I is defined, which is derived from A and B. It also defines a new operation
op_i.

5.2.1 Implementing Servants using Inheritance

ORBACUS for C++ and ORBACUS for Java both support the use of inheritance for inter-
face implementation. To implement an interface using inheritance, you write a servant
class that inherits from a skeleton class generated by the IDL translator. By convention,
the name of the servant class should be the name of the interface with the suffix _impl,
e.g., for an interface I, the implementation class is named I_impl.1

Inheritance using C++

In C++, I_impl must inherit from the skeleton class I_skel that was generated by the
IDL-to-C++ translator. If I inherits from other interfaces, for example from the interfaces
A and B, then I_impl must also inherit from the corresponding implementation classes
A_impl and B_impl.

1 // C++
2

3 class A_impl : virtual public A_skel
4 {
5 public:
6 virtual void op_a();
7 };
8

9 class B_impl : virtual public B_skel
10 {
11 public:
12 virtual void op_b();
13 };
14

15 class I_impl : virtual public I_skel,
16 virtual public A_impl,

1. These naming rules are not mandatory, they are just a recommendation.
ORBacus 63

CORBA Objects

64
17 virtual public B_impl
18 {
19 public:
20 virtual void op_i();
21 };

3-7 The servant class A_impl is defined, inheriting from the skeleton class A_skel. If op_a
had any parameters, these parameters would be mapped according to the standard IDL-to-
C++ mapping rules [2].

9-14 This is the servant class for B_impl.

15-21 The servant class for I_impl is not only derived from I_skel, but also from the servant
classes A_impl and B_impl.

Note that virtual public inheritance must be used. The only situation in which the
keyword virtual is not necessary is for an interface I which does not inherit from any
other interface and from which no other interface inherits. This means that the implemen-
tation class I_impl only inherits from the skeleton class I_skel and no implementation
class inherits from I_impl.

It is not strictly necessary to have an implementation class for every interface. For exam-
ple, it is sufficient to only have the class I_impl as long as I_impl implements all inter-
face operations, including the operations of the base interfaces:

1 // C++
2

3 class I_impl : virtual public I_skel
4 {
5 public:
6 virtual void op_a();
7 virtual void op_b();
8 virtual void op_i();
9 };

3 Now I_impl is only derived from I_skel, but not from the other servant classes.

6-8 I_impl must implement all operations from the interface I as well as the operations of all
interfaces from which I is derived.

Inheritance using Java

Several files are generated by the ORBACUS IDL-to-Java translator for an interface I,
including:
ORBacus

Implementing Servants

lass

or a
r
ss

 an
ta-
vail-
n as

s.
• I.java, which defines a Java interface I containing public methods for the
operations and attributes of I, and

• _IImplBase.java, which is an abstract skeleton class that serves as the base c
for servant classes.

In contrast to C++, Java’s lack of multiple inheritance currently makes it impossible f
servant class to inherit operation implementations from other servant classes. For ou
interface I it is therefore necessary to implement all operations in a single servant cla
I_impl, regardless of whether those operations are defined in I or in an interface from
which I is derived.

1 // Java
2

3 public class I_impl extends _IImplBase
4 {
5 public void op_a()
6 {
7 }
8

9 public void op_b()
10 {
11 }
12

13 public void op_i()
14 {
15 }
16 }

3-16 The servant class I_impl is defined, which implements op_i, as well as the inherited
operations op_a and op_b.

5.2.2 Implementing Servants using Delegation

Sometimes it is not desirable to use an inheritance-based approach for implementing
interface. This is especially true if the use of inheritance would result in an implemen
tion being incompatible with existing legacy code. Therefore, another alternative is a
able for implementing servants which does not use inheritance. A special class, know
a tie class, can be used to delegate the implementation of an interface to another clas
ORBacus 65

CORBA Objects

66
Delegation using C++

The ORBACUS IDL-to-C++ translator can automatically generate a tie class for an inter-
face in the form of a template class. A tie template class is derived from the corresponding
skeleton class and has the same name as the skeleton, with the suffix _tie appended.

For the interface I from the C++ example above, the template I_skel_tie is generated
and must be instantiated with a class that implements all operations of I. By convention,
the name of this class should be the name of the interface with _impl_tie appended.1

In contrast to the inheritance-based approach, it is not necessary that the class implement-
ing I’s operations, i.e., I_impl_tie, be derived from any skeleton class. Instead, an
instance of I_skel_tie delegates all operation calls to I_impl_tie, as shown in Figure
5.2.

1. Again, you are free to choose whatever name you like. This is just a recommendation.

Figure 5.2: Class Hierarchy for Inheritance and Delegation Implementation in C++

I_skel_tie

I

T

delegates to

I_skel

I_impl

I_impl_tie
ORBacus

Implementing Servants

ion-

d

ments
Here is our definition of I_impl_tie:

1 // C++
2

3 class I_impl_tie
4 {
5 public:
6 virtual void op_a();
7 virtual void op_b();
8 virtual void op_i();
9 };

3 I_impl_tie is defined, which is not derived from any other class.

6-8 I_impl_tie must implement all of I’s operations, including inherited operations.

A servant class for I can then be defined using the I_skel_tie template:

1 // C++
2 typedef I_skel_tie< I_impl_tie > I_impl;

2 The servant class I_impl is defined as a template instance of I_skel_tie, parameter-
ized with I_impl_tie.

Delegation using Java

The ORBACUS IDL-to-Java translator generates two additional files to support delegat
based servant implementation for an interface I:

• IOperations.java, an interface that defines public methods for all attributes an
operations of I, and

• _IImplBase_tie.java, the tie class that inherits from _IImplBase and delegates
all requests to an instance of IOperations.

To implement our servant class using delegation, we need to write a class that imple
the IOperations interface:

1 // Java
2

3 public class I_impl_tie implements IOperations
4 {
5 public void op_a()
6 {
7 }
8

ORBacus 67

CORBA Objects

68

ava
9 public void op_b()
10 {
11 }
12

13 public void op_i()
14 {
15 }
16 }

3 The servant class I_impl_tie is defined to implement the IOperations interface.

5-15 I_impl_tie must implement all of I’s operations, including inherited operations.

Figure 5.3 illustrates the relationship between the classes generated by the IDL-to-J
translator and the servant implementation classes.

Figure 5.3: Class Hierarchy for Inheritance and Delegation Implementation in Java

_IImplBase_tie

I

delegates to

_IImplBase

I_impl IOperations

I_impl_tie
ORBacus

Creating Servants
5.3 Creating Servants

Servants are created the same way in both C++ and Java: once your servant class is writ-
ten, you simply instantiate a servant with new.

5.3.1 Creating Servants using C++

Here is how to create servants using C++:

1 // C++
2 I_var impl = new I_impl;
3 I_var anotherImpl = new I_impl;

2,3 Two servants, impl and anotherImpl, are created with new.

In case the servant class was written using the delegation approach, an object of the class
implementing I’s operations must be passed to the servant’s constructor:

1 // C++
2 I_impl_tie* impl = new I_impl_tie;
3 I_var tie = new I_skel_tie< I_impl_tie >(impl, CORBA_TRUE);

2 A new I_impl_tie is created with new.

3 An instance of I_skel_tie parameterized with I_impl_tie is created, taking impl as a
parameter. All operation calls to tie will then be delegated to impl.

In this example, the lifetime of impl is coupled to the lifetime of the servant tie. That is,
when tie is destroyed, delete impl is called. In case you don’t want the lifetime of
impl to be coupled to the lifetime of tie, for example because you want to create impl
on the stack and not on the heap (making it illegal to call delete on impl), use the fol-
lowing code:

1 // C++
2 I_impl_tie impl;
3 I_var tie = new I_skel_tie< I_impl_tie >(&impl, CORBA_FALSE);

2 A new I_impl_tie is created, this time on the stack, not on the heap.

3 An instance of I_skel_tie is created. The CORBA_FALSE parameter tells tie not to call
delete on impl.
ORBacus 69

CORBA Objects

70

g and
5.3.2 Creating Servants using Java

This example demonstrates how to create servants using Java:

1 // Java
2 I impl = new I_impl();
3 I anotherImpl = new I_impl();

2,3 Two servants, impl and anotherImpl, are created with new.

In case the servant class was written using the delegation approach, an object implement-
ing the IOperations interface must be passed to the servant’s constructor:

1 // Java
2 I_impl_tie impl = new I_impl_tie();
3 _IImplBase_tie tie = new _IImplBase_tie(impl);

2 A new I_impl_tie is created.

3 An instance of _IImplBase_tie is created, taking impl as a parameter. All operation
calls to tie will then be delegated to impl.

Every tie class generated by the IDL-to-Java translator includes methods for accessin
changing the implementation object:

1 // Java
2

3 public class _IImplBase_tie extends _IImplBase
4 {
5 ...
6

7 public IOperations _delegate() { ... }
8

9 public void _delegate(IOperations delegate) { ... }
10

11 ...
12 }

3 The tie class for interface I is defined.

7 This method returns the current delegate (i.e., implementation) object.

9 This method changes the delegate object.
ORBacus

Connecting Servants
5.4 Connecting Servants

Servants must be connected to the object adapter in order to receive requests from clients.
Usually this is done automatically whenever an object reference to a servant is passed to a
client as a parameter or return value. Servants are also connected implicitly when used in
calls to operations like object_to_string. However, it is also possible to connect a ser-
vant explicitly.

5.4.1 Connecting Servants using C++

The following code shows how to explicitly connect a servant:

1 // C++
2 CORBA_ORB_var orb = ... // Get a reference to the ORB somehow
3 I_var impl = new I_impl;
4 orb -> connect(impl);

2 To connect a servant, we need the ORB.

3 A new servant impl is created.

4 The new servant is connected to the object adapter.

A servant can also be disconnected from the object adapter. This is done with the
disconnect call:

1 // C++
2 orb -> disconnect(impl);

2 The servant impl is disconnected from the object adapter. From now on, requests from
clients to this servant will cause an OBJECT_NOT_EXIST exception to be raised.

5.4.2 Connecting Servants using Java

This is how Java servants are explicitly connected to the object adapter:

1 // Java
2 org.omg.CORBA.ORB orb = ... // Get a reference to the ORB somehow
3 I impl = new I_impl();
4 orb.connect(impl);

2 To connect a servant, we need the ORB.

3 A new servant impl is created.
ORBacus 71

CORBA Objects

72

amed

ase the
4 The new servant is connected to the object adapter.

A servant can also be disconnected from the object adapter. This is done with the
disconnect call:

1 // Java
2 orb.disconnect(impl);

2 The servant impl is disconnected from the object adapter. From now on, requests from
clients to this servant will cause an OBJECT_NOT_EXIST exception to be raised.

5.4.3 Named Servants

ORBACUS for C++ and ORBACUS for Java support the notion of named servants, in which
a name is assigned to a servant when it is connected to the object adapter, allowing a client
to identify a servant by its name. The ORB operation get_inet_object is used on the
client side to resolve a named servant within a specific server (see “Connecting to N
Objects” on page 88).

For named servants, a parameter for the servant’s name must be provided to connect. For
example, in C++:

// C++
CORBA_ORB_var orb = ... // Get a reference to the ORB somehow
orb -> connect(impl, "MyName");

And in Java;

// Java
org.omg.CORBA.ORB orb = ... // Get a reference to the ORB somehow
((com.ooc.CORBA.ORB)orb).connect(impl, "MyName");

In both examples, the servant impl is connected to the object adapter, using the name
“MyName”.

The cast to com.ooc.CORBA.ORB is necessary because the Java overloading of connect
in support of named servants is an ORBACUS-specific extension and is not available in
org.omg.CORBA.ORB.

The name assigned to a servant must be unique among all servants in a server. In c
name is already in use, the INV_IDENT exception is raised.
ORBacus

Factory Objects

g

 by a

he
re-

 cli-
5.5 Factory Objects

It is quite common to use the Factory [10] design pattern in CORBA applications. In short,
a factory object provides access to one or more additional objects. In CORBA applica-
tions, a factory object can represent a focal point for clients. In other words, the object ref-
erence of the factory object can be published in a well-known location, and clients know
that they only need to obtain this object reference in order to gain access to other objects in
the system, thereby minimizing the number of object references that need to be published.

The Factory pattern can be applied in a wide variety of situations, including the following:

• Security - A client is required to provide security information before the factory
object will allow the client to have access to another object.

• Load-balancing - The factory object manages a pool of objects, often representin
some limited resource, and assigns them to clients based on some utilization
algorithm.

• Polymorphism - A factory object enables the use of polymorphism by returning
object references to different implementations depending on the criteria specified
client.

These are only a few examples of the potential applications of the Factory pattern. T
examples listed above can also be used in any combination, depending on the requi
ments of the system being designed.

A simple application of the Factory pattern, in which a new object is created for each
ent, is illustrated below. The implementation uses the following interface definitions:

1 // IDL
2 interface Product
3 {
4 void destroy();
5 };
6

7 interface Factory
8 {
9 Product createProduct();

10 };

2-5 The Product interface is defined. The destroy operation allows a client to destroy the
object when it is no longer needed.

7-10 The Factory interface is defined. The createProduct operation returns the object ref-
erence of a new Product.
ORBacus 73

CORBA Objects

74

of
 ser-
ill be
5.5.1 Factory Objects using C++

First, we’ll implement the Product interface:

1 // C++
2 class Product_impl : public virtual Product_skel
3 {
4 CORBA_ORB_var orb_;
5

6 public:
7 void Product_impl(CORBA_ORB_ptr orb)
8 : orb_(CORBA_ORB::_duplicate(orb))
9 {

10 }
11

12 virtual void destroy()
13 {
14 orb_ -> disconnect(this);
15 }
16 };

2 Servant class Product_impl is defined as an implementation of the Product interface.

7-8 The constructor takes an ORB parameter and saves it for later use.

14 The destroy operation disconnects the object from the object adapter. A side-effect
disconnecting the object is that the object adapter no longer holds a reference to the
vant. If there are no other references to this servant in the server, then the servant w
destroyed. See “Releasing Proxies and Servants” on page 98 for more information.

Next, we’ll implement the factory:

1 // C++
2 class Factory_impl : public virtual Factory_skel
3 {
4 CORBA_ORB_var orb_;
5

6 public:
7 void Factory_impl(CORBA_ORB_ptr orb)
8 : orb_(CORBA_ORB::_duplicate(orb))
9 {

10 }
11

12 virtual Product_ptr createProduct()
13 {
ORBacus

Factory Objects

bage
14 Product_ptr result = new Product_impl(orb_);
15 orb_ -> connect(result);
16 return result;
17 }
18 };

2 Servant class Factory_impl is defined as an implementation of the Factory interface.

7-8 The constructor takes an ORB parameter and saves it for later use.

14-16 The createProduct operation instantiates a new Product servant, connects it to the
object adapter, and returns an object reference to the client. Use of the connect operation
is optional; an object will be connected automatically if it has not already been connected
at the time a reference to the object is transmitted to a client.

Users familiar with other CORBA implementations may think there is an error in the
createProduct method because _duplicate is not being used. However, the code is
correct. See Chapter 7 for a complete discussion of reference counts.

5.5.2 Factory Objects using Java

Here is our Java implementation of the Product interface:

1 // Java
2 public class Product_impl extends _ProductImplBase
3 {
4 org.omg.CORBA.ORB orb_;
5

6 public Product_impl(org.omg.CORBA.ORB orb)
7 {
8 orb_ = orb;
9 }

10

11 public void destroy()
12 {
13 orb_.disconnect(this);
14 }
15 }

2 Servant class Product_impl is defined as an implementation of the Product interface.

13 The destroy operation disconnects the object from the object adapter. As long as no
other references to the servant are held in the server, the object will be eligible for garbage
collection. See “Reference Counting in Java” on page 95 for more information on gar
collection of servant objects.
ORBacus 75

CORBA Objects

76

 the

roys
 for
duct

eep
Here’s our implementation of the factory:

1 // Java
2 public class Factory_impl extends _FactoryImplBase
3 {
4 org.omg.CORBA.ORB orb_;
5

6 public Factory_impl(org.omg.CORBA.ORB orb)
7 {
8 orb_ = orb;
9 }

10

11 public Product createProduct()
12 {
13 Product result = new Product_impl(orb_);
14 orb_.connect(result);
15 return result;
16 }
17 }

2 Servant class Factory_impl is defined as an implementation of the Factory interface.

13-16 The createProduct operation instantiates a new Product servant, connects it to the
object adapter, and returns an object reference to the client. Like in the C++ version,
explicit call to connect is optional.

5.5.3 Caveats

In these simple examples, the factory objects do not maintain any references to the
Product servants they create; it is the responsibility of the client to ensure that it dest
a Product object when it is no longer needed. This design has a significant potential
resource leaks in the server, as it is quite possible that a client will not destroy its Pro
objects, either because the programmer who wrote the client forgot to invoke destroy, or
because the client program crashed before it had a chance to clean up. You should k
these issues in mind when designing your own factory objects.1

1. Two possible strategies for handling this issue include: time-outs, in which a servant that has not
been used for some length of time is automatically released; and expiration, in which an object
reference is only valid for a certain length of time, after which a client must obtain a new refer-
ence. The implementation of these solutions is beyond the scope of this manual.
ORBacus

Getting a Servant from a Reference

fer-

low:

y
5.6 Getting a Servant from a Reference

In some situations it may be necessary to obtain the servant implementation object of an
object reference (typically because you need to invoke a method on the servant implemen-
tation object that is not available via its IDL interface).

In ORBACUS, servant classes are derived from skeleton classes, which are derived from
proxy classes (so-called “stub” classes). Therefore, you can simply cast an object re
ence to its servant class.

5.6.1 Getting a Servant using C++

In C++, dynamic_cast<> can be used to obtain a pointer to the servant, as shown be

1 // C++
2

3 class I_impl : virtual public I_skel
4 {
5 };
6

7 void foo(I_ptr ref)
8 {
9 I_impl* p = dynamic_cast<I_impl*>(ref);

10

11 if(p)
12 {
13 // The implementation for ref is in the same process
14 }
15 else
16 {
17 // The implementation for ref is not in the same process
18 }
19 }

3 A servant class for an interface I is defined.

7 The operation foo takes an object reference ref to an object I as a parameter.

9 dynamic_cast<> is used on ref to get a pointer to an I_impl.

11-18 The call to dynamic_cast<> returns a pointer to the servant if the object referred to b
ref was local, or a null pointer otherwise.
ORBacus 77

CORBA Objects

78
In case your compiler does not support RTTI1, you can use the OB_MAKE_NARROW_IMPL
macros from the ORBACUS header file Narrow_impl.h to obtain a pointer to a servant
class:

1 // C++
2

3 #include <OB/Narrow_impl.h>
4

5 class I_impl : virtual public I_skel
6 {
7 OB_MAKE_NARROW_IMPL(I_impl)
8 };
9 OB_MAKE_NARROW_IMPL_1(I_impl, I_skel)

10

11 void foo(I_ptr ref)
12 {
13 I_impl* p = I_impl::_narrow_impl(ref);
14

15 if(p)
16 {
17 // The implementation for ref is local
18 }
19 else
20 {
21 // The implementation for ref is not local
22 }
23 }

3 The file <OB/Narrow_impl.h> must be included for the definitions of the
OB_MAKE_NARROW_IMPL macros.

5-9 A servant class for I is defined with OB_MAKE_NARROW_IMPL as shown.

13 The only other difference is that now I_impl::_narrow_impl must be used instead of
dynamic_cast<>.

The macro OB_MAKE_NARROW_IMPL_1 can only be used if the servant class has exactly
one super class (the skeleton class). If the servant class has two or more super classes, use
the macro OB_MAKE_NARROW_IMPL_n, where n is the number of super classes. For exam-
ple:

1. RunTime Type Identification.
ORBacus

Getting a Servant from a Reference

ava:
1 // C+++
2

3 class C_impl : virtual public C_skel,
4 virtual public A_impl,
5 virtual public B_impl
6 {
7 OB_MAKE_NARROW_IMPL(C_impl)
8 };
9

10 OB_MAKE_NARROW_IMPL_3(C_impl, C_skel, A_impl, B_impl)

3-5 C_impl is derived from three classes, C_skel, A_impl and B_impl.

10 Now OB_MAKE_NARROW_IMPL_3 must be used, with the names of all super classes as
arguments.

If you are using ORBACUS on multiple platforms, where some support RTTI and others
don’t, it might be best to always use OB/Narrow_impl.h, since _narrow_impl will
automatically use dynamic_cast<> on those platforms where it is available.

5.6.2 Getting a Servant using Java

This example demonstrates how to cast an object reference to the servant class in J

1 // Java
2

3 public class I_impl extends _IImplBase
4 {
5 }
6

7 public void foo(I ref)
8 {
9 try

10 {
11 I_impl impl = (I_impl)ref;
12 // The implementation for ref is local
13 }
14 catch(ClassCastException ex)
15 {
16 // The implementation for ref is not local
17 }
18 }

3-5 Servant class I_impl is defined.
ORBacus 79

CORBA Objects

80
7 The method foo takes an object reference ref to an I object as a parameter.

11 An attempt is made to cast ref to I_impl. If this cast succeeded, then the servant is local
(i.e., the servant is in the same address space as the program).

16 If the cast failed, then ClassCastException will be thrown, indicating that the servant
is not in the same address space as the program. In other words, the reference ref is really
the proxy for a remote object, therefore you cannot obtain a reference to the servant.
ORBacus

CHAPTER 6 Locating Objects
6.1 Obtaining Object References

Using CORBA, an object can obtain a reference to another object in a multitude of ways.
One of the most common ways is by receiving an object reference as the result of an oper-
ation, as demonstrated by the following example:

1 // IDL
2 interface A
3 {
4 };
5

6 interface B
7 {
8 A getA();
9 };

3-5 An interface A is defined.

7-10 An interface B is defined with an operation returning an object reference to an A.

On the server side, A and B can be implemented in C++ as follows:

1 // C++
2 class A_impl : virtual public A_skel
3 {
ORBacus 81

Locating Objects

82
4 };
5

6 class B_impl : virtual public B_skel
7 {
8 A_var a_;
9

10 public:
11

12 void B_impl()
13 {
14 a_ = new A_impl;
15 }
16

17 virtual A_ptr getA()
18 {
19 return A::_duplicate(a_);
20 }
21 };

2-4 The servant class A_impl is defined, which inherits from the skeleton class A_skel.

6-21 The servant class B_impl is defined, which inherits from the skeleton class B_skel.

12-15 B_impl’s constructor creates a new A_impl servant.

17-20 getA returns an object reference to the A_impl servant.

In Java, the interfaces can be implemented like this:

1 // Java
2 public class A_impl extends _AImplBase
3 {
4 }
5

6 public class B_impl extends _BImplBase
7 {
8 A a_;
9

10 public B_impl()
11 {
12 a_ = new A_impl();
13 }
14

15 A getA()
16 {
17 return a_;
ORBacus

Lifetime of Object References

f

ence
e
s

 old
18 }
19 }

2-4 The servant class A_impl is defined, which inherits from the skeleton class _AImplBase.

6-19 The servant class B_impl is defined, which inherits from the skeleton class _BImplBase.

10-13 B_impl’s constructor creates a new A_impl servant.

15-18 getA returns an object reference to the A_impl servant.

A client written in C++ could use code like the following to get references to A:

1 // C++
2 B_var b = ... // Get a B object reference somehow
3 A_var a = b -> getA();

3 Invoke getA to obtain an object reference for an A.

And in Java:

1 // Java
2 B b = ... // Get a B object reference somehow
3 A a = b.getA();

3 Invoke getA to obtain an object reference for an A.

In this example, once your application has a reference to a B object, it can obtain a refer-
ence to an A object using getA. The question that arises, however, is How do I obtain a
reference to a B object? This chapter answers that question by describing a number o
ways an application can bootstrap its first object reference.

6.2 Lifetime of Object References

All of the strategies described in this chapter involve the publication of an object refer
in some form. A common source of problems for newcomers to CORBA is the lifetim
and validity of object references. Using IIOP, an object reference can be thought of a
encapsulating several pieces of information:

• hostname

• port number

• object key

If any of these items were to change, any published object references containing the
information would likely become invalid and their use might result in an INV_OBJREF
ORBacus 83

Locating Objects

84

n for
, sub-

our

fer-
ts

 for
exception being raised. The sections below discuss each of these components and describe
the steps you can take to ensure that a published object reference remains valid.

6.2.1 Hostname

By default, the hostname in an object reference is the canonical hostname of the host on
which the server is running. Therefore, running the server on a new host invalidates any
previously published object references for the old host.

ORBACUS provides the -OAhost option to allow you to override the hostname in any
object references published by the server. This option can be especially helpful when used
in conjunction with the Domain Name System (DNS), in which the -OAhost option spec-
ifies a hostname alias that is mapped by DNS to the canonical hostname.

See “Configuring the ORB and BOA” on page 45 for more information on the -OAhost
option.

6.2.2 Port Number

Each time a server is executed, the BOA selects a new port number on which to liste
incoming requests. Since the port number is included in published object references
sequent executions of the server could invalidate existing object references.

To overcome this problem, ORBACUS provides the -OAport option that causes the BOA
to use the specified port number. You will need to select an unused port number on y
host, and use that port number every time the server is started.

See “Configuring the ORB and BOA” on page 45 for more information on the -OAport
option.

6.2.3 Object Key

Each object created by a server is assigned a unique key that is included in object re
ences published for the object. Furthermore, the order in which your server creates i
objects affects the keys assigned to those objects.

To ensure that your objects always have the same keys, ORBACUS allows you to specify a
unique name to be used as the key for an object. See “Named Servants” on page 72
more information.
ORBacus

Stringified Object References

ject
 and
to an

ented

using
n
6.3 Stringified Object References

The CORBA specification defines two operations on the ORB interface for converting
object references to and from strings.

// IDL
module CORBA
{

interface ORB
{

string object_to_string(in Object obj);
Object string_to_object(in string ref);

};
};

Using “stringified” object references is the simplest way of bootstrapping your first ob
reference. In short, the server must create a stringified object reference for an object
make the string available to clients. A client obtains the string and converts it back in
object reference, and can then invoke on the object.

The examples discussed in the sections below are based on the IDL definitions pres
at the beginning of this chapter.

6.3.1 Using a File

One way to publish a stringified object reference is for the server to create the string
object_to_string and then write it to a well-known file. Subsequently, the client ca
read the string from the file and use it as the argument to string_to_object. This
method is shown in the following C++ and Java examples.

First, we’ll look at the relevant server code:

1 // C++
2 CORBA_ORB_var orb = ... // Get a reference to the ORB somehow
3 B_var impl = new B_impl;
4 CORBA_String_var s = orb -> object_to_string(impl);
5 ofstream out("object.ref")
6 out << s << endl;
7 out.close();

3 A servant for the interface B is created.

4 The object reference of the servant is “stringified”.

5-7 The stringified object reference is written to a file.
ORBacus 85

Locating Objects

86

 and
In Java, the server code looks like this:

1 // Java
2 org.omg.CORBA.ORB orb = ... // Get a reference to the ORB somehow
3 B impl = new B_impl();
4 String ref = orb.object_to_string(impl);
5 java.io.PrintWriter out = new PrintWriter(
6 new java.io.FileOutputStream("object.ref"));
7 out.println(ref);
8 out.flush();

3 A servant for the interface B is created.

4 The object reference of the servant is “stringified”.

5-8 The stringified object reference is written to a file.

Now that the stringified object reference resides in a file, our clients can read the file
convert the string to an object reference:

1 // C++
2 CORBA_ORB_var orb = ... // Get a reference to the ORB somehow
3 ifstream in("object.ref");
4 char s[1000];
5 in >> s;
6 CORBA_Object_var obj = orb -> string_to_object(s);
7 B_var b = B::_narrow(obj);

3-5 The stringified object reference is read.

6 string_to_object creates an object reference from the string.

7 Since the return value of string_to_object is of type CORBA_Object_ptr,
B::_narrow must be used to get a B_ptr (which is assigned to a self-managed B_var,
in this example).

1 // Java
2 org.omg.CORBA.ORB orb = ... // Get a reference to the ORB somehow
3 java.io.BufferedReader in =
4 new java.io.BufferedReader(new FileReader("object.ref"));
5 String ref = in.readLine();
6 org.omg.CORBA.Object obj = orb.string_to_object(ref);
7 B b = BHelper.narrow(obj);

3-5 The stringified object reference is read.
ORBacus

Stringified Object References
6 string_to_object creates an object reference from the string.

7 Use BHelper.narrow to narrow the return value of string_to_object to B.

6.3.2 Using a URL

It is sometimes inconvenient or impossible for clients to have access to the same filesys-
tem as the server in order to read a stringified object reference from a file. A more flexible
method is to publish the reference in a file that is accessible by clients as a URL. Your cli-
ents can then use HTTP or FTP to obtain the contents of the file, freeing them from any
local filesystem requirements. This strategy only requires that your clients know the
appropriate URL, and is especially suited for use in applets.

Note: This example will only be shown in Java, because of its built-in support for URLs,
but the strategy can also be used in C++.

1 // Java
2 import java.io.*;
3 import java.net.*;
4

5 String location = "http://www.mywebserver/object.ref";
6 org.omg.CORBA.ORB orb = ... // Get a reference to the ORB somehow
7

8 URL url = new URL(location);
9 URLConnection conn = url.openConnection();

10 BufferedReader in =
11 new BufferedReader(
12 new InputStreamReader(conn.getInputStream()));
13 String ref = in.readLine();
14 in.close();
15

16 org.omg.CORBA.Object object = orb.string_to_object(ref);
17 B b = BHelper.narrow(object);

5 location is the URL of the file containing the stringified object reference.

8-14 Read the string from the URL connection.

16 Convert the string to an object reference.

17 Narrow the reference to a B object.
ORBacus 87

Locating Objects

88

encies
n use

ed a
 to
object.

g
the
6.3.3 Using Applet Parameters

In addition to using the URL method described in the previous section, an applet can also
use an applet parameter to obtain a stringified object reference. The following HTML
illustrates this concept:

<APPLET CODE="Client.class" ARCHIVE="OB.jar" WIDTH=500 HEIGHT=300>
<PARAM NAME="ref" VALUE="IOR:000012031...">

</APPLET>

The stringified object reference is inserted directly into the HTML file and passed to the
applet as a parameter. The applet can retrieve this parameter and convert it to an object
reference as shown below:

1 // Java
2 org.omg.CORBA.ORB orb = ... // Get a reference to the ORB somehow
3 String ref = getParameter("ref");
4 org.omg.CORBA.Object object = orb.string_to_object(ref);
5 B b = BHelper.narrow(object);

3 Obtain the applet parameter ref.

4 Convert the string to an object reference.

5 Narrow the object reference to a B object.

The presence of the stringified object reference in the HTML file could present a mainte-
nance problem. One solution is for the server to write the entire HTML file, thereby ensur-
ing that the object reference is always up to date. You can find an example of this
approach in the demo/hello subdirectory.

See “Applets” on page 59 for more information on using ORBACUS in applets.

6.4 Connecting to Named Objects

In some applications, it may be necessary for the client to have no resource depend
(e.g., files, URLs, etc.) in order to bootstrap an object reference. In this case, you ca
the ORBACUS-specific iiop:// notation for IORs or the ORB operation
get_inet_object. The only prerequisites are that the object must have been assign
name by the server (see “Named Servants” on page 72), and the client must be able
determine the hostname and port number of the server and the name of the desired

The services included with ORBACUS all use named objects that can be accessed usin
get_inet_object. The names for these objects can be found in “Object Names for
Basic Services” on page 153.
ORBacus

Connecting to Named Objects

,
6.4.1 Using the iiop:// Notation

The standard string representation of an object reference is completely opaque and can be
quite long, making it difficult to use. ORBACUS also supports a non-standard but more
human-friendly string representation of an object reference that uses URL notation:

iiop://hostname:port/object-name

This notation is only suitable for referring to named objects, but it can be used anywhere a
normal stringified object reference is expected.

6.4.2 Using get_inet_object

The ORB operation get_inet_object is defined as follows:

// IDL
module CORBA
{

interface ORB
{

 Object get_inet_object(in string host,
 in unsigned short port,
 in string name);

};
};

Here’s an example of using get_inet_object in C++:

1 // C++
2 CORBA_ORB_var orb = ... // Get a reference to the ORB somehow
3 CORBA_Object_var obj = orb -> get_inet_object(host, port, "MyName");
4 B_var b = B::_narrow(obj);

3 get_inet_object is called with the hostname, the port number and the object name
which in this case is “MyName”.

4 As with string_to_object, the reference returned by get_inet_object must be nar-
rowed to a B reference.

Here is an identical implementation in Java:

1 // Java
2 org.omg.CORBA.ORB orb = ... // Get a reference to the ORB somehow
3 org.omg.CORBA.Object obj =
ORBacus 89

Locating Objects

90

em-
4 ((com.ooc.CORBA.ORB)orb).get_inet_object(host, port, "MyName");
5 B b = BHelper.narrow(obj);

3-4 The operation get_inet_object is only defined in com.ooc.CORBA.ORB (because it is
ORBACUS-specific), therefore the cast is necessary.

5 Again, we must narrow to the derived type B.

6.5 Initial Services

The CORBA specification provides another standard way to bootstrap an object reference
through the use of initial services, which denote a set of unique services whose object ref-
erences, if available, can be obtained using the ORB operation
resolve_initial_references, which is defined as follows:

// IDL
module CORBA
{

interface ORB
{

typedef string ObjectId;
exception InvalidName {};

Object resolve_initial_references(in ObjectId identifier)
raises(InvalidName);

};
};

Initial services are intended to have well-known names, and the OMG has standardized
the names for some of the CORBAservices [4]. For example, the Naming Service has the
name “NameService”, and the Trading Service has the name “TradingService”.

6.5.1 Resolving an Initial Service

An example in which the ORB is queried for a Naming Service object reference will d
onstrate how to use resolve_initial_references. The example assumes that the
ORB has already been initialized as usual. First the Java version:

1 // Java
2 org.omg.CORBA.Object obj = null;
3 org.omg.CosNaming.NamingContext ctx = null;
4

5 try
6 {
ORBacus

Initial Services
7 obj = orb.resolve_initial_references("NameService");
8 }
9 catch(org.omg.CORBA.ORBPackage.InvalidName ex)

10 {
11 // An error occured, service is not available
12 }
13

14 if(obj == null)
15 {
16 // The object reference is invalid
17 }
18

19 ctx = org.omg.CosNaming.NamingContextHelper.narrow(obj);
20 if(ctx == null)
21 {
22 // This object does not implement a NamingContext
23 }

And here’s the C++ version:

1 // C++
2 CORBA_Object_var obj;
3 CosNaming_NamingContext_var ctx;
4

5 try
6 {
7 obj = orb -> resolve_initial_references("NameService");
8 }
9 catch(CORBA_InvalidName&)

10 {
11 // An error occured, service is not available
12 }
13

14 if(CORBA::object_is_nil(obj))
15 {
16 // The object reference is invalid
17 }
18

19 ctx = CosNaming_NamingContext::narrow(ctx);
20 if(CORBA::object_is_nil(ctx))
21 {
22 // This object does not implement NamingContext
23 }
ORBacus 91

Locating Objects

92

 ORB

nitial
5-12 Try to resolve the name of a particular service. If a service of the specified name is not
known to the ORB, an InvalidName exception is thrown.

19-23 The service type was known. Now the object reference has to be narrowed to the particular
service type. If this fails, the service is not available.

ORBACUS allows you to define your own initial services, as described in the next section.
However, these are the recommended names for the services included with ORBACUS:

NameService
PropertyService
EventService

6.5.2 Providing IORs of Initial Services

When starting a program that makes use of an initial service, the object references of the
objects implementing these services have to be registered with the ORB. ORBACUS sup-
ports the -ORBservice command-line option for adding an initial service:

-ORBservice name IOR

The -ORBconfig option is an alternative method for defining a list of initial services, and
is often preferable when a number of services must be defined. See “Configuring the
and BOA” on page 45 for more information on the -ORBservice and -ORBconfig
options.

In addition to using command-line parameters, a program can also add to the list of i
services using the ORBACUS-specific ORB operation add_initial_reference:

// IDL
module CORBA
{

interface ORB
{

void add_initial_reference(in ObjectId identifier,
 in Object obj);

};
};

For example, in C++:

1 // C++
2 CORBA_ORB_var orb = ... // Get a reference to the ORB somehow
3 CORBA_Object_var obj = ... // Get a name service reference somehow
4 orb -> add_initial_reference("NameService", obj);
ORBacus

Initial Services

t the
Or in Java:

1 // Java
2 org.omg.CORBA.ORB orb = ... // Get a reference to the ORB somehow
3 org.omg.CORBA.Object obj = ...// Get a name service reference somehow
4 ((com.ooc.CORBA.ORB)orb).add_initial_reference("NameService", obj);

3 Get a reference to the naming service, for example by reading a stringified object refer-
ence and converting it with string_to_object, or by using get_inet_object, or by
any other means.

4 Add the reference to the ORB’s list of initial references. In Java, it’s necessary to cas
ORB to com.ooc.CORBA.ORB, since add_initial_reference is an ORBACUS-spe-
cific extension and thus is not supported with org.omg.CORBA.ORB.
ORBacus 93

Locating Objects

94
 ORBacus

CHAPTER 7 Reference Counting
m-
 not
rence
es
nce
ce

va gar-

ences
7.1 What is Reference Counting?

Reference counting is a commonly-used technique to manage CORBA servant and proxy
objects. In general, a reference count is an integer value associated with an object. The
counter is initialized to 1, and will be incremented and decremented during the life of the
object. When the counter reaches zero, the object is destroyed.

Unlike some distributed object technologies, most notably Microsoft’s Distributed Co
ponent Object Model (DCOM), CORBA reference counting mechanisms typically are
distributed. In other words, the reference count of a proxy is independent of the refe
count of its corresponding servant. Therefore, if the reference count of a proxy reach
zero, the proxy object is destroyed, but the servant is unaffected. Similarly, the refere
counts of any proxy objects for a servant are not affected when that servant’s referen
count reaches zero and the servant is subsequently destroyed.

7.2 Reference Counting in Java

ORBACUS for Java does not need to use reference counting because the standard Ja
bage collector performs this activity automatically. However, there is one issue that
should be mentioned regarding garbage collection of servant objects.

In Java, the garbage collector does not reclaim an object until there are no more refer
to that object held by the program. When you use the ORB’s connect method to connect
ORBacus 95

Reference Counting

96

use of
s-

he

 value
ser-
a servant to the object adapter, the ORB will keep a reference to your servant. Therefore,
in order for your servant to be eligible for garbage collection, you must eliminate all refer-
ences to the servant in your server code, and you must use the ORB’s disconnect
method to ensure that the ORB no longer holds a reference to the servant. Although
connect is optional, because the ORB will automatically connect objects when nece
sary, use of disconnect is always required.

7.3 Reference Counting in C++

ORBACUS for C++ implements servants and proxies as reference-counted objects. T
reference-counting semantics used by ORBACUS for C++ are outlined in Table 7.1.

7.3.1 Marshalling Issues

When a server returns the object reference of a servant to a client, either as a return
or as an out or inout parameter, the marshalling code automatically decrements the

new Servant_impl Reference count of new servant is initialized to 1

ORB::string_to_object Reference count of proxy is initialized to 1

ORB::get_inet_object Like string_to_object, reference count of proxy is
initialized to 1

ORB::connect(servant) Reference count of servant is incremented by 1, since a
reference to the servant is added to the object adapter.a

a. The reference count is only incremented by 1 after the first (implicit or explicit) call to
connect. Subsequent calls to connect do not affect the reference count.

ORB::disconnect(servant) Reference count of servant is decremented by 1, since
the object adapter’s reference to the servant is
removed.b

b. If the servant is already disconnected, calling disconnect again does not change the
reference count.

_duplicate(obj) Reference count of servant or proxy is incremented
by 1

CORBA_release(obj) Reference count of servant or proxy is decremented
by 1

Table 7.1: C++ Reference Counting Semantics
ORBacus

Reference Counting in C++

ple.

vant’s reference count by 1. Therefore, you will need to use _duplicate if you wish to
preserve the existing reference count of your servant, as shown in the following exam

1 // IDL
2

3 interface A
4 {
5 };
6

7 interface B
8 {
9 A getA();

10 };

3-10 Interfaces A and B are defined.

9 The operation getA returns a reference to an object of A.

Here is our implementation:

1 // C++
2

3 class A_impl : public virtual A_skel
4 {
5 };
6

7 class B_impl : public virtual B_skel
8 {
9 A_var a_;

10 CORBA_ORB_var orb_;
11

12 public:
13

14 void B_impl(CORBA_ORB_ptr orb)
15 : orb_(CORBA_ORB::_duplicate(orb))
16 {
17 a_ = new A_impl;
18 orb_ -> connect(a_);
19 }
20

21 virtual A_ptr getA()
22 {
23 return A::_duplicate(a_);
24 }
25 };
ORBacus 97

Reference Counting

98

,

rence

r

ro.
the

3-5 Servant class A_impl is defined.

7-25 Servant class B_impl is defined.

14-19 The B_impl constructor saves a reference to the ORB, instantiates A_impl and connects
it to the object adapter. It is not strictly necessary to invoke connect, because the object
will be connected automatically when the object’s reference is returned to a client.

21-24 Upon entry to getA, the reference count of a_ is 2 (the initial value is 1 upon construction
and is incremented to 2 when connected). To maintain this value, getA duplicates a_,
which increments the reference count to 3. The marshalling code that returns the refe
will decrement the reference count back to 2.

For more information on using object references as in, inout, out and return values, see
“Object References” on page 112.

7.3.2 Releasing Proxies and Servants

The reference count of a servant is incremented by 1 when the servant is (implicitly o
explicitly) connected to the object adapter (see “Connecting Servants using C++” on
page 71). Therefore, you must disconnect a servant from the object adapter prior to
releasing it with CORBA_release in order to ensure that its reference count reaches ze
See “Factory Objects using C++” on page 74 for an example that properly manages
reference count of a servant.

It is important to remember to never use delete to destroy proxies or servants. Use only
CORBA_release. For example, the following code calling delete on a proxy obtained
with string_to_object is wrong:

1 const char* s = ... // Obtain a stringified reference somehow
2 CORBA_Object_ptr p = orb -> string_to_object(s);
3 delete p; // Wrong!

3 This line is wrong. Instead of delete, CORBA_release must be used.

This is the correct version:

1 const char* s = ... // Obtain a stringified reference somehow
2 CORBA_Object_ptr p = orb -> string_to_object(s);
3 CORBA_release(p);

3 OK, CORBA_release is used.

You should use self-managed types whenever possible:
ORBacus

Reference Counting in C++
1 const char* s = ... // Obtain a stringified reference somehow
2 CORBA_Object_var p = orb -> string_to_object(s);

2 No CORBA_release is necessary, since the _var will automatically call
CORBA_release upon destruction.

You should also avoid allocating servants on the stack. If you do so, the servant will be
destroyed if the stack unwinds, without any calls to CORBA_release. The following code
demonstrates the problem:

1 // C++
2

3 void f()
4 {
5 I_impl impl; // Wrong!
6 }

5 Upon return from f, impl is destroyed without the proper call to CORBA_release.

7.3.3 Global Object References

You should never have global _var type object references, because you can never tell
exactly when and in which order they will be destroyed. For example, it is possible that a
_var reference could be destroyed after the ORB was destroyed. Here’s an example.

1 I_var impl; // Don’t do this!
2

3 int
4 main(int argc, char* argv[], char*[])
5 {
6 CORBA_ORB_var orb = CORBA_ORB_init(argc, argv);
7 impl = new I_impl;
8 return 0;
9 }

1 A global object reference _var type is created.

6 The ORB is initialized.

7 The I_var object reference is initialized with a new servant.

8 Upon return, the ORB is destroyed (since orb is destroyed, causing CORBA_release to
be called for the ORB). However, impl is still alive, and therefore the servant is not
ORBacus 99

Reference Counting

100
destroyed, meaning that there is still a servant, but no ORB anymore. This will most likely
result in a crash.

The ORB must be the last object to be destroyed! In addition to the technical justification
for avoiding global object references, it is generally a bad programming style to have glo-
bal object references.

7.3.4 Cyclic Object Dependencies

Consider the following code:

1 class X_impl : virtual public X_skel
2 {
3 Y_var y_;
4

5 public:
6

7 void setY(Y_ptr y) { y_ = Y::_duplicate(y); }
8 };
9

10 class Y_impl : public Y_skel
11 {
12 X_var x_;
13

14 public:
15

16 void setX(X_ptr x) { x_ = X::_duplicate(x); }
17 };
18

19 void f()
20 {
21 X_var x = new X_impl;
22 Y_var y = new Y_impl;
23 x -> setY(y);
24 y -> setX(x);
25 }

1-8 A servant class X_impl is defined, which has a Y_var data member that can be set with
setY.

10-17 Ditto, but a servant class Y_impl with a data member X_var is defined.

19-25 The function f creates new X and Y servants. It stores the reference of the X servant in the
Y servant and vice versa.
ORBacus

Reference Counting in C++

ppens
Here the X_impl has a reference to the Y_impl and the Y_impl has a reference to the
X_impl, what is known as a “cyclic object dependency.” This means that when f returns,
even though x and y get destroyed, the objects they are referring to are not destroyed since
the reference count never becomes zero. Why? Let’s take a deeper look into what ha
in the example program:

X_var x = new X_impl

The initial reference count of the X_impl after the new is 1.

Y_var y = new Y_impl

Same as above, the initial reference count of the Y_impl is 1.

x -> setY(y)

After setY, the reference count of the Y_impl is 2.

y -> setX(x)

After setX, the reference count of the X_impl is 2.

return

x and y get destroyed and therefore call CORBA_release on their contents, so the refer-
ence count of the X_impl and the Y_impl is 1. This means that after the return of f the
X_impl and the Y_impl will live forever.

This problem can be solved by adding a releaseInternal function1 to at least one of
the two interface implementations. For example:

1 class X_impl : public X_skel
2 {
3 Y_var y_;
4

5 public:
6

7 void setY(Y_ptr y) { y_ = Y::_duplicate(y); }
8 };
9

10 class Y_impl : public Y_skel // Implements interface Y
11 {
12 X_var x_;
13

14 public:

1. Of course you are free to choose whatever name you like.
ORBacus 101

Reference Counting

102
15

16 void setX(X_ptr x) { x_ = X::_duplicate(x); }
17 void releaseInternal() { x_ = X::_nil(); }
18 };
19

20 void f()
21 {
22 X_var x = new X_impl;
23 Y_var y = new Y_impl;
24 x -> setY(y);
25 y -> setX(x);
26 y -> releaseInternal();
27 }

1-8 Same as before

10-18 The releaseInternal operation has been added.

26 releaseInternal is called before f returns.

Now both the X_impl and the Y_impl get destroyed at the return of f:

X_var x = new X_impl

The initial reference count of the X_impl after the new is 1.

Y_var y = new Y_impl

Same as above, the initial reference count of the Y_impl is 1.

x -> setY(y)

After setY, the reference count of the Y_impl is 2.

y -> setX(x)

After setX, the reference count of the X_impl is 2.

y -> releaseInternal()

The releaseInternal function sets the x_ value of the Y_impl to X::_nil. Assign-
ment to a _var object reference causes CORBA_release to be called on its contents. So
now the reference count of the X_impl is 1.

return

x and y are destroyed and therefore call CORBA_release on their contents. That means
that the reference count of the X_impl becomes zero, resulting in X_impl being
destroyed. This of course also eliminates X_impl’s y_ data member, causing
ORBacus

Reference Counting in C++
CORBA_release to be called on the Y_impl. So the Y_impl’s reference count also
becomes zero and the Y_impl is also destroyed.
ORBacus 103

Reference Counting

104
 ORBacus

CHAPTER 8 C++ Mapping Notes
ORBACUS implements the IDL-to-C++ mapping as described in [2]. The standard IDL-to-
C++ mapping is not a topic of this manual. Please refer to [2] for the exact specifications.

8.1 Reserved Names

All names starting with OB, _OB_ or _ob_ are reserved by ORBACUS for internal use and
must not be used as identifiers.1

8.2 Mapping of Modules

Generally, IDL modules are mapped to C++ namespaces. However, since most C++ com-
pilers currently do not support namespaces, the IDL-to-C++ mapping defines two alterna-
tives. The first one maps modules to C++ classes, implying that nested classes are needed
for interfaces or other modules defined within a module. The second alternative is to map
modules to name prefixes, e.g., the name of an interface I in a module M is mapped to M_I.

ORBACUS uses the name prefix mapping alternative for the following reasons:

• As mentioned earlier, C++ namespaces are not widely available yet. ORBACUS was
designed to be portable among a variety of C++ compilers. Therefore using
namespaces was not possible.

1. Who wants to use such ugly names anyway?
ORBacus 105

C++ Mapping Notes

106

ses
f a

e

ce
• Although nested classes are available with most C++ compilers, this mapping
alternative has the disadvantage that modules cannot be “reopened” (since clas
cannot be reopened). That is, it is not possible to define in one IDL file one part o
module and in another IDL file another part of the same module.

8.3 Extensions

ORBACUS provides several extensions to the standard IDL-to-C++ mapping. If you ar
concerned about source code compatibility with CORBA-compliant ORBs from other
vendors, you should not use these extensions. However, if you plan to use your sour
code exclusively with ORBACUS these extensions will reduce programming overhead.

8.3.1 Extensions to the String Type

The ORBACUS CORBA_String_var type provides the operator+= for appending to the
string. The argument to operator+= can be of type const char*, char and unsigned
char as well as short, unsigned short, int, unsigned int, long and unsigned
long. For example:

1 CORBA_String_var s;
2 s += "abc";
3 s += ’x’;
4 s += ’y’;
5 s += ’z’;
6 s += 12345;

1 s is empty.

2 s is "abc".

3 s is "abcx".

4 s is "abcxy".

5 s is "abcxyz".

6 s is "abcxyz12345".

8.3.2 Extensions to _var Types

All _var types have the following additional member functions:

• in: This function converts the _var type to a type suitable for in parameters.

• inout: This function converts the _var type to a type suitable for inout parameters.
ORBacus

Extensions

L-to-

ct ref-

 of
 Tem-
• out: This function converts the _var type to a type suitable for out parameters. As a
side effect, this function ensures that the value held by the _var is released or freed,
by either calling CORBA_string_free (in case of a string), CORBA_release (in
case of an object reference) or delete (in case of types like sequences, variable-
length structs etc.).

• _retn: This function converts the _var type to a type suitable for function return
values. The _retn function also removes the value that is held by the _var type
without destroying it, i.e., without calling delete, CORBA_string_free or
CORBA_release on its value. For example consider a function f that returns its
three in string arguments as a single string:
char*
f(const char* s1, const char* s2, const char* s3)
{

CORBA_String_var s = s1;
s += s2;
s += s3;
return s._retn();

}

Please note that these functions are not covered by the CORBA 2.0 version of the ID
C++ mapping, but it is likely that they will become a part of the standard for the next
major mapping revision.

8.3.3 Extensions to Sequence Types

All unbounded non-array sequences (for example unbounded string, struct and obje
erence sequences) have an additional insert, append and remove member function. For
a sequence s and a value v, the s.insert(v) and s.append(v) behave as follows:

s.length(s.length() + 1);
... // Somehow shift sequence contents one to the right
s[0] = v;

and

s.length(s.length() + 1)
s[s.length() - 1] = v;

respectively.

Please note that ORBACUS’s sequence implementation does not really shift the contents
the sequence. It is rather implemented as a “double ended queue” (like the Standard
plate Library’s “dequeue”), and therefore needs no value shifting. That is, the insert
function is as efficient as the append function.
ORBacus 107

C++ Mapping Notes

108
8.4 C++ Mapping Tips & Tricks

Unfortunately, the official CORBA IDL-to-C++ mapping is a little complicated.1 The
traps & pitfalls justify devoting a section of the ORBACUS manual to how to avoid the
most common mistakes.

Note that compared to the IDL-to-C++ mapping, the IDL-to-Java mapping is nice, clean
and easy to understand, so it’s not really necessary to have a “Java Mapping Tips &
Tricks”. The official mapping specification [3] is completely sufficient.

8.4.1 CORBA Strings

When using CORBA strings, always remember the following rules.

CORBA-Specific String Functions

Use the CORBA-specific string functions CORBA_string_alloc,
CORBA_string_free and CORBA_string_dup if you’re dealing with CORBA strings.
Never use new, delete, malloc, free, strdup or similar functions.

For example, the following code is incorrect:

1 char* s1 = strdup("Hello!"); // Wrong!
2

3 // Allocate a string for 10 characters + trailing ’\0’ ...
4 String_var s2 = malloc(11); // Wrong!

1 Error, CORBA_string_dup must be used instead of strdup .

4 No! CORBA_string_alloc must be used!

This is the correct version:

1 char* s1 = CORBA_string_dup("Hello!");
2

3 // Allocate a string for 10 characters + trailing ’\0’ ...
4 CORBA_String_var s2 = CORBA_string_alloc(10);

1 OK, CORBA_string_dup is fine.

1. Note that OOC did not invent this mapping. We just had to implement it exactly as specified to
be CORBA compliant.
ORBacus

C++ Mapping Tips & Tricks
4 OK. Note that CORBA_string_alloc (unlike malloc) adds an additional character for
the trailing “\0” automatically.

This code is wrong, too:

1 free(s2); // Wrong!
2

1 No! Use CORBA_string_free!

And again, the corrected version:

1 CORBA_string_free(s1);
2

1 This is OK. Note that there is no need to free s2 explicitly since CORBA_String_var
types release the string they manage automatically when the CORBA_String_var type is
destroyed.

Initialization and Assignment from char* and const char*

Initialization of a CORBA_String_var type or assignment to a CORBA_String_var type
from a char* type value consumes that value. That means that if the
CORBA_String_var is destroyed, the value from which the CORBA_String_var was
initialized or that was assigned to the CORBA_String_var will also be destroyed.

Initialization of a CORBA_String_var type or assignment to a CORBA_String_var type
from a const char* type value duplicates that value. This means that if the
CORBA_String_var is destroyed, the value from which the CORBA_String_var was
initialized or that was assigned to the CORBA_String_var is not destroyed.

Note that for compatibility reasons with C the type of string literals in C++ is char*, not
const char*. So the following code is wrong:

1 CORBA_String_var s = "Hello!"; // Wrong!
2

1 Error, since “Hello!” is char*, not const char*.

The following code is OK:

1 CORBA_String_var s1 = CORBA_string_dup("Hello!");
2 CORBA_String_var s2 = (const char*)"Hello!";

1 OK, s1 consumes the value returned by CORBA_string_dup.
ORBacus 109

C++ Mapping Notes

110

 string

 types.

2 OK, s2 will implicitly duplicate “Hello!”.

Initialization and Assignment from CORBA_String_var

Initialization of a CORBA_String_var type or assignment to a CORBA_String_var type
from another CORBA_String_var type value automatically duplicates that value. This
means that it is not necessary to use explicit calls to CORBA_string_dup. The following
examples are correct:

1 CORBA_String_var s1 = CORBA_string_dup("ABC");
2 CORBA_String_var s2 = s1;
3 CORBA_String_var s3 = CORBA_string_dup(s1);

2 OK, s2 will implicitly duplicate “ABC”.

3 Also OK, explicit duplication.

Note that string elements of a structure, elements of a string array and elements of a
sequence behave exactly like the CORBA_String_var type1, i.e., you can deliberately
assign between these types or use one of these types to initialize any other of these
There is no need to call CORBA_string_dup explicitly.

Strings as Parameters and Return Values

If a function is called returning a string value via an out or inout parameter or as a return
value, the callee must duplicate and the caller must release this value. The duplication can
be done using CORBA_string_dup and the release by either explicitly calling
CORBA_string_free or by assigning the value to a CORBA_String_var. For example:

1 // IDL
2 interface I
3 {
4 string op(out string os, inout string ios);
5 };

4 An operation op is defined with an out string argument, an inout string argument and a
string return value.

The following implementation of I’s op operation is wrong:

1. In code generated by the ORBACUS IDL-to-C++ translator, array and structure string elements
are actually of type CORBA_String_var. String sequence elements are not of type
CORBA_String_var (for technical reasons), but the type used for string sequence elements
behaves exactly like the CORBA_String_var type.
ORBacus

C++ Mapping Tips & Tricks
1 // C++
2 class I_impl : virtual public I_skel
3 {
4 public:
5 virtual char* op(char*& os, char*& ios)
6 {
7 // Wrong, ios is not freed
8 ios = "abc"; // Wrong!
9 os = "def"; // Wrong!

10 return "ghi"; // Wrong!
11 }
12 };

7 Forgot to free the inout string parameter ios.

8,9,10 Wrong. Strings must be duplicated.

Here is the correct version:

1 // C++
2 class I_impl : virtual public I_skel
3 {
4 public:
5 virtual char* op(char*& os, char*& ios)
6 {
7 CORBA_string_free(ios);
8 ios = CORBA_string_dup("abc");
9 os = CORBA_string_dup("def");

10 return CORBA_string_dup("ghi");
11 }
12 };

7 Now ios is freed.

8-10 All String values are now duplicated.

Here is an example showing how to use string out, inout or return values on the calling
side if CORBA_string_free is used:

1 // C++
2 I_ptr i = ... // Get a reference to an I somehow
3

4 char* out;
5 char* inOut = CORBA_string_dup("This is my inout arg");
6 char* result;
ORBacus 111

C++ Mapping Notes

112
7

8 result = i -> op(out, inOut);
9

10 CORBA_string_free(out);
11 CORBA_string_free(inOut);
12 CORBA_string_free(result);

4-6 The parameters are defined. A value must be assigned to the inout parameter. Of course
values to in parameters must also be assigned, but our example does not have any in
parameters.

8 op is called.

10-12 All out and inout parameters, as well as the return value, must be freed.

Here is the same example, but with self-managed CORBA_String_var types instead of
explicitly calls to CORBA_string_free:

1 // C++
2 I_ptr i = ... // Get a reference to an I somehow
3

4 CORBA_String_var out;
5 CORBA_String_var inOut = CORBA_string_dup("This is my inout arg");
6 CORBA_String_var result;
7

8 result = i -> op(out, ios);

4-6 CORBA_String_var is used instead of char*.

8 After the call to op, no explicit calls to CORBA_string_free are necessary, since the
CORBA_String_var type destroys its contents automatically.

Since method two in this example is much less error prone, you should always use the
self-managed type CORBA_String_var in such a case.

8.4.2 Object References

If you use CORBA object references, i.e., _ptr and _var types for specific interfaces,
keep the following in mind.

Object References as Parameters and Return Values

If a function returning an object reference via an out or inout parameter or as a return
value is called, the callee must duplicate and the caller must release the reference. As
described above, an object reference to an object of type I (i.e., an object with the inter-
ORBacus

C++ Mapping Tips & Tricks
face I) is duplicated with I::_duplicate and released with CORBA_release. This is
quite similar to strings as parameters and return values. For example:

1 // IDL
2 interface I
3 {
4 };
5

6 interface A
7 {
8 I op(out I oref, inout I ioref);
9 };

2-4 An interface I is defined.

6-9 An interface A is defined, having an operation op, which returns an I and has an I in and
inout parameter.

This implementation of the op operation is wrong:

1 // C++
2 class A_impl : virtual public A_skel
3 {
4 I_var myref;
5

6 public:
7

8 A_impl()
9 {

10 myref = ... // Initialize myref somehow
11 }
12

13 virtual I_ptr op(I_ptr& oref, I_ptr& ioref)
14 {
15 // Wrong, ioref is not released
16 ioref = myref; // Wrong!
17 oref = myref; // Ditto!
18 return myref; // Ditto!
19 }
20 };

15 Forgot to free the inout object reference parameter ioref.

16-18 Wrong. Object references must be duplicated.
ORBacus 113

C++ Mapping Notes

114
This version is correct:

1 // C++
2 class A_impl : virtual public A_skel
3 {
4 I_var myref;
5

6 public:
7

8 A_impl()
9 {

10 myref = ... // Initialize myref somehow
11 }
12

13 virtual I_ptr op(I_ptr& oref, I_ptr& ioref)
14 {
15 CORBA_release(ioref);
16 ioref = I::_duplicate(myref);
17 oref = I::_duplicate(myref);
18 return I::_duplicate(myref);
19 }
20 };

15 Now ioref is released.

16-18 All object references are now duplicated.

The first example on how to use object reference out, inout or return values on the call-
ing side uses explicit calls to CORBA_release:

1 // C++
2 A_ptr a = ... // Get a reference to an A somehow
3

4 I_ptr out;
5 I_ptr inOut = ... // Get a reference to an I somehow
6 I_ptr result;
7

8 result = a -> op(out, inOut);
9

10 CORBA_release(out);
11 CORBA_release(inOut);
12 CORBA_release(result);

4-6 The parameters are defined. A value must be assigned to the inout parameter.
ORBacus

C++ Mapping Tips & Tricks
8 op is called.

10-12 All out and inout parameters, as well as the return value, must be released.

The second example uses self-managed I_var types:

1 // C++
2 A_ptr a = ... // Get a reference to an A somehow
3

4 I_var out;
5 I_var inOut = ... // Get a reference to an I somehow
6 I_var result;
7

8 result = i -> op(out, ios);

4-6 I_var is used instead of I_ptr.

8 After the call to op, no explicit calls to CORBA_release are necessary, since the I_var
type destroys its contents automatically.

We recommend that you use method two with the self-managed types, since this method is
much less error prone.

Differences between String_var and Object Reference _var Types

There is a slight but important difference between String_var and object reference
_var types regarding their initialization or assignment from in parameters. Consider the
following IDL code:

1 // IDL
2 interface Y
3 {
4 };
5

6 interface X
7 {
8 void init(in string s1, in string s2, in Y y1, in Y y2);
9 };

Here the init function is used to initialize an X with two strings and two Y object refer-
ences. The following code shows the difference between _var type assignments from
strings and from object references:

1 // C++
2 class X_impl : virtual public X_skel
ORBacus 115

C++ Mapping Notes

116
3 {
4 CORBA_String_var s1_;
5 CORBA_String_var s2_;
6 Y_var y1_;
7 Y_var y2_;
8

9 public:
10

11 void init(const char* s1, const char* s2, Y_ptr y1, Y_ptr y2)
12 {
13 s1_ = s1;
14 s2_ = CORBA_string_dup(s2);
15 y1_ = y1; // Wrong!
16 y2_ = Y::_duplicate(y2);
17 }
18 }

13 OK, CORBA_String_var automatically duplicates const char*.

14 Explicit duplication is also OK, as the CORBA_String_var consumes the duplicated
string returned from CORBA_string_dup, which returns a string of type char*.

15 This is wrong, Y_var consumes the value of type Y_ptr. Therefore Y::_duplicate
must be used.

16 This is correct now, since Y::_duplicate was used.

The reason for this behavior is that there is no such thing as a constant object reference for
in parameters. Therefore it is not possible for the object reference _var type to distin-
guish between assignments from regular object references and in object references.
ORBacus

CHAPTER 9 Concurrency Models
ur-
the

ncur-
van-
9.1 Introduction

9.1.1 What is a Concurrency Model?

A concurrency model describes how an Object Request Broker (ORB) handles communi-
cation and request execution. There are two main categories of concurrency models, sin-
gle-threaded concurrency models and multi-threaded concurrency models.

Single-threaded concurrency models describe how an ORB behaves while a request is sent
or received in a single-threaded environment. For example, one model is to simply let the
ORB block on sending and receiving messages. Another model is to let the ORB do some
work while sending and receiving messages, for example to receive user input through a
keyboard or a GUI, or to simply transfer buffered messages.

Multi-threaded concurrency models describe how the ORB makes use of multiple threads,
for example to send and receive messages “in the background.” Multi-threaded conc
rency models also describe how several threads can be active in the user code and
strategy the ORB employs to create these threads.

9.1.2 Why different Concurrency Models?

There is no “one size fits all” approach with respect to concurrency models. Each co
rency model provides a unique set of properties, each having advantages and disad
ORBacus 117

Concurrency Models

118

 that

s
to a

, this

n-

e one

ail-
tages. For example, applications using callbacks must have a concurrency model that
allows nested method invocations to avoid deadlocks. Other applications must be opti-
mized for speed, in which case a concurrency model with the least overhead will be cho-
sen.

Some ORBs are highly specialized, providing only the most frequently used concurrency
models for a specific domain. ORBACUS takes a different approach by supporting several
concurrency models.

9.1.3 ORBacus Concurrency Models Overview

ORBACUS allows different concurrency models to be established for the client and server
activities of an application. The client-side concurrency models are Blocking, Reactive
and Threaded. The server-side concurrency models are Blocking, Reactive, Threaded,
Thread-per-Client, Thread-per-Request and Thread Pool.

9.2 Single-Threaded Concurrency Models

9.2.1 Blocking Clients and Servers

The blocking concurrency model is the simplest one. For the client, “blocking” means
the ORB blocks while sending requests to or receiving replies from a server.

A special case are oneway requests,1 which do not block the ORB. If the ORB determine
that sending the oneway request would cause blocking, it puts the oneway request in
request buffer. Whenever the client tries to send another request to the same server
buffer’s contents are sent first.

Blocking servers block the ORB while receiving a request or sending a reply. Additio
ally, since the ORB blocks on a connection after accepting it with a call like accept, the
ORB cannot accept any new connections. Therefore a blocking server can only serv
client at a time. This is shown in Figure 9.1.

Because of its simplicity, the blocking concurrency models are the fastest models av
able. There is no overhead, neither for calls to operations like select2 (because the ORB

1. A oneway request is a request for which no reply is received. Therefore a oneway request cannot
return any results and there is no guarantee that a oneway request was properly executed by a
server.

2. select is used for synchronous I/O multiplexing. For more information, see the select Unix
manual page.
ORBacus

Single-Threaded Concurrency Models
is allowed to block on a single connection), nor for any thread creation or context
switches.

9.2.2 Reactive Clients and Servers

Reactive servers use calls to operations like select in order to simultaneously accept
incoming connection requests, to receive requests from multiple clients and to send back
replies. This means that a reactive server can handle more than one client at a time. This is
shown in Figure 9.2. Reactive servers are the most common server types for single-
threaded client/server applications.

Reactive clients also use operations like select to avoid blocking. This means that while
a request to a server is sent or a reply from that server is received, the client can simulta-
neously send buffered requests to other servers or receive and buffer replies. This is very
useful for oneway operations or the Dynamic Invocation Interface (DII) operation
send_deferred in combination with get_response or poll_response.1

However, the main advantage of a reactive client becomes apparent if it is used together
with a reactive server in mixed client/server applications. A mixed client/server applica-

Figure 9.1: Blocking Server

Client A Server Client B

dispatch

dispatch

accept

close

connect

f()

g()

disconnect

connect
ORBacus 119

Concurrency Models

120
tion is a program that is both a client and server at the same time. Without the reactive
concurrency model it is not possible to use nested method calls in single-threaded applica-
tions, which are absolutely necessary for most kinds of callbacks.

Consider two programs A and B, both mixed client/server applications. First A tries to call
a method f on B. Before this method returns, B calls back A by invoking method g. This
scenario is quite common, and for example is used in the popular Model-View-Controller
pattern [7].

1. For more information on send_deferred, get_response and poll_response, see the
chapter “The Dynamic Invocation Interface” in [2].

Figure 9.2: Reactive Server

Client A Server Client B

connect

disconnect

connect

disconnect

accept

accept

close

close

f()

f()

dispatch

dispatch
ORBacus

Single-Threaded Concurrency Models

 cre-
For blocking client/servers this scenario is shown in Figure 9.3. As you can see, the call-

back g from B to A does not succeed, because A blocks while waiting for a reply for f
from B. In contrast, if the reactive concurrency model for the client and the server is used,
A can dispatch incoming requests while waiting for B’s reply for f. This is shown in Fig-
ure 9.4.

The reactive concurrency models are also very fast. There is no overhead for thread
ation or context switching. Only an additional call to an operation like select is needed
before operations such as send, recv or accept can be used by the ORB.1

Figure 9.3: Blocking Client/Server

Figure 9.4: Reactive Client/Server

Client/Server A Client/Server B

f()

g()
dispatch

Client/Server Client/Server

f()

g()
dispatch

dispatch
ORBacus 121

Concurrency Models

122

ut
 be

s

ts from
pting

ent at a

user
the
 the

ow-
9.3 Multi-Threaded Concurrency Models

9.3.1 Threaded Clients and Servers

A threaded client uses two separate threads for each connection to a server, one for send-
ing requests and another for receiving replies. In contrast to a blocking server, this model
has the advantage that oneway requests can be sent “in the background”, i.e., witho
blocking the user thread execution. The separate receiver thread allows messages to
received and buffered for later retrieval by the user thread with DII operations such a
get_response or poll_response.

Like a threaded client, a threaded server uses separate threads for receiving reques
clients and sending replies. Additionally, there is a separate thread dedicated to acce
incoming connection requests, so that a threaded server can serve more than one cli
time.

ORBACUS’s threaded server concurrency model allows only one active thread in the
code. This means that even though many requests can be received simultaneously,
execution of these requests is serialized. This is shown in Figure 9.5. (For simplicity,

“dispatch” arrows and the corresponding return arrows are omitted in this and all foll

1. Instead of directly using operations like select, ORBACUS uses a Reactor to provide for flex-
ible integration with existing event loops and to allow the installation of user supplied event han-
dlers. See Chapter 10 for more information.

Figure 9.5: Threaded Server

Client A Threaded Server

f()

h()

g()

Client B
ORBacus

Multi-Threaded Concurrency Models

 hav-
 can
ORB

nect-
h
r.

r con-
code.

per-
ing diagrams.) In the example, the threaded server has two clients connected to it and thus
two receiver threads (sender threads not shown). First A calls f on the server. If, before f
returns, B tries to call another operation g, this request is delayed until f returns. The same
is true for A’s call to h, which must wait until g returns.

Allowing only one active thread in user code has the advantage of the user code not
ing to take care of any kind of thread synchronization. This means that the user code
be written as if for a single threaded system, but without losing the advantage of the
optimizing its operation by using multiple threads internally.

The threaded concurrency model is still fast. No calls to operations like select are
required. Time consuming thread creation is only necessary when a new client is con
ing, but not for each request. However, thread context switching makes this approac
slower than the blocking concurrency model, at least on a single-processor compute

9.3.2 Thread-per-Client Server

The thread-per-client server concurrency model is very similar to the threaded serve
currency model, except that the ORB allows one active thread-per-client in the user
This is shown in Figure 9.6. A’s call to f and B’s call to g are carried out simultaneously,

each in its own thread. However, if A tries to call another operation h (for example by
sending requests from different threads in a multi-threaded client or by using the DII o
ation send_deferred in a single-threaded client) as long as f has not finished yet, the
execution of h is delayed until f returns.

Figure 9.6: Thread-per-Client Server

Client A Thread-per-Client
Server

f()

h()

g()

Client B
ORBacus 123

Concurrency Models

124
The thread-per-client model is still efficient. Like with the threaded concurrency model,
no threads need to be created, except when new connections are accepted.

9.3.3 Thread-per-Request Server

If the thread-per-request server concurrency model is chosen, the ORB creates a new
thread for each request. This is shown in Figure 9.7. (For simplicity there are no separate

arrows for dispatch and thread creation in the diagram.) With the thread-per-request
model, requests are never delayed. When they come in, a new thread is created and the
request is executed in the user code using this thread. On return, the thread is destroyed.

Besides using a reactive client together with a reactive server, the thread-per-request
server in combination with a threaded client is the only other model that allows nested
method calls with an unlimited nesting level. The thread pool model also allows nested
method calls, but the nesting level is limited by the number of threads in the pool.

The thread-per-request concurrency model is inefficient. The main problem results from
the overhead involved in creating new threads, namely one for each request.

9.3.4 Thread Pool Server

The thread pool model uses threads from a pool to carry out requests, so that threads have
to be created only once and can then be reused for other requests. Figure 9.8 shows an

Figure 9.7: Thread-per-Request Server

Client A Thread-per-Request
Server

f()

h()

g()

Client B
ORBacus

Performance Comparisons
example with one client and a thread pool server with three threads in the pool. (Sender
and receiver threads are not shown.) The first three operation calls f, g and h can be car-
ried out immediately, since there are three threads in the pool. However, the fourth request
i is delayed until at least one of the other requests returns.

Since there is no time-consuming thread creation, the thread pool concurrency model per-
forms better than the thread-per-request model. The thread pool is a good trade-off if on
the one hand frequent thread creation and destruction result in unacceptable performance,
but on the other hand delaying the execution of concurrent method calls is also not
desired.

9.4 Performance Comparisons

9.4.1 Sample Application

In order to measure the performance overhead introduced by a given concurrency model,
it is important to keep all other overhead not directly related to the concurrency model
minimal. Therefore the sample application for performance measurements only consists of
a single interface with a single operation with no parameters and return values:

// IDL
interface I
{
 void f()

Figure 9.8: Thread Pool Server

Client Thread Pool
Server

g()

h()

f()

i()
ORBacus 125

Concurrency Models

126

 a
er
}

This ensures that any additional overhead for parameter marshalling or request dispatch-
ing is minimal.

All tests have been performed with ORBACUS for C++ version 3.1.1 on a Linux 2.0.35
based machine, libc 5.4.33, PII 400 MHz, 128 MB memory, egcs 1.0.3a C++ compiler,
with optimization (compiled with -O2 -DNDEBUG), shared libraries, and no debug code.

9.4.2 Regular Method Invocations

The first test scenario is a server that is used by a single client. Table 9.1 shows the time

needed for a single call to f. In this and all following tables, the different columns corre-
spond to the client side concurrency models and the different rows to the server side con-
currency models.

The clear winners are the blocking concurrency models, which are fastest. Second fastest
are the reactive concurrency models, followed by the different threaded concurrency mod-
els.

Note that Table 9.1 shows the performance results for a thread safe version of ORBACUS.
In case no threads are used at all, i.e., if no multi-threaded concurrency model is chosen
and if multiple threads are not used in application code, then it’s also possible to use
non-thread-safe version of ORBACUS. Table 9.2 shows that such a version is much fast

Blocking Reactive Threaded

Blocking 0.20 ms 0.25 ms 0.28 ms

Reactive 0.25 ms 0.29 ms 0.33 ms

Threaded 0.26 ms 0.31 ms 0.37 ms

Thread-per-Client 0.25 ms 0.30 ms 0.36 ms

Thread-per-Request 0.63 ms 0.68 ms 0.71 ms

Thread Pool 0.31 ms 0.39 ms 0.42 ms

Table 9.1: Regular Method Invocations
ORBacus

Performance Comparisons

t

ode

e
than a thread-safe one, because there is no additional overhead for any thread synchroniza-
tion.

9.4.3 Nested Method Invocations

As already pointed out, nested methods invocations are only possible with the following
concurrency model combinations:

• reactive client / reactive server

• threaded client / thread-per-request server

• threaded client / thread pool server

Table 9.3 shows the performance results for a nesting level of 100. That is, in the tes

applications there are two mixed client/servers, each of them implementing the IDL c
of the test application. The first client/server calls f on the second, and before f returns,
the second client/server calls f on the first client/server, then the first client/server f on th
second again and so on. This is repeated until each client/server called f on the other cli-
ent/server 50 times, which corresponds to a total nesting level of 100.

Blocking Reactive

Blocking 0.16 ms 0.20 ms

Reactive 0.20 ms 0.23 ms

Table 9.2: Non-Thread-Safe Version

Reactive Threaded

Reactive 2.78 ms n/a

Thread-per-Request n/a 3.39 ms

Thread Pool n/a 3.23 ms

Table 9.3: Nested Method Invocations
ORBacus 127

Concurrency Models

128
Again, the clear winner is a single-threaded concurrency model, namely the reactive con-
currency model. Here the difference between single-threaded and multi-threaded concur-
rency models is very significant, because there is a huge overhead for creating threads and
thread context switches in the multi-threaded concurrency models.

The maximum nesting level for the reactive concurrency model is usually much higher
than for the thread-per-request and thread pool concurrency models. The reason is that the
maximum nesting level for thread-per-request and thread pool is determined by the maxi-
mum number of threads allowed per process, whereas the reactive concurrency model is
only limited by the maximum stack size per process.

9.5 Selecting Concurrency Models

Concurrency models can be selected either by command-line parameters (see Chapter 4),
or with the operations ORB::conc_model and BOA::conc_model. The default concur-
rency models are shown in Table 9.4.

For example, here is how to establish the concurrency models in C++:

// C++
CORBA_ORB_var orb = ... // Get a reference to the ORB somehow
CORBA_BOA_var boa = ... // Get a reference to the BOA somehow
orb -> conc_model(CORBA_ORB::ConcModelThreaded)
boa -> conc_model(CORBA_BOA::ConcModelThreadPerRequest)

Other possible parameters for ORB::conc_model are:

ConcModelBlocking
ConcModelReactive
ConcModelThreaded

And for BOA::conc_model:

ConcModelBlocking
ConcModelReactive

Client Server

Java Blocking Threaded

C++ Blocking Reactive

Table 9.4: Default Concurrency Models
ORBacus

Selecting Concurrency Models

specify
ConcModelThreaded
ConcModelThreadPerClient
ConcModelThreadPerRequest
ConcModelThreadPool

In Java, the example looks like this:

// Java
org.omg.CORBA.ORB orb = ... // Get a reference to the ORB somehow
org.omg.CORBA.BOA boa = ... // Get a reference to the BOA somehow
((com.ooc.CORBA.ORB)orb).conc_model(

com.ooc.CORBA.ORB.ConcModel.ConcModelThreaded)
((com.ooc.CORBA.BOA)boa).conc_model(

com.ooc.CORBA.BOA.ConcModel.ConcModelThreadPerRequest)

The casts to com.ooc.CORBA.ORB and com.ooc.CORBA.BOA are necessary because the
conc_model operations are ORBACUS-specific and are not available in the classes
org.omg.CORBA.ORB and org.omg.CORBA.BOA, respectively.

In case the thread pool concurrency model has been selected, it’s also necessary to
the number of threads in the thread pool. This can be done with the operation
BOA::conc_model_thread_pool:

// C++
CORBA_BOA_var boa = ... // Get a reference to the BOA somehow
boa -> conc_model_thread_pool(10);

This allocates 10 threads for the thread pool. Here is the same example in Java:

// Java
org.omg.CORBA.BOA boa = ... // Get a reference to the BOA somehow
((com.ooc.CORBA.BOA)boa).conc_model_thread_pool(10);
ORBacus 129

Concurrency Models

130
 ORBacus

CHAPTER 10 The Reactor
ance
egis-
h as an

-

nce
nly

11
ts
10.1 What is a Reactor?

In “reactive” mode (see “Reactive Clients and Servers” on page 119), ORBACUS uses a
so-called “Reactor” for event dispatching [6]. Simply speaking, the Reactor is an inst
in ORBACUS (a singleton) where special objects — so-called event handlers — can r
ter if they are interested in specific events. These events can be network events, suc
event signaling that data are ready to be read from a network connection.

Again, this chapter only applies to ORBACUS when used with reactive concurrency mod
els. If you use ORBACUS with any other concurrency model, for example “blocking” or
any of the multi-threaded models, the following examples are not applicable. Also, si
ORBACUS for Java currently doesn’t support the reactive model at all, the following o
applies to ORBACUS for C++.

10.2 Available Reactors

Currently there are three Reactors supported by ORBACUS:

• The standard “select” Reactor which relies on the Berkeley Sockets select function.

• A special Reactor for use with the X11 Window System. This Reactor handles X
events (which for example can trigger X11 callbacks) and CORBA network even
simultaneously.
ORBacus 131

The Reactor

132

tor

d, it
• A special Reactor for use with Microsoft Windows 95 or Windows NT. This Reac
handles Windows messages and CORBA network events simultaneously.

The “default” Reactor is the “select” Reactor. If one of the other Reactors is to be use
must be initialized explicitly.

10.2.1 The X11 Reactor

An application that wants to use the X11 Reactor simply has to call the function
OBX11Init before the ORB is initialized with CORBA_ORB_init. For example:

1 #include <X11/Intrinsic.h>
2

3 #include <OB/CORBA.h>
4 #include <OB/X11.h>
5

6 int
7 main(int argc, char* argv[], char*[])
8 {
9 XtAppContext appContext;

10 Widget topLevel = XtAppInitialize(&appContext,
11 "MyApplication",
12 0, 0,
13 &argc, argv,
14 0, 0, 0);
15

16 OBX11Init(appContext);
17

18 CORBA_ORB_var orb = CORBA_ORB_init(argc, argv);
19 CORBA_BOA_var boa = orb -> BOA_init(argc, argv);
20

21 // More application code ...
22

23 boa -> impl_is_ready();
24

25 return 0;
26 }

1-4 Include header files.

6-7 Define the main function.

9-14 Initialize X11 application.

16 Use the X11 application context to initialize the X11 Reactor.
ORBacus

Available Reactors
18-19 Initialize ORB and BOA as usual.

23 Enter the CORBA event loop. This loop will now also dispatch X11 events. Alternatively,
the standard X11 event loop may be called, which will then also dispatch CORBA events.

10.2.2 The Windows Reactor

For the Windows Reactor, the function OBWindowsInit must be called, also before the
ORB is initialized. For example:

1 #include <Windows.h>
2

3 #include <OB/CORBA.h>
4 #include <OB/Windows.h>
5

6 int WINAPI
7 WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance,
8 LPSTR lpszArgs, int nWinMode)
9 {

10 OBWindowsInit(hInstance);
11

12 int dummy = 0;
13 CORBA_ORB_var orb = CORBA_ORB_init(dummy, 0);
14 CORBA_BOA_var boa = orb -> BOA_init(dummy, 0);
15

16 // More application code ...
17

18 boa -> impl_is_ready();
19

20 return 0;
21 }

1-4 Include header files.

6-8 Define the WinMain function.

10 Use the Windows application instance to initialize the Windows Reactor.

12-14 Initialize ORB and BOA as usual.

18 Enter the CORBA event loop, which now also dispatches Windows events. The standard
Windows event loop may also be called, which will then also dispatch CORBA events.
ORBacus 133

The Reactor

134
10.3 Writing a Custom Event Handler

ORBACUS in reactive mode includes support for customized event handlers. This means
that while your application is running, it can react to events like keyboard events. In order
to implement your own ORBACUS event handler, you must derive a class from
OBEventHandler and overload the handleEvent and handleStop member functions.
The constructor of the derived class must ensure that objects of this class are registered
with the Reactor. This is an example for an event handler that listens to keyboard events:

1 #include <OB/Reactor.h>
2

3 class MyEventHandler : public OBEventHandler
4 {
5 public:
6

7 MyEventHandler();
8 virtual ~MyEventHandler();
9

10 virtual void handleEvent(CORBA_ULong);
11 virtual void handleStop();
12 };
13

14 MyEventHandler::MyEventHandler()
15 {
16 OBReactor* Reactor = OBReactor::instance();
17 Reactor -> registerHandler(this, OBEventRead, 0);
18 }
19

20 MyEventHandler::~MyEventHandler()
21 {
22 OBReactor* Reactor = OBReactor::instance();
23 Reactor -> unregisterHandler(this);
24 }
25

26 void
27 MyEventHandler::handleEvent(OBMask mask)
28 {
29 assert(mask == OBEventRead);
30

31 char c;
32 cin.read(&c, 1);
33

34 // Handle character input here ...
35 }
ORBacus

Using Timers

vents

n-

r pro-

n flag
. The
-

ired
36

37 void
38 MyEventHandler::handleStop()
39 {
40 }

1 The header file for the reactor is included. This file also contains the definition of
OBEventHandler.

3-12 An event handler MyEventHandler is defined, which has a constructor, a destructor, a
handleEvent and a handleStop operation.

14-18 The constructor registers the event handler with the Reactor singleton. Only “read” e
are requested.

20-24 The destructor unregisters the event handler with the Reactor singleton.

26-35 The ORBACUS Reactor calls the handleEvent function each time a read event from sta
dard input is pending.

37-40 handleStop is not used by this event handler.

10.4 Using Timers

Often an application may wish to perform tasks on a regular timed basis. The reacto
vides an API for the integration of timed tasks into an ORBACUS application.

In order to have a timed task a class must be created that inherits from the class OBTimer.
The class OBTimer provides a pure-virtual method notify that is called when the timer
expires.

For the timer to be notified it must first be enabled. To do this the activate method is
called. This method takes two parameters. A timeval, and a boolean flag. The boolea
indicates whether the timeval is a relative or absolute - true indicates a relative value
timeval contains two members, tv_sec and tv_usec. Note that the timer is only as accu
rate as the underlying operating system, so microsecond accuracy is not necessarily
offered.

The activate method causes the timer to be notified once. If a recurring timer is des
the activate method should be invoked before the notify method is completed.

The stop method is provided to cancel the next notification.

1 #include <OB/Timer.h>
2 class CustomTimer : public OBTimer
ORBacus 135

The Reactor

136
3 {
4 void register()
5 {
6 struct timeval tv;
7 tv.tv_sec = 10;
8 tv.tv_usec = 0;
9 //

10 // Call notify() method in 10 seconds
11 //
12 activate(tv, true);
13

14 }
15

16 public:
17 CustomTimer()
18 {
19 register();
20 }
21

22 virtual void notify()
23 {
24 cout << "Notify called" << endl;
25 register();
26 }
27 };

1 The file OB/Timer.h must be included to use the timer classes.

2 A class CustomTimer is defined that inherits from OBTimer.

4-12 The private method register causes the timer to be notified every 10 seconds.

17-20 The constructor calls the register method.

22-26 The notify method is called every 10 seconds. A string is displayed, and the timer is re-
registered.

ORBacus

CHAPTER 11 The Open
Communications Interface
cols
r to

on-

g-in
 be
 of a

ts
r
11.1 What is the Open Communications Interface?

The Open Communications Interface (OCI) defines common interfaces for pluggable pro-
tocols. It supports connection-oriented, reliable “byte-stream” protocols. That is, proto
which allow the transmission of a continuous stream of bytes (octets) from the sende
the receiver.

TCP/IP is one possible candidate for an OCI plug-in. Since ORBACUS uses GIOP, such a
plug-in then implements the IIOP protocol. Other candidates are SCCP (Signaling C
nection Control Part, part of SS.7) or SAAL (Signaling ATM Adaptation Layer).

Non-reliable or non-connection-oriented protocols can also be used if the protocol plu
itself takes care of reliability and connection management. For example, UDP/IP can
used if the protocol plug-in provides for packet ordering and packet repetition in case
packet loss.

11.2 Interface Summary

11.2.1 Buffer

An interface for a buffer. A buffer can be viewed as an object holding an array of octe
and a position counter, which determines how many octets have already been sent o
received.
ORBacus 137

The Open Communications Interface

138

egis-
.

ort
nec-

P
11.2.2 Transport

The Transport interface allows the sending and receiving of octet streams in the form of
Buffer objects. There are blocking and non-blocking send/receive operations available, as
well as operations that handle time-outs and detection of connection loss.

11.2.3 Acceptor and Connector

Acceptors and Connectors are Factories [10] for Transport objects. A Connector is used to
connect clients to servers. An Acceptor is used by a server to accept client connection
requests.

Acceptors and Connectors also provide operations to manage protocol-specific IOR pro-
files. This includes operations for comparing profiles, adding profiles to IORs or extract-
ing object keys from profiles.

11.2.4 Connector Factory

A Connector Factory is used by clients to create Connectors. No special Acceptor Factory
is necessary, since an Acceptor is created just once on server start-up and then accepts
incoming connection requests until it is destroyed on server shutdown. Connectors, how-
ever, need to be created by clients whenever a new connection to a server has to be estab-
lished.

11.2.5 The Registries

The ORB provides a Connector Factory Registry and the Object Adapter provides an
Acceptor Registry. These registries allow the plugging-in of new protocols. Transport,
Connector, Connector Factory and Acceptor must be written by the plug-in implementors.
The Connector Factory must then be registered with the ORB’s Connector Factory R
try and the Acceptor must be registered with the Object Adapter’s Acceptor Registry

11.2.6 The Info Objects

Info objects provide information on Transports, Acceptors and Connectors. A Transp
Info provides information on a Transport, an Acceptor Info on an Acceptor and a Con
tor Info on a Connector. To get information for a concrete protocol, these info objects
must be narrow’d to an info object for this protocol, for example, in the case of an IIO
plug-in, a OCI::TransportInfo must be narrow’d to OCI::IIOP::TransportInfo.
ORBacus

OCI Reference

asics
’s
11.2.7 Class Diagram

Figure 11.1 shows the classes and interfaces of the OCI (except for the Buffer and Info

interfaces). ORBACUS provides abstract base classes for the interfaces Connector Factory,
Connector, Transport and Acceptor. The protocol plug-in must inherit from these classes
in order to provide concrete implementations for a specific protocol. ORBACUS also pro-
vides concrete classes for the interfaces Buffer, Connector Factory Registry and Acceptor
Registry. Instances of Connector Factory Registry and Acceptor Registry are provided by
the ORB and Object Adapter, respectively. Concrete implementations of the Connector
Factory must be registered with the ORB’s Connector Factory Registry, and concrete
implementations of the Acceptor must be registered with the Acceptor Registry.

11.3 OCI Reference

This chapter does not contain a complete reference of the OCI. It only explains OCI b
and, in the remainder of this chapter, how it is used from the application programmer

Figure 11.1: OCI Class Diagram

Connector
Factory

Acceptor
Registry

Connector Transport Acceptor

Protocol-
Specific

Connector
Factory

Protocol-
Specific

Connector

Protocol-
Specific

Transport

Protocol-
Specific

Acceptor

n

Connector
Factory
Registry

n

ORB OA1 1

creates createscreates
ORBacus 139

The Open Communications Interface

140
point of view for the most common tasks. For more information on how to use the OCI to
write your own protocol plug-ins, and for a complete reference, please refer to Appendix
B.

11.4 OCI for the Application Programmer

The following information only applies to the standard ORBACUS IIOP plug-in. For other
plug-ins, like the ORBACUS SSL plug-in, please refer to the plug-in’s documentation.

11.4.1 A “Converter” Class for Java

As you will see in the following examples, the OCI info objects return port numbers as
IDL unsigned short values and IP addresses as an array of 4 IDL unsigned octet
values. This works fine for C++, but in Java this causes a problem, because there are no
unsigned types in Java. The Java mapping simply maps unsigned types to signed types.
Consider for example the IP address 126.127.128.129. In Java, the OCI will return this as
126.127.-128.-127, because 128 and 129, if bit-wise mapped to the Java byte type, are
-128 and -127.

To avoid this problem, we will use a helper class which converts port numbers and IP
addresses to Java int types. This helper class looks as follows:

1 // Java
2

3 final class Converter
4 {
5 static int port(short s)
6 {
7 if(s < 0)
8 return 0xffff + (int)s + 1;
9 else

10 return (int)s;
11 }
12

13 static int[] addr(byte[] bArray)
14 {
15 int[] iArray = new int[4];
16 for(int i = 0 ; i < 4 ; i++)
17 if(bArray[i] < 0)
18 iArray[i] = 0xff + (int)bArray[i] + 1;
19 else
20 iArray[i] = (int)bArray[i];
21
ORBacus

OCI for the Application Programmer
22 return iArray;
23 }
24 };

5-11 Converts short port numbers to int.

13-23 Converts byte[] IP addresses to int[].

The converter class is used throughout the examples in the sections below.

11.4.2 Getting Hostnames and Port Numbers

The following code fragments show how it is possible to find out on what hostnames and
port numbers a server is listening. First the C++ version:

1 // C++
2

3 OCI_AccRegistry_var registry = boa -> get_acc_registry();
4 OCI_AcceptorSeq_var acceptors = registry -> get_acceptors();
5

6 for(CORBA_ULong i = 0 ; i < acceptors -> length() ; i++)
7 {
8 OCI_AcceptorInfo_var info = acceptors[i] -> get_info();
9 OCI_IIOP_AcceptorInfo_var iiopInfo =

10 OCI_IIOP_AcceptorInfo::_narrow(info);
11

12 if(!CORBA_is_nil(iiopInfo))
13 {
14 CORBA_String_var host = iiopInfo -> host();
15 CORBA_UShort port = iiopInfo -> port();
16

17 cout << "host: " << host << endl;
18 cout << "port: " << port << endl;
19 }
20 }

3 The Acceptor Registry is requested from the object adapter.

4 From the Acceptor Registry, the list of registered acceptors is requested.

6 The for loop iterates over all acceptors.

8-10 The info object for the acceptor is requested and narrowed to an IIOP acceptor info object.

12 The if block is only entered in case the info object really belongs to an IIOP plug-in.
ORBacus 141

The Open Communications Interface

142
14-18 The hostname and port number are requested from the IIOP acceptor info object and
printed on standard output.

The Java version is basically equivalent to the C++ code and looks as follows:

1 // Java
2

3 com.ooc.OCI.AccRegistry registry =
4 ((com.ooc.CORBA.BOA)boa).get_acc_registry();
5 com.ooc.OCI.Acceptor[] acceptors = registry.get_acceptors();
6

7 for(int i = 0 ; i < acceptors.length ; i++)
8 {
9 com.ooc.OCI.AcceptorInfo info = acceptors[i].get_info();

10 com.ooc.OCI.IIOP.AcceptorInfo iiopInfo =
11 com.ooc.OCI.IIOP.AcceptorInfoHelper.narrow(info);
12

13 if(iiopInfo != null)
14 {
15 String host = iiopInfo.host();
16 short port = Converter.port(iiopInfo.port());
17

18 System.out.println("host: " + host);
19 System.out.println("port: " + port);
20 }
21 }

3 The acceptor registry is requested from the BOA. Since the standard BOA
org.omg.CORBA.BOA does not provide a method for this, there must be a cast to
com.ooc.CORBA.BOA.

5-15 This is equivalent to the C++ version.

16 The converter class is used to get a port number in int format.

18-19 Like in the C++ version, the hostname and port number are printed on standard output.

11.4.3 Finding out a Client’s IP Address

To find out the IP address of a client within a server method, the following code can be
used in a servant class method implementation:

1 // C++
2

3 CORBA_Object_var baseCurrent =
ORBacus

OCI for the Application Programmer

ort

 on
4 orb -> resolve_initial_references("OCICurrent");
5 OCI_Current_var current = OCI_Current::_narrow(baseCurrent);
6

7 OCI_TransportInfo_var info = current -> get_oci_transport_info();
8 OCI_IIOP_TransportInfo_var iiopInfo =
9 OCI_IIOP_TransportInfo::_narrow(info);

10

11 if(!CORBA_is_nil(iiopInfo))
12 {
13 OCI_IIOP_InetAddr remoteAddr = iiopInfo -> remote_addr();
14 CORBA_UShort remotePort = iiopInfo -> remote_port();
15

16 cout << "Call from: "
17 << remoteAddr[0] << ’.’ << remoteAddr[1] << ’.’
18 << remoteAddr[2] << ’.’ << remoteAddr[3]
19 << ":" << remotePort << endl;
20 }

3-5 The OCI current object is requested and narrow’d to the correct OCI::Current type.

7-9 The info object for the transport is requested and narrow’d to an IIOP transport info
object.

11 The remainder of the example code is only executed if this was really an IIOP transp
info object.

13-19 The address and the port of the client calling this operation are obtained and printed
standard output.

The Java version looks as follows:

1 org.omg.CORBA.Object baseCurrent =
2 orb.resolve_initial_references("OCICurrent");
3 com.ooc.OCI.Current current =
4 com.ooc.OCI.CurrentHelper.narrow(baseCurrent);
5

6 com.ooc.OCI.TransportInfo info = current.get_oci_transport_info();
7 com.ooc.OCI.IIOP.TransportInfo iiopInfo =
8 com.ooc.OCI.IIOP.TransportInfoHelper.narrow(baseInfo);
9

10 if(iiopInfo != null)
11 {
12 int[] remoteAddr = Converter.addr(iiopInfo.remote_addr());
13 int remotePort = Converter.port(iiopInfo.remote_port());
14

15 System.out.println("Call from: " +
ORBacus 143

The Open Communications Interface

144

the
16 remoteAddr[0] + "." +
17 remoteAddr[1] + "." +
18 remoteAddr[2] + "." +
19 remoteAddr[3] + ":" + remotePort);
20 }

1-10 This code is equivalent to the C++ version.

12-13 Again, the port number must be converted from short to int.

15-19 This is also equivalent to the C++ version.

11.4.4 Finding out a Server’s IP Address

To find out the server’s IP address and port that an object will attempt to connect to,
following code can be used:

1 // C++
2

3 CORBA_Object_var obj = ... // Get an object reference somehow
4

5 OCI_ConnectorInfo_var info = obj -> get_oci_connector_info();
6 OCI_IIOP_ConnectorInfo_var iiopInfo =
7 OCI_IIOP_ConnectorInfo::_narrow(info);
8

9 if(!CORBA_is_nil(iiopInfo))
10 {
11 OCI_IIOP_InetAddr_var remoteAddr = iiopInfo -> remoteAddr();
12 CORBA_UShort remotePort = iiopInfo -> remote_port();
13

14 cout << "Will connect to: "
15 << remoteAddr[0] << ’.’ << remoteAddr[2] << ’.’
16 << remoteAddr[2] << ’.’ << remoteAddr[3]
17 << ":" << remotePort << endl;
18 }

5-7 Get the OCI connector info and narrow to an IIOP connector info

9 The if block is only executed if this really was an IIOP connector info.

11-17 The address and port are obtained and displayed on standard output.

The Java version looks as follows:

1 // Java
2

ORBacus

OCI for the Application Programmer
3 org.omg.CORBA.Object obj = ... // Get an object reference somehow
4

5 org.omg.CORBA.portable.ObjectImpl objImpl =
6 (org.omg.CORBA.portable.ObjectImpl)obj;
7 com.ooc.CORBA.Delegate objDelegate =
8 (com.ooc.CORBA.Delegate)objImpl._get_delegate();
9

10 com.ooc.OCI.ConnectorInfo info =
11 objDelegate.get_oci_connector_info();
12 com.ooc.OCI.IIOP.ConnectorInfo iiopInfo =
13 com.ooc.OCI.IIOP.ConnectorInfoHelper.narrow(info);
14

15 if(iiopInfo != null)
16 {
17 int[] remoteAddr = Converter.addr(iiopInfo.remote_addr());
18 int remotePort = Converter.port(iiopInfo.remote_port());
19

20 System.out.println("Will connect to: " +
21 remoteAddr[0] + "." +
22 remoteAddr[1] + "." +
23 remoteAddr[2] + "." +
24 remoteAddr[3] + ":" + remotePort);
25 }

5-8 We need to retrieve the ORBACUS-specific Delegate object so that we can get the con-
nector info.

10-13 Get the OCI connector info and narrow to an IIOP connector info.

15 The if block is only entered if this really was an IIOP connector info.

17-24 The address and port are obtained and displayed on standard output.
ORBacus 145

The Open Communications Interface

146
 ORBacus

CHAPTER 12 Using Policies
n be

 for
l, or
12.1 Overview

The ORB and its services may allow the application developer to configure the semantics
of its operations. This configuration is accomplished in a structured manner through inter-
faces derived from the interface CORBA::Policy. For instance, the ORBACUS SSL plug-
in [13] allows the configuration of the cipher suites used for peer communications through
the interface SSL::CipherSuitePolicy.

The configuration of these policy objects is accomplished at three levels:

• ORB Level: These policies override the system defaults. The ORB has an initial
reference ORBPolicyManager. A PolicyManager has a set of operations through
which the current set of overriding policies can be obtained, and new policies ca
applied.

• Thread Level: A standard PolicyCurrent is defined with operations that allow the
querying and retrieval of policies that affect the current thread. These policies
override the policies set at the ORB level.

• Object Level: The object interface contains operations to retrieve and set policies
itself. Policies applied at the object level override those applied at the thread leve
the ORB level.

At present ORBACUS does not support thread level policies.
ORBacus 147

Using Policies

148
For more information on Policies, the PolicyManager interface and the
CORBA::Object policy operations see [11] and [12].

12.2 Supported Policies

The following is a brief description of the policies that are currently supported. For a
detailed description, please refer to Appendix A.

SSL::ConnectPolicy

This policy determines whether the ORB is permitted to establish an insecure communica-
tions channel between peers. The default for this policy is true if the SSL plug-in is not
installed. If the SSL plug-in is installed, the default is false. For more information on
this policy, see [13].

OB::ConnectionReusePolicy

This policy determines whether the ORB is permitted to reuse a communications channel
between peers. If this policy is false then each object will have a new communications
channel to its peer. The default for this policy is true.

OB::ProtocolPolicy

This policy is used to force the selection of a particular protocol. If this policy is set, then
the protocol with the identified tag will be used, if possible. If it is not possible to use this
protocol, a CORBA::NO_RESOURCES exception will be raised.

OB::ReconnectPolicy

If an object possesses this policy and the value flag of this policy is true, then upon a
communications failure a reconnection will automatically be attempted. If this reconnec-
tion attempt fails a CORBA::COMM_FAILURE exception is raised.

OB::TimeoutPolicy

If an object has this policy and no response is available for a request after value millisec-
onds, a CORBA::NO_RESPONSE exception is raised.

12.3 Examples

The following examples demonstrate how to set OB::ConnectionReusePolicy at both
the ORB level and the object level in C++ and Java. Setting a policy at the ORB level
means that the ORB will honor this policy for all newly created objects. Existing objects
ORBacus

Examples
maintain their current set of policies. Setting a policy at the object level overrides any
ORB level policies applied to that object.

Setting the connection reuse policy to false at the ORB level means that the ORB will
create a new connection from the client to the server for each new proxy object instead of
reusing existing ones. Setting the connection reuse policy to false at the object level
means that the client does not reuse connections to the server only for a particular proxy
object.

If the connection reuse policy is set to true at some later point, communications channels
that were previously created with a connection reuse policy set to false will not be
reused. That is, the connection reuse policy is sticky, in the sense that the reuse policy that
was in effect at the time that a communications channel is created stays with it. Setting the
reuse policy at the object level means that for a client the ORB will not reuse the commu-
nications channel that is associated with the proxy object.

12.3.1 Connection Reuse Policy at ORB Level

Our first example shows how the connection reuse policy can be set at the ORB level.
First in C++:

1 // C++
2 CORBA_Any boolAny;
3 boolAny <<= CORBA_Any::from_boolean(CORBA_FALSE);
4 CORBA_PolicyList policies;
5 policies.length(1);
6 policies[0] = orb -> create_policy(OB_CONNECTION_REUSE, boolAny);
7 CORBA_Object_var pmObj =
8 orb -> resolve_initial_references("ORBPolicyManager");
9 CORBA_PolicyManager_var pm = CORBA_PolicyManager::_narrow(pmObj);

10 pm -> add_policy_overrides(policies);

2-3 Create an any and insert the value CORBA_FALSE.

4-5 Create a sequence containing one policy object.

6 Ask the ORB to create a connection reuse policy. Pass the any that contains the value for
this policy.

7-9 Obtain the ORB level policy manager object.

10 Add the policies to the ORB level policy manager.

And here is the same example in Java:
ORBacus 149

Using Policies

150
1 // Java
2 org.omg.CORBA.Any boolAny = orb.create_any();
3 boolAny.insert_boolean(false);
4 org.omg.CORBA.Policy[] policies = new org.omg.CORBA.Policy[1];
5 policies[0] =
6 orb.create_policy(com.ooc.OB.CONNECTION_REUSE.value, boolAny);
7 org.omg.CORBA.PolicyManager pm =
8 org.omg.CORBA.PolicyManagerHelper.narrow(
9 orb.resolve_initial_references("ORBPolicyManager"));

10 pm.add_policy_overrides(policies);

1-10 This is equivalent to the C++ version.

12.3.2 Connection Reuse Policy at Object Level

And now the same example, but at the object level. C++ first:

1 // C++
2 CORBA_Any boolAny;
3 boolAny <<= CORBA_Any::from_boolean(CORBA_FALSE);
4 CORBA_PolicyList policies(1);
5 policies.length(1);
6 policies[0] = orb -> create_policy(OB_CONNECTION_REUSE, boolAny);
7 CORBA_Object_var newObj =
8 obj -> _set_policy_overrides(policies, CORBA_ADD_OVERRIDES);

2-6 This is the same as in the example for the ORB level.

7-8 Set these policies on the object by using the set_policy_overrides method. This
method returns a new object that has the set of policies applied.

And here is the same example in Java:

1 // Java
2 org.omg.CORBA.Any boolAny = orb.create_any();
3 boolAny.insert_boolean(false);
4 org.omg.CORBA.Policy[] policies = new org.omg.CORBA.Policy[1];
5 policies[0] =
6 orb.create_policy(com.ooc.OB.CONNECTION_REUSE.value, boolAny);
7 org.omg.CORBA.Object newObj =
8 obj._set_policy_overrides(policies,
9 org.omg.CORBA.SetOverrideType.ADD_OVERRIDE);

1-9 This is equivalent to the C++ version.
ORBacus

CHAPTER 13 ORBacus Basic Services
ions.

ent
ion,

nnect
teps
This chapter describes the standard services included with the ORBACUS distribution:

• The Naming Service

• The Property Service

• The Event Service

These services are implemented compliant to [4] and available in C++ and Java vers

Other services, such as the Trading Service “ORBACUS Trader”, are not included in the
standard ORBACUS distribution. For more information on other services available from
Object-Oriented Concepts, please see our Web site.

This chapter does not provide a complete description of the naming, property and ev
services. It only provides an overview, suitable to get you started. For more informat
please refer to the service specifications.

13.1 Configuring and Using a Basic Service

This section describes the steps necessary to start a service, publish its IOR, and co
to the service from a client. We will use the Naming Service as an example, but the s
outlined below are applicable to all of the services.
ORBacus 151

ORBacus Basic Services

152

ave

 also
 the

sing

13.1.1 Starting the Service

To start the C++ version of the Naming Service, type the following:

nameserv -i -OAport 10000 > nameserv.ref

The Java version can be started like this:

java com.ooc.CosNaming.Server -i -OAport 10000 > nameserv.ref

Notice that we have specified a unique port number for the service, in order to ensure that
the object reference of the service remains valid across executions of the service (see
“Lifetime of Object References” on page 83).

The -i argument causes the service to dump its IOR to standard output, which we h
redirected to the file nameserv.ref.

13.1.2 Connecting to the Service

Chapter 6 describes different strategies for locating objects, and these strategies can
be used to locate services. For example, it’s possible to read the stringified IOR from
file nameserv.ref, convert it to an object using string_to_object and then narrow
this object reference to the CosNaming::NamingContext interface.

A more common way is to use resolve_initial_references as shown in “Resolving
an Initial Service” on page 90. The references for the initial services can be defined u
the -ORBservice option. Here’s a Unix example which uses “Bourne” shell command
substitution (‘command‘) to obtain an IOR from a file:

java MyClient -ORBservice NameService ‘cat nameserv.ref‘

On non-Unix operating systems, however, it can be inconvenient to handle IORs on the
command line, therefore it’s often easier to use the -ORBconfig option:

java MyClient -ORBconfig orb.cfg

The configuration file orb.cfg could be written as follows:

ORB configuration file
ooc.service.NameService=iiop://myhost:10000/DefaultNamingContext

Notice that we are using the ORBACUS-specific iiop:// notation for specifying the IOR
of the Naming Service, but we also could have pasted the contents of nameserv.ref. See
“Using the iiop:// Notation” on page 89 for more information.
ORBacus

Configuring and Using a Basic Service

ost”),
 to the

pe of
The IOR contains the name of the host where the naming service was started (“myh
the port number that we specified when starting the service, and the name assigned
service’s primary object: DefaultNamingContext.

13.1.3 Object Names for the Basic Services

Each of the Basic Services has a named primary object, which allows you to use the
iiop:// notation or the ORB operation get_inet_object to obtain a reference to the
service (see “Connecting to Named Objects” on page 88). The name and interface ty
each service’s primary object is shown in Table 13.1.

The examples below illustrate how to connect to the Naming Service using
get_inet_object. Here’s the C++ version:

// C++
CORBA_ORB_var orb = ... // Get a reference to the ORB somehow
CORBA_Object_var obj =

orb -> get_inet_object("myhost", 10000, "DefaultNamingContext");
CosNaming_NamingContext_var ctx =

CosNaming_NamingContext::_narrow(obj);

Object Name Interface Type

Naming
Service

DefaultNamingContext CosNaming::NamingContext

Event
Service

DefaultEventChannel
CosEventChannelAdmin::
EventChannel

Typed
Event Ser-
vice

DefaultTypedEventChannel
CosTypedEventChannelAdmin::
TypedEventChannel

Property
Service

DefaultPropertySetDefFactory
CosPropertyService::
PropertySetDefFactory

Interface

Repositorya

a. The Interface Repository is not a CORBA Service and therefore not described in this
chapter. However, the object name of the Interface Repository is shown here for
completeness.

DefaultRepository CORBA::Repository

Table 13.1: Primary Object Names and Interface Types
ORBacus 153

ORBacus Basic Services

154

ied”
 nat-
am-
 can
And in Java:

// Java
org.omg.CORBA.ORB orb = ... // Get a reference to the ORB somehow
org.omg.CORBA.Object obj =

((com.ooc.CORBA.ORB)orb).get_inet_object("myhost", 10000,
"DefaultNamingContext");

org.omg.CosNaming.NamingContext ctx =
org.omg.CosNaming.NamingContextHelper.narrow(obj);

For these examples to work, the Naming Service must have been started on the host
“myhost” using the port number 10000.

13.2 The Naming Service

A CORBA object is often represented by an object reference in the form of a “stringif
IOR, a lengthy string that is difficult to read and cumbersome to use. It is much more
ural to think of an object in terms of its name, which is a core feature of the CORBA N
ing Service. In the Naming Service, objects are registered with a unique name, which
later be used to resolve its associated object reference.

13.2.1 Properties

The ORBACUS Naming Service supports the following properties:

13.2.2 Command-line Options

The ORBACUS Naming Service supports the following command-line options:

ooc.naming.database=FILE Enables persistence for the server. All of the bindings cre-
ated by the server will be saved to the specified file. If you
are starting the server for the first time using this database,
you must also use the -s command-line option.

ooc.naming.timeout=MINS Specifies the timeout in minutes after which a persistent
server automatically compacts its database. The default tim-
eout is five minutes.

-h
--help

Display the command-line options supported by the server.
ORBacus

The Naming Service
13.2.3 Creating Bindings

Object references registered with the Naming Service are maintained in a hierarchical
structure similar to a filesystem. A file in a filesystem is analogous to an object binding in
the Naming Service. The equivalent for a folder in a filesystem is a naming context in
Naming Service terms. The pieces of information stored in a Naming Service are called
bindings. A binding consists of an object’s name and its type, as defined in the
CosNaming module:

// IDL
typedef string Istring;

struct NameComponent
{

Istring id;
Istring kind;

};

typedef sequence<NameComponent> Name;

enum BindingType
{

nobject,
ncontext

};

struct Binding
{

Name binding_name;
BindingType binding_type;

-v
--version

Display the version of the server.

-i
--ior

Print the interoperable object reference (IOR) of the server to standard
output.

-s
--start

Use this option only when starting a persistent server using a new database.

-d FILE
--database FILE

Equivalent to the ooc.naming.database property.

-t MINS
--timeout MINS

Equivalent to the ooc.naming.timeout property.
ORBacus 155

ORBacus Basic Services

156

tem

tered

g

 reso-
f

nam-
};

As you can see, each name consists of one or more components, like a file is fully speci-
fied by its path in a filesystem. Each name component consists of two strings, id and
kind, which could be likened to a file’s name and its extension. Generally, the filesys
analogy works very well when describing the Naming Service structures.

A new Naming Service entry, i.e., a binding, is created with the following operations:

// IDL
void bind(in Name n, in Object obj)

raises(NotFound, CannotProceed, InvalidName, AlreadyBound);

void bind_context(in Name n, in NamingContext nc)
raises(notFound, CannotProceed, InvalidName);

NamingContext new_context();

NamingContext bind_new_context(in Name n)
raise(NotFound, AlreadyBound, CannotProceed, InvalidName);

bind registers a new object with the Naming Service, whereas a new context is regis
with bind_context. For each operation, an object reference and a Name are expected as
parameters. If no exception was thrown, the bind operation was successful. New namin
context objects are created with new_context or bind_new_context.

Use the unbind operation to delete a particular binding:

// IDL
void unbind(in Name n)

raises(NotFound, CannotProceed, InvalidName);

13.2.4 Name Resolution

Besides registering objects, an equally important task of the Naming Service is name
lution. A name is passed to the resolve operation and an object reference is returned i
the name exists.

// IDL
Object resolve(in Name n)

raises(NotFound, CannotProceed, InvalidName);

The resolve operation is only useful when a particular name is known in advance.
Sometimes it is necessary to ask for a list of all bindings registered with a particular
ing context. The list operation returns a list of bindings.
ORBacus

The Naming Service

all
s per-

mple
fer-
 sev-
// IDL
typedef sequence<Binding> BindingList;

void list(in unsigned long how_many,
out BindingList bl, out BindingIterator bi);

If the number of bindings is especially large, the BindingIterator interface is provided
so that you don’t have to query for all available bindings at once. Simply get a certain
number of bindings specified with how_many, and get the rest, if any, using the
BindingIterator.

// IDL
interface BindingIterator
{

boolean next_one(out Binding b);

boolean next_n(in unsigned long how_many,
out BindingList bl);

void destroy();
};

Make sure that you destroy the iterator object when it is no longer needed.

13.2.5 Persistence

The ORBACUS Naming Service can optionally be used in a persistent mode in which
bindings managed by the service are saved in a file. If you do not run the service in it
sistent mode, all of the bindings will be lost when the service terminates.

It is also important to note that when using the service in its persistent mode, you
should always start the service on the same port (see “Configuring the ORB and BOA”
on page 45 for more information).

13.2.6 A Simple Example

ORBACUS includes simple C++ and Java examples that demonstrate how to use the
CORBA Naming Service. These examples are located in the folder naming/demo. We
will concentrate on the Java example, but the C++ example works similarly. The exa
expects a Naming Service server to be already running and that the server’s initial re
ence can be resolved by the ORB. Because of its volume we have split the code into
eral parts for the discussion below.
ORBacus 157

ORBacus Basic Services

158

” to
Initialization

The first code fragment deals with initializing the ORB and the BOA.

1 // Java
2

3 try
4 {
5 ORB orb = ORB.init(args, new java.util.Properties());
6 }
7 catch(SystemException ex)
8 {
9 // The ORB initialization failed

10 }
11

12 org.omg.CORBA.Object obj = null;
13 try
14 {
15 obj = orb.resolve_initial_references("NameService");
16 }
17 catch(org.omg.CORBA.ORBPackage.InvalidName ex)
18 {
19 // There is no Naming Service available
20 }
21

22 if(obj == null)
23 {
24 // Something is wrong with the Naming Service reference
25 }
26

27 NamingContext nc = NamingContextHelper.narrow(obj);
28

29 if(nc == null)
30 {
31 // This is not a Naming Service reference at all
32 }
33

34 BOA boa = orb.BOA_init(args, new java.util.Properties());

3-10 Usually the application is initialized in the main method. In order to initialize the ORB, its
init operation is called.

12-20 In the next step we try to connect to the Naming Service by supplying “NameService
resolve_initial_references. If InvalidName is thrown, there is no Naming Ser-
vice available because the ORB doesn’t know anything about this service.
ORBacus

The Naming Service

e
asked

.

22-32 If calling resolve_initial_references was successful, the object reference is
checked and narrowed in order to verify that it’s a Naming Service instance. If the
narrow operation returns a null reference, the object returned is not a Naming Servic
instance but something else. This is considered to be an error because we explicitly
for a Naming Service instance.

34 Finally the BOA is initialized.

Binding

In the next step some sample bindings are created and bound to the Naming Service

1 // Java
2

3 Named a = new Named_impl();
4 Named a1 = new Named_impl();
5 Named a2 = new Named_impl();
6 Named a3 = new Named_impl();
7 Named b = new Named_impl();
8 Named c = new Named_impl();
9

10 try
11 {
12 NameComponent[] nc1Name = new NameComponent[1];
13 nc1Name[0] = new NameComponent();
14 nc1Name[0].id = "nc1";
15 nc1Name[0].kind = "";
16 NamingContext nc1 = nc.bind_new_context(nc1Name);
17

18 NameComponent[] nc2Name = new NameComponent[2];
19 nc2Name[0] = new NameComponent();
20 nc2Name[0].id = "nc1";
21 nc2Name[0].kind = "";
22 nc2Name[1] = new NameComponent();
23 nc2Name[1].id = "nc2";
24 nc2Name[1].kind = "";
25 NamingContext nc2 = nc.bind_new_context(nc2Name);
26

27 NameComponent[] aName = new NameComponent[1];
28 aName[0] = new NameComponent();
29 aName[0].id = "a";
30 aName[0].kind = "";
31 nc.bind(aName, a);
32
ORBacus 159

ORBacus Basic Services

160
33 NameComponent[] a1Name = new NameComponent[1];
34 a1Name[0] = new NameComponent();
35 a1Name[0].id = "a1";
36 a1Name[0].kind = "";
37 nc.bind(a1Name, a1);
38

39 NameComponent[] a2Name = new NameComponent[1];
40 a2Name[0] = new NameComponent();
41 a2Name[0].id = "a2";
42 a2Name[0].kind = "";
43 nc.bind(a2Name, a2);
44

45 NameComponent[] a3Name = new NameComponent[1];
46 a3Name[0] = new NameComponent();
47 a3Name[0].id = "a3";
48 a3Name[0].kind = "";
49 nc.bind(a3Name, a3);
50

51 NameComponent[] bName = new NameComponent[2];
52 bName[0] = new NameComponent();
53 bName[0].id = "nc1";
54 bName[0].kind = "";
55 bName[1] = new NameComponent();
56 bName[1].id = "b";
57 bName[1].kind = "";
58 nc.bind(bName, b);
59

60 NameComponent[] cName = new NameComponent[3];
61 cName[0] = new NameComponent();
62 cName[0].id = "nc1";
63 cName[0].kind = "";
64 cName[1] = new NameComponent();
65 cName[1].id = "nc2";
66 cName[1].kind = "";
67 cName[2] = new NameComponent();
68 cName[2].id = "c";
69 cName[2].kind = "";
70 nc.bind(cName, c);
71

72 boa.impl_is_ready(null);
73 }

3-8 Several sample objects are created that will later be bound to our Naming Service. These
objects implement an interface called Named. In this example, the details of this interface
are not important. Named might even be an interface without any operations defined in it.
ORBacus

The Naming Service

d-

erly
10-70 Create and bind some new contexts and bind the sample objects to these contexts. Each
binding name consists of several name components NameComponent that are similar to
the path components of a file located somewhere in a filesystem. Objects are bound with
the Naming Service’s bind operation; for contexts, the corresponding operation
bind_context is used. In addition to the object’s IOR, both calls expect a unique bin
ing name. If a name already exists, an AlreadyBound exception is thrown. There are also
other exceptions you might encounter at this stage, e.g., IllegalName if an empty string
was provided as part of a NameComponent.

72 Everything is prepared now, so we can listen for requests by calling impl_is_ready on
the BOA.

Unbinding

Some cleanup work should be done before exiting the program. Every binding is prop
unbound here.

1 // Java
2

3 nc.unbind(cName);
4 nc.unbind(bName);
5 nc.unbind(aName);
6 nc.unbind(nc2Name);
7 nc.unbind(nc1Name);

Exceptions

The final code fragment deals with exception handling.

1 // Java
2

3 catch(NotFound ex)
4 {
5 System.err.print("Got a ‘NotFound’ exception (");
6 switch(ex.why.value())
7 {
8 case NotFoundReason._missing_nod:
9 System.err.print("missing node");

10 break;
11

12 case NotFoundReason._not_context:
13 System.err.print("not context");
14 break;
15
ORBacus 161

ORBacus Basic Services

162

aus-
16 case NotFoundReason._not_object:
17 System.err.print("not object");
18 break;
19 }
20

21 System.err.println(")");
22 ex.printStackTrace();
23 return 1;
24 }
25 catch(CannotProceed ex)
26 {
27 System.err.println("Got a ‘CannotProceed’ exception");
28 ex.printStackTrace();
29 return 1;
30 }
31 catch(InvalidName ex)
32 {
33 System.err.println("Got an ‘InvalidName’ exception");
34 ex.printStackTrace();
35 return 1;
36 }
37 catch(AlreadyBound ex)
38 {
39 System.err.println("Got an ‘AlreadyBound’ exception");
40 ex.printStackTrace();
41 return 1;
42 }

3-42 Catch exceptions. Don’t ever forget to do this. It can be useful to call printStackTrace
on the exception object in order to get detailed information about the program flow c
ing the exception.

Now you should have a look at the complete example as it is provided in the folder demo/

naming as a part of the ORBACUS distribution.

13.3 The Property Service

The CORBA Property Service1 is another important CORBA service. With it, you can
annotate an object with extra attributes (called properties) that were not defined by the

1. Note that the Property Service has nothing to do with the properties used for configuration pur-
poses, as described in “Properties” on page 45.
ORBacus

The Property Service

f the

mely
iated

rame-
object’s IDL interface. Properties can represent any value because they make use o
powerful CORBA Any data type.

13.3.1 Command-line Options

The ORBACUS Property Service supports the following command-line options:

13.3.2 Creating Properties

A property handled by the CORBA Property Service consists of two components, na
the property’s name and its value. The name is simply a CORBA string and the assoc
value is represented by a CORBA Any:

// IDL
typedef string PropertyName;

struct Property
{

PropertyName property_name;
any property_value;

};

New properties are created using a factory object implementing the PropertySet inter-
face. A new property is created using the define_property operation:

// IDL
void define_property(in PropertyName, in any property_value)

raises(InvalidPropertyName, ConflictingProperty,
UnsupportedTypeCode, UnsupportedProperty,
ReadOnlyProperty);

As a property consists of a name-value pair, both the name and the value are the pa
ters to this operation.

-h
--help

Display the command-line options supported by the server.

-v
--version

Display the version of the server.

-i
--ior

Print the interoperable object reference (IOR) of the server to standard output.
ORBacus 163

ORBacus Basic Services

164

per-

mple-
y.

er-
13.3.3 Querying for Properties

As soon as a property is defined, the PropertySet can be queried for the property’s
value with the get_property_value operation:

// IDL
any get_property_value(in PropertyName property_name)

raises(PropertyNotFound, InvalidPropertyName);

For a particular property name this call either returns the Any associated with this name or
throws an exception if a property with the name does not exist.

You can not only query for a particular property value, but also for a list of all the pro
ties defined within a PropertySet. The get_all_properties operation serves this
purpose:

// IDL
void get_all_properties(in unsigned long how_many,

out Properties nproperties, out PropertiesIterator rest);

This operation works similar to the list call offered by the Naming Service. In both
cases the maximum number of items to be returned at once is specified. An iterator i
menting the PropertiesIterator interface gives access to the remaining items, if an

// IDL
interface PropertiesIterator
{

void reset();

boolean next_one(out Property aproperty);

boolean next_n(in unsigned long how_many,
out Properties nproperties);

void destroy();
};

If you are only interested in a list of property names you can get this list by calling
get_all_property_names:

// IDL
void get_all_property_names(in unsigned long how_many,

out PropertyNames property_names,
out PropertyNamesIterator rest);

As with get_all_properties a list of names as well as an iterator is returned. This it
ator implements the PropertyNamesIterator interface:
ORBacus

The Property Service

nnot

fer to
// IDL
interface PropertyNamesIterator
{

void reset();

boolean next_one(out PropertyName property_name);

boolean next_n(in unsigned long how_many,
out PropertyNames property_names);

void destroy();
};

The iterators should always be destroyed when they are no longer needed.

Sometimes it is useful to know of how many properties a PropertySet consists of. This
information is provided by get_number_of_properties:

// IDL

unsigned long get_number_of_properties();

Note that you have to be careful if you intend to use the return value of
get_number_of_properties as the input value for the how_many parameter of
get_all_properties in order to get a complete property list. You always have to check
the PropertiesIterator for properties that were not returned as part of the
Properties sequence returned by get_all_properties, otherwise you might miss a
property that was defined by another process between your calls to
get_number_of_properties and get_all_properties.

13.3.4 Deleting Properties

If a property has become obsolete it can be deleted from the PropertySet with
delete_property:

// IDL
void delete_property(in PropertyName property_name)

raises(PropertyNotFound, InvalidProperty, FixedProperty);

As you might have guessed by this operation’s signature, there are properties that ca
be deleted at all. This kind of property is called a FixedProperty. The Property Service
defines several other special property types, such as read-only properties. Please re
the OMG’s Property Service [4] specification for details.
ORBacus 165

ORBacus Basic Services

166
13.3.5 A Simple Example

The Property Service test suite, which is part of the ORBACUS distribution, provides a
good example of how to create properties and query for their values. The code below is
based on excerpts of this test suite, which is located in the directory property/test. We
will concentrate on an example in Java here. As with the previous examples, the Java code
is very similar to what is necessary in C++. The example demonstrates how to create prop-
erties and how to get a list of all the properties defined within a PropertySet.

1 // Java
2

3 org.omg.CORBA.Object obj = null;
4

5 try
6 {
7 obj = orb.resolve_initial_references("PropertyService");
8 }
9 catch(org.omg.CORBA.ORBPackage.InvalidName ex)

10 {
11 // An error occurred, Property Service is not available
12 }
13

14 if(obj == null)
15 {
16 // The object reference is invalid
17 }
18

19 PropertySetFactory factory = PropertySetFactoryHelper.narrow(obj);
20 if(factory == null)
21 {
22 // This object does not implement the Property Service
23 }
24

25 PropertySet set = factory.create_propertyset();
26

27 Any anyLong = orb.create_any();
28 Any AnyInt = orb.create_any();
29 Any anyShort = orb.create_any();
30 anyLong.insert_long(12345L);
31 anyInt.insert_int(6789);
32 anyShort.insert_short(0);
33

34 try
35 {
ORBacus

The Property Service
36 set.define_property(“LongProperty”, anyLong);
37 set.define_property(“IntProperty”, anyInt);
38 set.define_property(“ShortProperty”, anyShort);
39 }
40 catch(ReadOnlyProperty ex)
41 {
42 // An error occurred
43 }
44 catch(ConflictingProperty ex)
45 {
46 // An error occurred
47 }
48 catch(UnsupportedProperty ex)
49 {
50 // An error occurred
51 }
52 catch(UnsupportedTypeCode ex)
53 {
54 // An error occurred
55 }
56 catch(InvalidPropertyName ex)
57 {
58 // An error occurred
59 }
60

61 PropertiesHolder ph = new PropertiesHolder();
62 PropertiesIteratorHolder ih = new PropertiesIteratorHolder();
63 set.get_all_properties(0, ph, ih);
64

65 PropertyHolder h = new PropertyHolder();
66 while(ih.value.next_one(h))
67 {
68 // The next property is now stored in h.value
69 }
70

71 ih.value.destroy();

5-23 Get a Property Service reference and check for errors.

25 The PropertySetFactory object is used to create a PropertySet instance.

27-32 Each property consists of a name and a value in the form of a CORBA Any.

34-59 Three properties are defined. The first has the name “LongProperty” and stores a long
value. The second one is called “IntProperty” and stores an int. The remaining property
ORBacus 167

ORBacus Basic Services

168

are
vides

represents a short value. If for some reason a property cannot be created, an exception is
thrown.

61-69 Now we try to get a list of all the properties that were previously defined. With
get_all_properties the PropertySet returns its properties. As we have set the
how_many parameter to 0, we have to use the PropertiesIterator for each item. Usu-
ally you provide a positive integer for how_many.

71 The iterator has fulfilled its duty and can now be destroyed.

13.4 The Event Service

Sometimes applications have to exchange information without explicitly knowing about
each other. Often a server isn’t even aware of the nature and number of clients that
interested in the data the server has to offer. A special mechanism is required that pro
decoupled data-transfer between servers and clients. This issue is addressed by the
CORBA Event Service [4].

13.4.1 Properties

The ORBACUS C++ Event Service supports the following properties:

ooc.event.response_timeout=µs Specifies the initial amount of time in microsec-
onds that the service will wait for a response. The
default value is 100000 .

ooc.event.response_increment=µs After each consecutive expiration of the response
timeout, the timeout value will be increased by the
specified number of microseconds. The default
value is 100000 .

ooc.event.retry_timeout=µs Specifies the initial amount of time in microsec-
onds that the service will wait before trying again
after an error has occurred. The default value is
500000 .

ooc.event.retry_increment=µs After each consecutive expiration of the retry tim-
eout, the timeout value will be increased by the
specified number of microseconds. The default
value is 100000 .

ooc.event.max_events The maximum number of events in each event
queue. If this limit is reached and another event is
received, the oldest event is discarded. The default
value is 10 .
ORBacus

The Event Service
13.4.2 Command-line Options

The ORBACUS Event Service supports the following command-line options:

The C++ implementation of the Event Service supports both typed and untyped event
channels, therefore the following additional command-line options are provided to allow
you to select which kind of channel the server should create:

13.4.3 Diagnostics

The C++ Event Service uses the ORBACUS OBMessageViewer class to generate diagnos-
tic messages. You can activate these messages by setting the ooc.orb.trace_level
property to 2. Note that you must have compiled the ORBACUS distribution with the
OB_TRACE preprocessor macro defined in order to enable diagnostic messages. This
macro is defined by default.

13.4.4 The Event Channel

The Event Service distributes data in the form of events. The term event in this context
refers to a piece of information that is contributed by an event source. An event channel

ooc.event.max_retries The maximum number of times to retry before
giving up and disconnecting the proxy. The default
value is 10.

-h
--help

Display the command-line options supported by the server.

-v
--version

Display the version of the server.

-i
--ior

Print the interoperable object reference (IOR) of the server to standard
output.

-t
--typed-service

Run a typed event service.

-u
--untyped-service

Run an untyped event service. This is the default behavior.
ORBacus 169

ORBacus Basic Services

170

at the
n any
s push

ppen.

vent
olled
ed
ase of

it is
n the
instance accepts this information and distributes it to a list of objects that previously have
connected to the channel and are listening for events.

The Event Service specification defines two distinct kinds of event channels: untyped and
typed. Whereas an untyped event channel forwards every event to each of the registered
clients in the form of a CORBA Any, a typed event channel works more selectively by
supporting strongly-typed events which allow for data filtering. We will only discuss the
untyped event channel here. For information on typed event channels, and more details on
the Event Service in general, please refer to the official Event Service specification [4].

13.4.5 Event Suppliers and Consumers

Applications participating in generating and accepting events are called suppliers and con-
sumers, respectively. To be more precise, there are two kinds of suppliers, namely push
suppliers and pull suppliers. The situation is similar with event consumers, in that there
are push consumers and pull consumers.

What’s the difference between pushing events and pulling events? Let’s have a look
consumer side first. There are consumers that have to be immediately informed whe
new events become available on the event channel. These consumers usually act a
consumers. They implement the PushConsumer interface which ensures that the event
channel actively forwards events to them using the push operation:.

// IDL
interface PushConsumer
{

void push(in any data)
raises(Disconnected);

 void disconnect_push_consumer();
};

The push consumer has a more or less passive role, only waiting for something to ha
This is different than pull consumers, which (optionally) implement the PullConsumer
interface. A pull consumer has a more active role and (usually periodically) polls the e
channel for new events. As these events may occur more frequently than they are p
for by the pull consumer, some events might get lost. The buffering policy implement
by the event channel determines whether events are buffered and what happens in c
an event queue overflow. A client is typically implemented as a pull consumer when
not concerned about the possibility of lost events, e.g., if the client is only interested i
most recent events.
ORBacus

The Event Service
Like consumers, suppliers can also use push or pull behavior. Push suppliers are probably
the more common type, in which the supplier directly forwards data to the event channel
and thus plays the active role in the link to the channel. Pull suppliers, on the other hand,
are polled by the event channel and supply an event in response, if a new event is avail-
able. Polling is done by the try_pull operation if it is to be non-blocking or by the
blocking pull call:

// IDL
interface PullSupplier
{

any pull()
raises(Disconnected);

any try_pull(out boolean has_event)
raises(Disconnected);

 void disconnect_pull_supplier();
};

13.4.6 Event Channel Policies

The untyped event channel implementation included in the ORBACUS distribution features
a simple event queue policy. Events are buffered in the form of a FIFO stack, i.e., a certain
number of events are stored and, in case of a buffer overflow, the oldest events are dis-
carded.

13.4.7 A Simple Example

In the Event Service example that comes with ORBACUS, two supplier and two consumer
clients demonstrate how to use an untyped event channel to propagate information. The
pieces of information transferred by this example are strings containing the current date
and time. After starting the Event Service server, you can start these clients in any order.
The demo applications obtain the initial Event Service reference as already demonstrated,
i.e., by calling resolve_initial_references. When started, each supplier will pro-
vide information about the current date and time and each client displays the event data in
its console window.

This is the push supplier’s main loop:

1 // Java
2

3 while(consumer_ != null)
4 {
ORBacus 171

ORBacus Basic Services

172

t

ct
-

5 java.util.Date date = new java.util.Date();
6 String s = "PushSupplier says: " + date.toString();
7

8 Any any = orb_.create_any();
9 any.insert_string(s);

10

11 try
12 {
13 consumer_.push(any);
14 }
15 catch(Disconnected ex)
16 {
17 // Supplier was disconnected from event channel
18 }
19

20 Thread.yield();
21 try
22 {
23 Thread.sleep(1000);
24 }
25 catch(InterruptedException ex)
26 {
27 }
28 }

5-9 The current date and time is inserted into the Any.

11-18 The event data, in this example date and time, are pushed to the event channel. From the
push supplier’s view the event channel is just a consumer implementing the
PushConsumer interface.

20-27 After sleeping for one second, the steps above are repeated.

The example’s pull supplier works similarly to the push supplier, except that the even
channel explicitly polls the supplier for new events. This is done by either pull or
try_pull. The pull supplier doesn’t see anything from the event channel but an obje
implementing the PullConsumer interface. The following example shows the basic lay
out of a pull supplier:

1 // Java
2

3 public Any
4 pull()
5 {
6 ORB orb = ORB.init();
ORBacus

The Event Service

7

8 java.util.Date date = new java.util.Date();
9 String s = "PullSupplier says: " + date.toString();

10

11 Any any = orb.create_any();
12 any.insert_string(s);
13

14 return any;
15 }
16

17 public Any
18 try_pull(BooleanHolder has_event)
19 {
20 has_event.value = true;
21

22 return pull();
23 }

8-12 Date and time are inserted into the Any.

17-23 In this example new event data can be provided at any time, so try_pull always sets
has_event to true in order to signal that an event is available. It then returns the actual
event data.

After examining the most important aspects of the event suppliers’ code, we are now
going to analyze the consumers’ code. The push consumer with its push operation is
shown first:

1 // Java
2

3 public void
4 push(Any any)
5 {
6 try
7 {
8 String s = any.extract_string();
9 System.out.println(s);

10 }
11 catch(MARSHAL ex)
12 {
13 // Ignore unknown event data
14 }
15 }
ORBacus 173

ORBacus Basic Services

174

-

g the

chan-
6-14 The push consumer’s push operation is called with the event wrapped in a CORBA Any.
In this code fragment it is assumed that the Any contains a string with date and time infor
mation. In case the Any contains another data type a MARSHAL exception is thrown.This
exception can be ignored here because other events aren’t of interest. After extractin
string it is displayed in the console window.

In contrast to the push consumer, the pull consumer has to actively query the event
nel for new events. This is how the pull consumer loop looks:

1 // Java
2

3 while(supplier_ != null)
4 {
5 Any any = null;
6

7 try
8 {
9 any = supplier_.pull();

10 }
11 catch(Disconnected ex)
12 {
13 // Supplier was diconnected from event channel
14 }
15

16 try
17 {
18 String s = any.extract_string();
19 System.out.println(s);
20 }
21 catch(MARSHAL ex)
22 {
23 // Ignore unknown event data
24 }
25

26 Thread.yield();
27

28 try
29 {
30 Thread.sleep(1000);
31 }
32 catch(InterruptedException ex)
33 {
34 }
35 }
ORBacus

The Event Service
5 A CORBA Any is prepared for later use.

7-14 Using pull, the consumer polls the event channel for new events. The event channel acts
as a pull supplier in this case. The pull operation blocks until a new event is available.

16-24 The consumer expects a string wrapped in a CORBA Any. The string value is extracted
and displayed. If an exception is raised the Any contained some other data type which is
simply ignored.

26-34 After sleeping for one second the event channel is polled for the next event.

In all of these examples the event channel acts either as a consumer (if the clients are sup-
pliers) or a supplier (if the clients are consumers) of events. Actually each client is not
directly connected to the event channel but to a proxy that receives or sends events on
behalf of the channel. For more information on the Event Service and for the complete
definitions of the IDL interfaces, please refer to the official Event Service specification.
ORBacus 175

ORBacus Basic Services

176
 ORBacus

CHAPTER 14 Exceptions and Error
Messages
14.1 CORBA System Exceptions

The CORBA specification defines the standard system exceptions shown in Table 14.1.

UNKNOWN Unknown exception type

BAD_PARAM An invalid parameter was passed

NO_MEMORY Failure to allocate dynamic memory

IMP_LIMIT Implementation limit was violated

COMM_FAILURE Communication failure

INV_OBJREF Invalid object reference

NO_PERMISSION The attempted operation was not permitted

INTERNAL Internal error in ORB

MARSHAL Error marshalling a parameter or result

INITIALIZE Failure when initializing ORB

NO_IMPLEMENT Operation implementation unavailable

Table 14.1: Standard CORBA System Exceptions
ORBacus 177

Exceptions and Error Messages

178
BAD_TYPECODE Bad typecode

BAD_OPERATION Invalid operation

NO_RESOURCES Insufficient resources for a request

NO_RESPONSE Response to a request is not yet available

PERSIST_STORE Persistent storage failure

BAD_INV_ORDER Routine invocation out of order

TRANSIENT Transient failure, request can be reissued

FREE_MEM Cannot free memory

INV_IDENT Invalid identifier syntax

INV_FLAG Invalid flag was specified

INTF_REPOS Error accessing interface repository

BAD_CONTEXT Error processing context object

OBJ_ADAPTER Failure detected by object adapter

DATA_CONVERSION Error in data conversion

OBJECT_NOT_EXIST Non-existent object, references should be discarded

INV_POLICY Invalid Policy

UNKNOWN Unknown exception type

Table 14.1: Standard CORBA System Exceptions
ORBacus

CORBA System Exceptions
Table 14.2 shows the minor codes for the COMM_FAILURE exception, and Table 14.3 the

minor codes for the INTF_REPOS exception. No other minor codes are currently defined
by ORBACUS.

OBMinorRecv recv() failed

OBMinorSend send() failed

OBMinorRecvZero recv() returned zero

OBMinorSendZero send() returned zero

OBMinorSocket socket() failed

OBMinorSetsockopt setsockopt() failed

OBMinorGetsockopt getsockopt() failed

OBMinorBind bind() failed

OBMinorListen bind() failed

OBMinorConnect connect() failed

OBMinorAccept accept() failed

OBMinorSelect select() failed

OBMinorGethostname gethostname() failed

OBMinorGethostbyname gethostbyname()

OBMinorWSAStartup WSAStartup() failed

OBMinorWSACleanup WSACleanup() failed

OBMinorNoGIOP Not a GIOP message

OBMinorUnknownMessage Unknown GIOP message

OBMinorWrongMessage Wrong GIOP message

OBMinorCloseConnection Got a close connection message

OBMinorMessageError Got a message error message

Table 14.2: Minor Exception Codes for COMM_FAILURE
ORBacus 179

Exceptions and Error Messages

180

m-
ll

 order

s to
14.2 Non-Compliant Application Asserts

If the ORBACUS library was compiled without the preprocessor definition -DNDEBUG
defined, ORBACUS tries to detect common programming mistakes that lead to non–co
pliant CORBA applications. If such a mistake is found an error messages like this wi
appear:

Non-compliant application error detected:
Application used wrong memory allocation function

After detecting such an error, the ORBACUS library dumps a core (Unix only) and prints
the file and line number where the error was detected. You can use the core dump in
to track down the problem with a debugger.

The following error messages can appear:

Application requested a feature that has not yet been implemented

This is not an application error. This error message appears if an application attempt
use a feature that has not yet been implemented in ORBACUS. In this case the only thing
that can be done is to wait for the next ORBACUS version that has this particular feature
implemented.

OBMinorNoIntfRepos Interface repository is not available

OBMinorIdExists Repository id already exists

OBMinorNameExists Name already exists

OBMinorRepositoryDestroy destroy() invoked on Repository object

OBMinorPrimitiveDefDestroy destroy() invoked on PrimitiveDef object

OBMinorAttrExists Attribute is already defined in a base interface

OBMinorOperExists Operation is already defined in a base interface

OBMinorLookupAmbiguous Search name for lookup() is ambiguous

OBMinorAttrAmbiguous Attribute name collisions in base interfaces

OBMinorOperAmbiguous Operation name collisions in base interfaces

Table 14.3: Minor Exception Codes for INTF_REPOS
ORBacus

Non-Compliant Application Asserts
Application used wrong memory allocation function

If this message appears, an incorrect memory allocation function has been used. A com-
mon mistake that leads to this error is to use malloc, strdup and free (or the new and
delete operator) instead of CORBA_string_alloc and CORBA_string_dup and
CORBA_string_free for string memory management.

Memory that was already deallocated was deallocated again

This message indicates multiple memory deallocations. For example, if
CORBA_string_free is called twice on the same string, this message will be displayed.

Object was deleted without an object reference count of zero

This message appears if an object was deleted by calling delete on its object reference.
Never use the delete operator for that. Use CORBA_release instead.

Object was already deleted (object reference count was already zero)

This message appears if the number of release operations on an object reference is
higher than the number of _duplicate operations.

Sequence length was greater than maximum sequence length

This message indicates that the application tried to set the length of a bounded sequence to
a value greater than its maximum length.

Index for sequence operator[]() or remove() function was out of range

This message appears if the argument to the sequence member functions operator[] or
remove exceeds the sequence length.

Null pointer was used to initialize T_var type

This message indicates an attempt to initialize a _var type with a null pointer.

operator->() was used on null pointer or nil object reference

This message indicates an attempt to use operator-> on an uninitialized _var type.
ORBacus 181

Exceptions and Error Messages

182

 as
o so.

.

Application tried to dereference a null pointer

Some CORBA _var types have built-in conversion operators to a C++ reference type,
i.e., some _var types for type T have a conversion operator to T&. This message appears if
an application uses this conversion operator on an uninitialized _var type.

Null pointer was passed as string parameter or return value

According to the IDL–to–C++ mapping specification, no null pointers may be passed
string parameters or return values. This message appears if an application tries to d

Self assignment caused a dangling pointer

This message appears if the content of a _var type is assigned to itself. For example, the
following code will lead to this error message:

1 // Somehow get a pointer to a variable struct
2 AVariableStruct_var var = ...
3 AVariableStruct* ptr = var;
4 var = ptr;

3,4 This will result in a dangling pointer, because var will free its own content on assignment

Replacement of Any content by its own value caused a dangling pointer

This message appears if there is an attempt to replace the content of an Any by its own
value. For example:

1 char* s = CORBA_string_dup("Hello, world!");
2 CORBA_Any any;
3 any <<= s;
4 any <<= s;

3,4 Inserting s into any twice will result in a dangling pointer, because any will free its own
value (which is s) on assignment.

Invalid union discriminator type used

This message appears if the discriminator type argument to
CORBA_ORB::create_union_tc denotes a type invalid for union discriminators. Valid
types have a CORBA_TCKind that is one of CORBA_tk_short, CORBA_tk_ushort,
CORBA_tk_long, CORBA_tk_ulong, CORBA_tk_char, CORBA_tk_boolean or
CORBA_tk_enum.
ORBacus

Non-Compliant Application Asserts

efault

a regu-
Union discriminator mismatch

This message either indicates an attempt to set a union discriminator to an invalid value
with the _d modifier function or the use of a wrong accessor function, i.e., an accessor
function that does not correspond to the type of the union’s actual value.

Uninitialized union used

If this message appears, an unitialized union (i.e., a union that was created with the d
constructor and that was not set to any legal value) was used.

Dynamic implementation object cannot be used as static implementation object

This message appears if an attempt is made to use a DSI object implementation as
lar (i.e., static) implementation object.
ORBacus 183

Exceptions and Error Messages

184
 ORBacus

APPENDIX A ORBacus Policy Reference
A.1 Module SSL

Constants

CONNECT_POLICY
const CORBA::PolicyType CONNECT_POLICY = 1;

This policy type identifies the connection policy.

Enums

ConnectPolicyType
enum ConnectPolicyType
{

ConnectSecure,
ConnectInsecure

};

This enumeration is used to specify whether connection attempts should be secure or insecure.
ORBacus 185

ORBacus Policy Reference

186
A.2 Interface SSL::ConnectPolicy

interface ConnectPolicy
inherits from CORBA::Policy

The connection policy. This policy is used to specify whether secure or insecure connections are
used.

Attributes

value
readonly attribute ConnectPolicyType value;

If an object has a ConnectPolicy set with value set to ConnectSecure, then only secure
connections will be used for that object.
ORBacus

Module OB
A.3 Module OB

Constants

PROTOCOL_POLICY
const CORBA::PolicyType PROTOCOL_POLICY = 2;

This policy type identifies the protocol policy.

CONNECTION_REUSE_POLICY
const CORBA::PolicyType CONNECTION_REUSE_POLICY = 3;

This policy type identifies the connection reuse policy.

RECONNECT_POLICY
const CORBA::PolicyType RECONNECT_POLICY = 4;

This policy type identifies the reconnect policy.

TIMEOUT_POLICY
const CORBA::PolicyType TIMEOUT_POLICY = 5;

This policy type identifies the timeout policy.
ORBacus 187

ORBacus Policy Reference

188
A.4 Interface OB::ProtocolPolicy

interface ProtocolPolicy
inherits from CORBA::Policy

The protocol policy. This policy is used to force the selection of a specific protocol.

Attributes

value
readonly attribute IOP::ProfileId value;

If a ProtocolPolicy is set, then the protocol with the identified tag will be used, if possible.
If it is not possible to use this protocol, a CORBA::NO_RESOURCES exception will be raised.
ORBacus

Interface OB::ConnectionReusePolicy
A.5 Interface OB::ConnectionReusePolicy

interface ConnectionReusePolicy
inherits from CORBA::Policy

The connection reuse policy. This policy determines whether connections may be reused or are pri-
vate to specific objects.

Attributes

value
readonly attribute boolean value;

If an object has a ConnectionReusePolicy set with value set to FALSE, then other objects
will not be permitted to also use any connection made on behalf of this object.
ORBacus 189

ORBacus Policy Reference

190
A.6 Interface OB::ReconnectPolicy

interface ReconnectPolicy
inherits from CORBA::Policy

The reconnect policy. This policy determines if an object will automatically try to reconnect to a
server upon a communication failure.

Attributes

value
readonly attribute boolean value;

If an object has a ReconnectPolicy set with value set to TRUE, then upon a
CORBA::COMM_FAILURE a reconnection will automatically be attempted.
ORBacus

Interface OB::TimeoutPolicy
A.7 Interface OB::TimeoutPolicy

interface TimeoutPolicy
inherits from CORBA::Policy

The timeout policy. This policy can be used to specify communication timeouts.

Attributes

value
readonly attribute unsigned long value;

If an object has a TimeoutPolicy set and no response to a request is available after value
milliseconds, a CORBA::NO_RESOURCE exception is raised.
ORBacus 191

ORBacus Policy Reference

192
 ORBacus

APPENDIX B Open Communications
Interface Reference
B.1 Module OCI

The Open Communications Interface (OCI). The definitions in this module provide a uniform inter-
face to network protocols. This allows for easy plug-in of new protocols or other communication
mechanisms into ORBs that implement the OCI. Furthermore, protocol implementations need only
to be written once and can then be reused with all OCI compliant ORBs. For more information,
please see the OCI documentation.

Aliases

BufferSeq
typedef sequence<Buffer> BufferSeq;

Alias for a sequence of buffers.

IOR
typedef IOP::IOR IOR;

Alias for an IOR.

ProfileId
typedef IOP::ProfileId ProfileId;
ORBacus 193

Open Communications Interface Reference

194
Alias for a profile id.

ProfileIdSeq
typedef sequence<ProfileId> ProfileIdSeq;

Alias for a sequence of profile ids.

ObjectKey
typedef sequence<octet> ObjectKey;

Alias for an object key, which is a sequence of octets.

Handle
typedef long Handle;

Alias for a system-specific handle type.

CloseCBSeq
typedef sequence<CloseCB> CloseCBSeq;

Alias for a sequence of close callback objects.

ConnectCBSeq
typedef sequence<ConnectCB> ConnectCBSeq;

Alias for a sequence of connect callback objects.

AcceptorSeq
typedef sequence<Acceptor> AcceptorSeq;

Alias for a sequence of Acceptors.

AcceptCBSeq
typedef sequence<AcceptCB> AcceptCBSeq;

Alias for a sequence of accept callback objects.

ConFactorySeq
typedef sequence<ConFactory> ConFactorySeq;
ORBacus

Module OCI
Alias for a sequence of Connector factories.
ORBacus 195

Open Communications Interface Reference

196
B.2 Interface OCI::Buffer

interface Buffer

An interface for a buffer. A buffer can be viewed as an object holding an array of octets and a posi-
tion counter, which determines how many octets have already been sent or received. The IDL inter-
face definition for Buffer is incomplete and must be extended by the specific language mappings.
For example, the C++ mapping defines the following additional functions:
• Octet* data(): Returns a C++ pointer to the first element of the array of octets, which repre-

sents the buffer’s contents.
• Octet* rest(): Similar to data(), this operation returns a C++ pointer, but to the n-th ele-

ment of the array of octets with n being the value of the position counter.

Attributes

length
readonly attribute unsigned long length;

The buffer length.

pos
attribute unsigned long pos;

The position counter. Note that the buffer’s length and the position counter don’t depend on each
other. There are no restrictions on the values permitted for the counter. This implies that it’s
even legal to set the counter to values beyond the buffer’s length.

Operations

advance
void advance(in unsigned long delta);

Increment the position counter.

Parameters:
delta - The value to add to the position counter.

rest_length
unsigned long rest_length();
ORBacus

Interface OCI::Buffer
Returns the rest length of the buffer. The rest length is the length minus the position counter’s
value. If the value of the position counter exceeds the buffer’s length, the return value is unde-
fined.

Returns:
The rest length.

is_full
boolean is_full();

Checks if the buffer is full. The buffer is considered full if its length is equal to the position
counter’s value.

Returns:
TRUE if the buffer is full, FALSE otherwise.
ORBacus 197

Open Communications Interface Reference

198
B.3 Interface OCI::Transport

interface Transport

The interface for a Transport object, which provides operations for sending and receiving octet
streams. In addition, it is possible to register callbacks with the Transport object, which are invoked
whenever data can be sent or received without blocking.

See Also:
Connector
Acceptor

Attributes

tag
readonly attribute ProfileId tag;

The profile id tag.

handle
readonly attribute Handle handle;

The "handle" for this Transport. The handle may only be used to determine whether the Trans-
port object is ready to send or to receive data, e.g., with select() on Unix-based operating
systems. All other uses (e.g., calls to read(), write(), close()) are strictly non-compliant.
A handle value of -1 indicates that the protocol plug-in does not support "selectable" Trans-
ports.

fragmentation
readonly attribute unsigned long fragmentation;

The Transport’s maximum packet size. The send and receive operations must not be used to
send packets larger than this size within a single call. A value of 0 means that there is no upper
limit for the packet size.

Operations

close
void close();

Closes the Transport. send and receive must not be called after close has been called.
ORBacus

Interface OCI::Transport
shutdown
void shutdown();

Shuts down the Transport. After calling shutdown, all calls to the send and receive opera-
tions result in an appropriate CORBA::COMM_FAILURE exception being raised.

receive
void receive(in Buffer buf,
 in boolean block);

Receives a buffer’s contents.

Parameters:
buf - The buffer to fill.
block - If set to TRUE, the operation blocks until the buffer is full. If set to FALSE, the oper-
ation fills as much of the buffer as possible without blocking.

receive_detect
boolean receive_detect(in Buffer buf,
 in boolean block);

Similar to receive but it signals a connection loss by returning FALSE instead of raising
CORBA::COMM_FAILURE.

Parameters:
buf - The buffer to fill.
block - If set to TRUE, the operation blocks until the buffer is full. If set to FALSE, the oper-
ation fills as much of the buffer as possible without blocking.

Returns:
FALSE if a connection loss is detected, TRUE otherwise.

receive_timeout
void receive_timeout(in Buffer buf,
 in unsigned long timeout);

Similar to receive but it is possible to specify a timeout. On return the caller can test whether
there was a timeout by checking if the buffer has been filled completely.

Parameters:
buf - The buffer to fill.
ORBacus 199

Open Communications Interface Reference

200
timeout - The timeout value in milliseconds. A zero timeout is equivalent to calling
receive(buf, FALSE).

send
void send(in Buffer buf,
 in boolean block);

Sends a buffer’s contents.

Parameters:
buf - The buffer to send.
block - If set to TRUE, the operation blocks until the buffer has completely been sent. If set
to FALSE, the operation sends as much of the buffer’s data as possible without blocking.

send_detect
boolean send_detect(in Buffer buf,
 in boolean block);

Similar to send but it signals a connection loss by returning FALSE instead of raising
CORBA::COMM_FAILURE.

Parameters:
buf - The buffer to fill.
block - If set to TRUE, the operation blocks until the entire buffer has been sent. If set to
FALSE, the operation sends as much of the buffer’s data as possible without blocking.

Returns:
FALSE if a connection loss is detected, TRUE otherwise.

send_timeout
void send_timeout(in Buffer buf,
 in unsigned long timeout);

Similar to send but it is possible to specify a timeout. On return the caller can test whether there
was a timeout by checking if the buffer has been sent completely.

Parameters:
buf - The buffer to send.
timeout - The timeout value in milliseconds. A zero timeout is equivalent to calling
send(buf, FALSE).

get_info
ORBacus

Interface OCI::Transport
TransportInfo get_info();

Returns the information object associated with the Transport.

Returns:
The Transport information object.
ORBacus 201

Open Communications Interface Reference

202
B.4 Interface OCI::TransportInfo

interface TransportInfo

Information on an OCI Transport object. Objects of this type must be narrowed to a Transport
information object for a concrete protocol implementation, for example to OCI::IIOP::Trans-
portInfo in case the plug-in implements IIOP.

See Also:
Transport

Attributes

tag
readonly attribute ProfileId tag;

The profile id tag.

connector_info
readonly attribute ConnectorInfo connector_info;

The ConnectorInfo object for the Connector that created the Transport object that this Trans-
portInfo object belongs to. If the Transport for this TransportInfo was not created by a Connec-
tor, this attribute is set to the nil object reference.

acceptor_info
readonly attribute AcceptorInfo acceptor_info;

The AcceptorInfo object for the Acceptor that created the Transport object that this Transport-
Info object belongs to. If the Transport for this TransportInfo was not created by an Acceptor,
this attribute is set to the nil object reference.

Operations

add_close_cb
void add_close_cb(in CloseCB cb);

Add a callback that is called before a connection is closed. If the callback has already been reg-
istered, this method has no effect.
ORBacus

Interface OCI::TransportInfo
Parameters:
cb - The callback to add.

remove_close_cb
void remove_close_cb(in CloseCB cb);

Remove a close callback. If the callback was not registered, this method has no effect.

Parameters:
cb - The callback to remove.
ORBacus 203

Open Communications Interface Reference

204
B.5 Interface OCI::CloseCB

interface CloseCB

An interface for a close callback object.

See Also:
TransportInfo

Operations

close_cb
void close_cb(in TransportInfo transport_info);

Called before a connection is closed.

Parameters:
transport_info - The TransportInfo for the new closeion.
ORBacus

Interface OCI::Connector
B.6 Interface OCI::Connector

interface Connector

An interface for Connector objects. A Connector is used by CORBA clients to initiate a connection
to a server. It also provides operations for the management of IOR profiles.

See Also:
ConFactory
Transport

Attributes

tag
readonly attribute ProfileId tag;

The profile id tag.

Operations

connect
Transport connect();

Used by CORBA clients to establish a connection to a CORBA server. It returns a Transport
object, which can be used for sending and receiving octet streams to and from the server.

Returns:
The new Transport object.

is_usable
ObjectKey is_usable(in IOR ior);

Checks whether this Connector can be used for a specific IOR. That is, the IOR must contain at
least one profile that matches this Connector.

Parameters:
ior - The IOR to check for.

Returns:
The object key of the matching profile if the Connector can be used for the given IOR, or an
ORBacus 205

Open Communications Interface Reference

206
empty object key otherwise.

is_usable_with_policies
ObjectKey is_usable_with_policies(in IOR ior,
 in CORBA::PolicyList policies);

Checks whether this Connector can be used for a specific IOR with a given set of polcies. That
is, the IOR must contain at least one profile that matches this Connector and the Connector must
also satisfy the provided list of policies for the given IOR.

Parameters:
ior - The IOR to check for.
policies - The policies that must be satisfied.

Returns:
The object key of the matching profile if the Connector can be used for the given IOR and
policies, or an empty object key otherwise.

get_info
ConnectorInfo get_info();

Returns the information object associated with the Connector.

Returns:
The Connector information object.
ORBacus

Interface OCI::ConnectorInfo
B.7 Interface OCI::ConnectorInfo

interface ConnectorInfo

Information on a OCI Connector object. Objects of this type must be narrowed to a Connector
information object for a concrete protocol implementation, for example to OCI::IIOP::Connec-
torInfo in case the plug-in implements IIOP.

See Also:
Connector

Attributes

tag
readonly attribute ProfileId tag;

The profile id tag.

Operations

add_connect_cb
void add_connect_cb(in ConnectCB cb);

Add a callback that is called whenever a new connection is established. If the callback has
already been registered, this method has no effect.

Parameters:
cb - The callback to add.

remove_connect_cb
void remove_connect_cb(in ConnectCB cb);

Remove a connect callback. If the callback was not registered, this method has no effect.

Parameters:
cb - The callback to remove.
ORBacus 207

Open Communications Interface Reference

208
B.8 Interface OCI::ConnectCB

interface ConnectCB

An interface for a connect callback object.

See Also:
ConnectorInfo

Operations

connect_cb
void connect_cb(in TransportInfo transport_info);

Called after a new connection has been established. If the application wishes to reject the con-
nection CORBA::NO_PERMISSION may be raised.

Parameters:
transport_info - The TransportInfo for the new connection.
ORBacus

Interface OCI::Acceptor
B.9 Interface OCI::Acceptor

interface Acceptor

An interface for an Acceptor object, which is used by CORBA servers to accept client connection
requests. It also provides operations for the management of IOR profiles.

See Also:
AccRegistry
Transport

Attributes

tag
readonly attribute ProfileId tag;

The profile id tag.

handle
readonly attribute Handle handle;

The "handle" for this Acceptor. Like with the handle for Transports, the handle may only be
used with operations like select(). A handle value of -1 indicates that the protocol plug-in
does not support "selectable" Transports.

Operations

close
void close();

Closes the Transport. accept or listen must not be called after close has been called.

shutdown
void shutdown();

Shuts down the Transport. After calling shutdown, calls to accept or listen result in an
appropriate CORBA::COMM_FAILURE exception being raised.

listen
void listen();
ORBacus 209

Open Communications Interface Reference

210
Sets the acceptor up to listen for incoming connections. Until this method is called on the accep-
tor, new connection requests should result in a connection request failure.

accept
Transport accept();

Used by CORBA servers to accept client connection requests. It returns a Transport object,
which can be used for sending and receiving octet streams to and from the client.

Returns:
The new Transport object.

add_profile
void add_profile(in ObjectKey key,
 inout IOR ior);

Adds a new profile that matches this Acceptor to an IOR.

Parameters:
key - The object key to use for the new profile.
ior - The IOR.

is_local
ObjectKey is_local(in IOR ior);

Checks whether an IOR is for a local object, taking only profiles into account matching this
Acceptor.

Parameters:
ior - The IOR to check for.

Returns:
If the IOR is for a local object, the object key for that local object, or an empty object key
otherwise.

get_info
AcceptorInfo get_info();

Returns the information object associated with the Acceptor.

Returns:
ORBacus

Interface OCI::Acceptor
The Acceptor information object.
ORBacus 211

Open Communications Interface Reference

212
B.10 Interface OCI::AcceptorInfo

interface AcceptorInfo

Information on an OCI Acceptor object. Objects of this type must be narrowed to an Acceptor
information object for a concrete protocol implementation, for example to OCI::IIOP::Accep-
torInfo in case the plug-in implements IIOP.

See Also:
Acceptor

Attributes

tag
readonly attribute ProfileId tag;

The profile id tag.

Operations

add_accept_cb
void add_accept_cb(in AcceptCB cb);

Add a callback that is called whenever a new connection is accepted. If the callback has already
been registered, this method has no effect.

Parameters:
cb - The callback to add.

remove_accept_cb
void remove_accept_cb(in AcceptCB cb);

Remove an accept callback. If the callback was not registered, this method has no effect.

Parameters:
cb - The callback to remove.
ORBacus

Interface OCI::AcceptCB
B.11 Interface OCI::AcceptCB

interface AcceptCB

An interface for an accept callback object.

See Also:
AcceptorInfo

Operations

accept_cb
void accept_cb(in TransportInfo transport_info);

Called after a new connection has been accepted. If the application wishes to reject the connec-
tion CORBA::NO_PERMISSION may be raised.

Parameters:
transport_info - The TransportInfo for the new connection.
ORBacus 213

Open Communications Interface Reference

214
B.12 Interface OCI::ConFactory

interface ConFactory

A factory for Connector objects.

See Also:
Connector
ConFactoryRegistry

Attributes

tag
readonly attribute ProfileId tag;

The profile id tag.

Operations

create
Connector create(in IOR ior);

Creates a new Connector for a given IOR. All connection specific data is taken from an IOR
profile that matches this Connector factory. If more than one profile matches, then which of
these profiles is used is implementation specific.

Parameters:
ior - The IOR from which the profile and connection data are extracted.

Returns:
The new Connector. A nil object reference is returned if the IOR does not contain a profile
which matches this Connector factory.

create_with_policies
Connector create_with_policies(in IOR ior,
 in CORBA::PolicyList policies);

Creates a new Connector for a given IOR, satisfing a list of policies. Like create, all connec-
tion specific data is taken from an IOR profile that matches this Connector factory, and if more
than one profile matches, then which of these profiles is used is implementation specific.
ORBacus

Interface OCI::ConFactory
Parameters:
ior - The IOR from which the profile and connection data are extracted.
policies - The policies that must be satisfied.

Returns:
The new Connector. A nil object reference is returned if the IOR does not contain a profile
which matches this Connector factory or if the policies cannot be satisfied.

consider_with_policies
boolean consider_with_policies(in IOR ior,
 in CORBA::PolicyList policies);

Determines whether this Connector factory can create a Connector for a given IOR and a given
list of policies.

Parameters:
ior - The IOR to consider.
policies - The policies that must be satisfied.

Returns:
TRUE if a Connector can be created for the IOR and the policies can be satisfied, FALSE oth-
erwise.

equivalent
boolean equivalent(in IOR ior1,
 in IOR ior2);

Checks whether two IORs are equivalent, taking only profiles into account matching this Con-
nector factory.

Parameters:
ior1 - The first IOR to check for equivalence.
ior2 - The second IOR to check for equivalence.

Returns:
TRUE if the IORs are equivalent, FALSE otherwise.

hash
unsigned long hash(in IOR ior,
 in unsigned long maximum);
ORBacus 215

Open Communications Interface Reference

216
Calculates a hash value for an IOR.

Parameters:
ior - The IOR to calculate a hash value for.
maximum - The maximum value of the hash value.

Returns:
The hash value.

get_info
ConFactoryInfo get_info();

Returns the information object associated with the Connector factory.

Returns:
The Connnector factory information object.
ORBacus

Interface OCI::ConFactoryInfo
B.13 Interface OCI::ConFactoryInfo

interface ConFactoryInfo

Information on an OCI ConFactory object.

See Also:
ConFactory

Attributes

tag
readonly attribute ProfileId tag;

The profile id tag.

Operations

add_connect_cb
void add_connect_cb(in ConnectCB cb);

Add a callback that is called whenever a new connection is established. If the callback has
already been registered, this method has no effect.

Parameters:
cb - The callback to add.

remove_connect_cb
void remove_connect_cb(in ConnectCB cb);

Remove a connect callback. If the callback was not registered, this method has no effect.

Parameters:
cb - The callback to remove.
ORBacus 217

Open Communications Interface Reference

218
B.14 Interface OCI::ConFactoryRegistry

interface ConFactoryRegistry

A registry for Connector factories.

See Also:
Connector
ConFactory

Operations

add_factory
void add_factory(in ConFactory factory);

Adds a Connector factory to the registry.

Parameters:
factory - The Connector factory to add.

get_factory
ConFactory get_factory(in IOR ior);

Returns a suitable Connector factory for an IOR.

Parameters:
ior - The IOR to for which a Connector factory is requested.

Returns:
The Connector factory. A nil object reference is returned if no Connector factory is regis-
tered which is able to create a Connector for the given IOR.

get_factory_with_policies
ConFactory get_factory_with_policies(in IOR ior,
 in CORBA::PolicyList policies);

Returns a suitable Connector factory for an IOR. The Connector factory returned must satisfy a
list of policies.

Parameters:
ior - The IOR for which a Connector factory is requested.
ORBacus

Interface OCI::ConFactoryRegistry
policies - The list of policies which have to be satisfied.

Returns:
The Connector factory. A nil object reference is returned if no Connector factory is regis-
tered which is able to create a Connector for the given IOR with the given list of policies.

get_factories
ConFactorySeq get_factories();

Returns a sequence of all registered Connector factories.

Returns:
A sequence with all registered Connector factories.

equivalent
boolean equivalent(in IOR ior1,
 in IOR ior2);

Checks whether two IORs are equivalent. It calls the equivalent operation of all registered
Connector factories. Two IORs are considered equivalent, if all these calls return TRUE.

Parameters:
ior1 - The first IOR to check for equivalence.
ior2 - The second IOR to check for equivalence.

Returns:
TRUE if the IORs are equivalent, FALSE otherwise.

hash
unsigned long hash(in IOR ior,
 in unsigned long maximum);

Calculates an hash value for an IOR. This hash value is based on the return values of the hash
operations of all registered Connector factories.

Parameters:
ior - The IOR to calculate an hash value for.
maximum - The maximum hash value that is allowed.

Returns:
The hash value.
ORBacus 219

Open Communications Interface Reference

220
B.15 Interface OCI::AccRegistry

interface AccRegistry

A registry for Acceptors.

See Also:
Acceptor

Operations

add_acceptor
void add_acceptor(in Acceptor Acceptor);

Adds an Acceptor to the registry.

Parameters:
Acceptor - The Acceptor to add.

get_acceptors
AcceptorSeq get_acceptors();

Returns a sequence of all registered Acceptors.

Returns:
A sequence of all registered Acceptors.

add_profiles
void add_profiles(in ObjectKey key,
 inout IOR ior);

Adds new profiles to an IOR. For each registered Acceptor a new profile is added by calling the
Acceptor’s add_profile operation.

Parameters:
key - The object key to use for the new profiles.
ior - The IOR.

is_local
ObjectKey is_local(in IOR ior);
ORBacus

Interface OCI::AccRegistry
Checks whether an IOR is for a local object. It calls the is_local operation of all registered
Acceptors. An IOR is considered local, if at least one of these calls returns a non-empty object
key.

Parameters:
ior - The IOR to check for.

Returns:
If the IOR is for a local object, the object key for that local object, or an empty object key
otherwise.
ORBacus 221

Open Communications Interface Reference

222
B.16 Interface OCI::Current

interface Current
inherits from CORBA::Current

Interface to access Transport and Acceptor information objects related to the current request.

Operations

get_oci_transport_info
TransportInfo get_oci_transport_info();

This method returns the Transport information object for the Transport used to invoke the cur-
rent request.

Returns:
The Transport information object.

get_oci_acceptor_info
AcceptorInfo get_oci_acceptor_info();

This method returns the Acceptor information object for the Acceptor which created the Trans-
port used to invoke the current request.

Returns:
The Acceptor information object.
ORBacus

Module OCI::IIOP
B.17 Module OCI::IIOP

This module contains interfaces to gather information on the IIOP OCI plug-in.

Aliases

InetAddr
typedef octet InetAddr[4];

Alias for an array of four octets. This alias will be used for address information from the various
information classes. The address will always be in network byte order.
ORBacus 223

Open Communications Interface Reference

224
B.18 Interface OCI::IIOP::TransportInfo

interface TransportInfo
inherits from OCI::TransportInfo

Information on an IIOP OCI Transport object.

See Also:
Transport
TransportInfo

Attributes

addr
readonly attribute InetAddr addr;

The local 32 bit IP address.

port
readonly attribute unsigned short port;

The local port.

remote_addr
readonly attribute InetAddr remote_addr;

The remote 32 bit IP address.

remote_port
readonly attribute unsigned short remote_port;

The remote port.
ORBacus

Interface OCI::IIOP::ConnectorInfo
B.19 Interface OCI::IIOP::ConnectorInfo

interface ConnectorInfo
inherits from OCI::ConnectorInfo

Information on an IIOP OCI Connector object.

See Also:
Connector
ConnectorInfo

Attributes

remote_addr
readonly attribute InetAddr remote_addr;

The remote 32 bit IP address to which this connector connects.

remote_port
readonly attribute unsigned short remote_port;

The remote port to which this connector connects.
ORBacus 225

Open Communications Interface Reference

226
B.20 Interface OCI::IIOP::AcceptorInfo

interface AcceptorInfo
inherits from OCI::AcceptorInfo

Information on an IIOP OCI Acceptor object.

See Also:
Acceptor
AcceptorInfo

Attributes

host
readonly attribute string host;

Hostname used for creation of IIOP object references.

addr
readonly attribute InetAddr addr;

The local 32 bit IP address on which this acceptor accepts.

port
readonly attribute unsigned short port;

The local port on which this acceptor accepts.
ORBacus

Interface OCI::IIOP::ConFactoryInfo
B.21 Interface OCI::IIOP::ConFactoryInfo

interface ConFactoryInfo
inherits from OCI::ConFactoryInfo

Information on an IIOP OCI Connector Factory object.

See Also:
ConFactory
ConFactoryInfo
ORBacus 227

Open Communications Interface Reference

228
 ORBacus

APPENDIX C Royalty-Free Public
License Agreement
Lic-
mer-

ee
 using,

 this
k
ny
oes

Soft-
ORBACUS for C++ and Java can be freely used for non-commercial purposes as detailed
in the license agreement below. All commercial use is subject to a different license agree-
ment. For information on commercial licenses, please see the pricing information on our
Web site, or contact support@ooc.com.

ROYALTY-FREE PUBLIC LICENSE AGREEMENT FOR ORBACUS
SOFTWARE

IMPORTANT-READ CAREFULLY: This Object-Oriented Concepts, Inc. Royalty-Free Public
License Agreement for ORBacus Software (“License”) is a legal agreement between you, the
ensee, (either an individual or a single entity) and Object-Oriented Concepts, Inc. for non-com
cially using, copying, distributing and modifying the Software and any work derived from the
Software, as defined hereinbelow. Any commercial use is subject to a different license.

By using, modifying or distributing the Software or any work derived from the Software, Licens
indicates acceptance of this License, and agrees to be bound by all its terms and conditions for
copying, distributing or modifying the Software and works derived from the Software.

No rights are granted to the Software except as expressly set forth herein. Nothing other than
License grants Licensee permission to use, copy, distribute or modify the Software or any wor
derived from the Software. Licensee may not use, copy, distribute or modify the Software or a
work derived from the Software except as expressly provided under this License. If Licensee d
not accept the terms and conditions of this License, do not use, copy, distribute or modify the
ware.
ORBacus 229

Royalty-Free Public License Agreement

230

and
ted

h is
o-
ies or
 Soft-

emi-

ection
e
 the
t
on-

 for
e fee
ited to,
 which
rma-

In consideration for Licensee’s forbearance of commercial use of the Software, Object-Oriented
Concepts, Inc. grants Licensee non-exclusive, royalty-free rights as expressly provided herein.

DEFINITIONS.

The “Software” is the ORBacus software, including, but not limited to, the ORBacus Libraries
Class Files, the ORBacus IDL-to-C++ and IDL-to-Java translators, associated media and prin
materials, and any included “on-line” documentation.

A “work derived from the Software” is any derivative work, as defined in 17 U.S.C. §101, whic
derived from the Software, for example, code generated by the ORBacus IDL-to-C++ or IDL-t
Java translators, a program which is linked with or otherwise incorporates the ORBacus Librar
Class Files, or a translation, improvement, enhancement, extension or other modification of the
ware.

To “use” means to execute (i.e. run) the Software.

To “copy” means to create one or more copies as defined in 17 U.S.C. §101.

To “distribute” means to broadcast, publish, transfer, post, upload, download or otherwise diss
nate in any medium to any third party.

To “modify” means to create a work derived from the Software.

A “commercial use” is any copying, distribution or modification of the Software or any work
derived from the Software to any party where payment or other consideration is made in conn
with such copying, distribution or modification, whether directly (as in payment for a copy of th
Software) or indirectly (including but not limited to payment for some good or service related to
Software, or payment for some product or service that includes a copy of the Software “withou
charge”). However, the following actions which involve payment do not in and of themselves c
stitute a commercial use:

(a) posting the Software on a public access information storage and retrieval service
which a fee is received for retrieving information (such as an on-line service), provided that th
is not content-dependent. Such fees which are not content dependent include, but are not lim
fees which are based solely on the storage capacity required to store the information, and fees
are based solely on the time required to transfer the information from/to the public access info
tion storage and retrieval service; and

(b) distributing the Software on a CD-ROM, provided that the Software is reproduced
entirely and verbatim on such CD-ROM, and provided further that all information on such CD-
ROM may be distributed in a manner which does not constitute a commercial use.

GRANT OF LICENSE.

LICENSE TO USE. Licensee may use the Software.
ORBacus

LICENSE TO COPY AND DISTRIBUTE. Licensee may copy and distribute literal (i.e., verbatim)
copies of the Software as Licensee receives it throughout the world, in any medium, provided that
Licensee distributes an unmodified, easily-readable copy of this License with the Software, and pro-
vided further that such distribution does not constitute a commercial use.

LICENSE TO CREATE WORKS DERIVED FROM THE SOFTWARE. Licensee may create
works derived from the Software, provided that any such work derived from the Software carries
prominent notices stating both the manner in which Licensee has created a work derived from the
Software (for example, notices stating that the work derived from the Software is linked with or oth-
erwise incorporates the ORBacus Libraries or Class Files or code generated by the ORBacus IDL-
to-C++ or IDL-to-Java translators, or notices stating that the work derived from the Software is an
enhancement to the Software which Licensee has created) and the date any such work derived from
the Software was created.

LICENSE TO COPY AND DISTRIBUTE WORKS DERIVED FROM THE SOFTWARE. Lic-
ensee may copy and distribute works derived from the Software throughout the world, provided that
Licensee distributes an unmodified, easily-readable copy of this License with such works derived
from the Software, and provided further that such distribution does not constitute a commercial use.
Licensee must cause any work derived from the Software that Licensee distributes to be licensed as
a whole and at no charge to all third parties under the terms of this License.

Any work derived from the Software must be accompanied by the complete corresponding machine-
readable source code of such work derived from the Software, delivered on a medium customarily
used for software interchange. The source code for the work derived from the Software means the
preferred form of the work derived from the Software for making modifications to it. For an execut-
able work derived from the Software, complete source code means all of the source code for all
modules of the work derived from the Software, all associated interface definition files and all
scripts used to control compilation and installation of all or any part of the work derived from the
Software. However, the source code delivered need not include anything that is normally distrib-
uted, in either source code or binary (object-code) form, with major components (including but not
limited to compilers, linkers and kernels) of the operating system on which the executable work
derived from the Software runs, unless that component itself accompanies the executable code of the
work derived from the Software;

Furthermore, if the executable code or object code of the work derived from the Software may be
copied from a designated place, and if the source code of the work derived from the Software may
be copied from the same place, then the work derived from the Software shall be construed as
accompanied by the complete corresponding machine-readable source code of such work derived
from the Software, even though third parties are not compelled to copy the source code along with
the executable code or object code.

 If the work derived from the Software normally reads commands interactively when run, Licensee
must cause the work derived from the Software, at each time it commences operation, to print or dis-
play an announcement including an appropriate copyright notice and either a notice consisting of the
verbatim warranty and liability provisions of this License, or a notice that Licensee, and not Object-
Oriented Concepts, Inc., provides a warranty. Such notice must also state that users may distribute
the Software and/or the work derived from the Software only under the conditions of this License,
ORBacus 231

Royalty-Free Public License Agreement

232

ying
on-

d from

ed

 this
ch is

 any
tion
rmit-
limita-

oyalty-
ll
 Soft-
 if
-C++
acus
from
o-
raries
and must further state how to view the copy of this License included with the work derived from the
Software.

Licensee may not impose any further restrictions on the exercise of the rights granted herein by any
recipient of any work derived from the Software.

RESTRICTIONS.

Licensee acknowledges that the Software is protected by copyright laws and international copyright
treaties, as well as other intellectual property laws and treaties. The Software is licensed, not sold.
All title and copyrights in and to the Software, including but not limited to any images, photographs,
databases, animations, video, text and “applets” incorporated into the Software, the accompan
printed materials, and any copies of the Software, are owned exclusively by Object-Oriented C
cepts, Inc.

Licensee may not sublicense, assign or transfer this License, the Software or any work derive
the Software except as permitted by this License.

If Licensee distributes any written or printed material at all with the Software or any work deriv
from the Software, such material must include either (a) a written copy of this License, or (b) a
prominent written indication that the Software or work derived from the Software is covered by
License, and also written instructions for printing and/or displaying the copy of this License whi
provided on the distribution medium.

If using, copying, distributing and/or modifying the Software is restricted in certain countries for
reason, Object-Oriented Concepts, Inc. may in the future add an explicit geographical distribu
limitation excluding those countries, so that using, copying, distributing and/or modifying is pe
ted only in or among countries not thus excluded. In such case, this License incorporates the
tion as if written in the body of this License.

LICENSE TO WORKS DERIVED FROM THE SOFTWARE.

Licensee hereby grants to Object-Oriented Concepts, Inc. a non-exclusive, non-transferable, r
free right to use, copy, distribute and modify, with the right to sublicense at any tier, any and a
works derived from the Software that Licensee creates, provided such works derived from the
ware are distributed to Object-Oriented Concepts, Inc. by Licensee, and further provided that,
such works derived from the Software comprise either code generated by the ORBacus IDL-to
or IDL-to-Java translators or a program which is linked with or otherwise incorporates the ORB
Libraries or Class Files, such works derived from the Software would constitute works derived
the Software independent of comprising code generated by the ORBacus IDL-to-C++ or IDL-t
Java translators or a program which is linked with or otherwise incorporates the ORBacus Lib
or Class Files, for example, a “bug fix” of the Software.

LIMITED WARRANTY.

NO WARRANTIES.
ORBacus

ov-
cal
 of the
ble.

mat-
nation

are

 the
 long

s, Inc.,
ubject
OBJECT-ORIENTED CONCEPTS, INC. EXPRESSLY DISCLAIMS ANY WARRANTY FOR
THE SOFTWARE. THE SOFTWARE IS PROVIDED TO LICENSEE “AS IS,” WITHOUT WAR-
RANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITA-
TION, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. THE
ENTIRE RISK AS TO THE USE, QUALITY AND PERFORMANCE OF THE SOFTWARE IS
WITH LICENSEE. SHOULD THE SOFTWARE PROVE DEFECTIVE, LICENSEE ASSUMES
THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

NO LIABILITY FOR GENERAL, SPECIAL, INDIRECT OR CONSEQUENTIAL
DAMAGES.

IN NO EVENT WILL OBJECT-ORIENTED CONCEPTS, INC., OR ANY OTHER PARTY WHO
MAY COPY, DISTRIBUTE OR MODIFY THE SOFTWARE AS PERMITTED HEREIN, BE
LIABLE FOR ANY GENERAL, SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES
WHATSOEVER (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF BUSI-
NESS PROFITS, BUSINESS INTERRUPTION, INACCURATE INFORMATION, LOSS OF
INFORMATION, OR ANY OTHER PECUNIARY LOSS) ARISING OUT OF THE USE OR
INABILITY TO USE THE SOFTWARE, EVEN IF OBJECT-ORIENTED CONCEPTS, INC. OR
SUCH OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

U.S. GOVERNMENT RESTRICTED RIGHTS.

The Software is provided with RESTRICTED RIGHTS. Use, duplication or disclosure by the G
ernment is subject to restrictions as set forth in subparagraph (c)(1)(ii) of The Rights in Techni
Data and Computer Software clause at DFARS 252.227-7013 or subparagraphs (c)(1) and (2)
Commercial Computer Software-Restricted Rights 48 C.F.R. paragraph 52.227-19, as applica
Manufacturer is Object-Oriented Concepts, Inc./44 Manning Road/Billerica, MA 01821.

TERMINATION.

Any violation or any attempt to violate any of the terms and conditions of this License will auto
ically terminate Licensee's rights under this License. Licensee further agrees upon such termi
to cease any and all using, copying, distributing and modifying of the Software and any work
derived from the Software, and further to destroy any and all of Licensee's copies of the Softw
and any work derived from the Software.

However, parties who have received copies of the Software or copies of any work derived from
Software, or rights, from Licensee under this License will not have their licenses terminated so
as such parties remain in full compliance with this License.

LICENSE SCOPE AND MODIFICATION.

This License sets forth the entire agreement between Licensee and Object-Oriented Concept
and supersedes all prior agreements and understandings between the parties relating to the s
ORBacus 233

Royalty-Free Public License Agreement

234
matter hereof. None of the terms of this License may be waived or modified except as expressly
agreed in writing by both Licensee and Object-Oriented Concepts, Inc.

SEVERABILITY.

Should any provision of this License be declared void or unenforceable, the validity of the remain-
ing provisions shall not be affected thereby.

GOVERNING LAWS.

This License is governed by the laws of the State of Massachusetts, U.S.A., and shall be interpreted
in accordance with and governed by the laws thereof.

Licensee hereby waives any and all right to assert a defense based on jurisdiction and venue for any
action stemming from this License brought in U.S. District Court for the District of Massachusetts.

Should Licensee have any questions concerning this License, or if Licensee desires to contact
Object-Oriented Concepts, Inc. for any reason, please contact Object-Oriented Concepts, Inc. at:

Object-Oriented Concepts, Inc.
44 Manning Road
Billerica, MA 01821
ORBacus

References
-

tal,
[1] The ORBACUS Home Page, http://www.ooc.com/ob/, Object-Oriented Concepts,
Inc.

[2] The Common Object Request Broker: Architecture and Specification, Revision 2.0, OMG
Document 97–02–25

[3] IDL/Java Language Mapping, OMG document 97-03-01

[4] CORBAservices: Common Object Services Specification, OMG document 97-12-02

[5] Marc Laukien and Robert Resendes, Introduction to CORBA Distributed Objects, C/C++
Users Journal, April 1998

[6] D. C. Schmidt, Reactor: An Object Behavioral Pattern for Concurrent Event Demultiplex-
ing and Event Handler Dispatching, in Pattern Languages of Program Design, Addison
Wesley, 1995

[7] Frank Buschman, Regine Meunier, Hans Rohnert, Peter Sommerlad, and Michael SA
System of Patterns, John Wiley & Sons, Inc.

[8] The JTHREADS/C++ Home Page, http://www.ooc.com/jtc/, Object-Oriented Con-
cepts, Inc.

[9] JTHREADS/C++ User’s Manual, Object-Oriented Concepts, Inc.
ORBacus 235

References

236
[10] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides, Design Patterns, Addi-
son-Wesley, 1994

[11] CORBA Messaging, OMG document 98-03-11

[12] The Common Object Request Broker: Architecture and Specification, Revision 2.2, OMG
document 98-02-33

[13] ORBacus SSL User’s Manual, Object Oriented Concepts, Inc.
ORBacus

	CHAPTER 1 Introduction
	1.1 What is ORBacus?
	1.2 How is it licensed?
	1.3 About this Document
	1.4 Getting Help

	CHAPTER 2 Getting Started
	2.1 The “Hello World” Application
	2.2 The IDL Code
	2.3 Implementing the Example in C++
	2.3.1 Implementing the Server
	2.3.2 Implementing the Client
	2.3.3 Compiling and Linking
	2.3.4 Running the Application

	2.4 Implementing the Example in Java
	2.4.1 Implementing the Server
	2.4.2 Implementing the Client
	2.4.3 Compiling
	2.4.4 Running the Application

	2.5 Summary
	2.6 Where to go from here

	CHAPTER 3 The ORBacus Code Generators
	3.1 Overview
	3.2 Synopsis
	3.3 Description
	3.4 Options for idl
	3.5 Options for jidl
	3.6 Options for hidl
	3.7 Options for ridl
	3.8 Options for irserv
	3.9 Options for irfeed
	3.10 Options for irdel
	3.11 Options for irgen
	3.12 The IDL-to-C++ Translator and the Interface Repository
	3.13 Include Statements
	3.14 Documenting IDL Files
	3.15 Using javadoc

	CHAPTER 4 ORB and BOA Initialization
	4.1 ORB Initialization
	4.1.1 Initializing the C++ ORB
	4.1.2 Initializing the Java ORB for Applications
	4.1.3 Initializing the Java ORB for Applets

	4.2 BOA Initialization
	4.2.1 Initializing the C++ BOA
	4.2.2 Initializing the Java BOA

	4.3 Configuring the ORB and BOA
	4.3.1 Properties
	4.3.2 Command-line Options
	4.3.3 Filtering Command-line Options
	4.3.4 Using a Configuration File
	4.3.5 Defining Properties in Java
	4.3.6 Precedence of Properties
	4.3.7 Advanced Property Usage

	4.4 Server Event Loop
	4.4.1 Mixed Client/Server Applications
	4.4.2 Deactivating the Server

	4.5 Applets
	4.5.1 Adding ORBacus Applets to Web Pages
	4.5.2 Defining ORB and BOA Options for an Applet
	4.5.3 Defining the ORB Class Parameters
	4.5.4 Security Issues

	CHAPTER 5 CORBA Objects
	5.1 Overview
	5.2 Implementing Servants
	5.2.1 Implementing Servants using Inheritance
	5.2.2 Implementing Servants using Delegation

	5.3 Creating Servants
	5.3.1 Creating Servants using C++
	5.3.2 Creating Servants using Java

	5.4 Connecting Servants
	5.4.1 Connecting Servants using C++
	5.4.2 Connecting Servants using Java
	5.4.3 Named Servants

	5.5 Factory Objects
	5.5.1 Factory Objects using C++
	5.5.2 Factory Objects using Java
	5.5.3 Caveats

	5.6 Getting a Servant from a Reference
	5.6.1 Getting a Servant using C++
	5.6.2 Getting a Servant using Java

	CHAPTER 6 Locating Objects
	6.1 Obtaining Object References
	6.2 Lifetime of Object References
	6.2.1 Hostname
	6.2.2 Port Number
	6.2.3 Object Key

	6.3 Stringified Object References
	6.3.1 Using a File
	6.3.2 Using a URL
	6.3.3 Using Applet Parameters

	6.4 Connecting to Named Objects
	6.4.1 Using the iiop:// Notation
	6.4.2 Using get_inet_object

	6.5 Initial Services
	6.5.1 Resolving an Initial Service
	6.5.2 Providing IORs of Initial Services

	CHAPTER 7 Reference Counting
	7.1 What is Reference Counting?
	7.2 Reference Counting in Java
	7.3 Reference Counting in C++
	7.3.1 Marshalling Issues
	7.3.2 Releasing Proxies and Servants
	7.3.3 Global Object References
	7.3.4 Cyclic Object Dependencies

	CHAPTER 8 C++ Mapping Notes
	8.1 Reserved Names
	8.2 Mapping of Modules
	8.3 Extensions
	8.3.1 Extensions to the String Type
	8.3.2 Extensions to _var Types
	8.3.3 Extensions to Sequence Types

	8.4 C++ Mapping Tips & Tricks
	8.4.1 CORBA Strings
	8.4.2 Object References

	CHAPTER 9 Concurrency Models
	9.1 Introduction
	9.1.1 What is a Concurrency Model?
	9.1.2 Why different Concurrency Models?
	9.1.3 ORBacus Concurrency Models Overview

	9.2 Single-Threaded Concurrency Models
	9.2.1 Blocking Clients and Servers
	9.2.2 Reactive Clients and Servers

	9.3 Multi-Threaded Concurrency Models
	9.3.1 Threaded Clients and Servers
	9.3.2 Thread-per-Client Server
	9.3.3 Thread-per-Request Server
	9.3.4 Thread Pool Server

	9.4 Performance Comparisons
	9.4.1 Sample Application
	9.4.2 Regular Method Invocations
	9.4.3 Nested Method Invocations

	9.5 Selecting Concurrency Models

	CHAPTER 10 The Reactor
	10.1 What is a Reactor?
	10.2 Available Reactors
	10.2.1 The X11 Reactor
	10.2.2 The Windows Reactor

	10.3 Writing a Custom Event Handler
	10.4 Using Timers

	CHAPTER 11 The Open Communications Interface
	11.1 What is the Open Communications Interface?
	11.2 Interface Summary
	11.2.1 Buffer
	11.2.2 Transport
	11.2.3 Acceptor and Connector
	11.2.4 Connector Factory
	11.2.5 The Registries
	11.2.6 The Info Objects
	11.2.7 Class Diagram

	11.3 OCI Reference
	11.4 OCI for the Application Programmer
	11.4.1 A “Converter” Class for Java
	11.4.2 Getting Hostnames and Port Numbers
	11.4.3 Finding out a Client’s IP Address
	11.4.4 Finding out a Server’s IP Address

	CHAPTER 12 Using Policies
	12.1 Overview
	12.2 Supported Policies
	12.3 Examples
	12.3.1 Connection Reuse Policy at ORB Level
	12.3.2 Connection Reuse Policy at Object Level

	CHAPTER 13 ORBacus Basic Services
	13.1 Configuring and Using a Basic Service
	13.1.1 Starting the Service
	13.1.2 Connecting to the Service
	13.1.3 Object Names for the Basic Services

	13.2 The Naming Service
	13.2.1 Properties
	13.2.2 Command-line Options
	13.2.3 Creating Bindings
	13.2.4 Name Resolution
	13.2.5 Persistence
	13.2.6 A Simple Example

	13.3 The Property Service
	13.3.1 Command-line Options
	13.3.2 Creating Properties
	13.3.3 Querying for Properties
	13.3.4 Deleting Properties
	13.3.5 A Simple Example

	13.4 The Event Service
	13.4.1 Properties
	13.4.2 Command-line Options
	13.4.3 Diagnostics
	13.4.4 The Event Channel
	13.4.5 Event Suppliers and Consumers
	13.4.6 Event Channel Policies
	13.4.7 A Simple Example

	CHAPTER 14 Exceptions and Error Messages
	14.1 CORBA System Exceptions
	14.2 Non-Compliant Application Asserts

	APPENDIX A ORBacus Policy Reference
	A.1 Module SSL
	A.2 Interface SSL::ConnectPolicy
	A.3 Module OB
	A.4 Interface OB::ProtocolPolicy
	A.5 Interface OB::ConnectionReusePolicy
	A.6 Interface OB::ReconnectPolicy
	A.7 Interface OB::TimeoutPolicy

	APPENDIX B Open Communications Interface Reference
	B.1 Module OCI
	B.2 Interface OCI::Buffer
	B.3 Interface OCI::Transport
	B.4 Interface OCI::TransportInfo
	B.5 Interface OCI::CloseCB
	B.6 Interface OCI::Connector
	B.7 Interface OCI::ConnectorInfo
	B.8 Interface OCI::ConnectCB
	B.9 Interface OCI::Acceptor
	B.10 Interface OCI::AcceptorInfo
	B.11 Interface OCI::AcceptCB
	B.12 Interface OCI::ConFactory
	B.13 Interface OCI::ConFactoryInfo
	B.14 Interface OCI::ConFactoryRegistry
	B.15 Interface OCI::AccRegistry
	B.16 Interface OCI::Current
	B.17 Module OCI::IIOP
	B.18 Interface OCI::IIOP::TransportInfo
	B.19 Interface OCI::IIOP::ConnectorInfo
	B.20 Interface OCI::IIOP::AcceptorInfo
	B.21 Interface OCI::IIOP::ConFactoryInfo

	APPENDIX C Royalty-Free Public License Agreement
	References

