

Telepace C Tools

User and Reference Manual

5/12/2011

Document (Version 2.50) 5/12/2011

The information provided in this documentation contains general descriptions
and/or technical characteristics of the performance of the products contained
herein. This documentation is not intended as a substitute for and is not to be
used for determining suitability or reliability of these products for specific user
applications. It is the duty of any such user or integrator to perform the
appropriate and complete risk analysis, evaluation and testing of the products
with respect to the relevant specific application or use thereof. Neither Schneider
Electric nor any of its affiliates or subsidiaries shall be responsible or liable for
misuse of the information contained herein. If you have any suggestions for
improvements or amendments or have found errors in this publication, please
notify us.

No part of this document may be reproduced in any form or by any means,
electronic or mechanical, including photocopying, without express written
permission of Schneider Electric.

All pertinent state, regional, and local safety regulations must be observed when
installing and using this product. For reasons of safety and to help ensure
compliance with documented system data, only the manufacturer should perform
repairs to components.

When devices are used for applications with technical safety requirements, the
relevant instructions must be followed. Failure to use Schneider Electric software
or approved software with our hardware products may result in injury, harm, or
improper operating results.

Failure to observe this information can result in injury or equipment damage.

© 2010 Schneider Electric. All rights reserved.

Document (Version 2.50) 5/12/2011 2 2

Table of Contents

Safety Information ... 12

About The Book ... 15

At a Glance .. 15

Telepace C Tools Overview .. 16

Supported Language Features .. 17

Getting Started ... 20

System Requirements .. 20
Program Development Tutorial .. 21

C Program Development ... 26

Program Architecture ... 26
Data Storage .. 29
Compiling Source Code ... 30
Linking Object Files .. 31

ROM Based Applications .. 35

Controller Initialization .. 38
Loading Programs into RAM .. 38
Loading Programs into EPROM ... 39
Executing Programs ... 40

Real Time Operating System .. 41

Task Management ... 41
Resource Management .. 43
Inter-task Communication .. 44
Event Notification ... 45
Error Reporting ... 46
SCADAPack Task Architecture .. 47
RTOS Example Application Program... 48

Overview of Programming Functions .. 56

Controller Operation ... 56
Controller I/O Hardware ... 61
Serial Communication .. 73

Document (Version 2.50) 5/12/2011 3 3

Communication Protocols .. 80

Communication Protocols Macros ... 83

DNP Communication Protocol ... 85
I/O Database .. 87
HART Communication ... 91
PID Control ... 93
Backward Compatibility Functions ... 95

Telepace C Tools Function Specifications 98

addRegAssignment .. 99
addRegAssignmentEx ... 102
ain... 106
aioError .. 107
alarmIn ... 108
allocate_envelope .. 110
aout .. 111
auto_pid ... 112
check_error .. 113
checksum ... 114
checkSFTranslationTable .. 115
clearAllForcing ... 116
clear_errors .. 117
clear_pid ... 118
Clear Protocol Counters ... 119
clearRegAssignment .. 120
clearSFTranslationTable .. 121
clearStatusBit ... 122
clear_tx ... 123
configurationRegisterMapping ... 124
configurationSetApplicationID .. 125
counter ... 129
counterError ... 130
crc_reverse .. 131
create_task ... 132
databaseRead .. 135
databaseWrite .. 136
datalogCreate ... 138
datalogDelete ... 141
datalogPurge .. 143
datalogReadNext ... 145
datalogReadStart ... 147
datalogRecordSize ... 149
datalogSettings .. 150
datalogWrite ... 151
dbase ... 152
deallocate_envelope .. 154
din... 155

Document (Version 2.50) 5/12/2011 4 4

dnpInstallConnectionHandler ... 157
dnpClearEventLog ... 162
dnpConnectionEvent .. 163
dnpCreateRoutingTable ... 164
dnpGenerateEventLog ... 165
dnpGetAI16Config.. 166
dnpGetAI32Config.. 167
dnpGetAISFConfig ... 168
dnpGetAO16Config .. 169
dnpGetAO32Config .. 170
dnpGetAOSFConfig ... 171
dnpGetBIConfig .. 172
dnpGetBIConfigEx ... 173
dnpGetBOConfig .. 174
dnpGetCI16Config ... 175
dnpGetCI32Config ... 176
dnpGetConfiguration .. 177
dnpGetConfigurationEx .. 181
dnpGetRuntimeStatus .. 182
dnpGetUnsolicitedBackoffTime .. 183
dnpReadRoutingTableDialStrings .. 184
dnpReadRoutingTableEntry ... 185
dnpReadRoutingTableSize .. 186
dnpSaveAI16Config ... 187
dnpSaveAI32Config ... 188
dnpSaveAISFConfig... 189
dnpSaveAO16Config ... 190
dnpSaveAO32Config ... 191
dnpSaveAOSFConfig ... 192
dnpSaveBIConfig ... 193
dnpSaveBIConfigEx ... 194
dnpSaveBOConfig ... 195
dnpSaveCI16Config ... 196
dnpSaveCI32Config ... 197
dnpSaveConfiguration ... 198
dnpSaveConfigurationEx ... 200
dnpSaveUnsolicitedBackoffTime ... 201
dnpSearchRoutingTable .. 202
dnpSendUnsolicited ... 203
dnpSendUnsolicitedResponse ... 209
dnpWriteRoutingTableEntry ... 210
dnpWriteRoutingTableDialStrings .. 211
dout .. 212
end_application .. 213
end_task ... 214
endTimedEvent .. 215
enronInstallCommandHandler ... 216
forceLed ... 220
getABConfiguration .. 221
getBootType ... 222

Document (Version 2.50) 5/12/2011 5 5

getclock .. 223
getClockAlarm .. 224
getClockTime ... 225
Get Controller ID .. 226
getForceFlag .. 227
getIOErrorIndication ... 229
getOutputsInStopMode .. 230
getPortCharacteristics .. 231
getPowerMode ... 232
get_pid ... 233
get_port .. 234
getProgramStatus .. 235
get_protocol ... 237
getProtocolSettings .. 238
getProtocolSettingsEx .. 240
get_protocol_status .. 242
getSFMapping .. 243
getSFTranslation .. 244
get_status ... 245
getStatusBit .. 246
getTaskInfo .. 247
getVersion .. 249
getWakeSource .. 250
hartIO ... 251
hartIOFromDbase .. 252
hartCommand .. 253
hartCommand0 .. 255
hartCommand1 .. 256
hartCommand2 .. 257
hartCommand3 .. 258
hartCommand11 .. 260
hartCommand33 .. 261
hartStatus ... 263
hartGetConfiguration .. 265
hartSetConfiguration .. 266
hartPackString .. 267
hartUnpackString ... 268
install_handler .. 269
installClockHandler .. 271
installExitHandler ... 273
installModbusHandler... 274
Handler Function .. 275
installRTCHandler .. 280
RTCHandler Function .. 281
Read Interrupt Input Counter ... 282
interruptInput .. 283
interrupt_signal_event .. 284
interval .. 285
ioBusReadByte .. 286
ioBusReadLastByte.. 287

Document (Version 2.50) 5/12/2011 6 6

ioBusReadMessage ... 288
ioBusSelectForRead .. 290
ioBusSelectForWrite .. 291
ioBusStart ... 292
ioBusStop ... 293
ioBusWriteByte ... 294
ioBusWriteMessage ... 295
ioClear .. 297
ioDatabaseReset .. 298
ioRead16Din .. 300
ioRead32Din .. 302
ioRead4Ain ... 304
ioRead4Counter ... 306
ioRead4202Inputs .. 308
ioRead4202DSInputs ... 310
ioRead5505Inputs .. 312
ioRead5506Inputs .. 315
ioRead5601Inputs .. 317
ioRead5602Inputs .. 319
ioRead5604Inputs .. 321
ioRead5606Inputs .. 323
ioRead8Ain ... 325
ioRead8Din .. 327
ioReadLPInputs .. 329
ioReadSP100Inputs ... 331
ioRefresh .. 333
ioReset ... 334
ioWrite16Dout .. 335
ioWrite32Dout .. 337
ioWrite8Dout .. 339
ioWrite2Aout ... 341
ioWrite4Aout ... 343
ioWrite4AoutChecksum ... 345
ioWrite4202Outputs ... 347
ioWrite4202OutputsEx ... 349
ioWrite4202DSOutputs .. 351
ioWrite5303Aout ... 353
ioWrite5505Outputs ... 355
ioWrite5506Outputs ... 357
ioWrite5601Outputs ... 359
ioWrite5602Outputs ... 361
ioWrite5604Outputs ... 363
ioWrite5606Outputs ... 365
ioWriteLPOutputs ... 368
ioWriteSP100Outputs... 370
jiffy .. 371
ledGetDefault ... 372
ledPower .. 373
ledPowerSwitch .. 374
ledSetDefault .. 375

Document (Version 2.50) 5/12/2011 7 7

load .. 376
master_message .. 377
modbusExceptionStatus .. 383
modbusSlaveID .. 384
modbusProcessCommand Function .. 385
modemAbort ... 387
modemAbortAll ... 388
modemDial ... 390
modemDialEnd ... 392
modemDialStatus ... 393
modemInit .. 394
modemInitEnd .. 396
modemInitStatus .. 397
modemNotification ... 398
off ... 399
on ... 400
optionSwitch ... 401
overrideDbase .. 402
pidExecute ... 404
pidInitialize ... 406
pollABSlave .. 407
poll_event ... 408
poll_message ... 409
poll_resource .. 410
portConfiguration .. 411
portIndex .. 412
portStream ... 413
processModbusCommand ... 414
pulse ... 416
pulse_train .. 418
queue_mode .. 420
readCounter ... 421
readCounterInput ... 422
readBattery ... 423
readInternalAD ... 424
readStopwatch ... 425
readThermistor ... 426
read_timer_info .. 427
receive_message ... 428
release_processor.. 429
release_resource ... 430
report_error .. 431
request_resource ... 432
resetAllABSlaves .. 433
resetClockAlarm ... 434
route ... 435
runLed .. 436
save .. 437
send_message ... 438
setABConfiguration .. 440

Document (Version 2.50) 5/12/2011 8 8

setBootType ... 441
setclock .. 442
setClockAlarm .. 443
setdbase ... 445
setDTR ... 447
setForceFlag .. 448
setIOErrorIndication ... 450
setjiffy ... 451
setOutputsInStopMode .. 452
set_pid .. 453
set_port .. 454
setPowerMode ... 456
setProgramStatus .. 457
set_protocol .. 458
setProtocolSettings .. 459
setProtocolSettingsEx .. 461
setSFMapping .. 463
setSFTranslation .. 464
setStatus .. 467
setStatusBit .. 468
settimer .. 469
setWakeSource .. 470
signal_event ... 471
sleep ... 473
start_protocol ... 475
startup_task .. 476
startTimedEvent ... 477
timeout ... 479
timeoutCancel .. 480
timeoutRequest .. 481
timer ... 484
turnoff ... 485
turnon ... 486
wait_event .. 487
wd_auto .. 488
wd_manual ... 489
wd_pulse .. 490

Telepace C Tools Macro Definitions .. 491

A ... 491
B ... 492
C ... 492
D ... 493
E ... 495
F ... 496
G... 496
H ... 496
I .. 496
L ... 497

Document (Version 2.50) 5/12/2011 9 9

M .. 497
N ... 498
O... 499
P ... 499
R ... 502
S ... 502
T ... 504
V ... 504
W .. 505
Z ... 505

Telepace C Tools Structures and Types 506

ABConfiguration ... 506
ADDRESS_MODE ... 506
ALARM_SETTING ... 506
clock ... 507
DATALOG_CONFIGURATION .. 507
DATALOG_STATUS .. 508
DATALOG_VARIABLE .. 508
DialError ... 508
DialState ... 509
dnpAnalogInput .. 509
dnpAnalogOutput ... 510
dnpBinaryInput ... 510
DNP Binary Input Extended Point .. 510
dnpBinaryOutput .. 510
DNP_CONNECTION_EVENT Type .. 511
dnpConfiguration .. 512
dnpConfigurationEx.. 516
dnpCounterInput .. 521
dnpPointType ... 521
DNP_RUNTIME_STATUS ... 521
envelope ... 522
HART_COMMAND .. 523
HART_DEVICE .. 523
HART_RESPONSE ... 523
HART_RESULT ... 524
HART_SETTINGS ... 524
HART_VARIABLE .. 525
ioModules ... 525
ledControl_tag .. 526
ModemInit .. 527
ModemSetup .. 527
PID_DATA .. 528
PROTOCOL_SETTINGS ... 529
PROTOCOL_SETTINGS_EX Type ... 529
prot_settings ... 530
prot_status ... 531
pconfig .. 531

Document (Version 2.50) 5/12/2011 10 10

PORT_CHARACTERISTICS ... 532
pstatus .. 533
READSTATUS ... 533
regAssign ... 534
routingTable ... 534
SFTranslation ... 535
SFTranslationStatus... 535
TASKINFO ... 536
taskInfo_tag .. 536
timer_info ... 537
VERSION ... 537
WRITESTATUS ... 538

C Compiler Known Problems ... 539

Use of Initialized Static Local Variables ... 539
Use of pow Function .. 540

Document (Version 2.50) 5/12/2011 11 11

Index of Figures

Figure 1: Queue Status before Execution of main Task 52

Figure 2: Queue Status at Start of main Task .. 52

Figure 3: Queue Status after Creation of echoData Task 53

Figure 4: Queue Status After echoData Task Waits for Event 53

Figure 5 Queue Status after Creation of auxiliary Task 54

Figure 6: Queue Status After main Task Releases Processor 54

Figure 7: Queue Status at Start of auxiliary Task ... 54

Figure 8: Queue Status after Character Received ... 55

Figure 9: Queue Status after echoData Waits for Event 55

Document (Version 2.50) 5/12/2011 12 12

Safety Information

Read these instructions carefully, and look at the equipment to become familiar
with the device before trying to install, operate, or maintain it. The following
special messages may appear throughout this documentation or on the
equipment to warn of potential hazards or to call attention to information that
clarifies or simplifies a procedure.

The addition of this symbol to a Danger or Warning safety label
indicates that an electrical hazard exists, which will result in
personal injury if the instructions are not followed.

This is the safety alert symbol. It is used to alert you to potential
personal injury hazards. Obey all safety messages that follow this

symbol to avoid possible injury or death.

DANGER

DANGER indicates an imminently hazardous situation which, if not avoided,
will result in death or serious injury.

WARNING

WARNING indicates a potentially hazardous situation which, if not avoided,
can result in death or serious injury.

CAUTION

CAUTION indicates a potentially hazardous situation which, if not avoided, can
result in minor or moderate.

CAUTION

CAUTION used without the safety alert symbol, indicates a potentially
hazardous situation which, if not avoided, can result in equipment damage..

Document (Version 2.50) 5/12/2011 13 13

PLEASE NOTE

Electrical equipment should be installed, operated, serviced, and maintained only
by qualified personnel. No responsibility is assumed by Schneider Electric for any
consequences arising out of the use of this material.

A qualified person is one who has skills and knowledge related to the
construction and operation of electrical equipment and the installation, and has
received safety training to recognize and avoid the hazards involved.

BEFORE YOU BEGIN

Do not use this product on machinery lacking effective point-of-operation
guarding. Lack of effective point-of-operation guarding on a machine can result in
serious injury to the operator of that machine.

CAUTION

UNINTENDED EQUIPMENT OPERATION

 Verify that all installation and set up procedures have been completed.

 Before operational tests are performed, remove all blocks or other
temporary holding means used for shipment from all component devices.

 Remove tools, meters, and debris from equipment

Failure to follow these instructions can result in death, serious injury or
equipment damage.

Follow all start-up tests recommended in the equipment documentation. Store all
equipment documentation for future references.

Software testing must be done in both simulated and real environments.

Verify that the completed system is free from all short circuits and grounds,
except those grounds installed according to local regulations (according to the
National Electrical Code in the U.S.A, for instance). If high-potential voltage
testing is necessary, follow recommendations in equipment documentation to
prevent accidental equipment damage.

Before energizing equipment:

 Remove tools, meters, and debris from equipment.

 Close the equipment enclosure door.

 Remove ground from incoming power lines.

 Perform all start-up tests recommended by the manufacturer.

OPERATION AND ADJUSTMENTS

The following precautions are from the NEMA Standards Publication ICS 7.1-
1995 (English version prevails):

Document (Version 2.50) 5/12/2011 14 14

 Regardless of the care exercised in the design and manufacture of
equipment or in the selection and ratings of components, there are hazards
that can be encountered if such equipment is improperly operated.

 It is sometimes possible to misadjust the equipment and thus produce
unsatisfactory or unsafe operation. Always use the manufacturer‟s
instructions as a guide for functional adjustments. Personnel who have
access to these adjustments should be familiar with the equipment
manufacturer‟s instructions and the machinery used with the electrical
equipment.

 Only those operational adjustments actually required by the operator should
be accessible to the operator. Access to other controls should be restricted to
prevent unauthorized changes in operating characteristics.

 About The Book

Document (Version 2.50) 5/12/2011 15 15

About The Book

At a Glance

Document Scope

This manual describes the Telepace C Tools programming for the SCADAPack
16-bit controllers.

Validity Notes

This document is valid for all versions of firmware for the SCADAPack 16-bit
controllers.

Product Related Information

WARNING
UNINTENDED EQUIPMENT OPERATION

The application of this product requires expertise in the design and
programming of control systems. Only persons with such expertise should be
allowed to program, install, alter and apply this product.

Follow all local and national safety codes and standards.

Failure to follow these instructions can result in death, serious injury or
equipment damage.

User Comments

We welcome your comments about this document. You can reach us by e-mail at
technicalsupport@controlmicrosystems.com.

 Telepace C Tools Overview

Document (Version 2.50) 5/12/2011 16 16

Telepace C Tools Overview

The Telepace C Tools are ideal for engineers and programmers who require
advanced programming tools for SCADA applications and process control. The
SCADAPack, 4000 controllers execute ladder logic and C application programs
simultaneously, providing you with maximum flexibility in implementing your
control strategy.

This manual provides documentation on the Telepace C program loader and the
library of C language process control and SCADA functions. We strongly
encourage you to read it.

We sincerely hope that the reliability and flexibility afforded by this fully
programmable controller enable you and your company to solve your automation
applications in a cost effective and efficient manner.

The Telepace C Tools include an ANSI C cross compiler; a customized library of
functions for industrial automation and data acquisition; a real time operating
system; and the Telepace C program loader. The C function library is similar to
many other C implementations, but contains additional features for real time
control, digital and analog I/O. An overview of the application development
environment and its features follows.

Program Development

C programs are written using any text editor. The MCCM77 compiler is used to
compile, assemble and link the programs on a personal computer.

The memory image, which results from this process may then be, loaded either
into the RAM, committed to an EPROM, or both may be used together. Programs
may be executed either manually or automatically at power up.

Modularity

Programs written in Telepace C may be split into many separately compiled
modules. These modules may be tested individually before being linked together
in the final program. Command files specify how the various files are to be linked.

Assembly Language Code

Assembly language source code may be included directly within C programs.
The #asm and #endasm statements are used to enclose in-line assembly
language code, which is then assembled without passing through the compiler.

C programs are converted to assembly language by the MCCM77 compiler, and
this code may be viewed and modified. The resulting code may also be
combined with programs written directly in assembler.

 Telepace C Tools Overview

Document (Version 2.50) 5/12/2011 17 17

Program Options

A C application program may reside in RAM or ROM. The normal method of
program development has the program in RAM. The program may call library
routines in the operating system ROM. The RAM is nonvolatile (battery backed),
so the program may remain in RAM once development is completed and the unit
is installed.

Application programs may also be committed to EPROM. The RAM is used for
data storage in this case.

Supported Language Features

The Telepace C Tools use the Microtec® MCCM77 C compiler. The compiler is
ANSI C compliant, and provides a code optimizer and assembler.

In addition to the standard C operators, data types and library functions, the C
tools provide a set of routines specifically designed for control applications. Some
applications and the descriptions of these functions may be found on the
following pages.

Serial Communication

An extensive serial communication library supports simple ASCII communication,
communication protocols and serial port configuration. The default
communication mode uses the TeleBUS RTU communication protocol. It
supports access to the I/O database, serial port reconfiguration and program
loading.

The application program can disable the TeleBUS protocol, and use the serial
ports for other purposes.

TeleBUS protocols are compatible with the widely supported, Modbus ASCII and
RTU protocols.

Clock/Calendar

The processor's hardware clock calendar is supported by the C Tools. The time,
date and day of week can be read and set by the application software.

Timers

The controller provides 32 software timers. They are individually programmable
for tick rates from ten per second to once every 25.5 seconds. Timers may be
linked to digital outputs to cause external devices to turn on/off after a specified
period. Timers operate in the background from a hardware interrupt generated by
the main system clock.

Duty Cycle and Pulse Outputs

The digital I/O driver provides duty cycle and pulse train outputs. Duty cycle
outputs generate continuous square waves. Pulse train outputs generate finite
sequences of pulses. Outputs are generated independent of the application
program.

 Telepace C Tools Overview

Document (Version 2.50) 5/12/2011 18 18

Watchdog Timer

The controller supports a hardware watchdog timer to detect and respond to
hardware or software failures. Watchdog timer trigger pulses may be generated
by the user program or by the system clock.

Checksums

To simplify the implementation of self-checking communication algorithms, the C
Tools provide four types of checksums: additive, CRC-16, CRC-CCITT, and byte-
wise exclusive-OR. The CRC algorithms are particularly robust, employing
various polynomial methods to detect communication errors. Additional types of
checksums are easily implemented using library functions.

Standard I/O Functions

The Telepace C Tools are an enhanced version of standard C libraries. Many of
the usual C programming techniques apply. However, with respect to I/O, there
are some differences.

The C Tools function library supports the standard I/O functions. There are no
disk-drives or peripherals associated with the controller. Thus many file handling
functions return fixed responses, indicating that the operation could not be
performed.

Standard devices are opened automatically by the operating system and cannot
be closed. The route function may be used to redirect stdin, stdout and stderr.

The Telepace Program

Telepace is an easy-to-use interface providing, among several other features, a
C Program Loader and a Ladder Logic program editor. On-line help provides a
reference to the features of the Telepace program. Telepace runs on the
Microsoft Windows operating system.

This manual references only those features of Telepace pertaining to the C
Program Loader dialog. Please refer to the section Telepace Program
Reference for a complete description of Telepace menus, which will be useful
during C Program development.

Additional Documentation

Additional documentation on Telepace Ladder Logic and the SCADAPack
controllers is found in the following documents.

The on-line help for the Telepace C program loader contains a complete
reference to the operation of the loader. To display on-line help, select Contents
from the Help menu.

The SCADAPack & Micro16 System Manual is a complete reference to
controller and I/O modules used with SCADAPack and Micro16 controllers. It
contains the SCADAPack Controller Hardware Manual, the Micro16 System
Manual and hardware manuals for 5000 I/O modules.

 Telepace C Tools Overview

Document (Version 2.50) 5/12/2011 19 19

The Telepace Ladder Logic Reference and User Manual describes the
creation of application programs in the Ladder Logic language.

The TeleBUS Protocols User Manual describes communication using Modbus
compatible protocols.

The Telepace PID Controller Reference Manual describes PID control
concepts and provides examples using the PID functions.

 Getting Started

Document (Version 2.50) 5/12/2011 20 20

Getting Started

This section of the C Tools User Manual describes the installation of C Tools and
includes a Program Development Tutorial. The Program Development Tutorial
leads the user through the steps involved in writing, compiling, linking and
loading a C application program.

System Requirements

Telepace requires the following minimum system configuration.

 Personal computer using 80386 or higher microprocessor.

 Microsoft Windows operating system versions including Windows 2000, NT

and XP .

 Minimum 4 MB of memory.

 Mouse or compatible pointing device.

 Hard disk with approximately 2.5 Mbytes of free disk space.

Making Backup Disks

You should make a backup copy of the Telepace disk and Microtec C compiler
disks before using the software. Work with the backup copy – if it becomes
unusable you can make a new copy from the original disk.

 In My Computer, click the icon for the disk you want to copy.

 On the File menu, click Copy Disk.

 Click the drive you want to copy from and the drive you want to copy to, and
then click Start.

Installation of C Compiler

Install the Microtec C compiler as described in the installation manuals supplied
with the system.

To run the Microtec Compiler and Linker from any directory, without the need to
specify the full path, you will have to setup the following System Environmental
Variables:

Variable Value

mri_m77_bin c:\mccm77;c:\asmm77

mri_m77_inc c:\mccm77

mri_m77_lib c:\mccm77

mri_m77_tmp c:\mccm77\tmp

 Getting Started

Document (Version 2.50) 5/12/2011 21 21

In addition you would need to add these values to the Path System Variable:

C:\MCCM77;C:\ASMM77;C:\XHSM77

Spaces are not tolerated in between entries in the Path value.

On a Windows XP Control Panel, select System | Advanced | Environmental
Variables to access the dialog where the above variables need to be set.

Installation of Telepace

Install Telepace as described in the installation section of the Telepace Ladder
Logic Reference and User Manual.

Some virus checking software may interfere with Setup. If you experience
difficulties with the Setup, disable your virus checker and run Setup again.

Installing C Tools as an Upgrade

If you are installing Telepace as an upgrade to a previous C Tools installation for
the Micro16, the C Tools are installed in the new directory
c:\Telepace\ctools\520x instead of the directory c:\Telepace\ctools\micro16.

If the older version of C Tools is not needed, copy user data files out of the
micro16 directory and delete the directory and its contents.

When linking older programs you will need to modify older linker command
(.cmd) files to reference the new 520x directory instead of the micro16 directory,
or see the sample linker file appram.cmd for the correct file contents.

The sample linker command file appram.cmd also loads the new ctools.lib library.
This library contains the new C Tools functions defined in the header file ctools.h.

Program Development Tutorial

Program development consists of three stages: writing and editing; compiling and
linking; and loading the program into the controller. Each uses separate tools. To
demonstrate these steps a sample program will be prepared.

Refer to the C Program Development section for a description of the program
development process.

Traditionally, the first program that is run on a new C compiler is the hello, world
program. It prints the message “hello, world”.

Writing and Editing

A controller C program is written using any text editor or word processor in text
mode. The syntax should correspond to that described in the Microtec MCCM77
Documentation Set, and the C Program Development section of this manual.
This chapter describes non-standard functions, which are unique to the
controller. It should be read carefully to make use of the special purpose routines
available.

 Getting Started

Document (Version 2.50) 5/12/2011 22 22

Using your text editor, open the file hello.c file. It is located in the
Telepace\ctools\520x directory. The program looks a little different from the
traditional hello, world program.

/* ---

 hello.c

 SCADAPack and Micro16 Test Program

 The infamous hello, world program.

 -- */

#include <ctools.h>

void main(void)

{

 PROTOCOL_SETTINGS settings;

 /* Disable the protocol on serial port 1 */

 settings.type = NO_PROTOCOL;

 settings.station = 1;

 settings.mode = AM_standard;

 settings.priority = 3;

 settings.SFMessaging = FALSE;

 setProtocolSettings(com1, &settings);

 /* Print the message */

 fprintf(com1, "hello, world\r\n");

 /* Wait here forever */

 while (TRUE)

 {

 NULL;

 }

}

The “hello, world” message will be output to the com1 serial port of the controller.
A terminal connected to the port will display the message.

The controller normally communicates on all ports using the TeleBUS
communication protocol. The first section of the program disables the com1
protocol so the serial port can be used as a normal RS-232 port.

The fprintf function prints the message to the com1 serial port.

When you have completed examining the program, close the hello.c file. It is now
ready to be compiled and linked.

Compiling and Linking

Compiling and linking convert the source code into executable code for the
controller. The Telepace C Tools use a C cross compiler and linker from
Microtec, a respected supplier of embedded system tools. The compiler
produces tight, well-optimized code. The compiler and linker run under the
Microsoft MS-DOS operating system.

The compiler has many command line options. The basic command line and
options required to compile code for the controller are:

 Getting Started

Document (Version 2.50) 5/12/2011 23 23

 mccm77 -v -nQ -Ml -c filename.c

This should be repeated for each file in the application. The command line
options are case sensitive. The character following the M is a lower case l (ell).

Files are linked together using linker command files. To link a program execute
the command:

 lnkm77 -c filename.cmd

Sample command files for RAM and ROM based applications are located in the
Telepace\ctools\520x directory.

Example

The hello.c program is found in the Telepace\ctools\520x directory. To compile
and link the program:

 switch to the Telepace\ctools\520x directory;

 enter the commands

 mccm77 -v -nQ -Ml -c hello.c
 lnkm77 -c hello.cmd

The file hello.abs contains the executable code in a format ready to load into the
controller.

Loading and Executing

The Telepace C Program Loader transfers executable files from a PC to the
controller and controls execution of programs in the controller. The loader can
also initialize program memory and serial port configuration.

Controller Initialization

The memory of the controller has to be initialized when beginning a new
programming project or when it is desired to start from default conditions. It is not
necessary to initialize the controller before every program load.

To initialize the controller, first perform a SERVICE boot. A SERVICE boot
preserves programs and data in nonvolatile RAM, but does not start the
programs running. Default communication parameters are used.

To perform a service boot:

 Remove power from the controller.

 Press and hold the LED POWER switch.

 Apply power to the controller.

 Wait until the STAT LED on the top of the board turns on.

 Release the LED POWER switch.

 Getting Started

Document (Version 2.50) 5/12/2011 24 24

Second, initialize the program and data memory in the controller. A new
controller will require initializations to be performed. Selected initializations can
be performed on a controller that is in use.

 Run the Telepace program under Microsoft Windows.

 Connect the PC to the controller with the appropriate serial cable. The hello,
world program will print data on the com1 serial port. Therefore connect to
the com2 serial port on the controller. (All communication ports work the
same. We use com2 here because the sample program is using com1.)

 From the Controller menu, select under Type the controller type that is
connected. A check mark appears beside the desired type when it is
selected.

 From the Controller menu, select the Initialize command.

 Select all options: Erase Ladder Logic Program, Erase C Program,
Initialize Controller and Erase Register Assignment Table.

 Click on the OK button.

The controller is now ready for a program.

Loading the Program

To load the hello, world program into the controller:

 Run the Telepace program.

 From the Controller menu, select the C Program Loader command.

 Enter hello.abs in the edit box for the C Program file name.

 Select all write options: C Program, Register Assignment and Serial port
settings.

 Click on the Write button. The file will be downloaded.

 A message about the empty register assignment will appear. Click on the OK
button.

Executing the Program

 Connect a terminal to com1 on the controller. It will display the output of the
program. Set the communication parameters to 9600 baud, 8 data bits, 1
stop bit, and no parity.

 From the C Program Loader dialog, click on the Run button to execute the
program. The “hello, world” message will be displayed on the terminal.

Serial Communication Parameters

When the controller is powered up in the SERVICE mode the serial ports are
configured as:

 9600 baud

 8 data bits

 Getting Started

Document (Version 2.50) 5/12/2011 25 25

 1 stop bit

 no parity

 Modbus RTU protocol emulation

 station address = 1

A program may change these settings with the set_port function. When the
controller is powered up in RUN position, the custom parameters, as stored by
the most recent save function, are used.

 C Program Development

Document (Version 2.50) 5/12/2011 26 26

C Program Development

Program Architecture

A C application program may be contained in a single file or in a number of
separate files, called modules. A single file is simple to compile and link. It can
become cumbersome to edit and time-consuming to compile as the file grows in
size.

An application stored in separate modules by function is easier to edit, promotes
function re-use, and is quicker to compile when only a few modules are changed.
Compiled modules can be combined into object libraries and shared among
users.

The Telepace C Tools support both single file and multiple module programs. A
C application program consists of support functions provided by the C Tools and
the main() and other functions written by the user.

Main Function Structure

The program sample below shows a typical structure for the main() function.

void main(void)

{

 /* Perform initialization actions */

 /* Start support tasks */

 /* Main Loop*/

 while (TRUE)

 {

 /* Perform application functions */

 }

}

Initialization actions typically consist of variable declarations, variable initialization
and one-time actions that need to be performed when the program starts
running.

Supporting tasks (see Real Time Operating System section) are typically
created before the main loop of the program. Tasks can be created and ended
dynamically during the execution of a program as well.

The main loop of a program is always an infinite loop that continually performs
the actions required by the program. The main() function normally never returns.

Example

The following is an example of a three-module program. Each function is stored
in a separate file. This program will be used in subsequent examples.

 C Program Development

Document (Version 2.50) 5/12/2011 27 27

File: func1.c

#include <ctools.h>

void func1(void)

{

 fputs("This is function 1\r\n", com1);

}

File: func2.c

#include <ctools.h>

void func2(void)

{

 fputs("This is function 2\r\n ", com1);

}

File: main.c

#include <ctools.h>

extern void func1(void);

extern void func2(void);

void main(void)

{

 func1();

 while (TRUE)

 {

 func2();

 }

}

Start-Up Function Structure

The user‟s main() function is called from the appstart function of the C Tools. It is
not necessary to understand the appstart function to write programs. However it
performs a number of useful functions that can be modified by the user.

The start-up code has five major functions:

 create and initialize the application program heap (for dynamic memory
allocation);

 specify the number of stack blocks allocated to the main task;

 initialize application program variables;

 control execution of the protocol, ladder logic and background I/O tasks;

 execute the main function.

Source code for the function is supplied with the C Tools. The following
discussion refers to statements found in the file appstart.c.

The heap is a section of memory used by dynamic memory allocation functions
such as malloc. The heap starts at the end of RAM used by the program and
continues to the end of physical RAM. The limit is set by the statement:

 C Program Development

Document (Version 2.50) 5/12/2011 28 28

end_of_heap .EQU 41ffffh

The limit is set by default to the smallest memory option available for the
controller. If your controller has more memory, change the value of the constant
according to the following table.

RAM Installed C Application Program RAM
Addresses

128 Kbytes none (ladder logic only)

256 Kbytes 400000h – 41FFFFh

640 Kbytes 400000h – 47FFFFh

1024 Kbytes 388000h – 3E7FFFh

400000h – 47FFFFh

The application program signature section of the file contains a constant that
determines the size of the stack allocated to the main task. The stack size is
sufficient for most applications. It can be changed by modifying the statement:

 .WORD 4 ;stack size in blocks

Refer to the Real Time Operating System section for more information on the
stack required by tasks.

The appstart function begins by initializing the heap pointers, setting all non-
initialized variables to zero, and initializing system variables.

It then starts the communication protocols for each serial port, according to the
stored values in the EEPROM (or the standard values on a SERVICE boot). If
your application program never uses the communication protocols, some or all of
the following commands can be removed, to free the stack space used by the
protocol tasks.

1

 start_protocol(com1);

 start_protocol(com2);

 start_protocol(com3);
2

 start_protocol(com4);
3

The background I/O task is required for the timer functions, dial-up modem
communications, and PID controller functions to operate. If these functions are

1
 Stack space is required to create additional tasks. Refer to the create_task function for more

information.
2
 com3 is used only in the SCADAPack and SCADAPack PLUS controllers.

3
 com4 is used only in the SCADAPack LIGHT and SCADAPack PLUS controllers.

 C Program Development

Document (Version 2.50) 5/12/2011 29 29

not used, you can reduce the CPU load by changing TRUE to FALSE in the
following statement:

 runBackgroundIO(TRUE);

The ladder logic interpreter is required for ladder logic programs. If you are not
using ladder logic, you can reduce the CPU load by changing TRUE to FALSE in
the following statement:

 runLadderLogic(TRUE);

The final operation is execution of the main function. The _initcopy function
copies the initial values for initialized variables from the __INITDATA section in
the program to the variables. If there are no errors in the data then the user‟s
application program runs. (An error is likely only if the program in RAM has been
damaged or improperly linked.)

 if (_initcopy() == 0)

 {

 main();

 }

If the main function returns, the task is ended. First, any modem control sessions
started by the application are terminated.

 abortAllDialupApps();

Then the task is ended. This will cause all other APPLICATION tasks created by
main to be stopped as well.

 taskStatus = getTaskInfo(0);

 end_task(taskStatus.taskID);

Data Storage

All non-initialized variables (local and global) are initialized to zero on program
startup by the Microtec C Compiler. The I/O database is the only section of
memory that is not initialized to zero on startup. Data stored in the I/O database
is maintained when power to the controller is lost, and remains until the controller
is initialized from the Telepace program.

In most cases the I/O database provides adequate space for data storage.
However, if additional non-initialized memory is required, for example for an array
of custom data structures, an non-initialized section of memory can be created as
shown in the example below.

/* ---

-

datalog.c

 C Program Development

Document (Version 2.50) 5/12/2011 30 30

This file contains the global variable definitions for a

datalogger database.

These global variables are placed in a non-initialized section

called "savedata". All data in these variables will be maintained

over powerup.

--

*/

#include <datalog.h>

/* define a non-initialized section called savedata */

#pragma option -NZsavedata

#pragma option -Xp

/* Global variable definitions */

/* log index */

unsigned logIndex;

/* log database */

struct dataLog logData[DATA_LOG_SIZE];

Any variable defined in this file datalog.c will be placed in the non-initialized
section arbitrarily named savedata. Code operating on these variables should be
placed in a separate file, which references these global variables through
external definitions placed in a header file (e.g. datalog.h).

The #pragma option directive is documented in the Microtec MCCM77
Documentation Set.

Compiling Source Code

The C Compiler converts source code into object files. The basic command line
and options required to compile code for the controller are:

mccm77 -v -nQ -Ml -c filename.c

A complete description of the command line options is given in the Microtec
MCCM77 User’s Guide. The options used here are:

Option Description

-v Issue warnings for features in source file. This option allows you to
detect potential errors in your source code before running the
program.

-nQ Do not suppress diagnostic messages. This option provides
additional warnings that allow you to detect potential errors in your
source code before running the program.

-Ml Compile for large memory model (note that the character following
the M is a lower case ell).

-c Compiler output is an object file.

The following options may be useful.

 C Program Development

Document (Version 2.50) 5/12/2011 31 31

Option Description

-Jdir Specify the directory containing the standard include files. Adding -
Jc:\Telepace\ctools\520x to the command line allows you to locate
your application program files in a different directory. This helps in
organizing your files if you have more than one application program.

-O Enable standard optimizations. This produces smaller and faster
executable code.

-Ot Optimize in favor of execution time rather than code size where a
choice can be made.

-nOc Pop the stack after each function call. This increases code size and
execution time. This option should only be used if there is a large
number of consecutive function calls in your program.

A large number of consecutive calls requires a large stack allocation
for a task. Since the number of stack blocks is limited, using this
option can reduce the stack requirements for a task. See the
description for the create_task function for more information.

Each module in an application should be compiled to produce an object file. The
object files are then linked together to form an executable program.

Example

The following commands are required to compile the program described in the
previous sections.

mccm77 -v -nQ -Ml -c main.c

mccm77 -v -nQ -Ml -c func1.c

mccm77 -v -nQ -Ml -c func2.c

This produces three output files: main.obj; func1.obj and func2.obj. In the next
section these object files will be combined into an executable program.

Linking Object Files

The linker converts object files and object file libraries into an executable
program. The basic command line and options to link a program are:

lnkm77 -c filename.cmd

Controller programs can execute from RAM, Flash or ROM. The linker command
file determines the location of the program.

RAM Based Applications

A sample linker command file for a RAM based program is appram.cmd located
in the Telepace\ctools\520x directory.

The file begins by specifying the location and order of memory sections. The
far_appcode section is the first section in all controller C programs. It contains
the start-up code that calls the main() function. In a RAM based program, the
start-up code is located at the start of C application program RAM. This address
is fixed at 00400000h.

 C Program Development

Document (Version 2.50) 5/12/2011 32 32

The order commands specify the order of the sections. The sections are grouped
so all the code and static data sections are first. The variable data sections
follow. The heap is the last section. It is allowed to grow from the end of the
program data to the end of memory (see Start Up Function Structure section
for more information).

The sections may be rearranged, and new sections added, according to the
following rules:

 The far_appcode section needs to be first in the order listing.

 Code sections must follow the far_appcode section.

 The far_endcode section needs to be the last code section.

 Data sections must follow the code sections.

 The heap section needs to be last in the order listing.

; --

; Specify location and order of memory sections

; --

sect far_appcode = 00400000h

order far_appcode, far_code, (CODE), const

order strings, literals, __INITDATA, far_endcode

order far_zerovars, far_initvars, (DATA), heap

The next section of the command file creates initialized data sections. All
variables in the specified section are initialized at start-up of the program. The
linker creates a copy of the data in these sections and stores it in the
__INITDATA section.

; --

; Create initialized variables section

; --

initdata far_initvars

The next section of the command file lists the application program object
modules (files) to be included in the program. You may also include libraries of
functions you create here. The sample command file includes one object module:
app.obj.

; --

; Load application program object modules

; --

load app

The next section of the command file lists the start-up routines and standard
libraries to be included. There are three object modules and two libraries:

Module Description

Appstart.obj This file contains the application program start up routine
(see Program Architecture section above). If you modify

 C Program Development

Document (Version 2.50) 5/12/2011 33 33

Module Description

the start-up routine for a particular application, specify the
path to the modified routine.

Romfunc.obj This file contains addresses of the jump table for calling
functions in the operating system ROM. Only the symbols
are loaded as only the addresses are needed.

Ctools.lib This is the C Tools library, which contains C Tools
functions not found in the operating system ROM.

cm77islf.lib This is the standard Microtec floating point library.

cm77islc.lib This is the standard Microtec function library.

; --

; Load start up and library routines

; --

load c:\Telepace\ctools\520x\appstart

load_symbols c:\Telepace\ctools\520x\romfunc

load c:\Telepace\ctools\520x\ctools.lib

load c:\mccm77\cm77islf.lib

load c:\mccm77\cm77islc.lib

The final section of the command file specifies the output file format. The listmap
command specifies what information is to be included in the map file. Refer to the
Microtec manuals for more information on map files.

The format command specifies the executable output will be in Motorola S2
record format. The Telepace C Program Loader requires this format.

; --

; Specify output file formats and options

; --

listmap nopublics, nointernals, nocrossref

format S2

Example

The standard command file needs to be modified to link the application described
in the previous example. Copy the appram.cmd file to myapp.cmd. Modify the
application object modules section to read:

; --

; Load application program object modules

; --

load main

load func1

load func2

Link the file with the command

lnkm77 -c myapp.cmd

 C Program Development

Document (Version 2.50) 5/12/2011 34 34

This will produce one output file: myapp.abs. The next step is to load it into the
controller using the Telepace C Program Loader.

Flash Based Applications

A sample command file for a Flash based program is appflash.cmd located in the
Telepace\ctools\520x directory. This file is very similar to the command file for
RAM based programs.

The file begins by specifying the location and order of memory sections. There
are two types of sections in a Flash based program. The code and static data
sections need to be stored in the Flash. The variable data sections need to be
stored in RAM.

The far_appcode section is the first code section in all controller C programs. In a
Flash based program, the far_appcode section is located at 110000h.

The far_zerovars section is the first data section. In a ROM based program it is
normally located at the start of application program RAM (00400000h). It is
possible to start this section at any RAM address, if your application requires it.

The order commands specify the order of the sections. The sections may be
rearranged, and new sections added, according to the following rules:

 The far_appcode section needs to be first in the order listing.

 Code sections must follow the far_appcode section.

 The far_endcode section needs to be the last code section.

 The far_zerovars section needs to be the first data section.

 All other data sections need to follow the far_zerovars section.

 The heap section needs to be the last data section.

; --

; Specify location and order of memory sections

; --

sect far_appcode = 00110000h

sect far_zerovars = 00400000h

order far_appcode, far_code, (CODE), const

order strings, literals, __INITDATA, far_endcode

order far_zerovars, far_initvars, (DATA), heap

The remaining sections of the file are identical to the RAM command file. Refer to
the RAM Based Applications section for a description.

The final section of the command file specifies the output file format. The default
format command specifies the executable output will be in Motorola S2 record
format. This is the format required by the Telepace Flash Loader.

Example – C Program in Flash

The standard command file needs to be modified to link the application described
in the previous example. Copy the appflash.cmd file to myapp.cmd. Modify the
application object modules section to read:

 C Program Development

Document (Version 2.50) 5/12/2011 35 35

; --

; Load application program object modules

; --

load main

load func1

load func2

Link the file with the command

lnkm77 -c myapp.cmd

This will produce one output file: myapp.abs. The next step is to write the file to
the controller using Telepace. Use the Flash Loader command on the Controller
menu. Consult the Telepace documentation for details.

ROM Based Applications

A ROM based program is very similar to a Flash based application. However, an
EPROM programmer needs to be used to create the ROM. ROM based
programs have access to more program (code) memory than Flash based
applications.

It is recommended that Flash based programs be used, unless there is not
enough program memory available.

If a ROM based program is created it should be stored in an EPROM. If a Flash
based part is used the commands in Telepace to erase Flash may not work as
expected. Contact Control Microsystems for more information about this.

A sample command file for a ROM based program is approm.cmd located in the
Telepace\ctools\520x directory. This file is very similar to the command file for
Flash based programs.

The file begins by specifying the location and order of memory sections. There
are two types of sections in a ROM based program. The code and static data
sections need to be stored in the ROM. The variable data sections must be
stored in RAM.

The far_appcode section is the first code section in all controller C programs. In a
ROM based program, the far_appcode section can be located at any address
that is a multiple of 100h in the application ROM. The start of application ROM is
fixed at 100000h.

A C application program may share the application ROM space with a ladder
logic program. If only a C program is stored in the ROM the far_appcode section
is located at 100000h. If a ladder logic program is stored in ROM it needs to start
at 100000h. The C application can start anywhere after the end of the ladder
logic program. This location is determined by the size of the ladder logic program

 C Program Development

Document (Version 2.50) 5/12/2011 36 36

and is determined by examining the memory image of the ladder logic program in
your EPROM programmer.

The far_zerovars section is the first data section. In a ROM based program it is
normally located at the start of application program RAM (00400000h). It is
possible to start this section at any RAM address, if your application requires it.

The order commands specify the order of the sections. The sections may be
rearranged, and new sections added, according to the following rules:

 The far_appcode section needs to be first in the order listing.

 Code sections need to follow the far_appcode section.

 The far_endcode section needs to be the last code section.

 The far_zerovars section needs to be the first data section.

 All other data sections need to follow the far_zerovars section.

 The heap section must be the last data section.

; --

; Specify location and order of memory sections

;

; Note: the far_appcode section address must

; be a multiple of 100h.

; --

sect far_appcode = 00100000h

sect far_zerovars = 00400000h

order far_appcode, far_code, (CODE), const

order strings, literals, __INITDATA, far_endcode

order far_zerovars, far_initvars, (DATA), heap

The remaining sections of the file are identical to the RAM command file. Refer to
the RAM Based Applications section for a description.

The final section of the command file specifies the output file format. The default
format command specifies the executable output will be in Motorola S2 record
format. Your EPROM programmer may require a different output format. The
following options are available. Refer to the Microtec Linker manual for a
complete description.

Command Description

format ASCII Intel ASCII hex format. This is also known as Intel-86 or
Extended Intel Hex format.

format IEEE Microtec extended IEEE-695 format.

format S1 Motorola S1 record format.

format S2 Motorola S2 record format.

Example – C Program in ROM

The standard command file needs to be modified to link the application described
in the previous example. Copy the approm.cmd file to myapp.cmd. Modify the
application object modules section to read:

 C Program Development

Document (Version 2.50) 5/12/2011 37 37

; --

; Load application program object modules

; --

load main

load func1

load func2

Link the file with the command

lnkm77 -c myapp.cmd

This will produce one output file: myapp.abs. The next step is to program an
EPROM using this file.

Example – C and Ladder Logic Program in ROM

The C application program may share the ROM with a ladder logic program. The
ladder logic program is always located at 100000h. The C program may start at
any address that is a multiple of 100h following the ladder logic program.

The standard command file needs to be modified to link the application described
in the previous examples. Copy the approm.cmd file to myapp.cmd.

Assume for this example that the ladder logic program ends at address 100417h.
The next multiple of 100h after this address is 100500h. Modify the section
locations to read:

; --

; Specify location and order of memory sections

;

; Note: the far_appcode section address must

; be a multiple of 100h.

; --

sect far_appcode = 00100500h

Modify the application object modules section to read:

; --

; Load application program object modules

; --

load main

load func1

load func2

Link the file with the command

lnkm77 -c myapp.cmd

This will produce one output file: myapp.abs. The next step is to program an
EPROM using this file.

 C Program Development

Document (Version 2.50) 5/12/2011 38 38

Controller Initialization

You should initialize the memory of the controller when beginning a new
programming project or when you wish to start from default conditions. It is not
necessary to initialize the controller before every program load.

To initialize the controller, first perform a SERVICE boot. A SERVICE boot
preserves programs and data in nonvolatile RAM, but does not start the
programs running. Default communication parameters are used.

To perform a service boot:

 Remove power from the controller.

 Press and hold the LED POWER switch.

 Apply power to the controller.

 Wait until the STAT LED on the top of the board turns on.

 Release the LED POWER switch.

Second, initialize the program and data memory in the controller. A new
controller will require all initializations be performed. Selected initializations can
be performed on a controller that is in use.

 Run the Telepace program under Microsoft Windows.

 Connect the PC to the controller with the appropriate serial cable.

 From the Controller menu, select under Type the controller type that is
connected. A check mark appears beside the desired type when it is
selected.

 From the Controller menu, select the Initialize command.

 Select all options: Erase Ladder Logic Program, Erase C Program,
Initialize Controller and Erase Register Assignment Table.

 Click on the OK button.

Loading Programs into RAM

The C Program Loader dialog transfers executable files from a PC to the
controller.

To load a program into RAM:

 Initialize the controller (see Controller Initialization section above).

 Load the program into the controller:

 Run the Telepace program.

 From the Controller menu, select the C Program Loader command.

 Enter the executable (.abs) file in the edit box for the C Program file name.

 Select the C Program write option and any other write options desired.

 C Program Development

Document (Version 2.50) 5/12/2011 39 39

 Click on the Write button. The file will be downloaded.

A checksum is calculated for the complete C program. The checksum is verified
each time the program is run. This prevents a damaged program from running.

Loading Programs into EPROM

The procedure for creating an EPROM depends on your EPROM programmer. In
general you need to follow these steps:

 Load the executable file into the programmer and program the EPROM.

 Install the EPROM in the controller.

The controller can accept the following EPROMs. Other EPROMs may be
compatible. Contact Control Microsystems if you are considering using an
EPROM not in this list.

Size
(Kbytes)

Manufacturer Part Number

64 AMD AM27C512-70DC

64 SGS-Thomson M27C512-80F1

128 AMD AM27C010-70DC

128 Atmel AT27C010-70PI (one time programmable)

128 SGS-Thomson M27C1001-80F1

128 Toshiba TC57H1000AD-85

256 AMD AM27C020-70DC

256 SGS-Thomson M27C2001-80F1

C Programs may be loaded into Flash memory or EPROM when using Telepace
firmware 1.64 or older.

Telepace firmware 1.65 or newer no longer supports C Programs in Flash
memory. C Programs may be loaded in RAM memory only.

Creating the EPROM

Load the executable (.abs) file into the memory of the EPROM programmer,
according to the instructions for the programmer.

The first byte of the EPROM (offset 0 in the EPROM) maps to address 100000h
when the EPROM is installed in the controller. The linker generates an
executable file with address offsets starting at 100000h. These offsets need to be
removed with programmers, so that the memory image can be placed at offset 0
in the EPROM itself. (this does not affect the addresses in the program itself, just
the address at which it loads.)

Consult your EPROM programmer documentation to determine how to remove
the offset. This is typically done in one of two ways:

 Specify the data is to be loaded from file address 100000h. You may have to
specify that the file is loaded to offset 0h.

 C Program Development

Document (Version 2.50) 5/12/2011 40 40

 Or, specify a load offset of –100000h when reading the executable file. The
programmer will add –100000h to all load addresses in the file, resulting in a
memory image at offset 0h.

Program the EPROM according to the instructions for your programmer.

Installing the EPROM

Install the EPROM in the application ROM socket on the 5203 or 5204 controller
board:

 Locate the socket labeled U14. This is the application ROM socket.

 Orient the EPROM so the notch on the EPROM is at the same end as the
notch in the socket.

 Align all pins of the EPROM with the socket.

 Press the EPROM gently into the socket.

 Check that all pins are inserted correctly and that none are bent.

Initialize the controller (see Controller Initialization section above). The Erase
C Program option needs to be specified. Other initializations may be performed
if desired.

Executing Programs

C application programs are executed when a run program command is received
from the Telepace C Program Loader; or power is applied to the controller
(except when a SERVICE boot is performed).

To start a program from the program loader:

 Run the Telepace program.

 From the C Program Loader dialog, click on the Run button to execute the
program.

The controller will execute either the program in RAM or the program in ROM. It
chooses the program to execute in the following order:

 C application program in RAM;

 C application program in ROM;

 no C application (standard start-up sequence for other components).

This mode of operation is useful in the following scenario. A controller is installed
with a program in ROM. If new features or corrections are required, a program
can be downloaded into RAM, either locally or remotely. This program will take
precedence over the program in ROM.

If the RAM program is lost or damaged, the ROM program will execute. The
ROM program can be used as a fallback, performing minimal functions to
maintain a process.

 Real Time Operating System

Document (Version 2.50) 5/12/2011 41 41

Real Time Operating System

The real time operating system (RTOS) provides the programmer with tools for
building sophisticated applications. The RTOS allows pre-emptive scheduling of
event driven tasks to provide quick response to real-world events. Tasks multi-
task cooperatively. Inter-task communication and event notification functions
pass information between tasks. Resource functions facilitate management of
non-sharable resources.

Task Management

The task management functions provide for the creation and termination of tasks.
Tasks are independently executing routines. The RTOS uses a cooperative
multi-tasking scheme, with pre-emptive scheduling of event driven tasks.

The initial task (the main function) may create additional tasks. The RTOS
supports up to 16 tasks. There are 5 task priority levels to aid in scheduling of
task execution.

Task Execution

SCADAPack controllers can execute one task at a time. The RTOS switches
between the tasks to provide parallel execution of multiple tasks. The application
program can be event driven, or tasks can execute round-robin (one after
another).

Task execution is based upon the priority of tasks. There are 5 priority levels.
Level 0 is reserved for the null task. This task runs when there are no other tasks
available for execution. Application programs can use levels 1 to 4. The main
task is created at priority level 1.

Tasks that are not running are held in queues. The Ready Queue holds all tasks
that are ready to run. Event queues hold tasks that are waiting for events.
Message queues hold tasks waiting for messages. Resource queues hold tasks
that are waiting for resources. The envelope queue holds tasks that are waiting
for envelopes.

Priority Inversion Prevention

When a higher priority task, Task H, requests a resource, which is already
obtained by a lower priority task, Task L, the higher priority task, is blocked until
Task L releases the resource. If Task L is unable to execute to the point where its
releases the resource, Task H will remain blocked. This is called a Priority
Inversion.

To stop this from occurring, the prevention method known as Priority Inheritance
has been implemented. In the example already described, the lower priority task,
Task L, is promoted to the priority of Task H until it releases the needed

 Real Time Operating System

Document (Version 2.50) 5/12/2011 42 42

resource. At this point Task L is returned to its original priority. Task H will obtain
the resource now that it is available.

This does not stop deadlocks that occur when each task requests a resource that
the other has already obtained. This “deadly embrace” is a design error in the
application program.

Task Management Functions

There are five RTOS functions for task management. Refer to the Function
Specification section for details on each function listed.

create_task Create a task and make it ready to execute.

end_task Terminate a task and free the resources and envelopes
allocated to it.

end_application Terminate all application program type tasks. This
function is used by communication protocols to stop the
application program prior to loading new code.

installExitHandler Specify a function that is called when a task is ended
with the end_task or end_application functions.

getTaskInfo Return information about a task.

Task Management Macros

The ctools.h file defines the following macros used for task management. Refer
to the C Tools Macros section for details on each macro listed.

RTOS_PRIORITIES Number of RTOS task priorities.

RTOS_TASKS Number of RTOS tasks.

STACK_SIZE Size of the machine stack.

TS_EXECUTING Task status indicating task is executing

TS_READY Task status indicating task is ready to execute

TS_WAIT_RESOURCE Task status indicating task is blocked waiting for a
resource

TS_WAIT_ENVELOPE Task status indicating task is blocked waiting for an
envelope

TS_WAIT_EVENT Task status indicating task is blocked waiting for an
event

TS_WAIT_MESSAGE Task status indicating task is blocked waiting for a
message

Task Management Structures

The ctools.h file defines the structure Task Information Structure for task
management information. Refer to the C Tools Structures and Types section
for complete information on structures and enumeration types.

 Real Time Operating System

Document (Version 2.50) 5/12/2011 43 43

Resource Management

The resource management functions arbitrate access to non-sharable resources.
These resources include physical devices such as serial ports, and software that
is not re-entrant.

The RTOS defines nine system resources, which are used by components of the
I/O drivers, memory allocation functions and communication protocols.

An application program may define other resources as required. Care needs to
be taken not to duplicate any of the resource numbers declared in ctools.h as
system resources.

Resource Management Functions

There are three RTOS functions for resource management. Refer to the
Function Specification section for details on each function listed.

request_resource Request access to a resource and wait if the resource is
not available.

poll_resource Request access to a resource. Continue execution if the
resource is not available

release_resource Free a resource for use by other tasks.

IO_SYSTEM Resource

The IO_SYSTEM resource regulates access to all functions using the I/O
system. C application programs, ladder logic programs, communication protocols
and background I/O operations share the I/O system. It is imperative the
resource is obtained to prevent a conflict, as protocols and background
operations are interrupt driven. Retaining control of the resource for more that 0.1
seconds will cause background operations will to not execute properly.

DYNAMIC_MEMORY Resource

The DYNAMIC_MEMORY resource regulates access to all memory allocation
functions. These functions allocate memory from the system heap. The heap is
shared amongst all tasks. The allocation functions are non-reentrant.

The DYNAMIC_MEMORY resource needs to be obtained before using any of the
following functions.

calloc allocates data space dynamically

free frees dynamically allocated memory

malloc allocates data space dynamically

realloc changes the size of dynamically allocated space

AB_PARSER Resource

This resource is used by the DF1 communication protocol tasks to allocate
access to the common message parser for each serial port. This resource is of

 Real Time Operating System

Document (Version 2.50) 5/12/2011 44 44

no interest to an application program. However, an application program may not
use the resource number assigned to it.

MODBUS_PARSER Resource

This resource is used by Modbus communication protocol drivers to allocate
access to the common message parser by tasks for each serial port. This
resource is of no interest to an application program.

Resource Management Macros

The ctools.h file defines the following macros used for resource management.
Refer to the C Tools Macros section for details on each macro listed.

AB_PARSER DF1 protocol message parser.

COM1_DIALUP Resource for dialing functions on com1.

COM2_DIALUP Resource for dialing functions on com2.

COM3_DIALUP Resource for dialing functions on com3.

COM4_DIALUP Resource for dialing functions on com4.

DYNAMIC_MEMORY Memory allocation functions.

HART HART modem resource.

IO_SYSTEM I/O system hardware functions.

MODBUS_PARSER Modbus protocol message parser.

RTOS_RESOURCES Number of RTOS resource flags.

Inter-task Communication

The inter-task communication functions pass information between tasks. These
functions can be used for data exchange and task synchronization. Messages
are queued by the RTOS until the receiving task is ready to process the data.

Inter-task Communication Functions

There are five RTOS functions for inter-task communication. Refer to the
Function Specification section for details on each function listed.

send_message Send a message envelope to another task.

receive_message Read a received message from the task's message
queue or wait if the queue is empty.

poll_message Read a received message from the task's message
queue. Continue execution of the task if the queue is
empty.

allocate_envelope Obtain a message envelope from free pool maintained
by the RTOS, or wait if none is available.

deallocate_envelope Return a message envelope to the free pool maintained
by the RTOS.

 Real Time Operating System

Document (Version 2.50) 5/12/2011 45 45

Inter-task Communication Macros

The ctools.h file defines the following macros used for inter-task communication.
Refer to the C Tools Macros section for details on each macro listed.

MSG_DATA Specifies the data field in an envelope contains a data
value.

MSG_POINTER Specifies the data field in an envelope contains a
pointer.

RTOS_ENVELOPES Number of RTOS envelopes.

Inter-task Communication Structures

The ctools.h file defines the structure Message Envelope Structure for inter-
task communication information. Refer to the C Tools Structures and Types
section for complete information on structures and enumeration types.

Event Notification

The event notification functions provide a mechanism for communicating the
occurrence events without specifying the task that will act upon the event. This is
different from inter-task communication, which communicates to a specific task.

Multiple occurrences of a single type of event are queued by the RTOS until a
task waits for or polls the event.

Event Notification Functions

There are four RTOS functions for event notification. Refer to the Function
Specification section for details on each function listed.

wait_event Wait for an event to occur.

poll_event Check if an event has occurred. Continue execution if
one has not occurred.

signal_event Signal that an event has occurred.

interrupt_signal_event Signal that an event has occurred from an interrupt
handler. This function must only be called from within an
interrupt handler.

There are two support functions, which are not part of the RTOS that may be
used with events.

startTimedEvent Enables signaling of an event at regular intervals.

endTimedEvent Terminates signaling of a regular event.

Event Notification Macros

The ctools.h file defines the following macro used for event notification. Refer to
the C Tools Macros section for details.

RTOS_EVENTS Defines the number of available RTOS events.

 Real Time Operating System

Document (Version 2.50) 5/12/2011 46 46

System Events

The RTOS defines events for communication port management and background
I/O operations. An application program may define other events as required.
Take care not to duplicate any of the event numbers declared in ctools.h as
system events.

BACKGROUND This event triggers execution of the background I/O
routines. An application program cannot use it.

COM1_RCVR This event is used by communication protocols to signal
a character or message received on com1. It can be
used in a custom character handler (see
install_handler).

COM2_RCVR This event is used by communication protocols to signal
a character or message received on com2. It can be
used in a custom character handler (see
install_handler).

COM3_RCVR This event is used by communication protocols to signal
a character or message received on com3. It can be
used in a custom character handler (see
install_handler).

COM4_RCVR This event is used by communication protocols to signal
a character or message received on com4. It can be
used in a custom character handler (see
install_handler).

FOXCOM_MSG_RECEIVED This event is used when a Foxcom message is
received. An application program cannot use it.

FOXCOM_STARTED This event is used when Foxcom communication has
been established with the sensor. An application
program cannot use it.

NEVER This event never occurs. It can be used to disable a task
by waiting for it to occur. However, to end a task it is
better to use end_task. This frees all resources and
stack space allocated to the task.

Error Reporting

Sharable I/O drivers to return error information to the calling task use the error
reporting functions. These functions ensure that an error code generated by one
task is not reported in another task. The errno global variable used by some
functions may be modified by another task, before the current task can read it.

Error Reporting Functions

There are two RTOS functions for error reporting. Refer to the Function
Specification section for details on each function listed.

check_error Check the error code for the current task.

 Real Time Operating System

Document (Version 2.50) 5/12/2011 47 47

report_error Set the error code for the current task.

Error Reporting Macros

The ctools.h file defines the following macro used for error reporting. Refer to
the C Tools Macros section for details.

NO_ERROR Error code indicating no error has occurred.

SCADAPack Task Architecture

The diagram shows the tasks present in the SCADAPack controller.

Com1 Protocol Task

Executes when mes-
sage event occurs

Processes:

 message

Priority = 3

Background I/O Task

Executes every 0.1 s

Processes:

 software timers

 dialup modem

 PID controllers

Priority = 4

Timer Interrupt

240 Hz Interrupt

Processes:

 Ladders timers

 jiffy timer

 watchdog timer

 timed events

Priority = h/w interrupt

Ladders & I/O Scan Task

Task loop runs continuously:

while (TRUE)
{
 request_resource(IO_SYSTEM);

 read data from input modules to I/O database
 (Register Assignment)

 if program is in RUN mode

execute ladder logic program

 write data from I/O database to output modules
 (Register Assignment)

 release_resource(IO_SYSTEM);
 release_processor();
}

Priority = 1

Main Task (typical)

Task loop runs continuously:

while (TRUE)
{
 request_resource(IO_SYSTEM);

 functions requiring IO_SYSTEM resource

 release_resource(IO_SYSTEM);

 functions not requiring IO_SYSTEM resource

 release_processor();
}

Priority = 1

Optional User Tasks

Created by user from
the Main Task.

Priority = 1 to 4

Com2 Protocol Task

Executes when mes-
sage event occurs

Processes:

 message

Priority = 3

Com3 Protocol Task

Executes when mes-
sage event occurs

Processes:

 message

Priority = 3

Com4 Protocol Task

Executes when mes-
sage event occurs

Processes:

 message

Priority = 3

The highest priority routines that execute are hardware interrupt handlers. Most
hardware interrupt handlers perform their functions transparently. The Timer
Interrupt handler is important to application programs, because it updates several

 Real Time Operating System

Document (Version 2.50) 5/12/2011 48 48

timers that can be used in application programs. It also triggers the background
I/O task.

The background I/O task is the highest priority task in the system. It processes
software timers, PID controllers and dialup modem control routines.

There is one protocol task for each serial port where a protocol is enabled. The
protocol tasks wait for an event signaled by an interrupt handler. This event is
signaled when a complete message is received. The protocol tasks process the
received message and transmit a response when needed. Protocol tasks may be
disabled and replaced with protocol tasks from the application program.

The Ladder Logic and I/O Scan task executes the Ladder Logic program and
performs an I/O scan based on the register assignment. This task is the same
priority as the main user application task.

The main task is the central task of the user application. It performs the functions
required by the user. Typically, it executes at the same priority as the Ladder
Logic and I/O Scan task. It may start other user tasks if needed.

RTOS Example Application Program

The following program is used in the explanation of the RTOS functions. It
creates several simple tasks that demonstrate how tasks execute. A task is a C
language function that has as its body an infinite loop so it continues to execute
forever.

The main task creates two tasks. The echoData task is higher priority than main.
The auxiliary task is the same priority as main. The main task then executes
round robin with other tasks of the same priority.

The auxiliary task is a simple task that executes round robin with the other tasks
of its priority. Only the code necessary for task switching is shown to simplify the
example.

The echoData task waits for a character to be received on a serial port, then
echoes it back out the port. It waits for the event of the character being received
to allow lower priority tasks to execute. It installs a character handler function –
signalCharacter – that signals an event each time a character is received. This
function is hooked into the receiver interrupt handler for the serial port.

The execution of this program is explained in the Explanation of Task
Execution section.

/* ---

 SCADAPack Real Time Operating System Sample

 Copyright (c) 1998, Control Microsystems Inc.

 Version History

 version 1.00 Wayne Johnston November 10, 1998

 --

*/

/* ---- Version 1.00 ---

 Real Time Operating System

Document (Version 2.50) 5/12/2011 49 49

 This program creates several simple tasks for demonstration of

the

 functionality of the real time operation system.

 --

*/

#include <mriext.h>

#include <stdio.h>

#include "ctools,h"

/* ---

 Constants

 --

*/

#define CHARACTER_RECEIVED 10

/* ---

 signalCharacter

 The signalCharacter function signals an event when a character

is

 received. This function must be called from an interrupt

handler.

*/

void signalCharacter(unsigned character, unsigned error)

{

 /* If there was no error, signal that a character was

received */

 if (error == 0)

 {

 interrupt_signal_event(CHARACTER_RECEIVED);

 }

 /* Prevent compiler unused variables warning (generates no

code) */

 character;

}

/* --

 echoData

 The echoData function is a task that waits for a character

 to be received on com6 and echoes the character back. It

installs

 a character handler for com6 to generate events on the

reception

 of characters.

*/

 3

void echoData(void)

 Real Time Operating System

Document (Version 2.50) 5/12/2011 50 50

{

 struct prot_settings protocolSettings;

 struct pconfig portSettings;

 int character;

 /* Disable communication protocol */

 get_protocol(com6, &protocolSettings);

 protocolSettings.type = NO_PROTOCOL;

 set_protocol(com6, &protocolSettings);

 /* Set serial communication parameters */

 portSettings.baud = BAUD9600;

 portSettings.duplex = FULL;

 portSettings.parity = NONE;

 portSettings.data_bits = DATA8;

 portSettings.stop_bits = STOP1;

 portSettings.flow_rx = DISABLE;

 portSettings.flow_tx = DISABLE;

 portSettings.type = RS232;

 portSettings.timeout = 600;

 set_port(com6, &portSettings);

 /* Install handler for received character */

 install_handler(com6, signalCharacter);

 while (TRUE)

 {

 /* Wait for a character to be received */

4 9

 wait_event(CHARACTER_RECEIVED);

 8

 /* Echo the character back */

 character = fgetc(com6);

 fputc(character, com6);

 }

}

/* ---

 auxiliary

 The auxiliary function is a task that performs some action

 required by the program. It does not have specific function so

 that the real time operating system features are clearer.

----- */

void auxiliary(void)

7

{

 while (TRUE)

 Real Time Operating System

Document (Version 2.50) 5/12/2011 51 51

 {

 /* ... add application specific code here ... */

 /* Allow other tasks of this priority to run */

 release_processor();

 }

}

/* ---

 main

 This function creates two tasks: one at priority three and one

at

 priority 1 to demonstrate the functions of the RTOS.

----- */

1

void main(void)

 2

{

 /* Create serial communication task */

 create_task(echoData, 3, APPLICATION, 3);

 /* Create a task - same priority as main() task */

 create_task(auxiliary, 1, APPLICATION, 2);

5

 while (TRUE)

 {

 /* ... add application specific code here ... */

 /* Allow other tasks of this priority to execute */

6

 release_processor();

 }

}

Explanation of Task Execution

SCADAPack controllers can execute one task at a time. The Real Time
Operating System (RTOS) switches between the tasks to provide parallel
execution of multiple tasks. The application program can be event driven, or
tasks can execute round-robin (one after another). This program illustrates both
types of execution.

Task execution is based upon the priority of tasks. There are 5 priority levels.
Level 0 is reserved for the null task. This task runs when there are no other tasks
available for execution. Application programs can use levels 1 to 4. The main
task is created at priority level 1.

 Real Time Operating System

Document (Version 2.50) 5/12/2011 52 52

Tasks that are not running are held in queues. The Ready Queue holds all tasks
that are ready to run. Event queues hold tasks that are waiting for events.
Message queues hold tasks waiting for messages. Resource queues hold tasks
that are waiting for resources. The envelope queue holds tasks that are waiting
for envelopes.

The execution of the tasks is illustrated by examining the state of the queues at
various points in the program. These points are indicated on the program listing
above. The examples show only the Ready queue, the Event 10 queue and the
executing task. These are the only queues relevant to the example.

Execution Point 1

This point occurs just before the main task begins. The main task has not been
created by the RTOS. The null task has been created, but is not running. No task
is executing.

Running TaskEvent 10 QueueReady Queue

4

3

2

1

0

none

null()

4

3

2

1

0

Figure 1: Queue Status before Execution of main Task

Execution Point 2

This point occurs just after the creation of the main task. It is the running task. On
the next instruction it will create the echoData task.

Running TaskEvent 10 QueueReady Queue

4

3

2

1

0

main()

null()

4

3

2

1

0

Figure 2: Queue Status at Start of main Task

Execution Point 3

This point occurs just after the echoData task is created. The echoData task is
higher priority than the main task so it is made the running task. The main task is
placed into the ready queue. It will execute when it becomes the highest priority
task.

 Real Time Operating System

Document (Version 2.50) 5/12/2011 53 53

The echoData task initializes the serial port and installs the serial port handler
function signalCharacter. It will then wait for an event. This will suspend the task
until the event occurs.

The signalCharacter function will generate an event each time a character is
received without an error.

Running TaskEvent 10 QueueReady Queue

4

3

2

1

0

echoData()

main()

null()

4

3

2

1

0

Figure 3: Queue Status after Creation of echoData Task

Execution Point 4

This point occurs just after the echoData task waits for event 10. It has been
placed on the event queue for event 10.

The highest priority task on the ready queue was the main task. It is now running.
On the next instruction it will create another task at the same priority as main.

Running TaskEvent 10 QueueReady Queue

4

3

2

1

0

main()

echoData()

null()

4

3

2

1

0

Figure 4: Queue Status After echoData Task Waits for Event

Execution Point 5

This point occurs just after the creation of the auxiliary task. This task is the
same priority as the main task. Therefore the main task remains the running
task. The auxiliary task is ready to run and it is placed on the Ready queue.

 Real Time Operating System

Document (Version 2.50) 5/12/2011 54 54

Running TaskEvent 10 QueueReady Queue

4

3

2

1

0

echoData()

main()

auxiliary()

null()

4

3

2

1

0

Figure 5 Queue Status after Creation of auxiliary Task

Execution Point 6

This point occurs just after the main task releases the processor, but before the
next task is selected to run. The main task is added to the end of the priority 1 list
in the Ready queue.

On the next instruction the RTOS will select the highest priority task in the Ready
queue.

Running TaskEvent 10 QueueReady Queue

4

3

2

1

0

echoData()

none

main()

null()

4

3

2

1

0

auxiliary()

Figure 6: Queue Status After main Task Releases Processor

Execution Point 7

This point is just after the auxiliary task has started to run. The main and auxiliary
tasks will continue to alternate execution, as each task releases the processor to
the other.

Running TaskEvent 10 QueueReady Queue

4

3

2

1

0

echoData()

auxiliary()

main()

nullTask()

4

3

2

1

0

Figure 7: Queue Status at Start of auxiliary Task

 Real Time Operating System

Document (Version 2.50) 5/12/2011 55 55

Execution Point 8

This point occurs just after a character has been received. The signalCharacter
function executes and signals an event. The RTOS checks the event queue for
the event, and makes the highest priority task ready to execute. In this case the
echoData task is made ready.

The RTOS then determines if the new task is higher priority than the executing
task. Since the echoData task is higher priority than the auxiliary task, a task
switch occurs. The auxiliary task is placed on the Ready queue. The echoData
task executes.

Observe the position of auxiliary in the Ready queue. The main task will execute
before it at the next task switch.

Running TaskEvent 10 QueueReady Queue

4

3

2

1

0

echoData()

auxiliary()

null()

4

3

2

1

0

 main()

Figure 8: Queue Status after Character Received

Execution Point 9

This point occurs just after the echoData task waits for the character-received
event. It is placed on the event 10 queue. The highest priority task on the ready
queue – main – is given the processor and executes.

Running TaskEvent 10 QueueReady Queue

4

3

2

1

0

echoData()

main()

auxiliary()

null()

4

3

2

1

0

Figure 9: Queue Status after echoData Waits for Event

 Overview of Programming Functions

Document (Version 2.50) 5/12/2011 56 56

Overview of Programming Functions

This section of the User Manual provides and overview of the Functions, Macros,
Structure and Types available to the user. The Functions, Macros, Structure and
Types overview is separated into sections of related functions. Refer to the
Function Specification, C Tools Macros and C Tools Structures and Types
section of this manual for detailed explanations of the Functions, Macros,
Structure and Types described here.

Controller Operation

This section of the manual provides an overview of the Telepace functions
relating to controller operation. These functions are provided in addition to the
run-time library supplied with the Microtec C compiler.

Start Up Functions

There are two library functions related to the system or application start up task.
Refer to the Function Specification section for details on each function listed.

startup_task Returns the address of the system start up routine.

system_start The default start up routine.

Start Up Macros

The ctools.h file defines the following macros for use with the start up task.
Refer to the C Tools Macros section for details on each macro listed.

STARTUP_APPLICATION Specifies the application start up task.

STARTUP_SYSTEM Specifies the system start up task.

Start Up Task Info Structure

The ctools.h file defines the structure Start Up Information Structure for use
with the startup_task function. Refer to the C Tools Structures and Types
section for complete information on structures and enumeration types.

Program Status Information Functions

There are five library functions related to controller program status information.
Refer to the Function Specification section for details on each function listed.

applicationChecksum Returns the application program checksum.

getBootType Returns the controller boot up status.

getProgramStatus Returns the application program execution status.

setBootType Sets the controller boot up status.

 Overview of Programming Functions

Document (Version 2.50) 5/12/2011 57 57

setProgramStatus Sets the application program execution status.

Program Status Information Macros

The ctools.h file defines the following macros for use with controller program
information. Refer to the C Tools Macros section for details on each macro
listed.

NEW_PROGRAM Application program is newly loaded.

PROGRAM_EXECUTED Application program has been executed.

COLD_BOOT Controller started in COLD BOOT mode.

RUN Controller started in RUN mode.

SERVICE Controller started in SERVICE mode.

REENTRY_BOOT

Controller Information Functions

There is one library function related to controller information. Refer to the
Function Specification section for details on the function listed.

getControllerID Returns the controller ID string.

Controller Information Macros

The ctools.h file defines the following macros for use with controller information.
Refer to the Function Specification section for details on each macro listed.

AB_PROTOCOL DF1 protocol firmware option

BASE_TYPE_MASK Controller type bit mask

FT_NONE Unknown firmware type

FT_TELEPACE Telepace firmware type

FT_ISAGRAF IEC 61131-3 firmware type

GASFLOW Gas Flow calculation firmware option

RUNS_2 Set if Gas Flow supports two meter runs

SCADAPACK SCADAPack controller

SCADAPACK_LIGHT SCADAPack LIGHT controller

SCADAPACK_PLUS SCADAPack PLUS controller

UNKNOWN_CONTOLLER Unknown controller type

Firmware Version Information Functions

There is one function related to the controller firmware version. Refer to the
Function Specification section for details.

getVersion Returns controller firmware version information.

 Overview of Programming Functions

Document (Version 2.50) 5/12/2011 58 58

Firmware Version Information Macros

The ctools.h file defines the following macros for use with the firmware version
function. Refer to the C Tools Macros section for details on each macro listed.

VI_DATE_SIZE Number of characters in the version information date
field.

VI_STRING_SIZE Number of characters in the version information
copyright field.

Firmware Version Information Structure

The ctools.h file defines the structure Version Information Structure for
controller firmware version information. Refer to the C Tools Structures and
Types section for complete information on structures and enumeration types.

Sleep Mode Functions

SCADAPack controllers are capable of extremely low power operation when in
sleep mode. SCADAPack controllers enter the sleep mode under control of the
application program. Refer to the SCADAPack System Hardware Manual for
further information on controller sleep mode.

There are three library functions related to sleep mode. Refer to the Function
Specification section for details on each function listed.

getWakeSource Gets wake up sources

setWakeSource Sets wake up sources

sleep Put controller into sleep mode

Sleep Mode Macros

The ctools.h file defines the following macros for use sleep mode. Refer to the C
Tools Macros section for details on each macro listed.

SLEEP_MODE_SUPPORTED Defined if sleep function is supported

WS_ALL All wake up sources enabled

WS_COUNTER_0_OVERFLOW Bit mask to enable counter 0 overflow
as wake up source

WS_COUNTER_1_OVERFLOW Bit mask to enable counter 1 overflow
as wake up source

WS_COUNTER_2_OVERFLOW Bit mask to enable counter 2 overflow
as wake up source

WS_INTERRUPT_INPUT Bit mask to enable interrupt input as
wake up source

WS_LED_POWER_SWITCH Bit mask to enable LED power switch as
wake up source

WS_NONE No wake up source enabled

 Overview of Programming Functions

Document (Version 2.50) 5/12/2011 59 59

WS_REAL_TIME_CLOCK Bit mask to enable real time clock as
wake up source

WS_UNDEFINED Undefined wake up source

Power Management Functions

Under normal operation, the SCADAPack 350 operates on a CPU clock
frequency of 32 MHz. However, the SCADAPack 350 controller is capable of
operating on a reduced CPU clock frequency of 8 MHz, known as Reduced
Power Mode.

Further power savings can be realized on the SCADAPack 350 controller by
disabling the LAN or USB peripheral and host ports. Activation of Reduced
Power mode as well as the deactivation of the communication ports can be
performed by the application program.

The library functions associated with the aforementioned power management
allows for the following:

 The CPU speed can be changed from full speed (32 MHz) to reduced speed
(8 MHz).

 The LAN port can be enabled or disabled

 The USB peripheral port can be enabled or disabled

 The USB host port can be enabled or disabled.

The Power Mode LED blinks once a second when the controller is operating in
Reduced Power Mode.

The library functions associated with the power management features are listed
below. Refer to the Function Specification section for details on each function
listed.

getPowerMode Gets the current power mode

setPowerMode Sets the power mode

Power Management Macros

The ctools.h file defines the following macros for use in the power management
functions. Refer to the C Tools Macros section for details on each macro listed.

PM_CPU_FULL The CPU is set to run at full speed

PM_CPU_REDUCED The CPU is set to run at a reduced speed

PM_CPU_SLEEP The CPU is set to sleep mode

PM_LAN_ENABLED The LAN is enabled

PM_LAN_DISABLED The LAN is disabled

PM_USB_PERIPHERAL_ENABLED The USB peripheral port is enabled

PM_USB_PERIPHERAL_DISABLED The USB peripheral port is disabled

PM_USB_HOST_ENABLED The USB host port is enabled

 Overview of Programming Functions

Document (Version 2.50) 5/12/2011 60 60

PM_USB_HOST_DISABLED The USB host port is disabled

PM_UNAVAILABLE The status of the device could not be read

Configuration Data EEPROM Functions

The EEPROM is nonvolatile memory used to store configuration parameters. The
application program cannot store application data into this memory. It can cause
the system configuration parameters to be written, using the save function.

The contents of the EEPROM are copied to RAM under two conditions: during a
RUN boot of the controller; and when the application program executes the load
function.

The following data is loaded on a RUN boot; otherwise default information is
used:

 serial port configuration tables

 protocol configuration tables

 enable store and forward settings

 LED power settings

 mask for wake-up sources

 execution period on power-up for each PID

There are two library functions related to the configuration data EEPROM. Refer
to the Function Specification section for details on each function listed.

Save Writes configuration data from RAM to EEPROM

load Reads configuration data from EEPROM into RAM

Configuration Data EEPROM Macros

The ctools.h file defines the following macros for use with the configuration data
EEPROM. Refer to the C Tools Macros section for details on each macro listed.

EEPROM_EVERY EEPROM section loaded to RAM on every CPU
reboot.

EEPROM_RUN EEPROM section loaded to RAM on RUN type
boots only.

EEPROM_SUPPORTED If defined, indicates that there is an
EEPROM in the controller.

I/O Bus Communication Functions

The ctools.h file defines the following functions that access the I/O bus. The I/O
bus is I

2
C compatible. Refer to the Function Specification section for details on

each function listed.

ioBusReadByte Reads one byte from an I
2
C slave device

 Overview of Programming Functions

Document (Version 2.50) 5/12/2011 61 61

ioBusReadLastByte Reads one byte from an I
2
C slave device and terminates

read

ioBusReadMessage Reads a message from an I
2
C slave device

ioBusSelectForRead Selects an I
2
C slave device for reading

ioBusSelectForWrite Selects an I
2
C slave device for writing

ioBusStart Issues an I
2
C bus START condition

ioBusStop Issues an I
2
C bus STOP condition

ioBusWriteByte Writes one byte to an I
2
C slave device

ioBusWriteMessage Writes a message to an I
2
C slave device

I/O Bus Communication Macros

The ctools.h file defines the following macros for use with I/O Bus
Communication. Refer to the C Tools Macros section for details on each macro
listed.

The ctools.h file defines the following macros.

READSTATUS enumeration type ReadStatus

WRITESTATUS enumeration type WriteStatus

I/O Bus Communication Types

The ctools.h file defines the enumeration types ReadStatus and WriteStatus.
Refer to the C Tools Structures and Types section for complete information on
structures and enumeration types.

System Functions

The ctools.h file defines the following functions for system initialization and for
retrieving system information. Some of these functions are primarily used in the
appstart.c routine, having limited use in an application program.

Refer to the Function Specification section for details on each function listed.

applicationChecksum Returns the application program checksum.

ioClear Clears all I/O points

ioDatabaseReset Resets the controller to default settings.

ioRefresh Refresh outputs with internal data

ioReset Reset all I/O modules

Controller I/O Hardware

This section of the manual provides an overview of the Telepace C Tools
functions relating to controller signal input and output (I/O). These functions are
provided in addition to the run-time library supplied with the Microtec C compiler.

 Overview of Programming Functions

Document (Version 2.50) 5/12/2011 62 62

Analog Input Functions

The controller supports internal analog inputs and external analog input modules.
Refer to the SCADAPack System Hardware Manual for further information on
controller analog inputs and analog input modules.

There are several library functions related to internal analog inputs and analog
input modules. Refer to the Function Specification section for details on each
function listed.

readBattery Read the controller RAM battery voltage.

readThermistor Read the controller ambient temperature sensor.

readInternalAD Read the controller internal AD converter.

ioRead4Ain Read 4 analog inputs into I/O database.

ioRead8Ain Read 8 analog inputs into I/O database.

IoRead4202Inputs Read the digital, counter and analog inputs from a
SCADAPack 4202 DR.

IoRead4202DSInputs Read the digital, counter and analog inputs from a
SCADAPack 4202 DS.

ioRead5505Inputs Read the digital and analog inputs from a 5505 I/O
Module.

ioRead5506Inputs Read the digital and analog inputs from a 5506 I/O
Module.

ioRead5601Inputs Read the digital and analog inputs from a SCADAPack
5601 I/O Module.

ioRead5602Inputs Read the digital and analog inputs from a SCADAPack
5602 I/O Module.

ioRead5604Inputs Read the digital and analog inputs from a SCADAPack
5604 I/O Module.

ioRead5606Inputs Read the digital and analog inputs from a 5606 I/O
Module.

ioReadLPInputs Read the digital and analog inputs from the SCADAPack
LP I/O.

ioReadSP100Inputs Read the digital and analog inputs from the SCADAPack
100 I/O.

Analog Input Macros

The ctools.h file defines the following macros for use with controller analog
inputs. Refer to the C Tools Macros section for details on each macro listed.

AD_BATTERY Internal AD channel connected to lithium battery.

AD_THERMISTOR Internal AD channel connected to thermistor.

T_CELSIUS Specifies temperatures in degrees Celsius.

 Overview of Programming Functions

Document (Version 2.50) 5/12/2011 63 63

T_FAHRENHEIT Specifies temperatures in degrees Fahrenheit.

T_KELVIN Specifies temperatures in degrees Kelvin.

T_RANKINE Specifies temperatures in degrees Rankine.

Analog Output Functions

The controller supports external analog output modules. Refer to the
SCADAPack System Hardware Manual for further information on these
modules.

There are three library functions related to analog output modules. Refer to the
Function Specification section for details on each function listed.

ioWriteAout Write to 4 analog outputs from I/O database.

ioWrite2Aout Write to 2 analog outputs from I/O database.

ioWrite4Aout Write to 4 analog outputs from I/O database.

IoWrite4202Outputs Write to the analog outputs of a SCADAPack 4202 DR.

IoWrite4202OutputsEx Write to analog outputs of a SCADAPack 4202 DR with
extended IO (4202 DR with a digital output).

ioWrite5303Aout Write to analog outputs of the 5303 module from I/O
database.

ioWrite5606Outputs Write to the digital and analog outputs of 5606 I/O
Module.

ioWriteLPOutputs Writes data to the digital and analog outputs of the
SCADAPack LP I/O.

Digital Input Functions

The controller supports internal digital inputs and external digital input modules.
Refer to the SCADAPack System Hardware Manual for further information on
controller digital inputs and digital input modules.

There are several library functions related to digital inputs and external digital
input modules. Refer to the Function Specification section for details on each
function listed.

interruptInput Read the controller interrupt input.

readCounterInput Read the status of the counter input points on the
controller board.

ioRead8Din read 8 digital inputs into I/O database.

ioRead16Din read 16 digital inputs into I/O database.

IoRead32Din read 32 digital inputs into I/O database.

IoRead4202Inputs Read the digital, counter and analog inputs from a
SCADAPack 4202 DR.

 Overview of Programming Functions

Document (Version 2.50) 5/12/2011 64 64

IoRead4202DSInputs Read the digital, counter and analog inputs from a
SCADAPack 4202 DS.

ioRead5505Inputs Read the digital and analog inputs from a 5505 I/O
Module.

ioRead5506Inputs Read the digital and analog inputs from a 5506 I/O
Module.

ioRead5601Inputs Read the digital and analog inputs from a 5601 I/O
Module.

ioRead5602Inputs Read the digital or analog inputs from a 5602 I/O
Module.

ioRead5604Inputs Read the digital and analog inputs from a SCADAPack
5604 I/O Module.

ioRead5606Inputs Read the digital and analog inputs from a 5606 I/O
Module.

ioReadLPInputs Read the digital and analog inputs from the SCADAPack
LP I/O.

ioReadSP100Inputs Read the digital and analog inputs from the SCADAPack
100 I/O.

Digital Output Functions

The controller supports external digital output modules. Refer to the
SCADAPack System Hardware Manual for further information on controller
digital output modules.

There are several library functions related to digital output modules. Refer to the
Function Specification section for details on each function listed.

interruptInput Read the controller interrupt input.

ioWrite16Dout Write data to any 16 point Digital output module.

IoWrite32Dout Write data to any 32 point Digital output module.

IoWrite4202OutputsEx Write to digital and analog outputs of the SCADAPack
4202 DR with extended IO (with digital output) from I/O
database.

IoWrite4202DSOutputs Write to digital outputs of the SCADAPack 4202 DS
from I/O database.

ioWrite5601Outputs Write to the digital and analog outputs of SCADAPack
5601 I/O Module.

ioWrite5602Outputs Write to the digital and analog outputs of SCADAPack
5602 I/O Module.

ioWrite5604Outputs Write to the digital and analog outputs of SCADAPack
5604 I/O Module.

 Overview of Programming Functions

Document (Version 2.50) 5/12/2011 65 65

ioWrite5606Outputs Write to the digital and analog outputs of 5606 I/O
Module.

ioWrite8Dout Write data to any 8 point Digital output module.

ioWriteLPOutputs Writes data to the digital and analog outputs of the
SCADAPack LP I/O.

ioWriteSP100utputs Writes data to the digital outputs of the SCADAPack 100
I/O.

Counter Input Functions

The controller supports internal counters and external counter modules. The
counter registers are 32 bits, for a maximum count of 4,294,967,295. They roll
over to 0 on the next count. The counter inputs measure the number of rising
inputs. Refer to the SCADAPack System Hardware Manual for further
information on controller counter inputs and counter input modules.

There are four library functions related to counters. Refer to the Function
Specification section for details on each function listed.

readCounter Read a SCADAPack, SCADAPack LP or SCADAPack
100 counter with or without automatic clearing of the
counter register.

interruptCounter Read the SCADAPack or SCADAPack LP interrupt input
as a counter with or without automatic clearing of the
counter value.

ioRead4Counter Read any 4 point Counter input module.

IoRead4202Inputs Read the digital, counter and analog inputs from a
SCADAPack 4202 DR.

IoRead4202DSInputs Read the digital, counter and analog inputs from a
SCADAense 4202 DS.

Counter Input Macros

The ctools.h file defines the following macro for use with counter inputs. Refer to
the C Tools Macros section for details.

LOCAL_COUNTERS Number of controller counter inputs.

Status LED and Output Functions

The status LED and output indicate alarm conditions. The STAT LED blinks and
the STATUS output opens when an alarm occurs. The STAT LED turns off and
the STATUS output closes when all alarms clear.

The STAT LED blinks a binary sequence indicating alarm codes. The sequences
consist of long and short flashes, followed by an off delay of 1 second. The
sequence then repeats. The sequence may be read as the Controller Status
Code.

 Overview of Programming Functions

Document (Version 2.50) 5/12/2011 66 66

Refer to the SCADAPack System Hardware Manual for further information on
the status LED and digital output. There is no status output on the SCADAPack
programmable controllers.

There are two library functions related to the status LED and digital output. Refer
to the Function Specification section for details on each function listed.

clearStatusBit Clears bits in controller status code.

setStatusBit Sets the bits in controller status code.

Status LED and Output Macros

The ctools.h file defines the following macros for use with the status LED and
digital output. Refer to the C Tools Macros section for details on each macro
listed.

S_MODULE_FAILURE Status LED code for I/O module communication failure

S_NORMAL Status LED code for normal status

Options Switches Functions

The controller has three option switches located under the cover of the controller
module. These switches are labeled OPTION 1,2 and 3. The option switches are
user defined except when a SCADAPack I/O module or SCADAPack AOUT
module used. In this case option switches 1 and 2 select the analog ranges.
Refer to the SCADAPack System Hardware Manual for further information on
option switches.

There are no option switches on the SCADAPack 100, SCADAPack LP or the
SCADAPack 4000 programmable controllers.

There is one library function related to the controller option switches. Refer to the
Function Specification section for details.

optionSwitch Read option switch states.

Option Switches Macros

The ctools.h file defines the following macros for use with option switches. Refer
to the C Tools Macros section for details on each macro listed.

CLOSED Specifies switch is in closed position

OPEN Specifies switch is in open position

LED Indicators Functions

An application program can control three LED indicators.

The RUN LED indicates the execution status of the program. The LED can be on
or off. It remains in the last state until changed.

The STAT LED indicates error conditions. It outputs an error code as a binary
sequence. The sequence repeats until a new error code is output. If the error
code is zero, the status LED turns off.

 Overview of Programming Functions

Document (Version 2.50) 5/12/2011 67 67

The FORCE LED indicates locked I/O variables. Use this function with caution in
application programs.

There are three library functions related to the LED indicators. Refer to the
Function Specification section for details on each function listed.

runLed Controls the RUN LED status.

setStatus Sets controller status code.

forceLed Sets state of the force LED.

LED Indicators Macros

The ctools.h file defines the following macros for use with LED power control.
Refer to the C Tools Macros section for details on each macro listed.

LED_OFF Specifies LED is to be turned off.

LED_ON Specifies LED is to be turned on.

LED Power Control Functions

The controller board can disable the LEDs on the controller board, the 5601,
5602 or 5604 I/O modules and the 5000 I/O modules to conserve power. This is
particularly useful in solar powered or unattended installations. Refer to the
SCADAPack System Hardware Manual for further information on LED power
control.

There are four library functions related to LED power control. Refer to the
Function Specification section for details on each function listed.

ledGetDefault Get default LED power state

ledPower Set LED power state

ledPowerSwitch Read LED power switch

ledSetDefault Set default LED power state

LED Power Control Macros

The ctools.h file defines the following macros for use with LED power control.
Refer to the C Tools Macros section for details on each macro listed.

LED_OFF Specifies LED is to be turned off.

LED_ON Specifies LED is to be turned on.

LED Power Control Structure

The ctools.h file defines the structure LED Power Control Structure for LED
power control information. Refer to the C Tools Structures and Types section
for complete information on structures and enumeration types.

Software Timer Functions

The controller provides 32 powerful software timers, which greatly simplify the
task of programming time-related functions. Uses include:

 Overview of Programming Functions

Document (Version 2.50) 5/12/2011 68 68

 generation of time delays

 timing of process events such as tank fill times

 generation of time-based interrupts to schedule regular activities

 control of digital outputs by time periods

The 32 timers are individually programmable for tick rates from ten per second to
once every 25.5 seconds. Time periods from 0.1 second to greater than nineteen
days can be measured and controlled.

Timers operate in the background from a hardware interrupt generated by the
main system clock. Once loaded, they count without intervention from the main
program.

There are four library functions related to timers. Refer to the Function
Specification section for details on each function listed.

interval Set timer tick interval in tenths of seconds.

settimer Set a timer. Timers count down from the set value to
zero.

timer Read the time period remaining in a timer.

read_timer_info Read information about a software timer.

Software Timer Macros

The ctools.h file defines the following macros for use with timers. Refer to the C
Tools Macros section for details on each macro listed.

NORMAL Specifies normal count down timer.

TIMED_OUT Specifies timer is has reached zero.

TIMER_BADINTERVAL Error code indicating invalid timer interval.

TIMER_BADTIMER Error code indicating invalid timer.

TIMER_BADVALUE Error code indicating invalid time value.

TIMER_MAX Number of last valid software timer.

Timer Information Structure

The ctools.h file defines the structure Timer Information for timer information.
Refer to the C Tools Structures and Types section for complete information on
structures and enumeration types.

Timer Example Programs

Example 1: Turn on a digital output assigned to coil register 1 and wait 5
seconds before turning it off.

interval(0,10); /* timer 0 tick rate = 1 second */

request_resource(IO_SYSTEM);

setdbase(MODBUS, 1, 1); /* turn on output */

release_resource(IO_SYSTEM);

 Overview of Programming Functions

Document (Version 2.50) 5/12/2011 69 69

settimer(0,5); /* load timer 0 with 5 seconds */

while(timer(0)) /* wait until time expires */

{

 /* Allow other tasks to execute */

 release_processor();

}

request_resource(IO_SYSTEM);

setdbase(MODBUS, 1, 0); /* shut off output */

release_resource(IO_SYSTEM);

Example 2: Time the duration a contact is on but wait in loop to measure
time. Contact is assigned to status register 10001.

interval(0,1); /* tick rate = 0.1 second */

request_resource(IO_SYSTEM);

if (dbase(MODBUS, 10001)) /* test if contact is on */

{

 settimer(0,63000); /* start timer */

 while(dbase(MODBUS, 10001)) /* wait for turn off */

 {

 /* Allow other tasks to execute */

 release_resource(IO_SYSTEM);

 release_processor();

 request_resource(IO_SYSTEM);

 }

 printf("time period = %u\r\n",63000-timer(0));

}

release_resource(IO_SYSTEM);

Example 3: Open valve to fill tank and print alarm message if not full in 1
minute. Contact is assigned to status register 10001. Valve is controlled by
coil register 1.

interval(0,10); /* timer 0 tick rate = 1 second */

request_resource(IO_SYSTEM);

setdbase(MODBUS, 1, 1); /* open valve */

settimer(0,60); /* set timer for 1 minute */

/* tank not full if contact is off */

while((dbase(MODBUS, 10001)== 0) && timer(0))

{

 /* Allow other tasks to execute */

 release_resource(IO_SYSTEM);

 release_processor();

 request_resource(IO_SYSTEM);

}

if (dbase(MODBUS, 10001)== 0)

 puts("tank is not filling!!\r\n");

else

 puts("tank full\r\n");

setdbase(MODBUS, 1, 0); /* close valve */

release_resource(IO_SYSTEM);

 Overview of Programming Functions

Document (Version 2.50) 5/12/2011 70 70

Real Time Clock Functions

The controller is provided with a hardware based real time clock that
independently maintains the time and date for the operating system. The time
and date remain accurate during power-off. This allows the controller to be
synchronized to time of day for such functions as shift production reports,
automatic instrument calibration, energy logging, etc. The calendar can be used
to automatically take the controller off-line during weekends and holidays. The
calendar automatically handles leap years.

There are eight library functions, which access the real-time clock. Refer to the
Function Specification section for details on each function listed.

alarmIn Returns absolute time of alarm given elapsed time

getclock Read the real time clock.

getClockAlarm Reads the real time clock alarm settings.

getClockTime Read the real time clock.

installClockHandler Installs a handler for real time clock alarms.

resetClockAlarm Resets the real time clock alarm so it will recur at the
same time next day.

setclock Set the real time clock.

setClockAlarm Sets real time clock alarm.

Real Time Clock Macros

The ctools.h file defines the following macros for real time clock alarms. Refer to
the C Tools Macros section for details on each macro listed.

AT_ABSOLUTE Specifies a fixed time of day alarm.

AT_NONE Disables alarms

Real Time Clock Structures

The ctools.h file defines the structures Real Time Clock Structure and Alarm
Settings Structure for real time clock information. Refer to the C Tools
Structures and Types section for complete information on structures and
enumeration types.

Real Time Clock Program Example

The following program illustrates how the date and time can be set and
displayed. All fields of the clock structure need to be set with valid values for the
clock to operate properly.

#include <ctools.h>

void main(void)

{

 struct clock now;

 Overview of Programming Functions

Document (Version 2.50) 5/12/2011 71 71

 /* Set to 12:01:00 on January 1, 1994 */

 now.hour = 12; /* set the time */

 now.minute = 1;

 now.second = 0;

 now.day = 1; /* set the date */

 now.month = 1;

 now.year = 94;

 now.dayofweek = 6; /* day is Sat. */

 request_resource(IO_SYSTEM);

 setclock(&now);

 now = getclock();

 release_resource(IO_SYSTEM);

 /* Display current hour, minute and second */

 printf("%2d:%2d:%2d", now.hour, now.minute,

 now.second);

}

The Jiffy Clock

The jiffy clock is a counter that increments 60 times per second. The jiffy clock is
useful for measuring execution times or generating delays where a fine time base
is required. The clock is reset to zero each time power is applied to the controller.
It rolls over to zero after it reaches a value of 5183999. This is the number of
1/60-second intervals in 24 hours.

There are two library functions, which access the real-time clock. Refer to the
Function Specification C Function Library chapter for a complete description.

setjiffy set the jiffy clock

jiffy read the jiffy clock

Watchdog Timer Functions

A watchdog timer is a hardware device, which enables rapid detection of
computer hardware or software problems. In the event of a major problem, the
CPU resets and the application program restarts.

The controller provides an integral watchdog timer for reliable operation. The
watchdog timer resets the CPU if it detects a problem in either the hardware or
system firmware. A user program can take control of the watchdog timer, so it will
detect abnormal execution of the program.

A watchdog timer is a retriggerable, time delay timer. It begins a timing sequence
every time it receives a reset pulse. The time delay is adjusted so that regular
reset pulses prevent the timer from expiring. If the reset pulses cease, the
watchdog timer expires and turns on its output, signifying a malfunction. The
timer output in the controller resets the CPU and turns off all outputs at the I/O
system.

 Overview of Programming Functions

Document (Version 2.50) 5/12/2011 72 72

The watchdog timer is normally reset by the operating system. This is
transparent to the application program. Operating in such a fashion, the
watchdog timer detects any hardware or firmware problems.

The program takes control of the timer, and resets it regularly. If unexpected
operation of the program occurs, the reset pulses cease, and the watchdog timer
resets the CPU. The program restarts from the beginning.

There are three library functions related to the watchdog timer. Refer to the
Function Specification section for details on each function listed.

wd_auto Gives control of the watchdog timer to the operating
system (default).

wd_manual Gives control of the watchdog timer to an application
program.

wd_pulse Generates a watchdog reset pulse.

A watchdog reset pulse must be generated at least every 500 ms. The CPU
resets, and program execution starts from the beginning of the program, if the
watchdog timer is not reset.

Watchdog Timer Program Example

The following program segment shows how the watchdog timer could be used to
detect the unexpected operation of a section of a program.

wd_manual(); /* take control of watchdog timer */

do {

 /* program code */

 wd_pulse(); /* reset the watchdog timer */

}

while (condition)

wd_auto(); /* return control to OS */

Always pass control of the watchdog timer back to the operating system before
stopping a program, or switching to another task that expects the operating
system to reset the timer.

Checksum Functions

To simplify the implementation of self-checking communication algorithms, the C
Tools provide four types of checksums: additive, CRC-16, CRC-CCITT, and byte-
wise exclusive-OR. The CRC algorithms are particularly robust, employing
various polynomial methods to detect nearly all communication errors. Additional
types of checksums are easily implemented using library functions.

There are two library functions related to checksums. Refer to the Function
Specification section for details on each function listed.

checksum Calculates additive, CRC-16, CRC-CCITT and
exclusive-OR type checksums

crc_reverse Calculates custom CRC type checksum using reverse
CRC algorithm.

 Overview of Programming Functions

Document (Version 2.50) 5/12/2011 73 73

Checksum Macros

The ctools.h file defines macros for specifying checksum types. Refer to the C
Tools Macros section for details on each macro listed.

ADDITIVE Additive checksum

BYTE_EOR Byte-wise exclusive OR checksum

CRC_16 CRC-16 type CRC checksum (reverse algorithm)

CRC_CCITT CCITT type CRC checksum (reverse algorithm)

Serial Communication

The SCADAPack family of controllers offers three or four RS-232 serial ports.
The Micro16 has two RS-232 serial communication ports. (com1 on controllers is
also available as an RS-485 port.) The ports are configurable for baud rate, data
bits, stop bits, parity and communication protocol.

To optimize performance, minimize the length of messages on com3 and com4.
Examples of recommended uses for com3 and com4 are for local operator
display terminals, and for programming and diagnostics using the IEC 61131-3
program.

For the SCADAPack 4000 programmable controllers, com1 is not available for C
applications.

Default Serial Parameters

All ports are configured at reset with default parameters when the controller is
powered up in SERVICE mode. The ports use stored parameters when the
controller is reset in the RUN mode. The default parameters are listed below.

Parameter com1 com2 Com3 Com4

Baud rate 9600 9600 9600 9600

Parity none none None None

Data bits 8 8 8 8

Stop bits 1 1 1 1

Duplex full full Half Half

Protocol Modbus
RTU

Modbus
RTU

Modbus
RTU

Modbus RTU

Station 1 1 1 1

Rx flow control off off Rx disable Rx disable

Tx flow control off off Off Off

Serial time out 60 s 60 s 60 s 60 s

Type RS-232 RS-232 RS-232 RS-232

 Overview of Programming Functions

Document (Version 2.50) 5/12/2011 74 74

Serial Communication Time Out

When the controller is transmitting data on the communication ports, the transmit
buffer may become full due to receipt of an XOFF character, a slow baud rate, or
hardware handshaking.

If the transmit buffers become full, the task transmitting data is blocked until
space is available or the serial time out period expires. If no space is available at
the conclusion of this time period, the transmit buffer is emptied. The task then
continues execution.

Debugging Serial Communication

Serial communication can be difficult to debug. This section describes the most
common causes of communication failures.

 To communicate, the controller and an external device needs to use the
same communication parameters. Check the parameters in both units.

 If some but not all characters transmit properly, you probably have a parity or
stop bit mismatch between the devices.

The connection between two RS-232 Data Terminal Equipment (DTE) devices is
made with a null-modem cable. This cable connects the transmit data output of
one device to the receive data input of the other device – and vice versa. The
controller is a DTE device. This cable is described in the System Hardware
Manual for your controller.

The connection between a DTE device and a Data Communication Equipment
(DCE) device is made with a straight cable. The transmit data output of the DTE
device is connected to the transmit data input of the DCE device. The receive
data input of the DTE device is connected to the receive data output of the DCE
device. Modems are usually DCE devices. This cable is described in the System
Hardware Manual for your controller.

Many RS-232 devices require specific signal levels on certain pins.
Communication is not possible unless the required signals are present. In the
controller the CTS line needs to be at the proper level. The controller will not
transmit if CTS is OFF. If the CTS line is not connected, the controller will force it
to the proper value. If an external device controls this line, it needs to turn it ON
for the controller to transmit.

Serial Communication Functions

The ctools.h file defines the following serial communication related functions.
Refer to the Function Specification section for details on each function listed.
Additional serial communication functions are included in the Microtec run-time
library.

clear_errors Clear serial port error counters.

clear_tx Clear serial port transmit buffer.

get_port Read serial port communication parameters.

 Overview of Programming Functions

Document (Version 2.50) 5/12/2011 75 75

GetPortCharacteristics Read information about features supported by a
serial port.

get_status Read serial port status and error counters.

install_handler Install serial port character received handler.

portConfiguration Get pointer to port configuration table

portIndex Get array index for serial port

portStream Get serial port corresponding to index

queue_mode Set serial port transmitter mode.

route Redirect standard I/O streams.

setDTR Control RS232 port DTR signal.

set_port Set serial port communication parameters.

Serial Communication Macros

The ctools.h file defines macros for specifying serial communication parameters.
Refer to the C Tools Macros section for details on each macro listed.

BAUD75 Specifies 75-baud port speed.

BAUD110 Specifies 110-baud port speed.

BAUD150 Specifies 150-baud port speed.

BAUD300 Specifies 300-baud port speed.

BAUD600 Specifies 600-baud port speed.

BAUD1200 Specifies 1200-baud port speed.

BAUD2400 Specifies 2400-baud port speed.

BAUD4800 Specifies 4800-baud port speed.

BAUD9600 Specifies 9600-baud port speed.

BAUD19200 Specifies 19200-baud port speed.

BAUD38400 Specifies 38400-baud port speed.

BAUD57600 Specifies 57600-baud port speed.

BAUD115200 Specifies 115200-baud port speed.

com1 Points to a file object for com1 serial port.

com2 Points to a file object for com2 serial port.

com3 Points to a file object for com3 serial port.

com4 Points to a file object for com4 serial port.

DATA7 Specifies 7 bit world length.

DATA8 Specifies 8 bit word length.

 Overview of Programming Functions

Document (Version 2.50) 5/12/2011 76 76

DISABLE Specifies flow control is disabled.

ENABLE Specifies flow control is enabled.

EVEN Specifies even parity.

FULL Specifies full duplex.

FOPEN_MAX Redefinition of macro from stdio.h

HALF Specifies half duplex.

NONE Specifies no parity.

NOTYPE Specifies serial port type is not known.

ODD Specifies odd parity.

PC_FLOW_RX_RECEIVE_STOP Receiver disabled after receipt of a
message.

PC_FLOW_RX_XON_XOFF Receiver Xon/Xoff flow control.

PC_FLOW_TX_IGNORE_CTS Transmitter flow control ignores CTS.

PC_FLOW_TX_XON_XOFF Transmitter Xon/Xoff flow control.

RS232 Specifies serial port is an RS-232 port.

RS232_MODEM Specifies serial port is an RS-232 dial-up
modem.

RS485_4WIRE Specifies serial port is a 4 wire RS-485 port.

SERIAL_PORTS Number of serial ports.

SIGNAL_CTS I/O line bit mask: clear to send signal

SIGNAL_DCD I/O line bit mask: carrier detect signal

SIGNAL_OFF Specifies a signal is de-asserted

SIGNAL_OH I/O line bit mask: off hook signal

SIGNAL_ON Specifies a signal is asserted

SIGNAL_RING I/O line bit mask: ring signal

SIGNAL_VOICE I/O line bit mask: voice/data switch signal

STOP1 Specifies 1 stop bit.

STOP2 Specifies 2 stop bits.

Serial Communication Structures

The ctools.h file defines the structures Serial Port Configuration, Serial Port
Status and Serial Port Characteristics for serial port configuration and
information. Refer to the C Tools Structures and Types section for complete
information on structures and enumeration types.

 Overview of Programming Functions

Document (Version 2.50) 5/12/2011 77 77

Microtec Serial I/O Functions

These library functions are related to serial communication. They are
documented in the Microtec MCCM77 Documentation Set.

fgetc reads a character from a stream

fgets reads a string from a stream

fputc writes a character to a stream

fputs writes a string to a stream

fread reads from a stream

fwrite writes to a stream

getc reads a character from a stream

getchar reads a character from standard input device

gets reads a string from a stream

initport re-initializes serial port

printf formatted output to a stream

putc writes a character to a stream

putchar reads a character to standard output device

puts writes a string to a stream

scanf formatted input from a stream

Dial-Up Modem Functions

These library functions provide control of dial-up modems. They are used with
external modems connected to a serial port. An external modem normally
connects to the RS-232 port with a DTE to DCE cable. Consult the System
Hardware Manual for your controller for details. Refer to the Function
Specification section for details on each function listed.

modemInit send initialization string to dial-up modem.

modemInitStatus read status of modem initialization operation.

modemInitEnd terminate modem initialization operation.

modemDial connect with an external device using a dial-up
modem.

modemDialStatus read status of connection with external device using a
dial-up modem.

modemDialEnd terminate connection with external device using a dial-up
modem.

modemAbort unconditionally terminate connection with external
device or modem initialization (used in task exit handler).

 Overview of Programming Functions

Document (Version 2.50) 5/12/2011 78 78

modemAbortAll unconditionally terminate connections with external
device or modem initializations (used in task exit
handler).

modemNotification notify the dial-up modem handler that an interesting
event has occurred. This function is usually called
whenever a message is received by a protocol.

Dial-Up Modem Macros

The ctools.h file defines the following macros of interest to a C application
program. Refer to the C Tools Macros section for details on each macro listed.

MODEM_CMD_MAX_LEN Maximum length of the modem initialization
command string

PHONE_NUM_MAX_LEN Maximum length of the phone number string

Dial-Up Modem Enumeration Types

The ctools.h file defines the enumerated types DialError and DialState. Refer to
the C Tools Structures and Types section for complete information on
structures and enumeration types.

Dial-up Modem Structures

The ctools.h file defines the structures ModemInit and ModemSetup. Refer to the
C Tools Structures and Types section for complete information on structures
and enumeration types.

Modem Initialization Example

The following code shows how to initialize a modem. Typically, the modem
initialization is used to prepare a modem to answer calls. The example sets up a
Hayes modem to answer incoming calls.

#include <ctools.h>

void main(void)

{

struct ModemInit initSettings;

reserve_id portID;

enum DialError status;

enum DialState state;

struct pconfig portSettings;

/* Configure serial port 1 */

portSettings.baud = BAUD1200;

portSettings.duplex = FULL;

portSettings.parity = NONE;

portSettings.data_bits = DATA8;

portSettings.stop_bits = STOP1;

portSettings.flow_rx = DISABLE;

portSettings.flow_tx = DISABLE;

portSettings.type = RS232_MODEM;

portSettings.timeout = 600;

 Overview of Programming Functions

Document (Version 2.50) 5/12/2011 79 79

request_resource(IO_SYSTEM);

set_port(com1, &portSettings);

release_resource(IO_SYSTEM);

/* Initialize Hayes modem to answer incoming calls */

initSettings.port = com1;

strcpy(initSettings.modemCommand, " F1Q0V1X1 S0=1");

if (modemInit(&initSettings, &portID) == DE_NoError)

{

 do

 {

 /* Allow other tasks to execute */

 release_processor();

 /* Wait for the initialization to complete */

 modemInitStatus(com1, portID, &status, &state);

 }

 while (state == DS_Calling);

 /* Terminate the initialization */

 modemInitEnd(com1, portID, &status);

}

}

Connecting with a Remote Controller Example

The following code shows how to connect to a remote controller using a modem.
The example uses a US Robotics modem. It also demonstrates the use of the
modemAbort function in an exit handler.

#include <ctools.h>

/* --

 The shutdown function aborts any active

 modem connections when the task is ended.

 -- */

void shutdown(void)

{

 modemAbort(com1);

}

void main(void)

{

struct ModemSetup dialSettings;

reserve_id portID;

enum DialError status;

enum DialState state;

struct pconfig portSettings;

TASKINFO taskStatus;

/* Configure serial port 1 */

portSettings.baud = BAUD19200;

portSettings.duplex = FULL;

portSettings.parity = NONE;

portSettings.data_bits = DATA8;

portSettings.stop_bits = STOP1;

 Overview of Programming Functions

Document (Version 2.50) 5/12/2011 80 80

portSettings.flow_rx = DISABLE;

portSettings.flow_tx = DISABLE;

portSettings.type = RS232_MODEM;

portSettings.timeout = 600;

request_resource(IO_SYSTEM);

set_port(com1, &portSettings);

release_resource(IO_SYSTEM);

/* Configure US Robotics modem */

dialSettings.port = com1;

dialSettings.dialAttempts = 3;

dialSettings.detectTime = 60;

dialSettings.pauseTime = 30;

dialSettings.dialmethod = 0;

strcpy(dialSettings.modemCommand, "&F1 &A0 &K0 &M0 &B1");

strcpy(dialSettings.phoneNumber, "555-1212");

/* set up exit handler for this task */

taskStatus = getTaskInfo(0);

installExitHandler(taskStatus.taskID, shutdown);

/* Connect to the remote controller */

if (modemDial(&dialSettings, &portID) == DE_NoError)

{

 do

 {

 /* Allow other tasks to execute */

 release_processor();

 /* Wait for initialization to complete */

 modemDialStatus(com1, portID, &status, &state);

 }

 while (state == DS_Calling);

 /* If the remote controller connected */

 if (state == DS_Connected)

 {

 /* Talk to remote controller here */

 }

 /* Terminate the connection */

 modemDialEnd(com1, portID, &status);

}

}

A pause of a few seconds is required between terminating a connection and
initiating a new call. This pause allows the external modem time to hang up.

Communication Protocols

The TeleBUS protocols are compatible with the widely used Modbus RTU and
ASCII protocols. The TeleBUS communication protocols provide a standard
communication interface to SCADAPack controllers. Additional TeleBUS
commands provide remote programming and diagnostics capability.

 Overview of Programming Functions

Document (Version 2.50) 5/12/2011 81 81

The TeleBUS protocols provide access to the I/O database in the controller. The
I/O database contains user-assigned registers and general purpose registers.
Assigned registers map directly to the I/O hardware or system parameter in the
controller. General purpose registers can be used by ladder logic and C
application programs to store processed information, and to receive information
from a remote device.

The TeleBUS protocols operate on a wide variety of serial data links. These
include RS-232 serial ports, RS-485 serial ports, radios, leased line modems,
and dial up modems. The protocols are generally independent of the
communication parameters of the link, with a few exceptions.

Application programs can initiate communication with remote devices. A multiple
port controller can be a data concentrator for remote devices, by polling remote
devices on one port(s) and responding as a slave on another port(s).

The protocol type, communication parameters and station address are
configured separately for each serial port on a controller. One controller can
appear as different stations on different communication networks. The port
configuration can be set from an application program, from the Telepace
programming software, or from another Modbus or DF1 compatible device.

Protocol Type

The protocol type may be set to emulate the Modbus ASCII and Modbus RTU
protocols, or it may be disabled. When the protocol is disabled, the port functions
as a normal serial port.

The DF1 option enables the emulation of the DF1 protocols.

The DNP (Distributed Network Protocol) option enables DNP. See the DNP
Communication Protocol section for details on this protocol.

Station Number

The TeleBUS protocol allows up to 254 devices on a network using standard
addressing and up to 65534 devices using extended addressing. Station
numbers identify each device. A device responds to commands addressed to it,
or to commands broadcast to all stations.

The station number is in the range 1 to 254 for standard addressing and 1 to
65534 for extended addressing. Address 0 indicates a command broadcast to all
stations, and cannot be used as a station number. Each serial port may have a
unique station number.

The TeleBUS DF1 protocols allow up to 255 devices on a network. Station
numbers identify each device. A device responds to commands addressed to it,
or to commands broadcast to all stations. The station number is in the range 0 to
254. Address 255 indicates a command broadcast to all stations, and cannot be
used as a station number. Each serial port may have a unique station number.

 Overview of Programming Functions

Document (Version 2.50) 5/12/2011 82 82

Store and Forward Messaging

Store and forward messaging re-transmits messages received by a controller.
Messages may be re-transmitted on any serial port, with or without station
address translation. A user-defined translation table determines actions
performed for each message. Store and forward messaging may be enabled or
disabled on each port. It is disabled by default.

Store and forward messaging is not supported by DNP or TeleBUS DF1 protocol.

Communication Protocols Functions

There are several library functions related to TeleBUS communication protocol.
Refer to the Function Specification section for details on each function listed.

checkSFTranslationTable Check translation table for invalid entries.

clear_protocol_status Clears protocol message and error counters.

clearSFTranslationTable Clear all store and forward translation table
entries.

enronInstallCommandHandler Installs handler for Enron Modbus
commands.

getABConfiguration Reads DF1 protocol configuration parameters.

get_protocol Reads protocol parameters.

getProtocolSettings Reads extended addressing protocol parameters for a
serial port.

getProtocolSettingsEx Reads extended addressing and Enron Modbus protocol
parameters for a serial port.

get_protocol_status Reads protocol message and error counters.

getSFMapping This function is a stub and no longer performs a necessary
operation.

getSFTranslation Read store and forward translation table entry.

installModbusHandler This function allows user-defined extensions to standard
Modbus protocol.

master_message Sends a protocol message to another device.

modbusExceptionStatus Sets response for the read exception status
function.

modbusSlaveID Sets response for the read slave ID function.

pollABSlave Requests a response from a slave controller using the half-
duplex version of the protocol.

resetAllABSlaves Clears responses from the response buffers of half-
duplex slave controllers.

setABConfiguration Defines DF1 protocol configuration parameters.

 Overview of Programming Functions

Document (Version 2.50) 5/12/2011 83 83

set_protocol Sets protocol parameters and starts protocol.

setProtocolSettings Sets extended addressing protocol parameters for a
serial port.

setProtcolSettingEx Sets extended addressing and Enron Modbus protocol
parameters for a serial port.

setSFMapping This function is a stub and no longer performs a necessary
operation.

setSFTranslation Write store and forward translation table entry.

start_protocol Starts protocol execution based on stored parameters.

Communication Protocols Macros

The ctools.h file defines macros for specifying communication protocol
parameters. Refer to the C Tools Macros section for details on each macro
listed.

AB_FULL_BCC Specifies the DF1 Full Duplex protocol emulation for the
serial port. (BCC checksum)

AB_FULL_CRC Specifies the DF1 Full Duplex protocol emulation for the
serial port. (CRC checksum)

AB_HALF_BCC Specifies the DF1 Half Duplex protocol emulation for the
serial port. (BCC checksum)

AB_HALF_CRC Specifies the DF1 Half Duplex protocol emulation for the
serial port. (CRC checksum)

FORCE_MULTIPLE_COILS Modbus function code

FORCE_SINGLE_COIL Modbus function code

LOAD_MULTIPLE_REGISTERS Modbus function code

LOAD_SINGLE_REGISTER Modbus function code

MM_BAD_ADDRESS Master message status: invalid database address

MM_BAD_FUNCTION Master message status: invalid function code

MM_BAD_LENGTH Master message status: invalid message length

MM_BAD_SLAVE Master message status: invalid slave station address

MM_NO_MESSAGE Master message status: no message was sent.

MM_PROTOCOL_NOT_SUPPORTED Master message status: selected
protocol is not supported.

MM_RECEIVED Master message status: response was received.

MM_SENT Master message status: message was sent.

MM_EOT Master message status: DF1 slave response was an
EOT message

 Overview of Programming Functions

Document (Version 2.50) 5/12/2011 84 84

MM_WRONG_RSP Master message status: DF1 slave response did not
match command sent

MM_CMD_ACKED Master message status: DF1 half duplex command has
been acknowledged by slave – Master may now send
poll command

MM_EXCEPTION_FUNCTION Master message status: Modbus slave returned
a function exception

MM_EXCEPTION_ADDRESS Master message status: Modbus slave returned
an address exception

MM_EXCEPTION_VALUE Master message status: Modbus slave returned
a value exception

MM_RECEIVED_BAD_LENGTH Master message status: response
received with incorrect amount of data.

MODBUS_ASCII Specifies the Modbus ASCII protocol emulation for the
serial port.

MODBUS_RTU Specifies the Modbus RTU protocol emulation for the
serial port.

NO_PROTOCOL Specifies no communication protocol for the serial port.

READ_COIL_STATUS Modbus function code

READ_EXCEPTION_STATUS Modbus function code

READ_HOLDING_REGISTER Modbus function code

READ_INPUT_REGISTER Modbus function code

READ_INPUT_STATUS Modbus function code

REPORT_SLAVE_ID Modbus function code

SF_ALREADY_DEFINED Result code: translation is already defined in the
table

SF_INDEX_OUT_OF_RANGE Result code: invalid translation table index

SF_NO_TRANSLATION Result code: entry does not define a translation

SF_PORT_OUT_OF_RANGE Result code: serial port is not valid

SF_STATION_OUT_OF_RANGE Result code: station number is not valid

SF_TABLE_SIZE Number of entries in the store and forward table

SF_VALID Result code: translation is valid

Communication Protocols Enumeration Types

The ctools.h file defines the enumeration type ADDRESS_MODE. Refer to the
C Tools Structures and Types section for complete information on structures
and enumeration types.

 Overview of Programming Functions

Document (Version 2.50) 5/12/2011 85 85

Communication Protocols Structures

The ctools.h file defines the structures Protocol Status Information, Protocol
Settings, Extended Protocol Settings, Store and Forward Message and
Store and Forward Status. Refer to the C Tools Structures and Types section
for complete information on structures and enumeration types.

DNP Communication Protocol

DNP, the Distributed Network Protocol, is a standards-based communications
protocol developed to achieve interoperability among systems in the electric
utility, oil & gas and water/waste water industries. This robust, flexible non-
proprietary protocol is based on existing open standards to work within a variety
of networks. The IEEE has recommended DNP for remote terminal unit to
intelligent electronic device messaging. DNP can also be implemented in any
SCADA system for efficient and robust communications between substation
computers, RTUs, IEDs and master stations; over serial or LAN-based systems.

DNP offers flexibility and functionality that go far beyond conventional
communications protocols. Among its robust and flexible features DNP 3.0
includes:

 Output options

 Addressing for over 65,000 devices on a single link

 Time synchronization and time-stamped events

 Broadcast messages

 Data link and application layer confirmation

DNP 3.0 was originally designed based on three layers of the OSI seven-layer
model: application layer, data link layer and physical layer. The application layer
is object-based with objects provided for generic data formats. The data link layer
provides for several methods of retrieving data such as polling for classes and
object variations. The physical layer commonly defines a simple RS-232 or RS-
485 interface.

Refer to the DNP User Manual for complete information on DNP protocol,
including the Device Profile Document.

DNP Communication Protocols Functions

There are several library functions related to DNP communication protocol. Refer
to the Function Specification section for details on each function listed.

dnpInstallConnectionHandler Configures the connection handler for DNP.

dnpClearEventLog Deletes all change events from the DNP change event
buffers.

dnpConnectionEvent Report a DNP connection event

dnpCreateRoutingTable Allocates memory for a new routing table.

dnpGenerateEventLog Generates a change event for the DNP point.

 Overview of Programming Functions

Document (Version 2.50) 5/12/2011 86 86

dnpGetConfiguration Reads the DNP protocol configuration.

dnpGetConfigurationEx Reads the extended DNP configuration
parameters.

dnpSaveConfiguration Writes the DNP protocol configuration parameters.

dnpSaveConfigurationEx Writes the extended DNP configuration
parameters

dnpGetBIConfig Reads the configuration of a DNP binary input point.

dnpSaveBIConfig Writes the configuration of a DNP binary input point.

dnpSaveBIConfigEx Writes the configuration of an extended DNP Binary
Input point

dnpGetBOConfig Reads the configuration of a DNP binary output point.

dnpGetBIConfigEx Reads the configuration of an extended DNP Binary
Input point.

dnpSaveBOConfig Sets the configuration of a DNP binary output point.

dnpGetAI16Config Reads the configuration of a DNP 16-bit analog input
point.

dnpSaveAI16Config Sets the configuration of a DNP 16-bit analog input
point.

dnpGetAI32Config Reads the configuration of a DNP 32-bit analog input
point.

dnpSaveAISFConfig Sets the configuration of a DNP 32-bit short floating
analog input point

dnpGetAISFConfig Reads the configuration of a DNP 32-bit short floating
analog input point.

dnpSaveAI32Config Sets the configuration of a DNP 32-bit analog
input point.

dnpGetAO16Config Reads the configuration of a DNP 16-bit analog output
point.

dnpSaveAO16Config Sets the configuration of a DNP 32-bit analog output
point.

dnpGetAO32Config Reads the configuration of a DNP 32-bit analog output
point.

dnpSaveAO32Config Sets the configuration of a DNP 32-bit analog output
point.

dnpSaveAOSFConfig Sets the configuration of a DNP 32-bit short floating
analog output point.

dnpGetAOSFConfig Sets the configuration of a DNP 32-bit short floating
analog output point.

 Overview of Programming Functions

Document (Version 2.50) 5/12/2011 87 87

dnpGetCI16Config Reads the configuration of a DNP 16-bit counter input
point.

dnpSaveCI16Config Sets the configuration of a DNP 16-bit counter input
point.

dnpGetCI32Config Reads the configuration of a DNP 32-bit counter input
point.

dnpSaveCI32Config Sets the configuration of a DNP 32-bit counter input
point.

dnpGetRuntimeStatus Reads the current status of all DNP change event
buffers.

dnpSendUnsolicited Sends an „Unsolicited Response‟ message in DNP
protocol.

dnpSendUnsolicitedResponse Sends an Unsolicited Response
message in DNP, with data from the specified classes.

dnpWriteRoutingTableEntry Wwrites an entry in the DNP routing table.

dnpReadRoutingTableEntry Reads an entry from the routing table.

dnpReadRoutingTableSize Reads the total number of entries in the routing
table.

dnpSearchRoutingTable Searches the routing table for a specific DNP
address.

dnpWriteRoutingTableDialStrings Writes a primary and secondary dial
string into an entry in the DNP routing table.

dnpReadRoutingTableDialStrings Reads a primary and secondary dial
string from an entry in the DNP routing table.

DNP Communication Protocol Structures and Types

The ctools.h file defines the structures DNP Configuration, Binary Input Point,
Binary Output Point, Analog Input Point, Analog Output Point and Counter
Input Point. Refer to the C Tools Structures and Types section for complete
information on structures and enumeration types.

I/O Database

The I/O database allows data to be shared between C programs, Ladder Logic
programs and communication protocols. A simplified diagram of the I/O
Database is shown below.

 Overview of Programming Functions

Document (Version 2.50) 5/12/2011 88 88

Controller I/O

Database

Coil Registers

00001 to 04096

Holding Registers

40001 to 49999

Input Registers

30001 to 31024

Status Registers

10001 to 14096

TeleBUS

Protocols

C Tools

Programs

Ladder Logic

Programs Controller Register

Assignment Table

5000 Series

I/O Modules

System

Parameters

The I/O database contains general purpose and user-assigned registers. General
purpose registers may be used by Ladder Logic and C application programs to
store processed information and to receive information from a remote device.
Initially all registers in the I/O Database are general purpose registers.

User-assigned registers are mapped directly from the I/O database to physical
I/O hardware, or to controller system configuration and diagnostic parameters.
The Register Assignment performs the mapping of registers from the I/O
database to physical I/O hardware and system parameters.

User-assigned registers are initialized to the default hardware state or system
parameter when the controller is reset. Assigned output register values are not
maintained during power failures. Assigned output registers do retain their values
during application program loading.

General purpose registers retain their values during power failures and
application program loading. The values change only when written by an
application program or a communication protocol.

The TeleBUS communication protocols provide a standard communication
interface to the controller. The TeleBUS protocols are compatible with the widely
used Modbus RTU and ASCII protocols and provide access to the I/O database
in the controller.

I/O Database Register Types

The I/O database is divided into four types of I/O registers. Each of these types
are initially configured as general purpose registers by the controller.

Coil Registers

Coil registers are single bit registers located in the digital output section of the I/O
database. Coil, or digital output, database registers may be assigned to 5000 I/O
digital output modules or SCADAPack I/O modules through the Register
Assignment. Coil registers may also be assigned to controller on-board digital
outputs and to system configuration modules.

 Overview of Programming Functions

Document (Version 2.50) 5/12/2011 89 89

There are 4096 coil registers numbered 00001 to 04096. Ladder logic programs,
C language programs, and the TeleBUS protocols can read from and write to
these registers.

Status Registers

Status registers are single bit registers located in the digital input section of the
I/O database. Status, or digital input, database registers may be assigned to
5000 I/O digital input modules or SCADAPack I/O modules through the Register
Assignment. Status registers may also be assigned to controller on-board digital
inputs and to system diagnostic modules.

There are 4096 status registers are numbered 10001 to 14096. Ladder logic
programs and the TeleBUS protocols can only read from these registers. C
language application programs can read data from and write data to these
registers.

Input Registers

Input registers are 16 bit registers located in the analog input section of the I/O
database. Input, or analog input, database registers may be assigned to 5000 I/O
analog input modules or SCADAPack I/O modules through the Register
Assignment. Input registers may also be assigned to controller internal analog
inputs and to system diagnostic modules.

There are 1024 input registers numbered 30001 to 31024. Ladder logic programs
and the TeleBUS protocols can only read from these registers. C language
application programs can read data from and write data to these registers.

The I/O database for the SCADAPack 100 controller has 512 input registers
numbered 30001 to 30512. Ladder logic programs and the TeleBUS protocols
can only read from these registers. C language programs can read data from and
write data to these registers.

Holding Registers

Holding registers are 16 bit registers located in the analog output section of the
I/O database. Holding, or analog output, database registers may be assigned to
5000 I/O analog output modules or SCADAPack analog output modules through
the Register Assignment. Holding registers may also be assigned to system
diagnostic and configuration modules.

There are 9999 input registers numbered 40001 to 49999. Ladder logic
programs, C language programs, and the TeleBUS protocols can read from and
write to these registers.

The I/O database for the SCADAPack 100 controller has 4000 holding registers
numbered 40001 to 44000. Ladder logic programs, C language programs, and
the TeleBUS protocols can read from and write to these registers.

I/O Database Functions

There are two library functions related to the I/O database. Refer to the Function
Specification section for details on each function listed.

 Overview of Programming Functions

Document (Version 2.50) 5/12/2011 90 90

dbase Reads a value from the I/O database.

setdbase Writes a value to the I/O database.

I/O Database Macros

The ctools.h file defines library functions for the I/O database. Refer to the C
Tools Macros section for details on each macro listed.

AB Specifies Allan-Bradley database addressing.

DB_BADSIZE Error code: out of range address specified

DB_BADTYPE Error code: bad database addressing type specified

DB_OK Error code: no error occurred

LINEAR Specifies linear database addressing.

MODBUS Specifies Modbus database addressing.

NUMAB Number of registers in the Allan-Bradley database.

NUMCOIL Number of registers in the Modbus coil section.

NUMHOLDING Number of registers in the Modbus holding register
section.

NUMINPUT Number of registers in the Modbus input registers
section.

NUMLINEAR Number of registers in the linear database.

NUMSTATUS Number of registers in the Modbus status section.

START_COIL Start of the coil section in the linear database.

START_HOLDING Start of the holding registers section in the linear
database.

START_INPUT Start of the input register section in the linear database.

START_STATUS Start of the status section in the linear database.

Register Assignment Functions

I/O hardware that is used by the controller need to be assigned to I/O database
registers in order for these I/O points to be scanned continuously. I/O data may
then be accessed through the I/O database within the C program. C programs
may read data from, or write data to the I/O hardware through user- assigned
registers in the I/O database.

The Register Assignment assigns I/O database registers to user-assigned
registers using I/O modules. An I/O Module can refer to an actual I/O hardware
module (e.g. 5401 Digital Input Module) or it may refer to a set of controller
parameters, such as serial port settings.

The chapter Register Assignment Reference of the Telepace Ladder Logic
Reference and User Manual contains a description of what each module is
used for and the register assignment requirements for the I/O module.

 Overview of Programming Functions

Document (Version 2.50) 5/12/2011 91 91

Register assignments configured using the Telepace Register Assignment dialog
may be stored in the Telepace program file or downloaded directly to the
controller. To obtain error checking that avoids invalid register assignments, use
the Telepace Register Assignment dialog to initially build the Register
Assignment. The Register Assignment can then be saved in a Ladder Logic file
(e.g. filename.lad) and downloaded with the C program.

There are several library functions related to register assignment. Refer to the
Function Specification section for details on each function listed.

clearRegAssignment Erases the current Register Assignment.

addRegAssignment Adds one I/O module to the current Register
Assignment.

getIOErrorIndication Gets the control flag for the I/O module error indication

getOutputsInStopMode Gets the control flags for state of Outputs in
Ladders Stop Mode

setIOErrorIndication Sets the control flag for the I/O module error indication

setOutputsInStopMode Sets the control flags for state of Outputs in
Ladders Stop Mode

Register Assignment Enumeration Types

The ctools.h file defines one enumeration type. The ioModules enumeration
type defines a list of results of sending a command. Refer to the C Tools
Structures and Types section for complete information on structures and
enumeration types.

Register Assignment Structure

The ctools.h file defines the structure RegAssign. Refer to the C Tools
Structures and Types section for complete information on structures and
enumeration types.

HART Communication

The HART ® protocol is a field bus protocol for communication with smart
transmitters.

The HART protocol driver provides communication between Micro16 and
SCADAPack controllers and HART devices. The protocol driver uses the model
5904 HART modem for communication. Four HART modem modules are
supported per controller.

The driver allows HART transmitters to be used with C application programs and
with IEC 61131-3. The driver can read data from HART devices.

HART Command Functions

The ctools.h file defines the following HART command related functions. Refer
to the Function Specification section for details on each function listed.

 Overview of Programming Functions

Document (Version 2.50) 5/12/2011 92 92

hartIO Reads data from the 5904 interface module, processes
HART responses, processes HART commands, and
writes commands and configuration data to the 5904
interface module.

hartCommand send a HART command string and specify a function to
handle the response

hartCommand0 read unique identifier using short-address algorithm

hartCommand1 read primary variable

hartCommand2 read primary variable current and percent of span

hartCommand3 read primary variable current and dynamic variables

hartCommand11 read unique identifier associated with tag

hartCommand33 read specified transmitter variables

hartStatus return status of last HART command sent

hartGetConfiguration read HART module settings

hartSetConfiguration write HART module settings

hartPackString convert string to HART packed string

hartUnpackString convert HART packed string to string

HART Command Macros

The ctools.h file defines the following macro of interest to a C application
program. Refer to the C Tools Macros section for details.

DATA_SIZE Maximum length of the HART command or response
field.

HART Command Enumeration Types

The ctools.h file defines one enumeration type. The HART_RESULT
enumeration type defines a list of results of sending a command. Refer to the C
Tools Structures and Types section for complete information on structures and
enumeration types.

HART Command Structures

The ctools.h file defines five structures. Refer to the C Tools Structures and
Types section for complete information on structures and enumeration types.

The HART_DEVICE type is a structure containing information about the HART
device.

The HART_VARIABLE type is a structure containing a variable read from a
HART device.

The HART_SETTINGS type is a structure containing the configuration for the
HART modem module.

 Overview of Programming Functions

Document (Version 2.50) 5/12/2011 93 93

The HART_COMMAND type is a structure containing a command to be sent to a
HART slave device.

The HART_RESPONSE type is a structure containing a response from a HART
slave device.

PID Control

Telepace C Tools provides a total of 32 independent PID (Proportional, Integral,
and Derivative) controllers. PID control blocks operate independent of application
programs. An elaborate control program need not be written to use the control
blocks. A simple program to set up the control blocks is all that is required.

The PID control blocks are not limited to the PID control algorithm. They also
provide ratio control, ratio/bias control, alarm scanning and square root functions.
Control blocks may be interconnected to exchange setpoints, output limits, and
other parameters.

Refer to the PID Controllers section of the Telepace Ladder Logic User Manual
for complete information on configuring and using PID controllers.

PID Control Functions

The ctools.h file defines the following PID control related functions. Refer to the
Function Specification section for details on each function listed.

auto_pid Set a PID block to execute automatically at the specified
rate.

clear_pid Set all PID block variables to zero.

get_pid This function returns the value of a PID control block
variable.

set_pid This function assigns value to a PID control block
variable.

PID Control Macros

The ctools.h file defines the following macros for PID block access. Refer to the
C Tools Macros section for details on each function listed.

AO Variable name: alarm output address

CA Variable name: cascade setpoint source

CR Variable name: control register

DB Variable name: deadband

DO Variable name: decrease output

ER Variable name: error

EX Variable name: automatic execution period

FS Variable name: full scale output limit

GA Variable name: gain

 Overview of Programming Functions

Document (Version 2.50) 5/12/2011 94 94

HI Variable name: high alarm setpoint

IB Variable name: input bias

IH Variable name: inhibit execution address

IN Variable name: integrated error

IO Variable name: increase output

IP Variable name: input source

LO Variable name: low alarm setpoint

OB Variable name: output bias

OP Variable name: output

PE Variable name: period

PID_ALARM Control register mask: alarms enabled

PID_ALARM_ABS Control register mask: absolute alarms

PID_ALARM_ACK Status register mask: alarm acknowledged

PID_ALARM_DEV Control register mask: deviation alarms

PID_ALARM_ONLY Control register mask: alarm only block

PID_ALARM_RATE Control register mask: rate alarms

PID_ANALOG_IP Control register mask: analog input

PID_ANALOG_OP Control register mask: analog output

PID_BAD_BLOCK Return code: bad block number specified.

PID_BAD_IO_IP Status register mask: I/O failure on block input

PID_BAD_IO_OP Status register mask: I/O failure on block output

PID_BLOCK_IP Control register mask: input from output of another block

PID_BLOCKS Number of PID blocks.

PID_CLAMP_FULL Status register mask: output is clamped at full scale

PID_CLAMP_ZERO Status register mask: output is clamped at zero scale

PID_ER_SQR Control register mask: take square root of error

PID_HI_ALARM Status register mask: high alarm detected

PID_INHIBIT Status register mask: external inhibit input is on

PID_LO_ALARM Status register mask: low alarm detected

PID_MANUAL Status register mask: block is in manual mode

PID_MODE_AUTO Control register mask: automatic mode

PID_MODE_MANUAL Control register mask: manual mode

PID_MOTOR_OP Control register mask: motor pulse duration output

 Overview of Programming Functions

Document (Version 2.50) 5/12/2011 95 95

PID_NO_ALARM Control register mask: alarms disabled

PID_NO_ER_SQR Control register mask: normal error

PID_NO_IP Control register mask: no input (other than IP)

PID_NO_OP Control register mask: no output

PID_NO_PV_SQR Control register mask: normal PV

PID_NO_SP_TRACK Control register mask: setpoint tracking disabled

PID_OK Return code: operation completed successfully.

PID_OUT_DB Status register mask: PID controller outside of deadband

PID_PID Control register mask: PID control block

PID_PULSE_OP Control register mask: pulse duration output

PID_PV_SQR Control register mask: take square root of PV

PID_RATE_CLAMP Status register mask: rate gain clamed at maximum

PID_RATIO_BIAS Control register mask: ratio/bias control block

PID_RUNNING Status register mask: block is executing

PID_SP_CASCADE Control register mask: cascade setpoint

PID_SP_NORMAL Control register mask: setpoint stored in SP

PID_SP_TRACK Control register mask: setpoint tracking enabled

PV Variable name: process value

RA Variable name: rate time

RE Variable name: reset time

SP Variable name: setpoint

SR Variable name: status register

ZE Variable name: zero scale output limit

Backward Compatibility Functions

The following functions are provided for backward compatibility. They cannot
access 5000 I/O modules. It is recommended that these functions not be used in
new programs. Instead use Register Assignment or call the specific I/O module
driver function directly.

These functions are defined in ctools.h for backward compatibility with these
programs.

ain Reads analog input

aioError Reads analog I/O communication status

aout Writes analog output

counter Reads counter module input channel

 Overview of Programming Functions

Document (Version 2.50) 5/12/2011 96 96

counterError Reads counter module error flag

din Reads digital input channel (8 I/O points)

dout Writes digital output channel (8 I/O points)

off Tests If one digital I/O point is OFF

on Tests If one digital I/O point is ON

pulse Generates a square wave on a digital output point

pulse_train Generates a series of pulses on a digital output point

timeout Performs time delayed action on a digital output point

turnoff Writes one digital output point to OFF status

turnon Writes one digital output point to ON status

Backward Compatibility Macros

The following macros may have been used in C programs written for a controller
with firmware version 1.22 or older to support the functions: ain, aioError, aout,
counter, counterError, din, dout, off, on, pulse, pulse_train, timeout, turnoff or
turnon.

These macros are defined in ctools.h for backward compatibility with these
programs.

AIN_END Number of last analog input channel.

AIN_START Number of first analog input channel.

AIO_BADCHAN Error code: bad analog input channel specified.

AIO_TIMEOUT Error code: input device did not respond.

AIO_SUPPORTED If defined indicates analog I/O supported.

AOUT_END Number of last analog output channel.

AOUT_START Number of first analog output channel.

COUNTER_CHANNELS Specifies number of 5000 I/O counter input
channels

COUNTER_END Number of last counter input channel

COUNTER_START Number of first counter input channel

COUNTER_SUPPORTED If defined indicates counter I/O hardware
supported.

DIN_END Number of last regular digital input channel.

DIN_START Number of first regular digital input channel

DIO_SUPPORTED If defined indicates digital I/O hardware supported.

DOUT_END Number of last regular digital output channel.

DOUT_START Number of first regular digital output channel

 Overview of Programming Functions

Document (Version 2.50) 5/12/2011 97 97

DUTY_CYCLE Specifies timer is generating square wave output.

EXTENDED_DIN_END Number of last extended digital input channel.

EXTENDED_DIN_START Number of first extended digital input channel

EXTENDED_DOUT_END Number of last extended digital output channel.

EXTENDED_DOUT_START Number of first extended digital output channel

NORMAL Specifies normal count down timer.

PULSE_TRAIN Specifies timer is generating pulse train output.

TIMEOUT Specifies timer is generating timed output change.

TIMER_BADADDR Error code: invalid digital I/O address.

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 98 98

Telepace C Tools Function Specifications

The controller C function specifications are formatted as follows. The functions
are listed alphabetically.

Name Each specification begins with the name of the function
and a brief description.

Syntax The syntax shows a prototype for the function, indicating
the return type and the types of its arguments. Any
necessary header files are listed.

Description This defines the calling parameters for the function and
its return values.

Notes This section contains additional information on the
function, and considerations for its use.

See Also This section lists related functions.

Example The example gives a brief sample of the use of the
function.

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 99 99

addRegAssignment

Add Register Assignment

Syntax

#include <ctools.h>

unsigned addRegAssignment(

 unsigned moduleType,

 unsigned moduleAddress,

 unsigned startingRegister1,

 unsigned startingRegister2,

 unsigned startingRegister3,

 unsigned startingRegister4);

Description

The addRegAssignment function adds one I/O module to the current Register
Assignment of type moduleType. The following symbolic constants are valid
values for moduleType:

AIN_520xTemperature DIAG_forceLED

AIN_520xRAMBattery DIAG_IPConnections

AIN_5501 DIAG_ModbusStatus

AIN_5502 DIAG_protocolStatus

AIN_5503 DIN_520xDigitalInputs

AIN_5504 DIN_520xInterruptInput

AIN_5521 DIN_520xOptionSwitches

AIN_generic8 DIN_5401

AOUT_5301 DIN_5402

AOUT_5302 DIN_5403

AOUT_5304 DIN_5404

AOUT_generic2 DIN_5405

AOUT_generic4 DIN_5421

CNFG_5904Modem DIN_generic16

CNFG_clearPortCounters DIN_generic8

CNFG_clearProtocolCounters DIN_SP32OptionSwitches

CNFG_IPSettings DOUT_5401

CNFG_LEDPower DOUT_5402

CNFG_MTCPIfSettings DOUT_5406

CNFG_MTCPSettings DOUT_5407

CNFG_PIDBlock DOUT_5408

CNFG_portSettings DOUT_5409

CNFG_protocolExtended DOUT_5411

CNFG_protocolExtendedEx DOUT_generic16

CNFG_protocolSettings DOUT_generic8

CNFG_realTimeClock SCADAPack_AOUT

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 100 100

CNFG_saveToEEPROM SCADAPack_lowerIO

CNFG_setSerialPortDTR SCADAPack_upperIO

CNFG_storeAndForward SCADAPack_LPIO

CNTR_520xCounterInputs SCADAPack_100IO

CNTR_5410 SCADAPack_5604IO

CNTR_520xInterruptInput GFC_4202IO

DIAG_commStatus GFC_4202IOEx

DIAG_controllerStatus GFC_4202DSIO

DIAG_LogicStatus CNFG_DeviceConfig

moduleAddress specifies a unique address for the module. For the valid range
for moduleAddress refer to the list of modules in the chapter Register
Assignment Reference of the Telepace Ladder Logic Reference and User
Manual. For module addresses com1, com2, com3 or com4 specify 0, 1, 2 or 3
respectively for moduleAddress. For module types that have no module address
(e.g. CNFG_LEDPower) specify -1 for moduleAddress. For SCADAPack module
types that have a module address fixed at 0, specify 0 for moduleAddress.

startingRegister1 specifies the first register of any unused block of consecutive
registers. Refer to the list of modules in the Register Assignment Reference for
the type and number of registers required for this block. Data read from or written
to the module is stored in this block of registers.

If the module type specified has more than one type of I/O, use startingRegister2,
startingRegister3, and startingRegister4 as applicable. Each start register
specifies the first register of an unused block of consecutive registers for each
type of input or output on the module. Refer to the list of modules in the Register
Assignment Reference for the module I/O types. Specify 0 for startingRegister2,
startingRegister3, or startingRegister4 if not applicable.

Notes

Up to 150 modules may be added to the Register Assignment. If the Register
Assignment is full or if an incorrect value is specified for any argument this
function returns FALSE; otherwise TRUE is returned.

Output registers specified for certain CNFG type modules are initialized with the
current parameter values when the module is added to the Register Assignment
(e.g. CNFG_realTimeClock).

Call clearRegAssignment first before using the addRegAssignment function
when creating a new Register Assignment.

Duplicate or overlapping register assignments are not checked for by this
function. Overlapping register assignments may result in unpredictable I/O
activity.

To obtain error checking that avoids invalid register assignments such as these,
use the Telepace Register Assignment dialog to build the Register Assignment.
Then save the Register Assignment in a Ladder Logic file (e.g. filename.lad) and
download it with the C program, or transfer the Register Assignment to the C
program using the clearRegAssignment and addRegAssignment functions.

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 101 101

The IO_SYSTEM resource needs to be requested before calling this function.

See Also

clearRegAssignment

Example

#include <primitiv.h>

void main(void)

{

 request_resource(IO_SYSTEM);

 /* Create the Register Assignment */

 clearRegAssignment();

 addRegAssignment(SCADAPack_lowerIO, 0, 1,

 10001, 30001, 0);

 addRegAssignment(SCADAPack_AOUT, 0, 40001, 0,

 0, 0);

 addRegAssignment(AOUT_5302, 1, 40003, 0, 0, 0);

 addRegAssignment(DIAG_forceLED, -1, 10017, 0,

 0, 0);

 addRegAssignment(DIAG_controllerStatus, -1,

 30009, 0, 0, 0);

 addRegAssignment(DIAG_protocolStatus, 2, 30010,

 0, 0, 0);

 release_resource(IO_SYSTEM);

}

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 102 102

addRegAssignmentEx

Add Register Assignment

Syntax

#include <ctools.h>

BOOLEAN addRegAssignmentEx(

 UINT16 moduleType,

 UINT16 moduleAddress,

 UINT16 startingRegister1,

 UINT16 startingRegister2,

 UINT16 startingRegister3,

 UINT16 startingRegister4,

 UINT16 parameters[16]

);

Description

The addRegAssignmentEx function adds one I/O module to the current
Register Assignment of type moduleType. The following symbolic constants are
valid values for moduleType:

AIN_5209Temperature CNTR_5209CounterInputs

AIN_5209RAMBattery CNTR_5410

AIN_5501 CNTR_5209InterruptInput

AIN_5502 DIAG_commStatus

AIN_5503 DIAG_controllerStatus

AIN_5504 DIAG_forceLED

AIN_5505 DIAG_IPConnections

AIN_5506 DIAG_ModbusStatus

AIN_5521 DIAG_protocolStatus

AIN_generic8 DIN_5209DigitalInputs

AOUT_5301 DIN_5209InterruptInput

AOUT_5302 DIN_5401

AOUT_5304 DIN_5402

AOUT_generic2 DIN_5403

AOUT_generic4 DIN_5404

CNFG_5904Modem DIN_5405

CNFG_clearPortCounters DIN_5421

CNFG_clearProtocolCounters DIN_generic16

CNFG_IPSettings DIN_generic8

CNFG_LEDPower DOUT_5401

CNFG_modbusIpProtocol DOUT_5402

CNFG_MTCPIfSettings DOUT_5406

CNFG_MTCPSettings DOUT_5407

CNFG_PIDBlock DOUT_5408

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 103 103

CNFG_portSettings DOUT_5409

CNFG_protocolExtended DOUT_5411

CNFG_protocolExtendedEx DOUT_generic16

CNFG_protocolSettings DOUT_generic8

CNFG_realTimeClock SCADAPack_AOUT

CNFG_saveToEEPROM SCADAPack_lowerIO

CNFG_setSerialPortDTR SCADAPack_upperIO

CNFG_storeAndForward SCADAPack_LPIO

CNFG_DeviceConfig SCADAPack_100IO

 SCADAPack_5209IO

 SCADAPack_5606IO

moduleAddress specifies a unique address for the module. For the valid range
for moduleAddress refer to the list of modules in the chapter Register
Assignment Reference of the Telepace Ladder Logic Reference and User
Manual. For module addresses com1, com2, com3 or com4 specify 0, 1, 2 or 3
respectively for moduleAddress. For module address Ethernet1 specify 4 for
moduleAddress. For module types that have no module address (e.g.
CNFG_LEDPower) specify -1 for moduleAddress. For SCADAPack module types
that have a module address fixed at 0, specify 0 for moduleAddress.

startingRegister1 specifies the first register of any unused block of consecutive
registers. Refer to the list of modules in the Register Assignment Reference for
the type and number of registers required for this block. Data read from or written
to the module is stored in this block of registers.

If the module type specified has more than one type of I/O, use startingRegister2,
startingRegister3, and startingRegister4 as applicable. Each start register
specifies the first register of an unused block of consecutive registers for each
type of input or output on the module. Refer to the list of modules in the Register
Assignment Reference for the module I/O types. Specify 0 for startingRegister2,
startingRegister3, or startingRegister4 if not applicable.

Parameters is an array of configuration parameters for the register assignment
module. Many modules do not use the parameters and a 0 needs to be specified
for the parameters. Use the addRegAssignment function to configure these
modules. Use parameters with the following modules.

5505 I/O Module: parameters[0] to [3] define the analog input type for the
corresponding input. Valid values are:

 0 = RTD in deg Celsius

 1 = RTD in deg Fahrenheit

 2 = RTD in deg Kelvin

 3 = resistance measurement in ohms.

5505 I/O Module: parameter[4] defines the analog input filter. Valid values are:

 0 = 0.5 s (minimum)

 1 = 1 s

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 104 104

 2 = 2 s

 3 = 4 s (maximum)

5506 I/O Module: parameters[0] to [7] define the analog input type for the
corresponding input. Valid values are:

 0 = 0 to 5 V input

 1 = 1 to 5 V input

 2 = 0 to 20 mA input

 3 = 4 to 20 mA input

5506 I/O Module: parameter[8] defines the analog input filter. Valid values are:

 0 = < 3 Hz (maximum filter)

 1 = 6 Hz

 2 = 11 Hz

 3 = 30 Hz (minimum filter)

5506 I/O Module: parameter[9] defines the scan frequency. Valid values are:

 0 = 60 Hz

 1 = 50 Hz

5606 I/O Module: parameters[0] to [7] define the analog input type for the
corresponding input. Valid values are:

 0 = 0 to 5 V input

 1 = 1 to 5 V input

 2 = 0 to 20 mA input

 3 = 4 to 20 mA input

5606 I/O Module: parameter[8] defines the analog input filter. Valid values are:

 0 = < 3 Hz (maximum filter)

 1 = 6 Hz

 2 = 11 Hz

 3 = 30 Hz (minimum filter)

5606 I/O Module: parameter[9] defines the scan frequency. Valid values are:

 0 = 60 Hz

 1 = 50 Hz

5606 I/O Module: parameter[10] defines the analog output type. Valid values
are:

 0 = 0 to 20 mA output

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 105 105

 1 = 4 to 20 mA output

Notes

Up to 150 modules may be added to the Register Assignment. If the Register
Assignment is full or if an incorrect value is specified for any argument this
function returns FALSE; otherwise TRUE is returned.

Output registers specified for certain CNFG type modules are initialized with the
current parameter values when the module is added to the Register Assignment
(e.g. CNFG_realTimeClock).

Call clearRegAssignment first before using the addRegAssignmentEx function
when creating a new Register Assignment.

Duplicate or overlapping register assignments are not checked for by this
function. Overlapping register assignments may result in unpredictable I/O
activity.

To obtain error checking that avoids invalid register assignments such as these,
use the Telepace Register Assignment dialog to build the Register Assignment.
Then save the Register Assignment in a Ladder Logic file (e.g. filename.lad) and
download it with the C program, or transfer the Register Assignment to the C
program using the clearRegAssignment and addRegAssignmentEx functions.

The IO_SYSTEM resource needs to be requested before calling this function.

See Also

addRegAssignment, clearRegAssignment

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 106 106

ain

Read an Analog Input

Syntax

#include <ctools.h>

int ain(unsigned channel);

Description

The ain function reads from the analog input or output specified by channel.
Input channels read from the analog input hardware. Output channels read the
value output to the channel with the aout function.

The valid range for channel is 0 to AIO_MAX. If an invalid channel is selected,
the ain function returns INT_MIN and the current task's error code is set to
AIO_BADCHAN. The error code is obtained with the check_error function.

The ain function normally returns a value in the range –32767 to +32767.

Notes

Use offsets from the symbolic constants AIN_START, AIN_END, AOUT_START
and AOUT_END to reference analog channels. The constants make programs
more portable and protect against future changes to the analog I/O channel
numbering.

The IO_SYSTEM resource needs to be requested before calling this function.

This function is provided for backward compatibility. It cannot access all 5000 I/O
modules. It is recommended that this function not be used in new programs.
Instead use Register Assignment or call the I/O driver ioRead8Ain directly.

See also

aout, check_error, ioRead8Ain

Example

#include <ctools.h>

void main(void)

{

 request_resource(IO_SYSTEM);

 printf("ain(%d)=%d\r\n", 2, ain(2));

 release_resource(IO_SYSTEM);

}

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 107 107

aioError

Read Analog I/O Error Flags

Syntax

#include <ctools.h>

int aioError(unsigned channel);

Description

The aioError function reads the I/O error flag for an analog channel.

It returns the error flag for the channel, if the channel number is valid; otherwise it
returns INT_MIN. A value of 0 indicates no error occurred. A positive value
indicates an error.

Notes

This function is provided for backward compatibility. It cannot access all 5000 I/O
modules. It is recommended that this function not be used in new programs.
Instead use Register Assignment or call the I/O driver ioRead8Ain directly.

See Also

aout, check_error, ioRead8Ain

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 108 108

alarmIn

Determine Alarm Time from Elapsed Time

Syntax

#include <ctools.h>

ALARM_SETTING alarmIn(unsigned hours, unsigned minutes, unsigned

seconds);

Description

The alarmIn function calculates the alarm settings to configure a real time clock
alarm to occur in hours, minutes and seconds from the current time.

The function returns an ALARM_SETTING structure suitable for passing to the
setClockAlarm function. The structure specifies an absolute time alarm at the
time offset specified by the call to alarmIn. Refer to the Structures and Types
section for a description of the fields in the ALARM_SETTING structure.

Notes

If second is greater than 60 seconds, the additional time is rolled into the
minutes. If minute is greater than 60 minutes, the additional time is rolled into the
hours.

If the offset time is greater that one day, then the alarm time will roll over within
the current day.

The IO_SYSTEM resource needs to be requested before calling this function.

See Also

getClockAlarm, setClockAlarm,

Example

#include <ctools.h>

/* --

 conservePower

 The conservePower function places the

 controller into sleep mode for 10 minutes.

 -- */

void conservePower(void)

{

 ALARM_SETTING alarm;

 request_resource(IO_SYSTEM);

 /* Alarm in 10 minutes */

 alarm = alarmIn(0, 10, 0);

 setClockAlarm(alarm)

 /* Put controller in low power mode */

 sleep();

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 109 109

 release_resource(IO_SYSTEM);

}

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 110 110

allocate_envelope

Obtain an Envelope from the RTOS

Syntax

#include <ctools.h>envelope *allocate_envelope(void);

Description

The allocate_envelope function obtains an envelope from the operating system.
If no envelope is available, the task is blocked until one becomes available.

The allocate_envelope function returns a pointer to the envelope.

Notes

Envelopes are used to send messages between tasks. The RTOS allocates
envelopes from a pool of free envelopes. It returns envelopes to the pool when
they are de-allocated.

An application program needs to ensure that unneeded envelopes are de-
allocated. Envelopes may be reused.

See Also

deallocate_envelope

Example

#include <ctools.h>

extern unsigned other_task_id;

void task1(void)

{

 envelope *letter;

 /* send a message to another task */

 /* assume it will deallocate the envelope */

 letter = allocate_envelope();

 letter->destination = other_task_id;

 letter->type = MSG_DATA;

 letter->data = 5;

 send_message(letter);

 /* receive a message from any other task */

 letter = receive_message();

 /* ... process the data here */

 deallocate_envelope(letter);

 /* ... the rest of the task */

}

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 111 111

aout

Write to Analog Output

Syntax

#include <ctools.h>

int aout(unsigned channel, int value);

Description

The aout function writes value to the analog output specified by channel. The
range for channel is AOUT_START to AOUT_END inclusive. The range for
value is -32767 to 32767.

aout returns the value written to the hardware, or -1 if the channel is not an
analog output.

Notes

The value output may be limited by the analog output module.

Use offsets from the symbolic constants AIN_START, AIN_END, AOUT_START
and AOUT_END to reference analog channels. The constants make programs
more portable and protect against future changes to the analog I/O channel
numbering.

The IO_SYSTEM resource needs to be requested before calling this function.

This function is provided for backward compatibility. It cannot access all 5000 I/O
modules. It is recommended that this function not be used in new programs.
Instead use Register Assignment or call the I/O driver ioWrite4Aout directly.

See Also

addRegAssignment, ioWrite4Aout

Example

#include <ctools.h>

void main(void)

{

 int value;

 /* ramp output from zero to full scale */

 for (value = 0; value < 32767; value++)

 {

 request_resource(IO_SYSTEM);

 aout(AOUT_START, value);

 release_resource(IO_SYSTEM);

 }

}

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 112 112

auto_pid

Execute a PID Block Automatically

Syntax

#include <ctools.h>

void auto_pid(unsigned block, unsigned period);

Description

The auto_pid routine configures a PID control block to execute automatically at
the specified period. period is measured in 0.1 second increments. block needs
to be in the range 0 to PID_BLOCKS – 1.

Setting the period to 0 stops execution of the control block.

Notes

See the Telepace PID Controllers Reference Manual for a detailed description
of PID control.

The control block needs to be configured properly before it is engaged, or
indeterminate operation may result.

The IO_SYSTEM resource needs to be requested before calling this function.

See Also

set_pid, clear_pid

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 113 113

check_error

Get Error Code for Current Task

Syntax

#include <ctools.h>

int check_error(void);

Description

The check_error function returns the error code for the current task. The error
code is set by various I/O routines, when errors occur. A separate error code is
maintained for each task.

Notes

Some routines in the standard C library, return errors in the global variable errno.
This variable is not unique to a task, and may be modified by another task,
before it can be read.

See Also

report_error

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 114 114

checksum

Calculate a Checksum

Syntax

#include <ctools.h>

unsigned checksum(unsigned char *start, unsigned char *end,

unsigned algorithm);

Description

The checksum function calculates a checksum on memory. The memory starts
at the byte pointed to by start, and ends with the byte pointed to by end. The
algorithm may be one of:

 ADDITIVE 16 bit byte-wise sum
 CRC_16 CRC-16 polynomial checksum
 CRC_CCITT CRC-CCITT polynomial checksum
 BYTE_EOR 8 bit byte-wise exclusive OR

The CRC checksums use the crc_reverse function.

See Also

crc_reverse

Example

This function displays two types of checksums.

#include <ctools.h>

void checksumExample(void)

{

 char str[] = "This is a test";

 unsigned sum;

 /* Display additive checksum */

 sum = checksum(str, str+strlen(str), ADDITIVE);

 printf("Additive checksum: %u\r\n", sum);

 /* Display CRC-16 checksum */

 sum = checksum(str, str+strlen(str), CRC_16);

 printf("CRC-16 checksum: %u\r\n", sum);

}

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 115 115

checkSFTranslationTable

Test for Store and Forward Configuration Errors

Syntax

#include <ctools.h>

struct SFTranslationStatus checkSFTranslationTable(void);

Description

The checkSFTranslationTable function checks all entries in the address
translation table for validity. It detects the following errors:

The function returns a SFTranslationStatus structure. Refer to the Structures
and Types section for a description of the fields in the SFTranslationStatus
structure. The code field of the structure is set to one of the following. If there is
an error, the index field is set to the location of the translation that is not valid.

Result code Meaning

SF_VALID All translations are valid

SF_NO_TRANSLATION The entry defines re-transmission of the same
message on the same port

SF_PORT_OUT_OF_RA
NGE

One or both of the serial port indexes is not valid

SF_STATION_OUT_OF_
RANGE

One or both of the stations is not valid

Notes

The TeleBUS Protocols User Manual describes store and forward messaging
mode.

See Also

getSFTranslation, setSFTranslation, checkSFTranslationTable

Example

See the example for the setSFTranslation function.

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 116 116

clearAllForcing

Clear All Forcing

Syntax

#include <ctools.h>

void clearAllForcing(void);

Description

The clearAllForcing function removes all forcing conditions from all I/O
database registers.

The IO_SYSTEM resource needs to be requested before calling this function.

See Also

setForceFlag, overrideDbase

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 117 117

clear_errors

Clear Serial Port Error Counters

Syntax

#include <ctools.h>

void clear_errors(FILE *stream);

Description

The clear_errors function clears the serial port error counters for the serial port
specified by stream. If stream does not point to a valid serial port the function has
no effect.

The IO_SYSTEM resource needs to be requested before calling this function.

See Also

get_status

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 118 118

clear_pid

Clear PID Block Variables

Syntax

#include <ctools.h>

void clear_pid(unsigned block);

Description

The clear_pid routine sets all variables in the specified control block to 0.
clear_pid is normally used as the first step of control block configuration. block
needs to be in the range 0 to PID_BLOCKS – 1.

Notes

See the Telepace PID Controllers Reference Manual for a detailed description
of PID control.

Values stored in PID blocks are not initialized when a program is run, and are
guaranteed to retain their values during power failures and program loading. PID
block variables need to be initialized by the user program.

The IO_SYSTEM resource needs to be requested before calling this function.

See Also

 auto_pid

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 119 119

Clear Protocol Counters

Syntax

#include <ctools.h>

void clear_protocol_status(FILE *stream);

Description

The clear_protocol_status function clears the error and message counters for
the serial port specified by stream. If stream does not point to a valid serial port
the function has no effect.

The IO_SYSTEM resource needs to be requested before calling this function.

See Also

get_protocol_status

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 120 120

clearRegAssignment

Clear Register Assignment

Syntax

#include <ctools.h>

void clearRegAssignment(void);

Description

The clearRegAssignment function erases the current Register Assignment. Call
this function first before using the addRegAssignment function to create a new
Register Assignment.

The IO_SYSTEM resource needs to be requested before calling this function.

See Also

addRegAssignment

Example

See example for addRegAssignment.

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 121 121

clearSFTranslationTable

Clear Store and Forward Translation Configuration

Syntax

#include <ctools.h>

void clearSFTranslationTable(void);

Description

The clearSFTranslationTable function clears all entries in the store and forward
translation table.

Notes

The TeleBUS Protocols User Manual describes store and forward messaging
mode.

The IO_SYSTEM resource needs to be requested before calling this function.

See Also

getSFTranslation, setSFTranslation, checkSFTranslationTable

Example

See the example for the setSFTranslation function.

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 122 122

clearStatusBit

Clear Bits in Controller Status Code

Syntax

#include <ctools.h>

unsigned clearStatusBit(unsigned bitMask);

Description

The clearStatusBit function clears the bits indicated by bitMask in the controller
status code. When the status code is non-zero, the STAT LED blinks a binary
sequence corresponding to the code. If code is zero, the STAT LED turns off.

The function returns the value of the status register.

Notes

The status output opens if code is non-zero. Refer to the System Hardware
Manual for more information.

The binary sequence consists of short and long flashes of the error LED. A
binary zero is indicated by a short flash of 1/10th of a second. A longer flash of
approximately 1/2 of a second indicates a binary one. The least significant digit is
output first. As few bits as possible are displayed – leading zeros are ignored.
There is a two-second delay between repetitions.

The STAT LED is the LED located on the top left hand corner of the 5203 or
5204 controller board.

Bits 0 and 1 of the status code are used by the Register Assignment.

See Also

setStatusBit, setStatus, getStatusBit

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 123 123

clear_tx

Clear Serial Port Transmit Buffer

Syntax

#include <ctools.h>

void clear_tx(FILE *stream);

Description

The clear_tx function clears the transmit buffer for the serial port specified by
stream. If stream does not point to a valid serial port the function has no effect.

See Also

get_status

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 124 124

configurationRegisterMapping

Enable or disable mapping of device configuration registers.

Syntax

#include <ctools.h>

void configurationRegisterMapping(

 BOOLEAN enabled

);

Description

This function enables or disables mapping of device configuration registers.
These registers are located at a fixed location in the input register area.

enabled selects if the registers are mapped. Valid values are TRUE and FALSE.
Selecting FALSE hide the configuration data but does not change it.

See Also

configurationSetApplicationID

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 125 125

configurationSetApplicationID

Set an application ID.

Syntax

#include <ctools.h>

BOOLEAN configurationSetApplicationID(

 UINT16 applicationType,

 UINT16 action,

 UINT16 companyID,

 UINT16 application,

 UINT16 version

);

Description

This function stores or removes an application ID in the device configuration
data. The device configuration appears in Modbus registers if the register
mapping is enabled.

applicationType specifies the type of application. It is one of DCAT_LOGIC1,
DCAT_LOGIC2, or DCAT_C.

 DCAT_LOGIC1: Device configuration application type is the first logic
application.

 DCAT_LOGIC2: Device configuration application type is the second logic
application.

 DCAT_C: Device configuration application type is a C application.

If DCAT_C is used, the application ID is added to the table of C applications. The
applications don‟t appear in any fixed order in the C application table.

action specifies if the ID is to be added or removed. Valid values are DCA_ADD
and DCA_REMOVE.

 DCA_ADD: attempting to add a duplicate value (matching companyID,
application, and version) will result in only one entry in the table. The function
will return TRUE (indicating the data is in the table).

 DCA_REMOVE: For logic applications the ID will be removed
unconditionally. For C applications, the ID will be removed if it is found in the
table (matching companyID, application, and version).

companyID specifies your company. Contact Control Microsystems to obtain a
company ID. 0 indicates an unused entry.

application specifies your application. Valid values are 0 to 65535. You need to
maintain unique values for your company.

version is the version of your application in the format major * 100 + minor. Valid
values are 0 to 65535.

The function returns TRUE if the action was successful, and FALSE if an error
occurred.

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 126 126

Register Mapping

The Device configuration is stored in Modbus input (3xxxx) registers as shown
below. The registers are read with standard Modbus commands. These registers
cannot be written to. Device configuration registers used fixed addresses. This
facilitates identifying the applications in a standard manner.

The Device configuration registers can be enabled or disabled by entering a 0 or
1 in the Start Register. They are disabled until enabled by a logic application.
This provides compatibility with controllers that have already used these registers
for other purposes.

The application IDs are cleared on every controller reset. Applications need to
run and set the application ID for it to be valid.

These data types are used.

Data Type Description

uint Unsigned 16–bit integer

uchar Unsigned 8–bit character

type[n] n–element array of specified data type

The following information is stored in the device configuration. 2 logic application
identifiers are provided for compatibility with SCADAPack ES/ER controllers that
provide 2 IEC 61131-3 applications. The second logic application identifier is not
used with other controllers. 32 application identifiers are provided to
accommodate C applications in SCADAPack 330/350 controllers.

Register Data Type Description

39800 uchar[8] Controller ID (padded with nulls = 0), first byte in
lowest register, one byte per register.

39808 uint Firmware version (major*100 + minor)

39809 uint Firmware version build number (if applicable)

39810 uint[3] Logic application 1 identifier (see format below)

39813 uint[3] Logic application 2 identifier (see format below)

39816 uint Number of applications identifiers used (0 to 32)

Identifiers are listed sequentially starting with
identifier 1. Unused identifiers will return 0.

39817 uint[3] Application identifier 1 (see format below)

39820 uint[3] Application identifier 2 (see format below)

39823 uint[3] Application identifier 3 (see format below)

39826 uint[3] Application identifier 4 (see format below)

39829 uint[3] Application identifier 5 (see format below)

39832 uint[3] Application identifier 6 (see format below)

39835 uint[3] Application identifier 7 (see format below)

39838 uint[3] Application identifier 8 (see format below)

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 127 127

Register Data Type Description

39841 uint[3] Application identifier 9 (see format below)

39844 uint[3] Application identifier 10 (see format below)

39847 uint[3] Application identifier 11 (see format below)

39850 uint[3] Application identifier 12 (see format below)

39853 uint[3] Application identifier 13 (see format below)

39856 uint[3] Application identifier 14 (see format below)

39859 uint[3] Application identifier 15 (see format below)

39862 uint[3] Application identifier 16 (see format below)

39865 uint[3] Application identifier 17 (see format below)

39868 uint[3] Application identifier 18 (see format below)

39871 uint[3] Application identifier 19 (see format below)

39874 uint[3] Application identifier 20 (see format below)

39877 uint[3] Application identifier 21 (see format below)

39880 uint[3] Application identifier 22 (see format below)

39883 uint[3] Application identifier 23 (see format below)

39886 uint[3] Application identifier 24 (see format below)

39889 uint[3] Application identifier 25 (see format below)

39892 uint[3] Application identifier 26 (see format below)

39895 uint[3] Application identifier 27 (see format below)

39898 uint[3] Application identifier 28 (see format below)

39901 uint[3] Application identifier 29 (see format below)

39904 uint[3] Application identifier 30 (see format below)

39907 uint[3] Application identifier 31 (see format below)

39910 uint[3] Application identifier 32 (see format below)

39913 to
39999

 Reserved for future expansion

Application Identifier

The application identifier is formatted as follows.

Data Type Description

uint Company ID (see below)

uint Application number (0 to 65535)

uint Application version (major*100 + minor)

Company Identifier

Control Microsystems will maintain a list of company identifiers to ensure the
company ID is unique. Contact the technical support department.

Company ID 0 indicates an identifier is unused.

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 128 128

See Also

configurationRegisterMapping

Notes

Application IDs for C programs are not automatically removed. A task exit
handler can be used to remove the ID when the C application is ended.

Application IDs are cleared when the controller is reset.

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 129 129

counter

Read Counter Input Module

Syntax

#include <ctools.h>

long counter(unsigned counter);

Description

The counter function reads data from the counter input specified by channel. If
the channel number is not valid a COUNTER_BADCOUNTER error is reported
for the current task. The value returned by counter is not valid.

Notes

Refer to the Telepace Ladder Logic User Manual for an explanation of counter
input channel assignments.

Use offsets from the symbolic constants COUNTER_START and
COUNTER_END to reference counter channels. The constants make programs
more portable and protect against future changes to the counter input channel
numbering.

The IO_SYSTEM resource needs to be requested before calling this function.

This function is provided for backward compatibility. It cannot access all 5000 I/O
modules. It is recommended that this function not be used in new programs.
Instead use Register Assignment or call the I/O driver ioRead4Counter directly.

See Also

counterError, check_error, request_resource, release_resource,
ioRead4Counter

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 130 130

counterError

Read Counter Input Error Flag

Syntax

#include <ctools.h>

long counterError(unsigned counter);

Description

The counterError function returns the I/O error flag for a counter channel. It
returns TRUE if an error occurred and FALSE if no occurred on the last read of
the input module.

If the channel number is not valid a COUNTER_BADCOUNTER error is reported
for the current task. The value returned is not valid.

Notes

Refer to the Telepace Ladder Logic User Manual for a explanation of counter
input channel assignments.

Use offsets from the symbolic constants COUNTER_START and
COUNTER_END to reference counter channels. The constants make programs
more portable and protect against future changes to the counter input channel
numbering.

This function is provided for backward compatibility. It cannot access all 5000 I/O
modules. It is recommended that this function not be used in new programs.
Instead use Register Assignment or call the I/O driver ioRead4Counter directly.

See Also

counter, check_error, ioRead4Counter

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 131 131

crc_reverse

Calculate a CRC Checksum

Syntax

#include <ctools.h>

unsigned crc_reverse(unsigned char *start, unsigned char *end,

unsigned poly, unsigned initial);

Description

The crc_reverse function calculates a CRC type checksum on memory using the
reverse algorithm. The memory starts at the byte pointed to by start, and ends
with the byte pointed to by end. The generator polynomial is specified by poly.
poly may be any value, but needs to be carefully chosen to ensure good error
detection. The checksum accumulator is set to initial before the calculation is
started.

Notes

The reverse algorithm is named for the direction bits are shifted. In the reverse
algorithm, bits are shifted towards the least significant bit. This produces different
checksums than the classical, or forward algorithm, using the same polynomials.

See Also

checksum

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 132 132

create_task

Create a New Task

Syntax

#include <ctools.h>

int create_task(void *function, unsigned priority, unsigned type,

unsigned stack);

Description

The create_task function allocates stack space for a task and places the task on
the ready queue. function specifies the start address of the routine to be
executed. The task will execute immediately if its priority is higher than the
current task.

priority is an execution priority between 1 and 4 for the created task. The 4 task
priority levels aid in scheduling task execution.

type specifies if the task is ended when an application program is stopped. Valid
values for type are:

SYSTEM system tasks are not terminated when the program stops

APPLICATION application tasks terminate when the program stops

It is recommended that only APPLICATION type tasks be created.

The stack parameter specifies how many stack blocks are allocated for the task.
Each stack block is 256 bytes.

The create_task function returns the task ID (TID) of the task created. If an error
occurs, -1 is returned.

Notes

Refer to the Real Time Operating System section for more information on
tasks.

The main task and the Ladder Logic and I/O scanning task have a priority of 1. If
the created task is continuously running processing code, create the task with a
priority of 1 and call release_processor periodically; otherwise the remaining
priority 1 tasks will be blocked from executing.

For tasks such as a protocol handler, that wait for an event using the wait_event
or receive_message function, a priority greater than 1 may be selected without
blocking other lower priority tasks.

The number of stack blocks required depends on the functions called within the
task, and the size of local variables created. Most tasks require 2 stack blocks. If
any of the printf functions are used, then at least 4 stack blocks are required.
Add local variable usage to these limits, if large local arrays or structures are
created. Large structures and arrays are usually best handled as static global
variables within the task source file. (The variables are global to all functions in
the task, but cannot be seen by functions in other files.)

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 133 133

Additional stack space may be made available by disabling unused protocol
tasks. See the section Program Development or the set_protocol() function for
more information.

See Also

end_task

Example

#include <ctools.h>

#define TIME_TO_PRINT 20

void task1(void)

{

 int a, b;

 while (TRUE)

 {

 /* body of task 1 loop - processing I/O */

 request_resource(IO_SYSTEM);

 a = dbase(MODBUS, 30001);

 b = dbase(MODBUS, 30002);

 setdbase(MODBUS, 40020, a * b);

 release_resource(IO_SYSTEM);

 /* Allow other tasks to execute */

 release_processor();

 }

}

void task2(void)

{

 while(TRUE)

 {

 /* body of task 2 loop - event handler */

 wait_event(TIME_TO_PRINT);

 printf("It’s time for a coffee break\r\n");

 }

}

/* --

 The shutdown function stops the signalling

 of TIME_TO_PRINT events when application is

 stopped.

 -- */

void shutdown(void)

{

 endTimedEvent(TIME_TO_PRINT);

}

void main(void)

{

 TASKINFO taskStatus;

 /* continuos processing task at priority 1 */

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 134 134

 create_task(task1, 1, APPLICATION, 2);

 /* event handler needs larger stack for printf function */

 create_task(task2, 3, APPLICATION, 4);

 /* set up task exit handler to stop

 signalling of events when this task ends */

 taskStatus = getTaskInfo(0);

 installExitHandler(taskStatus.taskID, shutdown);

 /* start timed event to occur every 10 sec */

 startTimedEvent(TIME_TO_PRINT, 100);

 interval(0, 10);

 while(TRUE)

 {

 /* body of main task loop */

 /* other processing code */

 /* Allow other tasks to execute */

 release_processor();

 }

}

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 135 135

databaseRead

Read Value from I/O Database

Syntax

#include <ctools.h>

BOOLEAN databaseRead(UINT16 type, UINT16 address, INT16* value)

Description

The databaseRead function reads a value from the database. The value is
written to the variable pointed to by value. The variable is not changed if type and
address are not valid.

The function has three parameters. type specifies the method of addressing the
database. Valid values are MODBUS and LINEAR. address specifies the location
in the database. value is a pointer to a variable to hold the result.

The function returns TRUE if the specified address is valid and FALSE if the
register does not exist.

Notes

The IO_SYSTEM resource needs to be requested before calling this function.

See Also

databaseWrite

Example

#include <ctools.h>

void main(void)

{

 INT16 value;

 BOOLEAN status;

 request_resource(IO_SYSTEM);

 /* Read Modbus status input point */

 status = databaseRead(MODBUS, 10001, &value);

 /* Read 16 bit register */

 status = databaseRead(LINEAR, 3020, &value);

 release_resource(IO_SYSTEM);

}

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 136 136

databaseWrite

Write Value to I/O Database

Syntax

#include <ctools.h>

BOOLEAN databaseWrite(UINT16 type, UINT16 address, INT16 value)

Description

The databaseWrite function writes value to the I/O database.

The function has three parameters. type specifies the method of addressing the
database. Valid values are MODBUS and LINEAR. address specifies the location
in the database. value is the data to write.

The function returns TRUE if the value was written. The function returns FALSE if

 the type is invalid

 the address is not valid for the controller

 the address is read only on the SCADAPack 4202 controller (some registers
in the range 40001 to 40499).

 the data is not valid for the address on the SCADAPack 4202 controller
(some registers in the range 40001 to 40499).

 the hardware write protect is installed on the SCADAPack 4202 controller
(registers in the range 40001 to 40499).

 the flow computer is running on the SCADAPack 4202 controller (registers in
the range 40001 to 40499).

Notes

When writing to LINEAR digital addresses, value is a bit mask which writes data
to 16 1-bit registers at once. If any of these 1-bit registers is invalid, only the valid
registers are written and FALSE is returned.

The IO_SYSTEM resource needs to be requested before calling this function.

See Also

databaseRead

Example

#include <ctools.h>

void main(void)

{

 BOOLEAN status;

 request_resource(IO_SYSTEM);

 status = databaseWrite(MODBUS, 40001, 102);

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 137 137

 /* Turn ON the first 16 coils */

 status = databaseWrite(LINEAR, 0, 255);

 /* Write to a 16 bit register */

 status = databaseWrite(LINEAR, 3020, 240);

 release_resource(IO_SYSTEM);

}

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 138 138

datalogCreate

Create Data Log Function

Syntax

#include <ctools.h>

DATALOG_STATUS datalogCreate(

 UINT16 logID,

 DATALOG_CONFIGURATION * pLogConfiguration

);

Description

This function creates a data log with the specified configuration. The data log is
created in the data log memory space.

The function has two parameters. logID specifies the data log to be created. The
valid range is 0 to 15. pLogConfiguration points to a structure with the
configuration for the data log.

The function returns the status of the operation.

Notes

The configuration of an existing data log cannot be changed. The log needs to be
deleted and recreated to change the configuration.

Data logs are stored in memory from a pool for all data logs. If there is insufficient
memory the creation operation fails. The function returns DLS_NOMEMORY.

If the data log already exists the creation operation fails. The function returns
DLS_EXISTS.

If the log ID is not valid the creation operation fails. The function returns
DLS_BADID.

If the configuration is not valid the creation operation fails. The function returns
DLS_BADCONFIG.

See Also

datalogDelete datalogSettings

Example

/*--

 The following code shows how to create a

 data log and how to write one record into it.

 --*/

#include "ctools.h"

/*---------------------------------

 Structure used only to copy one

 record into data log

---------------------------------*/

struct dataRecord

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 139 139

{

 UINT16 value1;

 int value2;

 double value3;

 float value4;

 float value5;

};

int logID;

/*---------------------------------

 Declare a structure for the log

---------------------------------*/

DATALOG_CONFIGURATION dLogConfig;

/*---------------------------------

 Declare a struture to hold the

 data that will be copied in log

---------------------------------*/

struct dataRecord data;

/*---------------------

 Function declaration

----------------------*/

void ConfigureLog(void);

void InitRecord(void);

void main(void)

{

 ConfigureLog(); /* function call to cofigure log

*/

 InitRecord();

 if(datalogCreate(logID, &dLogConfig) == DLS_CREATED)

 {

 /* Start writing records in log */

 if(datalogWrite(logID, (UINT16 *)&data))

 {

 /* one record was written in data log */

 }

 }

}

/* Log configuration */

void ConfigureLog(void)

{

 /* Assign a number to the data log */

 logID = 10;

 /* Fill in the log configuration structure */

 dLogConfig.records = 200;

 dLogConfig.fields = 5;

 dLogConfig.typesOfFields[0] = DLV_UINT16;

 dLogConfig.typesOfFields[1] = DLV_INT32;

 dLogConfig.typesOfFields[2] = DLV_DOUBLE;

 dLogConfig.typesOfFields[3] = DLV_FLOAT;

 dLogConfig.typesOfFields[4] = DLV_FLOAT;

}

/* One record initialization */

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 140 140

void InitRecord(void)

{

 /* Assign some data for the log */

 data.value1 = 100;

 data.value2 = 200;

 data.value3 = 30000;

 data.value4 = 40.3;

 data.value5 = 50.75;

}

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 141 141

datalogDelete

Delete Data Log Function

Syntax

#include <ctools.h>

BOOLEAN datalogDelete(

 UINT16 logID

);

Description

This function destroys the specified data log. The memory used by the data log is
returned to the freed.

The function has one parameter. logID specifies the data log to be deleted. The
valid range is 0 to 15.

The function returns TRUE if the data log was deleted. The function returns
FALSE if the log ID is not valid or if the log had not been created.

See Also

datalogCreate

Example

/* The following code shows the only way to

 change the configuration of an existing log

 is to delete the log and recreate the data

 log */

#include <ctools.h>

int logID;

/* Declare a structure for the log */

DATALOG_CONFIGURATION dLogConfig;

/* Select logID #10 */

logID = 10;

/* Read the configuration of logID #10 */

if(datalogSettings(logID, &dLogConfig))

{

 if(dLogConfig.typesOfFields[0] == DLV_INT16)

 {

 /* Wrong type. Delete whole log and start from scratch */

 if(datalogDelete(logID))

 {

 /* Re-enter the log configuration */

 dLogConfig.records = 200;

 dLogConfig.fields = 5;

 dLogConfig.typesOfFields[0] = DLV_UINT16;

 dLogConfig.typesOfFields[1] = DLV_INT32;

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 142 142

 dLogConfig.typesOfFields[2] = DLV_DOUBLE;

 dLogConfig.typesOfFields[3] = DLV_FLOAT;

 dLogConfig.typesOfFields[4] = DLV_FLOAT;

 datalogCreate(logID, &dLogConfig);

 }

 else

 {

 /* could not delete log */

 }

 }

}

else

{

 /* Could not read settings */

 }

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 143 143

datalogPurge

Purge Data Log Function

Syntax

#include <ctools.h>

BOOLEAN datalogPurge(

 UINT16 logID,

 BOOLEAN purgeAll,

 UINT32 sequenceNumber

);

Description

This function removes records from a data log. The function can remove all the
records, or a group of records starting with the oldest in the log.

The function has three parameters. logID specifies the data log. The valid range
is 0 to 15. If purgeAll is TRUE, all records are removed, otherwise the oldest
records are removed. sequenceNumber specifies the sequence number of the
most recent record to remove. All records up to and including this record are
removed. This parameter is ignored if purgeAll is TRUE.

The function returns TRUE if the operation succeeds. The function returns
FALSE if the log ID is invalid, if the log has not been created, or if the sequence
number cannot be found in the log.

Notes

Purging the oldest records in the log is usually done after reading the log. The
sequence number used is that of the last record read from the log. This removes
the records that have been read and leaves any records added since the records
were read.

If the sequence number specifies a record that is not in the log, no records are
removed.

See Also

datalogReadStart datalogReadNext datalogWrite

Example

#include <ctools.h>

int logID, sequenceNumber;

/* Declare flag to purge entire of data log or part of it */

BOOLEAN purgeAll;

/* Which data log to purge? */

logID = 10;

/* Set flag to purge only part of data log */

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 144 144

purgeAll = FALSE;

/* How many of the oldest records to purge */

sequenceNumber = 150;

if(datalogPurge(logID, purgeAll, sequenceNumber))

{

 /* Successful at purging the first 150 records of log */

 /* Start writing records again */

}

/* To purge the entire data log, simply set flag to TRUE */

purgeAll = TRUE;

/* Call up function with same parameters */

if(datalogPurge(logID, purgeAll, sequenceNumber))

{

 /* Successful at purging the entire data log */

 /* Start writing records again */

}

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 145 145

datalogReadNext

Read Data Log Next Function

This function returns the next record in the data log.

Syntax

#include <ctools.h>

BOOLEAN datalogReadNext(

 UINT16 logID,

 UINT32 sequenceNumber,

 UINT32 * pSequenceNumber,

 UINT32 * pNextSequenceNumber,

 UINT16 * pData

);

Description

This function reads the next record from the data log starting at the specified
sequence number. The function returns the record with the specified sequence
number if it is present in the log. If the record no longer exists it returns the next
record in the log.

The function has five parameters. logID specifies the data log. The valid range is
0 to 15. sequenceNumber is sequence number of the record to be read.
pSequenceNumber is a pointer to a variable to hold the sequence number of the
record read. pNextSequenceNumber is a pointer to a variable to hold the
sequence number of the next record in the log. This is normally used for the next
call to this function. pData is a pointer to memory to hold the data read from the
log.

The function returns TRUE if a record is read from the log. The function returns
FALSE if the log ID is not valid, if the log has not been created or if there are no
more records in the log.

Notes

Use the datalogReadStart function to obtain the sequence number of the oldest
record in the data log.

The pData parameter needs to point to memory of sufficient size to hold all the
data in a record.

It is normally necessary to call this function until it returns FALSE in order to read
all the data from the log. This accommodates cases where data is added to the
log while it is being read.

If data is read from the log at a slower rate than it is logged, it is possible that the
sequence numbers of the records read will not be sequential. This indicates that
records were overwritten between calls to read data.

The sequence number rolls over after reaching its maximum value.

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 146 146

See Also

datalogReadStart datalogPurge datalogWrite

Example

See the example for datalogReadStart.

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 147 147

datalogReadStart

Read Data Log Start Function

Syntax

#include <ctools.h>

BOOLEAN datalogReadStart(

 UINT16 logID,

 UINT32 * pSequenceNumber

);

Description

This function returns the sequence number of the record at the start of the data
log. This is the oldest record in the log.

The function has two parameters. logID specifies the data log. The valid range is
0 to 15. pSequenceNumber is a pointer to a variable to hold the sequence
number.

The function returns TRUE if the operation succeeded. The function returns
FALSE if the log ID is not valid or if the log has not been created.

Notes

Use the datalogReadNext function to read records from the log.

The function will return a sequence number even if the log is empty. In this case
the next call to datalogReadNext will return no data.

See Also

datalogReadNext datalogPurge datalogWrite

Example

/**

 The following code shows how to read records

 from data log.

**/

#include "ctools.h"

#include <stdlib.h>

UINT16 recordSize,

 logID,

 pData; / Pointer to memory to hold data read from log. */

UINT32 sequenceNumber,/* Sequence number of record to be read. */

 nextSequenceNumber; /* Sequence number of next record. */

void main(void)

{

 /* Select data log #10 */

 logID = 10;

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 148 148

 /* Find first record in data log #10 and store

 its sequence number into sequenceNumber */

 if(datalogReadStart(logID, &sequenceNumber))

 {

 /* Get the size of this record */

 if(datalogRecordSize(logID, &recordSize))

 {

 /* Allocate memory of size recordSize */

 pData = (UINT16 *) malloc(recordSize);

 /* Read all records from data log #10. */

 while(datalogReadNext(logID, sequenceNumber,

&sequenceNumber, &nextSequenceNumber, pData))

 {

 /* Use pData and its contents.

 Set next sequence number of record to be

read. */

 sequenceNumber = nextSequenceNumber;

 }

 }

 }

 }

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 149 149

datalogRecordSize

Data Log Record Size Function

Syntax

#include < ctools.h >

BOOLEAN datalogRecordSize(

 UINT16 logID,

 UINT16 * pRecordSize;

);

Description

This function returns the size of a record for the specified data log. The log needs
to have been previously created with the datalogCreate function.

The function has two parameters. logID specifies the data log. The valid range is
0 to 15. pRecordSize points to a variable that will hold the size of a record in the
log.

The function returns TRUE if the operation succeeded. The function returns
FALSE if the log ID is invalid or if the data log does not exist.

Notes

This function is useful in determining how much memory needs to be allocated
for a call to datalogReadNext or datalogWrite.

See Also

datalogSettings

Example

See the example for datalogReadStart.

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 150 150

datalogSettings

Data Log Settings Function

Syntax

#include < ctools.h >

BOOLEAN datalogSettings(

 UINT16 logID,

 DATALOG_CONFIGURATION * pLogConfiguration

);

Description

This function reads the configuration of the specified data log. The log needs to
have been previously created with the datalogCreate function.

The function has two parameters. logID specifies the data log. The valid range is
0 to 15. pLogConfiguration points to a structure that will hold the data log
configuration.

The function returns TRUE if the operation succeeded. The function returns
FALSE if the log ID is invalid or if the data log does not exist.

Notes

The configuration of an existing data log cannot be changed. The log needs to be
deleted and recreated to change the configuration.

See Also

datalogRecordSize

Example

See example for datalogDelete.

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 151 151

datalogWrite

Write Data Log Function

Syntax

#include <ctools.h>

BOOLEAN datalogWrite(

 UINT16 logID,

 UINT16 * pData

);

Description

This function writes a record to the specified data log. The log needs to have
been previously created with the datalogCreate function.

The function has two parameters. logID specifies the data log. The valid range is
0 to 15. pData is a pointer to the data to be written to the log. The amount of data
copied using the pointer is determined by the configuration of the data log.

The function returns TRUE if the data is added to the log. The function returns
FALSE if the log ID is not valid or if the log does not exist.

Notes

Refer to the datalogCreate function for details on the configuration of the data
log.

If the data log is full, then the oldest record in the log is replaced with this record.

See Also

datalogReadStart datalogReadNext datalogPurge

Example

See the example for datalogDelete.

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 152 152

dbase

Read Value from I/O Database

Syntax

#include <ctools.h>

int dbase(unsigned type, unsigned address);

Description

The dbase function reads a value from the I/O database. type specifies the
method of addressing the database. address specifies the location in the
database. The table below shows the valid address types and ranges

Type Address Ranges Register
Size

MODBUS 00001 to NUMCOIL

10001 to 10000 + NUMSTATUS

30001 to 30000 + NUMINPUT

40001 to 40000 + NUMHOLDING

1 bit

1 bit

16 bit

16 bit

LINEAR 0 to NUMLINEAR-1 16 bit

Notes

Refer to the I/O Database and Register Assignment chapter for more information.

If the specified register is currently forced, dbase returns the forced value for the
register.

The I/O database is not modified when the controller is reset. It is a permanent
storage area, which is maintained during power outages.

The IO_SYSTEM resource needs to be requested before calling this function.

See Also

setdbase

Example

#include <ctools.h>

void main(void)

{

 int a;

 request_resource(IO_SYSTEM);

 /* Read Modbus status input point */

 a = dbase(MODBUS, 10001);

 /* Read 16 bit register */

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 153 153

 a = dbase(LINEAR, 3020);

 /* Read 16 bit register beginning at first

 status register */

 a = dbase(LINEAR, START_STATUS);

 /* Read 6th input register */

 a = dbase(LINEAR, START_INPUT + 5);

 release_resource(IO_SYSTEM);

}

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 154 154

deallocate_envelope

Return Envelope to the RTOS

Syntax

#include <ctools.h>

void deallocate_envelope(envelope *penv);

Description

The deallocate_envelope function returns the envelope pointed to by penv to
the pool of free envelopes maintained by the operating system.

See Also

allocate_envelope

Example

See the example for the allocate_envelope function.

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 155 155

din

Read Digital I/O

Syntax

#include <ctools.h>

int din(unsigned channel);

Description

The din function reads the value of a digital input or output channel. Reading an
input channel returns data read from a digital input module. Reading an output
channel returns the last value written to the output module.

The din function returns a value corresponding to the sum of the binary states of
all 8 bits of the channel.

Notes

The din function reads the status of digital input signals, and digital output
modules.

The din function may be used to read the current values in the I/O disable,
forced status and I/O form tables, and I/O type tables.

Use offsets from the symbolic constants DIN_START, DIN_END, DOUT_START,
DOUT_END, EXTENDED_DIN_START, EXTENDED_DIN_END,
EXTENDED_DOUT_START and EXTENDED_DOUT_END to reference digital
channels. The constants make programs more portable and protect against
future changes to the digital I/O channel numbering.

The IO_SYSTEM resource needs to be requested before calling this function.

This function is provided for backward compatibility. It cannot access all 5000 I/O
modules. It is recommended that this function not be used in new programs.
Instead use Register Assignment or call the I/O driver ioRead8Din directly.

See Also

pulse, timeout, turnon, turnoff, on, off

Example

This program displays the first 8 digital inputs in binary.

#include <ctools.h>

void main(void)

{

 int loop, value;

 /* Read the first digital input channel */

 request_resource(IO_SYSTEM);

 value = din(DIN_START);

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 156 156

 release_resource(IO_SYSTEM);

 printf("Channel =");

 /* For each bit in the channel */

 for(loop = 8; loop; loop--)

 {

 putchar((value & 0x80) ? '1' :'0')

 /* Select the next bit */

 value <<= 1;

 }

 puts("\r\n");

}

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 157 157

dnpInstallConnectionHandler

Configures the connection handler for DNP.

Syntax

#include <ctools.h>

void dnpInstallConnectionHandler(void (* function)
(DNP_CONNECTION_EVENT event));

Description

This function installs a handler that will permit user-defined actions to occur when
DNP requires a connection, message confirmation is received, or a timeout
occurs.

function is a pointer to the handler function. If function is NULL the handler is
disabled.

The function has no return value.

Notes

The handler function needs to process the event and return immediately. If the
required action involves waiting this needs to be done outside of the handler
function. See the example below for one possible implementation.

The application needs to disable the handler when the application ends. This
prevents the protocol driver from calling the handler while the application is
stopped. Call the dnpInstallConnectionHandler with a NULL pointer. The usual
method is to create a task exit handler function to do this. See the example below
for details.

The handler function has one parameter.

 event is DNP event that has occurred. It may be one of
DNP_CONNECTION_REQUIRED, DNP_MESSAGE_COMPLETE, or
DNP_MESSAGE_TIMEOUT. See the structure definition for the meaning of
these events.

The handler function has no return value.

By default no connection handler is installed and no special steps are taken
when DNP requires a connection, receives a message confirmation, or a timeout
occurs.

See Also

dnpConnectionEvent

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 158 158

Example

This example shows how a C application can handle the events and inform a
logic application of the events. The logic application is responsible for making
and ending the dial-up connection.

The program uses the following registers.

 10001 turns on when a connection is requested by DNP for unsolicited
reporting.

 10002 turns on when the unsolicited report is complete.

 10003 turns on when the unsolicited report is fails.

 The ladder logic program turns on register 1 when the connection is
complete and turns off the register when the connection is broken.

/* ---

 dnp.c

 Demonstration program for using the DNP connection handler.

 Copyright 2001, Control Microsystems Inc.

-------- */

/* ---

 Include Files

-------- */

#include <ctools.h>

/* ---

 Constants

-------- */

#define CONNECTION_REQUIRED 10001 /* register for signaling

connection required */

#define MESSAGE_COMPLETE 10002 /* register for signaling

unsolicited message is complete */

#define MESSAGE_FAILED 10003 /* register for signaling

unsolicited message failed */

#define CONNECTION_STATUS 1 /* connection status register */

/* ---

 Private Functions

-------- */

/* ---

 sampleDNPHandler

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 159 159

 This function is the user defined DNP connection handler. It

will be

 called by internal DNP routines when a connection is required,

when

 confirmation of a message is received, and when a communication

timeout

 occurs.

 The function takes a variable of type DNP_CONNECTION_EVENT as

an input.

 This input instructs the handler as to what functionality is

required.

 The valid choices are connection required

(DNP_CONNECTION_REQUIRED),

 message confirmation received (DNP_MESSAGE_COMPLETE), and

timeout occurred

 (DNP_MESSAGE_TIMEOUT).

 The function does not return any values.

-------- */

static void sampleDNPHandler(DNP_CONNECTION_EVENT event)

{

 /* Determine what connection event is required or just

occurred */

 switch(event)

 {

 case DNP_CONNECTION_REQUIRED:

 /* indicate connection is needed and clear

other bits */

 request_resource(IO_SYSTEM);

 setdbase(MODBUS, CONNECTION_REQUIRED, 1);

 setdbase(MODBUS, MESSAGE_COMPLETE, 0);

 setdbase(MODBUS, MESSAGE_FAILED, 0);

 release_resource(IO_SYSTEM);

 break;

 case DNP_MESSAGE_COMPLETE:

 /* indicate message sent and clear other bits

*/

 request_resource(IO_SYSTEM);

 setdbase(MODBUS, CONNECTION_REQUIRED, 0);

 setdbase(MODBUS, MESSAGE_COMPLETE, 1);

 setdbase(MODBUS, MESSAGE_FAILED, 0);

 release_resource(IO_SYSTEM);

 break;

 case DNP_MESSAGE_TIMEOUT:

 /* indicate message failed and clear other

bits */

 request_resource(IO_SYSTEM);

 setdbase(MODBUS, CONNECTION_REQUIRED, 0);

 setdbase(MODBUS, MESSAGE_COMPLETE, 0);

 setdbase(MODBUS, MESSAGE_FAILED, 1);

 release_resource(IO_SYSTEM);

 break;

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 160 160

 default:

 /* ignore invalid requests */

 break;

 }

}

/* ---

 Public Functions

-------- */

/* ---

 main

 This function is the main task of a user application. It

monitors a

 register from the ladder logic application. When the register

value

 changes, the function signals DNP events.

 The function has no parameters.

 The function does not return.

-------- */

void main(void)

{

 int lastConnectionState; /* last state of connection

register */

 int currentConnectionState; /* current state of

connection register */

 /* install DNP connection handler */

 dnpInstallConnectionHandler(sampleDNPHandler);

 /* get the current connection state */

 lastConnectionState = dbase(MODBUS, CONNECTION_STATUS);

 /* loop forever */

 while (TRUE)

 {

 request_resource(IO_SYSTEM);

 /* get the current connection state */

 currentConnectionState = dbase(MODBUS,

CONNECTION_STATUS);

 /* if the state has changed */

 if (currentConnectionState != lastConnectionState)

 {

 /* if the connection is active */

 if (currentConnectionState)

 {

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 161 161

 /* Inform DNP that a connection exists

*/

 dnpConnectionEvent(DNP_CONNECTED);

 /* clear the request flag */

 setdbase(MODBUS, CONNECTION_REQUIRED,

0);

 }

 else

 {

 /* Inform DNP that the connection is

closed */

 dnpConnectionEvent(DNP_DISCONNECTED);

 /* clear the message flags */

 setdbase(MODBUS, MESSAGE_COMPLETE, 0);

 setdbase(MODBUS, MESSAGE_FAILED, 0);

 }

 /* save the new state */

 lastConnectionState = currentConnectionState;

 }

 /* release the processor so other tasks can run */

 release_resource(IO_SYSTEM);

 release_processor();

 }

}

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 162 162

dnpClearEventLog

Clear DNP Event Log

Syntax:

#include <ctools.h>

BOOLEAN dnpClearEventLog(void);

Description:

The dnpClearEventLogs function deletes all change events from the DNP
change event buffers, for all point types.

Example:

See the example in the section dnpSendUnsolicited.

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 163 163

dnpConnectionEvent

Report a DNP connection event

Syntax

#include <ctools.h>

void dnpConnectionEvent(DNP_CONNECTION_EVENT event);

Description

dnpConnectionEvent is used to report a change in connection status to DNP.
This function is only used if a custom DNP connection handler has been
installed.

event is current connection status. The valid connection status settings are
DNP_CONNECTED, and DNP_DISCONNECTED.

See Also

dnpInstallConnectionHandler

Example

See the dnpInstallConnectionHandler example.

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 164 164

dnpCreateRoutingTable

Create Routing Table

Syntax

#include <ctools.h>

BOOLEAN createRoutingTable (UINT16 size);

Description

This function destroys any existing DNP routing table, and allocates memory for
a new routing table according to the „size‟ parameter.

Notes

DNP needs to be enabled before calling this function in order to create the DNP
configuration.

The function returns TRUE if successful, FALSE otherwise.

Example

See the example in the section dnpSendUnsolicited.

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 165 165

dnpGenerateEventLog

Generate DNP Event Log

Syntax

#include <ctools.h>

BOOLEAN dnpGenerateEventLog(

 UINT16 pointType,

 UINT16 pointAddress

);

Description

The dnpGenerateEventLog function generates a change event for the DNP point
specified by pointType and pointAddress.

pointType specifies the type of DNP point. Allowed values are:

BI_POINT binary input

AI16_POINT 16 bit analog input

AI32_POINT 32 bit analog input

AISF_POINT short float analog input

CI16_POINT 16 bit counter output

CI32_POINT 32 bit counter output

pointAddress specifies the DNP address of the point.

A change event is generated for the specified point (with the current time and
current value), and stored in the DNP event buffer.

The format of the event will depend on the Event Reporting Method and Class of
Event Object that have been configured for the point.

The function returns TRUE if the event was generated. It returns FALSE if the
DNP point is invalid, or if the DNP configuration has not been created.

Notes

DNP needs to be enabled before calling this function in order to create the DNP
configuration.

Example

See the example in the section dnpSendUnsolicited.

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 166 166

dnpGetAI16Config

Get DNP 16-bit Analog Input Configuration

Syntax

#include <ctools.h>

BOOLEAN dnpGetAI16Config(

 UINT16 point,

 dnpAnalogInput * pAnalogInput

);

Description

This function reads the configuration of a DNP 16-bit analog input point.

The function has two parameters: the point number; and a pointer to an analog
input point configuration structure.

The function returns TRUE if the configuration was read. It returns FALSE if the
point number is not valid, if the pointer is NULL, or if DNP configuration has not
been created.

Notes

DNP needs to be enabled before calling this function in order to create the DNP
configuration.

See Also

dnpSaveAI16Config

Example

See example in the dnpGetConfiguration function section.

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 167 167

dnpGetAI32Config

Get DNP 32-bit Analog Input Configuration

Syntax

#include <ctools.h>

BOOLEAN dnpGetAI32Config(

 UINT32 point,

 dnpAnalogInput * pAnalogInput

);

Description

This function reads the configuration of a DNP 32-bit analog input point.

The function has two parameters: the point number; and a pointer to an analog
input point configuration structure.

The function returns TRUE if the configuration was read. It returns FALSE if the
point number is not valid, if the pointer is NULL, or if DNP configuration has not
been created.

Notes

DNP needs to be enabled before calling this function in order to create the DNP
configuration.

See Also

dnpSaveAI32Config

Example

See example in the dnpGetConfiguration function section.

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 168 168

dnpGetAISFConfig

Get Short Floating Point Analog Input Configuration

Syntax

#include <ctools.h>

BOOLEAN dnpGetAISFConfig (

 UINT16 point,

 dnpAnalogInput *pAnalogInput;

);

Description

This function reads the configuration of a DNP short floating point analog input
point.

The function has two parameters: the point number, and a pointer to a
configuration structure.

The function returns TRUE if the configuration was successfully read, or FALSE
otherwise (if the point number is not valid, or pointer is NULL, or if the DNP
configuration has not been created).

Notes

DNP needs to be enabled before calling this function in order to create the DNP
configuration.

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 169 169

dnpGetAO16Config

Get DNP 16-bit Analog Output Configuration

Syntax

#include <ctools.h>

BOOLEAN dnpGetAO16Config(

 UINT16 point,

 dnpAnalogOutput * pAnalogOutput

);

Description

This function reads the configuration of a DNP 16-bit analog output point.

The function has two parameters: the point number; and a pointer to an analog
output point configuration structure.

The function returns TRUE if the configuration was read. It returns FALSE if the
point number is not valid, if the pointer is NULL, or if DNP configuration has not
been created.

Notes

DNP needs to be enabled before calling this function in order to create the DNP
configuration.

See Also

dnpSaveAO16Config

Example

See example in the dnpGetConfiguration function section.

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 170 170

dnpGetAO32Config

Get DNP 32-bit Analog Output Configuration

Syntax

#include <ctools.h>

BOOLEAN dnpGetAO32Config(

 UINT32 point,

 dnpAnalogOutput * pAnalogOutput

);

Description

This function reads the configuration of a DNP 32-bit analog output point.

The function has two parameters: the point number; and a pointer to an analog
output point configuration structure.

The function returns TRUE if the configuration was read. It returns FALSE if the
point number is not valid, if the pointer is NULL, or if DNP configuration has not
been created.

Notes

DNP needs to be enabled before calling this function in order to create the DNP
configuration.

See Also

dnpSaveAO32Config

Example

See example in the dnpGetConfiguration function section.

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 171 171

dnpGetAOSFConfig

Get Short Floating Point Analog Output Configuration

Syntax

#include <ctools.h>

BOOLEAN dnpGetAOSFConfig (

 UINT16 point,

 dnpAnalogOutput *pAnalogOutput;

);

Description

This function reads the configuration of a DNP short floating point analog output
point.

The function has two parameters: the point number, and a pointer to a
configuration structure.

The function returns TRUE if the configuration was successfully read, or FALSE
otherwise (if the point number is not valid, or pointer is NULL, or if the DNP
configuration has not been created).

Notes

DNP needs to be enabled before calling this function in order to create the DNP
configuration.

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 172 172

dnpGetBIConfig

Get DNP Binary Input Configuration

Syntax

#include <ctools.h>

BOOLEAN dnpGetBIConfig(

 UINT16 point,

 dnpBinaryInput * pBinaryInput

);

Description

This function reads the configuration of a DNP binary input point.

The function has two parameters: the point number; and a pointer to a binary
input point configuration structure.

The function returns TRUE if the configuration was read. It returns FALSE if the
point number is not valid, if the pointer is NULL, or if DNP configuration has not
been created.

Notes

DNP needs to be enabled before calling this function in order to create the DNP
configuration.

See Also

dnpSaveBIConfig

Example

See example in the dnpGetConfiguration function section.

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 173 173

dnpGetBIConfigEx

Read DNP Binary Input Extended Point

Syntax

BOOLEAN dnpGetBIConfigEx(

 UINT16 point,

 dnpBinaryInputEx *pBinaryInput

);

Description

This function reads the configuration of an extended DNP Binary Input point.

The function has two parameters: the point number, and a pointer to an extended
binary input point configuration structure.

The function returns TRUE if the configuration was successfully read. It returns
FALSE if the point number is not valid, if the configuration is not valid, or if the
DNP configuration has not been created.

This function supersedes dnpSaveBIConfig.

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 174 174

dnpGetBOConfig

Get DNP Binary Output Configuration

Syntax

#include <ctools.h>

BOOLEAN dnpGetBOConfig(

 UINT16 point,

 dnpBinaryOutput * pBinaryOutput

);

 Description

This function reads the configuration of a DNP binary output point.

The function has two parameters: the point number; and a pointer to a binary
output point configuration structure.

The function returns TRUE if the configuration was read. It returns FALSE if the
point number is not valid, if the pointer is NULL, or if DNP configuration has not
been created.

Notes

DNP needs to be enabled before calling this function in order to create the DNP
configuration.

Example

See example in the dnpGetConfiguration function section.

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 175 175

dnpGetCI16Config

Get DNP 16-bit Counter Input Configuration

Syntax

#include <ctools.h>

BOOLEAN dnpGetCI16Config(

 UINT16 point,

 dnpCounterInput * pCounterInput

);

Description

This function reads the configuration of a DNP 16-bit counter input point.

The function has two parameters: the point number; and a pointer to a counter
input point configuration structure.

The function returns TRUE if the configuration was read. It returns FALSE if the
point number is not valid, if the pointer is NULL, or if DNP configuration has not
been created.

Notes

DNP needs to be enabled before calling this function in order to create the DNP
configuration.

See Also

dnpSaveCI16Config

Example

See example in the dnpGetConfiguration function section.

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 176 176

dnpGetCI32Config

Get DNP 32-bit Counter Input Configuration

Syntax

#include <ctools.h>

BOOLEAN dnpGetCI32Config(

 UINT32 point,

 dnpCounterInput * pCounterInput

);

Description

This function reads the configuration of a DNP 32-bit counter input point.

The function has two parameters: the point number; and a pointer to a counter
input point configuration structure.

The function returns TRUE if the configuration was read. It returns FALSE if the
point number is not valid, if the pointer is NULL, or if DNP configuration has not
been created.

Notes

DNP needs to be enabled before calling this function in order to create the DNP
configuration.

See Also

dnpSaveCI32Config

Example

See example in the dnpGetConfiguration function section.

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 177 177

dnpGetConfiguration

Get DNP Configuration

Syntax

#include <ctools.h>

BOOLEAN dnpGetConfiguration(

 dnpConfiguration * pConfiguration

);

Description

This function reads the DNP configuration.

The function has one parameter: a pointer to a DNP configuration structure.

The function returns TRUE if the configuration was read and FALSE if an error
occurred.

See Also

dnpSaveConfiguration

Example

The following program demonstrates how to configure DNP for operation on
com2. To illustrate creation of points it uses a sequential mapping of Modbus
registers to points. This is not required. Any mapping may be used.

void main(void)

{

 UINT16 index; /* loop index */

 struct prot_settings settings; /* protocol settings */

 dnpConfiguration configuration; /* configuration settings

*/

 dnpBinaryInput binaryInput; /* binary input

settings */

 dnpBinaryOutput binaryOutput; /* binary output

settings */

 dnpAnalogInput analogInput; /* analog input

settings */

 dnpAnalogOutput analogOutput; /* analog output

settings */

 dnpCounterInput counterInput; /* counter input

settings */

 /* Stop any protocol currently active on com port 2 */

 get_protocol(com2,&settings);

 settings.type = NO_PROTOCOL;

 set_protocol(com2,&settings);

 /* Load the Configuration Parameters */

 configuration.masterAddress = DEFAULT_DNP_MASTER;

 configuration.rtuAddress = DEFAULT_DNP_RTU;

 configuration.datalinkConfirm = TRUE;

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 178 178

 configuration.datalinkRetries =

DEFAULT_DLINK_RETRIES;

 configuration.datalinkTimeout =

DEFAULT_DLINK_TIMEOUT;

 configuration.operateTimeout =

DEFAULT_OPERATE_TIMEOUT;

 configuration.applicationConfirm = TRUE;

 configuration.maximumResponse =

DEFAULT_MAX_RESP_LENGTH;

 configuration.applicationRetries = DEFAULT_APPL_RETRIES;

 configuration.applicationTimeout = DEFAULT_APPL_TIMEOUT;

 configuration.timeSynchronization = TIME_SYNC;

 configuration.BI_number = 8;

 configuration.BI_cosBufferSize = DEFAULT_COS_BUFF;

 configuration.BI_soeBufferSize = DEFAULT_SOE_BUFF;

 configuration.BO_number = 8;

 configuration.CI16_number = 24;

 configuration.CI16_bufferSize = 48;

 configuration.CI32_number = 12;

 configuration.CI32_bufferSize = 24;

 configuration.AI16_number = 24;

 configuration.AI16_reportingMethod = CURRENT_VALUE;

 configuration.AI16_bufferSize = 24;

 configuration.AI32_number = 12;

 configuration.AI32_reportingMethod = CURRENT_VALUE;

 configuration.AI32_bufferSize = 12;

 configuration.AO16_number = 8;

 configuration.AO32_number = 8;

 configuration.unsolicited = TRUE;

 configuration.holdTime = DEFAULT_HOLD_TIME;

 configuration.holdCount = DEFAULT_HOLD_COUNT;

 dnpSaveConfiguration(&configuration);

 /* Start DNP protocol on com port 2 */

 get_protocol(com2,&settings);

 settings.type = DNP;

 set_protocol(com2,&settings);

 /* Save port settings so DNP protocol will automatically

start */

 request_resource(IO_SYSTEM);

 save(EEPROM_RUN);

 release_resource(IO_SYSTEM);

 /* Configure Binary Output Points */

 for (index = 0; index < configuration.BO_number; index++)

 {

 binaryOutput.modbusAddress1 = 1 + index;

 binaryOutput.modbusAddress2 = 1 + index;

 binaryOutput.controlType = NOT_PAIRED;

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 179 179

 dnpSaveBOConfig(index, &binaryOutput);

 }

 /* Configure Binary Input Points */

 for (index = 0;index < configuration.BI_number; index++)

 {

 binaryInput.modbusAddress = 10001 + index;

 binaryInput.class = CLASS_1;

 binaryInput.eventType = COS;

 dnpSaveBIConfig(index, &binaryInput);

 }

 /* Configure 16 Bit Analog Input Points */

 for (index = 0; index < configuration.AI16_number; index++)

 {

 analogInput.modbusAddress = 30001 + index;

 analogInput.class = CLASS_2;

 analogInput.deadband = 1;

 dnpSaveAI16Config(index, &analogInput);

 }

 /* Configure32 Bit Analog Input Points */

 for (index = 0; index < configuration.AI32_number; index++)

 {

 analogInput.modbusAddress = 30001 + index * 2;

 analogInput.class = CLASS_2;

 analogInput.deadband = 1;

 dnpSaveAI32Config(index,&analogInput);

 }

 /* Configure 16 Bit Analog Output Points */

 for (index = 0;index < configuration.AO16_number; index++)

 {

 analogOutput.modbusAddress = 40001 + index;

 dnpSaveAO16Config(index, &analogOutput);

 }

 /* Configure 32 Bit Analog Output Points */

 for (index = 0; index < configuration.AO32_number; index++)

 {

 analogOutput.modbusAddress = 40101 + index * 2;

 dnpSaveAO32Config(index, &analogOutput);

 }

 /* Configure 16 Bit Counter Input Points */

 for (index = 0; index < configuration.CI16_number; index++)

 {

 counterInput.modbusAddress = 30001 + index;

 counterInput.class = CLASS_3;

 counterInput.threshold = 1;

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 180 180

 dnpSaveCI16Config(index, &counterInput);

 }

 /* Configure 32 bit Counter Input Points */

 for (index = 0; index < configuration.CI32_number; index++)

 {

 counterInput.modbusAddress = 30001 + index * 2;

 counterInput.class = CLASS_3;

 counterInput.threshold = 1;

 dnpSaveCI32Config(index, &counterInput);

 }

 /* add additional initialization code for your application

here ... */

 /* loop forever */

 while (TRUE)

 {

 /* add additional code for your application here ...

*/

 /* allow other tasks of this priority to execute */

 release_processor();

 }

 return;

}

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 181 181

dnpGetConfigurationEx

Read DNP Extended Configuration

Syntax

BOOLEAN dnpGetConfigurationEx (

 dnpConfigurationEx *pDnpConfigurationEx

);

Description

This function reads the extended DNP configuration parameters.

The function has one parameter: a pointer to the DNP extended configuration
structure.

The function returns TRUE if the configuration was successfully read, or FALSE
otherwise (if the pointer is NULL, or if the DNP configuration has not been
created).

Notes

DNP needs to be enabled before calling this function in order to create the DNP
configuration.

This function supersedes the dnpGetConfiguration function.

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 182 182

dnpGetRuntimeStatus

Get DNP Runtime Status

Syntax:

#include <ctools.h>

BOOLEAN dnpGetRuntimeStatus(

 DNP_RUNTIME_STATUS *status

);

Description:

The dnpGetRuntimeStatus function reads the current status of all DNP change
event buffers, and returns information in the status structure.

DNP needs to be enabled before calling this function in order to create the DNP
configuration.

Example:

See the example in the section dnpSendUnsolicited.

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 183 183

dnpGetUnsolicitedBackoffTime

Get DNP Unsolicited Back Off Time

Syntax:

#include <ctools.h>

UINT16 dnpGetUnsolicitedBackoffTime();

Description:

The dnpGetUnsolicitedBackoffTime function reads the unsolicited back off time
from the controller.

The time is in seconds; and the allowed range is 0-65535 seconds. A value of
zero indicates that the unsolicited back off timer is disabled.

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 184 184

dnpReadRoutingTableDialStrings

Read DNP Routing Table Entry Dial Strings

Syntax

BOOLEAN dnpReadRoutingTableDialStrings(

 UINT16 index,

 UINT16 maxPrimaryDialStringLength,

 CHAR *primaryDialString,

 UINT16 maxSecondaryDialStringLength,

 CHAR *secondaryDialString

);

Description

This function reads a primary and secondary dial string from an entry in the DNP
routing table.

index specifies the index of an entry in the DNP routing table.

maxPrimaryDialStringLength specifies the maximum length of primaryDialString
excluding the null-terminator character. The function uses this to limit the size of
the returned string to prevent overflowing the storage passed to the function.

primaryDialString returns the primary dial string of the target station. It needs to
point to an array of size maxPrimaryDialStringLength.

maxSecondaryDialStringLength specifies the maximum length of
secondaryDialString excluding the null-terminator character. The function uses
this to limit the size of the returned string to prevent overflowing the storage
passed to the function.

secondaryDialString returns the secondary dial string of the target station. It
needs to point to an array of size maxSecondaryDialStringLength.

Notes

This function needs to be used in conjunction with the
dnpReadRoutingTableEntry function to read a complete entry in the DNP routing
table.

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 185 185

dnpReadRoutingTableEntry

Read Routing Table entry

Syntax

#include <ctools.h>

BOOLEAN dnpReadRoutingTableEntry (

 UINT16 index,

 routingTable *pRoute

);

Description

This function reads an entry from the routing table.

pRoute is a pointer to a table entry; it is written by this function.

The return value is TRUE if pRoute was successfully written or FALSE otherwise.

 Notes

DNP needs to be enabled before calling this function in order to create the DNP
configuration.

The function returns the total number of entries in the DNP routing table.

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 186 186

dnpReadRoutingTableSize

Read Routing Table size

Syntax

#include <ctools.h>

UINT16 dnpReadRoutingTableSize (void);

Description

This function reads the total number of entries in the routing table.

Notes

DNP needs to be enabled before calling this function in order to create the DNP
configuration.

The function returns the total number of entries in the routing table.

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 187 187

dnpSaveAI16Config

Save DNP 16-Bit Analog Input Configuration

Syntax

#include <ctools.h>

BOOLEAN dnpSaveAI16Config(

 UINT16 point,

 dnpAnalogInput * pAnalogInput

);

Description

This function sets the configuration of a DNP 16-bit analog input point.

The function has two parameters: the point number; and a pointer to an analog
input point configuration structure.

The function returns TRUE if the configuration was written. It returns FALSE if
the point number is not valid, if the configuration is not valid, or if DNP
configuration has not been created.

Notes

DNP needs to be enabled before calling this function in order to create the DNP
configuration.

See Also

dnpGetAI16Config

Example

See example in the dnpGetConfiguration function section.

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 188 188

dnpSaveAI32Config

Save DNP 32-Bit Analog Input Configuration

Syntax

#include <ctools.h>

BOOLEAN dnpSaveAI32Config(

 UINT32 point,

 dnpAnalogInput * pAnalogInput

);

Description

This function sets the configuration of a DNP 32-bit analog input point.

The function has two parameters: the point number; and a pointer to an analog
input point configuration structure.

The function returns TRUE if the configuration was written. It returns FALSE if
the point number is not valid, if the configuration is not valid, or if DNP
configuration has not been created.

Notes

DNP needs to be enabled before calling this function in order to create the DNP
configuration.

See Also

dnpGetAI32Config

Example

See example in the dnpGetConfiguration function section.

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 189 189

dnpSaveAISFConfig

Save Short Floating Point Analog Input Configuration

Syntax

#include <ctools.h>

BOOLEAN dnpSaveAISFConfig (

 UINT16 point,

 dnpAnalogInput *pAnalogInput;

);

Description

This function sets the configuration of a DNP short floating point analog input
point.

The function has two parameters: the point number, and a pointer to a
configuration structure.

The function returns TRUE if the configuration was successfully written, or
FALSE otherwise (if the point number is not valid, or the configuration is not
valid, or if the DNP configuration has not been created).

Notes

DNP needs to be enabled before calling this function in order to create the DNP
configuration.

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 190 190

dnpSaveAO16Config

Save DNP 16-Bit Analog Output Configuration

Syntax

#include <ctools.h>

BOOLEAN dnpSaveAO16Config(

 UINT16 point,

 dnpAnalogOutput * pAnalogOutput

);

Description

This function sets the configuration of a DNP 16-bit analog output point.

The function has two parameters: the point number; and a pointer to an analog
output point configuration structure.

The function returns TRUE if the configuration was written. It returns FALSE if
the point number is not valid, if the configuration is not valid, or if DNP
configuration has not been created.

Notes

DNP needs to be enabled before calling this function in order to create the DNP
configuration.

Example

See example in the dnpGetConfiguration function section.

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 191 191

dnpSaveAO32Config

Save DNP 32-Bit Analog Output Configuration

Syntax

#include <ctools.h>

BOOLEAN dnpSaveAO32Config(

 UINT32 point,

 dnpAnalogOutput * pAnalogOutput

);

Description

This function sets the configuration of a DNP 32-bit analog output point.

The function has two parameters: the point number; and a pointer to an analog
output point configuration structure.

The function returns TRUE if the configuration was written. It returns FALSE if
the point number is not valid, if the configuration is not valid, or if DNP
configuration has not been created.

Notes

DNP needs to be enabled before calling this function in order to create the DNP
configuration.

See Also

dnpGetAO32Config

Example

See example in the dnpGetConfiguration function section.

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 192 192

dnpSaveAOSFConfig

Save Short Floating Point Analog Output Configuration

Syntax

#include <ctools.h>

BOOLEAN dnpSaveAOSFConfig (

 UINT16 point,

 dnpAnalogOutput *pAnalogOutput;

);

Description

This function sets the configuration of a DNP short floating point analog output
point.

The function has two parameters: the point number, and a pointer to a
configuration structure.

The function returns TRUE if the configuration was successfully written, or
FALSE otherwise (if the point number is not valid, or the configuration is not
valid, or if the DNP configuration has not been created).

Notes

DNP needs to be enabled before calling this function in order to create the DNP

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 193 193

dnpSaveBIConfig

Save DNP Binary Input Configuration

Syntax

#include <ctools.h>

BOOLEAN dnpSaveBIConfig(

 UINT16 point,

 dnpBinaryInput * pBinaryInput

);

Description

This function sets the configuration of a DNP binary input point.

The function has two parameters: the point number; and a pointer to a binary
input point configuration structure.

The function returns TRUE if the configuration was written. It returns FALSE if
the point number is not valid, if the configuration is not valid, or if DNP
configuration has not been created.

Notes

DNP needs to be enabled before calling this function in order to create the DNP
configuration.

Example

See example in the dnpGetConfiguration function section.

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 194 194

dnpSaveBIConfigEx

Write DNP Binary Input Extended Point

Syntax

BOOLEAN dnpSaveBIConfigEx(

 UINT16 point,

 dnpBinaryInputEx *pBinaryInput

);

Description

This function writes the configuration of an extended DNP Binary Input point.

The function has two parameters: the point number, and a pointer to an extended
binary input point configuration structure.

The function returns TRUE if the configuration was successfully written. It returns
FALSE if the point number is not valid, if the configuration is not valid, or if the
DNP configuration has not been created.

This function supersedes dnpSaveBIConfig.

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 195 195

dnpSaveBOConfig

Save DNP Binary Output Configuration

Syntax

#include <ctools.h>

BOOLEAN dnpSaveBOConfig(

 UINT16 point,

 dnpBinaryOutput * pBinaryOutput

);

 Description

This function sets the configuration of a DNP binary output point.

The function has two parameters: the point number; and a pointer to a binary
output point configuration structure.

The function returns TRUE if the configuration was written. It returns FALSE if
the point number is not valid, if the configuration is not valid, or if DNP
configuration has not been created.

Notes

DNP needs to be enabled before calling this function in order to create the DNP
configuration.

Example

See example in the dnpGetConfiguration function section.

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 196 196

dnpSaveCI16Config

Save DNP 16-Bit Counter Input Configuration

Syntax

#include <ctools.h>

BOOLEAN dnpSaveCI16Config(

 UINT16 point,

 dnpCounterInput * pCounterInput

);

Description

This function sets the configuration of a DNP 16-bit counter input point.

The function has two parameters: the point number; and a pointer to a counter
input point configuration structure.

The function returns TRUE if the configuration was written. It returns FALSE if
the point number is not valid, if the configuration is not valid, or if DNP
configuration has not been created.

Notes

DNP needs to be enabled before calling this function in order to create the DNP
configuration.

See Also

dnpGetCI16Config

Example

See example in the dnpGetConfiguration function section.

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 197 197

dnpSaveCI32Config

Save DNP 32-Bit Counter Input Configuration

Syntax

#include <ctools.h>

BOOLEAN dnpSaveCI32Config(

 UINT32 point,

 dnpCounterInput * pCounterInput

);

Description

This function sets the configuration of a DNP 32-bit counter input point.

The function has two parameters: the point number; and a pointer to a counter
input point configuration structure.

The function returns TRUE if the configuration was written. It returns FALSE if
the point number is not valid, if the configuration is not valid, or if DNP
configuration has not been created.

Notes

DNP needs to be enabled before calling this function in order to create the DNP
configuration.

See Also

dnpGetCI32Config

Example

See example in the dnpGetConfiguration function section.

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 198 198

dnpSaveConfiguration

Save DNP Configuration

Syntax

#include <ctools.h>

BOOLEAN dnpSaveConfiguration(

 dnpConfiguration * pConfiguration

);

Description

This function sets the DNP configuration.

The function has one parameter: a pointer to a DNP configuration structure.

The function returns TRUE if the configuration was updated and FALSE if an
error occurred. No changes are made to any parameters if an error occurs.

Notes

This function needs to be called before enabling DNP.

The following parameters cannot be changed if DNP is enabled. The function will
not make any changes and will return FALSE if this is attempted. The protocol
needs to be disabled in order to make a change involving these parameters.

 BI_number

 BI_cosBufferSize

 BI_soeBufferSize

 BO_number

 CI16_number

 CI16_bufferSize

 CI32_number

 CI32_bufferSize

 AI16_number

 AI16_reportingMethod

 AI16_bufferSize

 AI32_number

 AI32_reportingMethod

 AI32_bufferSize

 AO16_number

 AO32_number

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 199 199

The following parameters can be changed when DNP is enabled.

 masterAddress;

 rtuAddress;

 datalinkConfirm;

 datalinkRetries;

 datalinkTimeout;

 operateTimeout

 applicationConfirm

 maximumResponse

 applicationRetries

 applicationTimeout

 timeSynchronization

 unsolicited

 holdTime

 holdCount

See Also

dnpGetConfiguration

Example

See example in the dnpGetConfiguration function section.

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 200 200

dnpSaveConfigurationEx

Write DNP Extended Configuration

Syntax

BOOLEAN dnpSaveConfigurationEx (

 dnpConfigurationEx *pDnpConfigurationEx

);

Description

This function writes the extended DNP configuration parameters.

The function has one parameter: a pointer to the DNP extended configuration
structure.

The function returns TRUE if the configuration was successfully written, or
FALSE otherwise (if the pointer is NULL, or if the DNP configuration has not
been created).

Notes

DNP needs to be enabled before calling this function in order to create the DNP
configuration.

This function supersedes the dnpSaveConfiguration function.

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 201 201

dnpSaveUnsolicitedBackoffTime

Save DNP Unsolicited Back Off Time

Syntax:

BOOLEAN dnpSaveUnsolicitedBackoffTime (

 UINT16 backoffTime

);

Description:

The dnpSaveUnsolicitedBackoffTime function writes the unsolicited back off time
to the controller.

The time is in seconds; and the allowed range is 0-65535 seconds. A value of
zero indicates that the unsolicited back off timer is disabled.

The function returns TRUE if the function was successful. It returns FALSE if the
DNP configuration has not been created.

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 202 202

dnpSearchRoutingTable

Search Routing Table

Syntax

#include <ctools.h>

BOOLEAN dnpSearchRoutingTable (

 UINT16 Address

 routingTable *pRoute

);

Description

This function searches the routing table for a specific DNP address.

pRoute is a pointer to a table entry; it is written by this function.

The return value is TRUE if pRoute was successfully written or FALSE otherwise.

Notes

DNP needs to be enabled before calling this function in order to create the DNP
configuration.

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 203 203

dnpSendUnsolicited

Send DNP Unsolicited Response

Syntax

#include <ctools.h>

UINT16 dnpSendUnsolicitedResponse(

 UINT16 classFlags

);

Description

The dnpSendUnsolicitedResponse function sends an „Unsolicited Response‟
message in DNP protocol, with data from the specified class(es).

 class specifies the class(es) of event data to include in the message.

 Allowed values are:

#define CLASS0_FLAG 0x01 /* flag for enabling Class 0

Unsolicited Responses */

#define CLASS1_FLAG 0x02 /* flag for enabling Class 1

Unsolicited Responses */

#define CLASS2_FLAG 0x04 /* flag for enabling Class 2

Unsolicited Responses */

#define CLASS3_FLAG 0x08 /* flag for enabling Class 3

Unsolicited Responses */

DNP needs to be enabled before calling this function in order to create the DNP
configuration.

Example

/* ---

 SCADAPack 32 C++ Application Main Program

 Copyright 2001 - 2002, Control Microsystems Inc.

 Test application for new DNP API Functions.

 written by James Wiles May 2003

 This app was written for a ScadaPack 32P, running DNP on comm

port

 4.

 -- */

#include <ctools.h>

#include <string.h>

/* ---

 Constants

*/

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 204 204

/*

 * Event Triggers :

 * This application detects when these registers have been set,

 * then performs the specified action and clears the register.

 */

#define CLEAR_EVENTS 100 /* Clear all DNP Event Log

Buffers */

#define GENERATE_BI_EVENT 101 /* Generate a change event for BI

channel 0 */

#define GENERATE_AI16_EVENT 102 /* Generate a change event

for 16-bit AI channel 0 */

#define CLASS0_REPORT 103 /* Send an unsolicited

report of Class 0 data */

/*

 * Status Flags

 */

#define EVENTS_CLASS1 110

#define EVENTS_CLASS2 111

#define EVENTS_CLASS3 112

/*

 * Status Registers

 */

#define EVENT_COUNT_AI16 40102

#define EVENT_COUNT_BI 40104

#define EVENT_COUNT_CLASS1 40106

#define EVENT_COUNT_CLASS2 40108

#define EVENT_COUNT_CLASS3 40110

/* ---

 main

 This routine is the main application loop.

*/

void main(void)

{

 UINT16 index; /* loop index */

 struct prot_settings protocolSettings; /* protocol

settings */

 dnpConfiguration configuration;

 dnpBinaryInput binaryInput;

 dnpAnalogInput analogInput;

 DNP_RUNTIME_STATUS dnpStatus;

 int clear_events_flag;

 int bi_event_flag;

 int ai16_event_flag;

 int class0_report_flag;

 /* Set DNP Configuration */

 configuration.masterAddress = 100;

 configuration.rtuAddress = 1;

 configuration.datalinkConfirm = FALSE;

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 205 205

 configuration.datalinkRetries =

DEFAULT_DLINK_RETRIES;

 configuration.datalinkTimeout =

DEFAULT_DLINK_TIMEOUT;

 configuration.operateTimeout =

DEFAULT_OPERATE_TIMEOUT;

 configuration.applicationConfirm = FALSE;

 configuration.maximumResponse =

DEFAULT_MAX_RESP_LENGTH;

 configuration.applicationRetries = DEFAULT_APPL_RETRIES;

 configuration.applicationTimeout = DEFAULT_APPL_TIMEOUT;

 configuration.timeSynchronization = NO_TIME_SYNC;

 configuration.BI_number = 2;

 configuration.BI_startAddress = 0;

 configuration.BI_reportingMethod = REPORT_ALL_EVENTS;

 configuration.BI_soeBufferSize = 1000;

 configuration.BO_number = 0;

 configuration.BO_startAddress = 0;

 configuration.CI16_number = 0;

 configuration.CI16_startAddress = 0;

 configuration.CI16_reportingMethod = REPORT_ALL_EVENTS;

 configuration.CI16_bufferSize = 0;

 configuration.CI32_number = 0;

 configuration.CI32_startAddress = 100;

 configuration.CI32_reportingMethod = REPORT_ALL_EVENTS;

 configuration.CI32_bufferSize = 0;

 configuration.CI32_wordOrder = MSW_FIRST;

 configuration.AI16_number = 2;

 configuration.AI16_startAddress = 0;

 configuration.AI16_reportingMethod = REPORT_ALL_EVENTS;

 configuration.AI16_bufferSize = 1000;

 configuration.AI32_number = 0;

 configuration.AI32_startAddress = 100;

 configuration.AI32_reportingMethod = REPORT_ALL_EVENTS;

 configuration.AI32_bufferSize = 0;

 configuration.AI32_wordOrder = MSW_FIRST;

 configuration.AISF_number = 0;

 configuration.AISF_startAddress = 200;

 configuration.AISF_reportingMethod = REPORT_CHANGE_EVENTS;

 configuration.AISF_bufferSize = 0;

 configuration.AISF_wordOrder = MSW_FIRST;

 configuration.AO16_number = 0;

 configuration.AO16_startAddress = 0;

 configuration.AO32_number = 0;

 configuration.AO32_startAddress = 100;

 configuration.AO32_wordOrder = MSW_FIRST;

 configuration.AOSF_number = 0;

 configuration.AOSF_startAddress = 200;

 configuration.AOSF_wordOrder = MSW_FIRST;

 configuration.autoUnsolicitedClass1 = TRUE;

 configuration.holdTimeClass1 = 10;

 configuration.holdCountClass1 = 3;

 configuration.autoUnsolicitedClass2 = TRUE;

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 206 206

 configuration.holdTimeClass2 = 10;

 configuration.holdCountClass2 = 3;

 configuration.autoUnsolicitedClass3 = TRUE;

 configuration.holdTimeClass3 = 10;

 configuration.holdCountClass3 = 3;

 dnpSaveConfiguration(&configuration);

 /* Start DNP protocol on com port 4 */

 get_protocol(com4, &protocolSettings);

 protocolSettings.type = DNP;

 set_protocol(com4, &protocolSettings);

 /* Configure Binary Input Points */

 for (index = 0;index < configuration.BI_number; index++)

 {

 binaryInput.modbusAddress = 10001 + index;

 binaryInput.eventClass = CLASS_1;

 dnpSaveBIConfig(configuration.BI_startAddress +

index, &binaryInput);

 }

 /* Configure 16 Bit Analog Input Points */

 for (index = 0; index < configuration.AI16_number; index++)

 {

 analogInput.modbusAddress = 40002 + index * 2;

 analogInput.eventClass = CLASS_2;

 analogInput.deadband = 1;

 dnpSaveAI16Config(configuration.AI16_startAddress +

index, &analogInput);

 }

 /*

 * Configure DNP Routing Table :

 * station 100 via com4

 * station 101 via com4

 */

 dnpCreateRoutingTable(2);

 dnpWriteRoutingTableEntry(0, 100, CIF_Com4,

DEFAULT_DLINK_RETRIES, DEFAULT_DLINK_TIMEOUT);

 dnpWriteRoutingTableEntry(1, 101, CIF_Com4,

DEFAULT_DLINK_RETRIES, DEFAULT_DLINK_TIMEOUT);

 /*

 * main loop

 */

 while (TRUE)

 {

 /* request IO resource */

 request_resource(IO_SYSTEM);

 /* read DNP status */

 dnpGetRuntimeStatus(&dnpStatus);

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 207 207

 setdbase(MODBUS, EVENTS_CLASS1,

dnpStatus.eventCountClass1 ? 1 : 0);

 setdbase(MODBUS, EVENTS_CLASS2,

dnpStatus.eventCountClass2 ? 1 : 0);

 setdbase(MODBUS, EVENTS_CLASS3,

dnpStatus.eventCountClass3 ? 1 : 0);

 setdbase(MODBUS, EVENT_COUNT_AI16,

dnpStatus.eventCountAI16);

 setdbase(MODBUS, EVENT_COUNT_BI,

dnpStatus.eventCountBI);

 setdbase(MODBUS, EVENT_COUNT_CLASS1,

dnpStatus.eventCountClass1);

 setdbase(MODBUS, EVENT_COUNT_CLASS2,

dnpStatus.eventCountClass2);

 setdbase(MODBUS, EVENT_COUNT_CLASS3,

dnpStatus.eventCountClass3);

 release_resource(IO_SYSTEM);

 clear_events_flag = FALSE;

 bi_event_flag = FALSE;

 ai16_event_flag = FALSE;

 class0_report_flag = FALSE;

 /* Read Event Triggers */

 if (dbase(MODBUS, CLEAR_EVENTS))

 {

 setdbase(MODBUS, CLEAR_EVENTS, 0);

 clear_events_flag = TRUE;

 }

 if (dbase(MODBUS, GENERATE_BI_EVENT))

 {

 setdbase(MODBUS, GENERATE_BI_EVENT, 0);

 bi_event_flag = FALSE;

 }

 if (dbase(MODBUS, GENERATE_AI16_EVENT))

 {

 setdbase(MODBUS, GENERATE_AI16_EVENT, 0);

 ai16_event_flag = FALSE;

 }

 if (dbase(MODBUS, CLASS0_REPORT))

 {

 setdbase(MODBUS, CLASS0_REPORT, 0);

 class0_report_flag = FALSE;

 }

 /* release IO resource */

 release_resource(IO_SYSTEM);

 /* Clear DNP Event Log buffer if requested */

 if (clear_events_flag)

 {

 dnpClearEventLog();

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 208 208

 }

 /* Generate a DNP Change Event for BI Point 0 if

requested */

 if (bi_event_flag)

 {

 dnpGenerateEventLog(BI_POINT, 0);

 }

 /* Generate a DNP Change Event for 16-bit AI Point 0

if requested */

 if (ai16_event_flag)

 {

 dnpGenerateEventLog(AI16_POINT, 0);

 }

 /* Send DNP Class 0 Unsolicited Report if requested

*/

 if (class0_report_flag)

 {

 dnpSendUnsolicitedResponse(CLASS0_FLAG);

 }

 /* release processor to other tasks */

 release_processor();

 }

}

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 209 209

dnpSendUnsolicitedResponse

Send DNP Unsolicited Response

Syntax

BOOLEAN dnpSendUnsolicitedResponse(

 UINT16 classFlags

);

Description

The dnpSendUnsolicitedResponse function sends an Unsolicited Response
message in DNP, with data from the specified classes.

class specifies the class or classes of event data to include in the message. It
can contain any combination of the following values; if multiple values are used
they should be ORed together:

CLASS0_FLAG enables Class 0 Unsolicited Responses

CLASS1_FLAG enables Class 1 Unsolicited Responses

CLASS2_FLAG enables Class 2 Unsolicited Responses

CLASS3_FLAG enables Class 3 Unsolicited Responses

The function returns TRUE if the DNP unsolicited response message was
successfully triggered. It returns FALSE if an unsolicited message of the same
class is already pending, or if the DNP configuration has not been created.

Notes

DNP needs to be enabled before calling this function in order to create the DNP
configuration.

If no events are pending an empty unsolicited message will be sent.

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 210 210

dnpWriteRoutingTableEntry

Write Routing Table Entry

Syntax

#include <ctools.h>

BOOLEAN dnpWriteRoutingTableEntry (

 UINT16 index,

 UINT16 dnpAddress,

 UINT16 commPort,

 UINT16 DataLinkRetries,

 UINT16 DataLinkTimeout

);

Description

This function writes an entry in the DNP routing table.

Notes

DNP needs to be enabled before calling this function in order to create the DNP
configuration.

The function returns TRUE if successful, FALSE otherwise.

Example

See the example in the section dnpSendUnsolicited.

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 211 211

dnpWriteRoutingTableDialStrings

Write DNP Routing Table Entry Dial Strings

Syntax

BOOLEAN dnpWriteRoutingTableDialStrings(

 UINT16 index,

 UINT16 primaryDialStringLength,

 CHAR *primaryDialString,

 UINT16 secondaryDialStringLength,

 CHAR *secondaryDialString

);

Description

This function writes a primary and secondary dial string into an entry in the DNP
routing table.

index specifies the index of an entry in the DNP routing table.

primaryDialStringLength specifies the length of primaryDialString excluding the
null-terminator character.

primaryDialString specifies the dial string used when dialing the target station.
This string is used on the first attempt.

secondaryDialStringLength specifies the length of secondaryDialString excluding
the null-terminator character.

secondaryDialString specifies the dial string to be used when dialing the target
station. It is used for the next attempt if the first attempt is unsuccessful fails.

Notes

This function needs to be used in conjunction with the
dnpWriteRoutingTableEntry function to write a complete entry in the DNP routing
table.

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 212 212

dout

Write Digital Outputs

Syntax

#include <ctools.h>

int dout(unsigned channel, unsigned value);

Description

The dout function outputs value to the digital input or output specified by
channel. It sets the status of 8 digital points.

The dout function returns the value output to the channel, as modified by the
channel configuration tables. If channel is not valid, –1 is returned.

Notes

The dout function modifies all 8 bits (points) in a channel. Use the turnon and
turnoff functions to write to single bits.

Use offsets from the symbolic constants DIN_START, DIN_END,
EXTENDED_DIN_START, EXTENDED_DIN_END, DOUT_START,
DOUT_END, EXTENDED_DOUT_START and EXTENDED_DOUT_END to
reference digital channels. The constants make programs more portable and
protect against future changes to the digital I/O channel numbering.

The IO_SYSTEM resource needs to be requested before calling this function.

This function is provided for backward compatibility. It cannot access all 5000 I/O
modules. It is recommended that this function not be used in new programs.
Instead use Register Assignment or call the I/O driver ioWrite8Dout directly.

See Also

ioWrite8Dout, din, pulse, timeout, turnon, turnoff, on, off

Example

This program sends all bit combinations to the second digital output channel.

#include <ctools.h>

void main(void)

{

 unsigned value; /* output values */

 for (value = 0; value; value++)

 {

 request_resource(IO_SYSTEM);

 dout(DOUT_START + 1, value);

 release_resource(IO_SYSTEM);

 }

}

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 213 213

end_application

Terminates all Application Tasks

Syntax

#include <ctools.h>

void end_application(void);

Description

The end_application function terminates all APPLICATION type tasks created
with the create_task function. Stack space and resources used by the tasks are
freed.

Notes

This function is used normally by communication protocols to stop an executing
application program, prior to loading a new program into memory.

See Also

create_task, end_task

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 214 214

end_task

Terminate a Task

Syntax

#include <ctools.h>

void end_task(unsigned task_ID);

Description

The end_task function terminates the task specified by task_ID. Stack space
and resources used by the task are freed. The end_task function terminates
both APPLICATION and SYSTEM type tasks.

See Also

create_task, end_application, getTaskInfo

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 215 215

endTimedEvent

Terminate Signaling of a Regular Event

Syntax

#include <ctools.h>

unsigned endTimedEvent(unsigned event);

Description

This endTimedEvent function cancels signaling of a timed event, initialized by
the startTimedEvent function.

The function returns TRUE if the event signaling was canceled.

The function returns FALSE if the event number is not valid, or if the event was
not previously initiated with the startTimedEvent function. The function has no
effect in these cases.

Notes

Valid events are numbered 0 to RTOS_EVENTS - 1. Any events defined in
ctools.h are not valid events for use in an application program.

Example

See the examples for startTimedEvent.

See Also

startTimedEvent

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 216 216

enronInstallCommandHandler

Installs handler for Enron Modbus commands.

Syntax

#include <ctools.h>

void enronInstallCommandHandler(

 UINT16 (* function)(

 UINT16 length,

 UCHAR * pCommand,

 UINT16 responseSize,

 UINT16 * pResponseLength,

 UCHAR * pResponse

)

);

Description

This function installs a handler function for Enron Modbus commands. The
protocol driver calls this handler function each time a command is received for
the Enron Modbus station.

function is a pointer to the handler function. If function is NULL the handler is
disabled.

The function has no return value.

Notes

The application needs to disable the handler when the application ends. This
prevents the protocol driver from calling the handler while the application is
stopped. Call the enronInstallCommmandHandler with a NULL pointer. The usual
method is to create a task exit handler function to do this. See the example below
for details.

The handler function has five parameters.

 length is the number of characters in the command message.

 pCommand is a pointer to the command message. The first byte in the
message is the function code, followed by the Enron Modbus message. See
the Enron Modbus protocol specification for details on the message formats.

 responseSize is the size of the response buffer in characters.

 pResponseLength is a pointer to a variable that will hold the number of
characters in the response. If the handler returns TRUE, it must set this
variable.

 pResponse is a pointer to a buffer that will hold the response message. The
buffer size is responseSize characters. The handler cannot write beyond the
end of the buffer. If the handler returns TRUE, it needs to set this variable.
The data needs to start with the function code and end with the last data

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 217 217

byte. The protocol driver will add the station address, checksum, and
message framing to the response.

The handler function returns the following values.

Value Description

NORMAL Indicates protocol handler should send a
normal response message. Data are returned
using pResponse and pResponseLength.

ILLEGAL_FUNCTION Indicates protocol handler should send an
Illegal Function exception response message.
This response should be used when the
function code in the command is not
recognised.

ILLEGAL_DATA_ADDRESS Indicates protocol handler should send an
Illegal Data Address exception response
message. This response should be used when
the data address in the command is not
recognised.

ILLEGAL_DATA_VALUE Indicates protocol handler should send an
Illegal Data Value exception response
message. This response should be used when
invalid data is found in the command.

If the function returns NORMAL then the protocol driver sends the response
message in the buffer pointed to by pResponse. If the function returns an
exception response protocol driver returns the exception response to the caller.
The buffer pointed to by pResponse is not used.

Example

This program installs a simple handler function.

#include <ctools.h>

/* ---

 This function processes Enron Modbus commands.

 --- */

UINT16 commandHandler(

 UINT16 length,

 UCHAR * pCommand,

 UINT16 responseSize,

 UINT16 * pResponseLength,

 UCHAR * pResponse

)

{

 UCHAR command;

 UINT16 result;

 /* if a command byte was received */

 if (length >= 1)

 {

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 218 218

 /* get the command byte */

 command = pCommand[0];

 switch (command)

 {

 /* read unit status command */

 case 7:

 /* if the response buffer is large enough */

 if (responseSize > 2)

 {

 /* build the response header */

 pResponse[0] = pCommand[0];

 /* set the unit status */

 pResponse[1] = 17;

 /* set response length */

 *pResponseLength = 2;

 /* indicate the command worked */

 result = NORMAL;

 }

 else

 {

 /* buffer is to small to respond */

 result = ILLEGAL_FUNCTION;

 }

 break;

 /* add cases for other commands here */

 default:

 /* command is invalid */

 result = ILLEGAL_FUNCTION;

 }

 }

 else

 {

 /* command is too short so return error */

 result = ILLEGAL_FUNCTION;

 }

 return result;

}

/* ---

 This function unhooks the protocol handler when the

 main task ends.

 --- */

void mainExitHandler(void)

{

 /* unhook the handler function */

 enronInstallCommandHandler(NULL);

}

void main(void)

{

 TASKINFO thisTask;

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 219 219

 /* install handler to execute when this task ends */

 thisTask = getTaskInfo(0);

 installExitHandler(thisTask.taskID, mainExitHandler);

 /* install handler for Enron Modbus */

 enronInstallCommandHandler(commandHandler);

 /* infinite loop of main task */

 while (TRUE)

 {

 /* add application code here */

 }

}

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 220 220

forceLed

Set State of Force LED

Syntax

#include <ctools.h>

void forceLed(unsigned state);

Description

The forceLed function sets the state of the FORCE LED. state may be either
LED_ON or LED_OFF.

Notes

The FORCE LED is used to indicate forced I/O.

See Also

setStatus

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 221 221

getABConfiguration

Get DF1 Protocol Configuration

Syntax

#include <ctools.h>

struct ABConfiguration *getABConfiguration(FILE *stream, struct

ABConfiguration *ABConfig);

Description

The getABConfiguration function gets the DF1 protocol configuration
parameters for the stream. If stream does not point to a valid serial port the
function has no effect. ABConfig needs to point to an DF1 protocol configuration
structure.

The getABConfiguration function copies the DF1 configuration parameters into
the ABConfig structure and returns a pointer to it.

Example

This program displays the DF1 configuration parameters for com1.

#include <ctools.h>

void main(void)

{

 struct ABConfiguration ABConfig;

 getABConfiguration(com1, &ABConfig);

 printf("Min protected address: %u\r\n",

 ABConfig.min_protected_address);

 printf("Max protected address: %u\r\n",

 ABConfig.max_protected_address);

}

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 222 222

getBootType

Get Controller Boot Up State

Syntax

#include <ctools.h>

unsigned getBootType(void);

Description

The getBootType function returns the boot up state of the controller. The
possible return values are:

SERVICE controller started in SERVICE mode
RUN controller started in RUN mode

Example

#include <ctools.h>

void main(void)

{

 struct prot_settings settings;

 /* Disable the protocol on serial port 1 */

 settings.type = NO_PROTOCOL;

 settings.station = 1;

 settings.priority = 3;

 settings.SFMessaging = FALSE;

 request_resource(IO_SYSTEM);

 set_protocol(com1, &settings);

 release_resource(IO_SYSTEM);

 /* Display the boot status information */

 printf("Boot type: %d\r\n", getBootType());

}

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 223 223

getclock

Read the Real Time Clock

Syntax

#include <rtc.h>

struct clock getclock(void);

Description

The getclock function reads the time and date from the real time clock hardware.

The getclock function returns a struct clock containing the time and date
information.

Notes

The time format returned by the getclock function is not compatible with the
standard UNIX style functions supplied by Microtec.

The IO_SYSTEM resource needs to be requested before calling this function.

See Also

setclock, getClockTime

Example

This program displays the current date and time.

#include <ctools.h>

main(void)

{

 struct clock now;

 request_resource(IO_SYSTEM);

 now = getclock(); /* read the clock */

 release_resource(IO_SYSTEM);

 printf("%2d/%2d/%2d", now.day,

 now.month, now.year);

 printf("%2d:%2d\r\n",now.hour, now.minute);

}

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 224 224

getClockAlarm

Read the Real Time Clock Alarm Settings

Syntax

#include <ctools.h>

ALARM_SETTING getClockAlarm(void);

Description

The getClockAlarm function returns the alarm setting in the real time clock. The
alarm is used to wake the controller from sleep mode.

Notes

The IO_SYSTEM resource needs to be requested before calling this function.

See Also

alarmIn, setClockAlarm

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 225 225

getClockTime

Read the Real Time Clock

Syntax

#include <ctools.h>

void getClockTime(long * pDays, long * pHundredths);

Description

The getClockTime function reads the read time clock and returns the value as
the number of whole days since 01/01/97 and the number of hundredths of a
second since the start of the current day. The function works for 100 years from
01/01/97 to 12/31/96 then rolls over.

The function has two parameters: a pointer to the variable to hold the days; and a
pointer to a variable to hold the hundredths of a second.

The function has no return value.

Notes

The IO_SYSTEM resource needs to be requested before calling this function.

See Also

setclock, getclock

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 226 226

Get Controller ID

Syntax

#include <ctools.h>

void getControllerID(CHAR * pID)

Description

This function writes the Controller ID to the string pointed to by pID. The
Controller ID is a unique ID for the controller set at the factory. The pointer pID
needs to point to a character string of length CONTROLLER_ID_LEN.

Example

This program displays the Controller ID.

#include <ctools.h>

void main(void)

{

 char ctlrID[CONTROLLER_ID_LEN];

 UINT16 index;

 getControllerID(ctlrID);

 fprintf(com1, "\r\nController ID : ");

 for (index=0; index<CONTROLLER_ID_LEN; index++)

 {

 fputc(ctlrID[index], com1);

 }

}

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 227 227

getForceFlag

Get Force Flag State for a Register

Syntax

#include <ctools.h>

unsigned getForceFlag(unsigned type, unsigned address, unsigned

*value);

Description

The getForceFlag function copies the value of the force flag for the specified
database register into the integer pointed to by value. The valid range for
address is determined by the database addressing type.

The force flag value is either 1 or 0, or a 16-bit mask for LINEAR digital
addresses.

If the address or addressing type is not valid, FALSE is returned and the integer
pointed to by value is 0; otherwise TRUE is returned. The table below shows the
valid address types and ranges.

Type Address Ranges Register
Size

MODBUS 00001 to NUMCOIL

10001 to 10000 + NUMSTATUS

30001 to 30000 + NUMINPUT

40001 to 40000 + NUMHOLDING

1 bit

1 bit

16 bit

16 bit

LINEAR 0 to NUMLINEAR-1 16 bit

Notes

Force Flags are not modified when the controller is reset. Force Flags are in a
permanent storage area, which is maintained during power outages.

Refer to the I/O Database and Register Assignment chapter for more information.

See Also

setForceFlag, clearAllForcing, overrideDbase

Example

This program obtains the force flag state for register 40001, for the 16 status
registers at linear address 302 (i.e. registers 10737 to 10752), and for the holding
register at linear address 1540 (i.e. register 40005).

#include <ctools.h>

void main(void)

{

 unsigned flag, bitmask;

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 228 228

 getForceFlag(MODBUS, 40001, &flag);

 getForceFlag(LINEAR, 302, &bitmask);

 getForceFlag(LINEAR, 1540, &flag);

}

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 229 229

getIOErrorIndication

Get I/O Module Error Indication

Syntax

#include <ctools.h>

unsigned getIOErrorIndication(void);

Description

The getIOErrorIndication function returns the state of the I/O module error
indication. TRUE is returned if the I/O module communication status is currently
reported in the controller status register and Status LED. FALSE is returned if the
I/O module communication status is not reported.

Notes

Refer to the 5203/4 System Manual or the SCADAPack System Manual for
further information on the Status LED and Status Output.

See Also

setIOErrorIndication

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 230 230

getOutputsInStopMode

Get Outputs In Stop Mode

Syntax

#include <ctools.h>

void getOutputsInStopMode(unsigned *doutsInStopMode, unsigned

*aoutsInStopMode);

Description

The getOutputsInStopMode function copies the values of the output control
flags into the integers pointed to by doutsInStopMode and aoutsInStopMode.

If the value pointed to by doutsInStopMode is TRUE, then digital outputs are held
at their last state when the Ladder Logic program is stopped.

If the value pointed to by doutsInStopMode is FALSE, then digital outputs are
turned OFF when the Ladder Logic program is stopped.

If the value pointed to by aoutsInStopMode is TRUE, then analog outputs are
held at their last value when the Ladder Logic program is stopped.

If the value pointed to by aoutsInStopMode is FALSE, then analog outputs go to
zero when the Ladder Logic program is stopped.

See Also

setOutputsInStopMode

Example

See the example for setOutputsInStopMode function.

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 231 231

getPortCharacteristics

Get Serial Port Characteristics

Syntax

#include <ctools.h>

unsigned getPortCharacteristics(FILE *stream, PORT_CHARACTERISTICS

*pCharacteristics);

Description

The getPortCharacteristics function gets information about features supported
by the serial port pointed to by stream. If stream does not point to a valid serial
port the function has no effect and FALSE is returned; otherwise TRUE is
returned.

The getPortCharacteristics function copies the serial port characteristics into
the structure pointed to by pCharacteristics.

Notes

Refer to the Overview of Functions section for detailed information on serial
ports.

Refer to the Structures and Types section for a description of the fields in the
PORT_CHARACTERISTICS structure.

See Also

get_port

Example

#include <ctools.h>

void main(void)

{

 PORT_CHARACTERISTICS options;

 getPortCharacteristics(com3, &options);

 fprintf(com1, "Dataflow options: %d\r\n",

 options.dataflow);

 fprintf(com1, "Protocol options: %d\r\n",

 options.protocol);

}

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 232 232

getPowerMode

Get Current Power Mode

Syntax

#include <ctools.h>

BOOLEAN getPowerMode(UCHAR* cpuPower, UCHAR* lan, UCHAR*

usbPeripheral, UCHAR* usbHost);

Description

The getPowerMode function places the current state of the CPU, LAN, USB
peripheral port, and USB host port in the passed parameters. The following table
lists the possible return values and their meaning.

Macro Meaning

PM_CPU_FULL The CPU is set to run at full speed

PM_CPU_REDUCED The CPU is set to run at a reduced speed

PM_CPU_SLEEP The CPU is set to sleep mode

PM_LAN_ENABLED The LAN is enabled

PM_LAN_DISABLED The LAN is disabled

PM_USB_PERIPHERAL_ENAB
LED

The USB peripheral port is enabled

PM_USB_PERIPHERAL_DISAB
LED

The USB peripheral port is disabled

PM_USB_HOST_ENABLED The USB host port is enabled

PM_USB_HOST_DISABLED The USB host port is disabled

PM_UNAVAILABLE The status of the device could not be read.

TRUE is returned if the values placed in the passed parameters are valid,
otherwise FALSE is returned.

The application program may set the current power mode with the
setPowerMode function.

See Also

setPowerMode, setWakeSource, getWakeSource

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 233 233

get_pid

Get PID Variable

Syntax

#include <ctools.h>

int get_pid(unsigned name, unsigned block);

Description

The get_pid function returns the value of a PID control block variable. name
needs to be specified by one of the variable name macros in pid.h. block needs
to be in the range 0 to PID_BLOCKS-1.

Notes

See the Telepace PID Controllers Manual for a detailed description of PID
control.

Values stored in PID blocks are not initialized when a program is run, and are
guaranteed to retain their values during power failures and program loading. The
user program must always initialize PID block variables.

The IO_SYSTEM resource needs to be requested before calling this function.

See Also

set_pid, auto_pid, clear_pid

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 234 234

get_port

Get Serial Port Configuration

Syntax

#include <ctools.h>

struct pconfig *get_port(FILE *stream, struct pconfig *settings);

Description

The get_port function gets the serial port configuration for the stream. If stream
does not point to a valid serial port the function has no effect.

The get_port function copies the serial port settings into the structure pointed to
by settings and returns a pointer to the structure.

Notes

Refer to the Overview of Functions section for detailed information on serial
ports.

Refer to the Structure and Types section for a description of the fields in the
pconfig structure.

See Also

set_port

Example

#include <ctools.h>

void main(void)

{

 struct pconfig settings;

 get_port(com1, &settings);

 printf("Baud rate: %d\r\n", settings.baud);

 printf("Duplex: %d\r\n", settings.duplex);

}

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 235 235

getProgramStatus

Get Program Status Flag

Syntax

#include <ctools.h>

unsigned getProgramStatus(void);

Description

The getProgramStatus function returns the application program status flag. The
status flag is set to NEW_PROGRAM when the C program is erased or
downloaded to the controller from the program loader.

The application program may modify the status flag with the setProgramStatus
function.

Example

This program stores a default alarm limit into the I/O database the first time it is
run. On subsequent executions, it uses the limit in the database. The limit in the
database can be modified by a communication protocol during execution.

#include <ctools.h>

#define HI_ALARM 41000

#define ALARM_OUTPUT 1026

void main(void)

{

 int inputValue;

 if (getProgramStatus() == NEW_PROGRAM)

 {

 /* Set default alarm limit */

 request_resource(IO_SYSTEM);

 setdbase(MODBUS, HI_ALARM, 4000);

 release_resource(IO_SYSTEM);

 /* Use values in database from now on */

 setProgramStatus(PROGRAM_EXECUTED);

 }

 while (TRUE)

 {

 request_resource(IO_SYSTEM);

 /* Test input against alarm limits */

 if (ain(INPUT) > dbase(MODBUS, HI_ALARM))

 setdbase(MODBUS, ALARM_OUTPUT, 1);

 else

 setdbase(MODBUS, ALARM_OUTPUT, 0);

 release_resource(IO_SYSTEM);

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 236 236

 /* Allow other tasks to execute */

 release_processor();

 }

}

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 237 237

get_protocol

Get Protocol Configuration

Syntax

#include <ctools.h>

struct prot_settings *get_protocol(FILE *stream, struct

prot_settings *settings);

Description

The get_protocol function gets the communication protocol configuration for the
stream. If stream does not point to a valid serial port the function has no effect.
settings needs to point to a protocol configuration structure, prot_settings.

The get_protocol function copies the protocol settings into the structure pointed
to by settings and returns a pointer to that structure.

Refer to the ctools.h file for a description of the fields in the prot_settings
structure.

Refer to the Overview of Functions section for detailed information on
communication protocols.

See Also

set_protocol

Example

This program displays the protocol configuration for com1.

#include <ctools.h>

void main(void)

{

 struct prot_settings settings;

 get_protocol(com1, &settings);

 printf("Type: %d\r\n", settings.type);

 printf("Station: %d\r\n", settings.station);

 printf("Priority: %d\r\n", settings.priority);

}

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 238 238

getProtocolSettings

Get Protocol Extended Addressing Configuration

Syntax

#include <ctools.h>

BOOLEAN getProtocolSettings(

FILE * stream,

PROTOCOL_SETTINGS * settings

);

Description

The getProtocolSettings function reads the protocol parameters for a serial port.
This function supports extended addressing.

The function has two parameters: stream is one of com1, com2, com3 or com4;
and settings, a pointer to a PROTOCOL_SETTINGS structure. Refer to the
description of the structure for an explanation of the parameters.

The function returns TRUE if the structure was changed. It returns FALSE if the
stream is not valid.

Notes

Extended addressing is available on the Modbus RTU and Modbus ASCII
protocols only. See the TeleBUS Protocols User Manual for details.

Refer to the TeleBUS Protocols User Manual section for detailed information
on communication protocols.

See Also

setProtocolSettings, get_protocol

Example

This program displays the protocol configuration for com1.

#include <ctools.h>

void main(void)

{

 PROTOCOL_SETTINGS settings;

 if (getProtocolSettings(com1, &settings)

 {

 printf("Type: %d\r\n", settings.type);

 printf("Station: %d\r\n", settings.station);

 printf("Address Mode: %d\r\n", settings.mode);

 printf("SF Messaging: %d\r\n", settings.SFMessaging);

 printf("Priority: %d\r\n", settings.priority);

 }

 else

 {

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 239 239

 printf(“Serial port is not valid\r\n”);

 }

}

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 240 240

getProtocolSettingsEx

Reads extended protocol settings for a serial port.

Syntax

#include <ctools.h>

BOOLEAN getProtocolSettingsEx(

 FILE * stream,

 PROTOCOL_SETTINGS_EX * pSettings

);

Description

The setProtocolSettingsEx function sets protocol parameters for a serial port.
This function supports extended addressing and Enron Modbus parameters.

The function has two arguments:

 stream specifies the serial port. It is one of com1, com2, com3 or com4.

 pSettings is a pointer to a PROTOCOL_SETTINGS_EX structure. Refer to
the description of the structure for an explanation of the parameters.

The function returns TRUE if the settings were retrieved. It returns FALSE if the
stream is not valid.

Notes

Extended addressing and the Enron Modbus station are available on the Modbus
RTU and Modbus ASCII protocols only. See the TeleBUS Protocols User Manual
for details.

See Also

setProtocolSettingsEx

Example

This program displays the protocol configuration for com1.

#include <ctools.h>

void main(void)

{

 PROTOCOL_SETTINGS_EX settings;

 if (getProtocolSettingsEx(com1, &settings)

 {

 printf("Type: %d\r\n", settings.type);

 printf("Station: %d\r\n", settings.station);

 printf("Address Mode: %d\r\n", settings.mode);

 printf("SF: %d\r\n", settings.SFMessaging);

 printf("Priority: %d\r\n", settings.priority);

 printf("Enron: %d\r\n", settings.enronEnabled);

 printf("Enron station: %d\r\n",

 settings.enronStation);

 }

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 241 241

 else

 {

 printf(“Serial port is not valid\r\n”);

 }

}

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 242 242

get_protocol_status

Get Protocol Information

Syntax

#include <ctools.h>

struct prot_status get_protocol_status(FILE *stream);

Description

The get_protocol_status function returns the protocol error and message
counters for stream. If stream does not point to a valid serial port the function has
no effect.

Refer to the Overview of Functions section for detailed information on
communication protocols.

See Also

Error! Reference source not found.

Example

This program displays the checksum error counter for com2.

#include <ctools.h>

void main(void)

{

 struct prot_status status;

 status = get_protocol_status(com2);

 printf("Checksum: %d\r\n",

 status.checksum_errors);

}

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 243 243

getSFMapping

Read Translation Table Mapping Control

Syntax

#include <ctools.h>

unsigned getSFMapping(void);

Description

The getSFMapping and setSFMapping functions no longer perform any useful
function but are maintained as stubs for backward compatibility. Include the
CNFG_StoreAndForward module in the Register Assignment to assign a store
and forward table to the I/O database.

Notes

The TeleBUS Protocols User Manual describes store and forward messaging
mode.

See Also

addRegAssignment

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 244 244

getSFTranslation

Read Store and Forward Translation

Syntax

#include <ctools.h>

struct SFTranslation getSFTranslation(unsigned index);

Description

The getSFTranslation function returns the entry at index in the store and
forward address translation table. If index is invalid, a disabled table entry is
returned.

The function returns a SFTranslation structure. It is described in the Structures
and Types section.

Notes

The TeleBUS Protocols User Manual describes store and forward messaging
mode.

See Also

setSFTranslation, clearSFTranslationTable, checkSFTranslationTable

Example

See the example for the setSFTranslation function.

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 245 245

get_status

Get Serial Port Status

Syntax

#include <ctools.h>

struct pstatus *get_status(FILE *stream, struct pstatus *status);

Description

The get_status function returns serial port error counters, I/O lines status and
I/O driver buffer information for stream. If stream does not point to a valid serial
port the function has no effect. status needs to point to a valid serial port status
structure, pstatus.

The get_status function copies the serial port status into the structure pointed to
by status and returns a pointer to that structure settings.

Refer to the Overview of Functions section for detailed information on serial
ports.

See Also

clear_errors

Example

This program displays the framing and parity errors for com1.

#include <ctools.h>

void main(void)

{

 struct pstatus status;

 get_status(com1, &status);

 printf("Framing: %d\r\n", status.framing);

 printf("Parity: %d\r\n", status.parity);

}

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 246 246

getStatusBit

Read Bits in Controller Status Code

Syntax

#include <ctools.h>

unsigned getStatusBit(unsigned bitMask);

Description

The getStatusBit function returns the values of the bits indicated by bitMask in
the controller status code.

See Also

setStatusBit, setStatus, clearStatusBit

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 247 247

getTaskInfo

Get Information on a Task

Syntax

#include <ctools.h>

TASKINFO getTaskInfo(unsigned taskID);

Description

The getTaskInfo function returns information about the task specified by taskID.
If taskID is 0 the function returns information about the current task.

Notes

If the specified task ID does not identify a valid task, all fields in the return data
are set to zero. The calling function should check the taskID field in the
TASKINFO structure: if it is zero the remaining information is not valid.

Refer to the Structures and Types section for a description of the fields in the
TASKINFO structure.

Example

The following program displays information about all valid tasks.

#include <string.h>

#include <ctools.h>

void main(void)

{

 struct prot_settings settings;

 TASKINFO taskStatus;

 unsigned task;

 char state[6][20];

 char type[2][20];

 /* Set up state strings */

 strcpy(state[TS_READY], "Ready");

 strcpy(state[TS_EXECUTING], "Executing");

 strcpy(state[TS_WAIT_ENVELOPE], "Waiting for Envelope");

 strcpy(state[TS_WAIT_EVENT], "Waiting for Event");

 strcpy(state[TS_WAIT_MESSAGE], "Waiting for Message");

 strcpy(state[TS_WAIT_RESOURCE], "Waiting for Resource");

 /* Set up type strings */

 strcpy(type[APPLICATION], "Application");

 strcpy(type[SYSTEM], "System");

 /* Disable the protocol on serial port 1 */

 settings.type = NO_PROTOCOL;

 settings.station = 1;

 settings.priority = 3;

 settings.SFMessaging = FALSE;

 request_resource(IO_SYSTEM);

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 248 248

 set_protocol(com1, &settings);

 release_resource(IO_SYSTEM);

 /* display information about all tasks */

 for (task = 0; task <= RTOS_TASKS; task++)

 {

 taskStatus = getTaskInfo(task);

 if (taskStatus.taskID != 0)

 {

 /* show information for valid task */

 fprintf(com1, "\r\n\r\nInformation about task

%d:\r\n", task);

 fprintf(com1, " Task ID: %d\r\n",

taskStatus.taskID);

 fprintf(com1, " Priority: %d\r\n",

taskStatus.priority);

 fprintf(com1, " Status: %s\r\n",

state[taskStatus.status]);

 if (taskStatus.status == TS_WAIT_EVENT)

 {

 fprintf(com1, " Event: %d\r\n",

taskStatus.requirement);

 }

 if (taskStatus.status == TS_WAIT_RESOURCE)

 {

 fprintf(com1, " Resource: %d\r\n",

taskStatus.requirement);

 }

 fprintf(com1, " Error: %d\r\n",

taskStatus.error);

 fprintf(com1, " Type: %s\r\n",

type[taskStatus.type]);

 }

 }

 while (TRUE)

 {

 /* Allow other tasks to execute */

 release_processor();

 }

}

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 249 249

getVersion

Get Firmware Version Information

Syntax

#include <ctools.h>

VERSION getVersion(void);

Description

The getVersion function obtains firmware version information. It returns a
VERSION structure. Refer to the Structures and Types section for a description
of the fields in the VERSION structure.

Notes

The version information can be used to adapt a program to a specific type of
controller or version of firmware. For example, a bug work-around could be
executed only if older firmware is detected.

Example

This program displays the version information.

#include <ctools.h>

void main(void)

{

 struct prot_settings settings;

 VERSION versionInfo;

 /* Disable the protocol on serial port 1 */

 settings.type = NO_PROTOCOL;

 settings.station = 1;

 settings.priority = 3;

 settings.SFMessaging = FALSE;

 request_resource(IO_SYSTEM);

 set_protocol(com1, &settings);

 release_resource(IO_SYSTEM);

 /* Display the ROM version information */

 versionInfo = getVersion();

 fprintf(com1, "\r\nFirmware Information\r\n");

fprintf(com1, " Controller type: %d\r\n", versionInfo.controller

& BASE_TYPE_MASK);

 fprintf(com1, " Firmware version: %d\r\n",

versionInfo.version);

 fprintf(com1, " Creation date: %s\r\n",

versionInfo.date);

 fprintf(com1, " Copyright: %s\r\n",

versionInfo.copyright);

}

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 250 250

getWakeSource

Gets Conditions for Waking from Sleep Mode

Syntax

#include <ctools.h>

unsigned getWakeSource(void);

Description

The getWakeSource function returns a bit mask of the active wake up sources.
Valid wake up sources are listed below.

 WS_REAL_TIME_CLOCK

 WS_INTERRUPT_INPUT

 WS_LED_POWER_SWITCH

 WS_COUNTER_0_OVERFLOW

 WS_COUNTER_1_OVERFLOW

WS_COUNTER_2_OVERFLOW

See Also

setWakeSource, sleep

Example

The following code fragment displays the enabled wake up sources.

unsigned enabled;

enabled = getWakeSource();

fputs("Enabled wake up sources:\r\n", com1);

if (enabled & WS_REAL_TIME_CLOCK)

 fputs(" Real Time Clock\r\n", com1);

if (enabled & WS_INTERRUPT_INPUT)

 fputs(" Interrupt Input\r\n", com1);

if (enabled & WS_LED_POWER_SWITCH)

 fputs(" LED Power Switch\r\n", com1);

if (enabled & WS_COUNTER_0_OVERFLOW)

 fputs(" Counter 0 Overflow\r\n", com1);

if (enabled & WS_COUNTER_1_OVERFLOW)

 fputs(" Counter 1 Overflow\r\n", com1);

if (enabled & WS_COUNTER_2_OVERFLOW)

 fputs(" Counter 2 Overflow\r\n", com1);

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 251 251

hartIO

Read and Write 5904 HART Interface Module

Syntax

#include <ctools.h>

BOOLEAN hartIO(unsigned module);

Description

This function reads the specified 5904 interface module. It checks if a response
has been received and if a corresponding command has been sent. If so, the
response to the command is processed.

This function writes the specified 5904 interface module. It checks if there is a
new command to send. If so, this command is written to the 5904 interface.

The function has one parameter: the module number of the 5904 interface (0 to
3).

The function returns TRUE if the 5904 interface responded and FALSE if it did
not or if the module number is not valid.

Notes

This function is called automatically if the 5904 module is in the register
assignment. Use this function to implement communication with the 5904 if
register assignment is not used.

See Also

hartSetConfiguration, hartGetConfiguration, hartCommand

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 252 252

hartIOFromDbase

Read and Write 5904 HART Interface Module with Settings from Database

Syntax

#include <ctools.h>

BOOLEAN hartIOFromDbase(unsigned module, unsigned firstRegister);

Description

This function reads the specified 5904 interface module. It checks if a response
has been received and if a corresponding command has been sent. If so, the
response to the command is processed.

This function writes configuration and commands to the specified 5904 interface
module. Configuration data is read from the I/O database. It checks if there is a
new command to send. If so, this command is written to the 5904 interface.

The function has two parameters: the module number of the 5904 interface (0 to
3); and the address of the first register of a group of four containing the HART
interface configuration.

The function returns TRUE if the 5904 interface responded and FALSE if it did
not or if the module number is not valid or there is an error in the settings.

See Also

hartIO, hartSetConfiguration

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 253 253

hartCommand

Send Command using HART Interface Module

Syntax

#include <ctools.h>

BOOLEAN hartCommand(

 unsigned module,

 HART_DEVICE * const device,

 HART_COMMAND * const command,

 void (* processResponse)(unsigned,

 HART_RESPONSE)

);

Description

This function sends a command to a HART slave device using a HART interface
module. This function can be used to implement HART commands not provided
by the Network Layer API.

The function has four parameters. The first is the module number of the 5904
interface (0 to 3). The second is the device to which the command is to be sent.

The third parameter is a structure describing the command to send. This contains
the command number, and the data field of the HART message. See the HART
protocol documentation for your device for details.

The fourth parameter is a pointer to a function that will process the response.
This function is called when a response to the command is received by the HART
interface. The function is defined as follows:

 void function_name(HART_RESPONSE response)

The single parameter is a structure containing the response code and the data
field from the message.

The function returns TRUE if the 5904 interface responded and FALSE if it did
not or if the module number is not valid or there is an error in the command.

Notes

The function returns immediately after the command is sent. The calling program
needs to wait for the response to be received. Use the hartStatus command to
read the status of the command.

The number of attempts and the number of preambles sent are set with the
hartSetConfiguration command.

A program needs to initialize the link before executing any other commands.

The function determines if long or short addressing is to be used by the
command number. Long addressing is used for all commands except commands
0 and 11.

The functions hartCommand0, hartCommand1, etc. are used to send commands
provided by the Network Layer.

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 254 254

See Also

hartStatus, hartSetConfiguration, hartCommand0, hartCommand1

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 255 255

hartCommand0

Read Unique Identifier

Syntax

#include <ctools.h>

BOOLEAN hartCommand0(unsigned module, unsigned address,

HART_DEVICE * const device);

Description

This function reads the unique identifier of a HART device using command 0 with
a short-form address. This is a link initialization function.

The function has three parameters: the module-number of the 5904 module (0 to
3); the short-form address of the HART device (0 to 15); and a pointer to a
HART_DEVICE structure. The information read by command 0 is written into the
HART_DEVICE structure when the response is received by the 5904 interface.

The function returns TRUE if the command was sent. The function returns
FALSE if the module number is invalid, or if the device address is invalid.

Notes

The function returns immediately after the command is sent. The calling program
needs to wait for the response to be received. Use the hartStatus command to
read the status of the command.

The number of attempts and the number of preambles sent are set with the
hartSetConfiguration command.

A program needs to initialize the link before executing any other commands.

See Also

hartCommand11, hartStatus, hartSetConfiguration

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 256 256

hartCommand1

Read Primary Variable

Syntax

#include <ctools.h>

BOOLEAN hartCommand1(unsigned module, HART_DEVICE * const device,

HART_VARIABLE * primaryVariable);

Description

This function reads the primary variable of a HART device using command 1.

The function has three parameters: the module-number of the 5904 module (0 to
3); the device to be read; and a pointer to the primary variable. The variable
pointed to by primaryVariable is updated when the response is received by the
5904 interface.

The primaryVariable needs to be a static modular or global variable. A
primaryVariable should be declared for each HART I/O module in use. A local
variable or dynamically allocated variable may not be used because a late
command response received after the variable is freed will write data over the
freed variable space.

The function returns TRUE if the command was sent. The function returns
FALSE if the module number is invalid.

Notes

The HART_DEVICE structure needs to be initialized using hartCommand0 or
hartCommand11.

The function returns immediately after the command is sent. The calling program
needs to wait for the response to be received. Use the hartStatus command to
read the status of the command.

The number of attempts and the number of preambles sent are set with the
hartSetConfiguration command.

The code field of the HART_VARIABLE structure not changed. Command 1 does
not return a variable code.

See Also

hartCommand2, hartStatus, hartSetConfiguration

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 257 257

hartCommand2

Read Primary Variable Current and Percent of Range

Syntax

#include <ctools.h>

BOOLEAN hartCommand2(unsigned module, HART_DEVICE * const device,

HART_VARIABLE * pvCurrent, HART_VARIABLE * pvPercent);

Description

This function reads the primary variable (PV), as current and percent of range, of
a HART device using command 2.

The function has four parameters: the module-number of the 5904 module (0 to
3); the device to be read; a pointer to the PV current variable; and a pointer to the
PV percent variable. The pvCurrent and pvPercent variables are updated when
the response is received by the 5904 interface.

The pvCurrent and pvPercent variables need to be static modular or global
variables. A pvCurrent and pvPercent variable should be declared for each
HART I/O module in use. A local variable or dynamically allocated variable may
not be used because a late command response received after the variable is
freed will write data over the freed variable space.

The function returns TRUE if the command was sent. The function returns
FALSE if the module number is invalid.

Notes

The HART_DEVICE structure needs to be initialized using hartCommand0 or
hartCommand11.

The function returns immediately after the command is sent. The calling program
needs to wait for the response to be received. Use the hartStatus command to
read the status of the command.

The number of attempts and the number of preambles sent are set with the
hartSetConfiguration command.

The code field of both HART_VARIABLE structures is not changed. The
response from the HART device to command 2 does not include variable codes.

The units field of the pvCurrent variable is set to 39 (units = mA). The units field
of the pvPercent variable is set to 57 (units = percent). The response from the
HART device to command 2 does not include units.

See Also

hartCommand1, hartStatus, hartSetConfiguration

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 258 258

hartCommand3

Read Primary Variable Current and Dynamic Variables

Syntax

#include <ctools.h>

BOOLEAN hartCommand3(unsigned module, HART_DEVICE * const device,

HART_VARIABLE * variables);

Description

This function reads dynamic variables and primary variable current from a HART
device using command 3.

The function has three parameters: the module number of the 5904 module (0 to
3); the device to be read; and a pointer to an array of five HART_VARIABLE
structures.

The variables array needs to be static modular or global variables. An array of
variables should be declared for each HART I/O module in use. A local variable
or dynamically allocated variable may not be used because a late command
response received after the variable is freed will write data over the freed variable
space.

The variables array is updated when the response is received by the 5904
interface as follows.

Variable Contains

variables[0] primary variable current

variables[1] primary variable

variables[2] secondary variable

variables[3] tertiary variable

variables[4] fourth variable

The function returns TRUE if the command was sent. The function returns
FALSE if the module number is invalid.

Notes

The HART_DEVICE structure needs to be initialized using hartCommand0 or
hartCommand11.

The function returns immediately after the command is sent. The calling program
needs to wait for the response to be received. Use the hartStatus command to
read the status of the command.

The number of attempts and the number of preambles sent are set with the
hartSetConfiguration command.

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 259 259

Not all devices return primary, secondary, tertiary and fourth variables. If the
device does not support a variable, zero is written into the value and units code
for that variable.

The code field of both HART_VARIABLE structures is not changed. The
response from the HART device to command 3 does not include variable codes.

The units field of variable[0] is set to 39 (units = mA). The response from the
HART device to command 3 does not include units.

See Also

hartCommand33, hartStatus, hartSetConfiguration

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 260 260

hartCommand11

Read Unique Identifier Associated with Tag

Syntax

#include <ctools.h>

BOOLEAN hartCommand11(unsigned module, char * deviceTag,

HART_DEVICE * device);

Description

This function reads the unique identifier of a HART device using command 11.
This is a link initialization function.

The function has three parameters: the module number of the 5904 module (0 to
3); a pointer to a null terminated string containing the tag of the HART device;
and a pointer to a HART_DEVICE structure. The information read by command
11 is written into the HART_DEVICE structure when the response is received by
the 5904 interface.

The function returns TRUE if the command was sent. The function returns
FALSE if the module number is invalid.

Notes

The function returns immediately after the command is sent. The calling program
needs to wait for the response to be received. Use the hartStatus command to
read the status of the command.

The number of attempts and the number of preambles sent are set with the
hartSetConfiguration command.

A program needs to initialize the link before executing any other commands.

See Also

hartCommand0, hartStatus, hartSetConfiguration

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 261 261

hartCommand33

Read Transmitter Variables

Syntax

#include <ctools.h>

BOOLEAN hartCommand33(unsigned module, HART_DEVICE * const device,

unsigned variableCode[4], HART_VARIABLE * variables);

Description

This function reads selected variables from a HART device using command 33.

The function has four parameters: the module number of the 5904 module (0 to
3); the device to be read; an array of codes; and a pointer to an array of four
HART_VARIABLE structures.

The variables array needs to be static modular or global variables. An array of
variables should be declared for each HART I/O module in use. A local variable
or dynamically allocated variable may not be used because a late command
response received after the variable is freed will write data over the freed variable
space.

The variableCode array specifies which variables are to be read from the
transmitter. Consult the documentation for the transmitter for valid values.

The variables array is updated when the response is received by the 5904
interface as follows.

Variable Contains

variables[0] transmitter variable, code and units specified by
variableCode[0]

variables[1] transmitter variable, code and units specified by
variableCode[1]

variables[2] transmitter variable, code and units specified by
variableCode[2]

variables[3] transmitter variable, code and units specified by
variableCode[3]

The function returns TRUE if the command was sent. The function returns
FALSE if the module number is invalid.

Notes

The HART_DEVICE structure needs to be initialized using hartCommand0 or
hartCommand11.

The pointer variables needs to point to an array with at least four elements.

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 262 262

The function returns immediately after the command is sent. The calling program
needs to wait for the response to be received. Use the hartStatus command to
read the status of the command.

The number of attempts and the number of preambles sent are set with the
hartSetConfiguration command.

The function always requests four variables and expects four variables in the
response.

See Also

hartCommand3, hartStatus, hartSetConfiguration

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 263 263

hartStatus

Return Status of Last HART Command Sent

Syntax

#include <ctools.h>

BOOLEAN hartStatus(unsigned module, HART_RESULT * status, unsigned

* code);

Description

This function returns the status of the last HART command sent by a 5904
module (0 to 3). Use this function to determine if a response has been received
to a command sent.

The function has three parameters: the module number of the 5904 module; a
pointer to the status variable; and a pointer to the additional status code variable.
The status and code variables are updated with the following information.

Result Status code

HART interface module is
not communicating

HR_NoModuleResponse not used

Command ready to be sent HR_CommandPending not used

Command sent to device HR_CommandSent current attempt
number

Response received HR_Response response code
from HART device
(see Notes)

No valid response received
after all attempts made

HR_NoResponse 0=no response
from HART
device.

Other = error
response code
from HART device
(see Notes)

HART interface module is
not ready to transmit

HR_WaitTransmit not used

The function returns TRUE if the status was read. The function returns FALSE if
the module number is invalid.

Notes

The response code from the HART device contains communication error and
status information. The information varies by device, but there are some common
values.

 If bit 7 of the high byte is set, the high byte contains a communication error
summary. This field is bit-mapped. The table shows the meaning of each bit

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 264 264

as defined by the HART protocol specifications. Consult the documentation
for the HART device for more information.

Bit Description

6 vertical parity error

5 overrun error

4 framing error

3 longitudinal parity error

2 reserved – always 0

1 buffer overflow

0 Undefined

 If bit 7 of the high byte is cleared, the high byte contains a command
response summary. The table shows common values. Other values may be
defined for specific commands. Consult the documentation for the HART
device.

Code Description

32 Busy – the device is performing a function
that cannot be interrupted by this command

64 Command not Implemented – the command
is not defined for this device.

 The low byte contains the field device status. This field is bit-mapped. The
table shows the meaning of each bit as defined by the HART protocol
specifications. Consult the documentation for the HART device for more
information.

Bit Description

7 field device malfunction

6 configuration changed

5 cold start

4 more status available (use command 48 to
read)

3 primary variable analog output fixed

2 primary variable analog output saturated

1 non-primary variable out of limits

0 primary variable out of limits

See Also

hartSetConfiguration

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 265 265

hartGetConfiguration

Read HART Module Settings

Syntax

#include <ctools.h>

BOOLEAN hartGetConfiguration(unsigned module, HART_SETTINGS *

settings);

Description

This function returns the configuration settings of a 5904 module.

The function has two parameters: the module number of the 5904 module (0 to
3); and a pointer to the settings structure.

The function returns TRUE if the settings were read. The function returns FALSE
if the module number is invalid.

See Also

hartSetConfiguration

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 266 266

hartSetConfiguration

Write HART Module Settings

Syntax

#include <ctools.h>

BOOLEAN hartSetConfiguration(unsigned module, HART_SETTINGS

settings);

Description

This function writes configuration settings to a 5904 module.

The function has two parameters: the module number of the 5904 module (0 to
3); and a settings structure.

The function returns TRUE if the settings were written. The function returns
FALSE if the module number or the settings are invalid.

Notes

The configuration settings are stored in the EEPROM_RUN section of the
EEPROM. The user-defined settings are used when the controller is reset in the
RUN mode. Default settings are used when the controller is reset in the
SERVICE or COLD BOOT modes.

If a CNFG 5904 HART Interface module is in the register assignment, forced
registers from it take precedence over the settings supplied here.

See Also

hartGetConfiguration

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 267 267

hartPackString

Convert String to HART Packed String

Syntax

#include <ctools.h>

void hartPackString(char * pPackedString, const char * pString,

unsigned sizePackedString);

Description

This function stores an ASCII string into a HART packed ASCII string.

The function has three parameters: a pointer to a packed array; a pointer to an
unpacked array; and the size of the packed array. The packed array needs to be
a multiple of three in size. The unpacked array needs to be a multiple of four in
size. It should be padded with spaces at the end if the string is not long enough.

The function has no return value.

See Also

hartUnpackString

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 268 268

hartUnpackString

Convert HART Packed String to String

Syntax

#include <ctools.h>

void hartUnpackString(char * pString, const char * pPackedString,

unsigned sizePackedString);

Description

This function unpacks a HART packed ASCII string into a normal ASCII string.

The function has three parameters: a pointer to an unpacked array; a pointer to a
packed array; and the size of the packed array. The packed array needs to be a
multiple of three in size. The unpacked array needs to be a multiple of four in
size.

The function has no return value.

See Also

hartPackString

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 269 269

install_handler

Install Serial Port Handler

Syntax

#include <ctools.h>

void install_handler(FILE *stream, void *function(unsigned,

unsigned));

Description

The install_handler function installs a serial port character handler function. The
serial port driver calls this function each time it receives a character. If stream
does not point to a valid serial port the function has no effect.

function specifies the handler function, which takes two arguments. The first
argument is the received character. The second argument is an error flag. A non-
zero value indicates an error. If function is NULL, the default handler for the port
is installed. The default handler does nothing.

Notes

The install_handler function can be used to write custom communication
protocols.

The handler is called at the completion of the receiver interrupt handler. RTOS
calls (see functions listed in the section Real Time Operating System Functions

at the start of this chapter) may not be made within the interrupt handler, with one
exception. The interrupt_signal_event RTOS call can be used to signal events.

To optimize performance, minimize the length of messages on com3 and com4.
Examples of recommended uses for com3 and com4 are for local operator
display terminals, and for programming and diagnostics using the Telepace
program.

Example

#include <ctools.h>

#define CHAR_RECEIVED 11

/* --

 signal

 This routine signals an event when a character

 is received on com1. If there is an error, the

 character is ignored.

 -- */

void signal(unsigned character, unsigned error)

{

 if (error == 0)

 interrupt_signal_event(CHAR_RECEIVED);

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 270 270

 character;

}

/* --

 main

 This program displays all characters received

 on com1 using an installed handler to signal

 the reception of a character.

 -- */

void main(void)

{

 struct prot_settings protocolSettings;

 int character;

 /* Disable protocol */

 get_protocol(com1, &protocolSettings);

 protocolSettings.type = NO_PROTOCOL;

 request_resource(IO_SYSTEM);

 set_protocol(com1, &protocolSettings);

 release_resource(IO_SYSTEM);

 /* Enable character handler */

 install_handler(com1, signal);

 /* Print each character as it is recevied */

 while (TRUE)

 {

 wait_event(CHAR_RECEIVED);

 character = fgetc(com1);

 fputs("character: ", com1);

 fputc(character, com1);

 fputs("\r\n", com1);

 }

}

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 271 271

installClockHandler

Install Handler for Real Time Clock

Syntax

#include <ctools.h>

void installClockHandler(void (*function)(void));

Description

The installClockHandler function installs a real time clock alarm handler
function. The real time clock alarm function calls this function each time a real
time clock alarm occurs.

function specifies the handler function. If function is NULL, the handler is
disabled.

Notes

RTOS calls (see functions listed in the section Real Time Operating System
Functions at the start of this chapter) may not be made within the interrupt
handler, with one exception. The interrupt_signal_event RTOS call can be
used to signal events.

See Also

setClockAlarm

Example

/* --

 This program demonstrates how to call a

 function at a specific time of day.

 -- */

#include <ctools.h>

#define ALARM_EVENT 20

/* --

 This function signals an event when the alarm

 occurs.

-- */

void alarmHandler(void)

{

 interrupt_signal_event(ALARM_EVENT);

}

/* --

 This task processes alarms signaled by the

 clock handler

-- */

void processAlarms(void)

{

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 272 272

 while(TRUE)

 {

 wait_event(ALARM_EVENT);

 /* Reset the alarm for the next day */

 request_resource(IO_SYSTEM);

 resetClockAlarm();

 release_resource(IO_SYSTEM);

 fprintf(com1, "It’s quitting time!\r\n");

 }

}

void main(void)

{

 struct prot_settings settings;

 ALARM_SETTING alarm;

 /* Disable the protocol on serial port 1 */

 settings.type = NO_PROTOCOL;

 settings.station = 1;

 settings.priority = 3;

 settings.SFMessaging = FALSE;

 request_resource(IO_SYSTEM);

 set_protocol(com1, &settings);

 release_resource(IO_SYSTEM);

 /* Install clock handler function */

 installClockHandler(alarmHandler);

 /* Create task for processing alarm events */

 create_task(processAlarms, 3, APPLICATION, 4);

 /* Set real time clock alarm */

 alarm.type = AT_ABSOLUTE;

 alarm.hour = 16;

 alarm.minute = 0;

 alarm.second = 0;

 request_resource(IO_SYSTEM);

 setClockAlarm(alarm);

 release_resource(IO_SYSTEM);

 while(TRUE)

 {

 /* body of main task loop */

 /* other processing code */

 /* Allow other tasks to execute */

 release_processor();

 }

}

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 273 273

installExitHandler

Install Handler Called when Task Ends

Syntax

#include <ctools.h>

unsigned installExitHandler(unsigned taskID, void (*function)(void));

Description

The installExitHandler function defines a function that is called when the task,
specified by taskID, is ended. function specifies the handler function. If function is
NULL, the handler is disabled.

Notes

The exit handler function will be called when:

 the task is ended by the end_task function

 the end_application function is executed and the function is an
APPLICATION type function

 the program is stopped from the Telepace program and the task is an
APPLICATION type function

 the C program is erased by the Telepace program.

The exit handler function is not called if power to the controller is removed. In this
case execution stops when power is removed. The application program starts
from the beginning when power is reapplied.

RTOS functions cannot be called from the exit handler.

Example

See the example for startTimedEvent.

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 274 274

installModbusHandler

Install User Defined Modbus Handler

Syntax

#include <ctools.h>

void installModbusHandler(

unsigned (* handler)(unsigned char *, unsigned,

 unsigned char *, unsigned *)

);

Description

The installModbusHandler function allows user-defined extensions to standard
Modbus protocol. This function specifies a function to be called when a Modbus
message is received for the station, but is not understood by the standard
Modbus protocol. The installed handler function is called only if the message is
addressed to the station, and the message checksum is correct.

The function has one parameter: a pointer to a function to handle the messages.
See the section Handler Function for a description of the function and it‟s
parameters. If the pointer is NULL, no function is called for non-standard
messages.

The function has no return value.

Notes

This function is used to create a user-defined extension to the standard Modbus
protocol.

Call this function with the NULL pointer to disable processing of non-standard
Modbus messages. This needs to be done when the application program is
ended with an exit handler. Use the installExitHandler function to install the exit
handler.

If the Modbus handler is not disabled within an exit handler, it will remain
installed and continue to operate until the controller power is cycled. Changing
the protocol type or Erasing the C Program from Telepace Initialize dialog will not
remove the Modbus handler. If the handler is located in a RAM-based application
and left enabled while a different C application is downloaded, the original
handler will be corrupted.

See Also

installExitHandler, Handler Function

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 275 275

Handler Function

User Specified Handler Function

The handler function is a user-specified function that handles processing of
Modbus messages not recognized by the protocol. The function can have any
name; handler is used in the description below.

Syntax

#include <ctools.h>

unsigned handler(

 unsigned char * message,

 unsigned messageLength,

 unsigned char * response,

 unsigned * responseLength

);

Description

This function handler is a user-defined handler for processing Modbus
messages. The function is called for each Modbus message with a function code
that is not recognized by the standard Modbus protocol.

The handler function should process the message string and create a response
string. IF the message is not understood, one of the error codes should be
returned.

The function has four parameters.

 The message parameter is a pointer to the first character of the received
message. The first character of the message is the function code. The format
of the data after the function code is defined by the function code.

 The messageLength parameter is the number of characters in the message.

 The response parameter is a pointer to the first character of a buffer to hold
the response. The function should write the response into this buffer. The
buffer is 253 characters long. The first character of the buffer is the function
code of the message. The format of the data after the function code is
defined by the function code.

 The responseLength parameter is a pointer to the length of the response.
The function should set the length of the response using this pointer. The
length is the number of characters placed into the response buffer.

The function must return one of four values. The first causes a normal response
to be sent. The others cause an exception response to be sent.

 NORMAL indicates the response and responseLength have been set to valid
values. The Modbus protocol will add the station address and checksum to
this string and transmit the reply to the master station.

 ILLEGAL_FUNCTION indicates the function code in the message was not
understood. The handler function must return this value for all function codes

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 276 276

it does not process. The Modbus protocol will return an Illegal Function
exception response.

 ILLEGAL_DATA_ADDRESS indicates the function code in the message was
understood, but that the command referenced an address that is not valid.
The Modbus protocol will return an Illegal Data Address exception response.

 ILLEGAL_DATA_VALUE indicates the function code in the message was
understood, but that the command included data that is not valid. The
Modbus protocol will return an Illegal Data Address exception response.

Function Codes Used

The following function codes are currently used by the TeleBUS Modbus-
compatible protocol. All other function codes are available for use. For maximum
compatibility with other Modbus and Modbus-compatible devices it is
recommended that codes in the user-defined function code range be used first.

Code Type Description

1 Modbus standard Read coil registers from I/O database

2 Modbus standard Read status registers from I/O database

3 Modbus standard Read holding registers from I/O database

4 Modbus standard Read input registers from I/O database

5 Modbus standard Write a single coil register

6 Modbus standard Write a single holding register

7 Modbus standard Read exception status

15 Modbus standard Write multiple coil registers

16 Modbus standard Write multiple holding registers

17 Modbus standard Report slave identification string

65 TeleBUS extension Used by Telepace

66 TeleBUS extension Used by Telepace

67 TeleBUS extension Used by Telepace

68 TeleBUS extension Used by Telepace

69 TeleBUS extension Used by Telepace

70 TeleBUS extension Used by Telepace

Notes

One handler function is used for all serial ports. Only one port will be active at
any time. Therefore, the function does not have to be re-entrant.

The handler function is called from the Modbus protocol task. This task may pre-
empt the execution of another task. If there are shared resources, the handler
function needs to request and release the appropriate resources for proper
operation.

The station address is not included in the message or response string. It will be
added to the response string before sending the reply.

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 277 277

The checksum is not included in the message or the response string. It will be
added to the response string before sending the reply.

The maximum size of the response string is 253 bytes. If a longer response
length is returned, the Modbus protocol will report an ILLEGAL_DATA_VALUE
exception. The response will not be returned.

See Also

installModbusHandler

Example

/* ---

 handler.c

 This is a sample program for the InstallModbusHandler function.

This sample program uses function code 71 to demonstrate a

simple method for using the installModbusHandler function.

 When the handler is installed Modbus ASCII messages using

function code 71 that are received on com2 of the controller will

 be processed as shown in the program text.

 To turn on digital output 00001:

 From a terminal send the ASCII command :014701B7

 Where;

 01 is the station address

 47 is the function code in hex

 01 is the command for the function code

 B7 is the message checksum

 To turn off digital output 00001:

 From a terminal send the ASCII command :014700B8

 Where;

 01 is the station address

 47 is the function code in hex

 00 is the command for the function code

 B8 is the message checksum

 -- */

#include <ctools.h>

static unsigned myModbusHandler(

 unsigned char * message,

 unsigned messageLength,

 unsigned char * response,

 unsigned * responseLength

)

{

 unsigned char * pMessage;

 unsigned char * pResponse;

 pMessage = message;

 if (*pMessage == 71)

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 278 278

 {

 /* Action for command data */

 pMessage++;

 if (*pMessage == 0)

 {

 request_resource(IO_SYSTEM);

 setdbase(MODBUS, 1, 0);

 release_resource(IO_SYSTEM);

 pResponse = response;

 *pResponse = 71;

 pResponse++;

 *pResponse = 'O';

 pResponse++;

 *pResponse = 'F';

 pResponse++;

 *pResponse = 'F';

 pResponse++;

 *responseLength = 4;

 return NORMAL;

 }

 if (*pMessage == 1)

 {

 request_resource(IO_SYSTEM);

 setdbase(MODBUS, 1, 1);

 release_resource(IO_SYSTEM);

 pResponse = response;

 *pResponse = 71;

 pResponse++;

 *pResponse = 'O';

 pResponse++;

 *pResponse = 'N';

 pResponse++;

 *responseLength = 3;

 return NORMAL;

 }

 }

}

static void shutdown(void)

{

 installModbusHandler(NULL);

}

/* ---

 main

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 279 279

 This routine is the modbus slave application.

 Serial port com2 is configured for Modbus ASCII protocol.

 Register Assignment is configured.

 The modbus handler is installed.

 The exit handler is installed.

 -- */

void main(void)

{

 TASKINFO taskStatus;

 struct pconfig portSettings;

 struct prot_settings protSettings;

 portSettings.baud = BAUD9600;

 portSettings.duplex = FULL;

 portSettings.parity = NONE;

 portSettings.data_bits = DATA7;

 portSettings.stop_bits = STOP1;

 portSettings.flow_rx = DISABLE;

 portSettings.flow_tx = DISABLE;

 portSettings.type = RS232;

 portSettings.timeout = 600;

 set_port(com2, &portSettings);

 get_protocol(com2, &protSettings);

 protSettings.station = 1;

 protSettings.type = MODBUS_ASCII;

 set_protocol(com2, &protSettings);

 /* Configure Register Assignment */

 clearRegAssignment();

 addRegAssignment(DIN_generic8, 0, 10017, 0, 0, 0);

 addRegAssignment(SCADAPack_lowerIO,0, 1, 10001, 30001, 0);

 addRegAssignment(DIAG_protocolStatus,1,31000, 0, 0, 0);

 /* Install Modbus Handler */

 request_resource(IO_SYSTEM);

 installModbusHandler(myModbusHandler);

 release_resource(IO_SYSTEM);

 /* Install Exit Handler */

 taskStatus = getTaskInfo(0);

 installExitHandler(taskStatus.taskID, shutdown);

 while(TRUE)

 {

 release_processor();

 }

}

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 280 280

installRTCHandler

Install User Defined Real-Time-Clock Handler

Syntax

#include <ctools.h>

void installRTCHandler(

void (* rtchandler)(TIME *now,

 TIME *new)

);

Description

The installRTCHandler function allows an application program to override
Modbus protocol and DNP protocol commands to set the real time clock. This
function specifies a function to be called when a Modbus or DNP message is
received for the station. The installed handler function is called only if the
message is for setting the real time clock.

The function has one parameter: a pointer to a function to handle the messages.
See the section RTCHandler Function for a full description of the function and
its parameters. If the pointer is NULL, no function is called for set the real time
clock commands, and the default method is used set the real time clock.

The function has no return value.

Notes

Call this function with the NULL pointer to disable processing of Set Real Time
Clock messages. This needs to be done when the application program is ended
with an exit handler. Use the installExitHandler function to install the exit handler.

If the RTC handler is not disabled within an exit handler, it will remain installed
and continue to operate until the controller power is cycled. Changing the
protocol type or Erasing the C Program from the Telepace Initialize dialog will not
remove the handler. If the handler is located in a RAM-based application and left
enabled while a different C application is downloaded, the original handler will be
corrupted

See Also

RTCHandler Function, installExitHandler

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 281 281

RTCHandler Function

User Specified Real Time Clock Handler Function

The handler function is a user-specified function that handles processing of
Modbus messages or DNP messages for setting the real time clock. The function
can have any name; rtchandler is used in the description below.

Syntax

#include <ctools.h>

void rtchandler(

 TIME *now,

 TIME *new

);

Description

This function rtchandler is a user-defined handler for processing Modbus
messages or DNP messages. The function is called only for messages that set
the real time clock.

The rtchandler function should set the real time clock to the requested time. If
there is a delay before this can be done, the time when the message was
received is provided so that a correction to the requested time can be made.

The function has two parameters.

 The now parameter is a pointer to the structure containing the time when the
message was received.

 The new parameter is a pointer to the structure containing the requested
time.

The function does not return a value.

Notes

The IO_SYSTEM resource has already been requested before calling this
function. If this function calls other functions that require the IO_SYSTEM
resource (e.g. setclock), there is no need to request or release the resource.

See Also

installRTCHandler

interruptCounter

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 282 282

Read Interrupt Input Counter

Syntax

#include <ctools.h>

unsigned long interruptCounter(unsigned clear);

Description

The interruptCounter routine reads the interrupt input as a counter. If clear is
TRUE the counter is cleared after reading; otherwise if it is FALSE the counter
continues to accumulate.

Notes

The interrupt input is located on the 5203 or 5204 controller board. Refer to the
System Hardware Manual for more information on the hardware.

The counter increments on the rising edge of the input signal.

The maximum input frequency that can be counted by the interrupt input is 200
Hz.

See Also

interruptInput, readCounter

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 283 283

interruptInput

Read State of Interrupt Digital Input

Syntax

#include <ctools.h>

unsigned interruptInput(void);

Description

The interruptInput function reads the status of the interrupt input point on the
controller. It returns TRUE if the input is energized and FALSE if it is not.

Notes

The interrupt input can be used as wake up source for the controller or as an
additional a digital input. Refer to the System Hardware Manual for wiring
details.

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 284 284

interrupt_signal_event

Signal Event in Interrupt Handler

Syntax

#include <ctools.h>

void interrupt_signal_event(unsigned event_number);

Description

The interrupt_signal_event function is used in an interrupt handler to signal
events. The function signals that the event_number event has occurred.

If there are tasks waiting for the event, the highest priority task is made ready to
execute. Otherwise the event flag is incremented. Up to 255 occurrences of an
event will be recorded. The current task is blocked of there is a higher priority
task waiting for the event.

Notes

Refer to the Real Time Operating System section for more information on
events.

This function is only to be used within an interrupt handler.

Valid events are numbered 0 to RTOS_EVENTS - 1. Any events defined in
ctools.h. are not valid events for use in an application program.

See Also

signal_event, startTimedEvent, installClockHandler

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 285 285

interval

Set Timer Tick Interval

Syntax

#include <ctools.h>

void interval(unsigned timer, unsigned value);

Description

The interval function sets the tick interval for timer to value. Tick intervals are
measured in multiples of 0.1 second.

If the timer number is invalid, the task's error code is set to TIMER_BADTIMER.

Notes

The default timer tick interval is 1/10 second.

See Also

settimer, read_timer_info, check_error

Example

Set timer 5 to count 12 seconds using 1.0 s ticks.

interval(5, 10); /* 1.0 s ticks */

settimer(5, 12); /* time = 12 seconds */

Set timer 5 to count 12 seconds using 0.1 s ticks.

interval(5, 1); /* 0.1 s ticks */

settimer(5, 120); /* time = 12 seconds */

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 286 286

ioBusReadByte

Read One Byte from I
2
C Slave Device

Syntax

#include <ctools.h>

unsigned char ioBusReadByte(void);

Description

The ioBusReadByte function returns one byte read from an I
2
C slave device.

The byte is acknowledged by the master receiver. This function can be used
multiple times in sequence to read data from a slave device. The last byte read
from the slave must be read with the ioBusReadLastByte function.

If only one byte is to be read from a device, the ioBusReadLastByte function
needs to be used instead of this function.

Notes

The IO_SYSTEM resource needs to be requested before calling this function.

See Also

ioBusStart, ioBusStop, ioBusReadLastByte, ioBusReadMessage,
ioBusSelectForRead ioBusSelectForWrite, ioBusWriteByte,
ioBusWriteMessage

Example

#include <ctools.h>

void main(void)

{

 unsigned char data[3];

 unsigned char ioBusAddress = 114;

 request_resource(IO_SYSTEM);

 ioBusStart();

 if (ioBusSelectForRead(ioBusAddress))

 {

 data[0] = ioBusReadByte();

 data[1] = ioBusReadByte();

 /* reading the last byte terminates read */

 data[2] = ioBusReadLastByte();

 }

 ioBusStop();

 release_resource(IO_SYSTEM);

}

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 287 287

ioBusReadLastByte

Read Last Byte from I
2
C Slave Device

Syntax

#include <ctools.h>

unsigned char ioBusReadLastByte(void);

Description

The ioBusReadLastByte function returns one byte read from an I
2
C slave

device and terminates reading from the slave. The byte is not acknowledged by
the master receiver. This signals to the slave device that the read is complete.
This function needs to be used once at the end of a read.

Notes

The IO_SYSTEM resource needs to be requested before calling this function.

See Also

ioBusStart, ioBusStop, ioBusReadByte, ioBusReadMessage,
ioBusSelectForRead ioBusSelectForWrite, ioBusWriteByte,
ioBusWriteMessage

Example

See example for ioBusReadByte.

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 288 288

ioBusReadMessage

Read Message from I
2
C Slave Device

Syntax

#include <ctools.h>

READSTATUS ioBusReadMessage(unsigned address, unsigned

numberBytes, unsigned char *message);

Description

The ioBusReadMessage function reads a specified number of bytes from an I
2
C

slave device.

The function issues a START condition, selects the device for reading, reads the
specified number of bytes, and issues a STOP condition. It detects if the device
cannot be selected and, if so, aborts the read.

The function has three parameters: the address of the device; the number of
bytes to read, numberBytes; and a pointer to a buffer, message, capable of
holding the data read.

The function returns the status of the read:

Value Description

RS_success read was successful

RS_selectFailed slave device could not be selected

Notes

The IO_SYSTEM resource needs to be requested before calling this function.

See Also

ioBusWriteMessage, ioBusStart, ioBusStop, ioBusReadByte
ioBusReadLastByte, ioBusSelectForRead ioBusSelectForWrite,
ioBusWriteByte, ioBusWriteMessage

Example

#include <ctools.h>

void main(void)

{

 unsigned char message[10];

 unsigned char ioBusAddress = 114;

 READSTATUS status;

 request_resource(IO_SYSTEM);

 /* Read a 10 byte message from I2C device */

 status = ioBusReadMessage(ioBusAddress, 10,

 message);

 release_resource(IO_SYSTEM);

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 289 289

 if (status != RS_success)

 {

 fprintf(com1, "I/O error = %d\n\r", status);

 }

}

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 290 290

ioBusSelectForRead

Select I
2
C Slave Device for Reading

Syntax

#include <ctools.h>

unsigned ioBusSelectForRead(unsigned char address);

Description

The ioBusSelectForRead function selects an I
2
C slave device for reading. It

writes the slave device address with the read/write bit set to the read state. The
function handles the formatting of the address byte.

The function has one parameter, the address of the device. It returns TRUE if the
write succeeded, that is the byte was acknowledged by the slave. It returns
FALSE if the byte was not acknowledged by the slave.

Notes

This function can only be used immediately after a START condition, e.g.
ioBusStart.

The IO_SYSTEM resource needs to be requested before calling this function.

See Also

ioBusStart, ioBusStop, ioBusReadByte, ioBusReadLastByte,
ioBusReadMessage, ioBusSelectForWrite, ioBusWriteByte,
ioBusWriteMessage

Example

See example for ioBusReadByte.

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 291 291

ioBusSelectForWrite

Select I
2
C Slave Device for Writing

Syntax

#include <ctools.h>

unsigned ioBusSelectForWrite(unsigned char address);

Description

The ioBusSelectForWrite function selects an I
2
C slave device for writing. It

writes the slave device address with the read/write bit set to the write state. The
function handles the formatting of the address byte.

The function has one parameter, the address of the device. It returns TRUE if the
write succeeded, that is the byte was acknowledged by the slave. It returns
FALSE if the byte was not acknowledged by the slave.

Notes

This function can only be used immediately after a START condition, e.g.
ioBusStart.

The IO_SYSTEM resource needs to be requested before calling this function.

See Also

ioBusStart, ioBusStop, ioBusReadByte, ioBusReadLastByte,
ioBusReadMessage, ioBusSelectForRead, ioBusWriteByte,
ioBusWriteMessage

Example

See example for ioBusWriteByte.

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 292 292

ioBusStart

Issue an I
2
C Bus START Condition

Syntax

#include <ctools.h>

void ioBusStart(void);

Description

The ioBusStart function issues an I
2
C bus START condition.

Notes

The IO_SYSTEM resource needs to be requested before calling this function.

See Also

ioBusStop, ioBusReadByte, ioBusReadLastByte, ioBusReadMessage,
ioBusSelectForRead ioBusSelectForWrite, ioBusWriteByte,
ioBusWriteMessage

Example

See example for ioBusReadByte.

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 293 293

ioBusStop

Issue an I
2
C Bus STOP Condition

Syntax

#include <ctools.h>

void ioBusStop(void);

Description

The ioBusStop function issues an I
2
C bus STOP condition.

Notes

The IO_SYSTEM resource needs to be requested before calling this function.

See Also

ioBusStart, ioBusReadByte, ioBusReadLastByte, ioBusReadMessage,
ioBusSelectForRead ioBusSelectForWrite, ioBusWriteByte,
ioBusWriteMessage

Example

See example for ioBusReadByte.

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 294 294

ioBusWriteByte

Write One Byte to I
2
C Slave Device

Syntax

#include <ctools.h>

unsigned ioBusWriteByte(unsigned char byte);

Description

The ioBusWriteByte function writes one byte to an I
2
C slave device and returns

the acknowledge signal from the slave. It returns TRUE if the write succeeded,
that is the byte was acknowledged by the slave. It returns FALSE if the byte was
not acknowledged by the slave.

This function can be used multiple times in sequence to write data to a device.

Notes

ioBusWriteByte can be used to write the address selection byte at the start of
an I

2
C message; however, the ioBusSelectForRead and ioBusSelectForWrite

functions provide a more convenient interface for doing this.

The IO_SYSTEM resource needs to be requested before calling this function.

See Also

ioBusStart, ioBusStop, ioBusReadByte, ioBusReadLastByte,
ioBusReadMessage, ioBusSelectForRead ioBusSelectForWrite,
ioBusWriteMessage

Example

#include <ctools.h>

void main(void)

{

 unsigned char data[2];

 unsigned char ioBusAddress = 114;

 request_resource(IO_SYSTEM);

 ioBusStart();

 if (ioBusSelectForWrite(ioBusAddress))

 {

 ioBusWriteByte(data[0]);

 ioBusWriteByte(data[1]);

 }

 ioBusStop();

 release_resource(IO_SYSTEM);

}

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 295 295

ioBusWriteMessage

Write Message to I
2
C Slave Device

Syntax

#include <ctools.h>

WRITESTATUS ioBusWriteMessage(unsigned address, unsigned

numberBytes, unsigned char *message);

Description

The ioBusWriteMessage function writes a specified number of bytes to an I
2
C

slave device.

The function issues the START condition, selects the device for writing, writes
the specified number of bytes, and issues a STOP condition. If the slave does
not acknowledge the selection or any data written to it, the write is aborted
immediately.

The function has three parameters: the address of the device; the number of
bytes to write, numberBytes; and a pointer to the buffer, message, containing the
data.

The function returns the status of the write:

Value Description

WS_success write was successful

WS_selectFailed slave could not be selected

WS_noAcknowledge slave failed to acknowledge data

Notes

The IO_SYSTEM resource needs to be requested before calling this function.

See Also

ioBusStart, ioBusStop, ioBusReadByte, ioBusReadLastByte,
ioBusReadMessage, ioBusSelectForRead ioBusSelectForWrite,
ioBusWriteByte

Example

#include <ctools.h>

void main(void)

{

 unsigned char message[10];

 unsigned char ioBusAddress = 114;

 WRITESTATUS status;

 request_resource(IO_SYSTEM);

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 296 296

 /* Write a 10 byte message to I2C device */

 status = ioBusWriteMessage(ioBusAddress, 10,

 message);

 release_resource(IO_SYSTEM);

 if (status != WS_success)

 {

 fprintf(com1, "I/O error = %d\n\r", status);

 }

}

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 297 297

ioClear

Turn Off all Outputs

Syntax

#include <ctools.h>

void ioClear(void);

Description

The ioClear function turns off all outputs in the current Register Assignment as
follows.

 analog outputs are set to 0;

 digital outputs are turned set to 0 (turned off).

If the Register Assignment is empty, all outputs are turned off for all possible I/O
modules that exist under the fixed I/O hardware mapping of firmware versions
1.22 or older.

Also, delayed digital I/O actions started by the pulse, pulse_train and timeout
functions are canceled.

Notes

Timers referenced by the pulse, pulse_train and timeout functions are set to 0.
All other timers are not affected.

The IO_SYSTEM resource needs to be requested before calling this function.

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 298 298

ioDatabaseReset

Initialize I/O Database with Default Values

Syntax

#include <ctools.h>

void ioDatabaseReset(void);

Description

The ioDatabaseReset function resets all I/O database values to their defaults:

 Configuration parameters are reset to default values. All registers assigned
to configuration parameters through the Register Assignment are also reset
to default values.

 All other registers are set to zero. I/O hardware assigned to these registers
through the Register Assignment are also set to zero.

 All forcing is removed.

 Locked variables are unlocked.

 Set all database locations to zero

 Clear real time clock alarm settings

 Clear serial port event counters

 Clear store and forward configuration

 Enable LED power by default and return to default state after 5 minutes

 Set Outputs on Stop settings to Hold

 Set 5904 HART modem configuration for all modems

 Set Modbus/TCP default configuration

 Write new default data to Flash

Notes

This function can be used to restore the controller to its default state.
ioDatabaseReset has the same effect as selecting the Initialize Controller
option from the Initialize command in the Telepace program.

Use this function carefully as it erases any data stored in the I/O database.

The IO_SYSTEM resource needs to be requested before calling this function.

Example

#include <ctools.h>

void main(void)

{

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 299 299

 /* Power Up Initialization */

 request_resource(IO_SYSTEM);

 ioDatabaseReset();

 release_resource(IO_SYSTEM);

 /* ... the rest of the program */

}

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 300 300

ioRead16Din

Read 16 Digital Inputs into I/O Database

Syntax

#include <ctools.h>

unsigned ioRead16Din(unsigned moduleAddress, unsigned

startStatusRegister);

Description

The ioRead16Din function reads any 16 point Digital Input Module at the
specified moduleAddress. Data is read from all 16 digital inputs and copied to 16
consecutive status registers beginning at startStatusRegister.

The function returns FALSE if the moduleAddress or startStatusRegister is
invalid or if an I/O error has occurred; otherwise TRUE is returned.

The valid range for moduleAddress is 0 to 15. startStatusRegister is any valid
Modbus status register between 10001 and (10000 + NUMSTATUS - 15).

Notes

Data is not copied to the I/O database for registers that are currently forced.

To read data from an I/O Module continuously, add the module to the Register
Assignment. Refer to the section I/O Database and Register Assignment for
details.

This function is contained in the ctools.lib library. Load this library in you linker
command (.cmd) file as shown in the sample file appram.cmd in your ctools
directory.

The IO_SYSTEM resource needs to be requested before calling this function.

See Also

ioRead8Din

Example

This program displays the values of the 16 digital inputs read from a 16 point
Digital Input Module at module address 0.

#include <ctools.h>

void main(void)

{

 unsigned reg;

 request_resource(IO_SYSTEM);

 /* Read data from digital input module and write it to

I/O database */

 ioRead16Din(0, 10001);

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 301 301

 /* Print data from I/O database */

 fprintf(com1, "Register Value");

 for (reg = 10001; reg <= 10016; reg++)

 {

 fprintf(com1, "\n\r%d ", reg);

 putchar(dbase(MODBUS, reg) ? '1' :'0');

 }

 release_resource(IO_SYSTEM);

}

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 302 302

ioRead32Din

Read 32 Digital Inputs into I/O Database

Syntax

#include <ctools.h>

unsigned ioRead32Din(

 UINT16 moduleAddress,

 UINT16 startStatusRegister);

Description

The ioRead32Din function reads any 32 point Digital Input Module at the
specified moduleAddress. Data is read from all the digital inputs and copied to 32
consecutive status registers beginning at startStatusRegister.

The function returns FALSE if the moduleAddress or startStatusRegister is
invalid or if an I/O error has occurred; otherwise TRUE is returned.

The valid range for moduleAddress is 0 to 15. startStatusRegister is any valid
Modbus status register between 10001 and (10001 + NUMSTATUS - 32).

Notes

Data is not copied to the I/O database for registers that are currently forced.

To read data from an I/O Module continuously, add the module to the Register
Assignment. Refer to the section I/O Database and Register Assignment for
details.

This function is contained in the ctools.lib library. Load this library in you linker
command (.cmd) file as shown in the sample file appram.cmd in your ctools
directory.

The IO_SYSTEM resource needs to be requested before calling this function.

See Also

ioRead8Din, ioRead16Din

Example

This program displays the values of the 32 digital inputs read from a 32 point
Digital Input Module at module address 0.

#include <ctools.h>

void main(void)

{

 unsigned reg;

 request_resource(IO_SYSTEM);

 /* Read data from module and write to I/O database */

 ioRead32Din(0, 10001);

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 303 303

 /* Print data from I/O database */

 fprintf(com1, "Register Value");

 for (reg = 10001; reg <= 10032; reg++)

 {

 fprintf(com1, "\n\r%d ", reg);

 putchar(dbase(MODBUS, reg) ? '1' :'0');

 }

 release_resource(IO_SYSTEM);

}

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 304 304

ioRead4Ain

Read 4 Analog Inputs into I/O Database

Syntax

#include <ctools.h>

unsigned ioRead4Ain(unsigned moduleAddress, unsigned

startInputRegister);

Description

The ioRead4Ain function reads any 4 point Analog Input Module at the specified
moduleAddress. Data is read from the 4 analog inputs and copied to 4
consecutive input registers beginning at startInputRegister.

The function returns FALSE if the moduleAddress or startInputRegister is invalid
or if an I/O error has occurred; otherwise TRUE is returned.

The valid range for moduleAddress is 0 to 15. startInputRegister is any valid
Modbus input register between 30001 and (30000 + NUMINPUT - 3).

Notes

Data is not copied to the I/O database for registers that are currently forced.

To read data from an I/O Module continuously, add the module to the Register
Assignment. Refer to the section I/O Database and Register Assignment for
details.

This function is contained in the ctools.lib library. Load this library in you linker
command (.cmd) file as shown in the sample file appram.cmd in your ctools
directory.

The IO_SYSTEM resource needs to be requested before calling this function.

See Also

ioRead8Ain

Example

This program displays the values of the 4 analog inputs read from a 4 point
Analog Input Module at module address 0.

#include <ctools.h>

void main(void)

{

 unsigned reg;

 request_resource(IO_SYSTEM);

 /* Read data from digital input module and write it to

I/O database */

 ioRead4Ain(0, 30001);

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 305 305

 /* Print data from I/O database */

 fprintf(com1, "Register Value\n\r");

 for(reg = 30001; reg <= 30004; reg++)

 {

 fprintf(com1, "%d %d\n\r", reg,

 dbase(MODBUS, reg));

 }

 release_resource(IO_SYSTEM);

}

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 306 306

ioRead4Counter

Read 4 Counter Inputs into I/O Database

Syntax

#include <ctools.h>

unsigned ioRead4Counter(unsigned moduleAddress, unsigned

startInputRegister);

Description

The ioRead4Counter function reads any 4 point Counter Input Module at the
specified moduleAddress. Data is read from the 4 counter inputs and copied to 8
consecutive input registers beginning at startInputRegister.

Each counter is a 32 bit number, stored in two input registers. The first register
holds the least significant 16 bits of the counter. The second register holds the
most significant 16 bits of the counter.

The maximum count is 4,294,967,295. Counters roll back to 0 when the
maximum count is exceeded.

The function returns FALSE if the moduleAddress or startInputRegister is invalid
or if an I/O error has occurred; otherwise TRUE is returned.

The valid range for moduleAddress is 0 to 15. startInputRegister is any valid
Modbus input register between 30001 and (30000 + NUMINPUT - 7).

Notes

Data is not copied to the I/O database for registers that are currently forced.

To read data from an I/O Module continuously, add the module to the Register
Assignment. Refer to the section Overview of Functions for details.

This function is contained in the ctools.lib library. Load this library in you linker
command (.cmd) file as shown in the sample file appram.cmd in your ctools
directory.

The IO_SYSTEM resource needs to be requested before calling this function.

Example

This program displays the values of the 4 counter inputs read from a 4 point
Counter Input Module at module address 0.

#include <ctools.h>

void main(void)

{

 unsigned counter, reg;

 unsigned long value;

 request_resource(IO_SYSTEM);

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 307 307

 /* Read data from counter input module and

 write it to I/O database */

 ioRead4Counter(0, 30001);

 /* Print data from I/O database */

 fprintf(com1, "Counter Value\n\r");

 counter = 0;

 for(reg = 30001; reg <= 30008; reg+=2)

 {

 value = dbase(MODBUS, reg) +

 ((long) dbase(MODBUS, reg+1)<<16);

 fprintf(com1, "%d %ld\n\r", counter++,

 value);

 }

 release_resource(IO_SYSTEM);

}

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 308 308

ioRead4202Inputs

Read SCADAPack 4202 DR Inputs into I/O Database

Syntax

#include <ctools.h>

unsigned ioRead4202Inputs(

 unsigned startStatusRegister,

 unsigned startInputRegister

);

Description

The ioRead4202Inputs function reads the digital, counter, and analog inputs from
the SCADAPack 4202 DR I/O. Data are read from 1 digital input and copied to 1
consecutive status registers beginning at startStatusRegister. Data is read from
the analog input and copied to 1 input register beginning at startInputRegister.
Data are read from the counter inputs and copied to 4 consecutive input registers
beginning at startInputRegister + 1.

startStatusRegister is any valid Modbus status register between 10001 and
(10000 + NUMSTATUS - 1). startInputRegister is any valid Modbus input register
between 30001 and (30000 + NUMINPUT - 4).

The function returns FALSE if startStatusRegister or startInputRegister is invalid
or if an I/O error has occurred; otherwise TRUE is returned.

Notes

When this function reads data from the transnmitter (controller), it also processes
the receiver buffer for the com3 serial port. The com3 serial port is also
continuously processed automatically. The additional service to the com3
receiver caused by this function does not affect the normal automatic operation
of com3.

Data is not copied to the I/O database for registers that are currently forced.

To read data from an I/O Module continuously, add the module to the Register
Assignment.

The IO_SYSTEM resource needs to be requested before calling this function.

Digital inputs can also be read with the readCounterInput function.

Counters can also be read with the readCounter function.

Analog inputs can also be read with the readInternalAD function.

See Also

readCounter, readCounterInput

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 309 309

Example

This program displays the values of the 1 digital input, 2 counter inputs and 1
analog input read from SCADAPack 4202 DR I/O.

#include "ctools.h"

void main(void)

{

 unsigned reg, counter;

 unsigned long value;

 request_resource(IO_SYSTEM);

 /* Read 4202GFC inputs and write to I/O database */

 ioRead4202Inputs (10001, 30001);

 /* Print digital inputy */

 fprintf(com2, "Register Value");

 fprintf(com2, "\n\r%5u ", 10001);

 fputc(dbase(MODBUS, 10001) ? '1' :'0', com2);

 /* print analog input */

 reg = 30001;

 fprintf(com2, "\n\r%5u %d\n\r", reg, dbase(MODBUS,

reg));

 /* print counter inputs */

 fprintf(com2, "Counter Value\n\r");

 counter = 0;

 for(reg = 30002; reg <= 30005; reg += 2)

 {

 value = (unsigned long) dbase(MODBUS, reg) |

 ((unsigned long) dbase(MODBUS, reg + 1) <<

16);

 fprintf(com2, "%u:%5u %lu\n\r", counter++, reg,

value);

 }

 release_resource(IO_SYSTEM);

 /* Wait here forever */

 while (TRUE)

 {

 NULL;

 }

}

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 310 310

ioRead4202DSInputs

Read SCADAPack 4202 DS Inputs into I/O Database

Syntax

#include <ctools.h>

unsigned ioRead4202DSInputs(

 unsigned startStatusRegister,

 unsigned startInputRegister

);

Description

The ioRead4202DSInputs function reads the digital, counter, and analog inputs
from the SCADAPack 4202 DS I/O. Data are read from 1 digital input and copied
to 1 consecutive status registers beginning at startStatusRegister. Data is read
from three analog inputs and copied to 3 input register beginning at
startInputRegister. Data are read from the counter inputs and copied to 4
consecutive input registers beginning at startInputRegister + 4.

startStatusRegister is any valid Modbus status register between 10001 and
(10000 + NUMSTATUS).

startInputRegister is any valid Modbus input register between 30001 and (30000
+ NUMINPUT - 6).

The function returns FALSE if startStatusRegister or startInputRegister is invalid
or if an I/O error has occurred; otherwise TRUE is returned.

Notes

When this function reads data from the SCADAPack 4202 DS I/O it also
processes the receiver buffer for the com3 serial port. The com3 serial port is
also continuously processed automatically. The additional service to the com3
receiver caused by this function does not affect the normal automatic operation
of com3.

Data is not copied to the I/O database for registers that are currently forced.

To read data from an I/O Module continuously, add the module to the Register
Assignment.

The IO_SYSTEM resource needs to be requested before calling this function.

The digital input can also be read with the readCounterInput function.

Counters can also be read with the readCounter function.

Analog inputs can also be read with the readInternalAD function.

See Also

ioWrite4202DSOutputs, readCounter, readCounterInput, readInternalAD

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 311 311

Example

This program displays the values of the digital input, 2 counter inputs and 3
analog inputs read from the SCADAPack 4202 DS I/O.

#include "ctools.h"

void main(void)

{

 unsigned reg, counter;

 unsigned long value;

 request_resource(IO_SYSTEM);

 /* Read 4202 DS inputs and write to I/O database */

 ioRead4202DSInputs (10001, 30001);

 /* Print digital inputy */

 fprintf(com2, "Register Value");

 fprintf(com2, "\n\r%5u ", 10001);

 fputc(dbase(MODBUS, 10001) ? '1' :'0', com2);

 /* print analog inputs */

 fprintf(com2, "\n\r%5u %d\n\r", 30001, dbase(MODBUS,

30001));

 fprintf(com2, "%5u %d\n\r", 30002, dbase(MODBUS,

30002));

 fprintf(com2, "%5u %d\n\r", 30003, dbase(MODBUS,

30003));

 /* print counter inputs */

 fprintf(com2, "Counter Value\n\r");

 counter = 0;

 for(reg = 30004; reg <= 30007; reg += 2)

 {

 value = (unsigned long) dbase(MODBUS, reg) |

 ((unsigned long) dbase(MODBUS, reg + 1) <<

16);

 fprintf(com2, "%u:%5u %lu\n\r", counter++, reg,

value);

 }

 release_resource(IO_SYSTEM);

 /* Wait here forever */

 while (TRUE)

 {

 release_processor();

 }

}

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 312 312

ioRead5505Inputs

Read 5505 Inputs into I/O Database

Syntax

#include <ctools.h>

UINT16 ioRead5505Inputs(

 UINT16 moduleAddress,

 UINT16 startStatusRegister,

 UINT16 startInputRegister);

Description

The ioRead5505Inputs function reads the digital and analog inputs from the
5505 I/O. Data is read from the 16 digital inputs and copied to 16 consecutive
status registers beginning at startStatusRegister. Data is read from all 4 analog
inputs and copied to 8 consecutive input registers in floating point format
beginning at startInputRegister.

The function of the 16 digital inputs is described in the table below.

Point
Offset

Function

0 OFF = channel 0 RTD is good

ON = channel 0 RTD is open or PWR input is off

1 OFF = channel 0 data in range

ON = channel 0 data is out of range

2 OFF = channel 0 RTD is using 3-wire measurement

ON = channel 0 RTD is using 4-wire measurement

3 reserved for future use

4 OFF = channel 1 RTD is good

ON = channel 1 RTD is open or PWR input is off

5 OFF = channel 1 data in range

ON = channel 1 data is out of range

6 OFF = channel 1 RTD is using 3-wire measurement

ON = channel 1 RTD is using 4-wire measurement

7 reserved for future use

8 OFF = channel 2 RTD is good

ON = channel 2 RTD is open or PWR input is off

9 OFF = channel 2 data in range

ON = channel 2 data is out of range

10 OFF = channel 2 RTD is using 3-wire measurement

ON = channel 2 RTD is using 4-wire measurement

11 reserved for future use

12 OFF = channel 3 RTD is good

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 313 313

ON = channel 3 RTD is open or PWR input is off

13 OFF = channel 3 data in range

ON = channel 3 data is out of range

14 OFF = channel 3 RTD is using 3-wire measurement

ON = channel 3 RTD is using 4-wire measurement

15 reserved for future use

The function returns FALSE if the moduleAddress, startStatusRegister or
startInputRegister is invalid or if an I/O error has occurred; otherwise TRUE is
returned.

moduleAddress is the address of the 5505 module. Valid values are 0 to 15.

startStatusRegister is any valid Modbus status register between 10001 and
(10001 + NUMSTATUS - 15).

startInputRegister is any valid Modbus input register between 30001 and (30001
+ NUMINPUT - 7).

Notes

Data is not copied to the I/O database for registers that are currently forced.

To read data from an I/O Module continuously, add the module to the Register
Assignment.

The IO_SYSTEM resource needs to be requested before calling this function.

Example

This program displays the values of the 16 digital inputs and 4 analog inputs read
from 5505 I/O at module address 3.

#include <ctools.h>

void main(void)

{

 UINT16 reg;

typedef union

{

 UINT16 intValue[2];

 float floatValue;

} UF_UNION;

UF_UNION value;

 request_resource(IO_SYSTEM);

 /* Read data from 5505 I/O into I/O database */

 ioRead5505Inputs(3, 10001, 30001);

 /* Print data from I/O database */

 fprintf(com1, "Register Value");

 for (reg = 10001; reg <= 10016; reg++)

 {

 fprintf(com1, "\n\r%d ", reg);

 putchar(dbase(MODBUS, reg) ? '1' :'0');

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 314 314

 }

 for(reg = 30001; reg <= 30008; reg+2)

 {

 value.intValue[1] = dbase(MODBUS, reg); value.intValue[0] =

dbase(MODBUS, reg + 1);

 fprintf(com1, "\n\r%d %d", reg,

value.floatValue);

 }

 release_resource(IO_SYSTEM);

}

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 315 315

ioRead5506Inputs

Read 5506 Inputs into I/O Database

Syntax

#include <ctools.h>

UINT16 ioRead5506Inputs(

 UINT16 moduleAddress,

 UINT16 startStatusRegister,

 UINT16 startInputRegister);

Description

The ioRead5506Inputs function reads the digital and analog inputs from the
5506 I/O. Data is read from the 8 digital inputs and copied to 8 consecutive
status registers beginning at startStatusRegister. Data is read from the 8 analog
inputs and copied to 8 consecutive input registers beginning at
startInputRegister.

The function returns FALSE if the moduleAddress, startStatusRegister or
startInputRegister is invalid or if an I/O error has occurred; otherwise TRUE is
returned.

moduleAddress is the address of the 5506 module. Valid values are 0 to 15.

startStatusRegister is any valid Modbus status register between 10001 and
(10001 + NUMSTATUS - 7).

startInputRegister is any valid Modbus input register between 30001 and (30001
+ NUMINPUT - 7).

Notes

Data is not copied to the I/O database for registers that are currently forced.

To read data from an I/O Module continuously, add the module to the Register
Assignment.

The IO_SYSTEM resource needs to be requested before calling this function.

Example

This program displays the values of the 8 digital inputs and 8 analog inputs read
from 5506 I/O at module address 3.

#include <ctools.h>

void main(void)

{

 UINT16 reg;

 request_resource(IO_SYSTEM);

 /* Read data from 5506 I/O into I/O database */

 ioRead5506Inputs(3, 10001, 30001);

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 316 316

 /* Print data from I/O database */

 fprintf(com1, "Register Value");

 for (reg = 10001; reg <= 10008; reg++)

 {

 fprintf(com1, "\n\r%d ", reg);

 putchar(dbase(MODBUS, reg) ? '1' :'0');

 }

 for(reg = 30001; reg <= 30008; reg++)

 {

 fprintf(com1, "\n\r%d %d", reg,

 dbase(MODBUS, reg));

 }

 release_resource(IO_SYSTEM);

}

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 317 317

ioRead5601Inputs

Read 5601 Inputs into I/O Database

Syntax

#include <ctools.h>

unsigned ioRead5601Inputs(unsigned startStatusRegister, unsigned

startInputRegister);

Description

The ioRead5601Inputs function reads the digital and analog inputs from a 5601
I/O Module. Data is read from all 16 digital inputs and copied to 16 consecutive
status registers beginning at startStatusRegister. Data is read from all 8 analog
inputs and copied to 8 consecutive input registers beginning at
startInputRegister.

The function returns FALSE if startStatusRegister or startInputRegister is invalid
or if an I/O error has occurred; otherwise TRUE is returned.

startStatusRegister is any valid Modbus status register between 10001 and
(10000 + NUMSTATUS - 15). startInputRegister is any valid Modbus input
register between 30001 and (30000 + NUMINPUT - 7).

Notes

When this function reads data from the 5601 it also processes the receiver buffer
for the com3 serial port. If the controller type is a SCADAPack or SCADAPack
PLUS, the com3 serial port is also continuously processed automatically.

The additional service to the com3 receiver caused by this function does not
affect the normal automatic operation of com3.

Data is not copied to the I/O database for registers that are currently forced.

To read data from an I/O Module continuously, add the module to the Register
Assignment. Refer to the section I/O Database and Register Assignment for
details.

This function is contained in the ctools.lib library. Load this library in you linker
command (.cmd) file as shown in the sample file appram.cmd in your ctools
directory.

The IO_SYSTEM resource needs to be requested before calling this function.

See Also

ioWrite5601Outputs

Example

This program displays the values of the 16 digital inputs and 8 analog inputs read
from a 5601 I/O Module.

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 318 318

#include <ctools.h>

void main(void)

{

 unsigned reg;

 request_resource(IO_SYSTEM);

 /* Read data from 5601 I/O module and write it

 to I/O database */

 ioRead5601Inputs(10001, 30001);

 /* Print data from I/O database */

 fprintf(com1, "Register Value");

 for (reg = 10001; reg <= 10016; reg++)

 {

 fprintf(com1, "\n\r%d ", reg);

 putchar(dbase(MODBUS, reg) ? '1' :'0');

 }

 for(reg = 30001; reg <= 30008; reg++)

 {

 fprintf(com1, "\n\r%d %d", reg,

 dbase(MODBUS, reg));

 }

 release_resource(IO_SYSTEM);

}

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 319 319

ioRead5602Inputs

Read 5602 Inputs into I/O Database

Syntax

#include <ctools.h>

unsigned ioRead5602Inputs(unsigned startStatusRegister, unsigned

startInputRegister);

Description

The ioRead5602Inputs function reads the inputs from a 5602 I/O Module as
digital or analog inputs. Data is read from the 5 analog inputs and copied to 5
consecutive input registers beginning at startInputRegister. The same 5 analog
inputs are also read as 5 digital inputs and copied to 5 consecutive status
registers beginning at startStatusRegister.

A digital input is ON if the corresponding filtered analog input value is greater
than or equal to 20% of its full scale value, otherwise it is OFF. Analog input 0 to
4 correspond to digital inputs 0 to 4.

The function returns FALSE if startStatusRegister or startInputRegister is invalid
or if an I/O error has occurred; otherwise TRUE is returned.

startStatusRegister is any valid Modbus status register between 10001 and
(10000 + NUMSTATUS - 4). startInputRegister is any valid Modbus input register
between 30001 and (30000 + NUMINPUT - 4).

Notes

When this function reads data from the 5602 it also processes the receiver buffer
for the com4 serial port. If the controller type is a SCADAPack LIGHT or
SCADAPack PLUS, the com4 serial port is also continuously processed
automatically.

The additional service to the com4 receiver caused by this function does not
affect the normal automatic operation of com4.

Data is not copied to the I/O database for registers that are currently forced.

To read data from an I/O Module continuously, add the module to the Register
Assignment. Refer to the section I/O Database and Register Assignment for
details.

This function is contained in the ctools.lib library. Load this library in you linker
command (.cmd) file as shown in the sample file appram.cmd in your ctools
directory.

The IO_SYSTEM resource needs to be requested before calling this function.

See Also

ioWrite5602Outputs

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 320 320

Example

This program displays the values of the 5 inputs read from a 5602 I/O Module as
both digital and analog inputs.

#include <ctools.h>

void main(void)

{

 unsigned reg;

 request_resource(IO_SYSTEM);

 /* Read data from 5602 I/O module and write it

 to I/O database */

 ioRead5602Inputs(10001, 30001);

 /* Print data from I/O database */

 fprintf(com1, "Register Value");

 for (reg = 10001; reg <= 10005; reg++)

 {

 fprintf(com1, "\n\r%d ", reg);

 putchar(dbase(MODBUS, reg) ? '1' :'0');

 }

 for(reg = 30001; reg <= 30005; reg++)

 {

 fprintf(com1, "\n\r%d %d", reg,

 dbase(MODBUS, reg));

 }

 release_resource(IO_SYSTEM);

}

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 321 321

ioRead5604Inputs

Read 5604 Inputs into I/O Database

Syntax

#include <ctools.h>

unsigned ioRead5604Inputs(

 unsigned startStatusRegister,

 unsigned startInputRegister);

Description

The ioRead5604Inputs function reads the digital and analog inputs from the 5604
I/O. Data is read from the 35 digital inputs and copied to 35 consecutive status
registers beginning at startStatusRegister. Data is read from the 10 analog inputs
and copied to 10 consecutive input registers beginning at startInputRegister.

The function returns FALSE if startStatusRegister or startInputRegister is invalid
or if an I/O error has occurred; otherwise TRUE is returned.

startStatusRegister is any valid Modbus status register between 10001 and
(10001 + NUMSTATUS - 35).

startInputRegister is any valid Modbus input register between 30001 and (30001
+ NUMINPUT - 10).

Notes

When this function reads data from the 5604 I/O it also processes the receiver
buffer for the com3 serial port. The com3 serial port is also continuously
processed automatically. The additional service to the com3 receiver caused by
this function does not affect the normal automatic operation of com3.

Data is not copied to the I/O database for registers that are currently forced.

To read data from an I/O Module continuously, add the module to the Register
Assignment.

The IO_SYSTEM resource needs to be requested before calling this function.

See Also

ioWrite5604Outputs

Example

This program displays the values of the 35 digital inputs and 10 analog inputs
read from 5604 I/O.

#include <ctools.h>

void main(void)

{

 unsigned reg;

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 322 322

 request_resource(IO_SYSTEM);

 /* Read data from 5604 I/O into I/O database */

 ioRead5604Inputs(10001, 30001);

 /* Print data from I/O database */

 fprintf(com1, "Register Value");

 for (reg = 10001; reg <= 10035; reg++)

 {

 fprintf(com1, "\n\r%d ", reg);

 putchar(dbase(MODBUS, reg) ? '1' :'0');

 }

 for(reg = 30001; reg <= 30010; reg++)

 {

 fprintf(com1, "\n\r%d %d", reg,

 dbase(MODBUS, reg));

 }

 release_resource(IO_SYSTEM);

}

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 323 323

ioRead5606Inputs

Read 5606 Inputs into I/O Database

Syntax

#include <ctools.h>

UINT16 ioRead5606Inputs(

 UINT16 moduleAddress,

 UINT16 startStatusRegister,

 UINT16 startInputRegister);

Description

The ioRead5606Inputs function reads the digital and analog inputs from the
5606 I/O. Data is read from the 40 digital inputs and copied to 40 consecutive
status registers beginning at startStatusRegister. Data is read from all 8 analog
inputs and copied to 8 consecutive input registers beginning at
startInputRegister.

The function returns FALSE if the moduleAddress, startStatusRegister or
startInputRegister is invalid or if an I/O error has occurred; otherwise TRUE is
returned.

moduleAddress is the address of the 5606 module. Valid values are 0 to 7.

startStatusRegister is any valid Modbus status register between 10001 and
(10001 + NUMSTATUS - 39).

startInputRegister is any valid Modbus input register between 30001 and (30001
+ NUMINPUT - 7).

Notes

Data is not copied to the I/O database for registers that are currently forced.

To read data from an I/O Module continuously, add the module to the Register
Assignment.

The IO_SYSTEM resource needs to be requested before calling this function.

Example

This program displays the values of the 40 digital inputs and 8 analog inputs read
from 5606 I/O at module address 3.

#include <ctools.h>

void main(void)

{

 UINT16 reg;

 request_resource(IO_SYSTEM);

 /* Read data from 5606 I/O into I/O database */

 ioRead5606Inputs(3, 10001, 30001);

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 324 324

 /* Print data from I/O database */

 fprintf(com1, "Register Value");

 for (reg = 10001; reg <= 10040; reg++)

 {

 fprintf(com1, "\n\r%d ", reg);

 putchar(dbase(MODBUS, reg) ? '1' :'0');

 }

 for(reg = 30001; reg <= 30008; reg++)

 {

 fprintf(com1, "\n\r%d %d", reg,

 dbase(MODBUS, reg));

 }

 release_resource(IO_SYSTEM);

}

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 325 325

ioRead8Ain

Read 8 Analog Inputs into I/O Database

Syntax

#include <ctools.h>

unsigned ioRead8Ain(unsigned moduleAddress, unsigned

startInputRegister);

Description

The ioRead8Ain function reads any 8 point Analog Input Module at the specified
moduleAddress. Data is read from all 8 analog inputs and copied to 8
consecutive input registers beginning at startInputRegister.

The function returns FALSE if the moduleAddress or startInputRegister is invalid
or if an I/O error has occurred; otherwise TRUE is returned.

The valid range for moduleAddress is 0 to 15. startInputRegister is any valid
Modbus input register between 30001 and (30000 + NUMINPUT - 7).

Notes

Data is not copied to the I/O database for registers that are currently forced.

To read data from an I/O Module continuously, add the module to the Register
Assignment. Refer to the section I/O Database and Register Assignment for
details.

This function is contained in the ctools.lib library. Load this library in you linker
command (.cmd) file as shown in the sample file appram.cmd in your ctools
directory.

The IO_SYSTEM resource needs to be requested before calling this function.

See Also

ioRead4Ain

Example

This program displays the values of the 8 analog inputs read from an 8 point
Analog Input Module at module address 0.

#include <ctools.h>

void main(void)

{

 unsigned reg;

 request_resource(IO_SYSTEM);

 /* Read data from digital input module and write it to

I/O database */

 ioRead8Ain(0, 30001);

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 326 326

 /* Print data from I/O database */

 fprintf(com1, "Register Value\n\r");

 for(reg = 30001; reg <= 30008; reg++)

 {

 fprintf(com1, "%d %d\n\r", reg,

 dbase(MODBUS, reg));

 }

 release_resource(IO_SYSTEM);

}

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 327 327

ioRead8Din

Read 8 Digital Inputs into I/O Database

Syntax

#include <ctools.h>

unsigned ioRead8Din(unsigned moduleAddress, unsigned

startStatusRegister);

Description

The ioRead8Din function reads any 8 point Digital Input Module at the specified
moduleAddress. Data is read from the 8 digital inputs and copied to 8
consecutive status registers beginning at startStatusRegister.

The function returns FALSE if the moduleAddress or startStatusRegister is
invalid or if an I/O error has occurred; otherwise TRUE is returned.

The valid range for moduleAddress is 0 to 15. startStatusRegister is any valid
Modbus status register between 10001 and (10000 + NUMSTATUS - 7).

Notes

Data is not copied to the I/O database for registers that are currently forced.

To read data from an I/O Module continuously, add the module to the Register
Assignment. Refer to the section I/O Database and Register Assignment for
details.

This function is contained in the ctools.lib library. Load this library in you linker
command (.cmd) file as shown in the sample file appram.cmd in your ctools
directory.

The IO_SYSTEM resource needs to be requested before calling this function.

See Also

ioRead16Din

Example

This program displays the values of the 8 digital inputs read from an 8 point
Digital Input Module at module address 0.

#include <ctools.h>

void main(void)

{

 unsigned reg;

 request_resource(IO_SYSTEM);

 /* Read data from digital input module and write it to

I/O database */

 ioRead8Din(0, 10001);

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 328 328

 /* For each digital input on the module */

 fprintf(com1, "Register Value");

 for (reg = 10001; reg <= 10008; reg++)

 {

 fprintf(com1, "\n\r%d ", reg);

 putchar(dbase(MODBUS, reg) ? '1' :'0');

 }

 release_resource(IO_SYSTEM);

}

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 329 329

ioReadLPInputs

Read SCADAPack LP Inputs into I/O Database

Syntax

#include <ctools.h>

unsigned ioReadLPInputs (unsigned startStatusRegister, unsigned

startInputRegister);

Description

The ioReadLPInputs function reads the digital and analog inputs from the
SCADAPack LP I/O. Data is read from the 16 digital inputs and copied to 16
consecutive status registers beginning at startStatusRegister. Data is read from
the 8 analog inputs and copied to 8 consecutive input registers beginning at
startInputRegister.

The function returns FALSE if startStatusRegister or startInputRegister is invalid
or if an I/O error has occurred; otherwise TRUE is returned.

startStatusRegister is any valid Modbus status register between 10001 and
(10000 + NUMSTATUS - 15). startInputRegister is any valid Modbus input
register between 30001 and (30000 + NUMINPUT - 7).

Notes

When this function reads data from the SCADAPack LP I/O it also processes the
receiver buffer for the com3 serial port. The com3 serial port is also continuously
processed automatically. The additional service to the com3 receiver caused by
this function does not affect the normal automatic operation of com3.

Data is not copied to the I/O database for registers that are currently forced.

To read data from an I/O Module continuously, add the module to the Register
Assignment.

The IO_SYSTEM resource needs to be requested before calling this function.

Example

This program displays the values of the 16 digital inputs and 8 analog inputs read
from SCADAPack LP I/O.

#include <ctools.h>

void main(void)

{

 unsigned reg;

 request_resource(IO_SYSTEM);

 /* Read data from LP I/O and write it to I/O database */

 ioReadLPInputs (10001, 30001);

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 330 330

 /* Print data from I/O database */

 fprintf(com1, "Register Value");

 for (reg = 10001; reg <= 10016; reg++)

 {

 fprintf(com1, "\n\r%d ", reg);

 putchar(dbase(MODBUS, reg) ? '1' :'0');

 }

 for(reg = 30001; reg <= 30008; reg++)

 {

 fprintf(com1, "\n\r%d %d", reg,

 dbase(MODBUS, reg));

 }

 release_resource(IO_SYSTEM);

}

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 331 331

ioReadSP100Inputs

Read SCADAPack 100 Inputs into I/O Database

Syntax

#include <ctools.h>

unsigned ioReadSP100Inputs(unsigned startStatusRegister, unsigned

startInputRegister);

Description

The ioReadSP100Inputs function reads the digital and analog inputs from the
SCADAPack 100 I/O. Data is read from the 6 digital inputs and copied to 6
consecutive status registers beginning at startStatusRegister. Data is read from
the 6 analog inputs and one counter input, and copied to 8 consecutive input
registers beginning at startInputRegister.

The function returns FALSE if startStatusRegister or startInputRegister is invalid
or if an I/O error has occurred; otherwise TRUE is returned.

startStatusRegister is any valid Modbus status register between 10001 and
(10000 + NUMSTATUS - 5). startInputRegister is any valid Modbus input register
between 30001 and (30000 + NUMINPUT - 7).

Notes

Data is not copied to the I/O database for registers that are currently forced.

Data from the four external analog inputs is copied to the first four input registers.

Data from the temperature sensor is copied to the fifth input register.

Data from the battery voltage sensor is copied to the sixth input register.

Data from the counter input is copied to the seventh and eighth input registers.

To read data from an I/O Module continuously, add the module to the Register
Assignment.

The IO_SYSTEM resource needs to be requested before calling this function.

See Also

ioWriteSP100Outputs

Example

This program displays the values of the 6 digital inputs, 6 analog inputs, and the
counter input read from SCADAPack 100 I/O.

#include <ctools.h>

void main(void)

{

 unsigned reg;

 unsigned long count;

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 332 332

 request_resource(IO_SYSTEM);

 /* Read data from I/O and write it to I/O database */

 ioReadSP100Inputs(10001, 30001);

 /* Print digital data from I/O database */

 for (reg = 10001; reg <= 10006; reg++)

 {

 fprintf(com1, "Register %d = %d\r\n", reg,

 dbase(MODBUS, reg));

 }

 fprintf(com1, "\r\n");

 /* Print analog data from I/O database */

 for(reg = 30001; reg <= 30006; reg++)

 {

 fprintf(com1, "Regsiter %d = %d\n\r", reg,

 dbase(MODBUS, reg));

 }

 fprintf(com1, "\r\n");

 /* Print counter data from I/O database */

 count = dbase(MODBUS, 30006);

 count += ((unsigned long) dbase(MODBUS, reg)) << 16;

 fprintf(com1, "Registers 30006 & 30007 = %ul\r\n", reg,

 count);

 release_resource(IO_SYSTEM);

}

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 333 333

ioRefresh

Update Outputs with Internal Data

Syntax

#include <ctools.h>

void ioRefresh(void);

Description

The ioRefresh function resets devices on the 5000 I/O bus. Input channels are
scanned to update their values from the I/O hardware. Output channels are
scanned to write their values from output tables in memory.

Notes

This function is normally only used by the sleep function to restore output states
when the controller wakes.

The IO_SYSTEM resource needs to be requested before calling this function.

See Also

ioClear, ioReset

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 334 334

ioReset

Reset 5000 I/O Modules

Syntax

#include <ctools.h>

void ioReset(unsigned state);

Description

The ioReset function sets the state of the 5000 I/O bus reset signal. state may
be TRUE or FALSE.

The reset signal restarts all devices on the 5000 I/O bus. Output modules clear
all their output points. Input modules restart their input scanning. All modules
remain in the reset state until the reset signal is set to FALSE.

Notes

Do not leave the reset signal in the TRUE state. This will disable I/O.

The ioClear function provides a more effective method of resetting the I/O
system.

The IO_SYSTEM resource needs to be requested before calling this function.

See Also

ioClear

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 335 335

ioWrite16Dout

Write to 16 Digital Outputs from I/O Database

Syntax

#include <ctools.h>

unsigned ioWrite16Dout(unsigned moduleAddress, unsigned

startCoilRegister);

Description

The ioWrite16Dout function writes data to any 16 point Digital Output Module at
the specified moduleAddress. Data is read from 16 consecutive coil registers
beginning at startCoilRegister, and written to the 16 digital outputs.

The function returns FALSE if the moduleAddress or startCoilRegister is invalid
or if an I/O error has occurred; otherwise TRUE is returned.

The valid range for moduleAddress is 0 to 15. startCoilRegister is any valid
Modbus coil register between 00001 and (NUMCOIL - 15).

Notes

To write data to an I/O Module continuously, add the module to the Register
Assignment. Refer to the section Overview of Functions for details.

This function is contained in the ctools.lib library. Load this library in you linker
command (.cmd) file as shown in the sample file appram.cmd in your ctools
directory.

The IO_SYSTEM resource needs to be requested before calling this function.

See Also

ioWrite8Dout

Example

This program turns ON all 16 digital outputs of a 16 point Digital Output Module
at module address 0.

#include <ctools.h>

void main(void)

{

 unsigned reg;

 request_resource(IO_SYSTEM);

 /* Write data to I/O database */

 for (reg = 1; reg <= 16; reg++)

 {

 setdbase(MODBUS, reg, 1);

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 336 336

 }

 /* Write data from I/O database to digital

 output module */

 ioWrite16Dout(0, 1);

 release_resource(IO_SYSTEM);

}

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 337 337

ioWrite32Dout

Write to 32 Digital Outputs from I/O Database

Syntax

#include <ctools.h>

unsigned ioWrite32Dout(

 UINT16 moduleAddress,

 UINT16 startCoilRegister);

Description

The ioWrite32Dout function writes data to any 32-point Digital Output Module at
the specified moduleAddress. Data is read from 32 consecutive coil registers
beginning at startCoilRegister, and written to the 32 digital outputs.

The function returns FALSE if the moduleAddress or startCoilRegister is invalid
or if an I/O error has occurred; otherwise TRUE is returned.

The valid range for moduleAddress is 0 to 15. startCoilRegister is any valid
Modbus coil register between 00001 and (NUMCOIL - 31).

Notes

To write data to an I/O Module continuously, add the module to the Register
Assignment.

This function is contained in the ctools.lib library. Load this library in you linker
command (.cmd) file as shown in the sample file appram.cmd in your ctools
directory.

The IO_SYSTEM resource needs to be requested before calling this function.

See Also

ioWrite8Dout, ioWrite16Dout

Example

This program turns ON all 32 digital outputs of a 32 point Digital Output Module
at module address 0.

#include <ctools.h>

void main(void)

{

 unsigned reg;

 request_resource(IO_SYSTEM);

 /* Write data to I/O database */

 for (reg = 1; reg <= 32; reg++)

 {

 setdbase(MODBUS, reg, 1);

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 338 338

 }

 /* Write data from I/O database to digital

 output module */

 ioWrite32Dout(0, 1);

 release_resource(IO_SYSTEM);

}

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 339 339

ioWrite8Dout

Write to 8 Digital Outputs from I/O Database

Syntax

#include <iomodule.h>

unsigned ioWrite8Dout(unsigned moduleAddress, unsigned

startCoilRegister);

Description

The ioWrite8Dout function writes data to any 8 point Digital Output Module at
the specified moduleAddress. Data is read from 8 consecutive coil registers
beginning at startCoilRegister, and written to the 8 digital outputs.

The function returns FALSE if the moduleAddress or startCoilRegister is invalid
or if an I/O error has occurred; otherwise TRUE is returned.

The valid range for moduleAddress is 0 to 15. startCoilRegister is any valid
Modbus coil register between 00001 and (NUMCOIL - 7).

Notes

To write data to an I/O Module continuously, add the module to the Register
Assignment. Refer to the section Overview of Functions for details.

This function is contained in the ctools.lib library. Load this library in you linker
command (.cmd) file as shown in the sample file appram.cmd in your ctools
directory.

The IO_SYSTEM resource needs to be requested before calling this function.

See Also

ioWrite16Dout

Example

This program turns ON all 8 digital outputs of an 8 point Digital Output Module at
module address 0.

#include <ctools.h>

void main(void)

{

 unsigned reg;

 request_resource(IO_SYSTEM);

 /* Write data to I/O database */

 for (reg = 1; reg <= 8; reg++)

 {

 setdbase(MODBUS, reg, 1);

 }

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 340 340

 /* Write data from I/O database to digital

 output module */

 ioWrite8Dout(0, 1);

 release_resource(IO_SYSTEM);

}

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 341 341

ioWrite2Aout

Write to 2 Analog Outputs from I/O Database

Syntax

#include <ctools.h>

unsigned ioWrite2Aout(unsigned moduleAddress, unsigned

startHoldingRegister);

Description

The ioWrite2Aout function writes data to any 2 point Analog Output Module at
the specified moduleAddress. Data is read from 2 consecutive holding registers
beginning at startHoldingRegister, and written to the 2 analog outputs.

The function returns FALSE if the moduleAddress or startHoldingRegister is
invalid or if an I/O error has occurred; otherwise TRUE is returned.

The valid range for moduleAddress is 0 to 15. startHoldingRegister is any valid
Modbus holding register between 40001 and (40000 + NUMHOLDING - 1).

Notes

To write data to an I/O Module continuously, add the module to the Register
Assignment. Refer to the section Overview of Functions for details.

This function is contained in the ctools.lib library. Load this library in you linker
command (.cmd) file as shown in the sample file appram.cmd in your ctools
directory.

The IO_SYSTEM resource needs to be requested before calling this function.

See Also

ioWrite4Aout, ioWrite5303Aout

Example

This program sets both analog outputs to half scale on a 2 point Analog Output
Module at module address 0.

#include <ctools.h>

void main(void)

{

 request_resource(IO_SYSTEM);

 /* Write data to I/O database */

 setdbase(MODBUS, 40001, 16384);

 setdbase(MODBUS, 40002, 16384);

 /* Write data from I/O database to analog

 output module */

 ioWrite2Aout(0, 40001);

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 342 342

 release_resource(IO_SYSTEM);

}

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 343 343

ioWrite4Aout

Write to 4 Analog Outputs from I/O Database

Syntax

#include <ctools.h>

unsigned ioWrite4Aout(unsigned moduleAddress, unsigned

startHoldingRegister);

Description

The ioWrite4Aout function writes data to any 4 point Analog Output Module at
the specified moduleAddress. Data is read from 4 consecutive holding registers
beginning at startHoldingRegister, and written to the 4 analog outputs.

The function returns FALSE if the moduleAddress or startHoldingRegister is
invalid or if an I/O error has occurred; otherwise TRUE is returned.

The valid range for moduleAddress is 0 to 15. startHoldingRegister is any valid
Modbus holding register between 40001 and (40000 + NUMHOLDING - 3).

Notes

To write data to an I/O Module continuously, add the module to the Register
Assignment. Refer to the section Overview of Functions for details.

This function is contained in the ctools.lib library. Load this library in you linker
command (.cmd) file as shown in the sample file appram.cmd in your ctools
directory.

The IO_SYSTEM resource needs to be requested before calling this function.

See Also

ioWrite2Aout, ioWrite5303Aout

Example

This program sets all 4 analog outputs to half scale on a 4 point Analog Output
Module at module address 0.

#include <ctools.h>

void main(void)

{

 unsigned reg;

 request_resource(IO_SYSTEM);

 /* Write data to I/O database */

 for (reg = 40001; reg <= 40004; reg++)

 {

 setdbase(MODBUS, reg, 16384);

 }

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 344 344

 /* Write data from I/O database to analog

 output module */

 ioWrite4Aout(0, 40001);

 release_resource(IO_SYSTEM);

}

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 345 345

ioWrite4AoutChecksum

Write to 4 Point Analog Output Module with Checksum

Syntax

#include <ctools.h>

UINT16 ioWrite4AoutChecksum(

 UINT16 moduleAddress,

 UINT16 startHoldingRegister

)

Description

The ioWrite4AoutChecksum function writes data to a 4-point analog output
module with checksum support. Output data comes from the I/O database. The
function can be used with 5304 analog output modules. Use the isaWrite4Aout
function for all other analog output modules.

The function has two parameters.

 moduleAddress is the address of the module. The valid range is 0 to 15.

 Data are read from 4 consecutive holding registers and written to 4 analog
outputs. startHoldingRegister is any valid Modbus holding register between
40001 and (40001 + NUMHOLDING - 4).

The function returns FALSE if the moduleAddress or startHoldingRegister is
invalid, or if an I/O error occurs; otherwise TRUE is returned.

Notes

The IO_SYSTEM resource needs to be requested before calling this function.

This function is contained in the ctools.lib library. Load this library in you linker
command (.cmd) file as shown in the sample file appram.cmd in your ctools
directory.

To write data to an I/O Module continuously, add the module to the Register
Assignment.

See Also

ioWrite2Aout, ioWrite4Aout, ioWrite5303Aout

Example

This program sets all 4 analog outputs to half scale on a 5304 Analog Output
Module at module at address 0.

#include <ctools.h>

void main(void)

{

 UINT16 reg;

 request_resource(IO_SYSTEM);

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 346 346

 /* Write data to I/O database */

 for (reg = 40001; reg <= 40004; reg++)

 {

 setdbase(MODBUS, reg, 16384);

 }

 /* Write I/O database to 5304 analog output module */

 ioWrite4AoutChecksum(0, 40001);

 release_resource(IO_SYSTEM);

}

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 347 347

ioWrite4202Outputs

Write to SCADAPack 4202 DR Outputs from I/O Database

Syntax

#include <ctools.h>

unsigned ioWrite4202Outputs(

 unsigned startHoldingRegister

);

Description

The ioWrite4202Outputs function writes data to the analog output of the
SCADAPack 4202 DR I/O. Analog data is read from 1 holding register beginning
at startHoldingRegister and written to the analog output.

startHoldingRegister is any valid Modbus holding register between 40001 and
(4000 + NUMHOLDING).

The function returns FALSE if startHoldingRegister is invalid, or if an I/O error
has occurred; otherwise TRUE is returned.

Notes

When this function writes data to the SCADAPack 4202 DR I/O it also processes
the transmit buffer for the com3 serial port. The com3 serial port is also
continuously processed automatically. The additional service to the com3
receiver caused by this function does not affect the normal automatic operation
of com3.

To write data to an I/O Module continuously, add the module to the Register
Assignment.

The IO_SYSTEM resource needs to be requested before calling this function.

See Also

ioRead4202Inputs, ioWrite4202OutputsEx

Example

This program sets the analog output to full scale.

#include <ctools.h>

void main(void)

{

 request_resource(IO_SYSTEM);

 /* Write analog data to I/O database */

 setdbase(MODBUS, 40001, 32767);

 /* Write data from I/O database to 4202 DR output */

 ioWrite4202Outputs(40001);

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 348 348

 release_resource(IO_SYSTEM);

}

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 349 349

ioWrite4202OutputsEx

Write to SCADAPack 4202 DR with Extended Outputs, from I/O Database

Syntax

#include <ctools.h>

unsigned ioWrite4202OutputsEx(

 unsigned startCoilRegister,

 unsigned startHoldingRegister

);

Description

The ioWrite4202OutputsEx function writes data to the outputs of the SCADAPack
4202 DR with Extended I/O (digital output). Digital data is read from one coil
register starting at startCoilRegister and written to the digital output. Analog data
is read from 1 holding register beginning at startHoldingRegister and written to
the analog output.

startCoilRegister is any valid Modbus coil register between 1 and (NUMCOIL).

startHoldingRegister is any valid Modbus holding register between 40001 and
(4000 + NUMHOLDING).

The function returns FALSE if startCoilRegister or startHoldingRegister are
invalid, or if an I/O error has occurred; otherwise TRUE is returned.

Notes

When this function writes data to the SCADAPack 4202 DR I/O it also processes
the transmit buffer for the com3 serial port. The com3 serial port is also
continuously processed automatically. The additional service to the com3
receiver caused by this function does not affect the normal automatic operation
of com3.

To write data to an I/O Module continuously, add the module to the Register
Assignment.

The IO_SYSTEM resource needs to be requested before calling this function.

See Also

ioRead4202Inputs

Example

This program sets the analog output to full scale and turns on the digital output.

#include <ctools.h>

void main(void)

{

 request_resource(IO_SYSTEM);

 /* Write output data to I/O database */

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 350 350

 setdbase(MODBUS, 1, 1);

 setdbase(MODBUS, 40001, 32767);

 /* Write data from I/O database to 4202 DR outputs */

 ioWrite4202OutputsEx(1, 40001);

 release_resource(IO_SYSTEM);

}

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 351 351

ioWrite4202DSOutputs

Write to SCADAPack 4202 DS Outputs from I/O Database

Syntax

#include <ctools.h>

unsigned ioWrite4202DSOutputs(

 unsigned startCoilRegister

);

Description

The ioWrite4202DSOutputs function writes data to the outputs of the
SCADAPack 4202 DS I/O module. Digital data is read from two coil registers
starting at startCoilRegister and written to the digital outputs.

startCoilRegister is any valid Modbus coil register between 1 and (NUMCOIL - 1).

The function returns FALSE if startCoilRegister is invalid, or if an I/O error has
occurred; otherwise TRUE is returned.

Notes

When this function writes data to the SCADAPack 4202 DS I/O it also processes
the transmit buffer for the com3 serial port. The com3 serial port is also
continuously processed automatically. The additional service to the com3
receiver caused by this function does not affect the normal automatic operation
of com3.

To write data to an I/O Module continuously, add the module to the Register
Assignment.

The IO_SYSTEM resource needs to be requested before calling this function.

See Also

ioRead4202DSInputs

Example

This program turns on the digital outputs.

#include <ctools.h>

void main(void)

{

 request_resource(IO_SYSTEM);

 /* Write output data to I/O database */

 setdbase(MODBUS, 1, 1);

 setdbase(MODBUS, 2, 1);

 /* Write data from I/O database to 4202 DS outputs */

 ioWrite4202DSOutputs(1);

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 352 352

 release_resource(IO_SYSTEM);

}

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 353 353

ioWrite5303Aout

Write to 5303 Analog Outputs from I/O Database

Syntax

#include <ctools.h>

unsigned ioWrite5303Aout(unsigned startHoldingRegister);

Description

The ioWrite5303Aout function writes data to the 2 points on a 5303
SCADAPack Analog Output Module. Data is read from 2 consecutive holding
registers beginning at startHoldingRegister, and written to the 2 analog outputs.

The function returns FALSE if startHoldingRegister is invalid or if an I/O error has
occurred; otherwise TRUE is returned.

startHoldingRegister is any valid Modbus holding register between 40001 and
(40000 + NUMHOLDING - 1).

Notes

To write data to an I/O Module continuously, add the module to the Register
Assignment. Refer to the section I/O Database and Register Assignment for
details.

This function is contained in the ctools.lib library. Load this library in you linker
command (.cmd) file as shown in the sample file appram.cmd in your ctools
directory.

The IO_SYSTEM resource needs to be requested before calling this function.

See Also

ioWrite2Aout, ioWrite5303Aout

Example

This program sets both analog outputs to half scale on a 5303 Analog Output
Module.

#include <ctools.h>

void main(void)

{

 request_resource(IO_SYSTEM);

 /* Write data to I/O database */

 setdbase(MODBUS, 40001, 16384);

 setdbase(MODBUS, 40002, 16384);

 /* Write data from I/O database to analog

 output module */

 ioWrite5303Aout(40001);

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 354 354

 release_resource(IO_SYSTEM);

}

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 355 355

ioWrite5505Outputs

Write to 5505 Configuration from I/O Database

Syntax

#include <ctools.h>

UINT16 ioWrite5505Outputs(

 UINT16 moduleAddress,

 UINT16 inputType[4],

 UINT16 inputFilter

);

Description

The ioWrite5505Outputs function writes configuration data to the 5505 I/O
module.

The function returns FALSE if moduleAddress is invalid, or if an I/O error has
occurred; otherwise TRUE is returned.

moduleAddress is the address of the 5505 module. Valid values are 0 to 15.

inputType is an array of 4 values indicating the input range for the corresponding
analog input. Valid values are

 0 = RTD in deg Celsius

 1 = RTD in deg Fahrenheit

 2 = RTD in deg Kelvin

 3 = resistance measurement in ohms.

inputFilter is the analog input filter setting. Valid values are.

 0 = 0.5 s

 1 = 1 s

 2 = 2 s

 3 = 4 s

Notes

To write data to an I/O Module continuously, add the module to the Register
Assignment.

The IO_SYSTEM resource needs to be requested before calling this function.

Example

This program writes configuration data to a 5505 I/O module at module address
5.

#include <ctools.h>

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 356 356

void main(void)

{

 UINT16 index;

 UINT16 inputType[4];

 UINT16 inputFilter;

 request_resource(IO_SYSTEM);

 /* set the input types */

 for (index = 0; index < 4; index++)

 {

 inputType[index] = 1; // RTD in deg F

 }

 /* set filter */

 inputFilter = 3; // maximum filter

 /* Write configuration data to 5505 I/O module */

 ioWrite5505Outputs(5, inputType, inputFilter);

 release_resource(IO_SYSTEM);

}

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 357 357

ioWrite5506Outputs

Write to 5506 Configuration from I/O Database

Syntax

#include <ctools.h>

UINT16 ioWrite5506Outputs(

 UINT16 moduleAddress,

 UINT16 inputType[8],

 UINT16 inputFilter,

 UINT16 scanFrequency

);

Description

The ioWrite5506Outputs function writes configuration data to the 5506 I/O
module.

The function returns FALSE if moduleAddress is invalid, or if an I/O error has
occurred; otherwise TRUE is returned.

moduleAddress is the address of the 5506 module. Valid values are 0 to 15.

inputType is an array of 8 values indicating the input range for the corresponding
analog input. Valid values are

 0 = 0 to 5 V

 1 = 1 to 5 V

 2 = 0 to 20 mA

 3 = 4 to 20 mA.

inputFilter is the analog input filter setting. Valid values are.

 0 = 3 Hz

 1 = 6 Hz

 2 = 11 Hz

 3 = 30 Hz

scanFrequency is the scan frequency setting. Valid values are.

 0 = 60 Hz

 1 = 50 Hz

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 358 358

Notes

To write data to an I/O Module continuously, add the module to the Register
Assignment.

The IO_SYSTEM resource needs to be requested before calling this function.

See Also

ioRead5606Inputs

Example

This program writes configuration data to a 5506 I/O module at module address
5.

#include <ctools.h>

void main(void)

{

 UINT16 index;

 UINT16 inputType[8];

 UINT16 inputFilter;

 UINT16 scanFrequency;

 request_resource(IO_SYSTEM);

 /* set the input types */

 for (index = 0; index < 8; index++)

 {

 inputType[index] = 1; // 1 to 5 V

 }

 /* set filter and frequency */

 inputFilter = 3; // minimum filter

 scanFrequency = 0; // 60 Hz

 /* Write configuration data to 5506 I/O module */

 ioWrite5506Outputs(5, inputType, inputFilter,

scanFrequency);

 release_resource(IO_SYSTEM);

}

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 359 359

ioWrite5601Outputs

Write to 5601 Outputs from I/O Database

Syntax

#include <ctools.h>

unsigned ioWrite5601Outputs(unsigned startCoilRegister);

Description

The ioWrite5601Outputs function writes data to the digital outputs of a 5601 I/O
Module. Data is read from 12 consecutive coil registers beginning at
startCoilRegister, and written to the 12 digital outputs.

The function returns FALSE if startCoilRegister is invalid or if an I/O error has
occurred; otherwise TRUE is returned.

startCoilRegister is any valid Modbus coil register between 00001 and
(NUMCOIL - 11).

Notes

When this function writes data to the 5601 it also services to the transmit buffer
of the com3 serial port. If the controller type is a SCADAPack or SCADAPack
PLUS, the com3 serial port is also continuously processed automatically.

The additional service to the com3 transmitter caused by this function does not
affect the normal automatic operation of com3.

To write data to an I/O Module continuously, add the module to the Register
Assignment. Refer to the section Overview of Functions for details.

This function is contained in the ctools.lib library. Load this library in you linker
command (.cmd) file as shown in the sample file appram.cmd in your ctools
directory.

The IO_SYSTEM resource needs to be requested before calling this function.

See Also

ioRead5601Inputs

Example

This program turns ON all 12 digital outputs of a 5601 I/O Module.

#include <ctools.h>

void main(void)

{

 unsigned reg;

 request_resource(IO_SYSTEM);

 /* Write data to I/O database */

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 360 360

 for (reg = 1; reg <= 12; reg++)

 {

 setdbase(MODBUS, reg, 1);

 }

 /* Write data from I/O database to 5601 */

 ioWrite5601Outputs(1);

 release_resource(IO_SYSTEM);

}

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 361 361

ioWrite5602Outputs

Write to 5602 Outputs from I/O Database

Syntax

#include <ctools.h>

unsigned ioWrite5602Outputs(unsigned startCoilRegister);

Description

The ioWrite5602Outputs function writes data to the digital outputs of a 5602 I/O
Module. Data is read from 2 consecutive coil registers beginning at
startCoilRegister, and written to the 2 digital outputs.

The function returns FALSE if startCoilRegister is invalid or if an I/O error has
occurred; otherwise TRUE is returned.

startCoilRegister is any valid Modbus coil register between 00001 and
(NUMCOIL - 1).

Notes

When this function writes data to the 5602 it also services to the transmit buffer
of the com4 serial port. If the controller type is a SCADAPack LIGHT or
SCADAPack PLUS, the com4 serial port is also continuously processed
automatically.

The additional service to the com4 transmitter caused by this function does not
affect the normal automatic operation of com4.

To write data to an I/O Module continuously, add the module to the Register
Assignment. Refer to the section Overview of Functions for details.

This function is contained in the ctools.lib library. Load this library in you linker
command (.cmd) file as shown in the sample file appram.cmd in your ctools
directory.

The IO_SYSTEM resource needs to be requested before calling this function.

See Also

ioRead5602Inputs

Example

This program turns ON both digital outputs of a 5602 I/O Module.

#include <ctools.h>

void main(void)

{

 unsigned reg;

 request_resource(IO_SYSTEM);

 /* Write data to I/O database */

 setdbase(MODBUS, 1, 1);

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 362 362

 setdbase(MODBUS, 2, 1);

 /* Write data from I/O database to 5602 */

 ioWrite5602Outputs(1);

 release_resource(IO_SYSTEM);

}

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 363 363

ioWrite5604Outputs

Write to 5604 Outputs from I/O Database

Syntax

#include <ctools.h>

unsigned ioWrite5604Outputs(

 unsigned startCoilRegister,

 unsigned startHoldingRegister);

Description

The ioWrite5604Outputs function writes data to the digital and analog outputs of
the 5604 I/O. Digital data is read from 36 consecutive coil registers beginning at
startCoilRegister, and written to the 36 digital outputs. Analog data is read from 2
consecutive holding registers beginning at startHoldingRegister and written to the
2 analog outputs.

The function returns FALSE if startCoilRegister is invalid, if startHoldingRegister
is invalid, or if an I/O error has occurred; otherwise TRUE is returned.

startCoilRegister is any valid Modbus coil register between 00001 and (1 +
NUMCOIL - 36).

startHoldingRegister is any valid Modbus holding register between 40001 and
(40001 + NUMHOLDING - 2).

Notes

When this function writes data to the 5604 I/O it also processes the transmit
buffer for the com3 serial port. The com3 serial port is also continuously
processed automatically. The additional service to the com3 transmitter caused
by this function does not affect the normal automatic operation of com3.

To write data to an I/O Module continuously, add the module to the Register
Assignment.

The IO_SYSTEM resource needs to be requested before calling this function.

See Also

ioRead5604Inputs

Example

This program turns on all 32 external digital outputs and sets the analog outputs
to full scale. The internal digital outputs are turned off.

#include <ctools.h>

void main(void)

{

 unsigned reg;

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 364 364

 request_resource(IO_SYSTEM);

 /* Write digital data to I/O database */

 for (reg = 1; reg <= 32; reg++)

 {

 setdbase(MODBUS, reg, 1);

 }

 for (reg = 33; reg <= 36; reg++)

 {

 setdbase(MODBUS, reg, 0);

 }

 /* Write analog data to I/O database */

 for (reg = 40001; reg <= 40002; reg++)

 {

 setdbase(MODBUS, reg, 32767);

 }

 /* Write data from I/O database to 5604 I/O */

 ioWrite5604Outputs(1, 40001);

 release_resource(IO_SYSTEM);

}

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 365 365

ioWrite5606Outputs

Write to 5606 Outputs from I/O Database

Syntax

#include <ctools.h>

UINT16 ioWrite5606Outputs(

 UINT16 moduleAddress,

 UINT16 startCoilRegister,

 UINT16 startHoldingRegister,

 UINT16 inputType[8],

 UINT16 inputFilter,

 UINT16 scanFrequency,

 UINT16 outputType

);

Description

The ioWrite5606Outputs function writes data to the digital and analog outputs of
the 5606 I/O. Digital data is read from 16 consecutive coil registers beginning at
startCoilRegister, and written to the 16 digital outputs. Analog data is read from 2
consecutive holding registers beginning at startHoldingRegister and written to the
2 analog outputs.

The function returns FALSE if moduleAddress, startCoilRegister or
startHoldingRegister is invalid, or if an I/O error has occurred; otherwise TRUE is
returned.

moduleAddress is the address of the 5606 module. Valid values are 0 to 7.

startCoilRegister is any valid Modbus coil register between 00001 and (1 +
NUMCOIL - 15).

startHoldingRegister is any valid Modbus holding register between 40001 and
(40001 + NUMHOLDING - 1).

inputType is an array of 8 values indicating the input range for the corresponding
analog input. Valid values are

 0 = 0 to 5V

 1 = 0 to 10 V

 2 = 0 to 20 mA

 3 = 4 to 20 mA.

inputFilter is the analog input filter setting. Valid values are.

 0 = 3 Hz

 1 = 6 Hz

 2 = 11 Hz

 3 = 30 Hz

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 366 366

scanFrequency is the scan frequency setting. Valid values are.

 0 = 60 Hz

 1 = 50 Hz

outputType selects the type of analog outputs on the module. Valid values are

 0 = 0 to 20 mA

 1 = 4 to 20 mA.

Notes

To write data to an I/O Module continuously, add the module to the Register
Assignment.

The IO_SYSTEM resource needs to be requested before calling this function.

See Also

ioRead5606Inputs

Example

This program turns on all 16 external digital outputs and sets the analog outputs
to full scale. The internal digital outputs are turned off. The module address is 5.

#include <ctools.h>

void main(void)

{

 UINT16 index;

 UINT16 inputType[8];

 UINT16 inputFilter;

 UINT16 scanFrequency;

 UINT16 outputType;

 request_resource(IO_SYSTEM);

 /* Write digital data to I/O database */

 for (index = 1; index <= 16; index ++)

 {

 setdbase(MODBUS, index, 1);

 }

 /* Write analog data to I/O database */

 for (index = 40001; index <= 40002; index ++)

 {

 setdbase(MODBUS, index, 32767);

 }

 /* set the input types */

 for (index = 0; index < 8; index++)

 {

 inputType[index] = 1; // 0 to 10 V

 }

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 367 367

 /* set filter and frequency */

 inputFilter = 3; // minimum filter

 scanFrequency = 0; // 60 Hz

 /* set analog output type to 4-20 mA */

 outputType = 1;

 /* Write data from I/O database to 5606 I/O */

 ioWrite5606Outputs(5, 1, 40001, inputType, inputFilter,

scanFrequency, outputType);

 release_resource(IO_SYSTEM);

}

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 368 368

ioWriteLPOutputs

Write to SCADAPack LP Outputs from I/O Database

Syntax

#include <ctools.h>

unsigned ioWriteLPOutputs (unsigned startCoilRegister, unsigned

startHoldingRegister);

Description

The ioWriteLPOutputsfunction writes data to the digital and analog outputs of the
SCADAPack LP I/O. Digital data is read from 12 consecutive coil registers
beginning at startCoilRegister, and written to the 12 digital outputs. Analog data
is read from 2 consecutive holding registers beginning at startHoldingRegister
and written to the 2 analog outputs.

The function returns FALSE if startCoilRegister is invalid, if startHoldingRegister
is invalid, or if an I/O error has occurred; otherwise TRUE is returned.

startCoilRegister is any valid Modbus coil register between 00001 and
(NUMCOIL - 11).

startHoldingRegister is any valid Modbus holding register between 40001 and
(NUMHOLDING - 2).

Notes

When this function writes data to the SCADAPack LP I/O it also processes the
transmit buffer for the com3 serial port. The com3 serial port is also continuously
processed automatically. The additional service to the com3 receiver caused by
this function does not affect the normal automatic operation of com3.

To write data to an I/O Module continuously, add the module to the Register
Assignment.

The IO_SYSTEM resource needs to be requested before calling this function.

See Also

ioReadLPInputs

Example

This program turns on all 12 digital outputs and sets the analog outputs to full
scale.

#include <ctools.h>

void main(void)

{

 unsigned reg;

 request_resource(IO_SYSTEM);

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 369 369

 /* Write digital data to I/O database */

 for (reg = 1; reg <= 12; reg++)

 {

 setdbase(MODBUS, reg, 1);

 }

 /* Write analog data to I/O database */

 for (reg = 40001; reg <= 40002; reg++)

 {

 setdbase(MODBUS, reg, 32767);

 }

 /* Write data from I/O database to SCADAPack LP I/O */

 ioWriteLPOutputs (1, 40001);

 release_resource(IO_SYSTEM);

}

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 370 370

ioWriteSP100Outputs

Write to SCADAPack 100 Outputs from I/O Database

Syntax

#include <ctools.h>

unsigned ioWriteSP100Outputs(unsigned startCoilRegister);

Description

The ioWriteSP100Outputs function writes data to the digital outputs of the
SCADAPack 100 I/O. Digital data is read from 6 consecutive coil registers
beginning at startCoilRegister, and written to the 6 digital outputs.

The function returns FALSE if startCoilRegister is invalid, or if an I/O error has
occurred; otherwise TRUE is returned.

startCoilRegister is any valid Modbus coil register between 00001 and
(NUMCOIL - 5).

Notes

To write data to an I/O Module continuously, add the module to the Register
Assignment.

The IO_SYSTEM resource needs to be requested before calling this function.

See Also

ioReadSP100Inputs

Example

This program turns on all 6 digital outputs.

#include <ctools.h>

void main(void)

{

 unsigned reg;

 request_resource(IO_SYSTEM);

 /* Write digital data to I/O database */

 for (reg = 1; reg <= 6; reg++)

 {

 setdbase(MODBUS, reg, 1);

 }

 /* Write data from I/O database to SCADAPack 100 I/O */

 ioWriteSP100Outputs(1);

 release_resource(IO_SYSTEM);

}

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 371 371

jiffy

Read System Clock

Syntax

#include <ctools.h>

unsigned long jiffy(void);

Description

The jiffy function returns the current value of the system jiffy clock. The jiffy clock
increments every 1/60 second. The jiffy clock rolls over to 0 after 5183999. This
is the number of 1/60 second intervals in a day.

Notes

The real time clock and the jiffy clock are not related. They may drift slightly with
respect to each other over several days.

Use the jiffy clock to measure times with resolution better than the 1/10th
resolution provided by timers.

See Also

interval, setjiffy

Example

This program uses the jiffy timer to determine the execution time of a section of
code. The section is run 10 times to provide a longer time base for the
measurement.

#include <ctools.h>

void main(void)

{

 int iterations = 10;

 int i;

 setjiffy(0UL);

 for(i=0; i<=iterations; i++)

 {

 /* statements to time */

 }

 printf("average time=%ld jiffies",

 jiffy()/iterations);

}

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 372 372

ledGetDefault

Read LED Power Control Parameters

Syntax

#include <ctools.h>

struct ledControl_tag ledGetDefault(void);

Description

The ledGetDefault routine returns the default LED power control parameters.
The controller controls LED power to 5000 I/O modules. To conserve power, the
LEDs can be disabled.

The user can change the LED power setting with the LED POWER switch on the
controller. The LED power returns to its default state after a user specified time
period.

Example

See the example for the ledSetDefault function.

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 373 373

ledPower

Set LED Power State

Syntax

#include <ctools.h>

unsigned ledPower(unsigned state);

Description

The ledPower function sets the LED power state. The LED power will remain in
the state until the default time-out period expires. state needs to be LED_ON or
LED_OFF.

The function returns TRUE if state is valid and FALSE if it is not.

Notes

The LED POWER switch also controls the LED power. A user may override the
setting made by this function.

The ledSetDefault function sets the default state of the LED power. This state
overrides the value set by this function.

See Also

ledPowerSwitch, ledGetDefault, ledSetDefault

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 374 374

ledPowerSwitch

Read State of the LED Power Switch

Syntax

#include <ctools.h>

unsigned ledPowerSwitch(void);

Description

The ledPowerSwitch function returns the status of the led power switch. The
function returns FALSE if the switch is released and TRUE if the switch is
pressed.

Notes

This switch may be used by the program for user input. However, pressing the
switch will have the side effect of changing the LED power state.

See Also

ledPower, ledSetDefault, ledGetDefault

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 375 375

ledSetDefault

Set Default Parameters for LED Power Control

Syntax

#include <ctools.h>

unsigned ledSetDefault(struct ledControl_tag ledControl);

Description

The ledSetDefault routine sets default parameters for LED power control. The
controller controls LED power to 5000 I/O modules. To conserve power, the
LEDs can be disabled.

The LED power setting can be changed by the user with the LED POWER switch
on the controller. The LED power returns to its default state after a user specified
time period.

The ledControl structure contains the default values. Refer to the Structures and
Types section for a description of the fields in the ledControl_tag structure. Valid
values for the state field are LED_ON and LED_OFF. Valid values for the time
field are 1 to 65535 minutes.

The function returns TRUE if the parameters are valid and false if they are not. If
either parameter is not valid, the default values are not changed.

The IO_SYSTEM resource needs to be requested before calling this function.

Example

#include <ctools.h>

void main(void)

{

 struct ledControl_tag ledControl;

 request_resource(IO_SYSTEM);

 /* Turn LEDS off after 20 minutes */

 ledControl.time = 20;

 ledControl.state = LED_OFF;

 ledSetDefault(ledControl);

 release_resource(IO_SYSTEM);

 /* ... the reset of the program */

}

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 376 376

load

Read Parameters from EEPROM

Syntax

#include <ctools.h>

void load(unsigned section);

Description

The load function reads data from the specified section of the EEPROM into
RAM.. Valid values for section are EEPROM_EVERY and EEPROM_RUN.

The save function writes data to the EEPROM.

Notes

The IO_SYSTEM resource needs to be requested before calling this function.

The EEPROM_EVERY section is not used.

The EEPROM_RUN section is loaded from EEPROM to RAM when the
controller is reset and the Run/Service switch is in the RUN position. Otherwise
default information is used for this section. This section contains:

 serial port configuration tables

 protocol configuration tables

See Also

save

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 377 377

master_message

Send Protocol Command

Syntax

#include <ctools.h>

extern unsigned master_message(FILE *stream, unsigned function,

unsigned slave_station, unsigned slave_address, unsigned

master_address, unsigned length);

Description

 The master_message function sends a command using a communication
protocol. The communication protocol task waits for the response from the
slave station. The current task continues execution.

 stream specifies the serial port.

 function specifies the protocol function code. Refer to the communication
protocol manual for supported function codes.

 slave specifies the network address of the slave station. This is also known
as the slave station number.

 address specifies the location of data in the slave station. Depending on the
protocol function code, data may be read or written at this location.

 master_address specifies the location of data in the master (this controller).
Depending on the protocol function code, data may be read or written at this
location.

 length specifies the number or registers.

The master_message function returns the command status from the protocol
driver.

Value Description

MM_SENT message transmitted to slave

MM_BAD_FUNCTION function is not recognized

MM_BAD_SLAVE slave station number is not valid

MM_BAD_ADDRESS slave or master database address not
valid

MM_BAD_LENGTH too many or too few registers specified

MM_EOT Master message status: DF1 slave
response was an EOT message

MM_WRONG_RSP Master message status: DF1slave
response did not match command sent.

MM_CMD_ACKED Master message status: DF1half duplex
command has been acknowledged by
slave – Master may now send poll
command.

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 378 378

MM_EXCEPTION_FUNCTION Master message status: Modbus slave
returned a function exception.

MM_EXCEPTION_ADDRESS Master message status: Modbus slave
returned an address exception.

MM_EXCEPTION_VALUE Master message status: Modbus slave
returned a value exception.

MM_RECEIVED Master message status: response
received.

MM_RECEIVED_BAD_LENGTH Master message status: response
received with incorrect amount of data.

The calling task monitors the status of the command sent using the
get_protocol_status function. The command field of the prot_status structure is
set to MM_SENT if a master message is sent. It will be set to MM_RECEIVED
when the response to the message is received with the proper length. It will be
set to MM_RECEIVED_BAD_LENGTH when a response to the message is
received with the improper length.

Notes

Refer to the communication protocol manual for more information.

To optimize performance, minimize the length of messages on com3 and com4.
Examples of recommended uses for com3 and com4 are for local operator
display terminals, and for programming and diagnostics using the Telepace
program.

The IO_SYSTEM resource needs to be requested before calling this function.

See Also

Error! Reference source not found.

Example Using Modbus Protocol

This program sends a master message, on com2, using the Modbus protocol,
then waits for a response from the slave. The number of good and failed
messages is printed to com1.

/* --

 poll.c

 Polling program for Modbus slave.

 -- */

#include <ctools.h>

/* --

 wait_for_response

 The wait_for_response function waits for a

 response to be received to a master_message on

 the serial port specified by stream. It returns

 when a response is received, or when the period

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 379 379

 specified by time (in tenths of a second)

 expires.

 -- */

void wait_for_response(FILE *stream, unsigned time)

{

 struct prot_status status;

 static unsigned long good, bad;

 interval(0, 1);

 settimer(0, time);

 do {

 /* Allow other tasks to execute */

 release_processor();

 status = get_protocol_status(stream);

 }

 while (timer(0) && status.command == MM_SENT);

 if (status.command == MM_RECEIVED)

 good++;

 else

 bad++;

 fprintf(com1, "Good: %8lu Bad: %8lu\r", good,

 bad);

}

/* --

 main

 The main function sets up serial ports then

 sends commands to a Modbus slave.

 -- */

void main(void)

{

 struct prot_settings settings;

 struct pconfig portset;

 request_resource(IO_SYSTEM);

 /* disable protocol on serial port 1 */

 settings.type = NO_PROTOCOL;

 settings.station = 1;

 settings.priority = 3;

 settings.SFMessaging = FALSE;

 set_protocol(com1, &settings);

 /* Set communication parameters for port 1 */

 portset.baud = BAUD9600;

 portset.duplex = FULL;

 portset.parity = NONE;

 portset.data_bits = DATA8;

 portset.stop_bits = STOP1;

 portset.flow_rx = DISABLE;

 portset.flow_tx = DISABLE;

 portset.type = RS232;

 portset.timeout = 600;

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 380 380

 set_port(com1, &portset);

 /* enable Modbus protocol on serial port 2 */

 settings.type = MODBUS_ASCII;

 settings.station = 2;

 settings.priority = 3;

 settings.SFMessaging = FALSE;

 set_protocol(com2, &settings);

 /* Set communication parameters for port 2 */

 portset.baud = BAUD9600;

 portset.duplex = HALF;

 portset.parity = NONE;

 portset.data_bits = DATA8;

 portset.stop_bits = STOP1;

 portset.flow_rx = DISABLE;

 portset.flow_tx = DISABLE;

 portset.type = RS485_2WIRE;

 portset.timeout = 600;

 set_port(com2, &portset);

 release_resource(IO_SYSTEM);

 /* Main communication loop */

 while (TRUE)

 {

 /* Transfer slave inputs to outputs */

 request_resource(IO_SYSTEM);

 master_message(com2, 2, 1, 10001, 17, 8);

 release_resource(IO_SYSTEM);

 wait_for_response(com2, 10);

 /* Transfer inputs to slave outputs */

 request_resource(IO_SYSTEM);

 master_message(com2, 15, 1, 1, 10009, 8);

 release_resource(IO_SYSTEM);

 wait_for_response(com2, 10);

 /* Allow other tasks to execute */

 release_processor();

 }

}

Examples using DF1 Protocol

Full Duplex

Using the same example program above, apply the following calling format for
the master_message function.

This code fragment uses the protected write command (function=0) to transmit
13 (length=13) 16-bit registers to slave station 10 (slave=10). The data will be
read from registers 127 to 139 (master_address=127), and stored into registers

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 381 381

180 to 192 (address=180) in the slave station. The command will be transmitted
on com2 (stream=com2).

master_message(com2, 0, 10, 180, 127, 13);

This code fragment uses the unprotected read command (function=1) to read 74
(length=74) 16-bit registers from slave station 37 (slave=37). The data will be
read from registers 300 to 373 in the slave (address=300), and stored in registers
400 to 473 in the master (master_address=400). The command will be
transmitted on com2 (stream=com2).

master_message(com2, 1, 37, 300, 400, 74);

This code fragment will send specific bits from a single 16-bit register in the
master to slave station 33. The unprotected bit write command (function=5) will
be used. Bits 0,1,7,12 and 15 of register 100 (master_address=100) will be sent
to register 1432 (address=1432) in the slave. The length parameter is used as a
bit mask and is evaluated as follows:

 it mask = 1001 0000 1000 0011 in binary

 = 9083 in hexadecimal

 = 36,995 in decimal

Therefore the command, sent on com2, is:

master_message(com2, 5, 33, 1432, 100, 36995);

Half Duplex

The example program is the same as for Full Duplex except that instead of
waiting for a response after calling master_message, the slave needs to be
polled for a response. Add the following function poll_for_response to the
example program above and call it instead of wait_for_response:

/* --

 poll_for_response

 The poll_for_response function polls the

 specified slave for a response to a master

 message sent on the serial port specified by

 stream. It returns when the correct response

 is received, or when the period specified by

 time (in tenths of a second) expires.

 -- */

unsigned poll_for_response(FILE *stream, unsigned slave, unsigned

time)

{

 struct prot_status status;

 unsigned done;

 static unsigned long good, bad;

 /* set timeout timer */

 interval(0, 10);

 settimer(0, time);

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 382 382

 do

 {

 /* wait until command status changes or

 timer expires */

 do

 {

 status = get_protocol_status(stream);

 release_processor();

 }

 while(timer(0)&& (status.command==MM_SENT));

 /* command has been ACKed, send poll */

 if (status.command == MM_CMD_ACKED)

 {

 pollABSlave(stream, slave);

 done = FALSE;

 }

 /* response/command mismatch, poll again */

 else if (status.command == MM_WRONG_RSP)

 {

 pollABSlave(stream, slave);

 done = FALSE;

 }

 /* correct response was received */

 else if (status.command == MM_RECEIVED)

 {

 good++;

 done = TRUE;

 }

 /* timer has expired or status is MM_EOT */

 else

 {

 bad++;

 done = TRUE;

 }

 } while (!done);

 fprintf(com1, "Good: %8lu Bad: %8lu\r", good,

 bad);

}

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 383 383

modbusExceptionStatus

Set Response to Protocol Command

Syntax

#include <ctools.h>

void modbusExceptionStatus(unsigned char status);

Description

The modbusExceptionStatus function is used in conjunction with the Modbus
compatible communication protocol. It sets the result returned in response to the
Read Exception Status command. This command is provided for compatibility
with some Modbus protocol drivers for host computers.

The value of status is determined by the requirements of the host computer.

Notes

The specified result will be sent each time that the protocol command is received,
until a new result is specified.

The result is cleared when the controller is reset. The application program needs
to initialize the status each time it is run.

See Also

modbusSlaveID

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 384 384

modbusSlaveID

Set Response to Protocol Command

Syntax

#include <ctools.h>

void modbusSlaveID(unsigned char *string, unsigned length);

Description

The modbusSlaveID function is used in conjunction with the Modbus compatible
communication protocol. It sets the result returned in response to the Report
Slave ID command. This command is provided for compatibility with some
Modbus protocol drivers for host computers.

string points to a string of at least length characters. The contents of the string is
determined by the requirements of the host computer. The string is not NULL
terminated and may contain multiple NULL characters.

The length specifies how many characters are returned by the protocol
command. length needs to be in the range 1 to REPORT_SLAVE_ID_SIZE. If
length is too large only the first REPORT_SLAVE_ID_SIZE characters of the
string will be sent in response to the command.

Notes

The specified result will be sent each time that the protocol command is received,
until a new result is specified.

The function copies the data pointed to by string. string may be modified after the
function is called.

The result is cleared when the controller is reset. The application program needs
to initialize the salve ID string each time it is run.

See Also

modbusExceptionStatus

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 385 385

modbusProcessCommand Function

Process a Modbus command and return the response.

Syntax

#include <ctools.h>

BOOLEAN processModbusCommand(

 FILE * stream,

 UCHAR * pCommand,

 UINT16 commandLength,

 UINT16 responseSize,

 UCHAR * pResponse,

 UINT16 * pResponseLength

)

Description

The processModbusCommand function processes a Modbus protocol command
and returns the response. The function can be used by an application to
encapsulate Modbus RTU commands in another protocol.

stream is a FILE pointer that identifies the serial port where the command was
received. This is used for to accumulate statistics for the serial port.

pCommand is a pointer to a buffer containing the Modbus command. The
contents of the buffer needs to be a standard Modbus RTU message. The
Modbus RTU checksum is not required.

commandLength is the number of bytes in the Modbus command. The length
needs to include all the address and data bytes and not include the checksum
bytes, if any, in the command buffer.

responseSize is the size of the response buffer in bytes. A 300-byte buffer is
recommended. If this is not practical in the application, a smaller buffer may be
supplied. Some responses may be truncated if a smaller buffer is used.

pResponse is a pointer to a buffer to contain the Modbus response. The function
will store the response in this buffer in standard Modbus RTU format including
two checksum bytes at the end of the response.

pResponseLength is a pointer to a variable to hold response length. The function
will store the number of bytes in the response in this variable. The length will
include two checksum bytes.

The function returns TRUE if the response is valid and can be used. It returns
FALSE if the response is too long to fit into the supplied response buffer.

Notes

To use the function on a serial port, a protocol handler needs to be created for
the encapsulating protocol. Set the protocol type for the port to NO_PROTOCOL
to allow the custom handler to be used.

The function supports standard and extended addressing. Configure the protocol
settings for the serial port for the appropriate protocol.

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 386 386

The Modbus RTU checksum is not required in the command so the
encapsulating protocol may omit them if they are not needed. This may be useful
in host devices that don't create a Modbus RTU message with checksum prior to
encapsulation.

The Modbus RTU checksum is included in the response to support encapsulating
a complete Modbus RTU format message. If the checksum is not needed by the
encapsulating protocol the checksum bytes may be ignored.

See Also

set_protocol

Example

This example is taken from a protocol driver than encapsulates Modbus RTU
messages in another protocol. It shows how to pass the Modbus RTU command
to the Modbus driver, and obtain the response.

The example assumes the Modbus RTU messages are transmitted with the
checksum. The length of the checksum is subtracted when calling the
processModbusCommand function. The checksum is included when responding.

/* receive the packet in the encapsulating protocol */

/* verify the packet is valid */

/* locate the Modbus RTU command in the command buffer */

pCommandData = commandBuffer + PROTOCOL_HEADER_SIZE;

/* get length of Modbus RTU command from the packet header */

commandLength = commandBuffer[DATA_SIZE] - 2;

/* locate the Modbus RTU response in the response buffer leaving

room for the packet header */

pResponseData = responseBuffer + PROTOCOL_HEADER_SIZE;

/* process the Modbus message */

if (processModbusCommand(

 stream,

 pCommandData,

 commandLength,

 MODBUS_BUFFER_SIZE,

 pResponseData,

 &responseLength))

{

 /* put the response length in the header */

 responseBuffer[DATA_SIZE] = responseLength;

 /* fill in rest of packet header */

 /* transmit the encapsulated response */

}

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 387 387

modemAbort

Unconditionally Terminate Dial-up Connection

Syntax

#include <ctools.h>

void modemAbort(FILE *port);

Description

The modemAbort function unconditionally terminates a dial-up connection,
connection in progress or modem initialization started by the C application. port
specifies the serial port the where the modem is installed.

The connection or initialization is terminated only if it was started from a C
application. Connections made from a Ladder Logic application and answered
calls are not terminated.

This function can be used in a task exit handler.

Notes

The serial port type needs to be set to RS232_MODEM.

Note that a pause of a few seconds is required between terminating a connection
and initiating a new call. This pause allows the external modem time to hang up.

Use this function in a task exit handler to clean-up any open dial-up connections
or modem initializations. If a task is ended by executing end_task from another
task, modem connections or initializations needs to be aborted in the exit
handler. Otherwise, the reservation ID for the port remains valid. No other task or
Ladder Logic program may use modem functions on the port. Not calling
modemAbort or modemAbortAll in the task exit handler may result in the port
being unavailable to any programs until the controller is reset.

The modem connection or initialization is automatically terminated when
Telepace stops the C application and when the controller is rebooted.

All reservation IDs returned by the modemDial and modemInit functions on this
port are invalid after calling modemAbort.

See Also

modemAbortAll, modemDial, modemDialEnd, modemDialStatus,
modemInit, modemInitEnd, modemInitStatus, modemNotification

Example

Refer to the examples in the Functions Overview section.

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 388 388

modemAbortAll

Unconditionally Terminate All Dial-up Connections

Syntax

#include <ctools.h>

void modemAbort(void);

Description

The modemAbortAll function unconditionally terminates all dial-up connections,
connections in progress or modem initializations started by the C application.

The connections or initializations are terminated only if they were started from a
C application. Connections made from a Ladder Logic application and answered
calls are not terminated.

This function can be used in a task exit handler.

Notes

A pause of a few seconds is required between terminating a connection and
initiating a new call. This pause allows the external modem time to hang up.

Use this function in a task exit handler to clean-up any open dial-up connections
or modem initializations. If executing end_task from another task ends a task,
modem connections or initializations need to be aborted in the exit handler.
Otherwise, the reservation ID for the port remains valid. No other task or Ladder
Logic program may use modem functions on the port. Failing to call
modemAbort or modemAbortAll in the task exit handler may result in the port
being unavailable to any programs until the controller is reset.

The modem connection or initialization is automatically terminated when
Telepace stops the C application and when the controller is rebooted.

This function will terminate all open dial-up connections or modem initializations
started by the C application - even those started by other tasks. The exit handler
can call this function instead of multiple calls to modemAbort if all the
connections or initializations were started from the same task.

Reservation IDs returned by the modemDial and modemInit functions are
invalid after calling modemAbort.

See Also

modemDial, modemDialEnd, modemDialStatus, modemInit, modemInitEnd,
modemInitStatus, modemNotification

Example

This program installs an exit handler for the main task that terminates any dial-up
connections made by the task. This handler is not strictly necessary if Telepace
ends the main task. However, it demonstrates how to use the modemAbortAll
function and an exit handler for another task in a more complex program.

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 389 389

#include <ctools.h>

/* --

 The shutdown function aborts any active

 modem connections when the task is ended.

 -- */

void shutdown(void)

{

 modemAbortAll();

}

void main(void)

{

 TASKINFO taskStatus;

 /* set up exit handler for this task */

 taskStatus = getTaskInfo(0);

 installExitHandler(taskStatus.taskID, shutdown);

 while(TRUE)

 {

 /* rest of main task here */

 /* Allow other tasks to execute */

 release_processor();

 }

}

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 390 390

modemDial

Connect to a Remote Dial-up Controller

Syntax

#include <ctools.h>

enum DialError modemDial(struct ModemSetup *configuration,

reserve_id *id);

Description

The modemDial function connects a controller to a remote controller using an
external dial-up modem. One modemDial function may be active on each serial
port. The modemDial function handles all port sharing and multiple dialing
attempts.

The ModemSetup structure specified by configuration defines the serial port,
dialing parameters, modem initialization string and the phone number to dial.
Refer to the Structures and Types section for a description of the fields in the
ModemSetup structure.

id points to a reservation identifier for the serial port. The identifier ensures that
no other modem control function can access the serial port. This parameter
needs to be supplied to the modemDialEnd and modemDialStatus functions.

The function returns an error code. DE_NoError indicates that the connect
operation has begun. Any other code indicates an error. Refer to the dialup.h
section for a complete description of error codes.

Notes

The serial port type must be set to RS232_MODEM.

The SCADAPack 100 does not support dial up connections on com port 1.

The modemDialStatus function returns the status of the connection attempt
initiated by modemDial.

The modemDialEnd function terminates the connection to the remote controller.
A pause of a few seconds is required between terminating a connection and
initiating a new call. This pause allows the external modem time to hang up.

If a communication protocol is active on the serial port when a connection is
initiated, the protocol will be disabled until the connection is made, then re-
enabled. This allows the controller to communicate with the external modem on
the port. The protocol settings will also be restored when a connection is
terminated with the modemDialEnd function.

If a modemInit function or an incoming call is active on the port, the modemDial
function cannot access the port and will return an error code of DE_NotInControl.
If communication stops for more than five minutes, then outgoing call requests
are allowed to end the incoming call. This prevents problems with the modem or
the calling application from permanently disabling outgoing calls.

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 391 391

The reservation identifier is valid until the call is terminated and another modem
function or an incoming call takes control of the port.

To optimize performance, minimize the length of messages on com3 and com4.
Examples of recommended uses for com3 and com4 are for local operator
display terminals, and for programming and diagnostics using the Telepace
program.

See Also

modemAbortAll, modemDialEnd, modemDialStatus, modemInit,
modemInitEnd, modemInitStatus, modemNotification

Example

Refer to the examples in the Functions Overview section.

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 392 392

modemDialEnd

Terminate Dial-up Connection

Syntax

#include <ctools.h>

void modemDialEnd(FILE *port, reserve_id id, enum DialError

*error);

Description

The modemDialEnd function terminates a dial-up connection or connection in
progress. port specifies the serial port the where the modem is installed. id is the
port reservation identifier returned by the modemDial function.

The function sets the variable pointed to by error. If no error occurred
DE_NoError is returned. Any other value indicates an error. Refer to the
Structures and Types section for a complete description of error codes.

Notes

The serial port type needs to be set to RS232_MODEM.

A connection can be terminated by any of the following events. Once terminated
another modem function or incoming call can take control of the serial port.

 Execution of the modemDialEnd function.

 Execution of the modemAbort or modemAbortAll functions.

 The remote device hangs up the phone line.

 An accidental loss of carrier occurs due to phone line problems.

A pause of a few seconds is required between terminating a connection and
initiating a new call. This pause allows the external modem time to hang up.

The reservation identifier is valid until the call is terminated and another modem
function or an incoming call takes control of the port. The modemDialEnd
function returns a DE_NotInControl error code, if another modem function or
incoming call is in control of the port.

This function cannot be called in a task exit handler. Use modemAbort instead.

See Also

modemAbortAll, modemDial, modemDialStatus, modemInit, modemInitEnd,
modemInitStatus, modemNotification

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 393 393

modemDialStatus

Return Status of Dial-up Connection

Syntax

#include <ctools.h>

void modemDialStatus(FILE *port, reserve_id id, enum DialError *

error, enum DialState *state);

Description

The modemDialStatus function returns the status of a remote connection
initiated by the modemDial function. port specifies the serial port where the
modem is installed. id is the port reservation identifier returned by the
modemDial function.

The function sets the variable pointed to by error. If no error occurred
DE_NoError is returned. Any other value indicates an error. Refer to the
Structures and Types section for a complete description of error codes.

The function sets the variable pointed to by state to the current execution state of
dialing operation. The state value is not valid if the error code is
DE_NotInControl. Refer to the dialup.h section for a complete description of state
codes.

Notes

The serial port type needs to be set to RS232_MODEM.

The reservation identifier is valid until the call is terminated and another modem
function or an incoming call takes control of the port. The modemDialStatus
function will return a DE_NotInControl error code, if another dial function or
incoming call is now in control of the port.

This function cannot be called in a task exit handler.

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 394 394

modemInit

Initialize Dial-up Modem

Syntax

#include <ctools.h>

enum DialError modemInit(struct ModemInit *configuration,

reserve_id *id);

Description

The modemInit function sends an initialization string to an external dial-up
modem. It is typically used to set up a modem to answer incoming calls. One
modemInit function may be active on each serial port. The modemInit function
handles all port sharing and multiple dialing attempts.

The ModemInit structure pointed to by configuration defines the serial port and
modem initialization string. Refer to the Structures and Types section for a
description of the fields in the ModemInit structure.

The id variable is set to a reservation identifier for the serial port. The identifier
ensures that no other modem control function can access the serial port. This
parameter needs to be supplied to the modemInitEnd and modemInitStatus
functions.

The function returns an error code. DE_NoError indicates that the initialize
operation has begun. Any other code indicates an error. Refer to the Structures
and Types section for a complete description of error codes.

Notes

The serial port type needs to be set to RS232_MODEM.

The modemInitStatus function returns the status of the connection attempt
initiated by modemInit.

The modemInitEnd function terminates initialization of the modem.

If a communication protocol is active on the serial port, the protocol will be
disabled until the initialization is complete then re-enabled. This allows the
controller to communicate with the external modem on the port. The protocol
settings will also be restored when initialization is terminated with the
modemInitEnd function.

If a modemDial function or an incoming call is active on the port, the modemInit
function cannot access the port and will return an error code of DE_NotInControl.

The reservation identifier is valid until the call is terminated and another modem
function or an incoming call takes control of the port.

To optimize performance, minimize the length of messages on com3 and com4.
Examples of recommended uses for com3 and com4 are for local operator
display terminals, and for programming and diagnostics using the Telepace
program.

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 395 395

This function cannot be called in a task exit handler.

See Also

modemAbortAll, modemDial, modemDialEnd, modemDialStatus,
modemInitEnd, modemInitStatus, modemNotification

Example

Refer to the example in the Functions Overview section.

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 396 396

modemInitEnd

Abort Initialization of Dial-up Modem

Syntax

#include <ctools.h>

void modemInitEnd(FILE *port, reserve_id id, enum DialError

*error);

Description

The modemInitEnd function terminates a modem initialization in progress. port
specifies the serial port where the modem is installed. id is the port reservation
identifier returned by the modemInit function.

The function sets the variable pointed to by error. If no error occurred
DE_NoError is returned. Any other value indicates an error. Refer to the dialup.h
section for a complete description of error codes.

Notes

The serial port type must be set to RS232_MODEM.

Normally this function should be called once the modemInitStatus function
indicates the initialization is complete.

The reservation identifier is valid until the initialization is complete or terminated,
and another modem function or an incoming call takes control of the port. The
modemInitEnd function returns a DE_NotInControl error code, if another modem
function or incoming call is in control of the port.

This function cannot be called in a task exit handler. Use modemAbort instead.

See Also

modemAbortAll, modemDial, modemDialEnd, modemDialStatus,
modemInit, modemInitStatus, modemNotification

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 397 397

modemInitStatus

Return Status of Dial-up Modem Initialization

Syntax

#include <ctools.h>

void modemInitStatus(FILE *port, reserve_id id, enum DialError

*error, enum DialState *state);

Description

The modemInitStatus function returns the status a modem initialization started
by the modemInit function. port specifies the serial port where the modem is
installed. id is the port reservation identifier returned by the modemInit function.

The function sets the variable pointed to by error. If no error occurred
DE_NoError is returned. Any other value indicates an error. Refer to the
Structures and Types section for a complete description of error codes.

The function sets the variable pointed to by state to the current execution state of
dialing operation. The state value is not valid if the error code is
DE_NotInControl. Refer to the dialup.h section for a complete description of state
codes.

Notes

The serial port type needs to be set to RS232_MODEM.

The port will remain in the DS_Calling state until modem initialization is complete
or fails. The application should wait until the state is not DS_Calling before calling
the modemInitEnd function.

The reservation identifier is valid until the initialization is complete or terminated,
and another modem function or an incoming call takes control of the port.

This function cannot be called in a task exit handler.

See Also

modemAbortAll, modemDial, modemDialEnd, modemDialStatus,
modemInit, modemInitEnd, modemNotification

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 398 398

modemNotification

Notify the modem handler of an important event

Syntax

#include <ctools.h>

void modemNotification(UINT16 port_index);

Description

The modemNotification function notifies the dial-up modem handler that an
interesting event has occurred. This informs the modem handler not to
disconnect an incoming call when an outgoing call is requested with modemDial.

This function is used with custom communication protocols. The function is
usually called when a message is received by the protocol, although it can be
called for other reasons.

The port_index indicates the serial port that received the message.

Notes

The serial port type needs to be set to RS232_MODEM.

Use the portIndex function to obtain the index of the serial port.

The dial-up connection handler prevents outgoing calls from using the serial port
when an incoming call is in progress and communication is active. If
communication stops for more than five minutes, then outgoing call requests are
allowed to end the incoming call. This prevents the modem or the calling
application from permanently disabling outgoing calls.

The function is used with programs that dial out through an external modem
using the modemDial function. It is not required where the modem is used for
dialing into the controller only.

See Also

modemAbortAll, modemDial, modemDialEnd, modemDialStatus,
modemInit, modemInitEnd, modemInitStatus

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 399 399

off

Test Digital I/O Bit

Syntax

#include <ctools.h>

int off(unsigned channel, unsigned bit);

Description

The off function tests the status of the digital I/O point at channel and bit.
channel must be in the range 0 to DIO_MAX. bit must be in the range 0 to 7.

The off function returns TRUE if the bit is off, FALSE if the bit is on, and –1 if
channel or bit is invalid.

Notes

The off function may be used to check the status of digital inputs, outputs and
configuration tables.

Use offsets from the symbolic constants DIN_START, DIN_END, DOUT_START
and DOUT_END to reference digital channels. The constants make programs
more portable and protect against future changes to the digital I/O channel
numbering.

The IO_SYSTEM resource needs to be requested before calling this function.

This function is provided for backward compatibility. It cannot access all 5000 I/O
modules. It is recommended that this function not be used in new programs.
Instead use Register Assignment or call the I/O driver ioRead8Din directly.

See Also

ioRead8Din, turnoff, turnon, on

Example

This code fragment inverts the digital output point at the first digital output
channel, bit 3.

request_resource(IO_SYSTEM);

if (off(DOUT_START, 3))

 turnon(DOUT_START, 3);

else

 turnoff(DOUT_START, 3);

release_resource(IO_SYSTEM);

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 400 400

on

Test Digital I/O Bit

Syntax

#include <ctools.h>

int on(unsigned channel, unsigned bit);

Description

The on function tests the status of the digital I/O point at channel and bit. channel
needs to be in the range 0 to DIO_MAX. bit needs to be in the range 0 to 7.

The on function returns TRUE if the bit is on, FALSE if the bit is off, and –1 if
channel or bit is invalid.

Notes

The on function may be used to check the status of digital inputs, outputs and
configuration tables.

Use offsets from the symbolic constants DIN_START, DIN_END, DOUT_START
and DOUT_END to reference digital channels. The constants make programs
more portable and protect against future changes to the digital I/O channel
numbering.

The IO_SYSTEM resource needs to be requested before calling this function.

This function is provided for backward compatibility. It cannot access all 5000 I/O
modules. It is recommended that this function not be used in new programs.
Instead use Register Assignment or call the I/O driver ioRead8Din directly.

See Also

ioRead8Din, turnoff, turnon, off

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 401 401

optionSwitch

Read State of Controller Option Switches

Syntax

#include <ctools.h>

unsigned optionSwitch(unsigned option);

Description

The optionSwitch function returns the state of the controller option switch
specified by option. option may be 1, 2 or 3.

The function returns OPEN if the switch is in the open position. It returns
CLOSED if the switch is in the closed position.

Notes

The option switches are located under the cover of the controller module. The
SCADAPack LP, SCADAPack 100 and SCADAPack 4000 of controllers do not
have option switches.

All options are user defined.

However, when a SCADAPack I/O module is placed in the Register Assignment,
option switch 1 selects the input range for analog inputs on this module. When
the SCADAPack AOUT module is placed in the Register Assignment, option
switch 2 selects the output range for analog outputs on this module. Refer to the
SCADAPack System Hardware Manual for further information on option
switches.

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 402 402

overrideDbase

Overwrite Value in Forced I/O Database

Syntax

#include <ctools.h>

unsigned overrideDbase(unsigned type, unsigned address, int

value);

Description

The overrideDbase function writes value to the I/O database even if the
database register is currently forced. type specifies the method of addressing the
database. address specifies the location in the database.

If the register is currently forced, the register remains forced but forced to the
new value.

If the address or addressing type is not valid, the I/O database is left unchanged
and FALSE is returned; otherwise TRUE is returned. The table below shows the
valid address types and ranges.

Type Address Ranges Register
Size

MODBUS 00001 to NUMCOIL

10001 to 10000 + NUMSTATUS

30001 to 30000 + NUMINPUT

40001 to 40000 + NUMHOLDING

1 bit

1 bit

16 bit

16 bit

LINEAR 0 to NUMLINEAR-1 16 bit

Notes

When writing to LINEAR digital addresses, value is a bit mask which writes data
to 16 1-bit registers at once.

The I/O database is not modified when the controller is reset. It is a permanent
storage area, which is maintained during power outages.

Refer to the Functions Overview chapter for more information.

The IO_SYSTEM resource needs to be requested before calling this function.

See Also

setdbase, setForceFlag

Example

#include <ctools.h>

void main(void)

{

 request_resource(IO_SYSTEM);

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 403 403

 overrideDbase(MODBUS, 40001, 102);

 overrideDbase(LINEAR, 302, 330);

 release_resource(IO_SYSTEM);

}

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 404 404

pidExecute

Execute PID control algorithm

Syntax

#include <ctools.h>

BOOLEAN pidExecute(PID_DATA * pData);

Description

This function executes the PID algorithm. The function may be called as often as
desired, but needs to be called at least once per the value in the period field for
proper operation.

The function has one parameter. pData is a pointer to a structure containing the
PID block data and outputs.

The function returns TRUE if the PID block executed. The function returns
FALSE if it was not time for execution.

Notes

To properly initialize the PID algorithm do one of the following.

Call the pidInitialize function once before calling this function the first time, or

put the PID algorithm in manual mode (autoMode = FALSE in PID_DATA) for the
first call to the pidExecute function.

See Also

pidInitialize

Example

This example initializes one PID control structure and executes the control
algorithm continuously. Input data is read from analog inputs. Output data is
written to analog outputs.

#include <ctools.h>

// event number to signal when I/O scan completes

#define IO_COMPLETE 0

void main(void)

{

 INT16 ainData[4]; // analog input data

 INT16 aoutData[4]; // analog output data

 PID_DATA pidData; // PID algorithm data

 BOOLEAN executed; // indicates if PID executed

 // read analog input

 ioRequest(MT_Ain4, 0);

 ioNotification(IO_COMPLETE);

 wait_event(IO_COMPLETE);

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 405 405

 ioReadAin4(0, ainData);

 // get initial process value from analog input

 pidData.pv = ainData[0];

 // configure PID block

 pidData.sp = 1000;

 pidData.gain = 1;

 pidData.reset = 100;

 pidData.rate = 0;

 pidData.deadband = 10;

 pidData.fullScale = 32767;

 pidData.zeroScale = 0;

 pidData.manualOutput = 0;

 pidData.period = 1000;

 pidData.autoMode = TRUE;

 // initialize the PID block

 pidInitialize(&pidData);

 // main loop

 while (TRUE)

 {

 // execute all I/O requests

 ioRequest(MT_Ain4, 0);

 ioNotification(IO_COMPLETE);

 wait_event(IO_COMPLETE);

 // get process input

 ioReadAin4(0, ainData);

 pidData.pv = ainData[0];

 // execute the PID block

 executed = pidExecute(&pidData);

 // if the output changed

 if (executed)

 {

 // write the output to analog output module

 aoutData[0] = pidData.output;

 ioWriteAout4(0, aoutData);

 ioRequest(MT_Aout4, 0);

 }

 // release processor to other priority 1 tasks

 release_processor();

 }

}

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 406 406

pidInitialize

Initialize PID controller data

Syntax

#include <ctools.h>

void pidInitialize(PID_DATA * pData);

Description

This function initializes the PID algorithm data.

The function has one parameter. pData is a pointer to a structure containing the
PID data and outputs.

The function should be called once before calling the pidExecute function for the
first time. The structure pointed to by pData needs to contain valid values for sp,
pv, and manualOutput before calling the function.

The function has no return value.

See Also

pidExecute

Example

See the example for pidExecute.

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 407 407

pollABSlave

Poll DF1 Slave for Response

Syntax

#include <ctools.h>

unsigned pollABSlave(FILE *stream, unsigned slave);

Description

The pollABSlave function is used to send a poll command to the slave station
specified by slave in the DF1 Half Duplex protocol configured for the specified
port. stream specifies the serial port.

The function returns FALSE if the slave number is invalid, or if the protocol
currently installed on the specified serial port is not an DF1 Half Duplex protocol.
Otherwise it returns TRUE and the protocol command status is set to MM_SENT.

Notes

See the example using the pollABSlave function in the sample polling function
"poll_for_response" shown in the example for the master_message function.

See Also

master_message

Example

This program segment polls slave station 9 for a response communicating on the
com2 serial port.

#include <ctools.h>

pollABSlave(com2, 9);

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 408 408

poll_event

Test for Event Occurrence

Syntax

#include <ctools.h>

int poll_event(int event);

Description

The poll_event function tests if an event has occurred.

The poll_event function returns TRUE, and the event counter is decrements, if
the event has occurred. Otherwise it returns FALSE.

The current task continues to execute.

Notes

Refer to the Real Time Operating System section for more information on
events.

Valid events are numbered 0 to RTOS_EVENTS - 1. Any events defined in
primitiv.h are not valid events for use in an application program.

See Also

signal_event, wait_event, startTimedEvent

Example

This program implements a somewhat inefficient transfer of data between com1
and com2. (It would be more efficient to test for EOF from getc).

#include <ctools.h>

void main(void)

{

 while(TRUE)

 {

 if (poll_event(COM1_RCVR))

 fputc(getc(com1), com2);

 if (poll_event(COM2_RCVR))

 fputc(getc(com2), com1);

 /* Allow other tasks to execute */

 release_processor();

 }

}

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 409 409

poll_message

Test for Received Message

Syntax

#include <ctools.h>

envelope *poll_message(void);

Description

The poll_message function tests if a message has been received by the current
task.

The poll_message function returns a pointer to an envelope if a message has
been received. It returns NULL if no message has been received.

The current task continues to execute.

Notes

Refer to the Real Time Operating System section for more information on
messages.

See Also

send_message, receive_message

Example

This task performs a function continuously, and processes received messages
(from higher priority tasks) when they are received.

#include <ctools.h>

void task(void)

{

 envelope *letter;

 while(TRUE)

 {

 letter=poll_message();

 if (letter != NULL)

 /* process the message now */

 /* more code here */

 }

}

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 410 410

poll_resource

Test Resource Availability

Syntax

#include <ctools.h>

int poll_resource(int resource);

Description

The poll_resource function tests if the resource specified by resource is
available. If the resource is available it is given to the task.

The poll_resource function returns TRUE if the resource is available. It returns
FALSE if it is not available.

The current task always continues to execute.

Notes

Refer to the Real Time Operating System section for more information on
resources.

See Also

request_resource, release_resource

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 411 411

portConfiguration

Get Pointer to Port Configuration Structure

Syntax

#include <ctools.h>

struct pconfig *portConfiguration(FILE *stream);

Description

The portConfiguration function returns a pointer to the configuration structure
for stream. A NULL pointer is returned if stream is not valid.

Notes

It is recommended the get_port and set_port functions be used to access the
configuration table.

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 412 412

portIndex

Get Index of Serial Port

Syntax

#include <ctools.h>

unsigned portIndex(FILE *stream);

Description

The portIndex function returns an array index for the serial port specified by
stream. It will return a value suitable for an array index, in increasing order of
external serial port numbers, if no error occurs.

If the stream is not recognized, SERIAL_PORTS is returned, to indicate an error.

See Also

portStream

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 413 413

portStream

Get Serial Port Corresponding to Index

Syntax

#include <ctools.h>

FILE *portStream(unsigned index);

Description

The portStream function returns the file pointer corresponding to index. This
function is the inverse of the portIndex function. If the index is not valid, the
NULL pointer is returned.

See Also

portIndex

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 414 414

processModbusCommand

Process a Modbus Command and Return the Response

Syntax

#include <ctools.h>

BOOLEAN processModbusCommand(

 FILE * stream,

 UCHAR * pCommand,

 UINT16 commandLength,

 UINT16 responseSize,

 UCHAR * pResponse,

 UINT16 * pResponseLength

)

Description

The processModbusCommand function processes a Modbus protocol command
and returns the response. The function can be used by an application to
encapsulate Modbus RTU commands in another protocol.

stream is a FILE pointer that identifies the serial port where the command was
received. This is used for to accumulate statistics for the serial port.

pCommand is a pointer to a buffer containing the Modbus command. The
contents of the buffer needs to be a standard Modbus RTU message. The
Modbus RTU checksum is not required.

commandLength is the number of bytes in the Modbus command. The length
needs to include all the address and data bytes and not include the checksum
bytes, if any, in the command buffer.

responseSize is the size of the response buffer in bytes. A 300-byte buffer is
recommended. If this is not practical in the application, a smaller buffer may be
supplied. Some responses may be truncated if a smaller buffer is used.

pResponse is a pointer to a buffer to contain the Modbus response. The function
will store the response in this buffer in standard Modbus RTU format including
two checksum bytes at the end of the response.

pResponseLength is a pointer to a variable to hold response length. The function
will store the number of bytes in the response in this variable. The length will
include two checksum bytes.

The function returns TRUE if the response is valid and can be used. It returns
FALSE if the response is too long to fit into the supplied response buffer.

Notes

To use the function on a serial port, a protocol handler needs to be created for
the encapsulating protocol. Set the protocol type for the port to NO_PROTOCOL
to allow the custom handler to be used.

The function supports standard and extended addressing. Configure the protocol
settings for the serial port for the appropriate protocol.

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 415 415

The Modbus RTU checksum is not required in the command so the
encapsulating protocol may omit them if they are not needed. This may be useful
in host devices that don't create a Modbus RTU message with checksum prior to
encapsulation.

The Modbus RTU checksum is included in the response to support encapsulating
a complete Modbus RTU format message. If the checksum is not needed by the
encapsulating protocol the checksum bytes may be ignored.

See Also

setProtocolSettings

Example

This example is taken from a protocol driver than encapsulates Modbus RTU
messages in another protocol. It shows how to pass the Modbus RTU command
to the Modbus driver, and obtain the response.

The example assumes the Modbus RTU messages are transmitted with the
checksum. The length of the checksum is subtracted when calling the
processModbusCommand function. The checksum is included when responding.

/* receive the packet in the encapsulating protocol */

/* verify the packet is valid */

/* locate the Modbus RTU command in the command buffer */

pCommandData = commandBuffer + PROTOCOL_HEADER_SIZE;

/* get length of Modbus RTU command from the packet header */

commandLength = commandBuffer[DATA_SIZE] - 2;

/* locate the Modbus RTU response in the response buffer leaving

room for the packet header */

pResponseData = responseBuffer + PROTOCOL_HEADER_SIZE;

/* process the Modbus message */

if (processModbusCommand(

 stream,

 pCommandData,

 commandLength,

 MODBUS_BUFFER_SIZE,

 pResponseData,

 &responseLength))

{

 /* put the response length in the header */

 responseBuffer[DATA_SIZE] = responseLength;

 /* fill in rest of packet header */

 /* transmit the encapsulated response */

}

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 416 416

pulse

Generate a Square Wave

Syntax

#include <ctools.h>

void pulse(unsigned channel, unsigned bit, unsigned timer,

unsigned on, unsigned period);

Description

The pulse function generates a square wave with a specified duty cycle on a
digital output point.

 channel specifies the digital output channel;

 bit specified the digital output bit;

 timer specifies the timer used to generate the square wave;

 on specifies the time the output will be on, measured in timer ticks;

 period specifies the period of the wave (on time plus off time), measured in
timer ticks.

If an error occurs, the current task's error code is set as follows.

TIMER_BADTIMER if the timer number is invalid
TIMER_BADVALUE if the period is less than the on time
TIMER_BADADDR if the digital channel or bit is invalid

Notes

The length of a timer tick is set with the interval function. The default value is 0.1
seconds.

To stop the square wave, set the timer to 0 with the settimer function. The
square wave will stop if the controller is reset.

For an orderly start of the duty cycle, use the following sequence:

settimer(t, 0); /* stop the timer */

request_resource(IO_SYSTEM);

turnoff(c, b); /* start with a rising edge */

release_resource(IO_SYSTEM);

pulse(c, b, t, o, p); /* start pulses */

If the specified I/O point is on when the pulse function is executed, the square
wave will start with the off portion of the cycle.

Use the timeout function to generate irregular or non-repeating sequences.

Use offsets from the symbolic constants DIN_START, DIN_END, DOUT_START
and DOUT_END to reference digital channels. The constants make programs

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 417 417

more portable and protect against future changes to the digital I/O channel
numbering.

This function is provided for backward compatibility. It cannot access all 5000 I/O
modules. It is recommended that this function not be used in new programs.
Instead use Register Assignment or call the I/O driver ioWrite8Dout directly.

See Also

pulse_train, settimer, timeout, ioWrite8Dout

Example

This code fragment generates a 60% duty cycle output with a period of 5
seconds. Bit 7 of channel 3 is controlled. Timer 10 generates the square wave.

settimer(10, 0); /* stop timer */

request_resource(IO_SYSTEM);

turnoff(3, 7); /* turn off the bit */

release_resource(IO_SYSTEM);

interval(10, 10); /* set tick rate to 1.0 s */

pulse(3, 7, 10, 3, 5); /* on = 60% of 5 = 3 */

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 418 418

pulse_train

Generate Finite Number of Pulses

Syntax

#include <ctools.h>

void pulse_train(unsigned channel, unsigned bit, unsigned timer,

unsigned pulses);

Description

The pulse_train function generates a specified number of pulses on a digital
output point. The output is a square wave with a 50% duty cycle and a period of
200 milliseconds (5 Hz).

 channel specifies the digital output channel.

 bit specified the digital output bit.

 timer specifies the timer used to generate the square wave.

 pulses specifies the number of pulses. The timer interval acts as a multiplier
of the number of pulses. The total number of pulses is pulses * interval.

If an error occurs, the current task's error code is set as follows.

TIMER_BADTIMER if the timer number is invalid
TIMER_BADVALUE if the period is less than the on time
TIMER_BADADDR if the digital channel or bit is invalid

Notes

To stop the square wave, set the timer to 0 with the settimer function. The
square wave will stop if the controller is reset.

For an orderly start to the pulses, use the following sequence:

settimer(t, 0); /* stop the timer */

request_resource(IO_SYSTEM);

turnoff(c, b); /* start with a rising edge */

release_resource(IO_SYSTEM);

pulse_train(c, b, timer, pulses);

Use offsets from the symbolic constants DIN_START, DIN_END, DOUT_START
and DOUT_END to reference digital channels. The constants make programs
more portable and protect against future changes to the digital I/O channel
numbering.

This function is provided for backward compatibility. It cannot access all 5000 I/O
modules. It is recommended that this function not be used in new programs.
Instead use Register Assignment or call the I/O driver ioWrite8Dout directly.

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 419 419

See Also

pulse, settimer, timeout, ioWrite8Dout

Example

This code fragment generates 300 pulses on channel 3, bit 4.

interval(2, 1); /* multiplier = 1 */

pulse_train(3, 4, 2, 300); /* 300 pulses */

This code fragment also generates 300 pulses on channel 3, bit 4.

It shows the use of a multiplier.

interval(2, 100); /* multiplier = 100 */

pulse_train(3, 4, 2, 3); /* 300 pulses */

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 420 420

queue_mode

Control Serial Data Transmission

Syntax

#include <ctools.h>

void queue_mode(FILE *stream, int mode);

Description

The queue_mode function controls transmission of the serial data. Normally
data output to a serial port are placed in the transmit buffer and transmitted as
soon as the hardware is ready. If queuing is enabled, the characters are held in
the transmit buffer until queuing is disabled. If the buffer fills, queuing is disabled
automatically.

stream specifies the serial port. If it is not valid the function has no effect.

mode specifies the queuing control. It may be DISABLE or ENABLE.

Notes

Queuing is often used with communication protocols that use character timing for
message framing. Its uses in an application program are limited.

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 421 421

readCounter

Read Accumulator Input

Syntax

#include <ctools.h>

unsigned long readCounter(unsigned counter, unsigned clear);

Description

The readCounter routine reads the digital input counter specified by counter. The
counter may be 0, 1 or 2. If clear is TRUE the counter is cleared after reading;
otherwise if it is FALSE the counter continues to accumulate.

If counter is not valid, a BAD_COUNTER error is reported for the current task.

Notes

The three DIN/counter inputs are located on the SCADAPack, SCADAPack LP or
SCADAPack 100. Refer to the System Hardware Manual for more information
on the hardware.

The counter increments on the rising edge of the input signal.

See Also

readCounterInput, check_error

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 422 422

readCounterInput

Read Counter Input Status

Syntax

#include <ctools.h>

unsigned readCounterInput(unsigned input)

Description

The readCounterInput function returns the status of the DIN/counter input point
specified by input. It returns TRUE if the input is ON and FALSE if the input is
OFF.

If input is not valid, the function returns FALSE.

Notes

The three DIN/counter inputs are located on the 5203 or 5204 controller board.
Refer to the System Hardware Manual for more information on the hardware.

See Also

readCounter

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 423 423

readBattery

Read Lithium Battery Voltage

Syntax

#include <ctools.h>

int readBattery(void);

Description

The readBattery function returns the RAM backup battery voltage in millivolts.
The range is 0 to 5000 mV. A normal reading is about 3600 mV.

Example

#include <ctools.h>

if (readBattery() < 2500)

{

 fprintf(com1, “Battery Voltage is low\r\n”);

 }

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 424 424

readInternalAD

Read Controller Internal Analog Inputs

Syntax

#include <ctools.h>

int readInternalAD(unsigned channel);

Description

The readInternalAD function reads analog inputs connected to the internal AD
converter. channel may be 0 to 7.

The function returns a value in the range 0 to 32767.

Notes

There are only two channels with signals connected to them.

 AD_THERMISTOR reads the thermistor input.

 AD_BATTERY reads the battery input

See Also

readBattery

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 425 425

readStopwatch

Read Stopwatch Timer

Syntax

#include <ctools.h>

unsigned long readStopwatch(void)

Description

The readStopwatch function reads the stopwatch timer. The stopwatch time is in
ms and has a resolution of 10 ms. The stopwatch time rolls over to 0 when it
reaches the maximum value for an unsigned long integer: 4,294,967,295 ms (or
about 49.7 days).

See Also

settimer, timer

Example

This program measures the execution time in ms of an operation.

#include <ctools.h>

void main(void)

{

 unsigned long startTime, endTime;

 startTime = readStopwatch();

 /* operation to be timed */

 endTime = readStopwatch();

 printf("Execution time = %lu ms\r\n", endTime - startTime);

}

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 426 426

readThermistor

Read Controller Ambient Temperature

Syntax

#include <ctools.h>

int readThermistor(unsigned scale);

Description

The readThermistor function returns the temperature measured at the main
board in the specified temperature scale. If the temperature scale is not
recognized, the temperature is returned in Celsius. The scale may be
T_CELSIUS, T_FAHRENHEIT, T_KELVIN or T_RANKINE.

The temperature is rounded to the nearest degree.

Example

#include <ctools.h>

void checkTemperature(void)

{

 int temperature;

 temperature = readThermistor(T_FAHREHEIT);

 if (temperature < 0)

 fprintf(com1, “It’s COLD!!!\r\n”);

 else if (temperature > 90)

 fprintf(com1, “It’s HOT!!!\r\n”);

}

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 427 427

read_timer_info

Get Timer Status

Syntax

#include <ctools.h>

struct timer_info read_timer_info(unsigned timer);

Description

The read_timer_info function gets status information for the timer specified by
timer.

The read_timer_info function returns a timer_info structure with information
about the specified timer. Refer to the description of the timer_info structure for
information about the fields.

See Also

settimer, pulse, pulse_train, timeout

Example

This program starts a pulse train and displays timer information.

#include <ctools.h>

void main(void)

{

 struct timer_info tinfo;

 /* Start Pulse Train */

 interval(10, 1); /* multiplier = 1

*/

 pulse_train(3, 5, 10, 500);

 while (timer(10) > 100) /* wait a while */

 {

 /* Allow other tasks to execute */

 release_processor();

 }

 /* Display Status of Pulse Train */

 tinfo = read_timer_info(10);

 printf("Pulses Remaining: %d\r\n",

 tinfo.time/2);

 printf("Output Channel: %d\r\n",

 tinfo.channel);

 printf("Output Bit: %d\r\n", tinfo.bit);

}

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 428 428

receive_message

Receive a Message

Syntax

#include <ctools.h>

envelope *receive_message(void);

Description

The receive_message function reads the next available envelope from the
message queue for the current task. If the queue is empty, the task is blocked
until a message is sent to it.

The receive_message function returns a pointer to an envelope structure.

Notes

Refer to the Real Time Operating System section for more information on
messages.

See Also

send_message, poll_message

Example

This task waits for messages, then prints their contents. The envelopes received
are returned to the operating system.

#include <ctools.h>

void show_message(void)

{

 envelope *msg;

 while (TRUE)

 {

 msg = receive_message();

 printf("Message data %ld\r\n", msg->data);

 deallocate_envelope(msg);

 }

}

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 429 429

release_processor

Release Processor to other Tasks

Syntax

#include <ctools.h>

void release_processor(void);

Description

The release_processor function releases control of the CPU to other tasks.
Other tasks of the same priority will run. Tasks of the same priority run in a
round-robin fashion, as each releases the processor to the next.

Notes

The release_processor function needs to be called in all idle loops of a program
to allow other tasks to execute.

Release all resources in use by a task before releasing the processor.

Refer to the Real Time Operating System section for more information on tasks
and task scheduling.

See Also

release_resource

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 430 430

release_resource

Release Control of a Resource

Syntax

#include <ctools.h>

void release_resource(int resource);

Description

The release_resource function releases control of the resource specified by
resource.

If other tasks are waiting for the resource, the highest priority of these tasks, is
given the resource and is made ready to execute. If no tasks are waiting the
resource is made available, and the current task continues to run.

Notes

Refer to the Real Time Operating System section for more information on
resources.

See Also

request_resource, poll_resource

Example

See the example for the request_resource function.

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 431 431

report_error

Set Task Error Code

Syntax

#include <ctools.h>

void report_error(int error);

Description

The report_error functions sets the error code for the current task to error. An
error code is maintained for each executing task.

Notes

This function is used in sharable I/O routines to return error codes to the task
using the routine.

Some functions supplied with the Microtec C compiler report errors using the
global variable errno. The error code in this variable may be written over by
another task before it can be used.

See also

check_error

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 432 432

request_resource

Obtain Control of a Resource

Syntax

#include <ctools.h>

void request_resource(int resource);

Description

The request_resource function obtains control of the resource specified by
resource. If the resource is in use, the task is blocked until it is available.

Notes

Use the request_resource function to control access to non-sharable resources.
Refer to the Real Time Operating System section for more information on
resources.

See Also

release_resource, poll_resource

Example

This code fragment obtains the dynamic memory resource, allocates some
memory, and releases the resource.

#include <ctools.h>

void task(void)

{

 unsigned *ptr;

 /* ... code here */

 request_resource(DYNAMIC_MEMORY);

 ptr = (unsigned *)malloc((size_t)100);

 release_resource(DYNAMIC_MEMORY);

 /* ... more code here */

}

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 433 433

resetAllABSlaves

Erase All DF1 Slave Responses

Syntax

#include <ctools.h>

unsigned resetAllABSlaves(FILE *stream);

Description

The resetAllABSlaves function is used to send a protocol message to all slaves
communicating on the specified port to erase all responses not yet polled. stream
specifies the serial port.

This function applies to the DF1 Half Duplex protocols only. The function returns
FALSE if the protocol currently installed on the specified serial port is not an DF1
Half Duplex protocol, otherwise it returns TRUE.

Notes

The purpose of this command is to re-synch slaves with the master if the master
has lost track of the order of responses to poll. This situation may exist if the
master has been power cycled, for example. This function should not normally be
needed if polling is done using the sample polling function "poll_for_response"
shown in the example for the master_message function.

Example

This program segment will cause all slaves communicating on the com2 serial
port to erase all pending responses.

#include <protocol.h>

resetAllABSlaves(com2);

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 434 434

resetClockAlarm

Acknowledge and Reset Real Time Clock Alarm

Syntax

#include <ctools.h>

void resetClockAlarm(void);

Description

Real time clock alarms occur once after being set. The alarm setting remains in
the real time clock. The alarm needs to be acknowledged before it can occur
again.

The resetClockAlarm function acknowledges the last real time clock alarm and
re-enables the alarm. Calling the function after waking up from an alarm will reset
the alarm for 24 hours after the current alarm.

Notes

This function should be called after a real time clock alarm occurs. This includes
after returning from the sleep function with a return code of
WS_REAL_TIME_CLOCK.

The alarm time is not changed by this function.

The IO_SYSTEM resource needs to be requested before calling this function.

See Also

setClockAlarm, getClockAlarm, alarmIn

Example

See the example for the installClockHandler function.

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 435 435

route

Redirect Standard I/O Streams

Syntax

#include <ctools.h>

void route(FILE *logical, FILE *hardware);

Description

The route function redirects the I/O streams associated with stdout, stdin, and
stderr. These streams are routed to the com1 serial port. logical specifies the
stream to redirect. hardware specifies the hardware device which will output the
data. It may be one of com1, com2, com3 or com4.

Notes

This function has a global effect, so all tasks need to agree on the routing.

Output streams need to be redirected to a device that supports output. Input
streams need to be redirected to a device that supports input.

Example

This program segment will redirect all input, output and errors to the com2 serial
port.

#include <ctools.h>

route(stderr, com2); /* send errors to com2 */

route(stdout, com2); /* send output to com2 */

route(stdin, com2); /* get input from com2 */

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 436 436

runLed

Control Run LED State

Syntax

#include <ctools.h>

void runLed(unsigned state);

Description

The runLed function sets the run light LED to the specified state. state may be
one of the following values.

LED_ON turn on run LED
LED_OFF turn off run LED

The run LED remains in the specified state until changed, or until the controller is
reset.

Notes

The ladder logic interpreter controls the state of the RUN LED. If ladder logic is
installed in the controller, a C program should not use this function.

Example

#include <ctools.h>

void main(void)

{

 runLed(LED_ON); /* program is running */

 /* ... the rest of the code */

}

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 437 437

save

Write Parameters to EEPROM

Syntax

#include <ctools.h>

void save(unsigned section);

Description

The save function writes data from RAM to the specified section of the
EEPROM. Valid values for section are EEPROM_EVERY and EEPROM_RUN.

Notes

The EEPROM_EVERY section is loaded whenever the controller is reset. It is not
used.

The EEPROM_RUN section is loaded from EEPROM to RAM when the
controller is reset and the Run/Service switch is in the RUN position. Otherwise
default information is used for this section. This section contains:

 serial port configuration tables

 protocol configuration tables

 store and forward enable flags

 LED power settings

 make for wake-up sources

 execution period on power-up for PID controllers

 HART modem settings

The IO_SYSTEM resource needs to be requested before calling this function.

See Also

load

Example

This code fragment saves all parameters.

request_resource(IO_SYSTEM);

save(EEPROM_RUN);

release_resource(IO_SYSTEM);

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 438 438

send_message

Send a Message to a Task

Syntax

#include <ctools.h>

void send_message(envelope *penv);

Description

The send_message function sends a message to a task. The envelope specified
by penv contains the message destination, type and data.

The envelope is placed in the destination task's message queue. If the
destination task is waiting for a message it is made ready to execute.

The current task is not blocked by the send_message function.

Notes

Envelopes are obtained from the operating system with the allocate_envelope
function.

See Also

receive_message, poll_message, allocate_envelope

Example

This program creates a task to display a message and sends a message to it.

#include <ctools.h>

void showIt(void)

{

 envelope *msg;

 while (TRUE)

 {

 msg = receive_message();

 printf("Message data %ld\r\n", msg->data);

 deallocate_envelope(msg);

 }

}

void main(void)

{

 envelope *msg; /* message pointer */

 unsigned tid; /* task ID */

 tid = create_task(showIt, 2, APPLICATION, 1);

 msg = allocate_envelope();

 msg->destination = tid;

 msg->type = MSG_DATA;

 msg->data = 1002;

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 439 439

 send_message(msg);

 /* wait for ever so that main and other

 APPLICATION tasks won’t end */

 while(TRUE)

 {

 /* Allow other tasks to execute */

 release_processor();

 }

}

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 440 440

setABConfiguration

Set DF1 Protocol Configuration

Syntax

#include <ctools.h>

int setABConfiguration(FILE *stream, struct ABConfiguration

*ABConfig);

Description

The setABConfiguration function sets DF1 protocol configuration parameters.
stream specifies the serial port. ABConfig references an DF1protocol
configuration structure. Refer to the description of the ABConfiguration structure
for an explanation of the fields.

The setABConfiguration function returns TRUE if the settings were changed. It
returns FALSE if stream does not point to a valid serial port.

Example

This code fragment changes the maximum protected address to 7000. This is the
maximum address accessible by protected DF1 commands received on com2.

#include <ctools.h>

struct ABConfiguration ABConfig;

getABConfiguration(com2, &ABConfig);

ABConfig.max_protected_address = 7000;

setABConfiguration(com2, &ABConfig);

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 441 441

setBootType

Set Controller Boot Up State

Syntax

#include <ctools.h>

void setBootType(unsigned type);

Description

The setBootType function defines the controller boot up type code. This function
is used by the operating system start up routines. It should not be used in an
application program.

Notes

The value set with this function can be read with the getBootType function.

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 442 442

setclock

Set Real Time Clock

Syntax

#include <ctools.h>

void setclock(struct clock *now);

Description

The setclock function sets the real time clock. now references a clock structure
containing the time and date to be set.

Refer to the Structures and Types section for a description of the fields. The
fields of the clock structure need to be set with valid values for the clock to
operate properly.

Notes

The IO_SYSTEM resource needs to be requested before calling this function.

See Also

getclock

Example

This function switches the clock to daylight savings time.

#include <ctools.h>

#include <primitiv.h>

void daylight(void)

{

 struct clock now;

 request_resource(IO_SYSTEM);

 now = getclock();

 now.hour = now.hour + 1 % 24;

 setclock(&now);

 request_resource(IO_SYSTEM);

}

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 443 443

setClockAlarm

Set the Real Time Clock Alarm

Syntax

#include <ctools.h>

unsigned setClockAlarm(ALARM_SETTING alarm);

Description

The setClockAlarm function configures the real time clock to alarm at the
specified alarm setting. The ALARM_SETTING structure alarm specifies the time
of the alarm. Refer to the rtc.h section for a description of the fields in the
structure.

The function returns TRUE if the alarm can be configured, and FALSE if there is
an error in the alarm setting. No change is made to the alarm settings if there is
an error.

Notes

An alarm will occur only once, but remains set until disabled. Use the
resetClockAlarm function to acknowledge an alarm that has occurred and re-
enable the alarm for the same time.

Set the alarm type to AT_NONE to disable an alarm. It is not necessary to
specify the hour, minute and second when disabling the alarm.

The IO_SYSTEM resource needs to be requested before calling this function.

See Also

alarmIn, getclock

Example

#include <ctools.h>

/* --

 wakeUpAtEight

 The wakeUpAtEight function sets an alarm

 for 08:00 AM and puts the controller into

 sleep mode.

 -- */

void wakeUpAtEight(void)

{

 ALARM_SETTING alarm;

 unsigned wakeSource;

 /* Set alarm for 08:00 */

 alarm.type = AT_ABSOLUTE;

 alarm.hour = 8;

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 444 444

 alarm.minute = 0;

 alarm.second = 0;

 /* Set the alarm */

 request_resource(IO_SYSTEM);

 setClockAlarm(alarm)

 release_resource(IO_SYSTEM);

 /* Sleep until alarm ignoring other wake ups */

 do

 {

 request_resource(IO_SYSTEM);

 wakeSource = sleep();

 release_resource(IO_SYSTEM);

 } until (wakeSource == WS_REAL_TIME_CLOCK);

 /* Disable the alarm */

 alarm.type = AT_NONE;

 request_resource(IO_SYSTEM);

 setClockAlarm(alarm);

 release_resource(IO_SYSTEM);

}

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 445 445

setdbase

Write Value to I/O Database

Syntax

#include <ctools.h>

void setdbase(unsigned type, unsigned address, int value);

Description

The setdbase function writes value to the I/O database. type specifies the
method of addressing the database. address specifies the location in the
database. The table below shows the valid address types and ranges

Type Address Ranges Register
Size

MODBUS 00001 to NUMCOIL

10001 to 10000 + NUMSTATUS

30001 to 30000 + NUMINPUT

40001 to 40000 + NUMHOLDING

1 bit

1 bit

16 bit

16 bit

LINEAR 0 to NUMLINEAR-1 16 bit

Notes

If the specified register is currently forced, the I/O database remains unchanged.

When writing to LINEAR digital addresses, value is a bit mask which writes data
to 16 1-bit registers at once. If any of these 1-bit registers is currently forced, only
the forced registers remain unchanged.

The I/O database is not modified when the controller is reset. It is a permanent
storage area, which is maintained during power outages.

Refer to the Functions Overview section for more information.

The IO_SYSTEM resource needs to be requested before calling this function.

See Also

overrideDbase, setForceFlag

Example

#include <ctools.h>

void main(void)

{

 request_resource(IO_SYSTEM);

 setdbase(MODBUS, 40001, 102);

 /* Turn ON the first 16 coils */

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 446 446

 setdbase(LINEAR, START_COIL, 255);

 /* Write to a 16 bit register */

 setdbase(LINEAR, 3020, 240);

 /* Write to the 12th holding register */

 setdbase(LINEAR, START_HOLDING, 330);

 /* Write to the 12th holding register */

 setdbase(LINEAR, START_HOLDING, 330);

 release_resource(IO_SYSTEM);

}

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 447 447

setDTR

Control RS232 Port DTR Signal

Syntax

#include <ctools.h>

void setDTR(FILE *stream, unsigned state);

Description

The setDTR function sets the status of the DTR signal line for the communication
port specified by stream. When state is SIGNAL_ON the DTR line is asserted.
When state is SIGNAL_OFF the DTR line is de-asserted.

Notes

The DTR line follows the normal RS232 voltage levels for asserted and de-
asserted states.

This function is only useful on RS232 ports. The function has no effect if the
serial port is not an RS232 port.

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 448 448

setForceFlag

Set Force Flag State for a Register

Syntax

#include <ctools.h>

unsigned setForceFlag(unsigned type, unsigned address, unsigned

value);

Description

The setForceFlag function sets the force flag(s) for the specified database
register(s) to value. value is either 1 or 0, or a 16-bit mask for LINEAR digital
addresses. The valid range for address is determined by the database
addressing type.

If the address or addressing type is not valid, force flags are left unchanged and
FALSE is returned; otherwise TRUE is returned. The table below shows the valid
address types and ranges.

Type Address Ranges Register
Size

MODBUS 00001 to NUMCOIL

10001 to 10000 + NUMSTATUS

30001 to 30000 + NUMINPUT

40001 to 40000 + NUMHOLDING

1 bit

1 bit

16 bit

16 bit

LINEAR 0 to NUMLINEAR-1 16 bit

Notes

When a register‟s force flag is set, the value of the I/O database at that register is
forced to its current value. This register‟s value can only be modified by using the
overrideDbase function or the Edit/Force Register dialog. While forced this value
can not be modified by the setdbase function, protocols, or Ladder Logic
programs.

Force Flags are not modified when the controller is reset. Force Flags are in a
permanent storage area, which is maintained during power outages.

The IO_SYSTEM resource needs to be requested before calling this function.

See Also

clearAllForcing, overrideDbase

Example

This program clears the force flag for register 40001 and sets the force flags for
the 16 registers at linear address 302 (i.e. registers 10737 to 10752).

#include <ctools.h>

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 449 449

void main(void)

{

 request_resource(IO_SYSTEM);

 setForceFlag(MODBUS, 40001, 0);

 setForceFlag(LINEAR, 302, 255);

 release_resource(IO_SYSTEM);

}

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 450 450

setIOErrorIndication

Set I/O Module Error Indication

Syntax

Description#include <ctools.h>

void setIOErrorIndication(unsigned state);

The setIOErrorIndication function sets the I/O module error indication to the
specified state. If set to TRUE, the I/O module communication status is reported
in the controller status register and Status LED. If set to FALSE, the I/O module
communication status is not reported.

Notes

Refer to the 5203/4 System Manual or the SCADAPack System Manual for
further information on the Status LED and Status Output.

See Also

getIOErrorIndication

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 451 451

setjiffy

Set the Jiffy Clock

Syntax

#include <ctools.h>

void setjiffy(unsigned long value);

Description

The setjiffy function sets the system jiffy clock. The jiffy clock increments every
1/60 second. The jiffy clock rolls over to 0 after 5183999. This is the number of
1/60-second intervals in a day.

Notes

The real time clock and the jiffy clock are not related. They may drift slightly with
respect to each other over several days.

Use the jiffy clock to measure times with resolution better than the 1/10th
resolution provided by timers.

See Also

interval

Example

See the example for the jiffy function.

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 452 452

setOutputsInStopMode

Set Outputs In Stop Mode

Syntax

#include <ctools.h>

void setOutputsInStopMode(unsigned doutsInStopMode, unsigned

aoutsInStopMode);

Description

The setOutputsInStopMode function sets the doutsInStopMode and
aoutsInStopMode control flags to the specified state.

If doutsInStopMode is set to TRUE, then digital outputs are held at their last state
when the Ladder Logic program is stopped. If doutsInStopMode is FALSE, then
digital outputs are turned OFF when the Ladder Logic program is stopped.

If aoutsInStopMode is TRUE, then analog outputs are held at their last value
when the Ladder Logic program is stopped. If aoutsInStopMode is FALSE, then
analog outputs go to zero when the Ladder Logic program is stopped.

See Also

getOutputsInStopMode

Example

This program changes the output conditions to hold analog outputs at their last
value when the Ladder Logic program is stopped.

#include <ctools.h>

void main(void)

{

 unsigned holdDoutsOnStop;

 unsigned holdAoutsOnStop;

 getOutputsInStopMode(&holdDoutsOnStop, &holdAoutsOnStop);

 holdAoutsOnStop = TRUE;

 setOutputsInStopMode(holdDoutsOnStop, holdAoutsOnStop);

}

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 453 453

set_pid

Write PID Block Variable

Syntax

#include <ctools.h>

void set_pid(unsigned name, unsigned block, int value);

Description

The set_pid function assigns value to a PID control block variable. name needs
to be specified by one of the variable name macros in pid.h. block needs to be in
the range 0 to PID_BLOCKS-1.

Notes

See the Telepace PID Controllers Manual for a detailed description of PID
control.

Values stored in PID blocks are not initialized when a program is run, and are
guaranteed to retain their values during power failures and program loading. PID
block variables must always be initialized by the user program.

The IO_SYSTEM resource must be requested before calling this function.

See Also

auto_pid, clear_pid

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 454 454

set_port

Set Serial Port Configuration

Syntax

#include <ctools.h>

void set_port(FILE *stream, struct pconfig *settings);

Description

The set_port function sets serial port communication parameters. stream needs
to specify one of com1, com2, com3 or com4. settings references a serial port
configuration structure. Refer to the description of the pconfig structure for an
explanation of the fields.

Notes

If the serial port settings are the same as the current settings, this function has
no effect.

The serial port is reset when settings are changed. All data in the receive and
transmit buffers are discarded.

To optimize performance, minimize the length of messages on com3 and com4.
Examples of recommended uses for com3 and com4 are for local operator
display terminals, and for programming and diagnostics using the Telepace
program.

The IO_SYSTEM resource needs to be requested before calling this function.

See Also

get_port

Example

This code fragment changes the baud rate on com2 to 19200 baud.

#include <ctools.h>

struct pconfig settings;

get_port(com2, &settings);

settings.baud = BAUD19200;

request_resource(IO_SYSTEM);

set_port(com2, &settings);

release_resource(IO_SYSTEM);

This code fragment sets com2 to the same settings as com1.

#include <serial.h>

#include <primitiv.h>

struct pconfig settings;

request_resource(IO_SYSTEM);

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 455 455

set_port(com2, get_port(com1, &settings));

release_resource(IO_SYSTEM);

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 456 456

setPowerMode

Set Current Power Mode

Syntax

#include <ctools.h>

BOOLEAN setPowerMode(UCHAR cpuPower, UCHAR lan, UCHAR

usbPeripheral, UCHAR usbHost);

Description

The setPowerMode function returns TRUE if the new settings were successfully
applied. The setPowerMode function allows for power savings to be realized by
controlling the power to the LAN port, changing the clock speed, and individually
controlling the host and peripheral USB power. The following table of macros
summarizes the choices available.

Macro Meaning

PM_CPU_FULL The CPU is set to run at full speed

PM_CPU_REDUCED The CPU is set to run at a reduced speed

PM_CPU_SLEEP The CPU is set to sleep mode

PM_LAN_ENABLED The LAN is enabled

PM_LAN_DISABLED The LAN is disabled

PM_USB_PERIPHERAL_ENAB
LED

The USB peripheral port is enabled

PM_USB_PERIPHERAL_DISAB
LED

The USB peripheral port is disabled

PM_USB_HOST_ENABLED The USB host port is enabled

PM_USB_HOST_DISABLED The USB host port is disabled

PM_NO_CHANGE The current value will be used

TRUE is returned if the requested change was made, otherwise FALSE is
returned.

The application program may view the current power mode with the
getPowerMode function.

See Also

getPowerMode, setWakeSource, getWakeSource

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 457 457

setProgramStatus

Set Program Status Flag

Syntax

#include <ctools.h>

void setProgramStatus(unsigned status);

Description

The setProgramStatus function sets the application program status flag. The
status flag is set to NEW_PROGRAM when a cold boot of the controller is
performed, or a program is downloaded to the controller from the program loader.

Notes

There are two pre-defined values for the flag. However the application program
may make whatever use of the flag it sees fit.

NEW_PROGRAM indicates the program is newly loaded.

PROGRAM_EXECUTED indicates the program has been executed.

See Also

getProgramStatus

Example

See the example for getProgramStatus.

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 458 458

set_protocol

Set Communication Protocol Configuration

Syntax

#include <ctools.h>

int set_protocol(FILE *stream, struct prot_settings *settings);

Description

The set_protocol function sets protocol parameters. stream needs to specify
one of com1, com2, com3 or com4. settings references a protocol configuration
structure. Refer to the description of the prot_settings structure for an explanation
of the fields.

The set_protocol function returns TRUE if the settings were changed. It returns
FALSE if there is an error in the settings or if the protocol does not start.

The IO_SYSTEM resource needs to be requested before calling this function.

Notes

Setting the protocol type to NO_PROTOCOL ends the protocol task and frees
the stack resources allocated to it.

Be sure to add a call to modemNotification when writing a custom protocol.

See Also

get_protocol, start_protocol, modemNotification

Example

This code fragment changes the station number of the com2 protocol to 4.

#include <ctools.h>

struct prot_settings settings;

get_protocol(com2, &settings);

settings.station = 4;

request_resource(IO_SYSTEM);

set_protocol(com2, &settings);

release_resource(IO_SYSTEM);

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 459 459

setProtocolSettings

Set Protocol Extended Addressing Configuration

Syntax

#include <ctools.h>

BOOLEAN setProtocolSettings(

FILE * stream,

PROTOCOL_SETTINGS * settings

);

Description

The setProtocolSettings function sets protocol parameters for a serial port. This
function supports extended addressing.

The function has two arguments: stream is one of com1, com2, com3 or com4;
and settings, a pointer to a PROTOCOL_SETTINGS structure. Refer to the
description of the structure for an explanation of the parameters.

The function returns TRUE if the settings were changed. It returns FALSE if the
stream is not valid, or if the protocol does not start.

The IO_SYSTEM resource needs to be requested before calling this function.

Notes

Setting the protocol type to NO_PROTOCOL ends the protocol task and frees
the stack resources allocated to it.

Be sure to add a call to modemNotification when writing a custom protocol.

Extended addressing is available on the Modbus RTU and Modbus ASCII
protocols only. See the TeleBUS Protocols User Manual for details.

See Also

getProtocolSettings, start_protocol, get_protocol, set_protocol,
modemNotification

Example

This code fragment sets protocol parameters for the com2 serial port.

#include <ctools.h>

PROTOCOL_SETTINGS settings;

settings.type = MODBUS_RTU;

settings.station = 1234;

settings.priority = 3;

settings.SFMessaging = FALSE;

settings.mode = AM_extended;

request_resource(IO_SYSTEM);

setProtocolSettings(com2, &settings);

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 460 460

release_resource(IO_SYSTEM);

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 461 461

setProtocolSettingsEx

Sets extended protocol settings for a serial port.

Syntax

#include <ctools.h>

BOOLEAN setProtocolSettingsEx(

 FILE * stream,

 PROTOCOL_SETTINGS_EX * pSettings

);

Description

The setProtocolSettingsEx function sets protocol parameters for a serial port.
This function supports extended addressing and Enron Modbus parameters.

The function has two arguments:

 stream specifies the serial port. It is one of com1, com2, com3 or com4.

 pSettings is a pointer to a PROTOCOL_SETTINGS_EX structure. Refer to
the description of the structure for an explanation of the parameters.

The function returns TRUE if the settings were changed. It returns FALSE if the
stream is not valid, or if the protocol does not start.

Notes

The IO_SYSTEM resource needs to be requested before calling this function.

Setting the protocol type to NO_PROTOCOL ends the protocol task and frees
the stack resources allocated to it.

Be sure to add a call to modemNotification when writing a custom protocol.

Extended addressing and the Enron Modbus station are available on the Modbus
RTU and Modbus ASCII protocols only. See the TeleBUS Protocols User Manual
for details.

See Also

getProtocolSettingsEx

Example

This code fragment sets protocol parameters for the com2 serial port.

#include <ctools.h>

PROTOCOL_SETTINGS_EX settings;

settings.type = MODBUS_RTU;

settings.station = 1;

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 462 462

settings.priority = 3;

settings.SFMessaging = FALSE;

settings.mode = AM_standard;

settings.enronEnabled = TRUE;

settings.enronStation = 4;

request_resource(IO_SYSTEM);

setProtocolSettingsEx(com2, &settings);

release_resource(IO_SYSTEM);

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 463 463

setSFMapping

Control Translation Table Mapping

Syntax

#include <ctools.h>

void setSFMapping(unsigned flag);

Description

The setSFMapping and getSFMapping functions no longer perform any useful
function but are maintained as stubs for backward compatibility. Include the
CNFG_StoreAndForward module in the Register Assignment to assign a store
and forward table to the I/O database.

Notes

The TeleBUS Protocols User Manual describes store and forward messaging
mode.

See Also

getSFMapping

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 464 464

setSFTranslation

Write Store and Forward Translation

Syntax

#include <ctools.h>

struct SFTranslationStatus setSFTranslation(unsigned index, struct

SFTranslation translation);

Description

The setSFTranslation function writes translation into the store and forward
address translation table at the location specified by index. translation consists of
two port and station address pairs. The function checks for invalid translations; if
the translation is not valid it is not stored.

The function returns a SFTranslationStatus structure. It is described in the
Structures and Types section. The code field of the structure is set to one of the
following. If there is an error, the index field is set to the location of the translation
that is not valid.

Result code Meaning

SF_VALID All translations are valid

SF_NO_TRANSLATION The entry defines re-transmission of the same
message on the same port

SF_PORT_OUT_OF_RA
NGE

One or both of the serial port indexes is not valid

SF_STATION_OUT_OF_
RANGE

One or both of the stations is not valid

SF_ALREADY_DEFINED The translation already exists in the table

SF_INDEX_OUT_OF_RA
NGE

The entry referenced by index does not exist in
the table

Notes

The TeleBUS Protocols User Manual describes store and forward messaging
mode.

Writing a translation with both stations set to station 256 can clear a translation in
the table. Station 256 is not a valid station.

The protocol type and communication parameters may differ between serial
ports. The store and forward messaging will translate the protocol messages.

The IO_SYSTEM resource needs to be requested before calling this function.

See Also

getSFTranslation, clearSFTranslationTable, checkSFTranslationTable

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 465 465

Example

This program enables store and forward messaging on com1 and com2. Two
entries are placed into the store and forward table.

The communication parameters and protocol type on com2 are different from
com1.

#include <ctools.h>

void main(void)

{

 struct prot_settings settings;

 struct pconfig portset;

 struct SFTranslation translation;

 struct SFTranslationStatus status;

 request_resource(IO_SYSTEM);

 /* Set communication parameters for port 1 */

 portset.baud = BAUD9600;

 portset.duplex = FULL;

 portset.parity = NONE;

 portset.data_bits = DATA8;

 portset.stop_bits = STOP1;

 portset.flow_rx = DISABLE;

 portset.flow_tx = DISABLE;

 portset.type = RS232;

 portset.timeout = 600;

 set_port(com1, &portset);

 /* Set communication parameters for port 2 */

 portset.baud = BAUD1200;

 portset.duplex = HALF;

 portset.parity = NONE;

 portset.data_bits = DATA8;

 portset.stop_bits = STOP1;

 portset.flow_rx = DISABLE;

 portset.flow_tx = DISABLE;

 portset.type = RS232;

 portset.timeout = 600;

 set_port(com2, &portset);

 /* Set up the translation table */

 clearSFTranslationTable();

 translation.portA = portIndex(com1);

 translation.stationA = 2;

 translation.portB = portIndex(com2);

 translation.stationB = 3;

 setSFTranslation(0, translation);

 translation.portA = portIndex(com1);

 translation.stationA = 4;

 translation.portB = portIndex(com2);

 translation.stationB = 5;

 setSFTranslation(1, translation);

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 466 466

 /* Enable store and forward messaging */

 settings.type = MODBUS_RTU;

 settings.station = 1;

 settings.priority = 3;

 settings.SFMessaging = TRUE;

 set_protocol(com1, &settings);

 settings.type = MODBUS_ASCII;

 settings.station = 1;

 settings.priority = 3;

 settings.SFMessaging = TRUE;

 set_protocol(com2, &settings);

 release_resource(IO_SYSTEM);

 /* Check if everything is correct */

 status = checkSFTranslationTable();

 if (status.code != SF_VALID)

 {

 /* Blink the error code on the status LED */

 setStatus(status.code);

 }

 else

 {

 setStatus(0);

 }

 while (TRUE)

 {

 /* main loop of application program */

 }

}

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 467 467

setStatus

Set Controller Status Code

Syntax

#include <ctools.h>

void setStatus(unsigned code);

Description

The setStatus function sets the controller status code. When the status code is
non-zero, the STAT LED blinks a binary sequence corresponding to the code. If
code is zero, the STAT LED turns off.

Notes

The status output opens if code is non-zero. Refer to the System Hardware
Manual for more information.

The binary sequence consists of short and long flashes of the error LED. A short
flash of 1/10th of a second indicates a binary zero. A binary one is indicated by a
longer flash of approximately 1/2 of a second. The least significant digit is output
first. As few bits as possible are displayed –leading zeros are ignored. There is a
two second delay between repetitions.

The Register Assignment uses bits 0 and 1 of the status code. It is
recommended that the setStatusBit function be used instead of setStatus to
prevent modification of these bits.

See Also

setStatusBit, clearStatusBit, getStatusBit

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 468 468

setStatusBit

Set Bits in Controller Status Code

Syntax

#include <ctools.h>

unsigned setStatusBit(unsigned bitMask);

Description

The setStatusBit function sets the bits indicated by bitMask in the controller
status code. When the status code is non-zero, the STAT LED blinks a binary
sequence corresponding to the code. If code is zero, the STAT LED turns off.

The function returns the value of the status register.

Notes

The status output opens if code is non-zero. Refer to the System Hardware
Manual for more information.

The binary sequence consists of short and long flashes of the STAT LED. A short
flash of 1/10th of a second indicates a binary zero. A binary one is indicated by a
longer flash of approximately 1/2 of a second. The least significant digit is output
first. As few bits as possible are displayed – all leading zeros are ignored. There
is a two second delay between repetitions.

The Register Assignment uses bits 0 and 1 of the status code.

See Also

clearStatusBit, clearStatusBit, getStatusBit

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 469 469

settimer

Set a Timer

Syntax

#include <ctools.h>

void settimer(unsigned timer, unsigned value);

Description

The settimer function loads value into timer specified by timer. The timer counts
down at the timer interval frequency.

The settimer function can reset a timer before it has finished counting down.

Notes

The settimer function cancels delayed digital I/O actions started with the
timeout, pulse and pulse_train functions..

See Also

interval

Example

This code fragment sets timer 8 for 10 seconds, using an interval of 0.5 seconds.

interval(8, 5); /* interval = 1/2 second */

settimer(8, 20); /* 10 second timer */

This code fragment sets timer 9 for 60 seconds using an interval

of 1.0 seconds.

interval(9, 10); /* interval = 1 second */

settimer(9, 60); /* 60 second timer */

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 470 470

setWakeSource

Sets Conditions for Waking from Sleep Mode

Syntax

#include <ctools.h>

void setWakeSource(unsigned enableMask);

Description

The setWakeSource routine enables and disables sources that will wake up the
processor. It enables all sources specified by enableMask. All other sources are
disabled.

Valid wake up sources are listed below. Multiple sources may be ORed together.

 WS_NONE

 WS_ALL

 WS_REAL_TIME_CLOCK

 WS_INTERRUPT_INPUT

 WS_LED_POWER_SWITCH

 WS_COUNTER_0_OVERFLOW

 WS_COUNTER_1_OVERFLOW

 WS_COUNTER_2_OVERFLOW

Notes

Specifying WS_NONE as the wake up source will prevent the controller from
waking, except by a power on reset.

See Also

getWakeSource, sleep

Example

The code fragments below show how to enable and disable wake up sources.

/* Wake up on all sources */

setWakeSource(WS_ALL);

/* Enable wake up on real time clock only */

setWakeSource(WS_REAL_TINE_CLOCK);

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 471 471

signal_event

Signal Occurrence of Event

Syntax

#include <ctools.h>

void signal_event(int event_number);

Description

The signal_event function signals that the event_number event has occurred.

If there are tasks waiting for the event, the highest priority task is made ready to
execute. Otherwise the event flag is incremented. Up to 255 occurrences of an
event will be recorded. The current task is blocked of there is a higher priority
task waiting for the event.

Notes

Refer to the Real Time Operating System section for more information on
events.

Valid events are numbered 0 to RTOS_EVENTS - 1. Any events defined in
ctools.h are not valid events for use in an application program.

See Also

wait_event

Example

This program creates a task to wait for an event, then signals the event.

#include <ctools.h>

void task1(void)

{

 while(TRUE)

 {

 wait_event(20);

 printf("Event 20 occurred\r\n");

 }

}

void main(void)

{

 create_task(task1, 3, APPLICATION, 4);

 while(TRUE)

 {

 /* body of main task loop */

/* The body of this main task is intended solely for signaling the

event waited for by task1. Normally main would be busy with more

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 472 472

important things to do otherwise the code in task1 could be

executed within main’s wait loop */

 settimer(0, 10); /* 1 second interval */

 while (timer(0)) /* wait for 1 s */

 {

 /* Allow other tasks to execute */

 release_processor();

 }

 signal_event(20);

 }

}

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 473 473

sleep

Suspend Controller Operation

Syntax

#include <ctools.h>

unsigned sleep(void);

Description

The sleep function puts the controller into a sleep mode. Sleep mode reduces
the power consumption to a minimum by halting the microprocessor clock and
shutting down the power supply. All programs halt until the controller resumes
execution. All output points turn off while the controller is in sleep mode.

The controller resumes execution under the conditions shown in the table below.
The application program may disable some wake up conditions. If a wake up
condition is disabled the controller will not resume execution when the condition
occurs. The table below shows the effect of disabling the various wake up
conditions. All wake up conditions will be enabled by default. Refer to the
description of the setWakeSource function for details.

Condition Wake Up Effects Disable
Allowed

Disable Effect

Hardware
Reset

Application programs
execute from start of
program.

No Not applicable.

External
Interrupt

Program execution
continues from point
sleep function was
executed.

Yes Interrupt input
ignored

Real Time
Clock Alarm

Program execution
continues from point
sleep function was
executed.

Yes Alarm ignored

LED Power
Button

Program execution
continues from point
sleep function was
executed.

Yes LED power button
ignored

Hardware
Counter
Rollover

Software portion of
counter is incremented.

Program execution
continues from point
sleep function was
executed.

Yes Software portion of
counter is
incremented.

Controller returns to
sleep mode.

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 474 474

The sleep function returns a wake up code indicating which condition caused the
controller to resume execution.

Return Code Condition

WS_REAL_TIME_CLOC
K

real time clock alarm

WS_INTERRUPT_INPU
T

rising edge of interrupt input

WS_LED_POWER_SWI
TCH

LED Power switch pushed

WS_COUNTER_0_OVE
RFLOW

roll over of low word of counter 0 (every 65536
transitions)

WS_COUNTER_1_OVE
RFLOW

roll over of low word of counter 1 (every 65536
transitions)

WS_COUNTER_2_OVE
RFLOW

roll over of low word of counter 2 (every 65536
transitions)

Notes

The IO_SYSTEM resource needs to be requested before calling this function.

See Also

setclock, alarmIn, setWakeSource, getWakeSource

Example

See the examples for the setClockAlarm and alarmIn functions.

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 475 475

start_protocol

Enable Protocol Task

Syntax

#include <ctools.h>

int start_protocol(FILE *stream);

Description

The start_protocol function enables a protocol task on the port specified by
stream. The protocol configuration settings stored in memory are used.

The start_protocol function returns TRUE if the protocol started and FALSE if
there was an error.

Notes

The start_protocol function is used by the system start up routine. Application
programs should use the set_protocol function to control protocol operation.

See Also

get_protocol, set_protocol

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 476 476

startup_task

Identify Start Up Task

Syntax

#include <ctools.h>

void *startup_task(void);

Description

The startup_task function returns the address of the system or application start
up task.

Notes

This function is used by the reset routine. It is normally not used in an application
program.

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 477 477

startTimedEvent

Enable Signaling of a Regular Event

Syntax

#include <ctools.h>

unsigned startTimedEvent(unsigned event, unsigned interval);

Description

The startTimedEvent function causes the specified event to be signaled at the
specified interval. interval is measured in multiples of 0.1 seconds. The task that
is to receive the events should use the wait_event or poll_event functions to
detect the event.

The function returns TRUE if the event can be signaled. If interval is 0 or if the
event number is not valid, the function returns FALSE and no change is made to
the event signaling (a previously enabled event will not be changed).

Notes

Valid events are numbered 0 to RTOS_EVENTS - 1. Any events defined in
primitiv.h are not valid events for use in an application program.

The application program should stop the signaling of timed events when the task
which waits for the events is ended. If the event signaling is not stopped, events
will continue to build up in the queue until a function waits for them. The example
below shows a simple method using the installExitHandler function.

See Also

endTimedEvent, signal_event, wait_event

Example

The program prints the time every 10 seconds.

#include <string.h>

#include <ctools.h>

#define TIME_TO_PRINT 15

/* --

 The shutdown function stops the signalling

 of TIME_TO_PRINT events.

 -- */

void shutdown(void)

{

 endTimedEvent(TIME_TO_PRINT);

}

/* --

 The main function sets up signalling of

 a timed event, then waits for that event.

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 478 478

 The time is printed each time the event

 occurs.

 -- */

void main(void)

{

 struct prot_settings settings;

 struct clock now;

 TASKINFO taskStatus;

 /* Disable the protocol on serial port 1 */

 settings.type = NO_PROTOCOL;

 settings.station = 1;

 settings.priority = 3;

 settings.SFMessaging = FALSE;

 request_resource(IO_SYSTEM);

 set_protocol(com1, &settings);

 release_resource(IO_SYSTEM);

 /* set up task exit handler to stop

 signalling of events when this task ends */

 taskStatus = getTaskInfo(0);

 installExitHandler(taskStatus.taskID, shutdown);

 /* start timed event */

 startTimedEvent(TIME_TO_PRINT, 100);

 while (TRUE)

 {

 wait_event(TIME_TO_PRINT);

 request_resource(IO_SYSTEM);

 now = getclock();

 release_resource(IO_SYSTEM);

 fprintf(com1, "Time %02u:%02u:%02u\r\n", now.hour,

now.minute, now.second);

 }

}

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 479 479

timeout

Delayed Digital Output

Syntax

#include <ctools.h>

void timeout(unsigned channel, unsigned bit, unsigned timer,

unsigned delay);

Description

The timeout function initiates a delayed control action on a digital output. The
output changes state when the delay expires.

 channel specifies the digital output channel.

 bit specifies the output point within channel.

 timer specifies the timer used to measure the delay. It must be in the range 0
to 31.

 delay specifies the delay in timer ticks. The interval function sets the length
of a timer tick.

If an error occurs, the current task's error code is set as follows:

TIMER_BADTIMER if the timer number is invalid
TIMER_BADADDR if the digital channel or bit is invalid

Notes

To cancel a timeout, set the timer to zero.

Use the pulse function to generate a repeating square wave.

The timeout function may start a new timeout sequence before the previous one
completes. In this case, the previous timeout sequence is canceled and the new
one begins.

This function is provided for backward compatibility. It cannot access all 5000 I/O
modules. It is recommended that this function not be used in new programs.
Instead use Register Assignment or call the I/O driver ioWrite8Dout directly.

See Also

interval, ioWrite8Dout, turnoff, turnon, settimer, pulse

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 480 480

timeoutCancel

Cancel Timeout Notification Function

Syntax

#include <ctools.h>

unsigned timeoutCancel(unsigned timeoutID);

Description

This function cancels a timeout notification that was requested with the
timeoutRequest function. No notification will be sent. The envelope provided
when the request was made is de-allocated.

The function has one parameter: the ID of the timeout request. This is the value
returned by the timeoutRequest function.

The function returns TRUE if the request was cancelled and FALSE if the timeout
ID is not currently active.

Notes

The function will return FALSE if the timeout notification has already been made.
In this case the envelope will not be de-allocated as it has already been given to
the destination task. That task is responsible for de-allocating the envelope.

This function cannot be called from a task exit handler. See installExitHandler
function for details of exit handlers.

See Also

timeoutRequest

Example

See the example for the timeoutRequest function.

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 481 481

timeoutRequest

Request Timeout Notification Function

Syntax

#include <ctools.h>

unsigned timeoutRequest(unsigned delay, envelope * pEnvelope);

Description

This function requests a timeout notification. A message is sent to the task
specified in the envelope after the specified delay.

A task receives the message using the receive_message or poll_message
function. The envelope received by the receiving task has the following
characteristics.

 The source field is set to the task ID of the task that called timeoutRequest.

 The message type field is set to MSG_TIMEOUT.

 The message data is set to the timeout ID.

The function has two parameters: the length of time in tenths of a second before
the timeout occurs, and a pointer to an envelope. The resolution of the delay is –
0.1/+0 seconds. The notification message is sent delay-1 to delay tenths of a
second after the function call.

The function returns the ID of the timeout request. This can be used to identify
and cancel the timeout. The timeout ID changes with each call to the function.
Although the ID will eventually repeat, it is sufficiently unique to allow the timeout
notification to be identified. This can be useful in identifying notifications received
by a task and matching them with requests.

Notes

Do not de-allocate the envelope passed to timeoutRequest in the calling function.
After a call to timeoutRequest either use timeoutCancel to free the envelope if
the timeout has not occurred yet, or call deallocate_envelope in the destination
task after the envelope has been delivered.

The timeout may be cancelled using the timeoutCancel function.

The task that receives the notification message needs to de-allocate the
envelope after receiving it.

No checking is done on the task ID. The caller needs to ensure it is valid.

If the delay is zero, the message is sent immediately, provided an envelope is
available.

This function cannot be called from a task exit handler. See installExitHandler
function for details of exit handlers.

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 482 482

See Also

timeoutCancel

Example

This example shows a task that acts on messages received from other tasks and
when a timeout occurs. The task waits for a message for up to 10 seconds. If it
does not receive one, it proceeds with other processing anyway.

The task shows how to deal with notifications from older timeout requests. These
occur when the notification was send before the timeout was cancelled. The task
ignores timeout notifications that don‟t match the last timeout request.

#include <mriext.h>

#include <ctools.h>

void aTask(void)

{

envelope * pEnvelope;

TASKINFO thisTask;

unsigned timeoutID;

unsigned done;

/* get the task ID for this task */

thisTask = getTaskInfo(0);

while (TRUE)

 {

 /* allocate an envelope and address it to this task */

 pEnvelope = allocate_envelope();

 pEnvelope->destination = thisTask.taskID;

 /* request a timeout in 10 seconds */

 timeoutID = timeoutRequest(100, pEnvelope);

 done = FALSE;

 while (!done)

 {

 /* wait for a message or a timeout */

 pEnvelope = receive_message();

 /* determine the message type */

 if (pEnvelope->type == MSG_TIMEOUT)

 {

 /* does it match the last request? */

 if (pEnvelope->data == timeoutID)

 {

 /* accept the timeout */

 done = TRUE;

 }

 }

 else

 {

 /* cancel the timeout */

 timeoutCancel(timeoutID);

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 483 483

 done = TRUE;

 /* process message from other task here */

 }

 /* return the envelope to the RTOS */

 deallocate_envelope(pEnvelope);

 }

 /* proceed with rest of task’s actions here */

 }

}

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 484 484

timer

Read a Timer

Syntax

#include <ctools.h>

unsigned timer(unsigned timer);

Description

The timer function returns the time remaining in timer. timer needs to be in the
range 0 to 31. A zero value means that the timer has finished counting down.

If the timer number is invalid, the function returns 0 and the task's error code is
set to TIMER_BADTIMER.

See Also

interval, settimer, timeout, read_timer_info, pulse

Example

This code fragment sets a timer, then displays the time remaining until it reaches
0.

#include <ctools.h>

interval(0, 1);

settimer(0, 10);

while (timer(0))

 printf("Time %d\r\n", timer(0));

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 485 485

turnoff

Turn Off a Digital Output

Syntax

#include <ctools.h>

int turnoff(unsigned channel, unsigned bit);

Description

The turnoff function turns off the digital output specified by channel and bit.

The turnoff function returns the value written to the channel if successful. If
channel or bit is invalid, it returns –1.

Notes

The turnoff function has no effect if the specified point is configured as a digital
input.

The state of the physical output is modified by the values in the I/O form, disable,
and force status tables.

Multiple bits in the same channel can be set with the dout function.

Use offsets from the symbolic constants DIN_START, DIN_END, DOUT_START
and DOUT_END to reference digital channels. The constants make programs
more portable and protect against future changes to the digital I/O channel
numbering.

The IO_SYSTEM resource needs to be requested before calling this function.

This function is provided for backward compatibility. It cannot access all 5000 I/O
modules. It is recommended that this function not be used in new programs.
Instead use Register Assignment or call the I/O driver ioWrite8Dout directly.

See Also

ioWrite8Dout, turnon

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 486 486

turnon

Turn On a Digital Output

Syntax

#include <ctools.h>

int turnon(unsigned channel, unsigned bit);

Description

The turnon function turns on the digital output specified by channel and bit.

The turnon function returns the value written to the channel if successful. If
channel or bit is invalid, it returns –1.

Notes

The turnon function has no effect if the specified point is configured as a digital
input.

The state of the physical output is modified by the values in the I/O form, disable,
and force status tables.

Multiple bits in the same channel can be set with the dout function.

Use offsets from the symbolic constants DIN_START, DIN_END, DOUT_START
and DOUT_END to reference digital channels. The constants make programs
more portable and protect against future changes to the digital I/O channel
numbering.

The IO_SYSTEM resource needs to be requested before calling this function.

This function is provided for backward compatibility. It cannot access all 5000 I/O
modules. It is recommended that this function not be used in new programs.
Instead use Register Assignment or call the I/O driver ioWrite8Dout directly.

See Also

ioWrite8Dout, turnoff

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 487 487

wait_event

Wait for an Event

Syntax

#include <ctools.h>

void wait_event(int event);

Description

The wait_event function tests if an event has occurred. If the event has
occurred, the event counter is decrements and the function returns. If the event
has not occurred, the task is blocked until it does occur.

Notes

Refer to the Real Time Operating System section for more information on
events.

Valid events are numbered 0 to RTOS_EVENTS - 1. Any events defined in
primitiv.h are not valid events for use in an application program.

See Also

signal_event, startTimedEvent

Example

See the example for the signal_event function.

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 488 488

wd_auto

Automatic Watchdog Timer Mode

Syntax

#include <ctools.h>

void wd_auto(void);

Description

The wd_auto function gives control of the watchdog timer to the operating
system. The timer is automatically updated by the system.

Notes

Refer to the Functions Overview section for more information.

See Also

wd_manual, wd_pulse

Example

See the example for the wd_manual function

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 489 489

wd_manual

Manual Watchdog Timer Mode

Syntax

#include <ctools.h>

void wd_manual(void);

Description

The wd_manual function takes control of the watchdog timer.

Notes

The application program needs to retrigger the watchdog timer at least every 0.5
seconds using the wd_pulse function, to prevent an controller reset.

Refer to the Functions Overview section for more information.

See Also

wd_auto, wd_pulse

Example

This program takes control of the watchdog timer for a section of code, then
returns it to the control of the operating system.

#include <ctools.h>

void main(void)

{

 wd_manual();

 wd_pulse();

 /* ... code executing in less than 0.5 s */

 wd_pulse();

 /* ... code executing in less than 0.5 s */

 wd_auto()

 /* ... as much code as you wish */

}

 Telepace C Tools Function Specifications

Document (Version 2.50) 5/12/2011 490 490

wd_pulse

Retrigger Watchdog Timer

Syntax

#include <ctools.h>

void wd_pulse(void);

Description

The wd_pulse function retriggers the watchdog timer.

Notes

The wd_pulse function must execute at least every 0.5 seconds, to prevent an
controller reset, if the wd_manual function has been executed.

Refer to the Functions Overview section for more information.

See Also

wd_auto, wd_manual

Example

See the example for the wd_manual function

 Telepace C Tools Macro Definitions

Document (Version 2.50) 5/12/2011 491 491

Telepace C Tools Macro Definitions

A

Macro Definition

AB Specifies Allan-Bradley database
addressing.

AB_PARSER System resource: DF1 protocol message
parser.

AB_FULL_BCC Specifies the DF1 Full Duplex protocol
emulation for the serial port. (BCC
checksum)

AB_FULL_CRC Specifies the DF1 Full Duplex protocol
emulation for the serial port. (CRC
checksum)

AB_HALF_BCC Specifies the DF1 Half Duplex protocol
emulation for the serial port. (BCC
checksum)

AB_HALF_CRC Specifies the DF1 Half Duplex protocol
emulation for the serial port. (CRC
checksum)

AB_PROTOCOL DF1 protocol firmware option

AD_BATTERY Internal AD channel connected to lithium
battery

AD_THERMISTOR Internal AD channel connected to thermistor

ADDITIVE Additive checksum

AIN_END Number of last analog input channel.

AIN_START Number of first analog input channel.

AIO_BADCHAN Error code: bad analog input channel
specified.

AIO_SUPPORTED If defined indicates analog I/O supported.

AIO_TIMEOUT Error code: input device did not respond.

AO Variable name: alarm output address

AOUT_END Number of last analog output channel.

AOUT_START Number of first analog output channel.

APPLICATION Specifies an application type task. All
application tasks are terminated by the
end_application function.

 Telepace C Tools Macro Definitions

Document (Version 2.50) 5/12/2011 492 492

Macro Definition

AT_ABSOLUTE Specifies a fixed time of day alarm.

AT_NONE Disables alarms

B

Macro Definition

BACKGROUND System event: background I/O requested.
The background I/O task uses this event. It
should not be used in an application
program.

BASE_TYPE_MASK Controller type bit mask

BAUD110 Specifies 110-baud port speed.

BAUD115200 Specifies 115200-baud port speed.

BAUD1200 Specifies 1200-baud port speed.

BAUD150 Specifies 150-baud port speed.

BAUD19200 Specifies 19200-baud port speed.

BAUD2400 Specifies 2400-baud port speed.

BAUD300 Specifies 300-baud port speed.

BAUD38400 Specifies 38400-baud port speed.

BAUD4800 Specifies 4800-baud port speed.

BAUD57600 Specifies 57600-baud port speed.

BAUD600 Specifies 600-baud port speed.

BAUD75 Specifies 75-baud port speed.

BAUD9600 Specifies 9600-baud port speed.

BYTE_EOR Byte-wise exclusive OR checksum

C

Macro Definition

CA Variable name: cascade setpoint source

CLASS0_FLAG specifies a flag for enabling DNP Class 0
data

CLASS1_FLAG specifies a flag for enabling DNP Class 1
data

CLASS2_FLAG specifies a flag for enabling DNP Class 2
data

CLASS3_FLAG specifies a flag for enabling DNP Class 3
data

 Telepace C Tools Macro Definitions

Document (Version 2.50) 5/12/2011 493 493

Macro Definition

CLOSED Specifies switch is in closed position

COLD_BOOT Cold-boot switch depressed when CPU was
reset.

com1 Points to a file object for the com1 serial
port.

COM1_RCVR System event: indicates activity on com1
receiver. The meaning depends on the
character handler installed.

com2 Points to a file object for the com2 serial
port.

COM2_RCVR System event: indicates activity on com2
receiver. The meaning depends on the
character handler installed.

com3 Points to a file object for the com3 serial
port.

COM3_RCVR System event: indicates activity on com3
receiver. The meaning depends on the
character handler installed.

com4 Points to a file object for the com4serial
port.

COM4_RCVR System event: indicates activity on com4
receiver. The meaning depends on the
character handler installed.

COUNTER_CHANNELS Specifies number of 5000 I/O counter input
channels

COUNTER_END Number of last counter input channel

COUNTER_START Number of first counter input channel

COUNTER_SUPPORTED If defined indicates counter I/O hardware
supported.

CPU_CLOCK_RATE Frequency of the system clock in cycles per
second

CR Variable name: control register

CRC_16 CRC-16 type CRC checksum (reverse
algorithm)

CRC_CCITT CCITT type CRC checksum (reverse
algorithm)

D

Macro Definition

DATA_SIZE Maximum length of the HART command or

 Telepace C Tools Macro Definitions

Document (Version 2.50) 5/12/2011 494 494

Macro Definition

response field.

DATA7 Specifies 7 bit world length.

DATA8 Specifies 8 bit word length.

DB Variable name: deadband

DB_BADSIZE Error code: out of range address specified

DB_BADTYPE Error code: bad database addressing type
specified

DB_OK Error code: no error occurred

DCA_ADD Add the ID to the configuration registers.

DCA_REMOVE Remove the ID from the configuration
registers.

DCAT_C Device configuration application type is a C
application

DCAT_LOGIC1 Device configuration application type is the
first logic application

DCAT_LOGIC2 Device configuration application type is the
second logic application

DE_BadConfig The modem configuration structure contains
an error

DE_BusyLine The phone number called was busy

DE_CallAborted A call in progress was aborted by the user

DE_CarrierLost The connection to the remote site was lost
(modem reported NO CARRIER). Carrier is
lost for a time exceeding the S10 setting in
the modem. Phone lines with call waiting
are very susceptible to this condition.

DE_FailedToConnect The modem could not connect to the
remote site

DE_InitError Modem initialization failed (the modem may
be turned off)

DE_NoDialTone Modem did not detect a dial tone or the S6
setting in the modem is too short.

DE_NoError No error has occurred

DE_NoModem The serial port is not configured as a
modem (port type must be
RS232_MODEM). Or no modem is
connected to the controller serial port.

DE_NotInControl The serial port is in use by another modem
function or has answered an incoming call.

DIN_END Number of last regular digital input channel.

DIN_START Number of first regular digital input channel

 Telepace C Tools Macro Definitions

Document (Version 2.50) 5/12/2011 495 495

Macro Definition

DIO_SUPPORTED If defined indicates digital I/O hardware
supported.

DISABLE Specifies flow control is disabled.

DNP Specifies the DNP protocol for the serial
port

DO Variable name: decrease output

DOUT_END Number of last regular digital output
channel.

DOUT_START Number of first regular digital output
channel

DS_Calling The controller is making a connection to a
remote controller

DS_Connected The controller is connected to a remote
controller

DS_Inactive The serial port is not in use by a modem

DS_Terminating The controller is ending a connection to a
remote controller.

DUTY_CYCLE Specifies timer is generating square wave
output.

DYNAMIC_MEMORY System resource: all memory allocation
functions such as malloc, alloc, and zalloc.

E

Macro Definition

EEPROM_EVERY EEPROM section loaded to RAM on every
CPU reboot

EEPROM_RUN EEPROM section loaded to RAM on RUN
type boots only.

EEPROM_SUPPORTED If defined, indicates that there is an
EEPROM in the controller.

ENABLE Specifies flow control is enabled.

ER Variable name: error

EVEN Specifies even parity.

EX Variable name: automatic execution period

EXTENDED_DIN_END Number of last extended digital input
channel.

EXTENDED_DIN_START Number of first extended digital input
channel

EXTENDED_DOUT_END Number of last extended digital output
channel.

 Telepace C Tools Macro Definitions

Document (Version 2.50) 5/12/2011 496 496

Macro Definition

EXTENDED_DOUT_START Number of first extended digital output
channel

F

Macro Definition

FOPEN_MAX Redefinition of macro from stdio.h

FORCE_MULTIPLE_COILS Modbus function code

FORCE_SINGLE_COIL Modbus function code

FOXCOM_MESSAGE_RECEI
VED

This event is used when a Foxcom
message is received. An application
program cannot use this event.

FOXCOM_STARTED This event is used when Foxcom
communication has been established with a
sensor. An application program cannot use
this event.

FS Variable name: full scale output limit

FULL Specifies full duplex.

G

Macro Definition

GA Variable name: gain

GASFLOW Gas Flow calculation firmware option

GFC_4202 SCADAPack 4202 DR controller

GFC_4202DS SCADAPack 4202 DS controller

H

Macro Definition

HALF Specifies half duplex.

HI Variable name: high alarm setpoint

I

 Telepace C Tools Macro Definitions

Document (Version 2.50) 5/12/2011 497 497

Macro Definition

IB Variable name: input bias

IH Variable name: inhibit execution address

IN Variable name: integrated error

IO Variable name: increase output

IO_SYSTEM System resource for all I/O hardware
functions.

IP Variable name: input source

L

Macro Definition

LED_OFF Specifies LED is to be turned off.

LED_ON Specifies LED is to be turned on.

LINEAR Specifies linear database addressing.

LO Variable name: low alarm setpoint

LOAD_MULTIPLE_REGISTER
S

Modbus function code

LOAD_SINGLE_REGISTER Modbus function code

LOCAL_COUNTERS Number of 5203/4 counter inputs

M

Macro Definition

MAX_PRIORITY The maximum task priority.

MM_BAD_ADDRESS Master message status: invalid
database address

MM_BAD_FUNCTION Master message status: invalid
function code

MM_BAD_LENGTH Master message status: invalid
message length

MM_BAD_SLAVE Master message status: invalid slave
station address

MM_NO_MESSAGE Master message status: no message
was sent.

MM_PROTOCOL_NOT_SUPPORTE
D

Master message status: selected
protocol is not supported.

MM_RECEIVED Master message status: response
received.

 Telepace C Tools Macro Definitions

Document (Version 2.50) 5/12/2011 498 498

Macro Definition

MM_RECEIVED_BAD_LENGTH Master message status: response
received with the incorrect amount of
data.

MM_SENT Master message status: message was
sent.

MODBUS Specifies Modbus database
addressing.

MM_EOT Master message status: DF1 slave
response was an EOT message

MM_WRONG_RSP Master message status: DF1slave
response did not match command
sent.

MM_CMD_ACKED Master message status: DF1half
duplex command has been
acknowledged by slave – Master may
now send poll command.

MM_EXCEPTION_ADDRESS Master message status: Modbus slave
returned an address exception.

MM_EXCEPTION_DEVICE_BUSY Master message status: Modbus slave
returned a Device Busy exception.

MM_EXCEPTION_DEVICE_FAILUR
E

Master message status: Modbus slave
returned a Device Failure exception

MM_EXCEPTION_FUNCTION Master message status: Modbus slave
returned a function exception.

MM_EXCEPTION_VALUE Master message status: Modbus slave
returned a value exception.

MODBUS_ASCII Specifies the Modbus ASCII protocol
emulation for the serial port.

MODBUS_PARSER System resource: Modbus protocol
message parser.

MODBUS_RTU Specifies the Modbus RTU protocol
emulation for the serial port.

MODEM_CMD_MAX_LEN Maximum length of the modem
initialization command string

MODEM_MSG System event: new modem message
generated.

MSG_DATA Specifies the data field in an envelope
contains a data value.

MSG_POINTER Specifies the data field in an envelope
contains a pointer.

N

 Telepace C Tools Macro Definitions

Document (Version 2.50) 5/12/2011 499 499

Macro Definition

NEVER System event: this event will never occur.

NEW_PROGRAM Application program is newly loaded.

NO_ERROR Error code: indicates no error has occurred.

NO_PROTOCOL Specifies no communication protocol for the
serial port.

NONE Specifies no parity.

NORMAL Specifies normal count down timer.

NORMAL Specifies normal count down timer.

NOTYPE Specifies serial port type is not known.

NUMAB Number of registers in the Allan-Bradley
database.

NUMCOIL Number of registers in the Modbus coil
section.

NUMHOLDING Number of registers in the Modbus holding
register section.

NUMINPUT Number of registers in the Modbus input
register section.

NUMLINEAR Number of registers in the linear database.

NUMSTATUS Number of registers in the Modbus status
section.

O

Macro Definition

OB Variable name: output bias

ODD Specifies odd parity.

OB Variable name: output bias

OP Variable name: output

OPEN Specifies switch is in open position

P

Macro Definition

PC_FLOW_RX_RECEIVE_ST
OP

Receiver disabled after receipt of a
message.

PC_FLOW_RX_XON_XOFF Receiver Xon/Xoff flow control.

PC_FLOW_TX_IGNORE_CTS Transmitter flow control ignores CTS.

PC_FLOW_TX_XON_XOFF Transmitter Xon/Xoff flow control.

 Telepace C Tools Macro Definitions

Document (Version 2.50) 5/12/2011 500 500

Macro Definition

PC_PROTOCOL_RTU_FRAMI
NG

Modbus RTU framing.

PID_ALARM Control register mask: alarms enabled

PID_ALARM_ABS Control register mask: absolute alarms

PID_ALARM_ACK Status register mask: alarm acknowledged

PID_ALARM_DEV Control register mask: deviation alarms

PID_ALARM_ONLY Control register mask: alarm only block

PID_ALARM_RATE Control register mask: rate alarms

PID_ANALOG_IP Control register mask: analog input

PID_ANALOG_OP Control register mask: analog output

PID_BAD_BLOCK Return code: bad block number specified.

PID_BAD_IO_IP Status register mask: I/O failure on block
input

PID_BAD_IO_OP Status register mask: I/O failure on block
output

PID_BLOCK_IP Control register mask: input from output of
another block

PID_BLOCKS Number of PID blocks.

PID_CLAMP_FULL Status register mask: output is clamped at
full scale

PID_CLAMP_ZERO Status register mask: output is clamped at
zero scale

PID_ER_SQR Control register mask: take square root of
error

PID_HI_ALARM Status register mask: high alarm detected

PID_INHIBIT Status register mask: external inhibit input is
on

PID_LO_ALARM Status register mask: low alarm detected

PID_MANUAL Status register mask: block is in manual
mode

PID_MODE_AUTO Control register mask: automatic mode

PID_MODE_MANUAL Control register mask: manual mode

PID_MOTOR_OP Control register mask: motor pulse duration
output

PID_NO_ALARM Control register mask: alarms disabled

PID_NO_ER_SQR Control register mask: normal error

PID_NO_IP Control register mask: no input (other than
IP)

PID_NO_OP Control register mask: no output

PID_NO_PV_SQR Control register mask: normal PV

 Telepace C Tools Macro Definitions

Document (Version 2.50) 5/12/2011 501 501

Macro Definition

PID_NO_SP_TRACK Control register mask: setpoint tracking
disabled

PID_OK Return code: operation completed
successfully.

PID_OUT_DB Status register mask: PID controller outside
of deadband

PID_PID Control register mask: PID control block

PID_PULSE_OP Control register mask: pulse duration output

PID_PV_SQR Control register mask: take square root of
PV

PID_RATE_CLAMP Status register mask: rate gain clamed at
maximum

PID_RATIO_BIAS Control register mask: ratio/bias control
block

PID_RUNNING Status register mask: block is executing

PID_SP_CASCADE Control register mask: cascade setpoint

PID_SP_NORMAL Control register mask: setpoint stored in SP

PID_SP_TRACK Control register mask: setpoint tracking
enabled

PE Variable name: period

PHONE_NUM_MAX_LEN Maximum length of the phone number string

PROGRAM_EXECUTED Application program has been executed.

PULSE_TRAIN Specifies timer is generating pulse train
output.

PV Variable name: process value

PM_CPU_FULL_CLOCK The CPU is set to run at full speed

PM_CPU_REDUCED_CLOCK The CPU is set to run at a reduced speed

PM_CPU_SLEEP The CPU is set to sleep mode

PM_LAN_ENABLED The LAN is enabled

PM_LAN_DISABLED The LAN is disabled

PM_USB_PERIPHERAL_ENA
BLED

The USB peripheral port is enabled

PM_USB_PERIPHERAL_DISA
BLED

The USB peripheral port is disabled

PM_USB_HOST_ENABLED The USB host port is enabled

PM_USB_HOST_DISABLED The USB host port is disabled

PM_UNAVAILABLE The status of the device could not be read.

PM_NO_CHANGE The current value will be used

 Telepace C Tools Macro Definitions

Document (Version 2.50) 5/12/2011 502 502

R

Macro Definition

RA Variable name: rate time

RE Variable name: reset time

READ_COIL_STATUS Modbus function code

READ_EXCEPTION_STATUS Modbus function code

READ_HOLDING_REGISTER Modbus function code

READ_INPUT_REGISTER Modbus function code

READ_INPUT_STATUS Modbus function code

READSTATUS enum ReadStatus

REPORT_SLAVE_ID Modbus function code

RS232 Specifies serial port is an RS-232 port.

RS232_COLLISION_AVOIDAN
CE

Specifies serial port is RS232 and uses CD
for collision avoidance.

RS232_MODEM Specifies serial port is an RS-232 dial-up
modem.

RS485_4WIRE Specifies serial port is a 4 wire RS-485 port.

RTOS_ENVELOPES Number of RTOS envelopes.

RTOS_EVENTS Number of RTOS events.

RTOS_PRIORITIES Number of RTOS task priorities.

RTOS_RESOURCES Number of RTOS resource flags.

RTOS_TASKS Number of RTOS tasks.

RUN Run/Service switch is in RUN position.

S

Macro Definition

SP Variable name: setpoint

SR Variable name: status register

S_MODULE_FAILURE Status LED code for I/O module
communication failure

S_NORMAL Status LED code for normal status

SCADAPACK SCADAPack controller

SCADAPACK_LIGHT SCADAPack LIGHT controller

SCADAPACK_PLUS SCADAPack PLUS controller

SERIAL_PORTS Number of serial ports.

SERVICE Run/Service switch is in SERVICE position.

 Telepace C Tools Macro Definitions

Document (Version 2.50) 5/12/2011 503 503

Macro Definition

SF_ALREADY_DEFINED Result code: translation is already defined
in the table

SF_INDEX_OUT_OF_RANGE Result code: invalid translation table index

SF_NO_TRANSLATION Result code: entry does not define a
translation

SF_PORT_OUT_OF_RANGE Result code: serial port is not valid

SF_STATION_OUT_OF_RAN
GE

Result code: station number is not valid

SF_TABLE_SIZE Number of entries in the store and forward
table

SF_VALID Result code: translation is valid

SIGNAL_CTS I/O line bit mask: clear to send signal

SIGNAL_CTS Matches status of CTS input.

SIGNAL_DCD I/O line bit mask: carrier detect signal

SIGNAL_DCD Matches status of DCD input.

SIGNAL_OFF Specifies a signal is de-asserted

SIGNAL_OH I/O line bit mask: off hook signal

SIGNAL_OH Not supported – forced low (1).

SIGNAL_ON Specifies a signal is asserted

SIGNAL_RING I/O line bit mask: ring signal

SIGNAL_RING Not supported – forced low (0).

SIGNAL_VOICE I/O line bit mask: voice/data switch signal

SIGNAL_VOICE Not supported – forced low (0).

SLEEP_MODE_SUPPORTED Defined if sleep function is supported

SMARTWIRE_5201_5202 SmartWIRE 5201 and 5202 controllers

SP Variable name: setpoint

SR Variable name: status register

STACK_SIZE Size of the machine stack.

START_COIL Start of the coils section in the linear
database.

START_HOLDING Start of the holding register section in the
linear database.

START_INPUT Start of the input register section in the
linear database.

START_STATUS Start of the status section in the linear
database.

STARTUP_

APPLICATION

Specifies the application start up task.

STARTUP_SYSTEM Specifies the system start up task.

STOP1 Specifies 1 stop bit.

 Telepace C Tools Macro Definitions

Document (Version 2.50) 5/12/2011 504 504

Macro Definition

STOP2 Specifies 2 stop bits.

SYSTEM Specifies a system type task. System tasks
are not terminated by the end_application
function.

T

Macro Definition

T_CELSIUS Specifies temperatures in degrees Celsius

T_FAHRENHEIT Specifies temperatures in degrees
Fahrenheit

T_KELVIN Specifies temperatures in degrees Kelvin

T_RANKINE Specifies temperatures in degrees Rankine

TELESAFE_6000_16EX 6000-16EX controller

TELESAFE_MICRO_16 Micro16 controller

TIMED_OUT Specifies timer is has reached zero.

TIMEOUT Specifies timer is generating timed output
change.

TIMER_BADADDR Error code: invalid digital I/O address

TIMER_BADINTERVAL Error code: invalid timer interval

TIMER_BADTIMER Error code: invalid timer

TIMER_BADVALUE Error code: invalid time value

TIMER_MAX Number of last valid software timer.

TS_EXECUTING Task status indicating task is executing.

TS_READY Task status indicating task is ready to
execute

TS_WAIT_
RESOURCE

Task status indicating task is blocked
waiting for a resource

TS_WAIT_ENVELOPE Task status indicating task is blocked
waiting for an envelope

TS_WAIT_EVENT Task status indicating task is blocked
waiting for an event

TS_WAIT_MESSAGE Task status indicating task is blocked
waiting for a message

V

 Telepace C Tools Macro Definitions

Document (Version 2.50) 5/12/2011 505 505

Macro Definition

VI_DATE_SIZE Number of characters in version information
date field

W

Macro Definition

WRITESTATUS enum WriteStatus

WS_ALL All wake up sources enabled

WS_COUNTER_0_OVERFLO
W

Bit mask to enable counter 0 overflow as
wake up source

WS_COUNTER_1_OVERFLO
W

Bit mask to enable counter 1 overflow as
wake up source

WS_COUNTER_2_OVERFLO
W

Bit mask to enable counter 2 overflow as
wake up source

WS_INTERRUPT_INPUT Bit mask to enable interrupt input as wake
up source

WS_LED_POWER_SWITCH Bit mask to enable LED power switch as
wake up source

WS_NONE No wake up source enabled

WS_REAL_TIME_CLOCK Bit mask to enable real time clock as wake
up source

WS_UNDEFINED Undefined wake up source

Z

Macro Definition

ZE Variable name: zero scale output limit

 Telepace C Tools Structures and Types

Document (Version 2.50) 5/12/2011 506 506

Telepace C Tools Structures and Types

ABConfiguration

The ABConfiguration structure defines settings for DF1 communication protocol.

/* DF1 Protocol Configuration */

struct ABConfiguration {

 unsigned min_protected_address;

 unsigned max_protected_address;

 };

 min_protected_address is the minimum allowable DF1 physical 16-bit
address allowed in all protected commands. The default value is 0.

 max_protected_address is the maximum allowable DF1 physical 16-bit
address allowed in all protected commands. The default value is NUMAB.

ADDRESS_MODE

The ADDRESS_MODE enumerated type describes addressing modes for
communication protocols.

typedef enum addressMode_t

 {

 AM_standard = 0,

 AM_extended

 }

 ADDRESS_MODE;

 AM_standard returns standard Modbus addressing. Standard addressing
allows 255 stations and is compatible with standard Modbus devices

 AM_extended returns extended addressing. Extended addressing allows
65534 stations.

ALARM_SETTING

The ALARM_SETTING structure defines a real time clock alarm setting.

typedef struct alarmSetting_tag {

 UINT16 type;

 UINT16 hour;

 UINT16 minute;

 UINT16 second;

 } ALARM_SETTING;

 Telepace C Tools Structures and Types

Document (Version 2.50) 5/12/2011 507 507

 type specifies the type of alarm. It may be the AT_NONE or AT_ABSOLUTE
macro.

 hour specifies the hour at which the alarm will occur.

 minute specifies the minute at which the alarm will occur.

 second specifies the second at which the alarm will occur.

clock

The clock structure contains time and date for reading or writing the real time
clock.

struct clock {

 UINT16 year;

 UINT16 month;

 UINT16 day;

 UINT16 dayofweek;

 UINT16 hour;

 UINT16 minute;

 UINT16 second;

 };

 year is the current year. It is two digits in the range 00 to 99.

 month is the current month. It is in the range 1 to 12.

 day is the current day. It is in the range 1 to 31.

 dayofweek is the current day of the week. It is in the range 1 to 7. 1 =
Sunday, 2 = Monday…7 = Saturday.

 hour is the current hour. It is in the range 00 to 23.

 minute is the current minute. It is in the range 00 to 59.

 second is the current second. It is in the range 00 to 59.

DATALOG_CONFIGURATION

The data log configuration structure holds the configuration of the data log. Each
record in a data log may hold up to eight fields. Not all the fields are used if fewer
than eight variables are declared.

The amount of memory used for a record depends on the number of fields in the
record and the size of each field. Use the datalogRecordSize function to
determine the memory needed for each record.

typedef struct datalogConfig_type {

 UINT16 records; /* # of records */

 UINT16 fields; /* # of fields per record */

 DATALOG_VARIABLE typesOfFields[MAX_NUMBER_OF_FIELDS];

} DATALOG_CONFIGURATION;

 Telepace C Tools Structures and Types

Document (Version 2.50) 5/12/2011 508 508

DATALOG_STATUS

The data log status enumerated type is used to report status information.

typedef enum {

 DLS_CREATED, /* data log created */

 DLS_BADID, /* invalid log ID */

 DLS_EXISTS, /* log already exists */

 DLS_NOMEMORY, /* insufficient memory for log */

 DLS_BADCONFIG /* invalid configuration */

 DLS_BADSEQUENCE /* sequence number not in use */

} DATALOG_STATUS;

DATALOG_VARIABLE

The data log variable enumerated type is specify the type and size of variables to
be recorded in the log.

typedef enum {

 DLV_UINT16 = 0, /* 16 bit unsigned integer */

 DLV_INT16, /* 16 bit signed integer */

 DLV_UINT32, /* 32 bit unsigned integer */

 DLV_INT32, /* 32 bit signed integer */

 DLV_FLOAT, /* 32 bit floating point */

 DLV_CMITIME, /* 64 bit time */

 DLV_DOUBLE /* 64 bit floating point */

} DATALOG_VARIABLE;

DialError

The DialError enumerated type defines error responses from the dial-up modem
functions and may have one of the following values.

enum DialError

{

 DE_NoError = 0,

 DE_BadConfig,

 DE_NoModem,

 DE_InitError,

 DE_NoDialTone,

 DE_BusyLine,

 DE_CallAborted,

 DE_FailedToConnect,

 DE_CarrierLost,

 DE_NotInControl

 DE_CallCut

};

 DE_NoError returns no error has occurred

 DE_BadConfig returns the modem configuration structure contains an error

 DE_NoModem returns the serial port is not configured as a modem (port type
must be RS232_MODEM). Or no modem is connected to the controller serial
port.

 DE_InitError returns modem initialization failed (the modem may be turned
off)

 Telepace C Tools Structures and Types

Document (Version 2.50) 5/12/2011 509 509

 DE_NoDialTone returns modem did not detect a dial tone or the S6 setting in
the modem is too short.

 DE_BusyLine returns the phone number called was busy

 DE_CallAborted returns a call in progress was aborted by the user

 DE_FailedToConnect returns the modem could not connect to the remote
site

 DE_CarrierLost returns the connection to the remote site was lost (modem
reported NO CARRIER). Carrier is lost for a time exceeding the S10 setting
in the modem. Phone lines with call waiting are very susceptible to this
condition.

 DE_NotInControl returns the serial port is in use by another modem function
or has answered an incoming call.

 DE_CallCut returns an incoming call was disconnected while attempting to
dial out.

DialState

The DialState enumerated type defines the state of the modemDial operation and
may have one of the following values.

enum DialState

{

 DS_Inactive,

 DS_Calling,

 DS_Connected,

 DS_Terminating

};

 DS_Inactive returns the serial port is not in use by a modem

 DS_Calling returns the controller is making a connection to a remote
controller

 DS_Connected returns the controller is connected to a remote controller

 DS_Terminating returns the controller is ending a connection to a remote
controller.

dnpAnalogInput

The dnpAnalogInput type describes a DNP analog input point. This type is used
for both 16-bit and 32-bit points.

typedef struct dnpAnalogInput_type

{

 UINT16 modbusAddress;

 UCHAR class;

 UINT32 deadband;

 } dnpAnalogInput;

 modbusAddress is the address of the Modbus register number associated
with the point.

 Telepace C Tools Structures and Types

Document (Version 2.50) 5/12/2011 510 510

 class is the reporting class for the object. It may be set to CLASS_1,
CLASS_2 or CLASS_3.

 deadband is the amount by which the analog input value must change before
an event will be reported for the point.

dnpAnalogOutput

The dnpAnalogOutput type describes a DNP analog output point. This type is
used for both 16-bit and 32-bit points.

typedef struct dnpAnalogOutput_type

{

 UINT16 modbusAddress;

} dnpAnalogOutput;

 modbusAddress is the address of the Modbus register associated with the
point.

dnpBinaryInput

The dnpBinaryInput type describes a DNP binary input point.

typedef struct dnpBinaryInput_type

{

 UINT16 modbusAddress;

 UCHAR class;

} dnpBinaryInput;

 modbusAddress is the address of the Modbus register associated with the
point.

 class is the reporting class for the object. It may be set to CLASS_1,
CLASS_2 or CLASS_3.

DNP Binary Input Extended Point

The dnpBinaryInputEx type describes an extended DNP Binary Input point.

typedef struct dnpBinaryInputEx_type

{

 UINT16 modbusAddress;

 UCHAR eventClass;

 UCHAR debounce;

} dnpBinaryInputEx;

 modbusAddress is the address of the Modbus register associated with the
point.

 class is the reporting class for the object. It may be set to CLASS_1,
CLASS_2 or CLASS_3.

 debounceTime is the debounce time for thebinary input.

dnpBinaryOutput

The dnpBinaryOutput type describes a DNP binary output point.

 Telepace C Tools Structures and Types

Document (Version 2.50) 5/12/2011 511 511

typedef struct dnpBinaryOutput_type

{

 UINT16 modbusAddress1;

 UINT16 modbusAddress2;

 UCHAR controlType;

 } dnpBinaryOutput;

 modbusAddress1 is the address of the first Modbus register associated with
the point. This field is always used.

 modbusAddress2 is the address of the second Modbus register associated
with the point. This field is used only with paired outputs. See the controlType
field.

 controlType determines if one or two outputs are associated with this output
point. It may be set to PAIRED or NOT_PAIRED.

 A paired output uses two Modbus registers for output. The first output is the
Trip output and the second is the Close output. This is used with Control
Relay Output Block objects.

 A non-paired output uses one Modbus register for output. This is used with
Binary Output objects.

DNP_CONNECTION_EVENT Type

This enumerated type lists DNP events.

typedef enum dnpConnectionEventType

{

 DNP_CONNECTED=0,

 DNP_DISCONNECTED,

 DNP_CONNECTION_REQUIRED,

 DNP_MESSAGE_COMPLETE,

 DNP_MESSAGE_TIMEOUT

} DNP_CONNECTION_EVENT;

 The DNP_CONNECTED event indicates that the handler has connected to
the master station. The application sends this event to DNP. When DNP
receives this event it will send unsolicited messages.

 The DNP_DISCONNECTED event indicates that the handler has
disconnected from the master station. The application sends this event to
DNP. When DNP receives this event it will request a new connection before
sending unsolicited messages.

 The DNP_CONNECTION_REQUIRED event indicates that DNP wishes to
connect to the master station. DNP sends this event to the application. The
application should process this event by making a connection.

 The DNP_MESSAGE_COMPLETE event indicates that DNP has received
confirmation of unsolicited messages from the master station. DNP sends
this event to the application. The application should process this event by
disconnecting. In many applications a short delay before disconnecting is

 Telepace C Tools Structures and Types

Document (Version 2.50) 5/12/2011 512 512

useful as it allows the master station to send commands to the slave after the
unsolicited reporting is complete.

 The DNP_MESSAGE_TIMEOUT event indicates that DNP has attempted to
send an unsolicited message but did not receive confirmation after all
attempts. This usually means there is a communication problem. DNP sends
this event to the application. The application should process this event by
disconnecting.

dnpConfiguration

The dnpConfiguration type describes the DNP parameters.

typedef struct dnpConfiguration_type

{

 UINT16 masterAddress;

 UINT16 rtuAddress;

 CHAR datalinkConfirm;

 CHAR datalinkRetries;

 UINT16 datalinkTimeout;

 UINT16 operateTimeout;

 UCHAR applicationConfirm;

 UINT16 maximumResponse;

 UCHAR applicationRetries;

 UINT16 applicationTimeout;

 INT16 timeSynchronization;

 UINT16 BI_number;

UINT16 BI_startAddress;

 CHAR BI_reportingMethod;

 UINT16 BI_soebufferSize;

 UINT16 BO_number;

UINT16 BO_startAddress;

 UINT16 CI16_number;

UINT16 CI16_startAddress;

 CHAR CI16_reportingMethod;

 UINT16 CI16_bufferSize;

 UINT16 CI32_number;

UINT16 CI32_startAddress;

 CHAR CI32_reportingMethod;

 UINT16 CI32_bufferSize;

CHAR CI32_wordOrder;

 UINT16 AI16_number;

UINT16 AI16_startAddress;

 CHAR AI16_reportingMethod;

 UINT16 AI16_bufferSize;

 UINT16 AI32_number;

UINT16 AI32_startAddress;

 CHAR AI32_reportingMethod;

 UINT16 AI32_bufferSize;

CHAR AI32_wordOrder;

 UINT16 AISF_number;

UINT16 AISF_startAddress;

 CHAR AISF_reportingMethod;

 UINT16 AISF_bufferSize;

CHAR AISF_wordOrder;

 UINT16 AO16_number;

 Telepace C Tools Structures and Types

Document (Version 2.50) 5/12/2011 513 513

UINT16 AO16_startAddress;

 UINT16 AO32_number;

UINT16 AO32_startAddress;

CHAR AO32_wordOrder;

 UINT16 AOSF_number;

UINT16 AOSF_startAddress;

CHAR AOSF_wordOrder;

 UINT16 autoUnsolicitedClass1;

 UINT16 holdTimeClass1;

 UINT16 holdCountClass1;

 UINT16 autoUnsolicitedClass2;

 UINT16 holdTimeClass2;

 UINT16 holdCountClass2;

 UINT16 autoUnsolicitedClass3;

 UINT16 holdTimeClass3;

 UINT16 holdCountClass3;

} dnpConfiguration;

 masterAddress is the address of the master station. Unsolicited messages
are sent to this station. Solicited messages must come from this station.
Valid values are 0 to 65534.

 rtuAddress is the address of the RTU. The master station must send
messages to this address. Valid values are 0 to 65534.

 datalinkConfirm enables requesting data link layer confirmations. Valid
values are TRUE and FALSE.

 datalinkRetries is the number of times the data link layer will retry a failed
message. Valid values are 0 to 255.

 datalinkTimeout is the length of time the data link layer will wait for a
response before trying again or aborting the transmission. The value is
measured in milliseconds. Valid values are 100 to 60000 in multiples of 100
milliseconds.

 operateTimeout is the length of time an operate command is valid after
receiving a select command. The value is measured in seconds. Valid values
are 1 to 6500.

 applicationConfirm enables requesting application layer confirmations. Valid
values are TRUE and FALSE.

 maximumResponse is the maximum length of an application layer response.
Valid values are 20 to 2048. The recommended value is 2048 unless the
master cannot handle responses this large.

 applicationRetries is the number of times the application layer will retry a
transmission. Valid values are 0 to 255.

 applicationTimeout is the length of time the application layer will wait for a
response before trying again or aborting the transmission. The value is
measured in milliseconds. Valid values are 100 to 60000 in multiples of 100
milliseconds. This value must be larger than the data link timeout.

 Telepace C Tools Structures and Types

Document (Version 2.50) 5/12/2011 514 514

 timeSynchronization defines how often the RTU will request a time
synchronization from the master.

 Set this to NO_TIME_SYNC to disable time synchronization requests.

 Set this to STARTUP_TIME_SYNC to request time synchronization at start
up only.

 Set this to 1 to 32767 to set the time synchronization period in seconds.

 BI_number is the number of binary input points. Valid values are 0 to 9999.

 BI_startAddress is the DNP address of the first Binary Input point.

 BI_reportingMethod determines how binary inputs are reported either
Change Of State or Log All Events.

 BI_bufferSize is the Binary Input Change Event Buffer Size.

 BO_number is the number of binary output points. Valid values are 0 to
9999.

 BO_startAddress is the DNP address of the first Binary Output point.

 CI16_number is the number of 16-bit counter input points. Valid values are 0
to 9999.

 CI16_startAddress is the DNP address of the first CI16 point.

 CI16_reportingMethod determines how CI16 inputs are reported either
Change Of State or Log All Events.

 CI16_bufferSize is the number of events in the 16-bit counter change buffer.
Valid values are 0 to 9999.

 CI32_number is the number of 32-bit counter input points. Valid values are 0
to 9999.

 CI32_startAddress is the DNP address of the first CI32 point.

 CI32_reportingMethod determines how CI32 inputs are reported either
Change Of State or Log All Events.

 CI32_bufferSize is the number of events in the 32-bit counter change buffer.
Valid values are 0 to 9999.

 CI32_wordOrder is the Word Order of CI32 points (0=LSW first, 1=MSW
first).

 AI16_number is the number of 16-bit analog input points. Valid values are 0
to 9999.

 AI16_startAddress is the DNP address of the first AI16 point.

 AI16_reportingMethod determines how 16-bit analog changes are reported.

 Set this to FIRST_VALUE to report the value of the first change event
measured.

 Telepace C Tools Structures and Types

Document (Version 2.50) 5/12/2011 515 515

 Set this to CURRENT_VALUE to report the value of the latest change event
measured.

 AI16_bufferSize is the number of events in the 16-bit analog input change
buffer. Valid values are 0 to 9999.

 AI32_number is the number of 32-bit analog input points. Valid values are 0
to 9999.

 AI32_startAddress is the DNP address of the first AI32 point.

 AI32_reportingMethod determines how 32-bit analog changes are reported.

 Set this to FIRST_VALUE to report the value of the first change event
measured.

 Set this to CURRENT_VALUE to report the value of the latest change event
measured.

 AI32_bufferSize is the number of events in the 32-bit analog input change
buffer. Valid values are 0 to 9999.

 AI32_wordOrder is the Word Order of AI32 points (0=LSW first, 1=MSW first)

 AO16_number is the number of 16-bit analog output points. Valid values are
0 to 9999.

 AO16_startAddress is the DNP address of the first AO16 point.

 AO32_number is the number of 32-bit analog output points. Valid values are
0 to 9999.

 AO32_startAddress is the DNP address of the first AO32 point.

 AO32_wordOrder is the Word Order of AO32 points (0=LSW first, 1=MSW
first)

 AOSF_number is the number of short float Analog Outputs.

 AOSF_startAddress is the DNP address of first AOSF point.

 AOSF_wordOrder is the Word Order of AOSF points (0=LSW first, 1=MSW
first).

 autoUnsolicitedClass1 enables or disables automatic Unsolicited reporting of
Class 1 events.

 holdTimeClass1 is the maximum period to hold Class 1 events before
reporting

 holdCountClass1 is the maximum number of Class 1 events to hold before
reporting.

 autoUnsolicitedClass2 enables or disables automatic Unsolicited reporting of
Class 2 events.

 holdTimeClass2 is the maximum period to hold Class 2 events before
reporting

 Telepace C Tools Structures and Types

Document (Version 2.50) 5/12/2011 516 516

 holdCountClass2 is the maximum number of Class 2 events to hold before
reporting.

 autoUnsolicitedClass3 enables or disables automatic Unsolicited reporting of
Class 3 events.

 holdTimeClass3 is the maximum period to hold Class 3 events before
reporting.

 holdCountClass2 is the maximum number of Class 3 events to hold before
reporting.

dnpConfigurationEx

The dnpConfigurationEx type includes extra parameters in the DNP
Configuration.

typedef struct dnpConfigurationEx_type

{

 UINT16 rtuAddress;

 UCHAR datalinkConfirm;

 UCHAR datalinkRetries;

 UINT16 datalinkTimeout;

 UINT16 operateTimeout;

 UCHAR applicationConfirm;

 UINT16 maximumResponse;

 UCHAR applicationRetries;

 UINT16 applicationTimeout;

 INT16 timeSynchronization;

 UINT16 BI_number;

 UINT16 BI_startAddress;

 UCHAR BI_reportingMethod;

 UINT16 BI_soeBufferSize;

 UINT16 BO_number;

 UINT16 BO_startAddress;

 UINT16 CI16_number;

 UINT16 CI16_startAddress;

 UCHAR CI16_reportingMethod;

 UINT16 CI16_bufferSize;

 UINT16 CI32_number;

 UINT16 CI32_startAddress;

 UCHAR CI32_reportingMethod;

 UINT16 CI32_bufferSize;

 UCHAR CI32_wordOrder;

 UINT16 AI16_number;

 UINT16 AI16_startAddress;

 UCHAR AI16_reportingMethod;

 UINT16 AI16_bufferSize;

 UINT16 AI32_number;

 UINT16 AI32_startAddress;

 UCHAR AI32_reportingMethod;

 UINT16 AI32_bufferSize;

 UCHAR AI32_wordOrder;

 UINT16 AISF_number;

 UINT16 AISF_startAddress;

 UCHAR AISF_reportingMethod;

 Telepace C Tools Structures and Types

Document (Version 2.50) 5/12/2011 517 517

 UINT16 AISF_bufferSize;

 UCHAR AISF_wordOrder;

 UINT16 AO16_number;

 UINT16 AO16_startAddress;

 UINT16 AO32_number;

 UINT16 AO32_startAddress;

 UCHAR AO32_wordOrder;

 UINT16 AOSF_number;

 UINT16 AOSF_startAddress;

 UCHAR AOSF_wordOrder;

 UINT16 autoUnsolicitedClass1;

 UINT16 holdTimeClass1;

 UINT16 holdCountClass1;

 UINT16 autoUnsolicitedClass2;

 UINT16 holdTimeClass2;

 UINT16 holdCountClass2;

 UINT16 autoUnsolicitedClass3;

 UINT16 holdTimeClass3;

 UINT16 holdCountClass3;

 UINT16 enableUnsolicitedOnStartup;

 UINT16 sendUnsolicitedOnStartup;

 UINT16 level2Compliance;

 UINT16 masterAddressCount;

 UINT16 masterAddress[8];

 UINT16 maxEventsInResponse;

 UINT16 dialAttempts;

 UINT16 dialTimeout;

 UINT16 pauseTime;

 UINT16 onlineInactivity;

 UINT16 dialType;

 Char modemInitString[64];

} dnpConfigurationEx;

 rtuAddress is the address of the RTU. The master station must send
messages to this address. Valid values are 0 to 65534.

 datalinkConfirm enables requesting data link layer confirmations. Valid
values are TRUE and FALSE.

 datalinkRetries is the number of times the data link layer will retry a failed
message. Valid values are 0 to 255.

 datalinkTimeout is the length of time the data link layer will wait for a
response before trying again or aborting the transmission. The value is
measured in milliseconds. Valid values are 100 to 60000 in multiples of 100
milliseconds.

 operateTimeout is the length of time an operate command is valid after
receiving a select command. The value is measured in seconds. Valid values
are 1 to 6500.

 applicationConfirm enables requesting application layer confirmations. Valid
values are TRUE and FALSE.

 maximumResponse is the maximum length of an application layer response.
Valid values are 20 to 2048. The recommended value is 2048 unless the
master cannot handle responses this large.

 Telepace C Tools Structures and Types

Document (Version 2.50) 5/12/2011 518 518

 applicationRetries is the number of times the application layer will retry a
transmission. Valid values are 0 to 255.

 applicationTimeout is the length of time the application layer will wait for a
response before trying again or aborting the transmission. The value is
measured in milliseconds. Valid values are 100 to 60000 in multiples of 100
milliseconds. This value must be larger than the data link timeout.

 timeSynchronization defines how often the RTU will request a time
synchronization from the master.

 Set this to NO_TIME_SYNC to disable time synchronization requests.

 Set this to STARTUP_TIME_SYNC to request time synchronization at start
up only.

 Set this to 1 to 32767 to set the time synchronization period in seconds.

 BI_number is the number of binary input points. Valid values are 0 to 9999.

 BI_startAddress is the DNP address of the first Binary Input point.

 BI_reportingMethod determines how binary inputs are reported either
Change Of State or Log All Events.

 BI_soebufferSize is the Binary Input Change Event Buffer Size.

 BO_number is the number of binary output points. Valid values are 0 to
9999.

 BO_startAddress is the DNP address of the first Binary Output point.

 CI16_number is the number of 16-bit counter input points. Valid values are 0
to 9999.

 CI16_startAddress is the DNP address of the first CI16 point.

 CI16_reportingMethod determines how CI16 inputs are reported either
Change Of State or Log All Events.

 CI16_bufferSize is the number of events in the 16-bit counter change buffer.
Valid values are 0 to 9999.

 CI32_number is the number of 32-bit counter input points. Valid values are 0
to 9999.

 CI32_startAddress is the DNP address of the first CI32 point.

 CI32_reportingMethod determines how CI32 inputs are reported either
Change Of State or Log All Events.

 CI32_bufferSize is the number of events in the 32-bit counter change buffer.
Valid values are 0 to 9999.

 CI32_wordOrder is the Word Order of CI32 points (0=LSW first, 1=MSW
first).

 Telepace C Tools Structures and Types

Document (Version 2.50) 5/12/2011 519 519

 AI16_number is the number of 16-bit analog input points. Valid values are 0
to 9999.

 AI16_startAddress is the DNP address of the first AI16 point.

 AI16_reportingMethod determines how 16-bit analog changes are reported.

 Set this to FIRST_VALUE to report the value of the first change event
measured.

 Set this to CURRENT_VALUE to report the value of the latest change event
measured.

 AI16_bufferSize is the number of events in the 16-bit analog input change
buffer. Valid values are 0 to 9999.

 AI32_number is the number of 32-bit analog input points. Valid values are 0
to 9999.

 AI32_startAddress is the DNP address of the first AI32 point.

 AI32_reportingMethod determines how 32-bit analog changes are reported.

 Set this to FIRST_VALUE to report the value of the first change event
measured.

 Set this to CURRENT_VALUE to report the value of the latest change event
measured.

 AI32_bufferSize is the number of events in the 32-bit analog input change
buffer. Valid values are 0 to 9999.

 AI32_wordOrder is the Word Order of AI32 points (0=LSW first, 1=MSW first)

 AISF_number is the number of short float Analog Inputs.

 AISF_startAddress is the DNP address of first AISF point.

 AISF_reportingMethod is the event reporting method, Change Of State or
Log All Events.

 AISF_bufferSize is the short float Analog Input Event Buffer Size.

 AISF_wordOrder is the word order of AISF points (0=LSW first, 1=MSW first)
*/

 AO16_number is the number of 16-bit analog output points. Valid values are
0 to 9999.

 AO16_startAddress is the DNP address of the first AO16 point.

 AO32_number is the number of 32-bit analog output points. Valid values are
0 to 9999.

 AO32_startAddress is the DNP address of the first AO32 point.

 AO32_wordOrder is the Word Order of AO32 points (0=LSW first, 1=MSW
first)

 Telepace C Tools Structures and Types

Document (Version 2.50) 5/12/2011 520 520

 AOSF_number is the number of short float Analog Outputs.

 AOSF_startAddress is the DNP address of first AOSF point.

 AOSF_wordOrder is the Word Order of AOSF points (0=LSW first, 1=MSW
first).

 autoUnsolicitedClass1 enables or disables automatic Unsolicited reporting of
Class 1 events.

 holdTimeClass1 is the maximum period to hold Class 1 events before
reporting

 holdCountClass1 is the maximum number of Class 1 events to hold before
reporting.

 autoUnsolicitedClass2 enables or disables automatic Unsolicited reporting of
Class 2 events.

 holdTimeClass2 is the maximum period to hold Class 2 events before
reporting

 holdCountClass2 is the maximum number of Class 2 events to hold before
reporting.

 autoUnsolicitedClass3 enables or disables automatic Unsolicited reporting of
Class 3 events.

 holdTimeClass3 is the maximum period to hold Class 3 events before
reporting.

 HoldCountClass3 is the maximum number of Class 3 events to hold before
reporting.

 EnableUnsolicitedOnStartup enables or disables unsolicited reporting at
start-up.

 SendUnsolicitedOnStartup sends an unsolicited report at start-up.

 level2Compliance reports only level 2 compliant data types (excludes floats,
AO-32).

 MasterAddressCount is the number of master stations.

 masterAddress[8] is the number of master station addresses.

 MaxEventsInResponse is the maximum number of change events to include
in read response.

 PSTNDialAttempts is the maximum number of dial attempts to establish a
PSTN connection.

 PSTNDialTimeout is the maximum time after initiating a PSTN dial sequence
to wait for a carrier signal.

 PSTNPauseTime is the pause time between dial events.

 Telepace C Tools Structures and Types

Document (Version 2.50) 5/12/2011 521 521

 PSTNOnlineInactivity is the maximum time after message activity to leave a
PSTN connection open before hanging up.

 PSTNDialType is the dial type: tone or pulse dialling.

 modemInitString[64] is the initialization string to send to the modem.

dnpCounterInput

The dnpCounterInput type describes a DNP counter input point. This type is used
for both 16-bit and 32-bit points.

typedef struct dnpCounterInput_type

{

 UINT16 modbusAddress;

 UCHAR class;

 UINT32 threshold;

 } dnpCounterInput;

 modbusAddress is the address of the Modbus register number associated
with the point.

 class is the reporting class for the object. It may be set to CLASS_1,
CLASS_2 or CLASS_3.

 threshold is the amount by which the counter input value must change before
an event will be reported for the point.

dnpPointType

The enumerated type DNP_POINT_TYPE includes all allowed DNP data point
types.

typedef enum dnpPointType

{

 BI_POINT=0, /* binary input */

 AI16_POINT, /* 16 bit analog input */

 AI32_POINT, /* 32 bit analog input */

 AISF_POINT, /* short float analog input */

 AILF_POINT, /* long float analog input */

 CI16_POINT, /* 16 bit counter output */

 CI32_POINT, /* 32 bit counter output */

 BO_POINT, /* binary output */

 AO16_POINT, /* 16 bit analog output */

 AO32_POINT, /* 32 bit analog output */

 AOSF_POINT, /* short float analog output */

 AOLF_POINT /* long float analog output */

} DNP_POINT_TYPE;

DNP_RUNTIME_STATUS

The DNP_RUNTIME_STATUS type describes a structure for holding status
information about DNP event log buffers.

/* DNP Runtime Status */

typedef struct dnp_runtime_status

{

 UINT16 eventCountBI;

 Telepace C Tools Structures and Types

Document (Version 2.50) 5/12/2011 522 522

 UINT16 eventCountCI16;

 UINT16 eventCountCI32;

 UINT16 eventCountAI16;

 UINT16 eventCountAI32;

 UINT16 eventCountAISF;

 UINT16 eventCountClass1;

 UINT16 eventCountClass2;

 UINT16 eventCountClass3;

} DNP_RUNTIME_STATUS;

 eventCountBI is number of binary input events.

 eventCountCI16 is number of 16-bit counter events.

 eventCountCI32 is number of 32-bit counter events.

 eventCountAI16 is number of 16-bit analog input events.

 eventCountAI32 is number of 32-bit analog input events.

 eventCountAISF is number of short floating-point analog input events.

 eventCountClass1 is the class 1 event counter.

 eventCountClass2 is the class 2 event counter.

 eventCountClass3 is the class 3 event counter.

envelope

The envelope type is a structure containing a message envelope. Envelopes are
used for inter-task communication.

typedef struct env {

 struct env *link;

 unsigned source;

 unsigned destination;

 unsigned type;

 unsigned long data;

 unsigned owner;

 }

 envelope;

 link is a pointer to the next envelope in a queue. This field is used by the
RTOS. It is of no interest to an application program.

 source is the task ID of the task sending the message. This field is specified
automatically by the send_message function. The receiving task may read
this field to determine the source of the message.

 destination is the task ID of the task to receive the message. It must be
specified before calling the send_message function.

 type specifies the type of data in the data field. It may be MSG_DATA,
MSG_POINTER, or any other value defined by the application program. This
field is not required.

 Telepace C Tools Structures and Types

Document (Version 2.50) 5/12/2011 523 523

 data is the message data. The field may contain a datum or pointer. The
application program determines the use of this field.

 owner is the task that owns the envelope. This field is set by the RTOS and
must not be changed by an application program.

HART_COMMAND

The HART_COMMAND type is a structure containing a command to be sent to a
HART slave device. The command field contains the HART command number.
The length field contains the length of the data string to be transmitted (the byte
count in HART documentation). The data field contains the data to be sent to the
slave.

typedef struct hartCommand_t

 {

 unsigned command;

 unsigned length;

 char data[DATA_SIZE];

 }

 HART_COMMAND;

 command is the HART command number.

 length is the number of characters in the data string.

 data[DATA_SIZE] is the data field for the command.

HART_DEVICE

The HART_DEVICE type is a structure containing information about the HART
device. The information is read from the device using command 0 or command
11. The fields are identical to those read by the commands. Refer to the
command documentation for more information.

typedef struct hartDevice_t

 {

 unsigned char manufacturerID;

 unsigned char manufacturerDeviceType;

 unsigned char preamblesRequested;

 unsigned char commandRevision;

 unsigned char transmitterRevision;

 unsigned char softwareRevision;

 unsigned char hardwareRevision;

 unsigned char flags;

 unsigned long deviceID;

 }

 HART_DEVICE;

HART_RESPONSE

The HART_RESPONSE type is a structure containing a response from a HART
slave device. The command field contains the HART command number. The
length field contains the length of the data string to be transmitted (the byte count
in HART documentation). The data field contains the data to be sent to the slave.

 Telepace C Tools Structures and Types

Document (Version 2.50) 5/12/2011 524 524

typedef struct hartResponse_t

 {

 unsigned responseCode,

 unsigned length,

 char data[DATA_SIZE];

 }

 HART_RESPONSE;

 response is the response code from the device.

 length is the length of response data.

 data[DATA_SIZE] is the data field for the response.

HART_RESULT

The HART_RESULT enumeration type defines a list of results of sending a
command.

typedef enum hartResult_t

 {

 HR_NoModuleResponse=0,

 HR_CommandPending,

 HR_CommandSent,

 HR_Response,

 HR_NoResponse,

 HR_WaitTransmit

 }

 HART_RESULT;

 HR_NoModuleResponse returns no response from HART modem module.

 HR_CommandPending returns command ready to be sent, but not sent.

 HR_CommandSent returns command sent.

 HR_Response returns response received.

 HR_NoResponse returns no response after all attempts.

 HR_WaitTransmit returns modem is not ready to transmit.

HART_SETTINGS

The HART_SETTINGS type is a structure containing the configuration for the
HART modem module. The useAutoPreamble field indicates if the number of
preambles is set by the value in the HART_SETTINGS structure (FALSE) or the
value in the HART_DEVICE structure (TRUE). The deviceType field determines
if the 5904 modem is a HART primary master or secondary master device
(primary master is the recommended setting).

typedef struct hartSettings_t

 {

 unsigned attempts;

 unsigned preambles;

 BOOLEAN useAutoPreamble;

 unsigned deviceType;

 Telepace C Tools Structures and Types

Document (Version 2.50) 5/12/2011 525 525

 }

 HART_SETTINGS;

 attempts is the number of command attempts (1 to 4).

 preambles is the number of preambles to send (2 to 15).

 useAutoPreamble is a flag to use the requested preambles.

 deviceType is the type of HART master (1 = primary; 0 = secondary).

HART_VARIABLE

The HART_VARIABLE type is a structure containing a variable read from a
HART device. The structure contains three fields that are used by various
commands. Note that not all fields will be used by all commands. Refer to the
command specific documentation.

typedef struct hartVariable_t

 {

 float value;

 unsigned units;

 unsigned variableCode;

 }

 HART_VARIABLE;

 value is the value of the variable.

 units are the units of measurement.

 variableCode is the transmitter specific variable ID.

ioModules

The ioModules enumerated type describes I/O modules used with register
assignment.

enum ioModules

{

 DOUT_generic8 = 0,

 DOUT_generic16,

 DOUT_5401,

 DOUT_5402,

 DOUT_5406,

 DOUT_5407,

 DOUT_5408,

 DOUT_5409,

 DOUT_5411,

 CNFG_clearPortCounters,

 CNFG_clearProtocolCounters,

 CNFG_saveToEEPROM,

 CNFG_LEDPower,

 SCADAPack_lowerIO,

 SCADAPack_upperIO,

 DIN_generic8,

 DIN_generic16,

 DIN_5401,

 Telepace C Tools Structures and Types

Document (Version 2.50) 5/12/2011 526 526

 DIN_5402,

 DIN_5403,

 DIN_5404,

 DIN_5405,

 DIN_5421,

 DIN_520xDigitalInputs,

 DIN_520xOptionSwitches,

 DIN_520xInterruptInput,

 DIAG_forceLED,

 AIN_generic8,

 AIN_5501,

 AIN_5503,

 AIN_5504,

 AIN_5521,

 CNTR_5410,

 CNTR_520xCounterInputs,

 AIN_520xTemperature,

 AIN_520xRAMBattery,

 DIAG_controllerStatus,

 DIAG_commStatus,

 DIAG_protocolStatus,

 AOUT_generic2,

 AOUT_generic4,

 AOUT_5301,

 AOUT_5302,

 SCADAPack_AOUT,

 CNFG_portSettings,

 CNFG_protocolSettings,

 CNFG_realTimeClock,

 CNFG_PIDBlock,

 CNFG_storeAndForward,

 CNFG_5904Modem,

 CNFG_protocolExtended,

 AIN_5502,

 CNTR_520xInterruptInput,

CNFG_setSerialPortDTR,

 SCADAPack_LPIO,

 SCADAPack_10

CNFG_protocolExtendedEx,

 SCADAPack_5604IO,

 AOUT_5304,

GFC_4202IO

};

ledControl_tag

The ledControl_tag structure defines LED power control parameters.

struct ledControl_tag {

 unsigned state;

 unsigned time;

 };

 state is the default LED state. It is either the LED_ON or LED_OFF macro.

 Telepace C Tools Structures and Types

Document (Version 2.50) 5/12/2011 527 527

 time is the period, in minutes, after which the LED power returns to its default
state.

ModemInit

The ModemInit structure specifies modem initialization parameters for the
modemInit function.

struct ModemInit

{

 FILE * port;

 char modemCommand[MODEM_CMD_MAX_LEN + 2];

};

 port is the serial port where the modem is connected.

 modemCommand is the initialization string for the modem. The characters
AT will be prefixed to the command, and a carriage returned suffixed to the
command when it is sent to the modem. Refer to the section Modem
Commands for suggested command strings for your modem.

ModemSetup

The ModemSetup structure specifies modem initialization and dialing control
parameters for the modemDial function.

struct ModemSetup

{

 FILE * port;

 unsigned short dialAttempts;

 unsigned short detectTime;

 unsigned short pauseTime;

 unsigned short dialmethod;

 char modemCommand[MODEM_CMD_MAX_LEN + 2];

 char phoneNumber[PHONE_NUM_MAX_LEN + 2];

};

 port is the serial port where the modem is connected.

 dialAttempts is the number of times the controller will attempt to dial the
remote controller before giving up and reporting an error.

 detectTime is the length of time in seconds that the controller will wait for
carrier to be detected. It is measured from the start of the dialing attempt.

 pauseTime is the length of time in seconds that the controller will wait
between dialing attempts.

 dialmethod selects pulse or tone dialing. Set dialmethod to 0 for tone dialing
or 1 for pulse dialing.

 modemCommand is the initialization string for the modem. The characters
AT will be prepended to the command, and a carriage returned appended to

 Telepace C Tools Structures and Types

Document (Version 2.50) 5/12/2011 528 528

the command when it is sent to the modem. Refer to the section Modem
Commands for suggested command strings for your modem.

 phoneNumber is the phone number of the remote controller. The characters
ATD and the dialing method will be prepended to the command, and a
carriage returned appended to the command when it is sent to the modem.

PID_DATA

The PID_DATA structure defines settings for the PID function.

typedef struct pidData_type

 {

 float pv;

 float sp;

 float gain;

 float reset;

 float rate;

 float deadband;

 float fullScale;

 float zeroScale;

 float manualOutput;

 UINT32 period;

 BOOLEAN autoMode;

 /* calculation results */

 float output;

 BOOLEAN outOfDeadband;

 /* historic data values */

 float pvN1;

 float pvN2;

 float errorN1;

 UINT32 lastTime;

 }

 PID_DATA;

 pv is the process value.

 sp is the PID setpoint.

 gain is the PID gain value.

 reset is the PID reset time in seconds.

 rate is the PID rate time in seconds.

 deadband is the PID deadband.

 fullScale is the PID full scale output limit.

 zeroScale is the PID zero scale output limit.

 manualOutput is the PID manual output value.

 Telepace C Tools Structures and Types

Document (Version 2.50) 5/12/2011 529 529

 period is the PID execution period in milliseconds.

 autoMode is the PID automode flage; TRUE = auto mode.

 output is the PID last output value.

 outOfDeadband is the PID outside of deadband error.

 pvN1 is the process value from n-1 iteration.

 pvN2 is the process value from n-2 iteration.

 errorN1 is the error from n-1 iteration.

 lastTime is the time of the last PID execution.

PROTOCOL_SETTINGS

The Extended Protocol Settings structure defines settings for a communication
protocol. This structure differs from the standard settings in that it allows
additional settings to be specified.

typedef struct protocolSettings_t

 {

 unsigned char type;

 unsigned station;

 unsigned char priority;

 unsigned SFMessaging;

 ADDRESS_MODE mode;

 }

 PROTOCOL_SETTINGS;

 type is the protocol type. It may be one of NO_PROTOCOL, MODBUS_RTU,
or MODBUS_ASCII macros.

 station is the station address of the controller. Note that each serial port may
have a different address. The valid values are determined by the
communication protocol. This field is not used if the protocol type is
NO_PROTOCOL.

 priority is the task priority of the protocol task. This field is not used if the
protocol type is NO_PROTOCOL.

 SFMessaging is the enable Store and Forward messaging control flag.

 ADDRESS_MODE is the addressing mode, standard or extended.

PROTOCOL_SETTINGS_EX Type

This structure contains serial port protocol settings including Enron Modbus
support.

typedef struct protocolSettingsEx_t

 {

 UCHAR type;

 UINT16 station;

 UCHAR priority;

 UINT16 SFMessaging;

 Telepace C Tools Structures and Types

Document (Version 2.50) 5/12/2011 530 530

 ADDRESS_MODE mode;

 BOOLEAN enronEnabled;

 UINT16 enronStation;

 }

 PROTOCOL_SETTINGS_EX;

 type is the protocol type. It may be one of NO_PROTOCOL, MODBUS_RTU,
or MODBUS_ASCII.

 station is the station address of the controller. Note that each serial port may
have a different address. The valid values are determined by the
communication protocol. This field is not used if the protocol type is
NO_PROTOCOL.

 priority is the task priority of the protocol task. This field is not used if the
protocol type is NO_PROTOCOL.

 SFMessaging is the enable Store and Forward messaging control flag.

 ADDRESS_MODE is the addressing mode, AM_standard or AM_extended.

 enronEnabled determines if the Enron Modbus station is enabled. It may be
TRUE or FALSE.

 enronStation is the station address for the Enron Modbus protocol. It is used
if enronEnabled is set to TRUE. Valid values are 1 to 255 for standard
addressing, and 1 to 65534 for extended addressing.

prot_settings

The Protocol Settings structure defines settings for a communication protocol.
This structure differs from the extended settings in that it allows fewer settings to
be specified.

struct prot_settings {

 unsigned char type;

 unsigned char station;

 unsigned char priority;

 unsigned SFMessaging;

 };

 type is the protocol type. It may be one of NO_PROTOCOL, MODBUS_RTU,
MODBUS_ASCII, AB_FULL_BCC, AB_HALF_BCC, AB_FULL_CRC,
AB_HALF_CRC or DNP macros.

 station is the station address of the controller. Note that each serial port may
have a different address. The valid values are determined by the
communication protocol. This field is not used if the protocol type is
NO_PROTOCOL.

 priority is the task priority of the protocol task. This field is not used if the
protocol type is NO_PROTOCOL.

 SFMessaging is the enable Store and Forward messaging control flag.

 Telepace C Tools Structures and Types

Document (Version 2.50) 5/12/2011 531 531

prot_status

The prot_status structure contains protocol status information.

struct prot_status {

 unsigned command_errors;

 unsigned format_errors;

 unsigned checksum_errors;

 unsigned cmd_received;

 unsigned cmd_sent;

 unsigned rsp_received;

 unsigned rsp_sent;

 unsigned command;

 int task_id;

 unsigned stored_messages;

 unsigned forwarded_messages;

 };

 command_errors is the number of messages received with invalid command
codes.

 format_errors is the number of messages received with bad message data.

 checksum_errors is the number of messages received with bad checksums.

 cmd_received is the number of commands received.

 cmd_sent is the number of commands sent by the master_message function.

 rsp_received is the number of responses received by the master_message
function.

 rsp_sent is the number of responses sent.

 command is the status of the last protocol command sent.

 task_id is the ID of the protocol task. This field is used by the set_protocol
function to control protocol execution.

 stored_messages is the number of messages stored for forwarding.

 forwarded_messages is the number of messages forwarded.

pconfig

The pconfig structure contains serial port settings.

struct pconfig {

 unsigned baud;

 unsigned duplex;

 unsigned parity;

 unsigned data_bits;

 unsigned stop_bits;

 unsigned flow_rx;

 unsigned flow_tx;

 unsigned type;

 unsigned timeout;

 };

 Telepace C Tools Structures and Types

Document (Version 2.50) 5/12/2011 532 532

 baud is the communication speed. It is one of the BAUD_xxx macros.

 duplex is either the FULL or HALF macro.

 parity is one of NONE, EVEN or ODD macros.

 data_bits is the word length. It is either the DATA7 or DATA8 macro.

 stop_bits in the number of stop bits transmitted. It is either the STOP1 or
STOP2 macro.

 flow_rx specifies flow control on the receiver. It is either the DISABLE or
ENABLE macro.

 For com1 and com2 setting this parameter selects XON/XOFF flow control. It
may be enabled or disabled.

If any protocol, other than Modbus ASCII, is used on the port you must set
flow_rx to DISABLE. If Modbus ASCII or no protocol is used, you can set flow_rx
to ENABLE or DISABLE. In most cases DISABLE is recommended.

 For com3 and com4 setting this parameter selects Receiver Disable after
message reception. This is used with the Modbus RTU protocol only. If the
Modbus RTU protocol is used, set flow_rx to ENABLE. Otherwise set flow_rx
to DISABLE.

 flow_tx specifies flow control on the transmitter. It is either the DISABLE or
ENABLE macro.

 For com1 and com2 setting this parameter selects XON/XOFF flow control. It
may be enabled or disabled.

If any protocol, other than Modbus ASCII, is used on the port you must set
flow_tx to DISABLE. If Modbus ASCII or no protocol is used, you can set flow_tx
to ENABLE or DISABLE. In most cases DISABLE is recommended.

 For com3 and com4 setting this parameter indicates if the port should ignore
the CTS signal. Setting the parameter to ENABLE causes the port to ignore
the CTS signal.

 type specifies the serial port type. It is one of NOTYPE, RS232,
RS232_MODEM, RS485, or RS232_COLLISION_AVOID macros.

 timeout specifies the time the driver will wait when the transmit buffer fills,
before it clears the buffer.

PORT_CHARACTERISTICS

The PORT_CHARACTERISTICS type is a structure that contains serial port
characteristics.

typedef struct portCharacteristics_tag {

 unsigned dataflow;

 unsigned buffering;

 unsigned protocol;

 unsigned long options;

 } PORT_CHARACTERISTICS;

 Telepace C Tools Structures and Types

Document (Version 2.50) 5/12/2011 533 533

 dataflow is a bit mapped field describing the data flow options supported on
the serial port. ANDing can isolate the options with the
PC_FLOW_RX_RECEIVE_STOP, PC_FLOW_RX_XON_XOFF,
PC_FLOW_TX_IGNORE_CTS or PC_FLOW_TX_XON_XOFF macros.

 buffering describes the buffering options supported. No buffering options are
currently supported.

 protocol describes the protocol options supported. The macro,
PC_PROTOCOL_RTU_FRAMING is the only option supported.

 options describes additional options supported. No additional options are
currently supported.

pstatus

The pstatus structure contains serial port status information.

struct pstatus {

 unsigned framing;

 unsigned parity;

 unsigned c_overrun;

 unsigned b_overrun;

 unsigned rx_buffer_size;

 unsigned rx_buffer_used;

 unsigned tx_buffer_size;

 unsigned tx_buffer_used;

 unsigned io_lines;

 };

 framing is the number of received characters with framing errors.

 parity is the number of received characters with parity errors.

 c_overrun is the number of received character overrun errors.

 b_overrun is the number of receive buffer overrun errors.

 rx_buffer_size is the size of the receive buffer in characters.

 rx_buffer_used is the number of characters in the receive buffer.

 tx_buffer_size is the size of the transmit buffer in characters.

 tx_buffer_used is the number of characters in the transmit buffer.

 io_lines is a bit mapped field indicating the status of the I/O lines on the serial
port. The values for these lines differ between serial ports (see tables below).
ANDing can isolate the signals with the SIGNAL_CTS, SIGNAL_DCD,
SIGNAL_OH, SIGNAL_RING or SIGNAL_VOICE macros.

READSTATUS

The READSTATUS enumerated type indicates the status of an I
2
C bus message

read and may have one of the following values.

 Telepace C Tools Structures and Types

Document (Version 2.50) 5/12/2011 534 534

enum ReadStatus {

 RS_success,

 RS_selectFailed

 };

typedef enum ReadStatus READSTATUS;

 RS_success returns read was successful.

 RS_selectFailed returns slave device could not be selected

regAssign

The regAssign structure is used to construct a register assignment. It is one entry
in the register assignment.

struct regAssign {

 unsigned ioDriverType;

 unsigned moduleAddress;

 unsigned startingRegister1;

 unsigned startingRegister2;

 unsigned startingRegister3;

 unsigned startingRegister4;

 unsigned moduleType;

 unsigned modbusStartReg1;

 unsigned modbusStartReg2;

 unsigned modbusStartReg3;

 unsigned modbusStartReg4;

 };

 ioDriverType is the i/o module driver type

 moduleAddress is the address or group index for module

 startingRegister1 is the starting linear address of 1st group of consecutive
registers mapped to module

 startingRegister2 is the starting linear address of 2nd group of registers

 startingRegister3 is the starting linear address of 3rd group of registers

 startingRegister4 is the starting linear address of 4th group of registers

 moduleType is the hardware or pseudo module type

 modbusStartReg1 is the starting Modbus register of 1st group

 modbusStartReg2 is the starting Modbus register of 2nd group

 modbusStartReg3 is the starting Modbus register of 3rd group

 modbusStartReg4 is the starting Modbus register of 4th group

routingTable

The routingTable type describes an entry in the DNP Routing Table.

 Telepace C Tools Structures and Types

Document (Version 2.50) 5/12/2011 535 535

Note that the DNP Routing Table is a list of routes, which are maintained in
ascending order of DNP addresses.

typedef struct RoutingTable_type

{

 UINT16 address; /* station address */

 UINT16 comPort; /* com port interface */

 UINT16 retries; /* number of retries */

 UINT16 timeout; /* timeout in milliseconds

*/

} routingTable;

 adress is the DNP address.

 comPort is the serial port interface.

 retries is the number of data link retires for this table entry.

 timeout is the timeout in milliseconds.

SFTranslation

The SFTranslation structure contains Store and Forward Messaging translation
information. This is used to define an address and port translation.

struct SFTranslation {

 unsigned portA;

 unsigned stationA;

 unsigned portB;

 unsigned stationB;

 };

 portA is the index of the first serial port. The index is obtained with the
portIndex function.

 stationA is the station address of the first station.

 portB is the index of the second serial port. The index is obtained with the
portIndex function.

 stationB is the station address of the second station.

SFTranslationStatus

The SFTranslationStatus structure contains information about a Store and
Forward Translation table entry. It is used to report information about specific
table entries.

struct SFTranslationStatus {

 unsigned index;

 unsigned code;

 };

 Telepace C Tools Structures and Types

Document (Version 2.50) 5/12/2011 536 536

 index is the location in the store and forward table to which the status code
applies.

 code is the status code. It is one of SF_VALID,
SF_INDEX_OUT_OF_RANGE, SF_NO_TRANSLATION,
SF_PORT_OUT_OF_RANGE, SF_STATION_OUT_OF_RANGE, or
SF_ALREADY_DEFINED macros.

TASKINFO

The TASKINFO type is a structure containing information about a task.

/* Task Information Structure */

typedef struct taskInformation_tag {

 unsigned taskID;

 unsigned priority;

 unsigned status;

 unsigned requirement;

 unsigned error;

 unsigned type;

 } TASKINFO;

 taskID is the identifier of the task.

 priority is the execution priority of the task.

 status is the current execution status the task. This may be one of
TS_READY, TS_EXECUTING, TS_WAIT_ENVELOPE, TS_WAIT_EVENT,
TS_WAIT_MESSAGE, or TS_WAIT_RESOURCE macros.

 requirement is used if the task is waiting for an event or resource. If the
status field is TS_WAIT_EVENT, then requirement indicates on which event
it is waiting. If the status field is TS_WAIT_RESOURCE then requirement
indicates on which resource it is waiting.

 error is the task error code. This is the same value as returned by the
check_error function.

 type is the task type. It will be either SYSTEM or APPLICATION.

taskInfo_tag

The taskInfo_tag structure contains start up task information.

struct taskInfo_tag {

 void *address;

 unsigned stack;

 unsigned identity;

 };

 address is the pointer to the start up routine.

 stack is the required stack size for the routine

 identity is the type of routine found (STARTUP_APPLICATION or
STARTUP_SYSTEM)

 Telepace C Tools Structures and Types

Document (Version 2.50) 5/12/2011 537 537

timer_info

The timer_info structure contains information about a timer.

struct timer_info {

 unsigned time;

 unsigned interval;

 unsigned interval_remaining;

 unsigned flags;

 unsigned duty_on;

 unsigned duty_period;

 unsigned channel;

 unsigned bit;

 };

 time is the time remaining in the timer in ticks.

 interval is the length of a timer tick in 10ths of a second.

 interval_remaining is the time remaining in the interval count down register in
10ths of a second.

 flags is the timer type and status bits (NORMAL, PULSE TRAIN,
DUTY_CYCLE, TIMEOUT, and TIMED_OUT). More than one condition may
be true at any time.

 duty_on is the length of the on high portion of the square wave output. This is
used only by the pulse function.

 duty_period is the period of the square wave output This is used only by the
pulse function.

 channel and bit specify the digital output point. This is used by pulse,
pulse_train and timeout functions.

VERSION

The Firmware Version Information Structure holds information about the
firmware.

typedef struct versionInfo_tag {

 unsigned version;

 unsigned controller;

 char date[VI_DATE_SIZE + 1];

 char copyright[VI_STRING_SIZE + 1];

 } VERSION;

 version is the firmware version number.

 controller is target controller for the firmware.

 date is a string containing the date the firmware was created.

 copyright is a string containing Control Microsystems copyright information.

 Telepace C Tools Structures and Types

Document (Version 2.50) 5/12/2011 538 538

WRITESTATUS

The WRITESTATUS enumerated type indicates the status of an I
2
C bus

message read and may have one of the following values.

enum WriteStatus {

 WS_success,

 WS_selectFailed,

 WS_noAcknowledge

 };

typedef enum WriteStatus WRITESTATUS;

 WS_success returns write was successful

 WS_selectFailed returns slave could not be selected

 WS_noAcknowledge returns slave failed to acknowledge data

 C Compiler Known Problems

Document (Version 2.50) 5/12/2011 539 539

C Compiler Known Problems

The C compiler supplied with the Telepace C Tools is a product of Microtec.
There are two known problems with the compiler.

Use of Initialized Static Local Variables

The compiler incorrectly allocates storage for initialized static local variables. The
storage is allocated incorrectly in memory reserved for constant string data. The
storage should be allocated in memory for initialized variables.

Problems Caused

A program loaded in ROM cannot modify a variable declared in this fashion.

A program loaded in RAM can modify the variable. However, the variable is in a
section of program memory that the operating system expects to remain
constant. Modifying the variable causes the operating system to think the
program has been modified. The program continues to run correctly, but will not
run again if it is stopped by the C Program Loader or if the controller is reset. The
operating system detects that the program memory is corrupt and does not
execute the program.

Example

The compiler generates incorrect code for the following example. Storage for the
variable a is allocated in the strings section. It should be in the initvars section.

If the program is loaded in ROM, it cannot modify the variable a.

If the program is loaded in RAM, it can be run once after being written to a
controller memory. All subsequent attempts to run the program will fail.

void main(void)

{

 static int a = 1;

 a++;

 /* other code here */

}

Working Around the Problem

There are two ways to work around the problem.

1. Use global variable instead of a local variable. For example:

static int a = 1;

void main(void)

{

 a++;

 C Compiler Known Problems

Document (Version 2.50) 5/12/2011 540 540

 /* other code here */

}

2. If the local variable is to be initialized to zero, then a non-initialized static
local variable can be used. For example:

void main(void)

{

 static int a;

 a++;

 /* other code here */

}

In this example the declaration:

 static int a;

is the same as the following:

 static int a = 0;

The operating systems sets non-initialized variables (stored in the zerovars
section) to zero before running the program.

Correction to the Problem

This problem exists with the C Compiler supplied by Microtec. It will not be
corrected. Users need to work around the problem as described above.

Use of pow Function

The compiler sometimes incorrectly evaluates expressions involving the pow
function with other arithmetic.

Also, a task calling the pow function requires at least 5 stack blocks. The need
for more stack space by the pow function is not a compiler problem, it is simply a
requirement of pow.

Problems Caused

Some arithmetic expressions involving the pow function may result in incorrect
results. When testing expressions that call pow, if the result is found to be
incorrect, it will be consistently incorrect for all values used by variables in the
expression.

The pow function requires at least 5 stack blocks. If 4 or less stack blocks are
used by the task calling pow, the controller will overflow its stack space. When
the stack space overflows the behavior is unpredictable, and will likely cause the
controller to reset.

 C Compiler Known Problems

Document (Version 2.50) 5/12/2011 541 541

Example

The compiler generates incorrect code for the following example. The result of
this expression is incorrect for all values used for its variables.

void main(void)

{

 double a, b, c, d, e;

 a = pow(b, c) * (d + e);

 /* other code here */

}

Working Around the Problem

There are two ways to work around the problem.

1. To work around the problem compute the pow result on a separate line and
use the result in the arithmetic expression afterwards. For example:

void main(void)

{

 double a, b, c, d, e, result;

 result = pow(b, c);

 a = result * (d + e);

 /* other code here */

}

When a task calls the pow function it requires at least 5 stack blocks. The default
stack space allocated to the main task is only 4 blocks. To modify the number of
stack blocks allocated to the main task refer to the section Start-Up Function
Structure for details on editing appstart.c. See the function create_task to specify
the stack used by other tasks.

2. The powf function may be used instead of pow where double precision is not
required.

Correction to the Problem

This problem exists with the C Compiler supplied by Microtec. It will not be
corrected. Users need to work around the problem as described above.

